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Introduction

Human dependence on natural resources is 
continuously increasing and aims to meet our immediate 
needs for food, fiber, water, and shelter. Since the Industrial 
Revolution, there has been an intensification in land use 
change and habitat conversion (which we define here as the 
conversion of natural habitats into anthropogenic land uses, 
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mainly agricultural ones), which has resulted in the global 
degradation of environmental conditions (Foley et al., 2005; 
Millennium Ecosystem Assessment, 2005; Ellis et al., 2013). 
The effects of such land use change range from altering the 
structure and functioning of ecosystems to modifying the 
dynamics of interactions between ecosystems and atmosphere, 
water bodies and the surrounding lands (Vitousek et al., 
1997; Foley et al., 2005). In addition, land use changes, 
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especially the conversion of natural and complex landscapes 
into anthropized environments, have led to the simplification, 
loss, and fragmentation of native habitats, contributing to the 
disappearance of biodiversity and consequently its functions 
and ecosystem services (Pimm & Raven, 2000; Hansen et al., 
2004; Haines-Young, 2009; Almeida et al., 2016).

Negative impacts caused by habitat conversion and 
intensification have already been documented for several 
taxonomic groups, such as birds (Donald et al., 2001, 
Rittenhouse et al., 2012), mammals (Sauvajot et al., 1998; 
Sotherton, 1998; Riffell et al., 2011; Seki et al., 2017), insects 
(Vasconcelos, 1999; Philpott et al., 2008; Winfree et al., 
2011), and plants (Philpott et al., 2008; Meers et al., 2010). 
Thus, assessing the effects of habitat conversion on biological 
communities helps to understand how environmental changes 
affect biodiversity, ecosystem functions and ecosystem services 
(Haines-Young, 2009; Luck et al., 2009; Geijzendorffer & 
Roche, 2013).

For several taxa, a commonly used functional approach 
is the classification of species in a community into functional 
groups (FGs), with functionally similar species being included 
in the same group (Cummins, 1974; Cianciaruso et al., 2009; 
Laureto et al., 2015). Species classification into FGs can be 
either a priori, according to a classification based on species 
characteristics or similarities, or a posteriori, with multivariate 
analysis techniques (Petchey, 2004; Calaca & Grelle, 2016). 
The classification into FGs has been widely used in recent 
studies of biotic communities, including ants (Hymenoptera: 
Formicidae) (Andersen, 1995; King et al., 1998; Delabie et 
al., 2000; Ottonetti et al., 2006; Underwood & Fisher 2006; 
Crist, 2009, Leal et al., 2012; Lawes et al., 2017; Assis et 
al., 2018). Such groupings are based on taxonomic affinities, 
morphological patterns, and niche dimensions such as diet, 
nest location, foraging behavior, and habitat preference 
or environmental tolerance (Andersen, 1990, 1995, 1997;  
Hoffmann & Andersen, 2003; Silvestre et al., 2003;  Andersen 
& Majer, 2004; Weiser & Kaspari, 2006; Silva & Brandão, 
2010; Brandão et al., 2012;  Koch et al., 2019). 

The classification of ants into FGs is useful in studies 
of habitat conversion, as such classifications permits to 
infer how community structure and function are affected 
by disturbances and environmental changes (Andersen & 
Majer, 2004; Underwood & Fisher, 2006). Considering the 
importance of the ant fauna for the provision of important 
ecosystem supporting and regulating services, such as 
nutrient cycling, seed dispersal, population control of other 
arthropods, and formation and structuring of soil superficial 
layers (Hölldobler & Wilson, 1990; Folgarait, 1998; Del Toro 
et al., 2012), the understanding of habitat conversion effects 
on different ant FGs is essential to better understand the 
impacts of environmental changes on biodiversity.

Since the first sketches of ant classification into FGs, 
with the Greenslade’s (1978) pioneer study in Australia, the 
FGs scheme has been modified and adapted to classify ant 

communities from other biogeographic regions (Majer et al., 
2004). One of the best known functional schemes developed 
from ant communities of Australian savannas classifies the 
groups according to the ants’ relationship with climate, 
soil, vegetation, and disturbances, and the main FGs are: (i) 
Dominant Dolichoderinae; (ii) Subordinate Camponotini; 
(iii) Generalized Myrmicinae; (iv) Opportunists; (v) Climate 
Specialists; (vi) Cryptic species and (vii) Specialist Predators 
(see Table 1) (Andersen, 1995, 1997, 2000; King et al., 1998; 
Hoffmann & Andersen, 2003; Andersen & Majer, 2004; 
Andersen et al., 2007). 

