Genes and biological functions governing intrinsic tumor biology utilized in cutaneous melanoma risk assessment through a clinically available 31-gene expression profile test

Sarah J. Kurley, PhD, Kyle R. Covington, PhD, Kristen Meldi Plasseraud, PhD, Robert W. Cook, PhD, Federico Monzon, MD Castle Biosciences, Inc.; Friendswood, Texas, USA

ABSTRACT

Better understanding of intrinsic tumor biology has permitted the development of clinical molecular tests that are objective prognostic tools for various cancers, including cutaneous melanoma (CM). A previously validated 31-gene expression profile (31-GEP) test utilizes RT-PCR of primary CM tumors to predict a patient's risk of recurrence, including sentinel lymph node, locoregional, and distant metastasis events, within 5 years. To develop the test, candidate genes identified in published melanoma gene expression datasets were evaluated for consistency across multiple studies. Herein, we review the methods and data utilized during the development of the 31-GEP test and the known functions of its 28 prognostic genes. Using pathway and protein-protein interaction databases along with literature searches, we demonstrate that the genes assessed by the test are functional components of key melanoma- and cancer-relevant biological processes known to contribute to progression and metastasis and are supported by other studies. The genes utilized to assess melanoma risk play significant roles in processes such as cell-cell communication, differentiation, growth regulation, and immune signaling. These findings suggest that many biological processes, rather than a few pathways, contribute to melanoma progression. Thus, capturing these diverse biological events is necessary for accurate prognostication. In conclusion, the 31-GEP test determines risk by assessing key biological processes associated with progression. Evaluating melanoma tumor biology at a molecular level, in addition to histopathological features, identifies high-risk patients who otherwise would be deemed at low risk for recurrence and metastasis by traditional staging methods alone. Furthermore, these genes could be candidates for novel therapeutic interventions.

RESULTS

Table 1. Studies utilized for original gene selection during development				
Development of the 31-GEP Test	of the 31-GEP test			
Gene expression data from	Tissues compared (Tissue Source)	Gene Expression Analysis Platform		
O mublished studies (Table 1)	Melanocytic nevi, primary melanomas, metastatic melanomas	Affymetrix Human Genome U133A 2.0		
9 published studies (Table T)	(Microdissected fresh frozen tissue) ¹⁶	GeneChip		
	Primary melanomas, melanoma metastases (Laser-capture	Affymetrix Human Genome U133A		
Selection of ~120 genes	microdissected cells) ¹⁷	array		
significantly differentially regulated	Melanoma tumor biopsies and cell cultures, normal controls (frozen tumor biopsies) ¹⁸	Microarray		
Prioritization of genes within regions	Melanocytic nevi, primary melanomas, melanoma metastases	Research Genetics microarray		
of genomic instability in melanoma	(frozen tumor biopsies) ¹⁹			
	Nevi, radial & vertical growth phase melanomas, metastases (fresh	Agilent Human Whole Genome Oligo		
Addition of uvoal malanama ganas	tissue) ²⁰	Microarray		
Addition of uvear metanoma genes	Normal skin, benign nevi, atypical nevi, early-stage melanoma,	Affymetrix Human Genome U133 Plus		
validated to be important in CM	advanced-stage melanoma (frozen tissue) ²¹	2.0 GeneChip		
	Vertical growth phase melanomas and distant metastasis (fresh	Micro-SAGE libraries		
Combinatorial expression	tissue) ²²			
of final gene set:	Primary melanomas and cutaneous/lymph node metastases (fresh	Agilent Whole-Human-Genome 44K		
28 probes for discrimination	frozen tissue) ²³	oligonucleotide array		
20 probes for discrimination,	Primary uveal melanoma with long-term clinical follow-up (fresh	Affymetrix Hu133A and B arrays		
3 for normalization	tumor samples) ²⁴	Anymoura nu ioor anu b anays		

BACKGROUND

Workflow for 31	I-GEP testing
-----------------	---------------

Patients with Stage I-III melanoma

Primary CM tumor tissue Formalin Fixed, Paraffin Embedded $(\geq 40\%$ tumor content)

RNA isolation

```
cDNA generation and amplification (14X)
         Open Array PCR gene card
28 discriminant gene targets and 3 control genes
```

Analysis of GEP with a proprietary algorithm to determine Class and metastatic risk

• Exploitation of the intrinsic biology of cancer tissues has permitted the creation of molecular tests that serve as objective diagnostic, prognostic, and therapeutic prediction tools compared to traditional, often subjective methods such as histological and pathological assessments.

