

Sustainable Marine Structures

http://ojs.nassg.org/index.php/sms/index

ARTICLE Present Status of Aquatic Resource and Its Catch of Mogra River in Bangladesh

Chakraborty, B. K.^{1*} Verma A. K.² Muniya, S.³

1. Department of Fisheries, Bangladesh and Agricultural University, Bangladesh

2. Govt. P. G. college, Saidabad, Prayaagraj, India

3. Bangladesh Agricultural University, Bangladesh

ABSTRACT

Bangladesh is very rich in aquatic fauna with a biodiversity. The present study, conducted during 2015 to 2019, recorded a total number of 131 species (104 fish, 09 prawn, 01 snail, 04 crabs, and 13 turtles) belonging to 26 families were identified from the Mogra River and its flood plain. About ten types of fishing gears, different crafts, hook and line were found operative in the river. Increasing rates of using current jal (16.0-26.40%) and Kapuri jal (11.0-16.70%) were identified as detrimental gears destroying different species. The fish productivity was decreased dramatically from 170.63±10.81mt to 134.75±8.02 mt with a decreasing percentage of 6.26 to 21.03% within five years. Three important aquatic species turtiles (Cyclemys oldhami, Melanocheelys trjuuga and Morenia petersi) became rare and 17 commercially important aquatic species were at the edge of extinction (critically endangered, CR). From the study, 67 species were recorded in the endangered (EN) category, 20 species vulnerable status (VU), 11 species lower risk (LR), 07 species Least concern (LC) and 04 Data deficient (DF). To save the existing aquatic species in the studied riverine ecosystem and ensure better livelihood of the fishes, a team of local management committee, similar to the Hilsa fisheries management technology is needed.

1. Introduction

ARTICLE INFO

Received: 15 August 2021

Accepted: 8 September 2021

Published Online: 20 September 2021

Article history

Keywords:

Aquatic fauna

Critically endangered

Biodiversity

Endangered

Illegal fishing

Over exploitation

Rare

River ecosystems and biodiversity help in maintaining the ecological balance of the waterbody. There is a necessity of ecological balance for widespread biodiversity and the ecological balance is an indispensable need for human survival ^[1]. The biodiversity conservation and environmental ethics both are required for sustainable development and survival of aquatic flora and fauna because biodiversity is the foundation of human life ^[2].

Biodiversity has become a major concern to the fisher-

ies biologists against the backdrop of rapid decline in the natural population of fish and aquatic biota across all the continents of the world. Biodiversity encompasses genetic species, assemblage, ecosystem and land cape levels of biological organization with structural, compositional and functional components ^[3,4]. Though loss of aquatic species has been occurring rapidly, the aquatic organisms have received comparatively little attention from conservation biologists ^[5]. A rich diversity of fish species is important to the ecology and sustainable productivity of the flood plains ^[6]. The resource of aquatic fauna in Bangladesh are

Chakraborty, B. K.,

^{*}Corresponding Author:

Department of Fisheries, Bangladesh and Agricultural University, Bangladesh; Email: bborty@gmail.com

under severe threat due to over-exploitation and environmental degradation, which includes human interventions through construction of flood control embankments, drainage structures and sluice gates, conversion of inundated land to cropland thereby reducing water area and indiscriminate use of pesticides. Pollution from domestic, industrial and agrochemicals wastes has resulted in extinction of a considerable amount of aquatic biota in some stretches of the open water system ^[7,8].

The upper region of the Mogra River is connected with Bisnai River and Kangshow River. The riverine flows across the Atpara and Modon Upazilla of Netrokona district from northern to southern Tharail and Itna Upazilla of Kishorgong District, before joining the Surma River. The water flow is continuous in the river. During monsoon, the water flow comes down from the upper region of Kangshow River and water flow does not confine within the banks. As a result, it causes floods in some area of Atpara and Modan Upazilla every year.

Figure 1. Location of Mogra River in the Netrokona district, Bangladesh.

Once upon a time, Mogra River was an abundance of native wild fishes, shrimp, crabs and reptiles. Due to over-exploitation and various ecological changes of the Mogra River, important fish species, and reptiles disappeared. Now this river is under great stress and its existence is endangered because of the changing aquatic ecosystems. The upper stream of the riverine system is siltated, which reduces the rate of water flow and causes habitat degradation. Like other floodplains, the feeding and breeding grounds of fishes in and around the river have been reducing drastically from various human created obstacles. Indiscriminate destructive fishing practices, soil erosion, siltation, construction of flood control and drainage structures, and agro-chemicals and pesticide have caused havoc to the aquatic biodiversity in Bangladesh.

2. Methodology

Experimental design

Mogra River was studied during 2015-2019 with particular emphasis on soil and water quality, biological productivity and status exploitation of the fishery resources. The river comprises an average length of 20-22 km long course. For the purpose of the study the river course was divided into upper and lower regions based on soil structure, water quality and fishing activities. The river courses of Atpara to Nazirgonj constitute the upper region while the Nazirgonj to Madon constituted the lower region, where in the Mogra River joins with the Surma River.

Study of water quality parameters

The bamboo made meter scale was used to measure water depth. Water temperature (°C) was recorded using a Celsius thermometer and transparency (cm) was measured using a Secchi disc (20 cm diameter). Dissolved oxygen (mg/l) and pH were measured directly using a digital electronic oxygen meter (YSI, Model 58, USA) and an electronic pH meter (Jenway, Model 3020, UK). Alkalinity was determined following the titrimetric method.

Sampling of fish

The investigation was conducted from 2015-2019 and was sampled simultaneously for winter (mid November to mid February), pre monsoon (mid February to April), monsoon (May to August) and post monsoon (September to mid November) for assessment of fish abundance and availability.

Data collection

The study was based on both primary and secondary data, comprehensive literature review and extracts of local knowledge and information. An organized sampling program spread over a reasonably long time is needed to get a true picture of the catch and composition. This study, being a rapid survey, gives only a broad picture of the stock of fishes, prawn, crabs and turtiles that could be obtained through market survey (Brojer Bazar, Nazirgong Bazar, Teligati Bazar, Madon sadar Bazar) and interaction with fishers in the riverside and even in the river and secondary data were collected from the Department of Fisheries (DoF) and the internet. The number of six codes (CR, E, EN, VU, LR, LC and DD) of IUCN was followed to categorize the coservation of status of fishes recorded from the river and to compare the trend among Shannon index value of different years ^[9].

Shannon Diversity Index

$$H = \sum_{i=1}^{s} - (P_i * \ln P_i)$$

Where:

H = the Shannon diversity index, P_i = fraction of the entire population made up of species i, S = numbers of species encountered, Σ = sum from species 1 to species S.

Note: The power to which the base e (e = 2.718281828.) must be raised to obtain a number is called the natural logarithm (ln) of the number.

Analysis of experimental data

The data were analyzed through one way ANOVA using MSTAT followed by Duncan's Multiple Range Test to find out whether any significant difference existed among the different means ^[10].

3. Results and Discussion

Morphometry and hydrodynamics of experimental river

Generally, there are three main sources of water input into the river ecosystem viz. overspill from the higher river channel, surface flow and regeneration. Water flows were resolved by both rainfall and flooded water from the Meghaloya's hilly range, India. In upper region, this river is connected with Khongsa and Bisnai River. Flooding of the river originated from the Kangshow and Bisnai River. Surface run-off and increased in river height due to inflow of rainwater (flood) from the upper stretch, cause inundation of floodplains. The more water gain or exchange of water took place during southwest monsoon when floodplains were flooded. The early flood phase (April to June) occurred in the early monsoon when the water level in basin was relatively low. The water level in the floodplain rises and falls depending on the water level in adjacent rivers. The deep flood phase (June to September) began when the water level in the river, causing deep flooding in the four unions of Atpara and Madon Upazillas. Floodwater in flood plains began started receding in the post-monsoon season (October to December). The water loss by various means caused shrinkage of the effective water area and lowering of depth in the river which is very similar to the study of Chakraborty et al.^[11].

Physical characteristics

Soil texture of the Mogra River bed varied from sandy

to loam sand. Soil texture of upper river bed was having 90.80 ± 6.02 sandy, 7.30 ± 2.43 loam sand and $1.9\pm1.72\%$ clay. The dominance of sand (58.30 ± 5.18) was also recorded in the lower region of the river (Table 1).

 Table 1. Physical features of sediment of the Mogra River.

Logation	Soil texture of the river bed (%)					
Location	Sandy	Loam sand	Clay			
Upper region	40.20±4.32	43.60±5.03	17.4±3.22			
Lower region	38.30±4.18	42.10±4.06	19.60±3.54			

The waterw depth of the Mogra River exhibited a decreasing with an average value of 3.55±0.64 3.41±0.55, 3.321±0.584 3.207±0.44 and 3.01±0.41 m during the study period (Figure 2). The highest depth of the river was recorded in the year 2015 and the lowest depth was found in the year 2019 and the equation of the trend line was y= -0.128x + 3.684 (R² = 0.981). The alarming trend of decrease in water depth (Figure 2) was majorly due to rapid siltation ^[11]. The observed values of the value of the physico-chemical parameters of the river water are given in Table 2. The temperature, transparency, pH, dissolve oxygen and alkalinity of water were found to be more or less in the desired range. The variations in mean water temperature of the river were not statistically significant (P>0.05). Water temperature of the river showed an increasing trend in monsoon and post monsoon and decreasing trend in winter which was similar observation of Mathew^[12]. Mean Secchi disk transparency differed significantly (P<0.05), during the study period. Higher values were recorded during post monsoon and summer months due to reduced flow and relatively stable conditions of water as observed by others ^[13]. The pH of the studied river did not differ significantly (P>0.05). Transparency was consistently higher in upper region and in the deeper portion of the river. A significant rise in pH during pre-monsoon and a drop in winter was noted in the river. The mean dissolved oxygen (DO) did not differ significantly (P>0.05). The pH and oxygen values of the river agreed more or less similar with the findings of APHA^[14] and Boyd^[15]. Water alkalinity levels were recorded medium to high as reported by Clesceri et al. [16]. It differed significantly (P<0.05) with time. Lowest value of alkalinity was recorded in the in the winter during 2015.

		Years							
Parameters	2015	2016	2017	2018	2019				
Tommoroturo (°C)	25.74±5.01	26.17±6.12	26.48±6.08	26.88±6.26	26.14±5.88				
Temperature (C)	(14.04-32.20)	(13.73-32.40)	(14.11-31.85)	(14.00-32.01)	(14.15-32.08)				
T ()	40.04±6.24 ^d	50.38±7.02 ^a	44.55±6.41°	37.19±6.88 ^e	47.23±6.74 ^b				
Transparency (cm)	(30.10-50.16)	(32.22-58.14)	(28.15-50.30)	(27.55-50.25)	(29.55-55.22)				
	7.05± 2.04	7.66±2.22	8.05±2.03	7.77±1.88	8.08±2.01				
рп	(6.90-8.86)	(6.80-8.88)	(6.85-9.07)	(6.90-8.88)	(6.75-8.90)				
Dissolved oxygen	6.95±1.84	8.84±1.88	7.70±1.99	7.22±1.72	7.09±1.96				
(mg/L)	(4.18-8.04)	(4.55-9.05)	(5.44-8.66)	(5.41-8.05)	(5.04-8.48)				
Allealinity (ma/I)	142.02±10.04ª	120.66±7.22 ^e	126.18±7.05 ^d	131.52±8.07°	136.38±7.04 ^b				
Aikainity (mg/L)	(111.22-151.05)	(110.88-135.02)	(107.22-138.15)	(110.40-140.32)	(111.16-144.55)				

 Table 2. Physico-chemical parameters of experimental Mogra River.

