Appropriate utilization of the prognostic 40-gene expression profile (40-GEP) test for cutaneous squamous cell carcinoma (cSCC) demonstrated by clinical reports and physician evaluation of real-world cases

Aaron S. Farberg¹, Jennifer J. Siegel², Briana Rackley², Alison L. Fitzgerald², Sarah J. Kurley², Robert W. Cook² ¹Baylor Scott & White Health System^{; 2}Castle Biosciences, Inc.

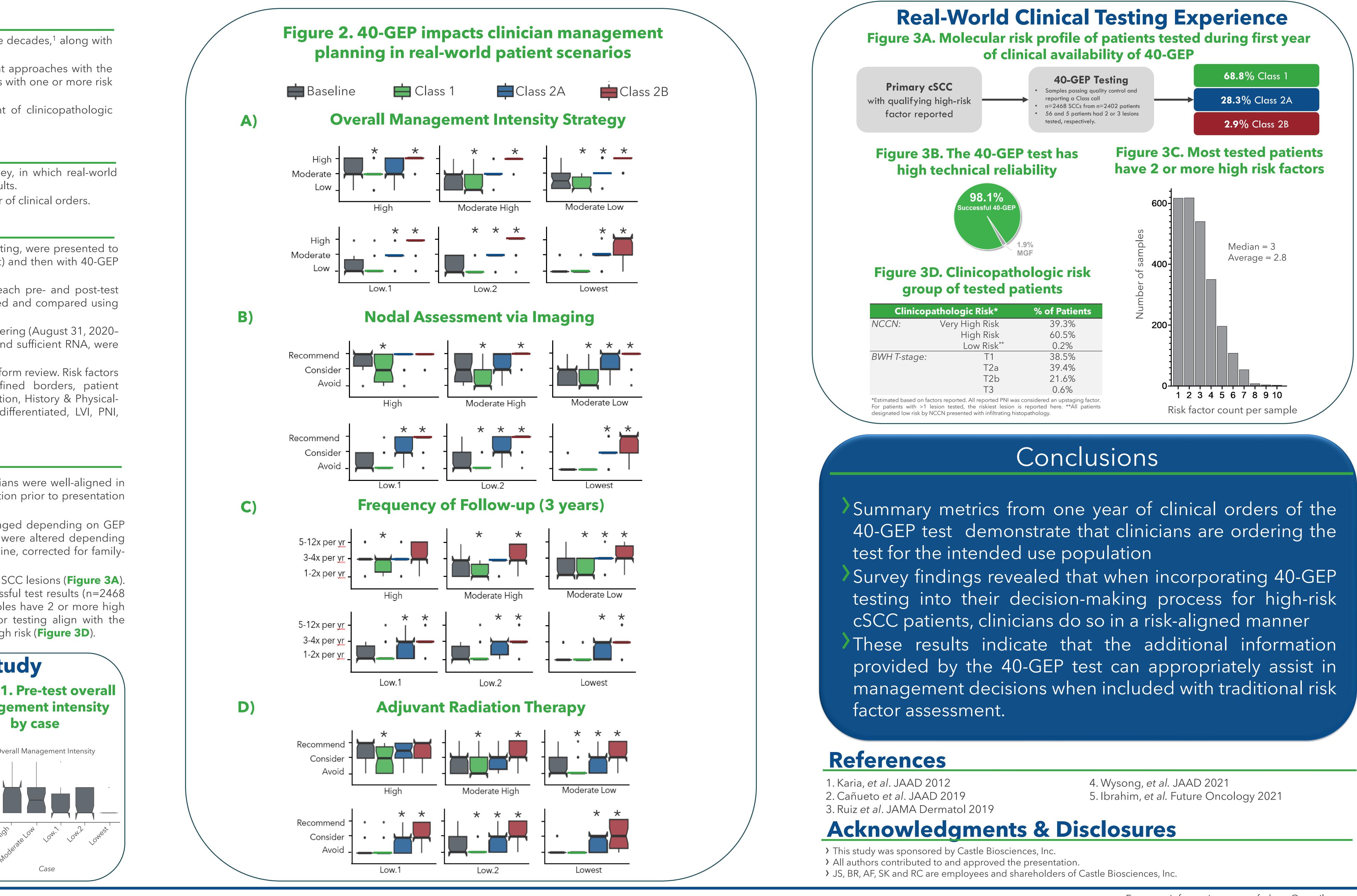
Synopsis

- > There has been an unprecedented increase in cSCC incidence over the past three decades,¹ along with a continued discordance between available staging systems.^{2,3}
- > The 40-GEP test was developed and validated to augment traditional assessment approaches with the intention to improve risk-directed patient management for high-risk cSCC patients with one or more risk factors.
- > The 40-GEP test has shown significant metastatic risk stratification independent of clinicopathologic factors and staging systems using these factors.^{4,5}

Objective

- > To evaluate appropriate utilization of the 40-GEP via analysis of a clinician survey, in which real-world cases submitted for clinical testing were presented with or without 40-GEP test results.
- **>** To evaluate demographics of clinicians and usage of the 40-GEP test from one year of clinical orders.

Methods


- > Six real-world cases, representing the spectrum of those submitted for clinical testing, were presented to 40-GEP test users (10+ orders/year minimum), first without 40-GEP result (pre-test) and then with 40-GEP results (post-test).
- > Clinicians were asked what treatment recommendations they would make for each pre- and post-test patient case. Assessments from the 34 responding clinicians were ordinally scored and compared using Wilcoxon Rank or Kruskal-Wallis.
- > Summary metrics on the 2515 samples received during the first year of clinical ordering (August 31, 2020-August 31, 2021) that met clinical testing criteria, including 40% tumor content and sufficient RNA, were generated.
