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The reallocation of the ant species Dinoponera lucida Emery (formicidae: ponerinae) 
population increasing Its local genetic diversity

Introduction

The Atlantic Forest is one of the richest biomes in 
the world and one of the 25 biodiversity hotspots (Myers 
et al., 1999), but most of its remaining biome is distributed 
in small forest fragments (Ribeiro et al., 2009). This habitat 
fragmentation process may represent a constant threat to 
endemic species (Brooks et al., 2002), such as the giant ant 
Dinoponera lucida Emery 1901, whose geographic distribution 
is limited to Bahia and Espírito Santo States, in Northeastern 
and Southeastern Brazil, respectively (Campiolo & Delabie, 
2008). This region is also known as the Central Corridor of 
the Atlantic Forest. 

Female ants belonging to this species have no wings, 
whereas the male ants are winged (Paiva & Brandão, 1995), 
although they do not perform an efficient flight (Teixeira, M.C. 
personal communication, February, 2009). New colonies are 
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created through the fission of bigger colonies. Thus, nests 
are established in an aggregated spatial distribution pattern 
inside the forest fragment (Mariano et al., 2008; Peixoto et 
al., 2010), and are probably genetically related to each other 
(Araújo, 1994). Such distribution pattern increasingly limits 
the species’ dispersal ability.

Habitat fragmentation causes the isolation of 
populations and increases endogamy, which results in low 
genetic variability inside inbreeding groups and high genetic 
divergence between isolated groups (Packer & Owen, 
2001). In addition, populations with dispersion limitations, 
such as D. lucida, are under high extinction risks due to 
stochastic events (Burkey, 1989). Although the process that 
causes stochastic events may naturally occur, the anthropic 
exploration accelerates its natural course and leads to 
the extinction of populations haplotypes. Because of the 
high forest fragmentation, not just entire forest fragments 
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disappear, but a habitat might become no longer suitable to 
host highly adapted populations (Fahrig, 1997; Brooks et al., 
2002). Endemic species are even more threatened under these 
circumstances, and this is why the species D. lucida requires 
ultimate population genetic studies.

The ecological theory features fragmented populations 
as a set of subpopulations form a metapopulation. These 
metapopulations experience extinction and recolonization 
events within subpopulations, and they persist in landscapes 
depending on the dynamic flow of the individuals. From 
a genetic point of view, small subpopulations are prone to 
extinction because of endogamy. However, individuals from 
other large subpopulations can migrate to a small subpopulation, 
and it could increase the genetic diversity in and avoid the 
extinction of this small subpopulation. Such effect is known 
as rescue effect (Begon, 2006); the large populations are called 
“donor” or “source”, and the small ones, “sink” or “receiver”.

As it was previously mentioned, D. lucida populations 
have special dispersion limitations. In the framework of 
fragmentation and metapopulation theory, it is important 
understanding how the migration of individuals from a donor 
(or source) population affects the genetics of a receiver 
(or sink) population. Therefore, a rescue and reallocation 
process was designed using an entire D. lucida population. The 
experiment took place in 2009, when a seaport construction site 
was set in an Atlantic Forest fragment. We tested the hypothesis 
that the reallocation of an exogenous D. lucida population 
would increase the genetic variability of populations located 
in isolated forest fragments. 

Material and Methods

The forest fragments that have donated and received 
the reallocated population are located in Aracruz County, 
Espírito Santo State, Southeastern Brazil. The research team 
visited conservation units in Aracruz County aiming to assess 
the viability of reallocating the rescued nests to these units, 
before moving the population in. The criteria for selection 
were fragments under environmental protection policies, the 
shortest distance from the original area as possible, and the 
occurrence of the species. The Barra do Riacho Terminal 
Waterway (BRTW, -19o50.548’, -40o03.827’) was the donor 
forest fragment supposed to be deforested, and it comprised 
11 hectares. The conservation units selected to host the nests 
were: David Victor Farina Municipal Natural Park (DVFMNP, 
-19o55.850’, -40o07.774’, 44 hectares) and Aricanga Waldemar 
Devens Municipal Natural Park (AWDMNP, -19o48.827’, 
-40o19.959’, 515 hectares). These fragments belong to a 
highly fragmented landscape, and the two CU fragments are 
located approximately 25 kilometers from each other (in a 
straight line) (Fig 1). 

All the 19 nest found in the BRTW forest fragment 
were open, and every individual (eggs, young and adults 
forms) were removed and reallocated to artificial nests 
constructed in two Conservation Units (CU), according to the 
protocol designed by Ferreira et al. (in prep). The reallocated 
population was monitored throughout the following five 
years in order to observe its behavioral and ecological 
reactions.

Fig 1. Map of Espírito Santo State indicating the study area. (1) BRTW: Barra do Riacho Terminal Waterway; (2) AWDMNP: 
Aricanga Waldemar Devens Municipal Natural Park; (3) DVFMNP: David Victor Farina Municipal Natural Park.
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Back to 2009, at the time the procedure was put in place, 
one sample was collected from each nest for genetic analysis, as 
well as samples from each of the 18 AWDMNP and 17 DVFMNP 
nests of the native populations in the CU, in order to gather 
genetic data of the D. lucida populations before the reallocation. 
The research team collected new samples from all monitored 
nests in the receiving fragments in 2011. The DNA extraction 
was conducted according to the protocol by Waldschmidt et al. 
(1997) in the Insect Molecular Biology Laboratory of Federal 
University of Viçosa. Sequences of the Cox1-Cox2 mitochondrial 
gene and intergenic tRNAleu regions were obtained using primers 
developed by Resende et al. (2010), which were later aligned in 
the Mega 5.0 software (Tamura et al., 2011). 