Figures with different superscripts in the same row varied significantly (*P*>0.05). Figures in the parenthesis indicate the range.

Figure 2. Water depth of the Mogra River between the year 2015 and 2019

Capture method

The fishers used wooden boats as a major craft. They used seine net (Bar jal and Komor jal), Thela jal, Dharma jal, Bua jal, Lift net, Cast net, Current jal and various types of fish Trap, Hook and Line according to season and availability of different species of fishes. Wide variability in fish traps (vair, dugair, ghuni and pholo etc.) and hook and line (barshi, fulkuichi, Jhupi aikra etc.) were used to capture different groups of aquatic lives.

Figure 3 shows a remarkable yearly increase in fishing effort by using illegal fishing gear like gill net (Current jal) and Bar jal (kaperi jal) in the total catch. The percentage of catch from Current jal were 14.00%, 16.20%, 19.80%, 22.00% and 26.20%; and Bar jal (kaperi jal) 12.00%, 13.70%, 14.50%,15.10% and 16.50%; and Hook and line 10.00, 10.50, 11.00, 11.60 and 11.70% in the year 2015, 2016, 2017, 2018 and 2019, respectively. Significant difference in catch (P<0.05) by Current jal and Bar jal (kaperi jal) and Hook and line were identified. The contribution of catch by Komor jal were 13.00%, 12.80%, 12.50%, 12.30% and 11.70% in the years 2015, 2016, 2017, respectively.

Figure 3. Contribution of different fishing gears during the study period (2015- 2019).

Use of different fishing gears also differed significantly (P<0.05). Haroon et al. ^[17] reported eighteen types of fishing gears from the Sylhet sub-basin and thirteen types from Mymensingh sub-basin which is very similar to this study. The catch using Thela jal, Dharma jal, Bua jal, Lift net, Cast net, fish Trap and Hook and line were found decreasing and differed significantly (P<0.05). A decreasing trend in the catch of the river and its flood plains were recorded and the findings were similar to that of Chakraborty et al., and Sugunan and Bhattacharjya ^[11,18].

Fish catch and composition

An organized sampling program was run for a long time to get a real picture of the catch and composition of the river. The present investigation gave a broad picture of the stock of fishes and other aquatic lives obtained through market survey, landing center and interaction with fishers in the river. From the fishing activity in the Mogra River, occurrence of 104 species of fish, 09 species of prawn, 01 species of snail and 04 species of crabs, and 13 species of turtles belonging to a total 26 families were recorded. Fishing activity run throughout the year. During monsoon and post monsoon, fishers used Lift net, Current jal, Cast net, Traps, and line and Hooks to catch fishes. Fishermen also operated kata fishing by seine net (Bar jal and Komor jal) in winter and spring. The catch is consisted of knife fish, major carp and minor carp, small fish, cat fish and small cat fish, eels, prawn, crabs and reptiles (Table 3 and Figure 4). The assessment of yearly total catch from the river was around 170.63 ± 10.81 mt, 159.93 ± 9.80 mt 150.98 ± 10.66 mt, 143.16 ± 9.80 ton and 134.75 ± 8.02 mt during 2015, 2016, 2017, 2018 and 2019, respectivly (Figure 5). The catch trend line was exponential type and the equation was y= $180.3e^{-0.05x}$ (R² = 0.999).

Figure 4. The production of different groups of aquatic lives in the Mogra River in the year 2015 to 2019.

The fish catch showed a decrease percentage at the rate of 6.26%, 11.52%, 16.10% and 21.03% of catch in the years 2015-2016, 2016-2017, 2017-2018 and 2018-2019, with respect to the catch of 2015 (Figure 6) and which exhibited a linear trend line and the equation was y= 4.889x + 1.5.5 ($R^2 = 0.999$). A decrease trend in production from the river was clearly pronounced within the study period of five years which was similar to the study of Chakraborty and Mirza ^[19,20] and Moyle and Leidy ^[21]. Although the production of all the recorded groups decreased during the study, it was pronounced more for rep-tiles.

Figure 6. Decreasing percentage of total production of aquatic lives in the Mogra River during 2015 to 2019.

Table 3 and Figure 7 exhibited the conservation status of the 131 aquatic wild animals of the Mogra River and identified as E- 04 (3%), CR-17 (12%), EN-67 (51%), VU-20 (15%), LR-11 (9%), LC-7 (9%) and DD-06 (4%), respectively.

Figure 7. Conservation status of the recorded aquatic species in the Mogra River.

Status code: E- Extinct, CR- Critically Endangered, EN- Endangered, VU- Vulnerable, LR- Lower risk, LC-Not threatened DD=Data deficient (As per IUCN^[22]).

The total catch in different years differed significantly (P<0.05). Commercial important Pata Kachim, Cyclemys oldhami, Kali Kachhap, Melanocheelys trjuuga and Bengal Eyed Turtile, Morenia petersi were rarely found in the vears 2015 to 2017 in the river. However these species were not recorded during 2019. Channa marulius, Puntius sarana, Barilius tileo, Sicamugil casoasia, Rohtee cotio, Bagarius yarrellii, Mystus seenghala, Bagarius yarrellii, Chaca chaca, Rama chandramara, Sisor rabdophorus, Pseudolaguvia muricata, Pseudolaguvia inornata and reptiles (Indotestudo elongata, Batagur baska, Geoclemys hamiltonii and Pangshura tecta (17 species) were reported as critically endangered and facing an extremely high risk of extinction in the river system (Table 3). According to IUCN^[23], in Bangladesh, about 56 freshwater fish species are critically or somewhat endangered. Due to Over

