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Introduction

The subterranean termite Globitermes sulphureus 
(Haviland) (Blattodea: Termitidae) is a secondary pest 
species that has been introduced from its natural habitat to 
many parts of the metropolitan areas in Peninsular Malaysia 
after the elimination of primary termite pests such as 
Coptotermes sp. (Ab Majid et al., 2007). In this study, we 
found infestations of Globitermes sulphureus species around 
suburban or metropolitan environments at several locations in 
northern Peninsular Malaysia. The successful migration and 
establishment of G. sulphureus populations in metropolitan 
environments have created considerable concerns regarding 
biological invasions. Invasive social insects such as termites 
often interrupt ecological communities and trigger serious 
economic destruction in their newly invaded locations (Vargo 
& Carson, 2006, Ab Majid & Ahmad, 2011).
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In particular, G. sulphureus termites are considered 
a unique model system for analysing and distinguishing 
ecological elements that play a prominent role in the 
evolution of the introduced population (Luchetti et al., 2013). 
Furthermore, most comparative studies to date, including 
measuring the genetic variation level, genetic structure, 
and breeding pattern of G. sulphureus species, have failed 
to reveal any meaningful information. Additionally, most 
termite species’ population studies have shown some genetic 
structure levels, and these population patterns are critical 
points for evolutionary biology research. Thus, knowledge of 
the G. sulphureus breeding system and dispersal behavior is 
crucial to understand the observed patterns of the population 
genetic structure.

Molecular data such as microsatellite marker analysis 
enables researchers to infer the breeding system of the species 
and its dispersal behavior responsible for producing the pattern 
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structure and characterize the population’s subdivisions 
(Thompson et al., 2007; Fougeyrollas et al., 2018). Khizam 
and Ab Majid (2019) developed highly polymorphic 
species-specific microsatellite markers for G. sulphureus 
to investigate the breeding pattern and population genetic 
structure. Microsatellite markers are suitable instruments 
for understanding a colony’s breeding structure in social 
insects (Ross, 2001). Besides, there are a growing number of 
genetic research studies observing the social organization of 
termites colonies, especially among subterranean termites such 
as G. sulphureus (Goodisman & Crozier, 2002; Bulmer et al., 
2001; Clement et al., 2001; Dronnet et al., 2005; DeHeer et al., 
2005). In general, the knowledge gained from species-specific 
microsatellite analysis helps assess the genetic structure, 
genetic diversity, and population structure, which can be 
applied in breeding system strategies and termite management. 

This study’s main objectives are to analyze and 
understand the breeding system and organization of the 
population genetic structure of G. sulphureus between natural 
and metropolitan populations in Penang and Kedah, Malaysia.

Materials and methods

Termites collection

We collected termite workers of G. sulphureus 
from eight different assigned sampling sites in natural and 
metropolitan locations in Kedah and Pulau Pinang between 
September 2017 and February 2018. We collected a total 
of 10 worker termites from each nesting site and identified 
termite specimens based on Tho (1974). Figure 1 shows the 
sampling locations marked on the map using the PinMap 
web application. We recorded the addresses and geographic 
coordinates for the sampling sites (Table 1) using a hand-

held Garmin® GPS 72H unit (Garmin Ltd, Inc. USA). After 
collection, all worker termites from each sampling site were 
preserved in vials containing 90% ethanol. The sample was 
kept at -20°C before DNA isolation.

Sampling site location

Geographical areas and environments determine 
the types of research sites, either natural or metropolitan 
regions. Natural sites such as forest and agricultural areas 
were selected if the sites are in rural areas with a low-density 
population. Consequently, metropolitan sites consist of many 
infrastructures with many human settlements such as cities, 
towns, urban and suburban areas.

Genomic DNA isolation 

DNA was extracted from the head of 10 termite 
workers individually from each sampling site using the Real 
Biotech Corporation (RBC) DNA extraction kit with modified 
protocols (Seri Masran & Ab Majid, 2018). All purified 
genomic DNA was then quantified and tested for quality using 
a spectrophotometer NanoDrop 2000c (Thermoscientific, USA).  
The purified DNA samples were observed under 2.0% agarose 
gel electrophoresis. 

Microsatellite genotyping

Each termite worker was genotyped based on species-
specific microsatellite loci obtained from Khizam and Ab 
Majid (2019) (GS 1, GS 3, GS 4, GS 10, GS 15, GS 27, and 
GS 29) (Table 2). We deposited all sequences in the National 
Centre for Biotechnology Information (NCBI) and Sequence 
Read Archive (SRA) databases under accession number 

Isolated Code Location (GPS) State Sources Nesting sites Collection_Date

TJ N 5°38’ 51”; E 
100°29’3” KEDAH TMN JUBLI DEAD LOG 28 Oct 2017

PU N 5°21. 525”; E 
100°17.596” PENANG PALAPES USM MOUND 31 Oct 2017

TA N 5°35. 367”; E 
100°31.134” KEDAH TMN ASTANA MOUND 9 Nov 2017

AU N 5°21. 648”; E 
100°18.365” PENANG ARKEOLOGI USM LIVING TREE 14 Nov 2017

*TB N 5°35. 042”; E 
100°25.915” KEDAH *TIKAM BATU DEAD LOG 26 Nov 2017

*SL N 5°39’23”; E 
100°28’14” KEDAH *SG. LAYAR TENGAH MOUND 13 Jan 2018

*KT N 5°39’1”; E 
100°27’44” KEDAH *KG. TELUK MOUND 19 Jan 2018

*NP N 5°27’43”; E 
100°12’14” PENANG *PENANG NATIONAL 

PARK MOUND 20 Jan 2018

Tikam Batu (TB), Sg. Layar Tengah (SL), Kg. Teluk (KT), Penang National Park (NP), Tmn. Jubli (TJ), Tmn. Astana (TA), Palapes USM (PU), 
Arkeologi USM (AU)
*Natural/Rural regions was labelled.