• The 31-GEP test predicts a CM patient's risk of recurrence, metastasis, or melanoma-specific mortality at 5 years after diagnosis.

•Patients with a Class 1A and 2B 31-GEP results have the lowest and highest risk, respectively.

•The 31-GEP test is performed in a CAP-accredited/CLIAcertified laboratory using high-throughput RT-PCR assays as previously described¹⁻⁴.

Table 2. Discriminant genes included in the 31-GEP test to assess risk of metastasis

Gene Symbol	Gene Name	Direction of regulation in Class 2	Pa
AQP3	Aquaporin 3 (Gill blood group)	Down	5.08 e-06
ARG1	Arginase 1	Down	1.05 e-08
BAP1 ^b	BRCA1-associated protein-1	Down	0.007
BTG1	B-cell translocation gene 1, antiproliferative	Down	0.024
CLCA2	Chloride channel accessory 2	Down	1.02 e-08
CRABP2	Cellular retinoic acid binding protein 2	Down	0.0006
CST6	Cystatin E/M	Down	1.02 e-08
CXCL14	Chemokine (C-X-C motif) ligand 14	Down	3.31 e-12
DSC1	Desmocollin 1	Down	7.00 e-09
EIF1B	Eukaryotic translation initiation factor 1B	Up	0.024
GJA1	Gap junction protein, alpha 1, 43 kDa	Down	0.034
ID2	Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein	Down	3.91 e-06
KRT14	Keratin 14	Down	1.75 e-05
KRT6B	Keratin 6B	Up	0.16
LTA4H	Leukotriene A4 hydrolase	Down	0.0001
MGP	Matrix Gla protein	Down	0.486
PPL	Periplakin	Down	5.59 e-11
RBM23	RNA-binding motif protein 23	Down	0.018
ROBO1	Roundabout, axon guidance receptor, homolog 1 (Drosophila)	Down	0.0004
S100A8	S100 calcium-binding protein A8	Down	0.031
S100A9	S100 calcium-binding protein A9	Down	0.012
SAP130	Sin3A-associated protein, 130 kDa	Down	0.024
SPP1	Secreted phosphoprotein 1	Up	6.08 e-16
SPRR1B	Small proline-rich protein 1B	Down	0.001
TACSTD2	Tumor-associated calcium signal transducer 2	Down	0.037
TRIM29	Tripartite motif containing 29	Down	2.34 e-09
TYRP1	Tyrosinase-related protein 1	Down	2.41 e-06

Levels of evidence for molecular tests involve grading across 3 categories. The 31-GEP test has strong evidence in all 3:

CLINICAL VALIDITY

Evidence from retrospective and prospective studies supports consistent ability of the 31-GEP test to accurately identify recurrence, metastasis, and melanoma-specific mortality in CM patients¹⁻⁸.

CLINICAL UTILITY

Design (n)	31-GEP Impact
Prospectively tested patients, Retrospective chart review; (156 patients) ⁹	53%
Prospective documentation of pre and post test plans; (247 patients) ¹⁰	49%
Prospectively tested patients, Retrospective chart review; (90 patients) ¹¹	52%
Physician survey of clinical decisions with or without test results; (169 physicians) ¹²	47-50%
Physician survey of clinical factors that affect use of 31-GEP test; (181 physicians) ¹³	*
*overall GEP impact not assessed with study design	

Data from 3 studies and 2 physician surveys indicate that the 31-GEP test results significantly impact management decisions for approximately 1 of 2 patients⁹⁻¹³.