Mo SN Signal Si	CT.			Production (mt)						
NM Other Ot	SL No	Group/ Family	Local name	Scientific name		Sor	neswari River			Status
Statk United Chiol Notoprens chiula 0.00 0.05 0.05 0.03 0.00 EN 2 Notoprenia Foli Notoprens chiula 0.09 0.04 0.03	110				2015	2016	2017	2018	2019	
1 Notopteridae Chitol Notopterus chitada 0,07 0,05 0,05 0,05 0,05 0,05 0,03 0,001 FN 2 Notopteridae Foli Notopterus notopterus 0,00 0,44 0,03 0,02 4,004	Snake	headed	[1	<u>.</u>					
1 1	1	Notopteridae	Chitol	Notopterus chitala	0.70	0.65	0.59	0.54	0.50	EN
2 Notoptervale Foli Notoptervale notoptervale 0.03		1		1	±0.09	±0.05	±0.05	± 0.03	± 0.02	
1 = 0.007 1.007	2	Notopteridae	Foli	Notopterus notopterus	+0.04	0.44	+0.02	+0.01	+0.01	EN
3 Belonidae Kakia Xenenidon cancila 4.0.4 4.0.40 4.0.41 4.1.0 4.007 I.R 4 Channidae Gojar Channa mardius 0.00 0.03 0.00 0.08 0.44 CR 5 Channidae Soal Channa striata 1.03 1.00 0.97 0.98 0.92 EN 6 Channidae Gachua Channa gachua 1.88 1.70 1.68 1.60 1.62 CR 7 Channidae Gachua Channa gachua 2.08 2.00 1.98 1.95 1.04 2.02 1.05 4.0.41 4.0.42 I.83 1.70 1.66 1.66 1.62 K 1.04 1.03 1.04 1.03 1.04 1.02 I.83 1.05 1.04 1.03 1.05 1.04 1.03 1.05 K 1.					1 90	1 70	1 55	1 38	1 26	
4 Channidae Gojar Channa marulius 0.60 4.0.03 0.53 4.0.07 0.43 4.0.07 0.43 4.0.05 0.43 4.0.01 0.43 4.0.02 0.43 4.0.02 0.43 4.0.03 0.43 4.0.01 0.43 4.0.01 0.43 4.0.02 0.43 4.0.01 0.43 4.0.01 0.43 4.0.01 0.43 4.0.02 0.43 4.0.01 0.43 4.0.02 0.44 4.0.02 0.42 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 1.84 4.0.02 <td>3</td> <td>Belonidae</td> <td>Kakila</td> <td>Xenentodon cancila</td> <td>±0.44</td> <td>±0.40</td> <td>±0.41</td> <td>±1.10</td> <td>±0.07</td> <td>LR</td>	3	Belonidae	Kakila	Xenentodon cancila	±0.44	±0.40	±0.41	±1.10	±0.07	LR
4 Channa constraints 40.20 40.09 40.07 40.05 40.04 40.42 CR 6 Channidae Taki Channa gachua 1.88 1.70 1.08 1.05 1.00 1.08 1.04 40.42 CR 7 Channidae Taki Channa gachua 2.08 2.00 1.98 1.95 1.90 I.8 40.42 I.8 SubTorrer Sead 2.08 2.08 7.64 7.63 40.62 40.63 40.62 40.64 40.62 40.64		CI I			0.60	0.53	0.50	0.48	0.44	CD
5 Channidae Soul Channa striata +0.51 +0.01 +0.51 +0.01 +0.50 +0.09 +0.08 +0.09 +0.08 +0.02 +0.08 +0.08 +0.02 +0.08 +0.08 +0.02 +0.08 +0.08 +0.02 +0.08 +0.08 +0.02 +0.08 +0.08 +0.02 +0.08 +0.08 <td>4</td> <td>Channidae</td> <td>Gojar</td> <td>Channa marulius</td> <td>±0.20</td> <td>±0.09</td> <td>±0.07</td> <td>±0.05</td> <td>±0.03</td> <td>CR</td>	4	Channidae	Gojar	Channa marulius	±0.20	±0.09	±0.07	±0.05	±0.03	CR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	Channidae	Soal	Channa striata	1.03	1.00	0.97	0.98	0.92	FN
6 Channidac Gachua Channa gachua 1.88 1.70 1.68 1.60 1.62 CR 7 Channidae Taki Channa punctata 2.08 2.00 1.98 1.95 1.90 1.8 SubTut Taki Channa punctata 2.08 2.00 1.98 1.03 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 40.03 40.01 <t< td=""><td></td><td>Channidae</td><td>5041</td><td>Chunha striaia</td><td>±0.51</td><td>±0.10</td><td>±0.08</td><td>±0.09</td><td>±0.06</td><td>EN</td></t<>		Channidae	5041	Chunha striaia	±0.51	±0.10	±0.08	±0.09	±0.06	EN
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 <	6	Channidae	Gachua	Channa gachua	1.88	1.70	1.68	1.66	1.62	CR
7 Channidae Taki Channa punctata 2.08 ±0.60 2.00 ±0.60 2.05 ±0.50 2.00 ±0.64 1.98 ±0.60 1.98 ±0.60 1.98 ±0.60 1.98 ±0.60 1.98 ±0.60 1.98 ±0.60 1.98 ±0.60 1.80 ±0.60 1.73 ±0.55 1.65 ±0.50 1.73 ±0.55 1.65 ±0.50 1.73 ±0.55 1.65 ±0.50 EN 12 Cyprinidae Catla Catla catla ±0.80 1.98 ±0.60 1.84 ±0.30 1.80 ±0.30 1.73 ±0.51 1.65 ±0.51 EN 2 Cyprinidae Rui Labeo rohita ±0.30 3.01 ±0.30 2.88 ±0.30 2.81 ±0.21 2.16 ±0.21 2.07 ±0.21 EN 3 Cyprinidae Kalbaus Labeo calbasu ±0.19 2.03 ±0.16 2.01 ±0.10 ±0.10 ±0.10 ±0.10 EN 4 Cyprinidae Ghonia Labeo calbasu ±0.19 1.80 ±0.16 1.00 ±0.09 ±0.08 ±0.00 EN 5 Cyprinidae Ghonia Labeo gonius ±0.17 ±0.11 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 <td></td> <td></td> <td></td> <td></td> <td>±0.50</td> <td>±0.50</td> <td>±0.44</td> <td>±0.42</td> <td>±0.41</td> <td></td>					±0.50	±0.50	±0.44	±0.42	±0.41	
Image: constraint of the second se	7	Channidae	Taki	Channa punctata	2.08	2.00	1.98	1.95	1.90	LR
SubTurnet 6.02 6.02 6.02 7.03					±0.60	±0.55	±0.50	±0.44	± 0.42	
Major carps John Stress John Stress John Stress 1 Cyprinidae Catla Cala catla 1.98 1.84 1.80 1.73 1.65 EN 2 Cyprinidae Rui Labeo rohita 3.01 2.88 2.81 2.71 2.60 EN 3 Cyprinidae Mrigal Cirrhinus mrigala 3.04 3.0 2.23 2.22 2.21 2.16 2.07 EN 4 Cyprinidae Kalbaus Labeo calbasu 40.26 40.24 40.22 40.11 40.10 EN 5 Cyprinidae Ghonia Labeo gonius 2.80 2.50 2.30 2.20 1.97 EN 6 Cyprinidae Ghonia Labeo gonius 2.80 2.50 2.30 2.20 1.97 EN 7 Cyprinidae Ghonia Labeo gonius 4.01 40.11 40.14 40.11 40.01 1.20 1.10 1.02 1.10	SubTo	otal			8.89 ±0.60	8.02 ±0.68	/.04 +0.64	/.32 ±0.63	0.94 ±0.62	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Maior	carns			±0.09	±0.00	±0.04	±0.05	±0.02	
$ \begin{array}{ c c c c c c } \hline 1 & Cyprinidae & Catla & Catla & Catla & a 0.60 & \pm 0.60 & \pm 0.60 & \pm 0.54 & \pm 0.50 & EN \\ \hline 2 & Cyprinidae & Rui & Labeo rohita & 3.01 & 2.88 & 2.81 & 2.71 & 2.60 & EN \\ \hline 3 & Cyprinidae & Mrigal & Cirrhinus mrigala & 3.04 & 3.0 & 2.97 & 2.90 & 2.78 & EN \\ \hline 4 & Cyprinidae & Kalbaus & Labeo calbasu & 2.80 & 2.50 & 2.30 & 40.21 & \pm 0.21 & \pm 0.20 & EN \\ \hline 4 & Cyprinidae & Ghonia & Labeo gonius & 2.80 & 2.50 & 2.30 & 2.20 & 1.97 & EN \\ \hline 5 & Cyprinidae & Reba & Cirrhinus reba & \pm 0.17 & \pm 0.16 & \pm 0.14 & \pm 0.11 & \pm 0.10 & \pm 0.10 & EN \\ \hline 6 & Cyprinidae & Reba & Cirrhinus reba & \pm 0.11 & \pm 0.10 & \pm 0.06 & EN \\ \hline 7 & Cyprinidae & Grass carp & Cyprinus carpio & 5.50 & 5.20 & 5.50 & 4.80 & 4.50 & \\ \hline 8 & Cyprinidae & Grass carp & Cienopharyngodon idella & 3.60 & 3.30 & 3.00 & 2.95 & 2.48 & VU \\ \hline 8 & Cyprinidae & Grass carp & Cienopharyngodon idella & \pm 1.24 & \pm 1.11 & \pm 1.01 & \pm 1.00 & \pm 0.98 & \\ \hline 1 & Cyprinidae & Ghona & Labeo bata & \pm 1.24 & \pm 1.11 & \pm 1.01 & \pm 1.00 & \pm 0.98 & \\ \hline 1 & Cyprinidae & Ghona & Labeo bata & \pm 0.65 & \pm 0.05 & \\ \hline 1 & Cyprinidae & Ghona & Labeo bata & \pm 1.24 & \pm 1.11 & \pm 1.01 & \pm 1.00 & \pm 0.98 & \\ \hline 1 & Cyprinidae & Ghona & Labeo bata & \pm 1.24 & \pm 1.10 & \pm 1.00 & \pm 0.98 & \\ \hline 1 & Cyprinidae & Ghona & Labeo bata & \pm 0.07 & \pm 0.05 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 1 & Cyprinidae & Ghora muikha & Labeo bata & \pm 0.05 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 1 & Cyprinidae & Ghora muikha & Labeo bata & \pm 0.05 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 1 & Cyprinidae & Ghora muikha & Labeo bata & \pm 0.88 & 0.48 & 0.38 & 0.84 & 81 & \\ \hline 1 & Cyprinidae & Ghora muikha & Labeo bata & \pm 0.05 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 1 & Cyprinidae & Ghora muikha & Labeo bata & \pm 0.65 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 1 & Cyprinidae & Bhol & Raimas bola & 0.68 & 0.72 & 0.64 & 0.55 & 0.54 & \\ \hline 5 & Cyprinidae & Fuda & Barlius tileo & \pm 0.43 & \pm 0.05 & \pm 0.04 & \pm 0.03 & \pm 0.01 & \\ \hline 5 & Cyprinidae & Fuda & Bhol & Raimas bola & 0.$	major				1.98	1.84	1.80	1.73	1.65	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Cyprinidae	Catla	Catla catla	±0.80	±0.65	±0.60	±0.54	±0.50	EN
2 Cyprinidae Rui Labeo rohida ± 0.30 ± 0.30 ± 0.30 ± 0.21 ± 0.21 ± 0.21 ± 0.21 ± 0.21 ± 0.22 ± 0.17 ± 0.10 ± 0.01 ± 0.00 ± 0.01 ± 0.01		Q		X 1 1.	3.01	2.88	2.81	2.71	2.60	ENI
