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Introduction 

The colony sizes of managed Apis mellifera have 
been declining worldwide (Potts et al. 2010). Researchers 
are developing monitoring systems based on beehive sounds 
for devising the possible strategies for the management and 
conservation of the dynamic pollinators (Meikle & Holst, 
2015; Mezquida & Martínez, 2009; Sharif et al., 2020). A 
USDA Small Business Innovation Research (SBIR) project 
focused on the recognition of the acute as well as chronic 
exposure of honeybees to pesticides, including neonicotinoid 
pesticides. Preliminary outcomes reveal that bee colonies tend 
to become noisier upon exposure to organic pesticides, while 
silent upon exposure to neonicotinoid pesticides (Seccomb, 
2015). The use of beehive sound recordings has been developed 
for the detection of chemical-laced airborne threats under 
SBIR agreement from the United States Army Center for 
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Environmental Health Research. The most dynamic thing 
about the results obtained from the investigates is that the 
bee colony sound not only alters in response of exposure to 
variant stressor, but in some cases also alters to delineate the 
particular type of chemical, pest, and disease (Bromenshenk 
et al., 2009, 2004). A beehive is a small ecosystem, consisted 
of 30,000-50,000 individual bees. The soundscape indices, 
used to describe the sound scene, may be suitable to delineate 
the beehive sounds emitted by different individuals. But their 
efficacy in classifying beehive audio samples has not been 
explored so far. 

Audio-based classification models have been explored 
to detect the statuses of a beehive, such as queenless (Howard 
et al., 2013), swarming (Ferrari et al., 2008), and diseases 
or pests (Robles-Guerrero et al., 2017) etc.  However, the 
automatic classification of beehive audio samples remains a 
challenge yet. 
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Classification of audio samples involves two 
stages,  the first  in which certain features are extracted from 
waveform files, and the second in which a classification 
model is built on the extracted features. Several classification 
schemes have been proposed, including statistic models, such 
as Linear Discrimination Analysis (Qandour et al., 2014) and 
Self-Organizing Maps (Howard et al., 2013), and Machine 
Learning Algorithms (Nolasco & Benetos, 2018), such as 
Support Vector Machine (Qandour et al., 2014), Random 
Forest (Robles-Guerrero et al., 2017) and Neural Network 
(Rybin et al., 2017). It has been shown that the schemes are 
not different in the classification accuracy (Qandour et al., 
2014). Given the current state of audio classifiers, further 
advances could be made by developing powerful features, 
rather than building new classification schemes.    

So far, two feature sets are used for the classification 
of beehive audios. They are the low-level signal feature set, 
including Zero-Crossing Rate, Bandwidth, Spectral Centroid, 
and Signal Energy (Qandour et al., 2014), and the Mel spectra 
set, which are dozens of Mel Frequency Cepstral Coefficients 
(MFCC) (Robles-Guerrero et al., 2017) (Nolasco et al., 2019). 
Recently, ecologists have been developing soundscape indices to 
assess biodiversity at landscape scale (Mammides et al., 2017). 

In the present study, we examine the beehive sound 
response to an organic chemical compound (trichloromethane 
[CHCl3]), as the beehive sonograms are altered when bees are 
exposed to different chemicals (Bromenshenk et al., 2015). We 
also compare the performance of the soundscape indices with 
that of the low-level signal properties in discriminating beehive 
sound response to this chemical. The application of soundscape 
indices in classifying beehive audio data is also discussed.

Material and methods

Experimental Setup 

The experiment was conducted in the Spring and the 
Summer, 2019, respectively, at the Hefei Institutes of Physical 
Sciences, Chinese Academy of Sciences. A beehive with A. 
mellifera was kept in a lab room. A pre-cut circular hole in 
the glass window of the room fits tightly around a transfer 
entrance/exit tube. The bees were allowed to come and go 
through the transfer tube freely. An outdoor-facing landing 
platform was fixed outside right below the entrance/exit end 
of the transfer tube, giving our bees a convenient perch for 
takeoff and landing.  

The beehive was set for one week. A vacuum pump 
was used to pump the air at a ~ 5 meters distance. The air was 
first pumped to a glass jar via a flexible plastic pipe in which 
some filters with or without trichloromethane were placed. 
Later, the air was pumped to the beehive via beehive entrance. 
The content of trichloromethane in the glass jar was 250 mg/
m3, which is slightly higher than the maximum allowable 
concentration in the open air (240 mg/m3). An airflow rate of 
0.4 m/s was controlled by an Air-Flow Meter. 

