Lack of Placental Transfer of Certolizumab Pegol During Pregnancy: Results from CRIB, a Prospective, Postmarketing, Multicenter, Pharmacokinetic Study

Alexa B. Kimball,¹ Xavier Mariette,² Bincy Abraham,³ Ann Flynn,⁴ Frauke Förger,⁵ Anna Moltó,⁶ René-Marc Flipo,⁷ Astrid van Tubergen,⁸ Laura Shaughnessy,⁹ Jeff Simpson,⁹ Marie Teil,¹⁰ Eric Helmer,¹¹ Maggie Wang,⁹ Eliza Chakravarty¹²

*Harvard Medical Faculty Physicians at Beth Israel Deaconess Medical Center, Boston, MA; ²Université Paris-Sud, Le Kremlin-Bicêtre, France; ³Houston Methodist Hospital, Houston, TX; ⁴University of Utah, Salt Lake City, UT; ⁹University of Bern, Bern, Switzerland; ⁶Groupe Hospitalier Cochin, Paris, France; ⁷Centre Hospitalier Régional Universitaire de Lille, Lille, France; ⁸Maastricht University Medical Center, Maastricht, Netherlands; ⁹UCB Pharma, Raleigh, USA; ¹⁰UCB Pharma, Slough, UK; ¹¹UCB Pharma

OBJECTIVE

To accurately measure the level of placental transfer of certolizumab pegol (CZP) from mothers to infants using a highly sensitive CZP-specific assay.

BACKGROUND

- · Women affected by chronic inflammatory diseases, such as psoriatic
- disease, need effective and safe treatments during pregnancy.12 · Adequate disease control is important to reduce the risk of adverse
- pregnancy outcomes.3 Anti-TNFs are efficacious, but because most cross the placenta,
- treatment is often stopped during pregnancy.45
- · Certolizumab pegol (CZP), due to its Fc-free molecular structure, s not expected to undergo active placental transfer compared to other antibody-based anti-TNFs.63
- CRIB (NCT02019602) is the first prospective, industry-sponsored study designed to evaluate placental transfer of CZP from the mother to her infant.

METHODS

Patients and Study Design

- · CRIB was a pharmacokinetic (PK) study of pregnant women receiving commercial CZP for an approved indication.
- The primary endpoint was the concentration of CZP in the infants' plasma at birth (Figure 1).
- Key inclusion criteria:
 - Patients were ≥30 weeks pregnant with a singleton or twins at the time of informed consent
- Patients were being treated with CZP as per the locally approved label and prescriber's discretion.
- Patients started or decided to continue CZP treatment independently from and prior to participating in this study and in accordance with the treating physician.
- Patients received a CZP dose within 35 days prior to delivery.
- Key exclusion criteria:
- Patients had any pregnancy-related, clinically significant abnormality noted on obstetric ultrasound or other imaging assessment, or had significant laboratory abnormalities during their pregnancy.
- Patients were taking or had taken any medication with strong positive evidence of human fetal risk of teratogenicity during pregnancy.
- Patients had received treatment with any biological therapeutic agent, including anti-TNFs other than CZP, during pregnancy.

Detection of CZP and Anti-CZP Antibodies

Figure 1. CRIB study design

Pregnancy (>30 weeks pregnant)

Screening

N=21

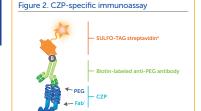
Start of

CZP Dosing

· CZP concentrations in blood were measured using a highly sensitive, CZP-specific electrochemiluminescence immunoassay (Figure 2):

Period

∆ ≤35 days prior to delivery®


 $\Delta = \text{CZP 200 mg Q2W} \quad \blacklozenge = \text{Infant blood sampling}$

Primary Endpoint:

Birth

n=16

-

"The SULFO-TAG label emits light upon electrochemical stimulation initiated at the electrode surface. PEG: polyethylene glycol; Fab': fragment antigen-binding; TNP: tumor necrosis factor.