3 Cyprinidae Mrigal Cirrhinus mrigala 3.04 4.0.26 $3.04\pm 0.26 3.04\pm 0.26 3.04\pm 0.26 3.04\pm 0.26 3.04\pm 0.26 3.04\pm 0.26 3.04\pm 0.26 3.02 4.021 4.010 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.010 4.008 4.006 EN 7 Cyprinidae Reba Cirrhinus reba 1.80 1.60 1.41.02 1.10 41.00 4.008 4.005 4.005 4.005 4.005 4.008 4.005 4.003 4.00 4.025 4.025 4.025 4.025 4.025$	2	Cyprinidae	Rui	Labeo rohita	±0.30	±0.30	±0.30	±0.27	±0.21	EN
S Cyprinidae Hingar Currinitis inrigular ± 0.26 ± 0.24 ± 0.22 ± 0.21 ± 0.20 Lik 4 Cyprinidae Kalbaus Labeo calbasu ± 0.17 ± 0.17 ± 0.17 ± 0.10 ± 0.11 ± 0.10 ± 0.00 \pm	3	Cuprinidae	Mrigal	Circhinus mrigala	3.04	3.0	2.97	2.90	2.78	FN
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cyprinidae	Ivii igai	Cirrninus mriguia	±0.26	±0.24	±0.22	±0.21	±0.20	EIN
1 Cyprinidae Ghonia Labeo sontai ± 0.19 ± 0.17 ± 0.17 ± 0.10 ± 0.00 ± 1.00 <	4	Cyprinidae	Kalbaus	Labeo calbasu	2.3	2.25	2.21	2.16	2.07	EN
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-) [±0.19	±0.18	±0.17	±0.10	±0.10	
Image: constraint of the second se	5	Cyprinidae	Ghonia	Labeo gonius	2.80	2.50	2.30	2.20	1.97	EN
6 Cyprinidae Reba Cirrhinus reba 1.00 <td></td> <td></td> <td></td> <td>-</td> <td>±0.17</td> <td>±0.16</td> <td>±0.14</td> <td>±0.11</td> <td>± 0.10</td> <td></td>				-	±0.17	±0.16	±0.14	±0.11	± 0.10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Cyprinidae	Reba	Cirrhinus reba	+0.11	+0.10	1.40	+0.08	+0.06	EN
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					5 50	5 20	5.00	4 80	4 50	
8 Cyprinidae Grass carp Ctenopharyngodon idella 3.60 ± 1.24 3.30 ± 1.11 3.00 ± 1.01 2.95 ± 1.00 2.88 ± 0.98 VU Sub-Total 24.03±1.17 22.57 ± 1.12 21.49 ± 1.09 20.65 ± 1.08 10.05 10	7	Cyprinidae	Common carp	Cyprinus carpio	±1.84	±1.70	±1.22	±1.10	±1.00	VU
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					3.60	3.30	3.00	2.95	2.88	
Sub-Total 24.03±1.17 22.57 ± 1.12 21.49 ± 1.09 20.65 ± 1.08 19.55 ± 1.03 Minor carp 1 Cyprinidae Along Bengala elanga 1.20 ± 0.07 1.10 0.94 ± 0.06 0.82 ± 0.01 0.69 ± 0.01 VU 2 Cyprinidae Bhangna bata Labeo bata 1.10 ± 0.06 1.00 ± 0.05 0.05 ± 0.05 0.04 ± 0.03 $t0.01$ ± 0.01 VU 3 Cyprinidae Ghora muikha Labeo pangusia the 0.05 1.82 ± 0.05 1.80 ± 0.05 1.70 ± 0.04 1.60 ± 0.03 1.50 ± 0.04 EN 4 Cyprinidae Jarua/Utti Chagunius chagunio ± 0.06 0.87 ± 0.05 0.04 0.03 ± 0.03 0.01 CR 4 Cyprinidae Puda Puntius sarana 0.87 ± 0.06 0.02 0.48 ± 0.03 0.03 0.01 ± 0.01 CR 5 Cyprinidae Puda Puntius sarana 0.45 ± 0.08 0.02 0.01 ± 0.01 CR <t< td=""><td>8</td><td>Cyprinidae</td><td>Grass carp</td><td>Ctenopharyngodon idella</td><td>±1.24</td><td>±1.11</td><td>± 1.01</td><td>±1.00</td><td>±0.98</td><td>VU</td></t<>	8	Cyprinidae	Grass carp	Ctenopharyngodon idella	±1.24	±1.11	± 1.01	±1.00	±0.98	VU
Sub-Fordal 24.03.11.17 22.03.11.17 21.09 ±1.09 ±1.08 ±1.03 Minor carp 1 Cyprinidae Along Bengala elanga 1.20 1.10 0.94 0.82 0.69 VU 2 Cyprinidae Bhangna bata Labeo bata 1.00 1.00 0.80 0.65 0.50 ±0.04 ±0.03 ±0.01 VU 3 Cyprinidae Bhangna bata Labeo pangusia 1.82 1.80 1.70 1.60 1.50 EN 4 Cyprinidae Ghora muikha Labeo pangusia 1.82 1.80 1.70 0.62 0.48 0.33 EN 4 Cyprinidae Jarua/Utti Chagunius chagunio 0.87 0.70 0.62 0.48 0.33 ±0.01 EN 5 Cyprinidae Puda Puntius sarana 0.58 0.45 0.22 0.12 0.01 EN 6 Cyprinidae Bhol Barilius tileo 1.01 0.90 0.88 0.84 .81 EN 7 Cyprinidae Bhol Raimass bola<	Sub T	otal		·	24 03+1 17	22 57+1 12	21 /0+1 00	20.65	19.55	
Minor carp 1 Cyprinidae Along Bengala elanga 1.20 ± 0.07 1.10 ± 0.06 0.94 ± 0.04 0.82 ± 0.03 0.69 ± 0.03 VU 2 Cyprinidae Bhangna bata Labeo bata 1.10 ± 0.06 1.00 ± 0.05 0.80 ± 0.05 0.65 ± 0.04 0.65 ± 0.04 0.65 ± 0.04 0.65 0.50 ± 0.04 EN 3 Cyprinidae Ghora muikha Labeo pangusia 1.82 ± 0.05 1.80 ± 0.05 1.70 1.60 ± 0.03 1.60 ± 0.03 1.60 ± 0.05 1.60 ± 0.03 1.60	5ub-1	otai			24.03-1.17	22.37-1.12	21.49±1.09	±1.08	±1.03	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Minor	carp	1	1	. <u>.</u>					
1 1 <	1	Cyprinidae	Along	Bengala elanga	1.20	1.10	0.94	0.82	0.69	VU
2 Cyprinidae Bhangna bata Labeo bata 1.10 ± 0.06 1.00 ± 0.05 0.05 ± 0.05 0.05 ± 0.04 0.02 ± 0.02 EN 3 Cyprinidae Ghora muikha Labeo pangusia 1.82 ± 0.05 1.80 ± 0.05 1.70 ± 0.04 1.60 ± 0.03 1.61 ± 0.03 1.61 ± 0.03 1.61 ± 0.03 1.61 ± 0.01 1.61 ± 0.01 1.61 ± 0.02 1.20 ± 0.01 0.01 ± 0.01 CR 6 Cyprinidae Tila koksa Barilius tileo 1.01 ± 0.08 0.05 ± 0.04 0.88 ± 0.05 0.84 ± 0.04 8.81 ± 0.03 1.64 0.55 ± 0.04 0.01 ± 0.01 EN 7 Cyprinidae Bhol Raimass bola 0.86 ± 0.05 0.64 ± 0.045 0.43 40.45					±0.07	±0.06	±0.04	± 0.03	±0.01	
$1 \\ 0.000$ 1.0000 1.000 1.000	2	Cyprinidae	Bhangna bata	Labeo bata	1.10	1.00	0.80	0.05	0.50	EN
3 Cyprinidae Ghora muikha Labeo pangusia 1.02 ± 0.05 1.00 ± 0.05 1.00 ± 0.03 1.00 ± 0.03 EN 4 Cyprinidae Jarua/Utti Chagunius chagunio 0.87 ± 0.06 0.70 ± 0.05 0.62 ± 0.03 0.48 ± 0.03 0.38 ± 0.03 EN 5 Cyprinidae Puda Puntius sarana 0.58 ± 0.04 0.45 ± 0.02 0.12 ± 0.01 0.01 ± 0.01 CR 6 Cyprinidae Tila koksa Barilius tileo 1.01 ± 0.08 0.90 ± 0.05 ±0.04 ±0.03 ± 0.01 ±0.01 ± 0.01 EN 7 Cyprinidae Bhol Raimass bola 0.86 ± 0.05 0.72 ± 0.04 0.64 ± 0.03 0.51 ± 0.01 EN 8ub-Total Bhol Raimass bola 0.86 ± 0.05 ±0.44 ±0.45 ±0.47 ±0.46 Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45 EN					1.82	1.80	1 70	1.60	1 50	
4 Cyprinidae Jarua/Utti Chagunius chagunio 0.87 ± 0.06 0.70 ± 0.05 0.62 ± 0.03 0.48 ± 0.03 0.62 ± 0.01 0.48 ± 0.03 0.62 ± 0.01 0.48 ± 0.01 0.03 ± 0.01 EN 6 Cyprinidae Tila koksa Barilius tileo 1.01 ± 0.08 0.90 ± 0.04 0.88 ± 0.05 0.84 ± 0.03 .81 ± 0.01 EN 7 Cyprinidae Bhol Raimass bola 0.86 ± 0.05 0.64 ± 0.04 0.55 ± 0.04 0.55 ± 0.04 0.67 ± 0.04 ±0.03 ±0.01 EN Sub-Total Total Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45 EN	3	Cyprinidae	Ghora muikha	Labeo pangusia	±0.05	±0.05	± 0.04	± 0.03	± 0.03	EN
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		~			0.87	0.70	0.62	0.48	0.38	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	Cyprinidae	Jarua/Utti	Chagunius chagunio	±0.06	±0.05	±0.03	±0.03	±0.01	EN
$ \begin{array}{ c c c c c c c c } \hline S & Cyprinidae & Funda & Funda & Funda & \pm 0.04 & \pm 0.03 & \pm 0.02 & \pm 0.01 &$	5	Cuntinidaa	Dudo	Punting savana	0.58	0.45	0.22	0.12	0.01	CP
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Cyprinidae	Puda	Funitus sarana	±0.04	±0.03	±0.02	±0.01	±0.01	Ск
	6	Cynrinidae	Tila koksa	Barilius tileo	1.01	0.90	0.88	0.84	.81	EN
7 Cyprinidae Bhol Raimass bola 0.86 ± 0.05 0.72 ± 0.04 0.64 ± 0.03 0.55 ± 0.03 0.54 ± 0.03 EN Sub-Total 7.74 ± 0.39 6.67 ± 0.43 5.06 ± 0.45 4.43 ± 0.46 EN 1 Cyprinidae Mola Amblypharyngodon mola 1.88 2.65 1.77 1.64 $1.531.45$ $1.45EN$		- , primaue	- Inu Kokou	241 11110 11100	±0.08	±0.05	±0.04	±0.03	±0.01	
± 0.05 ± 0.04 ± 0.03 ± 0.01 Sub-Total 7.74 6.67 5.80 5.06 4.43 Small fish ± 0.43 ± 0.45 ± 0.47 ± 0.46 I Cyprinidae Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45 EN	7	Cyprinidae	Bhol	Raimass bola	0.86	0.72	0.64	0.55	0.54	EN
Sub-Total 1.74 0.07 5.80 5.06 4.43 ± 0.39 ± 0.43 ± 0.45 ± 0.47 ± 0.46 Small fish I 1 Cyprinidae Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45 EN		- 1			±0.05	±0.04	±0.04	±003	± 0.01	
Small fish 1 Cyprinidae Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45 EN	Sub-T	otal			/./4		5.80 ±0.45	5.00	4.43	
1 Cyprinidae Mola Amblypharyngodon mola 1.88 1.77 1.64 1.53 1.45	Small	fish			-0.37	0.43	0.43		-0.40	1
1 Cyprinidae Mola Amblypharyngodon mola Cor Inn Inn En					1.88	1.77	1.64	1.53	1.45	
	1	Cyprinidae	Mola	Amblypharyngodon mola	±0.07	±0.06	±0.05	±0.05	±0.03	EN