Table 1. Detailed of eight collection points of G. sulphureus worker individuals.
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SRP132022 associated with BioProject PRJNA432461. The 
gDNA was amplified using a PCR thermocycler machine 
in volumes of 50 μL containing 25 μL master mix (Qiagen, 
Valencia, CA), 15 μL of double-distilled water, 2.5 μL of 
each primer (0.05 μM), and 5 μL gDNA. The PCR touchdown 
reaction was then subjected to the following settings; initial 
denaturation at 94 °C (30 seconds), 30 denaturation cycles 
at 94 °C (30 seconds), annealing at 60 °C (30 seconds), and 
extension at 72 °C (1 minute), followed by another 30 cycles 
at 94 °C for 30 seconds, 45 °C for 30 seconds, and 72 °C for 1 
minute. The reaction was terminated at 72 °C for 10 minutes 
and held at 4 °C (Seri Masran & Ab Majid, 2018; Khizam & 
Ab Majid, 2019).

We measured exact fragment sizes for all PCR products 
after electrophoretic separation during fragment analysis. 
To separate the fragments according to their respective size, 

Fig 1. Eight sampling locations of G. sulphureus termite species between natural and metropolitan region 
Abbreviations refer to Table 1.

we used the Fragment AnalyzerTM Automated CE System 
(Advanced Analytical Technologies, Ankeny, Iowa, USA) 
with an internal size standard of 35-1500 bp. Microsatellite 
data were analyzed and hand-scored using the Prosize 2.0 
software package (Advanced Analytical Technologies, Ankeny, 
Iowa, USA).

Microsatellites Genotyping and Tests for HW Equilibrium

To determine the definite tests of genotypic 
differentiation, we used   GENEPOP version 4.2 (available 
at http://wbiomed.curtin.edu.au/genepop) (Rousset, 2008). 
The significant result obtained from the test exhibits different 
genotype frequencies among different groups of G. sulphureus 
workers, which indicates they were drawn from different 
colonies. Using the Hardy–Weinberg equilibrium (HWE) 
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concept, the observation of allele frequency patterns within 
and between population(s) could also be carried out. 
Unbalanced distribution of homozygote and heterozygote 
allele frequencies within the population indicate a deviation 
from the HWE principle (Vargo & Husseneder, 2009; Perdereau 
et al., 2010; Ab Majid et al., 2018). 

Colony Breeding Pattern

A subterranean termite’s colony breeding structure is 
classified into three categories: simple, mixed, or extended 
family structure (Vargo & Husseneder, 2009; Perdereau et 
al., 2010; Ab Majid et al., 2018). The simple family structure 
consists of a single pair of primary (winged) reproductive 
members in the subterranean termite colony. Colonies are 
characterized as simple families if worker genotype patterns 
are consistent with a direct offspring expected from a single 
pair of reproductive parents. Primary pair of reproductive 
parents can disperse and build a new colony, later producing 
secondary reproductive parents or neotenic (Perdereau et al., 
2010). The neotenic replaces the primary reproductive parents, 
fly, and initiate inbreeding. Meanwhile, multiple neotenic forms 
an extended family structure having fewer than four alleles at 
any locus (Vargo & Husseneder, 2009; Perdereau et al., 2010). 
On the other hand, colonies form mixed families if more than 
four or five alleles are observed at one or more loci and headed 
by more than a single pair of primary reproductive parents.

Colony Genetic Structure and relatedness coefficient

Additional understanding of the genetic structure of 
colonies is possible by analyzing relatedness coefficients. 
Firstly, we used FIT to measure the homozygosity of 
individuals relative to their population. Secondly, FIS 
indicates the level of inbreeding in individuals relative to the 
population. Thirdly, FST refers to the inbreeding coefficient of 
individuals relative to their colony. 95% confidence intervals 

(CIs) and standard errors (SEs) were obtained by jack-
knifing over loci. We used the program FSTAT to compute 
the F-statistics (Goudet, 2001) and to calculate the expected 
heterozygosity (He), the observed heterozygosity (Ho), and 
the allelic diversity in the population. On the other hand, the 
F-statistic output can estimate the coefficient of relatedness 
(r) among individual workers from each population. Thus, the 
colony data and population genetic structure of G. sulphureus 
within populations can be successfully assessed to extrapolate 
the number of alleles per loci and population. 

Genetic isolation by distance

GenAIEx v6.5 (Peakall & Smouse, 2012) - a cross-
platform tool - was used to perform population genetic 
analysis, which runs within Microsoft Excel. Data were 
received in the form of co-dominant genotypic microsatellite 
data with two columns per locus. The loci scored as fragment 
sizes were obtained from the previous fragment analysis. We 
performed an Analysis of Molecular Variance (AMOVA) 
(Meirmans, 2012) to determine the extent of population 
differentiation and the distribution of genetic variation 
within and among the eight selected population sites of G. 
sulphureus. Estimations of pairwise FST and significance were 
evaluated by a probability distribution from permutation tests 
(N = 1000). By comparing different populations, pairwise 
FST values were quantified for linear correlation with gene 
diversity values (He). Besides, we used principal coordinates 
analysis (PCoA) (Peakall & Smouse, 2012) to characterize 
the population structure among the eight different population 
sites. This analysis generates the number of genetic clusters 
among the population sites based on each termite’s coordinate 
along the variation axes.
 