Sensitivity: >10 times more sensitive than the previous assay used in other CZP PK studies (lower limit of quantification [LLOQ]: 0.032 µg/mL).8

TNF-coated electrode

- Specificity: Requires binding of CZP to TNF and detection with an anti-PEG antibody.8
- The presence of anti-CZP antibodies in blood was determined using a previously validated enzyme-linked immunosorbent assay (ELISA). Samples were defined as positive if anti-CZP antibody levels were >24 units/ml 9

Study Assessments

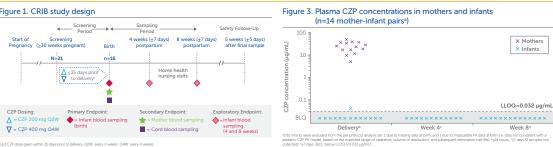
- · Blood samples were collected from the mothers, umbilical cords, and infants at delivery, and from infants again at Weeks 4 and 8 post-delivery (Figure 1).
- · Safety analyses included all mothers who received at least one dose of CZP, and the infants of participating mothers. Adverse events (AEs) were coded according to the MedDRA v18.1.

Statistical Analyses

- · No formal sample size calculations were performed, as no statistical hypotheses were tested. All PK variables were based on the observed values: no imputation for missing data was used.
- RESULTS

Baseline Characteristics

- · 21 CZP-treated pregnant women were screened; 5 women discontinued screening. Based on preliminary PK and safety analyses, which showed consistent data for the initial mother/infant pairs enrolled, the study concluded with a final enrollment of 16 pregnant women, which was deemed sufficient to assess the primary objective
- Of the 16 mothers who entered the sampling period, 15 were on CZP 200 mg Q2W and 1 on 400 mg Q4W (Table 1) · The gestational age and weight at birth of the 16 infants were within the expected range for healthy infants (Table 1).


Table 1. Baseline characteristics of mothers and infants

Median (min, max), unless stated otherwise	Mothers (n=16)*
Age, years	31 (18, 40)
Mother's indication for CZP treatment, n	
Rheumatoid arthritis	11
Crohn's disease	3
Psoriatic arthritis	1
Axial spondyloarthritis/ankylosing spondylitis	1
Delivery type, n	
Vaginal	14
Cesarean section	2
Median (min, max), unless stated otherwise	Infants (n=16)
Female, n (%)	10 (62.5)
Gestational age at birth, weeks	39.9 (37.7, 41.7)
Weight at birth, kg	3.3 (2.6, 4.0)
	49.5 (46.0, 55.9)
Length at birth, ^b cm	

C7P Plasma Concentrations

- In all mothers enrolled (n=16), CZP plasma levels at delivery were within the expected therapeutic range (median [range]: 24.4 [5.0–49.4] µg/mL).
- Two infants were excluded from the per protocol analysis set: 1 due to missing data at birth, and 1 due to implausible PK data at birth (i.e. data not consistent with a pediatric CZP PK model, based on the expected range of clearance, volume of distribution, and subsequent
- None of the 14 infants had quantifiable CZP plasma levels at Weeks 4 and 8 (Figure 3). Of note, 9 of these infants were breastfed while their mothers were taking CZP.
- data. Of the remaining 15 cords, 3 had quantifiable CZP levels (maximum: 0.048 µg/mL).

- CZP and pregnancy profile of these underlying diseases (Table 2).
- case of arrested labor and one case of prolonged labor. a premature baby (Table 2)

AEs experienced by the infants did not show any patterns or clusters

- of events suggesting a specific safety signal in children (Table 2).
- · Four SAEs were reported in two infants; all were mild to moderate except the infection. All SAEs were resolved (Table 2)
- No anti-CZP antibodies were detected in the mothers umbilical
- cords, or infants at any time point during the study.

n (%)*	Mothers (n=21) ^b	Infants (n=16)
Any TEAEs	15 (71.4)	5 (31.3)
Severe TEAEs	2 (9.5)	1 (6.3)
Discontinuation due to TEAEs	2 (9.5)	0
Drug-related TEAEs	3 (14.3)	1 (6.3)
Serious TEAEs ^c	7 (33.3)	2 (12.5)
Deaths	0	0
Serious TEAEs by	y mother-infant pair	
SF	Placental insufficiency Premature baby	N/A
1	Arrested labor	None
2	Arrested labor	None
3	Prolonged labor	None
4	Gestational diabetes Polyhydramnios	None
5	None	Hypoglycemia Infection
6	Perineal abscess	None
7	Vaginal laceration	Macrosomia Meconium in amnioti