The haplotype network analysis was conducted in the 
Network 4.6 software, through the median-joining method 
(Bandelt et al., 1999). The Analysis of Molecular Variance 
(AMOVA) was performed using the Arlequin 3.5 (Excoffier 
& Lischer, 2010) applied to the data collected before and 
after the reallocation process. The “Among populations” 
hierarchical level corresponded to the BRTW, AWDMNP and 
DVFMNP populations in the AMOVA conducted before the 
reallocation. The same hierarchical level consisted of AWDMNP 
and DVFMNP populations in the AMOVA conducted after the 
reallocation process, since the BRTW population was reallocated 
to those both receivers. The AMOVA was applied to three 
hierarchical levels in order to take the potential subpopulations 
into account, because previous reviews refer to aggregate 
distribution patterns within a single forest fragment. 

Results

Four haplotypes were identified in the data set: one in 
each park (named H1 in AWDMNP; H4 in DVFMNP) and two 
in the reallocating population (H2 and H3, both from BRTW) 
(Fig 2). As it was expected, the AMOVA conducted before 
the reallocation process has shown high genetic variance 
between populations from different forest fragments (83%) 
when the three populations, namely: BRTW, AWDMNP 
and DVFMNP, where studied as a single one (Table 1).  

The second AMOVA has shown that the genetic variance 
between AWDMNP and DVFMNP has decreased to 55% 
after the reallocation, whereas the diversity within populations 
and subpopulations has increased. 

It is worth mentioning that after the five-year monitoring, 
82% of the reallocated nests has survived in the receiver 
fragments (Ferreira et al., in prep).

Discussion

The main aim of the present study was to describe the 
genetic consequences of the reallocation process involving 
an entire D. lucida population. Instead of collecting genetic 
samples from all populations and simulate the genetic 
diversity in order to predict the reallocation impacts, it was 
made the choice for effectively performing the reallocation 
procedure and monitoring its effects for the following five 
years. It was demanding to put this intervention in place in 
order to save BRTW haplotypes from extinction.

The haplotype network analysis showed that the 
haplotypes H2 and H3, both from the BRTW fragment, were 
more similar to each other than the H1 and H4, from AWDMNP 
and DVFMNP, respectively. Such finding may be justified by 
the geographic distance, because H2 and H3 come from the 
same area, and it suggests the existence of recent divergence. 
D. lucida populations living in a certain forest fragment often 
have one or few haplotypes (Resende et al., 2010). There is 
high genetic diversity from population to population, as well 
as low variability inside a single population. 

Since it is common finding one or few haplotypes in 
a single population, it is possible inferring that the smaller 

Table 1. Analysis of Molecular Variance (AMOVA) applied to three 
hierarchical levels on data set before reallocation. VS: Variation 
Source; DF: degrees of freedom; SS: sum of squares; E (MS): 
Estimate medium squares - variance components.

VS DF SS E (MS) % Variation

Among populations 2 17.500 0.42226 83.00

Within population 5 1.724 0.04212 8.28

Within the potential 
sub-population 53 2.350 0.04434 8.72

Total 60 21.574 0.50873 100.00

10.000 permutations, P<0.000001

FST = 0.91284

Fig 2. The haplotype network of the Cox1-tRNAleu-Cox2 region from 
54 Dinoponera lucida individuals. The numbers represent mutational 
steps. H1, H2, H3 and H4 represent the haplotypes. mv1 and mv2 
(median vector) represent the extant or the non-sampled haplotypes.
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VS DF SS E(MS) %Variation
Among populations 2 13.162 0.25457 55.10
Within population 5 6.062 0.16306 35.30
Within the potential 
sub-population 53 2.350 0.04434 9.60

Total 60 21.574 0.46196 100.00
10.000 permutations, P<0.000001

FST = 0.90402

Table 2. Analysis of Molecular Variance (AMOVA) applied to 
three hierarchical levels on data set after reallocation. VS: Variation 
Source; DF: degrees of freedom; SS: sum of squares; E(MS): 
Estimate medium squares - variance components. 

the area, the lower the genetic diversity of D. lucida. The 
genetic diversity within the populations and subpopulations 
of both receivers in the CU has increased after the donor 
population was reallocated, whereas the variation between 
AWDMNP and DVFMNP populations decreased, due to the 
homogenization of nests from the BRTW population (Table 
2). Thus, the haplotypic diversity in the receiver populations in 
the present study is higher than natural. It means that the herein 
studied hypothesis was accepted, because of the high survival 
rate presented by the reallocated population. The reallocation 
effectively increased the genetic diversity of subsequent 
generations. It is a satisfactory result, since the literature 
shows that the rate of successful reallocation, repatriation and 
translocation processes is low (Dodd & Seigel, 1991).

variation may enable enhancing the population’s survival, thus 
simulating a rescue effect. This result may be representative 
for the entire D. lucida species. In addition, the previously 
conducted search for suitable and similar environments may 
have prevented or minimized adaptation issues.

Genetic studies about reallocation and translocation 
process are rare, mainly studies of this nature involving 
groups of invertebrates (Sherley et al., 2010). Yet, these 
studies are essential to assess the persistence of the introduced 
population (Armstrong & Seddon, 2008). The reallocation 
program appears to have succeeded after five years monitoring 
the studied populations. Yet, the herein adopted reallocation 
procedures shall not be replicated if the basic information 
provided in the current study are not followed. This is the 
first time a reallocation program involving an invertebrate 
population is conducted based on a genetic data analysis 
associated with a middle time monitoring. It is strongly 
recommended that future studies do not ignore the importance 
of the herein presented information.
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