Another important functional classification, based 
on the nutrition and bioecological aspects of the ants, was 
developed for the Neotropical region, and resulted from 
information in previous studies (Delabie et al., 2000; Silvestre 
et al., 2003; Brandão et al., 2009, 2012; Silva & Brandão, 
2010). This classification includes ant guilds or groups 
organized around ant nutritional requirements and/or feeding 
habits: (i) Generalist predators; (ii) Specialists; (iii) Arboreal 
predator ants; (iv) Generalists; (v) Fungus growers; (vi) 
Legionary ants; (vii) Dominant arboreal ants associated with 
carbohydrate-rich resources or domatia; (viii) Pollen-feeding 
arboreal ants, and; (ix) Subterranean ants (see Table 1 and 
Brandão et al., 2009, 2012). 

In general, habitat disturbance and conversion affect ant 
communities directly, by reducing the availability of resources 
and removing colonies, and indirectly, through changes in 
habitat structure, nesting site availability, temperature, and 
humidity (Andersen, 2000; Philpott et al., 2010). In addition, 
habitat changes promoted by agriculture, logging, grazing, 
mining, etc., may lead to the exclusion of sensitive groups 
and the advent of groups tolerant to disturbances, which can 
replace or compete with those present before the disturbance 
(Andersen, 1995, 2000;  Hoffmann & Andersen, 2003; 
Andersen & Majer, 2004; Ottonetti et al., 2006; Crist, 2009; 
Leal et al., 2012; Parui et al., 2015; Assis et al., 2018; Amaral 
et al., 2019). Highly specialized FGs, such as cryptic species, 
tend to be sensitive to changes in habitat due to their preference 
for forested environments and nesting and foraging in soil and 
litter (Hoffmann & Andersen, 2003). On the other hand, other 
groups of ants, often called opportunists, are ruderal with low 
competitiveness and wider environmental tolerance and may 
be predominant in disturbed environments (Andersen, 1997; 
King et al., 1998; Andersen & Majer, 2004). 

In addition, the effects of habitat conversion may affect 
ant FGs in different ways throughout the globe, as aspects 
associated with species richness, such as habitat heterogeneity 
and physical environment, differ between tropical and 
temperate zones. Habitat heterogeneity is related to the variety 
of resources in the environment, with a greater availability of 
resources permitting a better partitioning of niche space and 
greater specialization (MacAthur & MacAthur, 1961, Pianka, 
1966; Brown & Lomolino, 1998). Therefore, it is possible 
that conversion of native habitats to anthropogenic land use 
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promotes greater loss of the original habitat heterogeneity 
in more structurally diverse and complex areas, impacting 
specialized FGs associated with native habitats, and may therefore 
be more significant in the tropics than in temperate regions.

In order to assess the effects of habitat conversion on 
different ant FGs in tropical and temperate zones of the globe, 
we conducted a literature review to: i) identify how habitat 
conversion (conversion of native habitats to anthropogenic 

Functional groups of Australian ants
Group Subdivision Characteristics

Dominant Dolichoderinae Species of the Dolichoderinae subfamily, with dominant behavior 
and preference for hot and open habitats.

Subordinate Camponotini Ants tend to be behaviourally submissive to dominant dolichoderines, 
and have large body size, nocturnal foraging, and/or arboreal habits.

Generalized Myrmicinae Group with subdominant behavior to Dominant Dolichoderinae 
from a global perspective, and with high tolerance to disturbance.

Opportunists Group that is dominant in disturbed environments in which other 
groups lose their relative importance.

Climate specialists
Hot-Climate Specialists

Climate specialists that have specific habitat tolerance, with 
preferences related to temperature and humidity.Cold-Climate Specialists 

Tropical-Climate Specialists 

Cryptic species Species that can hide in their habitat and occur preferentially in 
forests and forage within soil and litter.

Specialist Predators Ants specialized in diet and sensitive to disturbance.
Functional groups of Neotropical region

Group Subdivision Characteristics

Generalist predators
Epigaeic generalists predators Ants with large and medium-sized predators that forage on the soil 

surface or above the litter.
Hypogaeic generalist predators Medium and small-sized ants that forage within the leaf litter.

Specialists (with specialized 
morphology and biology)

Predation in mass and/or nomadism Ants with hunting strategy in groups of workers in columns/ mass 
in predation or nomadic behavior in predation of certain preys.