Table 3.	Status and	distribution	of Mogra	River of	northern	Bangladesh.
			£)			

Sustainable Marine Structures | Volume 03 | Issue 02 | July 2021

				r					
2	Cyprinidae	Barna Baril/ Koksa	Barilius barna	1.20	1.00	1.10	0.96	0.90	EN
	• •			±0.05	±0.04	±0.04	±0.02	± 0.03	
3	Cyprinidae	Baril	Barilius bendelisis	0.66	0.59	0.55	0.50	0.46	EN
				±0.03	±0.01	±0.01	±001	± 0.01	
4	Cyprinidae	Koksa	Barilius shacra	+0.02		+0.02	0.43	+0.01	EN
				±0.02	±0.02	±0.02	±0.01	±0.01	
5	Cyprinidae	Koksa	Barilius tileo	0.88	0.87	0.84	0.80	0.78	CR
		A .:1 /		±0.03	±0.03	±0.03	±0.01	±0.0	
6	Cyprinidae	Aspidopara/	Aspidoparia morar	0.66	0.62	0.60	0.58	0.55	EN
		Morar		±0.04	±0.04	±0.03	±0.02	±0.01	
7	Cyprinidae	Chepchela	Chela cachius	0.80	0.75	0.66	0.62	0.58	EN
		1		±0.05	±0.04	±0.03	± 0.03	±0.02	
8	Cvprinidae	Kashkhaira	Chela laubuca	0.90	0.88	0.84	0.81	0.78	EN
	- 51			±0.06	±0.04	±0.04	± 0.03	±0.03	
9	Mugillidae	Kachi Kholva	Sicamugil casoasia	0.66	0.60	0.58	0.55	0.52	CR
				±0.02	±0.01	±0.01	±001	±0.01	
10	Cyprinidae	Baspata	Danio devario	0.55	0.52	0.48	0.45	0.43	EN
	Cyprimaue	Busputu		±0.03	±0.03	±0.03	±0.02	±0.01	
11	Cyprinidae	Dhela	Rohtee cotio	0.50	0.40	0.32	0.22	0.12	CR
11	Cyprinidae	Dileia	Ronce cono	±0.03	±0.02	±0.02	±0.01	±0.0	CK
12	Cumrinidaa	Chala munti	Durating shale	0.66	0.63	0.62	0.61	0.60	ENI
12	Cyprinidae	Choia punti	Puntius choia	±0.04	±0.04	±0.03	±0.02	±0.02	EN
12	0 1	TT 1 (0.70	0.68	0.64	0.60	0.58	ENI
13	Cyprinidae	Taka punti	Puntius conchonius	±0.05	±0.05	±0.04	±0.03	±0.02	EN
	~			0.80	0.78	0.75	0.72	0.68	
14	Cyprinidae	Phutani punti	Puntius phutunio	±0.05	±0.05	±0.02	±0.02	±0.01	EN
				0.44	0.42	0.40	0.37	0.34	
15	Cyprinidae	Jatpunti Punti	Puntius Sophore	±0.03	±0.03	± 0.02	± 0.02	±0.01	EN
				0.70	0.67	0.65	0.63	0.60	
16	Cyprinidae	Teri punti	Puntius terio	+0.04	+0.04	+0.03	+0.02	+0.02	EN
				0.83	0.80	0.77	0.74	0.70	
17	Cyprinidae	Tit Punti	Puntius ticto	+0.05	+0.05	+0.04	+0.03	+0.02	VU
				0.78	0.75	0.73	0.70	0.68	
18	Cyprinidae	Fulchela	Salmostoma phulo	0.78		0.73		0.00	EN
				±0.04	±0.04	±0.03	±0.02	± 0.02	
19	Cyprinidae	Darkina	Esomus danricus	0.50	0.48	0.45	0.42	0.12	VU
				±0.03	±0.02	±0.02	±0.02	±0.01	
20	Cyprinidae	Kanpona	Oryzias melastigma	1.00	0.98	0.95	0.92	0.88	VU
		-		± 0.03	±0.03	±0.03	±0.02	±0.01	
21	Clupeidae	Kachki	Corica soborna	0.40	0.38	0.36	0.28	0.23	DD
	1			±0.03	±0.02	±0.02	±0.02	±0.01	
22	Cobitidae	Balitora	Psilorhvnchus balitora	0.40	0.40	0.37	0.35	0.33	EN
				±0.02	±0.02	±0.02	±0.01	±0.01	
23	Cobitidae	Balitora	Psilorhynchus rahmani	0.37	0.36	0.22	0.09	0.08	LC
				±0.02	±0.01	±0.01	±001	±0.01	
24	Cobitidae	River stone carn/ Titari	Psilorhynchus sucatio	0.70	0.66	0.64	0.63	0.60	EN
	Coontidue	raver stone curp/ rituri	- suomynenus sucuito	±0.07	±0.06	±0.04	±0.05	±0.03	
25	Cobitidae	Bilturi /Bali chata	Acanthocobitis botia	0.50	0.47	0.44	0.42	0.38	FN
				±0.03	±0.03	±0.02	±0.02	±0.01	LIN
26	Cabitidaa	Diver leash / Daliahata	Acanthocobitis	0.70	0.68	0.64	0.60	0.56	VII
		Kiver loach/ Danchata	zonalternans	±0.05	±0.04	±0.03	±0.02	±0.03	VU
27	Cabitida	V a inter	Nomachailter	0.60	0.58	0.56	0.53	0.50	ID
21	Coditidae	KOIIKa	Nemacneilus corica	±0.04	±0.03	±0.02	±0.01	±0.2	
20	0.1.5.1	0 11 1	G 1 · , 1 · ·	0.40	0.38	0.36	0.35	0.32	1711
28	Cobitidae	Creek loach	Schistura beavani	±0.03	±0.04	±0.03	±0.02	±0.02	VU
			~ T.	0.70	0.66	0.63	0.60	0.57	
29	Cobitidae	Corica Loach/ Korika	Schistura corica	±0.05	±0.05	±0.05	±0.04	±0.04	LR
				0.66	0.62	0.60	0.57	0.55	
30	Cobitidae	Savon khorka	Schistura savona	+0.04	+0.03	+0.03	+0.02	+0.02	LR
				0.40	0.38	0.36	0.35	0.32	
31	Cobitidae	Dari	Schistura scaturigina	+0.03	+0.02	+0.02	+0.02	+0.01	EN
	1			-0.05	-0.02	-0.02	-0.02	0.01	