Data Collection 

Audio data were collected at night time in good 
weather days with a microphone, positioned inside the hive to 
avoid propolization, at a sampling rate of 22.05 kHz (16 bits, 
one channel). To ensure the data are correctly labeled with 
ventilating trichloromethane-laced air, only the continuous 
recordings within 3-23 min after the air was released to the 
hive were used. The audio files were saved in a waveform 
(wav). The hive air was expelled out by a fan at the hive 
entrance for two days before blank air was pumped. The 
procedure alternated ventilating trichloromethane-laced air, 
and ventilating blank air was repeated five times (3 times for 
the Spring and two times for the Summer).      

Feature Extraction

Each 20-min audio file, either labeling with blank or 
trichloromethane-laced air, was divided into 20-s samples 
without overlap. The common low-level signal features, such 
as Zero Crossing Rate (ZCR) and Spectral Centroid (SC), 
and 12 Mel-Frequency Cepstral Coefficients, were extracted 
from each 20-s sample with a 20-ms frame with 50% overlap. 
Mel-frequency cepstral is a standard extraction approach for 
similar classification tasks (Robles-Guerrero et al., 2017). 
In the R programming language (TeamRCore, 2015), such 
features were extracted according to previously described 
methodology (Li et al., 2001). The common soundscape 
indices, Acoustic Complexity Index (ACI), Acoustic Diversity 
Index (ADI), Acoustic Evenness Index (AEI), and Bioacoustic 
index (BI), were calculated with the “soundecology” package 
(Villanueva-Rivera and Pijanowski 2016). ACI was analyzed 
with a cluster size of 10 seconds and limited to 6000 Hz. The 
maximum frequency of ADI and AEI is set to 6000 Hz. The 
size of the frequency bands is set to 1000 Hz. Other indices 
were calculated with the default settings. 

Feature Performance

Feature performance was estimated using random forests. 
Briefly, 75% of the 20- audio samples were randomly chosen 
as a training group, the others as a test group. For the training 
group, the features of an audio sample were grouped into either 
blank ventilating air or trichloromethane-laced air. A binary 
classification model was built based on the features of the audio 
samples by the randomForest (RF) package “v4.6-12” (Liaw 
& Wiener, 2002). Details about this classification method are 
described in a publication (Breiman, 2001). The trained RF model 
classified each audio sample in the test group to find which class 
it most probably belongs to. The overall misclassification rate, 
estimated from the confusion matrix, was used as an essential 
performance measure. Random forest possesses a couple of 
methods to evaluate the importance of every predictor variable 
in the model; the methods included are Mean Decrease in 
Accuracy (MDA) and Mean Decrease in Gini (MDG) (Cutler 
et al., 2007; Calle & Urrea, 2011). But, we had chosen MDA 
in our current investigation to predict the importance of indices 
(Fig 1A, D & G) as computed by random forest.  
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Fig 1. The importance order of three feature sets and their changes with time. Black circles denotes ventilating blank air, red 
circles denotes trichloromethane-laced air. Each point represents the datum extracted from a 20-s audio sample. CZR: Zero-
Crossing Rate, CS: Spectral Centroid, C[1] to C[12]: MFCC Coefficients, sp.ent: Spectral Entropy, meanfreq: mean frequency, 
meanAmp: mean amplitude, Energy: energy of singal, RMS: root-mean-square level, ACI: Acoustic Complexity Index, ADI: 
Acoustic Diversity Index, AEI: Acoustic Evenness Index, BI: Bioacoustic Index

Results 

Concerning time, each treatment (i.e., blank air and 
trichloromethane laced-air) yielded significant differences 
among all the indices. Regarding the upper panels, they 
showed the importance order of the low-level signal features 
and their changes with time (Fig 1B and C). ZCR and SC 
were the most critical features (Fig 1). They significantly 
fluctuated with time (Fig 1B and C); either blank air or 
trichloromethane-laced air was ventilated into the beehive. 
Visual examination designates that the values of ZCR and 
SC for trichloromethane laced-air fluctuate and decrease with 
time and remain below their values for blank air. Based on the 
two features, the beehive sound responses to the two air types 
could not easily be discriminated against via a classification 
model, such as linear discrimination analysis. 