- > The 40-GEP Class call and patient risk factors were captured by clinical requisition form review. Risk factors included lesion located on the H or M area, ≥ 2 cm diameter, poorly defined borders, patient immunosuppression, rapidly growing tumor, site of prior RT or chronic inflammation, History & Physicalother factor noted, high-risk subtype, Clark Level IV, >2mm invasion, poorly differentiated, LVI, PNI, invasion beyond the subcutaneous fat.

Results

- > Clinicopathologic factors for the 6 real-world cases are shown in **Table 1**. Clinicians were well-aligned in their pre-test risk strategy levels among the real-world cases, despite randomization prior to presentation to clinicians (**Figure 1**).
- > Post-testing, clinicians' overall management plan intensity was significantly changed depending on GEP prognostic risk (Figure 2A). Recommendations for specific treatment decisions were altered depending on 40-GEP result (Figure 2B-D). Asterisks indicate significant change from baseline, corrected for familywise error, p < 0.016).
- > 40-GEP testing resulted in 68.8% Class 1, 28.3% Class 2A, 2.9% Class 2B primary SCC lesions (Figure 3A). Of the n=2515 samples meeting clinical testing criteria, 98.1% generated successful test results (n=2468 Class call; n= 47 multigene failures) (Figure 3B). 75.3% of clinically tested samples have 2 or more high risk factors (median = 3, average = 2.8) (Figure 3C). The cases submitted for testing align with the intended use population with almost all cases classifying as NCCN high or very high risk (**Figure 3D**).

Table 1. Clinicopathologic risk factors for sixreal-world cases							Fig ma
Case	Age	Sex	Location	Subtype	Differentiation	Additional high-risk factors	
High	81	8	L superior medial forehead	NR	Moderate	Invasion beyond subcutaneous fat, PNI, LVI, ≥2 cm	I
/loderate High	86	8	R cheek	Infil	Poor	Invasion >2 mm	High -
/loderate Low	75	9	R temporal scalp	Infil	Poor		Moderate -
Low.1	75 IS*	8	R mid preauricular cheek	Acan	Moderate		Low –
Low.2	69	9	R inferior postauricular skin	Infil	Moderate		ا نې
Lowest	71	Ŷ	R dorsal hand (rapidly growing)	NR	Moderate		r ⁱ A

Presented at Winter Clinical Dermatology Conference; January 14-19, 2022.

<u>more info</u>

For more information: aaron.farberg@gmail.com