^ap-value reflects t-test analysis of dCt values from non-metastatic cases compared with metastatic cases within the initial training and validation sample cohort. ^DTwo assays for BAP1 were included to target both the 5' and 3' regions of the gene.

STRING Interactions

ROBO

Figure 1. Pathway analysis and protein-protein interaction network of discriminant genes

Pathway analysis and protein-protein interactions were performed with the discriminant genes included in the 31-GEP test using Reactome and STRING, respectively. Pathways with at least 2 entities included and an false discovery rate (FDR) of ≤0.5 are shown.

Figure 2. Relevance to cancer progression of discriminant genes in the 31-GEP test

Discriminant Gene in 31-GEP test Data supporting this gene in the listed biological function beyond studies in Table 1

ANALYTICAL VALIDITY

1.7%

n=533

The 31-GEP test has high technical reliability on >32,000 clinical cases with adequate tumor content since 2013¹⁴. Technical success studies demonstrate 99% inter- and 100% intra-assay concordance¹⁵.

REFERENCES

1. Gerami P, et al. Clin Cancer Res 2015;21:175-83. 2. Gerami P, et al. J Am Acad Dermatol 2015;72:780-5 e783. 3. Zager JS, et al. *BMC Cancer* 2018;18(1):130. 4. Gastman BR, et al. JAAD 2018; doi: 10.1016/j.jaad.2018.07.028. 5. Hsueh EC, et al. J Hematol Oncol 2017;10:152. 6. Greenhaw B, et al. *Dermatol Surg* 2018; DOI: 10.1097/DSS.000000000001588. 7. Renzetti M, et al. Society of Surgical Oncology Annual Meeting 2017. 8. Hsueh EC, et al. *J Clin Oncol* 2016; 34(15_suppl):9565. 9. Berger AC et al. Curr Res Med Opin 2016;32(9):1599-604. 10. Dillon LD et al. SKIN: J Cut Med 2018;2(2):111-21. 11. Schuitevoerder D et al. J Drugs Dermatol 2018;17(2):196-199.

12. Farberg AS et al. *J Drugs Dermatol* 2017;16(5):428-431. 13. Svoboda RM et al. *J Drugs Dermatol* 2018;17(5):544. 14. Castle Biosciences, Inc. data on file. 15. Cook RW et al. *Diagn Pathol* 2018;13(1):13. 16. Mauerer A et al. *Exp Dermatol* 2011;20(6):502-507. 17. Jaeger J et al. *Clin Cancer Res* 2007;13(3):806-815. 18. Bittner M et al. *Nature* 2000;406(6795):536-540. 19. Haqq C et al. PNAS 2005;102(17):6092-6097. 20. Scatolini M et al. Int J Cancer 2010;126(8):1869-1881. 21. Smith AP et al. *Cancer Biol Ther* 2005;4(9):1018-1029. 22. Weeraratna AT et al. Oncogene 2004;23(12):2264-2274. 23. Winnepenninckx V et al. J Natl Cancer Inst 2006;98(7):472-482. 24. Onken MD et al. Cancer Res 2004;64:7205-7209.

*Melanoma progression including CM or uveal melanoma if findings from UM confirmed in CM

CONCLUSIONS

Genes utilized in the 31-GEP test to assess melanoma risk are important in tumor biology, including cell-cell communication and immune signaling. Pathway and predicted interaction analyses suggest that many biological processes, rather than a few pathways, contribute to melanoma progression. Thus, capturing these diverse biological events is necessary for accurate prognostication.

Many of the genes in the 31-GEP test have been functionally characterized in melanoma, and other genes have documented differential expression contributing to metastasis in other cancers, including some with prognostic significance.

FUNDING & DISCLOSURES

This poster was sponsored by Castle Biosciences, Inc. (CBI). SJK, RWC, KMP, KRC, & FAM are employees and options holders of CBI.