Bottleneck effect test

The effect of a mutation on allele frequency in a 
population can be computed using two models of mutation–

Loci  Primer3 Calculated Value 
of Possible Allele Size (bp) Primer (5’-3’) Type of repeat motif

GS1 236 F: AGCGATCGGATGAGCAAGG
R: ACACGTCTGTGTAAAGGCAG Dinucleotide

GS3 186 F: GTGCCATTCCACCTTCGTG
R: CGTCTCACTAGCAGCAATTATG Dinucleotide

GS4 316 F: TGGTGTGAGATGGTGAACCC
R: TCAGTTAGCAAATGGGAAGCC Dinucleotide

GS10 303 F: TCCAGTAGGTGTCCTGTTGC
R: AAGGCTAGCTTCCAGTTCAG Dinucleotide

GS15 180 F: TGTTGCTGAAACTAAATGGCTG
R: CTGCACGTAAGGAGAAGTCTG Dinucleotide

GS27 294 F: ACAATGAAGGGCACGTTTGG
R: GCAATGGAGTCTAGGTGTCG Tetranucleotide

GS29 431 F: GGACGACTGCTTAAAGTTGC
R: ACTATGCCTGGGTTTGATCC Tetranucleotide

Table 2. Information for seven chosen loci used in genotyping of microsatellite. 
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drift equilibrium. We reviewed the results using the 
BOTTLENECK v1.2.02 program (Piry et al., 1999). The models 
used were the Infinite Allele Model (I.A.M.) and Stepwise 
Mutation Model (S.M.M.). As a newly formed population 
in metropolitan areas, the G. sulphureus termite population 
is expected to exhibit a recent genetic bottleneck. Thus, we 
tested worker genotypes for excessive heterozygosity to obtain 
evidence of a bottleneck effect in each population. The first 
test aimed to detect any existence of significantly excessive 
heterozygosity with a relatively larger proportion of loci for a 
population at mutation-drift equilibrium. Whereas the second 
test – known as the Wilcoxon sign-rank test – aimed to detect 
significant average excessive heterozygosity across loci. 

Results 
Allelic diversity

We detected a total of 363 alleles at seven appointed 
microsatellite loci assessed in 560 G. sulphureus genotypes. 
Within the eight populations, allelic diversity is between 3 
to 9 alleles per locus, with an average of 2.685. The mean 
percentage of the PIC value is 94.9%. Observed heterozygosity 
(Ho) is 0.601, lower than the expected heterozygosity (He) 
of 0.967. From these findings, all of the studied populations 
in natural and metropolitan areas demonstrate a considerable 
variance in their genetic variability. As shown in Table 3, 7 of 
the 30 loci examined in natural and metropolitan populations 
varies between 40 to 74 alleles per locus. 

Locus k Number of 
individuals (N)

Observed 
Heterozygosity (Ho)

Expected 
Heterozygosity (He) PIC F 

GS1 74 80 0.73  0.98 0.963 0.1481
GS3 40 80 0.44 0.95 0.946 0.3692
GS4 49 80 0.79 0.97 0.961 0.1004

GS10 46 80 0.45 0.96 0.959 0.3634
GS15 49 80 0.44 0.97 0.913 0.3768
GS27 43 80 0.53 0.96 0.942 0.2957
GS29 62 80 0.83 0.98 0.961 0.0837

k (number of alleles at each locus); F (null allele); PIC (polymorphic information content).

Table 3. Variability of seven polymorphic species-specific microsatellite loci in Peninsular Malaysia (Kedah and Penang) 
for natural and metropolitan populations.

Colony Breeding Pattern

The subterranean termites collected from eight 
population sites were morphologically identified as G. 
sulphureus termite species according to Hussin and Ab Majid 
(2017) and Hussin et al. (2018). There is a diverse variation 
in terms of the distribution among simple and mixed family 

colonies presented in the eight assigned populations in Peninsular 
Malaysia. As shown in Table 4, most colonies are derived from 
mixed families (60%) in both natural and metropolitan areas. 
Mixed family colonies have more genotypes produce by a single 
pair of reproductive parents. Each natural and metropolitan 
region also includes simple family colonies of G. sulphureus.

Population sites Number of colonies Number of simple 
family colonies

Number of mixed 
family colonies

Natural
(TB, SL, KT, NP)

10
Subtotal = 80 1 (20%) 3 (60%)

Metropolitan
(TJ, TA, PU, AU)

10
Subtotal = 80 1 (20%) 3 (60%)

All population sites combined = 160. Abbreviations refer to Table 5.1.

Table 4. Breeding structure of natural and metropolitan populations of the Globitermes sulphureus subterranean termite.

Genetic Differentiation, Colony Genetic Structure, and 
Relatedness

Table 5 exhibits the F-values obtained from the computer 
simulations. For simple family colonies, all workers in two 
populations (PU and TB) are the most significantly inbred 
(FIT = 0.483). The inbreeding (FIT) measure has positive 
values, which indicates a general deficit of heterozygosity 

compared to the expected genotypic HWE. Furthermore, 
both are relatively connected due to the moderate value 
of the relatedness coefficient (r = 0.121). Simple families 
show a moderate genetic differentiation (FST = 0.090) since 
the FST ranges between 0.05 and 0.25. FST of 0 indicates the 
populations are not genetically differentiated. Therefore, the 
populations show identical allele frequencies. Meanwhile, FST 
of 1 indicates populations are fixed for different alleles.  
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Compared to simple family colonies, mixed family 
colonies show less substantial inbreeding (FIT = 0.358) in all 
six populations. Average relatedness values within simple 
and mixed family colonies are similar (r = 0.121), as shown in 
Table 5.5. FST of 0.082 is recorded for mixed families, showing 
a moderate genetic level differentiation among colonies. FST 
values in the range of 0 - 0.05 indicate the populations have 
little genetic differentiation.  FST values between 0.05 - 0.25 
represent moderate genetic differentiation, while FST values 
higher than 0.25 manifest a high genetic differentiation level. 
This study found a positive FIS value (0.301) for mixed family 
colonies, indicating an absence of excessive heterozygosity, 
similar to the simple family colonies (FIS = 0.432) of G. sulphureus.