Dacetini predators Possess specialized jaws with morphology and mechanism different 
from other Mymicinae.

Arboreal predator ants Species which forage in vegetation and prey on a range of 
arthropods.

Generalists 

Generalized Myrmicines
Ants with a wide ecological niche.Generalized Formicines, Dolichoderines 

and some Myrmicines
Small-sized hypogaeic generalist foragers

Fungus growers

Leaf cutters Use live or dead plant substrate for rearing their symbiotic fungus.

Litter-nesting fungus growers
Cryptobiotic Attina ants living in the leaf litter and using a variety 
of substrates (e.g. leaves, flowers, fruits, seeds, feces, lichen, and 
carcasses of arthropods) to rear the symbiotic fungus or yeast.

Legionary ants (army ants) 
Ants with behavioral and reproductive syndrome, with nomadism, 
dicthadiiform reproductive females (wingless queens) and 
mandatory collective foraging.

Dominant arboreal 
ants associated with 
carbohydrate-rich 
resources or domatia

Ants picking up liquid food resources (as nectar produced by 
floral or extrafloral nectaries, carbohydrate-rich exudates sucking 
hemipterans, and exudates of some Lepidoptera larvae) or species 
living in association with myrmecophytes that present specialized 
structures aiming ant nesting (such as domatia) and provide food 
(nectaries and Mullerian or food bodies).

Pollen-feeding arboreal 
ants

Components of the Neotropical Cephalotini tribe that remove 
anemophilous pollen deposited on the vegetation surface, an 
important item in the diet of these ants.

Subterranean ants Ants that live in the deeper layers of soil.

*Andersen, 1995, 1997, 2000; King et al., 1998; Hoffmann & Andersen, 2003; Andersen & Majer, 2004; Andersen et al., 2007; **Brandão et al., 2009, 2012.

Table 1. Details of functional groups scheme of Australian ants based on their relationships to the climate, soil, vegetation, and disturbance*, 
and functional classification for ants of Neotropical region based on their nutritional and bioecological aspects**.
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land uses, especially agricultural areas) affects ant FGs; ii) 
assess whether these effects can be observed in different types 
of native habitats and anthropogenic land uses; and iii) verify 
how the different ant FGs respond to habitat conversion in 
the tropical and temperate zones. We hypothesized that: a) 
FGs in general are negatively affected by the conversion of 
natural to anthropogenic environments; b) opportunistic and 
generalist ants and ants with a preference for disturbed sites 
respond positively to habitat conversion; c) specialist ants 
respond negatively to such changes; and d) in tropical zones, 
more FGs of ants would have negative responses as compared 
to groups in temperate climatic zones.

Methods

Literature search  

This study addresses the effects of converting natural 
to anthropic environments on ant FGs based on a literature 
review and statistical significance tests (Fig 1). The studies 
were identified through a comprehensive search (last updated 
in July 2018) in the ISI Web of Science database, using the 
following terms: “(ants OR ant OR Formicidae) AND (land 
cover OR land use) AND (functional)’ in TOPIC, ‘DocType=All 
document types, Language=All languages’, from all databases”. 
The research resulted in 412 published studies.

412 records identified through 
database searching

412 records screened

93 full-text articles assessed for 
eligibility

17 studies included in review

Title and abstract revealed not 
appropriate

319 records excluded 

Articles outside the inclusion 
criteria

76 full-text articles excluded

Screening

Elegibility

Included

Identification

Fig 1. The flow diagram showing an overview of the study selection process according to the PRISMA (Preferred 
reporting items for systematic reviews and meta-analyses) guidelines. Adapted from Moher et al. (2009).

Selection criteria

After the first period dedicated to literature search, we 
selected studies that evaluated directly or indirectly, explicitly 
or implicitly, the effects of habitat conversion (natural to 
anthropogenic) on ant FGs and that sampled ant fauna in 
areas with native vegetation (control) and in converted areas. 
We understand conversion as the integral transformation of 
a natural environment into an anthropogenic environment 
(Coppin et al., 2004), excluding uses such as selective logging, 
which only partially alter the natural environment, but including 
agroforestry. Titles and abstracts were carefully examined to 
determine whether the paper met the criteria for inclusion in 
the review. Then, the following criteria were used to select 
the studies for full reading: a) we included only studies on 
native vegetation that was completely converted to human 
activities for economic purposes and maintained for such 
purposes throughout the study; b) we excluded studies on fire 
ecology (burned vs. unburned areas), studies comparing non-
grazed vs. grazed areas or studies comparing different logging 

managements in native areas; c) we excluded converted 
areas that were in natural regeneration, rehabilitation or 
succession; and d) we only included studies that included 
functional classification of species and figures or tables that 
permitted to compare the response of ant FGs between native 
vegetation (control) and converted areas. A study carried out 
in a deactivated mining region was excluded because it was 
the only study with this type of land use among the selected 
studies. Thus, in our final dataset we had comparisons of 
natural areas with areas converted to monoculture, polyculture, 
pasture, and agroforestry.