The middle panels showed the importance order of 
MFCCs and their changes with time. The MFCC coefficients 
(C[1] and C[3]) were the most fundamental features (Fig 1D). 
The graphic representation exhibits that the values of C[1] and 
C[3] features for chemical laced-air fluctuated, but the former 
upsurge and later declined with time. Inversely, for blank air, 
the C[1] feature oscillated below the chemical laced-air, while 
the values of C[3] oscillated above the chemical laced-air. The 
changes detected in C[1] coefficient for trichloromethane and 
blank air were clear to observe the acoustic variations, but the 
changes seen in C[3] were mixed at some points (Fig 1E and 
F). According to the classification accuracy, MFCC showed 
good performance than the low-level features, but the low 
performance was noted compared to the soundscape indices 
(Table 1). Anyhow, the mean decrease in accuracy values for 
C1 and C3 were higher than other coefficients, which represent 
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them as a critical feature for acoustic discrimination (Fig 1D). 
Based on MFCC features, especially C[1], the beehive sound 
responses to the two air types can be discriminated.    

Regardless of upper and middle panels, the lower 
panels showed more importance in soundscape indices and 
their change time. ACI and ADI were also the most significant 
indices (Fig 1H and I); based on these indices, beehive 
sound responses to blank air remained stable. However, bees 
response to trichloromethane-laced air dramatically fluctuated, 
either below (Fig 1I for ACI) or above (Fig 1H for ADI), 
the response of bees to blank air. By visual examination, the 
soundscape indices were more discriminative power than the 
low-level signal features and MFCCs for binary classification. 

The classification accuracy calculated using RF model is 
summarized in Table 1. In terms of classification accuracy, the 
soundscape indices have 9.99% to 11.66% better performance 
than other feature sets including MFCC, and Low-level signal 
features, respectively. Based on the four crucial low-level 
signal features (ZCR, SC, mean free, and sp.ent) extracted 
from each 20-s audio sample, the classification accuracies 
were 75% for trichloromethane-laced air and 81.67% for blank 
air, respectively. Based on the four important MFCCs, the 
classification accuracies were 76.90 % for trichloromethane-
laced air and 80.00% for blank air, respectively. According 
to the soundscape indices (ACI, ADI, AE, BI), the accuracies 
were 88.46 % for trichloromethane-laced air and 91.67 % for 
blank air, respectively. 

Furthermore, the mean decrease in accuracy values for 
ACI and ADI is higher than other feature sets like BI, AEI, SC, 
and others (Fig 1A, D & G). That is why both the soundscape 
indices (ACI and ADI) were designated as the most central 
indices, followed by other indices and feature sets.  

Discussion 

Audio-based beehive monitoring becomes a partial 
solution to precision apiculture (Ferrari et al., 2008). Several 
acoustic features have been explored to classify beehive 
audio samples (Cecchi et al., 2019; Qandour et al., 2014). 
In this study, we show that the soundscape indices are more 

potent than the low-level signal features and MFCCs in 
discriminating bee response to chemicals. Anyhow, MFCC 
features also achieved good classification accuracy than 
the low-level features, although less than the soundscape 
indices (Fig 1E and 1F). Similar results for classification 
accuracy of MFCC features were presented in a research by 
Zgank (2019). This research describes that with the medium 
and high complexity acoustic models, the MFCC features 
achieved 75.43% and 82.27% classification accuracy without 
cepstral mean normalization, and 74.81% and 81.96% with 
it, respectively. But, the soundscape indices may be more 
effective and can be used as new acoustical features to classify 
the beehive audio data. 

Why are soundscape indices suitable for the classification 
of beehive sounds? Temporal variations of the basic features 
are essential for classification (Breebaart & McKinney, 2004). 
The greater the variability of the basic features, the more 
likely it achieves a high classification accuracy. Unlike low-
level signal features, which are extracted from the stationary 
periods (Robles-Guerrero et al., 2017), the soundscape indices 
are designed to assess changes in acoustic energy in time 
or frequency domain (or both) as an analog for the number 
of vocalizing animals in an area (Parsons et al., 2016). The 
extraction process for the soundscape indices includes signal 
variations as much as possible. Therefore, the soundscape 
indices are suitable representations in the complex context of 
a beehive sound scene.

Most studies on avian soundscapes use 1-min audio 
file to extract soundscape indices. In our research, we found 
that the soundscape had a time scale. For the Spring samples, 
as the frames increased from 20 to 30 s, the classification 
accuracy for trichloromethane air remained 88.46% (Table 1). 
This is why we chose 20 s as the frame size for the calculation 
of the soundscape index. Whether it is the optimum sample 
size for calculation of the soundscape indices should be 
further examined. Nonetheless, from a perceptual point of 
view, this is a remarkably short section of audio files on 
which the soundscape indices are calculated. Improvements in 
classification performance could indeed be made if classification 
were based on more than a one-time scale.  