FST values of eight G. sulphureus populations are 
significantly greater than zero (positive), according to the 
permutation test (P < 0.005), which shows a significant genetic 
differentiation among colonies. Thus, all eight populations of G. 
sulphureus have a moderate genetic differentiation (FST = 0.086) 
and a low inbreeding level based on the low FIT value of 0.391.

Table 6 summarizes the F-statistics for G. sulphureus 
workers from natural and metropolitan populations, 
particularly in Peninsular Malaysia. The total inbreeding (FIT) 
level for metropolitan populations (FIT = 0.415) is higher than 
natural population sites (FIT = 0.371). These values indicate 
metropolitan populations have a greater inbreeding level 
variation among individuals of G. sulphureus compared to 
natural populations. Although both populations experience 
a moderate genetic differentiation, G. sulphureus individuals 
in metropolitan populations show slightly less differentiation, 
as evident from a relatively lower FST (0.082) than natural 
populations (FST = 0.097). Moreover, both natural (FIS = 0.303) 

Colonies FIT (S.E) FST (S.E) FIS (S.E) r (S.E)

Simple families (n=2) 0.483 (0.128) 0.090 (0.020) 0.432 (0.130) 0.121 (0.019)

Mixed families (n=6)     0.358(0.055) 0.082 (0.010) 0.301 (0.056) 0.121 (0.013)

All populations (n=8)     0.391(0.066) 0.086 (0.011) 0.333 (0.067) 0.124 (0.013)

Table 5. Summary of F-statistics (FIT, FIS, and FST) and relatedness coefficient (r) for workers of Globitermes sulphureus subterranean 
termite from simple, mixed family colonies and all populations focused in the Northern part of Peninsular Malaysia. 

Population sites Classification FIT FST FIS

Natural
(TB, SL, KT, NP)

n=4

Forests
Paddy field

Oil palm trees or 
plantations

0.371 0.097 0.303

Metropolitan
(TJ, TA, PU, AU)

n=4

Street trees
Housing areas

Business premises
0.415 0.082 0.363

*Abbreviations refer to Table 1.

Table 6. Summary of F-statistics (FIT, FST, and FIS) for workers 
of Globitermes sulphureus subterranean termite from natural and 
metropolitan populations focused in the Northern part of Peninsular 
Malaysia. 

Population r FIS (95% CI)

Palapes USM (PU), Penang 0.087 0.204

Tikam Batu (TB), Kedah 0.154 0.678

Table 7. Relatedness coefficient (r) between nestmate reproductive 
and inbreeding (FIS) reproductive in simple family colonies of G. 
sulphureus. 

and metropolitan (FIS = 0.363) populations experience a low 
level of inbreeding indicated by FIS < 1. Thus, the populations 
have a high level of heterozygosity in all seven loci. The 
finding suggests the Wahlund effect may not affect the seven 
loci allele distribution within the eight populations.

Inbreeding coefficients (FIS) for simple families’ 
reproductive and relatedness values between reproductive 
nestmates in the colonies are based on genotypes, as inferred 
from the worker offspring (Table 7). Both populations in 
Penang (Palapes USM) and Kedah (Tikam Batu) have a 
high relatedness reproduction coefficient of r = 0.087 and r 
= 0.154, respectively. However, neither show a significance 
greater than zero (both P > 0.1, t-test). In Palapes USM 
(Penang), simple family colonies’ functional reproduction 
shows slightly less inbreeding than the workers in Tikam Batu 
(Kedah). However, the differences are insignificant based on 
the overlapping 95% confidence intervals.

Table 8 shows the measured genetic diversity for G. 
sulphureus workers. Mean of alleles per loci, observed (Ho) 
and expected (He) heterozygosities, and estimations of FIS 
within eight G. sulphureus termite populations (natural and 
metropolitan regions). The mean of alleles across loci is 
higher than 9 in most of the populations. Two populations 
(MU and NP) show the lowest mean of alleles per loci. 
Interestingly, population MU is located in a metropolitan 
area, while population NP is in a natural area. 

Also, the heterozygosity deficit measured by FIS is 
positive in most populations when averaged across loci, 
ranging from 0.015 to 0.066. The average FIS across loci and 
populations ranging from 0.190 (population AU) to 0.640 
(population MU). Among eight populations of G. sulphureus, 
pair-wise FST values show an overall genetic differentiation of 
0.086 and pair-wise FST values ranging from 0.047 to 0.134. 
Significant (α = 0.05) genetic differentiation is found after 
sequential Bonferroni correction is performed to evaluate 
population pairs’ significance. 
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 Genetic distance by PCoA and AMOVA analysis

Based on the PCoA analysis (Nm values), samples from 
four populations failed to prove different due to overlapping 
in a particular location site (Figure 2). Nm values are based 
on FST values, which indicate the genetic distance between 
populations. This study shows that PU and AU populations are 
the most genetically related populations with an FST of 0.088. 
The SL population is related to the TJ population with an FST 
of 0.045. Although PU, AU, SL, and TJ populations might be 
closely related to each other, PU and AU populations have 
the highest genetic correlation. The acquired genetic distance 
for G. sulphureus populations in this study shows a positive 

relation with geographical location for eight populations in 
Peninsular Malaysia (Figure 1). TJ, TA, KT, TB, and SL 
populations are located in northeast Peninsular Malaysia 
(near each other), while AU, PU, and NP populations are in 
southwest Peninsular Malaysia.