We did not perform a meta-analysis because many 
published studies did not provide information such as 
mean and standard deviation or correlation or regression 
coefficients, which are necessary to calculate effect sizes 
(Borenstein et al., 2009). Thus, we devised a new simulation-
based approach, based on the general recommendations for 
Monte Carlo statistical tests (Manly, 2007). As most of the 
studies reported responses in the absence of formal statistical 
significance tests, we first defined the type of response through 



Sociobiology 68(2): e6071 (June, 2021) 5

visual analysis of figures and tables. Our assessments of 
the responses of different FGs in any particular study are 
therefore necessarily qualitative. For each study, we assessed 
whether the response of FGs to habitat conversion was 
positive, negative or neutral by comparing the occurrence of 
different FG in native vegetation (control) and in converted 
areas. When the mean values reported for each FG in the two 
environments did not differ or differed slightly (e.g. difference 
in relative presence was less than 4%; difference in mean less 
than 0.25; or overlapping points in the scatter plot for FGs in 
native and anthropogenic habitat), we considered the effect as 
neutral. Otherwise, we considered habitat conversion to have 
positive effects when the values were greater in the converted 
environment and negative effects when they were greater in 
the natural habitat. This approach is similar to that used by 
Hoffmann & Andersen (2003).

Due to the small number of studies that we included 
in the analysis according to the inclusion criteria above, it 
was not possible to characterize richness, frequency and 
abundance separately; we therefore combined these measures 
into a single response variable (Table 3). Thus, a positive effect 
may indicate a positive outcome on abundance, frequency 
and/or richness of a functional group, without differentiating 
between these measures.

Study characteristics

Our final selection included 17 papers published between 
1993 and 2018, corresponding to studies carried out in several 
continental regions present in the tropical climatic zone 
[Africa (2), Asia (2), Oceania (2), and South America (3)] 
and temperate zone [Europe (1), North America (1), and 
Oceania (6)]. The selected studies employed 11 methods of 
ant sampling: Pitfall traps (15), Winkler for leaf litter samples 
(3), baits (2), hand collection (2), baited arboreal pitfall traps 
(1), baited pitfall traps (1), baited subterranean traps (baited 
Eppendorf’s tubes) (1), soil monolith method (1), quadrat 
sampling (insect vacuum and mouth aspirator) (1), sweep 
netting and foliage shaking (1), and Tullgren funnels with 
leaf litter and surface soil samples (1) (Table 3) (for a general 
review of sampling ants methods, see Delabie et al., 2021). 
These methods were used for ant sampling in different strata 
(arboreal, leaf litter, soil, and subterranean). The anthropic 
land uses included in the studies were agroforestry (e.g. cocoa 
plantations with native woody plant or mixture of different 
crop plants), monoculture (e.g. coffee, sugarcane, Eucalyptus 
plantation), pasture (e.g. alien grasses, grazing or managed 
areas), and polyculture [including crop rotation, mixed-crop 
fields, cultivated fields (cereals), and farmland].  

Group Variations in nomenclature of some functional groups that occur in the studies

Arboreal Arboreal ants, arboreal nesting dominant, territorially dominant arboreal species, 
non-dominant arboreal species

Army ants 
Cryptic species
Dominant Dolichoderinae
Fungus-growers Attina, fungus-growing, fungivore/surface
Generalists Omnivore, omnivore/surface
Generalized Myrmicinae
Opportunists

Predators Other predators, predator/surface, predator/litter, specialized predators, specialist 
predators, generalist predators, large, solitary predators

Subordinate Camponotini
Cold-climate specialists
Hot-climate specialists
Tropical-climate specialists

Table 2. Functional groups and variations in nomenclature of some functional groups present in the studies which met the 
selection criteria of this review.