Sustainable Marine Structures | Volume 03 | Issue 02 | July 2021

32	Cobitidae	Bengal loach / Bou	Botia dario	0.60	0.55	0.53	0.51	0.48	VU
		mach		± 0.05 0.60	±0.04	±0.04	± 0.02 0.53	± 0.02 0.50	
33	Cobitidae	Hora loach	Botia dayi	±0.05	±0.04	±0.03	±0.03	±0.01	EN
34	Cohitidae	Loach/ Puiva	Lepidocephalichthys	0.90	0.88	0.85	0.83	0.81	FN
	Coolitidae	Loden/ Turya	goalparensis	±0.05	±0.04	±0.02	±0.02	±0.02	LIN
35	Cobitidae	Goalpara loach	Neoeucirrhichthys	0.55	0.52	0.50	0.48	0.45	EN
		Gonga loach/	mayaelli	±0.04	±0.04	±0.03	± 0.02	± 0.01 0.50	
36	Cobitidae	Poia/ Ghar poia	Somileptes gongota	±0.05	±0.05	±0.04	±0.03	±0.02	VU
37	Cobitidae	Rani	Botia lohachata	0.44	0.41	0.38	0.36	0.33	LR
20	0.1771	n i	Lepidocephalichthys	0.55	0.53	0.52	0.50	0.47	EN
38	Cobilidae	Kani	annandalei	±0.03	±0.03	±0.02	±0.02	±0.02	EN
39	Cobitidae	Balichata	Nemachilus botia	0.77	0.74	0.73	0.71	0.68	EN
				±0.04	± 0.04	±0.02	± 0.03	± 0.03	
40	Centropomidae	Chanda	Chanda nama	+0.08	+0.05	+0.04	+004	+0.03	LC
				1.20	1.16	1.15	1.13	1.08	
41	Centropomidae	Chanda	Pseudambasis bacuculis	±0.08	±0.06	±0.05	±0.04	±0.04	EN
42	Centropomidae	Ranga chanda	Pseudambasis ranga	0.80	0.74	0.70	0.68	0.66	IC
	Centropolinidae	Tranga chanaa	1 seauamousis ranga	±0.05	±0.04	±0.03	±0.03	±0.02	
43	Gobiidae	Baila	Glossogobus giuris	1.20	1.10	1.00	0.98	0.94	DD
				$\pm 0.0/$	± 0.06	±0.05	±0.04	± 0.04	
44.	Tetradontidae	Potka	Tetradon cutcutia	+0.08	+0.07	+0.06	+0.04	+0.04	EN
				32.72		-0.00	28.14	26.63	
Sub-T	otal			±0.32	29.53±0.29	29.63±0.30	±0.29	±0.28	
Cat fis	sh								
1	Bagridae	Ayre	Mystus aor	2.20	2.10	2.00	1.98	1.90	EN
				±0.12	± 0.11	±0.10	± 0.10	± 0.09	
2	Bagridae	Guizza	Mystus seenghala	+0.20	+0.17	+0.14	+0.11	+0.11	CR
	~	~ ~ ~		1.00	0.97	0.93	0.90	0.88	
3	Schilbeidae	Shilong	Silonia silondia	±0.09	±0.08	±0.09	±0.07	±0.08	EN
4	Siluridae	Boal	Wallago attu	5.03	4.90	4.70	4.40	41.00	IR
-	Shuhuu	Bour	munago unu	±1.84	±1.71	±1.81	±1.70	±1.40	
5	Bagridae	Baghair	Bagarius yarrellii	2.08	1.66	1.20	1.11	1.00	CP
				10.00		107	10.00	10.65	UK
6				± 0.80	± 0.70	±0.7	±0.68	±0.65	
	Chacidae	Cheka	Chaca chaca	± 0.80 1.50 ± 0.10	± 0.70 1.30 ± 0.09	± 0.7 1.00 ± 0.08	± 0.68 0.96 ± 0.08	± 0.65 0.90 ± 0.05	CR
-	Chacidae	Cheka	Chaca chaca	± 0.80 1.50 ± 0.10 2.85	± 0.70 1.30 ± 0.09 2.55	± 0.7 1.00 ± 0.08 2.33	±0.68 0.96 ±0.08 2.00	± 0.65 0.90 ± 0.05 1.88	CR
7	Chacidae Bagridae	Cheka Gangmagur	Chaca chaca Mystus menoda	± 0.80 1.50 ± 0.10 2.85 ± 0.90	± 0.70 1.30 ± 0.09 2.55 ± 0.80	$ \begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ \end{array} $	± 0.68 0.96 ± 0.08 2.00 ± 0.74	± 0.65 0.90 ± 0.05 1.88 ± 0.60	CR CR EN
7	Chacidae Bagridae Bagridae	Cheka Gangmagur Rita	Chaca chaca Mystus menoda Rita rita	± 0.80 1.50 ± 0.10 2.85 ± 0.90 2.55	± 0.70 1.30 ± 0.09 2.55 ± 0.80 2.50 ± 0.50	$ \begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ 2.44 \\ 0.75 \\ 0.7$	± 0.68 0.96 ± 0.08 2.00 ± 0.74 2.20 0.60	± 0.65 0.90 ± 0.05 1.88 ± 0.60 2.09	CR EN EN
7 8	Chacidae Bagridae Bagridae	Cheka Gangmagur Rita	Chaca chaca Mystus menoda Rita rita	$\begin{array}{r} \pm 0.80 \\ \hline 1.50 \\ \pm 0.10 \\ \hline 2.85 \\ \pm 0.90 \\ \hline 2.55 \\ \pm 0.81 \end{array}$	± 0.70 1.30 ± 0.09 2.55 ± 0.80 2.50 ± 0.70	$ \begin{array}{r} \pm 0.7 \\ \hline 1.00 \\ \pm 0.08 \\ \hline 2.33 \\ \pm 0.78 \\ \hline 2.44 \\ \pm 0.70 \\ \end{array} $	± 0.68 0.96 ± 0.08 2.00 ± 0.74 2.20 ± 0.60 16.21	± 0.65 0.90 ± 0.05 1.88 ± 0.60 2.09 ± 0.50 15.30	CR EN EN
7 8 Sub to	Chacidae Bagridae Bagridae	Cheka Gangmagur Rita	Chaca chaca Mystus menoda Rita rita	$\begin{array}{c} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \end{array}$ 20.21 \pm 1.21	± 0.70 1.30 ± 0.09 2.55 ± 0.80 2.50 ± 0.70 18.87±1.22	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \end{array}$ 17.35 ± 1.24	± 0.68 0.96 ± 0.08 2.00 ± 0.74 2.20 ± 0.60 16.21 ± 1.15	± 0.65 0.90 ± 0.05 1.88 ± 0.60 2.09 ± 0.50 15.30 +1.08	CR EN EN
7 8 Sub to Small	Chacidae Bagridae Bagridae Dtal	Cheka Gangmagur Rita	Chaca chaca Mystus menoda Rita rita	$\begin{array}{c} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \textbf{20.21\pm1.21} \end{array}$	±0.70 1.30 ±0.09 2.55 ±0.80 2.50 ±0.70 18.87±1.22	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \hline \mathbf{17.35 \pm 1.24} \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \end{array}$	CR EN EN
7 8 Sub to Small	Chacidae Bagridae Bagridae otal cat fish	Cheka Gangmagur Rita	Chaca chaca Mystus menoda Rita rita	±0.80 1.50 ±0.10 2.85 ±0.90 2.55 ±0.81 20.21±1.21 2.20	± 0.70 1.30 ± 0.09 2.55 ± 0.80 2.50 ± 0.70 18.87±1.22 2.10	$ \begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ 17.35 \pm 1.24 \\ \end{array} $	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ 16.21 \\ \pm 1.15 \\ \hline 2.03 \end{array}$	$\begin{array}{c} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \end{array}$	CR EN EN
7 8 Sub to Small 1	Chacidae Bagridae Bagridae otal cat fish Bagridae	Cheka Gangmagur Rita Gulsa	Chaca chaca Mystus menoda Rita rita Mystus cavasius	$\begin{array}{r} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \textbf{20.21\pm1.21} \\ \hline 2.20 \\ \pm 0.12 \end{array}$	$\begin{array}{c} \pm 0.70 \\ 1.30 \\ \pm 0.09 \\ 2.55 \\ \pm 0.80 \\ 2.50 \\ \pm 0.70 \\ \hline \textbf{18.87 \pm 1.22} \\ \hline 2.10 \\ \pm 0.11 \\ \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \hline \mathbf{17.35 \pm 1.24} \\ \hline 2.08 \\ \pm 0.08 \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline \\ 2.03 \\ \pm 0.07 \\ \end{array}$	$\begin{array}{c} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ \textbf{15.30} \\ \pm \textbf{1.08} \\ \end{array}$	CR EN EN EN
7 8 Sub to Small 1	Chacidae Bagridae Bagridae Dtal Cat fish Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vittus	$\begin{array}{r} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{2.20} \\ \pm 0.12 \\ 2.70 \end{array}$	$\begin{array}{r} \pm 0.70 \\ 1.30 \\ \pm 0.09 \\ 2.55 \\ \pm 0.80 \\ 2.50 \\ \pm 0.70 \\ 18.87 \pm 1.22 \\ \hline \\ 2.10 \\ \pm 0.11 \\ 2.60 \\ \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ 17.35 \pm 1.24 \\ \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ \textbf{15.30} \\ \pm \textbf{1.08} \\ \end{array}$	CR CR EN EN EN
7 8 Sub to Small 1 2	Chacidae Bagridae Bagridae Dtal Cat fish Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vittus	$\begin{array}{r} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \textbf{20.21\pm1.21} \\ \hline \textbf{22.20} \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ \hline \textbf{20.21} \\ \hline $	$\begin{array}{c} \pm 0.70 \\ 1.30 \\ \pm 0.09 \\ 2.55 \\ \pm 0.80 \\ 2.50 \\ \pm 0.70 \\ 18.87 \pm 1.22 \\ \hline \\ 2.10 \\ \pm 0.11 \\ 2.60 \\ \pm 0.11 \\ \hline \\ 2.60 \\ \pm 0.11 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ 17.35 \pm 1.24 \\ \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ \hline 2.5 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline 1.90 \\ \pm 0.06 \\ 2.40 \\ \pm 0.08 \\ \hline 0.08 \\ - 0.51 \\ \hline \end{array}$	CR EN EN EN EN
7 8 Sub to Small 1 2 3	Chacidae Bagridae Bagridae otal cat fish Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra	$\begin{array}{r} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{22.20} \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ 1.10 \\ 1$	$\begin{array}{r} \pm 0.70 \\ \pm 0.70 \\ \hline 1.30 \\ \pm 0.09 \\ \hline 2.55 \\ \pm 0.80 \\ \hline 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline 2.10 \\ \pm 0.11 \\ \hline 2.60 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ \hline 1.00 \\ \pm 0.08 \\ \hline 2.33 \\ \pm 0.78 \\ \hline 2.44 \\ \pm 0.70 \\ \hline 17.35 \pm 1.24 \\ \hline \\ 2.08 \\ \pm 0.08 \\ \hline 2.50 \\ \pm 0.10 \\ \hline 2.60 \\ \pm 0.08 \\ \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline \end{array}$	CR EN EN EN EN VU
7 8 Sub to Small 1 2 3	Chacidae Bagridae Bagridae otal cat fish Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri Gura Tengra/ Eutki	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra	$\begin{array}{r} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \mbox{20.21\pm1.21} \\ \hline \mbox{2.20} \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ \pm 0.11 \\ 0.70 \\ \hline \end{array}$	$\begin{array}{c} \pm 0.70 \\ 1.30 \\ \pm 0.09 \\ 2.55 \\ \pm 0.80 \\ 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline 2.10 \\ \pm 0.11 \\ 2.60 \\ \pm 0.11 \\ 2.66 \\ \pm 0.11 \\ 0.60 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \hline 17.35 \pm 1.24 \\ \hline 2.08 \\ \pm 0.08 \\ 2.50 \\ \pm 0.10 \\ 2.60 \\ \pm 0.08 \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ 0.48 \\ \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline \\ 1.90 \\ \pm 0.06 \\ 2.40 \\ \pm 0.08 \\ 2.51 \\ \pm 0.06 \\ 0.39 \\ \end{array}$	CR EN EN EN EN VU
7 8 Sub to Small 1 2 3 4	Chacidae Bagridae Bagridae otal cat fish Bagridae Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri Gura Tengra/Futki bujuri	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra Rama chandramara	$\begin{array}{c} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \end{tabular}$ $\begin{array}{c} 2.20 \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ \pm 0.11 \\ 0.70 \\ \pm 0.06 \end{array}$	$\begin{array}{c} \pm 0.70 \\ \pm 0.70 \\ \hline 1.30 \\ \pm 0.09 \\ \hline 2.55 \\ \pm 0.80 \\ \hline 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline \\ 2.10 \\ \pm 0.11 \\ \hline 2.60 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline 0.60 \\ \pm 0.04 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \hline 17.35 \pm 1.24 \\ \hline 2.08 \\ \pm 0.08 \\ 2.50 \\ \pm 0.08 \\ 2.50 \\ \pm 0.10 \\ 2.60 \\ \pm 0.08 \\ 0.50 \\ \pm 0.03 \\ \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ 0.48 \\ \pm 0.03 \\ \end{array}$	$\begin{array}{c} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline \\ 1.90 \\ \pm 0.06 \\ 2.40 \\ \pm 0.08 \\ 2.51 \\ \pm 0.06 \\ 0.39 \\ \pm 0.02 \\ \end{array}$	CR EN EN EN EN VU CR
7 8 Sub to Small 1 2 3 4	Chacidae Bagridae Bagridae Otal Cat fish Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri Gura Tengra/Futki bujuri Menoda catfish	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra Rama chandramara	$\begin{array}{c} \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{20.21\pm1.21} \\ \hline \textbf{2.20} \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ \pm 0.11 \\ 0.70 \\ \pm 0.06 \\ \hline \textbf{0.80} \end{array}$	$\begin{array}{c} \pm 0.70 \\ \pm 0.70 \\ \hline 1.30 \\ \pm 0.09 \\ \hline 2.55 \\ \pm 0.80 \\ \hline 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ \hline 1.00 \\ \pm 0.08 \\ \hline 2.33 \\ \pm 0.78 \\ \hline 2.44 \\ \pm 0.70 \\ \hline 17.35 \pm 1.24 \\ \hline \\ \hline \\ 2.08 \\ \pm 0.08 \\ \hline 2.50 \\ \pm 0.08 \\ \hline 2.50 \\ \pm 0.10 \\ \hline 2.60 \\ \pm 0.08 \\ \hline 0.50 \\ \pm 0.03 \\ \hline 0.75 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ 0.48 \\ \pm 0.03 \\ 0.73 \\ \hline \end{array}$	$\begin{array}{c} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \end{array}$ $\begin{array}{c} 1.90 \\ \pm 0.06 \\ 2.40 \\ \pm 0.08 \\ 2.51 \\ \pm 0.06 \\ 0.39 \\ \pm .0.02 \\ 0.70 \end{array}$	CR EN EN EN VU CR
7 8 Sub to Small 1 2 3 4 5	Chacidae Bagridae Bagridae otal cat fish Bagridae Bagridae Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri Gura Tengra/Futki bujuri Menoda catfish /Arwari	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra Rama chandramara Hemibagrus menoda	$\begin{array}{c} \pm 0.80 \\ \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \textbf{20.21\pm1.21} \\ \textbf{20.21\pm1.21} \\ \textbf{2.20} \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ \pm 0.11 \\ 0.70 \\ \pm 0.06 \\ 0.80 \\ \pm 0.07 \end{array}$	$\begin{array}{c} \pm 0.70 \\ \pm 0.70 \\ \hline 1.30 \\ \pm 0.09 \\ \hline 2.55 \\ \pm 0.80 \\ \hline 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline 18.87 \pm 1.22 \\ \hline 2.10 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline 0.60 \\ \pm 0.04 \\ \hline 0.77 \\ \pm 0.05 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \textbf{17.35\pm1.24} \\ \hline \\ \hline \\ 2.08 \\ \pm 0.08 \\ 2.50 \\ \pm 0.08 \\ 2.50 \\ \pm 0.10 \\ 2.60 \\ \pm 0.08 \\ 0.50 \\ \pm 0.03 \\ 0.75 \\ \pm 0.05 \\ \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ 0.48 \\ \pm 0.03 \\ 0.73 \\ \pm 0.04 \\ \hline \end{array}$	$\begin{array}{c} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline \end{array}$ $\begin{array}{c} 1.90 \\ \pm 0.06 \\ 2.40 \\ \pm 0.08 \\ 2.51 \\ \pm 0.06 \\ 0.39 \\ \pm .0.02 \\ 0.70 \\ \pm 0.02 \\ \hline \end{array}$	CR EN EN EN EN VU CR EN
7 8 Sub to Small 1 2 3 4 5 6	Chacidae Bagridae Bagridae otal cat fish Bagridae Bagridae Bagridae Bagridae Bagridae	Cheka Gangmagur Rita Gulsa Tengra Bujuri Gura Tengra/Futki bujuri Menoda catfish /Arwari Kerala mystus	Chaca chaca Mystus menoda Rita rita Mystus cavasius Mystus vitttus Mystus tengra Rama chandramara Hemibagrus menoda Mystus armatus	$\begin{array}{c} \pm 0.80 \\ \pm 0.80 \\ 1.50 \\ \pm 0.10 \\ 2.85 \\ \pm 0.90 \\ 2.55 \\ \pm 0.81 \\ \hline \hline 20.21 \pm 1.21 \\ \hline 2.20 \\ \pm 0.12 \\ 2.70 \\ \pm 0.11 \\ 2.70 \\ \pm 0.11 \\ 0.70 \\ \pm 0.06 \\ \hline 0.80 \\ \pm 0.07 \\ 0.90 \\ \hline \end{array}$	$\begin{array}{c} \pm 0.70 \\ \pm 0.70 \\ \hline 1.30 \\ \pm 0.09 \\ \hline 2.55 \\ \pm 0.80 \\ \hline 2.50 \\ \pm 0.70 \\ \hline 18.87 \pm 1.22 \\ \hline 2.10 \\ \pm 0.11 \\ \hline 2.60 \\ \pm 0.11 \\ \hline 2.66 \\ \pm 0.11 \\ \hline 0.60 \\ \pm 0.04 \\ \hline 0.77 \\ \pm 0.05 \\ \hline 0.85 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.7 \\ 1.00 \\ \pm 0.08 \\ 2.33 \\ \pm 0.78 \\ 2.44 \\ \pm 0.70 \\ \hline 17.35 \pm 1.24 \\ \hline 2.08 \\ \pm 0.08 \\ 2.50 \\ \pm 0.08 \\ 2.50 \\ \pm 0.10 \\ 2.60 \\ \pm 0.08 \\ 0.50 \\ \pm 0.03 \\ 0.75 \\ \pm 0.05 \\ 0.80 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.68 \\ 0.96 \\ \pm 0.08 \\ 2.00 \\ \pm 0.74 \\ 2.20 \\ \pm 0.60 \\ \hline 16.21 \\ \pm 1.15 \\ \hline 2.03 \\ \pm 0.07 \\ 2.45 \\ \pm 0.10 \\ 2.55 \\ \pm 0.07 \\ 0.48 \\ \pm 0.03 \\ 0.73 \\ \pm 0.04 \\ 0.75 \\ \hline \end{array}$	$\begin{array}{r} \pm 0.65 \\ 0.90 \\ \pm 0.05 \\ 1.88 \\ \pm 0.60 \\ 2.09 \\ \pm 0.50 \\ 15.30 \\ \pm 1.08 \\ \hline \end{array}$	CR EN EN EN EN VU CR EN EN