The moderate level of individual relatedness within 
aggregated populations suggests G. sulphureus individuals are 
moderately related. The observed moderate values are due to 
the moderate genetic differentiation among populations and the 
moderate gene flow among them. These results demonstrate 
individuals of G. sulphureus could interbreed because of active 
diffusion, with a percentage of AMOVA within the population 
of 94% and among populations of 6% (Table 9).

Population Q Observed Heterozygosity (Ho) Expected Heterozygosity (He) FIS (IC 95%)

TJ 9.57 0.671 0.887 0.253

PU 8.29 0.314 0.844 0.640

TA 11.29 0.586 0.923 0.378

AU 10.71 0.743 0.908 0.190

*TB 9.14 0.686 0.877 0.228

*SL 9.71 0.657 0.893 0.275

*KT 9.71 0.700 0.881 0.214

*NP 7.71 0.429 0.836 0.501

Q (Mean number of alleles per loci); * indicate natural populations. Abbreviations refer to Table 5.1.
** 10000 Bootstrap over FIS by population, IC 95% = confidence interval at 95%.

Table 8. Gene diversity measures for workers of Globitermes sulphureus subterranean termite from both natural and metropolitan populations.

PU; AU

SL; TJ

KT

TB

TA

NP

Co
or

d.
 2

Coord. 1

Principal Coordinates (PCoA)

Populations

Fig 2. Principal coordinates analysis (PCoA) among the eight population sites based on G. sulphureus 
colony coordinates along axes of variation. Abbreviations refer to Table 1.

Source df Est. Var. %

Among Populations 7 0.219 6%

Within Populations 72 3.260 94%

Within Individual 80 0.000 0%

Total 159 3.479 100%

*Est. Var. (Estimation variance)

Table 9. Summary of AMOVA analysis. Hardy–Weinberg Equilibrium (HWE) tests

HWE results across loci and populations are shown in 
Table 10 (a and b). Following Fisher’s statistical definite test 
for HWE, highly significant p-values (p < 0.001) for multi-
locus departures from HWE proportions are found in most 
populations. Significant p-values (p < 0.05) are observed in 
TJ, AU, and TB populations. However, the single locus test 
across populations to access the deviation from HWE shows 
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no significant p-values other than for the GS4 microsatellite 
marker. Other loci mostly show highly significant p-values. 

Regarding the linkage disequilibrium for seven 
microsatellite loci pairs, the definite test results show seven 
of eight population combinations with significant linkage 

disequilibrium. However, inconsistent patterns are found 
across loci or populations. Thus, the seven polymorphic 
microsatellite loci used in the analysis are independently 
assorted markers conforming to HWE and suitable for the 
colony and population genetic analysis.

Population P-value S.E.

TJ *0.0282   0.0091

PU 0.0000 0.0000

TA 0.0000 0.0000

AU *0.0174   0.0045

TB *0.0300   0.0045

SL 0.0016   0.0016

KT 0.0000 0.0000

NP 0.0000 0.0000

Markov chain parameters for all tests: Demorization: 1000; 
Batches: 100; Iterations per batch: 1000. S.E. (standard error). 
Abbreviations refer to Table 5.1.
*No significant departure from Hardy-Weinberg equilibrium.

Table 10 (a). Hardy-Weinberg Equilibrium (HWE) exact test in the 
subterranean termite G. sulphureus populations based on populations.

Locus P-values S.E.

GS1 0.0000 0.0000

GS3 0.0003   0.0002

GS4 *0.0422   0.0122

GS10 0.0000 0.0000

GS15 0.0000 0.0000

GS27 0.0000 0.0000

GS29 0.0000 0.0000

Markov chain parameters for all tests: Demorization: 1000; 
Batches: 100; Iterations per batch: 1000. S.E. (standard error).
* No significant departure from Hardy-Weinberg equilibrium.

Table 10 (b). Hardy-Weinberg Equilibrium (HWE) exact test in the 
subterranean termite G. sulphureus populations based on loci.

Population I.A.M T.P.M S.M.M Mode 
Shift P(He)

TJ 0.464       0.592       0.575 Normal 0.886

PU 0.025       0.174      0.641 Normal 0.844

TA 0.020       0.034       0.652 Normal 0.923

AU 0.373       0.637      0.602 Normal 0.908

TB 0.027       0.032       0.158 Shifted 0.877

SL 0.162       0.444       0.305 Normal 0.893

KT 0.394       0.552       0.110 Normal 0.394

NP 0.403       0.384       0.419 Shifted 0.836

I.A.M (Infinite Allele Model); T.P.M (Two-Phase Model); 
S.M.M (Stepwise Mutational Model)

Population I.A.M S.M.M

TJ 0.375 0.812

PU 0.007 0.578

TA 0.007 0.468

AU 0.468 1.000

TB 0.007 0.015

SL 0.023 1.000

KT 0.375 0.039

NP 0.109 0.812

I.A.M (Infinite Allele Model); 
S.M.M (Stepwise Mutational Model)

Table 11. Bottleneck test analysis that showed P-value within eight 
populations of G. sulphureus in Peninsular Malaysia.

Bottleneck tests 

Table 11 shows evidence of a bottleneck effect in 
two populations (TB and NP). Both populations undergo a 
heterozygosity deficit with the shift-mode estimation of allele 
frequencies, thus suggesting the occurrence of genetic drift 
(Piry et al. 1999). Also, the probabilities of mutation–drift 
equilibrium using both I.A.M. and S.M.M. are high for the 
AU population at 0.46 and 1.00, respectively.  KT population 
shows a moderate probability of mutation–drift equilibrium 
using I.A.M. (0.375) and S.M.M. (0.039) (Table 12). 

