Sarecycline Demonstrated Reduced Activity Against Representative Bacterial and Fungal Microflora Commonly Present in the Human Gastrointestinal Tract

Mahmoud A. Ghannoum^{1,2} Janet Herrada¹, Ahmed Gamal^{1,2}, Lisa Long^{1,2}, Thomas S. McCormick², and Ayman Grada³

¹University Hospital Cleveland Medical Center, Center for Medical Mycology, ²Case Western Reserve University, Department of Dermatology and ³R&D and Medical Affairs, Almirall US, Malvern, PA, USA ^{*}Corresponding author: Mahmoud Ghannoum, PhD, MBA, FAAM, FIDSA University Hospitals Cleveland Medical Center SCHOOL OF MEDICINE CASE WESTERN RESERVE

Objective

Evaluate the effect of sarecycline, a narrow spectrum antibiotic, compared to minocycline, a broad-spectrum antibiotic, against a panel of microorganisms that reflect the diversity of the gut microbiome using *in vitro* minimum inhibitory concentration (MIC) testing and timekill kinetic assays.

Methods

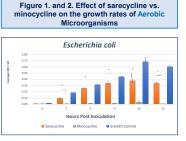
1. <u>Chose representative bacterial and fungal strains</u> found in the Healthy Gut

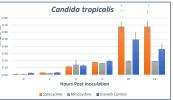
2. Perform Antimicrobial Susceptibility Testing

Minimum inhibitory concentration (MIC) testing was performed using modified Clinical Laboratory Standards Institute methodology

3. Establish Growth Curves

E. coli and Candida tropicalis were selected as representative of aerobic bacteria and veast respectively. While Lactobacillus paracasei and Bifidobacterium adolescentis were selected as representative of anaerobic bacteria that colonize the gut.


Table 1. Susceptibility	y Testing Results	for sarecycline	and minocycline
Against Healthy Gut I	Microbes (µg/mL	, n=28)	


Phylum	Genus	Species	Sarecycline	Minocycline	Fold Difference in MIC
Actinobacteria	Bifidobacterium	Bifidobacterium adolescentis	1	1	1
Actinobacteria	Collinsella	Collinsella aerofaciens	1	0.5	2
Actinobacteria	Eggerthella	Eggerthella lenta	1	0.5	2
Actinobacteria	Actinomycetales	Propionibacterium freudenreichii	8	1	8
Bacteroidetes	Bacteroides	Bacteroides caccae	8	0.25	32
Bacteroidetes	Bacteroides	Bacteroides fragilis enterotoxigenic (ET)	2	4	0.5
Bacteroidetes	Bacteroides	Bacteroides fragilis nontoxigenic	1	0.25	4
Bacteroidetes	Bacteroides	Bacteroides ovatus	0.5	0.5	1
Bacteroidetes	Bacteroides	Bacteroides thetaiotaomicron	0.25	0.125	2
Bacteroidetes	Bacteroides	Bacteroides uniformis	2	0.5	4
Bacteroidetes	Bacteroides	Bacteroides vulgatus	0.125	0.016	7.8
Bacteroidetes	Bacteroides	Bacteroides xylanisolvens	1	0.25	4
Bacteroidetes	Bacteroides	Bifidobacterium subtile Biavati	>8	8	Not Determined
Bacteroidetes	Odoribacter	Odoribacter splanchnicus	8	4	2
Bacteroidetes	Parabacteroides	Parabacteroides distasonis	8	2	4
Bacteroidetes	Parabacteroides	Parabacteroides merdae	0.06	0.016	3.8
Firmicutes	Blautia	Blautia obeum	1	0.5	2
Firmicutes	Clostridium	Clostridium bolteae	4	0.5	8
Firmicutes	Clostridium	Clostridium ramosum	2	0.06	33.3
Firmicutes	Clostridium	Clostridium saccharolyticum	2	2	1
Firmicutes	Dorea	Dorea formicigenerans	0.25	0.06	4.2
Firmicutes	Eubacterium	Eubacterium eligens	>8	4	Not Determined
Firmicutes	Lactobacillus	Lactobacillus paracasei	1	0.25	4
Proteobacteria	Escherichia	Escherichia coli IAI1	16	8	2
Sac fungi	Candida	Candida albicans	32	16	2
Sac fungi	Candida	Candida glabrata	32	32	1
Sac fungi	Candida	Candida parapsilosis	32	16	2
Sac fungi	Candida	Candida tropicalis	16	16	1

Higher fold difference indicates lower sarecycline activity

Compared to minocycline, sarecycline showed significantly less antimicrobial activity against:

- 10 of 12 isolates from the Bacteroidetes phylum
- 3 out of 4 isolates from Actinobacteria phylum
- 5 of 7 isolates from the Firmicutes phylum, E. coli
- Propionibacterium freudenreichii (≥ 3 dilutions)
- Sarecycline also showed less activity against 2 Candida species

Sarecycline showed significantly less activity against *E. coli* compared to minocycline at all time points (*P*-values <0.05)

- Sarecycline was significantly less active against C. tropicalis compared to minocycline at 20 and 22 hours post exposure (P-values <0.05)
- Time kill study shows that with longer time exposure sarecycline has less inhibitory activity against Candida

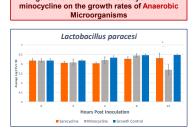
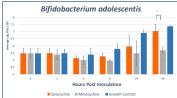



Figure 3. and 4. Effect of sarecycline vs.

Sarecycline showed significantly less activity against *L. paracasei* compared to minocycline after 24 hours of growth (P-value of 0.002)

- Sarecycline showed significantly less activity against **B. adolescentis** compared to minocycline after 48 hours of growth (P-value of 0.042)
- · In this study, sarecycline demonstrated less activity against 79% of the
- microorganisms normally found in a healthy human gut, when compared to minocycline
- Sarecycline is a narrow-spectrum antibiotic
- Our data suggests that sarecycline may have less impact on disrupting commensal and symbiotic organisms residing in the gut and is less likely to promote dysbiosis. *In vivo* evaluation is ongoing

This study was supported by Almirall, LLC, Malvern, PA