Subtype performance of the ancillary diagnostic 23- and 35-gene expression profile (GEP) tests for difficult-todiagnose melanocytic lesions

and Kiran Motaparthi, MD⁵

¹ Depts of Dermatology & Pathology, The Ohio State Univ Wexner Medical Center, Columbus, OH, USA ³ Castle Biosciences, Inc., Friendswood, TX, USA ⁴ Icahn School of Medicine at Mount Sinai, NY, USA ⁵ Dept of Dermatology, Univ of Florida College of Medicine, Gainesville, FL, USA

Background

- > Diagnostic discordance in cutaneous melanocytic lesions is well documented, and it is particularly prevalent among difficult-to-diagnose cases, for which histopathology may be insufficient for a definitive diagnosis.¹⁻⁴
- > The **23-gene expression profile** (**GEP**) and **35-GEP** tests are clinically available, objective ancillary tools that facilitate diagnosis of melanocytic lesions with ambiguous histopathology. The tests use proprietary algorithms to produce results of: suggestive of benign neoplasm; intermediate (cannot rule out malignancy); or suggestive of malignant neoplasm.⁵⁻⁷
- > The GEP tests have demonstrated accuracy metrics of 90.4 94.9% sensitivity and 92.5 -96.2% specificity for the 23-GEP, and 94.7 – 99.1% sensitivity and 89.5 – 94.3% specificity for the 35-GEP.⁵⁻⁷
- > Today, both the 23- and 35-GEP tests are offered from a single laboratory. Under the current laboratory workflow, unless preferred otherwise by the ordering clinician, clinical samples are processed first through the 23-GEP test, and if a technical failure or intermediate result is received, processed through the 35-GEP (Figure 1). However, both are run independently of one another and can be ordered as stand-alone tests.⁸

Methods

> Melanocytic lesions and associated de-identified clinical data from patients \geq 18 years of age were included in this study. Samples were acquired under an IRB-approved protocol, including those previously submitted for clinical testing for the 31-GEP melanoma prognostic test. Samples were independently reviewed (blinded to the original diagnosis) by at least 3 total dermatopathologists for adjudication and included if they received at least 2 out of 3 diagnostic concordance with choices of benign, malignant, or uncertain malignant potential (UMP) (Table 1). Subtype in this analysis was determined by the submitting dermatopathologist. All cases not receiving a benign or malignant result from the 23-GEP were run on the 35-GEP.

Presented at the Inaugeral Winter Clinical - Miami™ 2023 Meeting , February 17-20, 2023. Miami, Florida

Jose A Plaza, MD¹, Sarah I Estrada, MD², Brooke H Russell, PhD³, Jennifer J Siegel, PhD³, Jeffrey K Wilkinson, PhD³, Sarah J Kurley, PhD³, Matthew S Goldberg, MD^{3,4},

Results

Table 1. GEP workflow overall performance acc **Performance Cohort, n=350**

		95% Confidence interval
Sensitivity	96.0%	92.0% - 99.0%
Specificity	87.8%	80.8% - 93.8%
Positive predictive value	89.0%	83.8% - 94.1%
Negative predictive value	95.6%	91.1% - 98.9%
Intermediate result	1.	.5%

Table 2. GEP workflow test result by lesion subtype (as indicated by submitting dermatopathologist)

	Final GEP workflow result		
Subtype*	Benign, n	Intermediate, n	Malignant, n
Melanomas (n=245)			
Acral lentiginous			15
Common			15
Desmoplastic			20
Lentigo maligna	1		30
Melanoma <i>in situ</i>			16
Nodular	4		77
Not specified	1		4
Spitzoid	3		17
Superficial spreading	1		41
Benign nevi (n=100)			
Blue	28	1	1
Compound	9		3
Compound dysplastic	26 ^A	1	3 ^B
Deep penetrating	1		
Intradermal	1		1
Junctional dysplastic	13 ^C	1 ^D	4 ^E
Spitz	7		

*5 samples did not have adequate subtype information. Dysplastic nevi had different degrees of atypia: A: 13 mild, 2 moderate; B: 2 mild, 1 moderate; C: 6 mild, 4 moderate; D: 1 moderate; E: 3 mild, 1 moderate;

Acknowledgments & Disclosures

> JAP has served as a consultant for Castle Biosciences, Inc. SIE is a consultant and shareholder of Castle Biosciences, Inc. KLA, JJS, BHR, JHR, JKW, SJK, and MSG are employees and shareholders of Castle Biosciences, Inc. KM has served as a consultant and investigator for studies supported by Castle Biosciences, Inc. This study was supported by Castle Biosciences, Inc.

curacy	metrics
-320	

Results

Table 3. GEP workflow performance accuracy metrics by lesion subtype					
Subtype*	n	Sensitivity	Specificity		
Melanomas					
Acral lentiginous	15	100%			
Common	15	100%			
Desmoplastic	20	100%			
Lentigo maligna	31	96.8%			
Melanoma <i>in situ</i>	16	100%			
Nodular	81	95.1%			
Spitzoid	20	85%			
Superficial spreading	42	97.6%			
Benign nevi					
Blue	30		93.3%		
Compound dysplastic	30		86.7%		
Junctional dysplastic	18		72.2%		

*Only subtypes with $n \ge 15$ are shown.

The 23- and 35-GEP diagnostic test workflow results in high accuracy across a large spectrum of subtypes of melanocytic neoplasms

References

1. Shoo, B. A. et al. J Am Acad Dermatol 2010. 62 (5) 751-756. 2. Gerami, P. et al. Am J Surg Pathol 2010. 34 (6) 816-821. 3. Haws, B. et al. J Cutan Pathol 2012. 39 (9) 844-849. 4. Elmore, J. G. et al. BMJ 2017. 357 (1) j2813. 5. Clarke, L. E. et al. J Cutan Pathol 2015. 42 (4) 244-252. 6. Clarke, L. E. et al. Cancer 2017. 123 (4) 617-628. 7. Estrada, S. et al. SKIN 2020. 4 (6) 506-522. 8. Goldberg, M. et al. SKIN 2021.5 s79.

Conclusions