Discussion

Microsatellite genotyping is a tool to amplify and 
analyze individual loci. This method provides robust markers 
for target alleles containing simple repetitive sequences 
with a high mutation rate in the genome’s non-coding regions 
(Guichoux et al., 2011). For instance, several studies on termites 
have used microsatellite marker accessibility to study the wood-
dwelling termite Kalotermes flavicollis (Luchetti et al., 2013), 
the subterranean termite Reticulitermes grassei (Dronnet et al., 
2015), and the soil-feeding termites Embiratermes neotenicus 
and Silvestritermes minutus (Fougeyrollas et al., 2018).

Table 12. Summary of probability value for mutation-drift 
equilibrium from Wilcoxon test.



Sociobiology 68(1): e5772 (March, 2021) 9

Additionally, a genotyping assay from microsatellite 
markers reveals information on ancestries and relationships 
of individual termites, colonies, and populations, as discussed 
in the Mendelian inheritance rules (Glass, 2017). Alleles 
with high variability in repetitive numbers and co-dominant 
characteristics have possible variations in length (Keller & 
Waller, 2002). Therefore, the proportion of termite individuals 
carrying different alleles at gene loci on corresponding 
chromosomes (heterozygotes) in G. sulphureus colonies and 
populations can be detected and analyzed using F-statistics 
procedures (Goodisman & Crozier, 2002).  From eight colonies 
of G. sulphureus screened for variability using seven primer 
pairs, all loci show variation within all population sites with 
3 to 9 alleles per locus. We conclude that a large amount of 
genetic variation is detected.

From the results shown in Table 2, observed 
heterozygosity (Ho) is less than expected heterozygosity (He) 
in seven polymorphic loci (GS1, GS3, GS4, GS10, GS15, 
GS27, and GS29) with significant deviation from HWE (P < 
0.05). This might be due to the sample collection strategy or 
unique only to the tested populations. Genetic diversity within 
the population varies as all seven tested loci are observed in 
all eight populations of G. sulphureus (Table 7) due to the 
various populations’ heterozygosity levels. We propose that 
these populations are genetically diverse and have excellent 
survival prospects. Genetically diverse populations with high 
heterozygosity levels have greater survival prospects during 
regular environmental changes. The opposite occurs with 
genetically homogenous populations with high homozygosity 
levels (Frankham, 2005).

Although Palapes USM (PU) and Penang National 
Park (NP) are island populations, a constant phenomenon 
was not observed. An island population usually experiences 
low genetic diversity due to high genetic drift caused by 
its small population size. The outcome of genetic drift is 
severe in small and isolated populations (Keller & Waller, 
2002). However, this population did not suffer low genetic 
diversity (HE for PU = 0.844; HE for NP = 0.836), probably 
due to selection. Kaeuffer et al. (2007) reported selection is 
the most likely mechanism responsible for heterozygosity 
to increase in a small population over time. Selection may 
affect the changes in allele frequency. However, the genetic 
drift effect caused by selection is sometimes hidden. Thus, 
selection may reduce the impact of genetic drift on the loss of 
genetic diversity. Genetic drift can cause alterations in allele 
frequencies of a population from time to time due to variability 
of the reproductive success rate within a population. Some 
individuals produce more offspring than others. The impact of 
genetic drift can be seen frequently in small populations such 
as an island population. 

However, all eight populations of G. sulphureus show no 
homozygosity (HO = 0). This finding suggests all of the studied 
populations have not experienced a high level of genetic 
drift and natural selection. Therefore, some alleles are fixed 

in the populations and low genetic diversity. Under natural 
selection, individuals tend to adapt to their local environmental 
conditions, leading to local adaptation (Lenormand, 2002). 
There are two possibilities: (i) if an environmental condition 
prefers an allele, the selection direction skews towards it in 
the population, and (ii) upon a negative effect of mutation or 
the allele is less preferred, the selection process removes the 
allele from the population (Kawecki et al., 1997), decreasing 
the genetic diversity level within a population.

Meanwhile, under genetic drift, alleles are randomly fixed 
or lost, leading to a low genetic diversity level (Lande, 2015). 
Genetic diversity is essential for the survival and adaptation 
of a population (Frankham, 2005). Reducing genetic diversity 
lowers alleles fitness and thereby decreases the evolutionary 
potential of species to adapt to a changing environment.

This study establishes two types of colonies: simple 
family colonies (40 %) and mixed family colonies (60 % ). 
Previous research on the colony’s breeding structure suggested 
most subterranean termite populations are composed of 
different proportions of simple and extended colonies, 
while mixed colonies are generally less common (Vargo & 
Husseneder, 2009). However, current data show mixed family 
colonies are predominant in six populations (SL, KT, NP, 
TJ, TA, and AU), followed by simple family colonies (TB 
and PU). Simple family colonies in Palapes USM (PU) and 
Tikam Batu (TB) are headed by inbred, related, monogamous 
reproductive pairs, which suggests that dispersal by primary 
reproductive parents is limited in those populations. These 
findings support the notion that simple family colonies are 
classified as being headed by the original colony-founding 
reproductive pairs. 

On the contrary, colonies headed by more than a pair of 
primary reproductive parents having more than five alleles per 
locus are identified as mixed family colonies. Mixed colonies 
form when two different individuals from two different colonies 
fuse and breed together (Ab Majid et al., 2013). The fusion of 
colonies, invasion of mature colonies by other alates, or sharing 
of foraging galleries by neighboring colonies is other factors 
that may lead to the formation of a greater mixed colonies 
proportion (DeHeer & Vargo, 2004; Aldrich & Kambhampati, 
2007). For instance, mixed family colonies result from colony 
fusions in natural and metropolitan populations of G. sulphureus 
termites. Other than that, this study uses a large sample size, 
which might contribute to the greater percentage of mixed 
family colony formation in G. sulphureus populations (Ross 
& Carpenter, 1991). Besides, high mixed families proportion 
in this study is commonly found in nature (KT, NP, and SL) 
as supported by studies on Zootermopsis nevadensis termite 
(Howard et al., 2013) and wood-dwelling termite Kalotermes 
flavicollis (Luchetti et al. 2013).