Sustainable Marine Structures | Volume 03 | Issue 02 | July 2021

		Dav's mystus/		0.75	0.74	0.72	0.70	0.68	
7	Bagridae	Tengra	Mystus bleekeri	±0.07	±0.05	±0.05	±0.04	±0.02	EN
8	Schilbaidaa	Kajuli	Ailia coila	0.90	0.86	0.84	0.81	0.79	EN
0	Semillerude	Kajuli	Аши сопи	±0.08	±0.07	±0.06	±0.05	±0.04	LIN
9	Siluridae	Kani Pabda	Ompok bimaculatus	1.58	1.50	1.48	1.41	1.37	EN
			1	± 0.08	± 0.07	±0.06	± 0.06	± 0.05	
10	Siluridae	Madhu Pabda	Ompok pabda	1.//	1.60	1.55	1.52	1.48	VU
				±0.09	±0.08	1 14	± 0.00	± 0.03	
11	Siluridae	Ompok pabda	Ompok pabo	±0.06	±0.05	±0.06	±0.04	±0.04	EN
10	0.1.11.1	CI		1.07	0.96	0.94	0.88	0.80	EN
12	Schilbeidae	Gnarua	Ciupisoma garua	±0.08	±0.06	±0.07	±0.07	±0.05	EN
13	Schilbeidae	Muri Bacha	Chupisoma murias	1.40	1.30	1.26	1.20	1.14	EN
	Sennoenaae		-	±0.05	±0.05	±0.05	0.04	±0.03	
14	Schilbeidae	Batasi	Pseudeutropius	1.00	0.97	0.95	0.92	0.90	VU
			atherinoides	±0.05	±0.05	±0.03	± 0.02	±.0.02	
15	Schilbeidae	Bacha	Eutropiichthys vacha	+0.04	0.88	0.85	0.83	0.80	EN
<u> </u>				0.60	0.55	0.49	0.45	0.44	
16	Sisoridae	Kutakanti	Hara hara	±0.04	±0.04	±0.04	±0.04	±0.04	LR
17	0 1	XZ (1)	** . 1 .	1.10	1.04	1.00	0.99	0.96	
1/	Sisoridae	Kutakanti	Hara jerdoni	±0.07	±0.06	±0.06	±0.05	±0.04	EN
18	Sisoridae	Gang tengra	Nangra nangra	0.90	0.88	0.85	0.82	0.79	VII
10	Sisondae			±0.04	±0.03	±0.04	0.04	±0.03	•0
19	Sisoridae	Chenua	Sisor rabdophorus	0.35	0.30	0.25	0.16	0.08	CR
				±0.02	±0.02	±0.03	±0.02	±.0.02	-
20	Sisoridae	Conta catfish/ Kuta	Conta conta	1.24	1.20	1.15	1.11	1.05	DD
		капц		± 0.07	±0.06	±0.05	± 0.04	± 0.02	
21	Sisoridae	Kutakanti	Erethistes pusillus	± 0.02	± 0.02	± 0.01	± 0.12 ± 0.01	± 0.10	VU
	~			0.55	0.50	0.46	0.43	0.34	
22	Sisoridae	Kanı Tengra	Pseudolaguvia muricata	±0.04	±0.03	±0.04	±0.03	±0.02	CR
23	Sisoridae	Chanua	Psaudolagunia inornata	1.44	1.33	1.32	1.32	1.29	CP
23	Sisondae	Chanua	1 seudolaguvia inornala	±0.09	±0.08	±0.06	±0.05	±0.05	CK
24	Clariidae	Cat fish/ Magur	Clarias batrachus	0.50	0.47	0.45	0.43	0.40	VU
				± 0.03	± 0.03	±0.03	± 0.02	$\pm .0.02$	
25	Heteropneustidae	Stinging catrisn/	Heteropneustes fossilis	1.44	1.38	1.32	1.30	1.26	LC
		Shingi		1 70	1.60	1 15	1 47	1 33	
26	Chacidae	Cheka	Chaca chaca	± 0.10	±0.09	±0.08	±0.05	± 0.05	LR
27	01.11	G (1)(G1)		1.48	1.40	1.35	1.32	1.27	ENI
27	Olyridae	Gagora cattish / Gobi	Artus gagora	±0.07	±0.06	±0.05	±0.04	±0.02	EN
Sub-fe	otal			33.03±0.60	31.45±0.58	30.31±0.57	29.41	28.09	
							±0.57	±0.56	
Clupi				1.00	1.50	1 1 2	1.00	1.00	<u> </u>
1	Clupidae	Chapila	Gadusia chapra	+0.08	+0.07	+0.06	+0.05	+0.04	EN
				0.98	0.95	0.90	0.85	0.82	
2	Clupidae	Hilsa	Tenualosa ilisha	±0.08	±0.06	±0.04	±0.02	±0.01	EN
2	01 1	Gizzard shad/	<i>C</i> · 1 ·	0.44	0.38	0.34	0.31	0.28	EN
3	Ciupidae	Chapila	Gonialosa manmina	±0.08	±0.06	±0.04	±0.02	±0.01	EN
Subto	tal			3.22	2.83	2.44	2.16	2.10	
Subto				±0.68	±0.56	±0.44	±0.36	±0.38	
Eels				2.44	2.25	2.22	2.24	2.10	
1	Mastacembeli-dae	Baim	Mastacembalus armatus	5.44 +0.14	5.55 +0.11	5.55 +0.00	5.24 ±0.00	3.12	VU
				3.09	2.98	2 91	2.08	2 27	
2	Synbranchidae	Kuicha	Monopterus cuchia	±0.10	±0.10	±0.09	±0.08	±0.08	EN
		Lesser spiny eel/ Tara		2.90	2.83	2.76	2.63	2.54	
3	Mastacembelidae	baim	Macrognathus aculeatus	±0.13	±0.12	±0.10	±0.10	±0.09	EN

Sustainable Marine Structures	Volume 03	Issue 02	July 2021
-------------------------------	-----------	----------	-----------

				2.20	2.00	1.95	1 91	1.86	
4	Mastacembelidae	One-stripe spiny eel	Macrognathus aral	±0.12	±0.11	±0.09	±0.08	±0.07	LR
5	Magtagamhalidag	Barred spiny eel/	Maguaguathus nanoalus	2.55	2.30	2.22	2.12	2.04	EN
5	Wastacembendae	Pankal baim	Macrognainus pancaius	±0.13	±0.12	±0.12	±0.11	±0.10	EIN
Subto	tal			14.18	13.44	13.17	12.70	12.26	
D	_			±0.48	±0.54	±0.55	± 0.53	±0.51	
rraw				1.83	1 77	1.68	1.60	1 47	
1	Palaemonidae	Golda Isa	Machrobrachiu rosenbergii	±0.07	±0.06	±0.05	±0.05	±0.04	EN
	D.1	6 I	Machrobrachium	2.50	2.42	2.35	2.28	2.20	DD
2	Palaemonidae	Gura Isa	biramanicus	±0.18	±0.16	±0.15	±0.14	±0.15	DD
3	Palaemonidae	Gul Isa	Machrobrachium	1.61	1.44	1.32	1.25	1.18	VII
	T unuennonneue	Gui ibu	malcolmsnii	±0.09	±0.05	±0.05	±0.04	±0.04	
4	Palaemonidae	Dimua icha	Macrobrachium	1.90	1.80	1.71	1.64	1.57	LC
		Cura iaha ar lumaha	villosimanus	±0.20	±0.11	±0.10	±0.09	± 0.10	
5	Palaemonidae	chingri	Macrobrachium lamarrei	+0.22	+0.16	+0.15	+0.14	+0.16	LR
		Kaira icha or beel		0.71	0.66	0.60	0.60	0.54	
6	Palaemonidae	chingri.	Macrobrachium dayanum	±0.06	±0.03	±0.03	±0.02	±0.02	LR
7	Deleamonidee	Chilma ahinari	Maarahraahium idalla	0.92	0.88	0.82	0.77	0.59	חח
	Paraemonidae	Chikha chingh.		±0.02	±0.02	±0.01	±0.01	±0.01	
8	Palaemonidae	Icha	Macrobrachium kempi	0.87	0.82	0.78	0.75	0.72	VU
		10110	inaerooraeman nempt	±0.08	±0.07	±0.04	±0.04	±0.02	
9	Palaemonidae	chingri	Macrobrachium superbum	0.90	0.84	0.86	0.80	0.73	LC
				±0.06	±0.04	±0.03	±0.02	±0.02	
Sub-te	otal:			+0.63	+0.62	+0.60	+0.57	+0.56	
Crabs	/Snail			-0.00	-0.02	-0.00	-0.07	-0.50	
			<i>a</i>	2.77	2.73	2.54	2.46	240	DD
	Potamidae	Kakra	Sartoriana spinigera	± 0.80	±0.61	±0.53	±0.48	±0.40	DD
2	Gransidae	Common Kakra	Lobothelphusa wood-	2.60	2.40	2.33	2.10	1.88	TD
	Grapsidae	Common Kakia	masoni	±0.06	±0.08	±0.05	±0.08	±0.04	LK
3	Grapsidae	Kakra	Acanthopotamon martensi	2.48	2.33	2.12	2.00	1.90	VU
				±0.08	±0.07	±0.06	±0.04	±0.03	
4	Parathelphusidae	Kakra	Pyxidognathus fluviatilis	1.08	0.92	0.88	0.82	0.78	LC
	_			±0.03	± 0.03	± 0.02	± 0.02	± 0.01	
5	Parathelphusidae	Kakra	Austrotelphusa transversa	+0.04	+0.05	+0.04	+0.03	+0.01	EN
				1.12	1.00	0.90	0.85	0.79	
6	Unionidae	Bivalve	Lamellidens marginalis	±0.04	±0.03	±0.02	±0.02	±0.01	VU
Sub t	tal.			11.93	11.10	10.21	9.57	8.97	
Sub-u	Juai.			±0.75	±0.76	±0.72	±0.70	±0.67	
Reptil	es	1	r			r		1	
1	Testudinidae	Elongated Tortoise/	Indotestudo elongata	0.29	0.22	0.19	0.13	0.09	CR
		Kachhap		±0.03	± 0.02	±0.02	±0.01	± 0.01	
2	Testudinidae	Chila Kachhan	Manouria emys	0.35 +0.04	+0.32	0.21 +0.02	+0.02	+0.11	EN
		River Terrapin		0.16	0.13	0.02	0.02	0.01	
3	Geoemydidae	/Bodo Kaitta	Batagur baska	±0.02	±0.01	±0.01	±0.01	±0.00	CR
		Painted Roofed		0.18	0.14	0.11	0.08	0.03	ENI
4	Geoemydidae	Turtile/Dhoor Kachim	Batagur dongoka	±0.02	±0.02	±0.01	±0.01	±0.07	EN
5	Geoemydidae	Oldham,s Leaf Turtile/	Cyclemys oldhami	0.26	0.20	0.14	010	0.00	F
	Geoemyuluae	Pata Kachim	Cyciemys olunumi	±0.02	±0.02	±0.01	±0.01	±0.00	
6	Geoemvdidae	SpottedTurtile/	Geoclemvs hamiltonii	0.19	0.14	0.12	0.10	0.07	CR
Ļ		Kala Kachim		±0.03	±0.02	±0.01	±0.01	±0.01	
7	Geoemydidae	Brahminy River	Hardella thurjii	0.30	0.24	0.18	0.13	0.07	EN
<u> </u>		i uruie/Kali Kaitta	Mal	±0.11	±0.05	±0.06	±0.02	±0.01	
8	Geoemydidae	Shila Kachhap	Melanocheelys	0.30 ±0.02	0.26	0.19	0.15	0.08	EN
			iricarinata	±0.02	±0.01	±0.01	±0.01	±0.00	

Sustainable Marine Structures | Volume 03 | Issue 02 | July 2021

0	Gaaamudidaa	Snail Eating Turtile/	Melanocheelys	0.40	0.35	0.30	0.10	0.00	Б
9	Geoeniyuluae	Kali Kachhap	trjuuga	±0.02	±0.02	±0.01	±0.00	±0.00	
10	Casamudidaa	Dangal Eved Turtila	Mononia notonai	0.08	0.06	0.05	0.04	0.0	Б
10	Geoeniyaldae	Bengai Eyeu Turtile	Morenia peiersi	±0.01	±0.01	±0.01	±0.00	±0.00	E
11	Casamudidaa	Indian Turtile/ Kori	Danaahuna toota	0.13	0.10	0.10	0.09	0.07	CD
	Geoeniyuldae	Kaitta	Pangsnura tecta	±0.02	±0.01	±0.01	±0.01	±0.01	CK
12	Commentidae	Tent Turtile/	Pangshura tentoria	0.07	0.06	0.06	0.05	0.04	EN
12	Geoemydidae	Majhari Kaitta		±0.01	±0.01	± 0.00	±0.01	±0.00	EN
12	Trionyshidaa	Ganges Turtile/ Khalua	Amidanatan amaatiana	0.35	0.32	0.30	0.28	0.16	VII
15	Trionychidae	Kachim	Aspideretes gangeticus	±0.03	±0.02	±0.03	±0.02	±0.01	VU
Sub to	atal			3.06	2.54	2.04	1.48	0.73	
Sub-u	Jtal			±0.11	±0.10	±0.08	±0.06	±0.05	Í
			Total	170.63	159.93	150.98	143.16	134.75	
				±8.81	±7.40	±6.66	±5.87	±5.02	

exploitation and various ecological changes in natural aquatic ecosystem of river and its floodplains, commercially important aquatic lives are in the verge of extinction which is in agreement with the findings of Sarker ^[24].