Table 1. Comparison of the discriminative power between three feature sets based on Random 
Forest. Low-level signal features: spectral centroid (SC), zero-crossing rate (ZCR), mean frequency 
(meanfreq), and spectral entropy (sp.ent); mel frequency cepstral coefficient (MFCCs): C[1], C[3], 
C[7] and C[5]; Soundscape indices: Acoustic Complexity Index (ACI), Acoustic Diversity Index 
(ADI), Acoustic Evenness Index (AEI), and Bioacoustic index (BI).

Feature set Sample size Frame size
Classification accuracy

Trichloromethane-laced air Blank air

Low-level signal features 20 s 20 ms 75.00% 81.67%

MFCC 20 s 20 ms 76.90% 80.00%

Soundscape indices 20 s - 88.46% 91.66%

Soundscape index 30 s - 88.46% 86.67%
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In short, we show that the performance of the soundscape 
index is superior to that of the standard low-level signal 
features in classifying the beehive audio samples. The 
soundscape indices, which include signal variations as much 
as possible, may be necessary for their suitability to represent 
the beehive-inside complex sound scene. Several chemical 
pesticides (chlorpyrifos, cypermethrin, carbofuran, bifenthrin, 
clothianidin, and others) have previously been checked for 
harmful effects on the lives of honey bees (Yao et al., 2018; 
Yang et al., 2020; Dai et al., 2010). Therefore, we recommend 
that researchers should use soundscape features as a valuable 
tool for evaluating the health of colonies in future studies. 
Moreover, the automatic classification of beehive audio samples 
can be optimized using the soundscape features. 

Acknowledgments 

This work was supported by the Key Research 
Program of the Chinese Academy of Sciences (Grant no. 
KGFZD-135-17-010). The authors would like to thank Zhuqing 
Lv, Sabah Mushtaq Puswal, Jianjun Liao, and Fenmei Wang for 
their assistance in the trails.

Authors' contribution

FL and MZS conceived and designed the analysis, and did 
the data collection. FL and MZS wrote the manuscript. 
MZS refined the manuscript with grammatical corrections 
and improved the description of the result section of the 
manuscript. FL did the data analysis. FW helped in manuscript 
preparation, write up and suggesting improvements in data 
analysis. ND and RX revised the manuscript and contributed 
to significant improvements. All the authors coordinated to 
revise and approve the final version of the manuscript.

References  

Breebaart, J. & McKinney, M. (2004). Features for audio 
classification. In Verhaegh W, Aarts E, Korst J (eds) Algorithms 
in Ambient Intelligence (pp. 113-129). Netherland: Kluwer 
Academic Publishers.

Breiman, L. (2001). Random Forests. Machine Learning 45: 5-32.

Bromenshenk, J., Henderson, C., Seccomb, R., Welch, 
P., Debnam, S. & Firth, D. (2015). Bees as biosensors: 
chemosensory ability, honey bee monitoring systems, and 
emergent sensor technologies derived from the pollinator 
syndrome. Biosensors, 5: 678-711. doi: 10.3390/bios5040678

Bromenshenk, J.J., Henderson, C.B., Seccomb, R.A., Rice, S.D. 
& Etter, R.T. (2009). Honey bee acoustic recording and analysis 
system for monitoring hive health. U.S. Patent 7,549,907 B2 

Bromenshenk, J.J., Seccomb, R.A., Rice, S.D., & Etter, R.T. 
(2005). Honey bee monitoring system for monitoring bee 
colonies in a hive. U.S. Patent 6,910,941 B2.

Calle, ML. & Urrea, V. (2011). Letter to the editor: Stability 
of Random Forest importance measures.  Briefings in 
Bioinformatics, 12: 86-9. doi: 10.1093/bib/bbq011

Cecchi, S., Terenzi, A., Orcioni, S. & Piazza, F. (2019). 
Analysis of the sound emitted by honey bees in a beehive. In 
Audio Engineering Society Convention (p. 147).

Cutler, D.R., Edwards, T.C, Beard, K.H, Cutler, A., Hess, K.T., 
Gibson, J. & Lawler, J.J. (2007). Random forests for classification 
in ecology. Ecology, 88: 2783-2792. doi: 10. 1890/07-0539.1

Dai, P.L., Qiang, W. & Hu-Sun, J. (2010). Effects of sublethal 
concentrations of bifenthrin and deltamethrin in fecundity, 
growth, and development of the honeybee Apis mellifera 
ligustica. Environmental Toxicology and Chemistry, 29: 644-
649. doi: 10.1002/etc.67

Ferrari, S., Silva, M., Guarino, & M., Berckmans, D. (2008). 
Monitoring of swarming sounds in bee hives for early detection 
of the swarming period. Computer in Electronics and Agriculture, 
64: 72-77. doi: 10.1016/j.compag.2008.05.010

Howard. D., Duran, O., Hunter, G. & Stebel, K. (2013). Signal 
processing the acoustics of honeybees (Apis mellifera) to 
identify the ‘Queenless’ state in hives. Proceedings of the 
Institute of Acoustics, 35: 290-297.