The breeding structure could not be resolved in 
colonies that did not fit the expected genotype frequencies 
for the progeny of a simple family containing less than four 
alleles at all loci. Populations of G. sulphureus termites focus 
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in northern Peninsular Malaysia reveal a substantial variation 
in colony breeding structures, probably due to the mixed 
colonies’ inbreeding levels in the TB population. Proportions 
of termite colonies with different breeding systems vary 
across populations depending on the age of colony structure, 
dynamics of the colony–colony interactions, food quantity 
and quality, soil characteristics, and disturbance or treatments 
(Bulmer et al., 2001; Aluko & Husseneder, 2007).

It has been suggested that FST between 0.05 to 
0.15 indicates a moderate genetic differentiation, while 
values in the range of 0.15 to 0.25 indicate a great genetic 
differentiation. FST above 0.25 indicates an exceptionally 
great genetic differentiation. Based on this rule, the FST of this 
study is in the range of 0.05 to 0.15 (FST = 0.082 to 0.097), 
indicating a moderate genetic differentiation. Furthermore, 
the GST range is equivalent to FST obtained between natural 
and metropolitan populations of G. sulphureus (GST = 0.069), 
which also show a moderate genetic differentiation. The 
moderate genetic differentiation between both populations 
might indicate incomplete isolation (Pamilo et al., 2016;). 

The dispersal or migration of G. sulphureus termites 
occurs in several ways. For instance, Julio et al. (2002) claimed 
rafting of wood pieces containing reproductive pairs could be 
an effective means of dispersal for some termite species. In 
a tropical country such as Malaysia, the rainy season occurs 
several times a year, facilitating the transportation of infested 
wood pieces to a new infestation area via rainwater flow. 
Besides, blowing out alates from their nest by strong winds 
could be considered another possible dispersal mode. Winged 
termites can disperse over 800 m. Most studies on termites 
reveal that the emergence of alates usually occurs during the 
middle of the year, which corresponds to Malaysia’s annual 
rainy season between July and November (Tong et al., 2017). 

Therefore, an alate flight phenomenon might occur 
since the collection of G. sulphureus termites was performed 
from October 2017 to February 2018. Additionally, frequent 
migration among populations is necessary to achieve 
a moderate genetic differentiation between natural and 
metropolitan populations. The frequencies observed rarely 
occur by wood rafting due to a very stochastic process, but 
most probably is caused by the most frequent migration, the 
alates’ flight. Furthermore, relatively low GST values between 
natural and metropolitan populations demonstrate a gene flow 
phenomenon between both populations.

The current study demonstrates a considerable variation 
in the G. sulphureus colony structure over a small spatial 
scale, including colonies headed by monogamous outbred 
primary reproductives and colonies containing multiple inbred 
neotenic reproductives. This result reflects the number of 
reproductives and nestmate relatedness. Polymorphic species-
specific microsatellite markers are employed to determine 
the social organization of G. sulphureus colonies at two sites 
in Peninsular Malaysia. The level of nestmate relatedness 
and inbreeding coefficient within and among colonies are 

estimated. This information helps to infer the nature of 
colony founding and reproductive structure by comparing 
the empirical results with computer simulations for different 
breeding schemes. The results indicate a remarkable variation 
in G. sulphureus colony organization. 

Thorne et al. (1999) stated the inbreeding phenomenon 
is common in subterranean termites. FIS is the measure 
of inbreeding in populations under random mating. The 
positive value for all eight populations, as shown in Table 7, 
indicates there are more related individuals in the population 
under random mating (Wright, 1965). In a previous study on 
Odontotermes termite, the high level of inbreeding suggests 
a shorter mating flight range; thus, they are more likely to 
pair with relatives during colony founding (Cheng et al., 
2013). Inbreeding reduces heterozygosity, which has also 
called the Wahlund effect. Inbreeding also contributes to a 
high level of genetic relatedness among workers in colonies 
(Dronnet et al. 2005). The Wahlund effect shows excessive 
homozygosity in a population is due to the existence of 
subdivision fragmentation. This effect may have occurred in 
the current study since the seven tested loci had an overlapped 
distribution for all eight tested populations with unknown 
stratification. In summary, the high and significant FIT and FST 
close to zero indicates lots of related breeders in each colony, 
leading to a significant genetic differentiation among colonies 
and inbreeding (Painter et al., 2000).

Nm values are based on FST, which is equivalent to 
genetic distances between populations. In this study, several 
samples from four populations did not reach a clear distinction 
due to overlapping at a particular location site (Figure 2). This 
study shows PU and AU populations are the most genetically 
closely related populations with an FST of 0.088. In contrast, 
SL populations are close to TJ populations with an FST of 
0.045, a coefficient possibly resulting from the short distances 
between PU, AU, SL, and TJ sampling sites. Comparison 
between island populations (NP, PU, and AU) and mainland 
populations (SL, TJ, KT, TB, and TL) generally shows a 
high genetic distance. This outcome may be due to the small 
sample size of island populations which yields a high value of 
Nei’s genetic distance (Nei, 1987.