The total catch data of the river exhibited a constant sharp decrease during 2015 and 2019. Some of the important native species were noted to be losing their presence. The capture of fishes, crab and reptiles in the river was recorded highest in 2015-16, but decreased considerably in 2017-2018 and the similar situation continued in 2018-2019. Small catfishes and small fishes are dominant groups caught from the river. The observation was similar to the findings of Chakraborty and Mirza^[20], Chakraborty ^[25] and Chakraborty et al. ^[26,11]. As a result, commercially important three aquatic lives of river were recorded to be disappearing during this short 5 years experimental period.

A decreasing trend in catch of the river was clearly recorded within five years which was similar to the report of Chakraborty and Mirza^[19] and Moyle and Leidy^[21]. A total of thirteen species of fresh water turtles were found in the Mogra River and its floodplain. Khan^[27] reported that *Pangshura tecta* are mainly distributed between the stretches of the Ganges River and the Brahmaputra River. Bengal Eyed turtle, *Morenia petersi* was found in the rivers and its flood plains wetland. Das^[28] mentioned its occurrence in Assam of India. *Morenia petersi* was regularly caught by fishermen and expert tribal hunters. Unfortunately, three important species of turtles became rare in their existence as per the catch data, within five years study period.

The population of bivalve, *Lamellidens marginalis* as found in the river and its flood plains has also been decreasing which is considered with the observation of Ali ^[29] and Chakraborty ^[25]. During the study period, fresh water pearl bearing mussels (Bivalve, *Lamellidens marginalis*) were identified in the river. Shells of bivalve were utilized by rural people for production of lime which was utilized in aquaculture and agriculture land, and consumed with betel leaves and nuts.

The wildlife comprises amphibians (*Bufo melanostictus, Rana tigerina, Rana limnocharis, Rana cyanophyctis* and *Salamandra salamandra* etc.) aves (whistling duck, great crested grebe, great cormorant, red crested pochard, water cock, swamphen, great black headed gull, gray-headed fish eagle, curlew, spotted redshank etc.) and mammals (musk shrew, fishing cat, small Indian jackal, flying fox etc.) were previously reported by Chakraborty et al. ^[26].

The study clearly indicates that the aquatic lives of the river were subjected to over exploitation resulting in gradual decline in their catch. The stock of aquatic animals is reducing due to pollution and destructive fishing practices ^[30,31,11]. Indiscriminate killing of fish occurred due to the use of pesticides in improper doses^[6], use of forbidden chemicals, and aerial spray of chemicals as used in paddy field which was very much similar to the observation of Chakraborty^[31] and Mazid^[32]. Intervention to control floods, adoption of new agricultural technologies and construction of road networks altered the ecology of rivers and its flood plains significantly which supported the views of Khan^[33] and Ali^[29]. Decreased stock of the wild brood fishes in their breeding ground also resulted in a reduction of biodiversity as noted by Nishat^[34], Zaman^[35] and Chakraborty^[36].

4. Conclusions

To save the stock of aquatic species in the river, a team of local management committee like Hilsa fisheries management technology is needed to develop a working frame-work. The deeper area of the river must be declared as a sanctuary to protect the aquatic lives, stricken enforcement of fish Act-1950 in the river, ensured stopping unplanned construction of flood control embankments, drainage system and sluice gates, conversion of inundated land to cropland (reducing water area); and controlling use of pesticides and agrochemicals in the floodplains of the river can save the ecosystems. The sustained produc-

tion level from the river will also ensure livelihood of the fishers.

Acknowledgement The authors are greatfully acknowledged to Department of Fisheries, Bangladesh for kind suport and cooperation.

References

- Verma A. K. (2018), Ecological Balance: An Indispensable Need for Human Survival. Journal of Experimental Zoology, India. 21 (1), 407-409.
- [2] Verma A. K. and Prakash S. (2020), Status of Animal Phyla in different Kingdom Systems of Biological Classification. International Journal of Biological Innovations. 2 (2): 149154. https://doi.org/ 10.46505/ IJBI.2020.2211.
- [3] Noss R. F. (1990), A regional landscape approach to maintain diversity. Bioscience. 33, 700-706.
- [4] Cairns M. A. and Lackey R.T. (1992), Biodiversity and management of natural resources: The issues Fisheries. 17(3), 6-10.
- [5] Allendrof F. W. (1988), Conservation biology of fishes. Conservation Biology 2: 145-148.
- [6] Prakash S. and Verma A. K. (2020). Effect of Organophosphorus Pesticides on Biomolecules of Fresh Water Fish, *Heteropneustes fossilis* (Bloch). *Indian Journal* of Biology. 7(2), 65-69.
- [7] Disaster E. (1990), Floodplain protection in Central Europe. World Wildlife Found (WWF) Institute of Floodplains Ecology Visiting Card 31/90, Germany.
- [8] Alam G.N. (1996), Floodplain fisheries development in Bangladesh. Fisheries News Bangladesh Fisheries Research Institute 4(1), 3-4.
- [9] Shannon, C. E. (1948), A mathematical theory of communication. *Bell System Tec. J.*, 27, 379–656.
- [10] Zar, J. H. (1984), Biostatistics. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. 718.
- [11] Chakraborty B. K., Bhattacharjee, S. and Muniya, S. (2021), A Study of aquatic biodiversity of Shuthi-Shaiduli river of Bangladesh. International Journal of Biological Innovations. 3(1), 58-67.
- [12] Mathew, P. W. (1975), Limnology and productivity of Govindgarh Lake, Maddya Prodesh, India. Journal of Inland Fisheries Society, India 11, 16-24.
- [13] Rahman, M. S. (1992), Water quality management in aquaculture. BARC Prokashana, 66, Mohakhali, Dhaka 1212, Bangladesh 84 pp.
- [14] APHA (1998), Standard methods for the examination of water and wastewater, 20th edition, American Public Health Association, Washington, DC.
- [15] Boyd, C. E. (1982), Water Quality Management for Pond Fish Culture. Elsevier, The Netherlands. 318 pp.

- [16] Clesceri L.S., Greenberg A.E. and Trussell R. R. (1989), Standard methods of the examination of water and wastewater (17th ed.). American Public Health Association, American Water Works Association and Water Pollution Control Federation, 1015 Washington D. C., USA 20036, 10-203.
- [17] Haroon A. K. Y., Halder G.C. Rahman S.L. Razzaque M.A. Alam M. and Amin S. M. N. (2002), Sylhet-mymensingh basin fish stock assessment. Final Report. Bangladesh Fisheries Research Institute, Reverine Station, Chandpur, Bangladesh 81 pp.
- [18] Sugunan, V.V. and B.K. Bhattacharya. (2000), Ecology and fisheries of beels in Assam. Bull.No.104, CIFRI, Barrackpore-743101, West Bengal 66 pp.
- [19] Chakraborty B. K. and Mirza M. J. A. (2010), Aquatic biodiversity of Someswari River in Bangladesh. Asian Fisheries Science 23, 174-193.
- [20] Chakraborty B. K. and Mirza M. J. A. (2007), Aquatic biodiversity of Gharia Beel of Northern Bangladesh. J. Crop and Weed, India 3, 23-34.
- [21] Moyle P. L. and Leidy R.A. (1992), Loss of biodiversity in aquatic ecosystem: evidence from fish fauna. In: P.L. Fielder and H.L. Jani (eds). Conservation of Biology: the theory and practice of nature conservation, preservation and management. Chapman and Hall, New York, USA. 562 pp.
- [22] IUCN. (2000), Red book of threatened fishes of Bangladesh. IUCN- The World Conservation Union xii+116 pp.
- [23] IUCN, Bangladesh. (1998), List of threatened animals of Bangladesh. Paper presented in the Special Workshop on Bangladesh Red Book of Threatened Animals, 22 February 1998, Dhaka, Bangladesh. 13 pp.
- [24] Sarker, S. U. (1993), Faunal diversity and their conservation in freshwater wetlands. In Freshwater wetlands in Bangladesh issues and approaches for management. IUCN, The world Conservation Union, pp.105-122.
- [25] Chakraborty B. K. (2009), Aquatic biodiversity of Someswari and Nethai River and Gharia and Nidaya Beel of Northern Bangladesh. In: Takumi K. Nakamura (ed.). Aquaculture Research Progress, Nova Science Publishers, New York, USA. 3231-3268p.
- [26] Chakraborty B. K., Shahroz M. H., Bhuiyan A. B., Bhattacharjee S. and Chattoraj S. (2019), Status of Indian major carps spawns in the Halda River along with marketing and economic condition of the Fishers and related collectors. *International Journal* of Biological Innovations. 1 (2):40-50. https://doi. org/10.46505/IJBI.2019.1202.
- [27] Khan, M.A.R. (1982), Chelonians of Bangladesh and

their conservation. Journal of Bombay Natural History Society 79 (i), 110-116.

- [28] Das, I. (1991), Color guide to the turtles and tortoises of the Indian sub continent. R & A publishing Ltd.
- [29] Ali, M. Y. (1991), Towards sustainable development: fisheries resources of Bangladesh International union for conservation of nature and natural resources. The World Conservation Union. National Conservation Strategy of Bangladesh and Bangladesh Agricultural Research Council. 96 pp.
- [30] Mazid M. A. and Hossain, M. S. (1995), Development of fisheries resources in floodplains. FRI publication No. 12. Fisheries Research Institute, Mymensingh, Bangladesh.
- [31] Chakraborty B. K. (2011), Present Status of Biodiversity in Bogajan Beel in Northern Bangladesh J. *Fish. Soc. Taiwan* 38(4), 277-300.
- [32] Mazid M. A. (2002), Development of fisheries in Bangladesh: plans and strategic for income generation and poverty alleviation. Fisheries Research Institute, Mymensingh, Bangladesh. pp. 78-79.
- [33] Khan H. R. (1993), Water development activities

and their impacts on wetlands. P. 23-32. In: A. Nisat, Z. Hossain, M. K. Roy, and Ansarul Karim (eds.). Freshwater wetlands in Bangladesh: issues and approaches for management. IUCN, Gland Switzerland. xii+283pp.

- [34] Nishat A. (1993), Freshwater wetlands in Bangladesh: status and issues. P. 9-22 In: A. Nishat Z. Hossain, M. K. Roy, and Ansarul Karim (eds.). Freshwater wetlands in Bangladesh: Issues and Approaches for management. IUCN, Gland Switzerland. xii+283pp.
- [35] Zaman, S. M. H. (1993), Agricultural development and sustainability of wetlands. pp.63-178 In: A. Nishat Z. Hossain, M.K. Roy, and A. Karim (eds.). Freshwater wetlands in Bangladesh: Issues and Approaches for management. IUCN, Gland Switzerland. xii+283p.
- [36] Chakraborty, B. K. (2021). Induction of spawning and nursing pangas, Pangasianodon hypophthalmus (Sauvage, 1978) under hathery system. International Journal of Biological Innovations 3(2), 264-270. https://doi.org/10.46505/IJBI.2021.3203