Li, D., Sethi, I.K., Dimitrova, N. & McGee, T. (2001). 
Classification of general audio data for content-based retrieval. 
Pattern Recognition Letters 22: 533-544. doi: 10.1016/S0167-
8655(00)00119-7 

Liaw, A., & Wiener, M. (2002). Classification and regression 
by random forest. R News, 2: 18-22.

Mammides, C., Goodale, E., Dayananda, S.K., Kang, L. 
& Chen, J. (2017). Do acoustic indices correlate with bird 
diversity? Insights from two biodiverse regions in Yunnan 
Province, south China. Ecological Indicators, 82: 470-477. 
doi: 10.1016/j.ecolind.2017.07.017

Meikle, W. & Holst, N. (2015). Application of continuous 
monitoring of honeybee colonies. Apidologie, 46: 10-22. doi: 
10.1007/s13592-014-0298-x

Mezquida, D.A. & Martínez, J.L. (2009). Platform for beehives 
monitoring based on sound analysis. A perpetual warehouse 
for swarm’s daily activity. Spanish Journal of Agriculture 
Research, 7: 824-828.

Nolasco, I. & Benetos, E. (2018). To bee or not to bee: 
Investigating machine learning approaches for beehive sound 
recognition. arXiv 1811.06016.

Nolasco, I., Terenzi, A., Cecchi, S., Orcioni, S., Bear, H.L., 
& Benetos, E. (2019). Audio-based identification of beehive 
states. In ICASSP 2019-2019 IEEE International Conference 
on Acoustics, Speech and Signal Processing (pp. 8256-8260).

McCauley, R. (2016). Long-term monitoring of soundscapes 
and deciphering a usable index: Examples of fish choruses 



Sociobiology 67(4): 566-571 (December, 2020) 571

from Australia. In Proceedings of Meetings on Acoustics (p. 
010023). Dublin-Ireland. 

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, 
O., Kunin, W.E. (2010). Global pollinator declines: trends, 
impacts and drivers. Trends in Ecology and Evolution. 25: 
345-353. doi: 10.1016/j.tree.2010.01.007

Qandour, A., Ahmad, I., Habibi, D., & Leppard, M. ( 2014). 
Remote beehive monitoring using acoustic signals. Acoustic 
Australia, 42: 204-209.

Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramérez, 
E. & Galván-Tejada, C.E. (2017). Frequency analysis of 
honey bee buzz for automatic recognition of health status: A 
preliminary study. Research in Comput Science, 142: 89-98. 
doi: 10.13053/rcs-142-1-9

Rybin, V.G., Butusov, D.N., Karimov, T.I., Belkin, D.A. & 
Kozak, M.N. (2017). Embedded data acquisition system for 
beehive monitoring. In 2017 IEEE II International Conference 
on Control in Technical Systems (pp. 387-390).

Seccomb, R.A. (2014). Autonomous reporting and tracking 
of pesticide incidents in honey bee colonies. https://www.sbir.
gov/printpdf/708862. (accessed date: 21 September, 2020). 

Sharif, M.Z., Jiang, X. & Puswal, S.M. (2020). Pests, parasitoids, 
and predators: Can they degrade the sociality of a honeybee 
colony, and be assessed via acoustically monitored systems? 
Journal of Entomology and Zoology Studies, 8: 1248-1260. 

TeamRCore. (2015) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria. 

Villanueva-Rivera, L. & Pijanowski, B. (2016). Soundecology: 
soundscape ecology. R package version 1.3. 2.

Yao, J., Zhu, Y.C. & Adamczyk, J. (2018). Responses of honey 
bees to lethal and sublethal doses of formulated clothianidin 
alone and mixtures.  Journal of Economic Entomology, 111: 
1517-1525. doi: 10.1093/jee/toy140.

Yang, Y., Ma, S., Liu, F., Wang, Q., Wang, X., Hou, C., Wu, 
Y., Gao, J., Zhang, L., Liu, Y. & Diao, Q. (2020). Acute and 
chronic toxicity of acetamiprid, carbaryl, cypermethrin and 
deltamethrin to Apis mellifera larvae reared in vitro. Pest 
Management Science, 76: 978-985. doi: 10.1002/ps.5606.

Zgank, A., 2020. Bee swarm activity acoustic classification 
for an IoT-based farm service. Sensors. 20: 21.  doi: 10.33 90/
s20010021