As Julio et al. (2002) described, the dispersal or migration 
of termites in islands such as PU and AU populations may 
occur in several ways. For instance, the rafting of wood pieces 
containing reproductive parents could be an effective means 
of dispersal for G. sulphureus species (Gathorne-Hardy et al., 
2000). Strong winds hit Penang island several times a year, 
facilitating the transportation of infested wood pieces to the 
sea via inland temporal and permanent rivers, carrying them to 
other islands. A similar study on Nasutitermes takasagoensis 
termite in Japan showed that strong typhoon winds blow out 
alates, possibly establishing a mode of overseas dispersal. 
Nevertheless, anthropogenic dispersal is another possible 
means of putative dispersion for N. takasagoensis termites 
(Julio et al. 2002). 
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In particular, the obtained genetic distance for all 
eight populations in this study is positively related to the 
populations’ geographical locations in Peninsular Malaysia 
(Figure 2) (Pironon et al., 2015; Schwalm et al., 2016). TJ, 
TA, KT, TB, and SL populations are in northeast Peninsular 
Malaysia (near each other), while AU, PU, and NP populations 
are in southwest Peninsular Malaysia. 

Several factors influence the relationship between 
allele frequencies and genotype frequencies, e.g., mutation, 
population size, mating strategy, natural selection, and gene 
flow. In the absence of these factors, allele and genotype 
frequencies conform to a simple relationship known as the 
Hardy–Weinberg equilibrium (HWE) (Harrison et al., 2018. 
The concept of HWE states in non-evolving populations, 
allele and genotype frequencies remain constant from generation 
to generation. The populations are then regarded as being in 
HWE. Therefore, at a single locus, any deviation from HWE is 
eradicated after one generation of random mating (Allendorf, 
2017). From Table 10, four populations (PU, TA, KT, and NP) 
deviate from HWE (all p = 0.000), indicating they are under 
selection, causing rapid changes in allele frequencies since 
many alleles are lost except for the favorable alleles (Miller 
et al., 2001; Williams, 2018). Five polymorphic loci (GS1, 
GS10, GS15, GS27, and GS29) are probably under selection. 
Besides, allele frequencies may also deviate from HWE if the 
sample size is small (Salanti et al., 2005). However, the effect 
of sample size is very modest (Ioannidis al., 2001). The sample 
size used in this study is sufficient to obtain a good HWE 
analysis (n = 10 per population). Another factor contributing 
to HWE deviation is non-random mating or inbreeding, which 
commonly occurs in isolated populations (Reddy, 2017). Since 
PU and NP are island populations, the effect of inbreeding may 
be high; thus, these populations deviate from HWE.

When a population deviates from HWE, genotype 
frequency shifts. For example, as inbreeding occurs, 
the population stops undergoing random mating, and 
the homozygote genotypes frequency increases with the 
decreasing frequency of heterozygote genotypes (Hamilton, 
2011). This is due to relatives, by definition, are more likely 
to inherit the same ancestral alleles from a common ancestor; 
this is known as being identical by descent (IBD) (Powell 
et al., 2010). A population consisting of inbred individuals 
is expected to show excessive homozygosity over HWE 
expectations, which can be detrimental as recessive mutations 
continue to segregate within the population, resulting in 
inbreeding depression (Charlesworth & Charlesworth, 1987). 

S.M.M signifies that an allele only mutates by losing 
or gaining single tandem repetitive alleles, possibly among 
alleles already present in the population. On the contrary, 
under I.A.M, a mutation involving any number of tandem 
repeats always produce alleles not commonly encountered 
in the population (Hardy et al., 2003; Roussel et al., 2004). 
Since the estimation of effective population size and mutation 
rates depend on the mutation model, computational assays 

are performed to test the adequacy of each model with the 
observed data. The results (Table 10) show five populations 
(TJ, AU, SL, KT, and NP) might have a low probability of 
undergoing the mutation and genetic drift for the seven tested 
loci using both I.A.M. and S.M.M (p > 0.05). In contrast, MU, 
TA, and TB populations have high chances of mutation and 
genetic drift (p < 0.05) for I.A.M but not for S.M.M (p-value 
MU = 0.641; p-value TA = 0.652; p-value TB = 0.158). 
The cause of these outcomes may be these populations’ 
geographical location (Wlasiuk et al., 2003). The nesting sites 
of G. sulphureus in these populations are surrounded by sub-
optimal local environments such as being placed far from any 
food source (Taylor & Hellberg, 2003). 

In particular, the probability of mutation-drift equilibrium 
using both I.A.M. and S.M.M. is high for the AU population 
(0.46; 1.00) and moderate for the KT population (Table 5.11). 
The latter shows a moderate (0.37) and low (0.03) probability 
of mutation-drift equilibrium using I.A.M. and S.M.M., 
respectively. This result can be evidence that the KT population 
may be suffering from a mutation effect. The mutation–drift 
equilibrium test can also be applied to study inbreeding 
depression by measuring the correlation between individual 
fitness and inbreeding. The result shows the heterozygosity 
level of individuals or the population. This test also provides 
insights into evolutionary interpretation using the information 
on relative values of mutation rates compared to the migration 
rate or population divergence (Hardy et al. 2003).

Conclusion

This study is the first one to focus on the population, 
colony genetic structure, and dispersal pattern of G. 
sulphureus termites within natural and metropolitan regions. 
In conclusion, geographic variation and urbanization affect 
the genetic structure of G. sulphureus colonies. A suitable 
and flexible environmental habitat plays a vital role in driving 
genetic differentiation. The current study suggests G. sulphureus 
in northern Peninsular Malaysia can be characterized by 
moderately related and inbred individuals between populations. 
The high level of genetic diversity among and within the 
populations and the moderate genetic differentiation found out 
in this study show that G. sulphureus is most likely to mate with 
moderately related mates. With increasing globalization due to 
trade, human-mediated transportation, seasonal weather, and 
tourism, subterranean termites of G. sulphureus spread rapidly 
to infest new regions such as housing and business areas. A 
comprehensive understanding of the population dynamics of 
G. sulphureus colonies provides an improvement in response 
to higher group termite colonies and population management 
tactics, especially for higher termite group baiting. 
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