TEAEs were defined as any AE captured from the time of informed consent until the Safety Follow-Up, bold text indicates severe TEAEs. Number of mothers or infants reporting at least one AE for the indicated category. Safety set for mothers (includes 5 screen failures): "Serious TEAEs were classified using the FDA definition of serioux AEs. TEAE: treatment-emergent adverse event; SF screen failure, N using the FDA de

CONCLUSIONS

- Using a highly sensitive and CZP-specific assay, CZP levels were below LLOQ (<0.032 µg/mL) in 13/14 infant blood samples at birth and in all infant blood samples at Weeks 4 and 8. This indicates no to minimal placental transfer of CZP from
- mothers to infants, suggesting a lack of in utero fetal exposure during the third trimester. No new safety signals were identified in the mothers.
- AEs experienced by the infants did not show any patterns or clusters of events suggesting a specific safety signal in children
- Combined with evidence from early exposure,¹⁰ these data support continuation of CZP treatment throughout pregnancy, if anti-TNF therapy is considered necessary

Reference

Ketterences L. Calaxianty E. S. et al. BMJ Crew 200.46006802, ed. Marty et al. Artificia Rivers at Description of the Control of Control of Control (2010) 2014 (2014) 2014 (2014) Control (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Chin Immund 20153(2016) -125. Solitenen M. et al. Curr Opin Pharmacol 20153(2014) 2014 (2014) China Statu et al. Control (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Sharabacut et al. Cont. Gatocherettere (1994) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Sharabacut et al. Cont. Gatocherettere (1994) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Pharmacol 20153(2016) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Pharmacol 20153(2016) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Pharmacol 20153(2016) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 (2014) 2014 Pharmacol 20153(2016) 2014 (2014) 2014 (

Substantial contributions to study conception/design, or acquisition/analysis/interpretation of data: ABK, XM, BA, AF, FA, M, FAMF, AVT, LS, JS, MT, EH, MW, EC, Drafting of the publication, or rewiring in critically for importain intellectual content: ABK, XM, BA, AF, FA, MR, FMF, FAV, TS, ST, TE, HMW, EC, Final approval of the publication: ABK, XM, BA, AF, FF, AM, R-MF, AVT, LS, JS, MT, EH, MW, EC.

his study was funded by LICB Pharma. We are indebted to the mothers and their infants for

- - elimination half-life).
 - Of the remaining 14 infants, 13 had no quantifiable CZP plasma levels at birth (<0.032 µg/mL); 1 infant had a minimal CZP level at birth of 0.042 µg/mL (infant/mother plasma ratio: 0.0009) (Figure 3).

 Of the 16 umbilical cord samples, 1 was excluded due to missing Safety and Immunogenicity Analysis

- · AEs in the mothers were consistent with the known safety profile of
- Serious AEs (SAEs) in the mothers were mild to moderate, except one Six SAEs led to hospitalization; all were resolved except for delivery of

Author Contributions Disclosures ultant for: UCB Pharma Dermira Janssen AbbVie: XM: Grant/

ABI: Consultant for UCB Pharma, Demina, Jansen, AbiVe, XM Casrlinesearch support: Biogen Piter, UCB Pharma, Consultant for BM-SG SGL UR Piter; UCB Pharma BA Cantificesench support: Jansen; UCB Pharma, Sesaiert Feer, AbiVe, Amrican Reagenz, Jansen; UCB Pharma Best, Marka BACH, UCB Tharma, AM: Control Pharma, BA Cantification, CLB Pharma, Constants for: MCD, AbiVe, Piter; UCB Pharma, R-MC Conzulant for: UCB Pharma Constants for: MCD, AbiVe, Piter; UCB Pharma, PMC Conzulant for: UCB Pharma, AHC Cantification, Santon, Castle, Piter; Conzultant for: MCD, AbiVe, Piter; AbiVe, UCB Pharma, Anthe Cantif Hers Arbity, Castler, AbiVe, UCB Pharma, Piter, Castler, Santon, Santon, Castler, Piter, Santon, Santon, Castler, Castler, Barton, Santon, Castler, Piter; Castler, Barton, Santon, Castler, Santon, Santon, Castler, Piter, Conzultant for: MCD, Piter, UCB Pharma, AHC, Cantil, Janssen-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Santon-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Santon-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, Parken-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Janssen-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Janssen-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Janssen-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, El Castlergench approximation, Janssen-Clag, Piter; LS, SM, El HM: Dintopice of UCB Pharma, Parken, Piter, P

Acknowledgements