The classification of ants into FGs of these papers 
was according to functional schemes such as those of 
Andersen (1990, 1995, 1997), Delabie et al. (2000), Silvestre 
et al. (2003), and Weiser & Kaspari (2006) (Table 3 and see 
appendix 1). The classifications used in the selected articles 
are based on a particular functional grouping as previously 
mentioned and, in some cases, the authors of these articles 
made modifications and/or used literature with relevant 
information to group ants into ecological groups. We recognize 

the variety and specificity of the functional classifications of 
the set of studies selected in this review and, therefore, we 
made a broader and more general classification allowing us 
to analyze the extracted data. Most papers (17) classified 
ants into FGs and only two classified ants into functional 
guilds based on feeding and foraging guilds (Appendix 1). 
13 FGs were used for the whole study while some FGs with 
differences in nomenclature were combined into a single 
group to facilitate data interpretation (Table 2).
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Most studies had more than a single land use or 
sampled in contrasting landscapes (i.e., different locations) 
or different years or sampled in different strata and/or with 
different traps, as well as having more than a single type of 
native vegetation. Thus, when a study showed more than a 
single combination of native vegetation type versus converted 
environment, each combination was considered as a separate 
data set, i.e., independent case studies (hereafter observations), 
so that some papers corresponded to more than a single case 
study. Studies with paired comparisons in different climatic 
zones were excluded. Therefore, our review summed a total 
of 56 observations (Table 3) for the analyses.

Statistical analysis

Due to the nature of our data, assuming values of -1, 
0, and 1 (for negative, neutral, and positive responses, 
respectively – see below), we chose to use a Monte Carlo 
approach to calculate significance by comparing our observed 
results to simulations of the null hypothesis. Monte Carlo 
method works by comparing a test statistic with a large 
number of random samples generated under a given model, 
which often represents the null hypothesis (Manly, 2007). 
One advantage of this test is its flexibility in defining the 
statistics and the model used for the simulation, permitting 
it to be adapted for specific study questions (Manly, 2007). 
Thus, we developed Monte Carlo test specifically to address 
our study questions and to test our null hypotheses.

As we classified each response as negative, neutral, or 
positive, our statistical null hypothesis was that these values 
(-1, 0, +1) were randomly assigned to each response. We thus 
developed a simulation (Monte Carlo) model specifically 
to test this null hypothesis. We used this new Monte Carlo 
test to test whether the responses of ant FGs are significantly 
positive or negative (i.e. deviate significantly from what 
would be expected under our null hypothesis) and how these 
responses vary among the types of native vegetation, types 
of conversion, FGs, and climatic zone. Due to sampling size 
limitation, we considered observations from the same study 
as independent. 

We coded each response (observation) as -1 (negative 
response, i.e., decreased FG richness or abundance in converted 
environment), 0 (neutral, i.e., no difference between natural 
and converted environments), or +1 (positive, i.e., increased 
FG richness or abundance in the converted environment). 
We then performed analyses separately for each 1) type of 
converted environment, 2) type of native vegetation, 3) 
climatic zone, 4) FG, and 5) FG separated by climatic zone 
(temperate and tropical); for analyses 1 to 3 we grouped all 
FGs due to insufficient sampling size for separate analyses. 

In each analysis, we calculated the average response 
for each level of the explanatory variable by summing the 
responses (coded as -1, 0, and 1) and dividing this sum by 
the number of responses assessed. Thus, this index varies 

from -1 to 1. A value near -1 means that group most responses 
were negative, whereas a value close to 0 can mean that most 
response were neutral or that positive and negative responses 
were equally common and a value close to 1 means that most 
responses were positive. 

We then simulated the distribution of this index under 
the null model to assess whether the average responses differ 
significantly from zero. We are unaware of previous studies 
using exactly this type of simulation but, considering the 
flexibility of Monte Carlo test to adapt to specific research 
questions and nonstandard situations (Manly, 2007), we 
believe that this approach is valid. The null model used for 
these simulations was that positive, negative, and neutral 
responses were all equally probable, i.e., that a study could 
have observed a negative (-1), neutral (0), or positive (1) 
response for a give FG with the same probability. Thus, in each 
simulation, we randomly assigned a value of -1, 0, or 1 to each 
response (observation), simulating the null hypothesis that the 
responses were random, and calculated the average response 
with the randomized data. We repeated this procedure 9,999 
times, thus obtaining a distribution of average responses 
under the null model, and calculated significance (p-value) as 
the proportion of times that the simulated absolute value was 
greater than or equal to the real absolute value; the real data 
were included as one of the possible results of the simulation 
(Manly, 2007). Following a traditional line of null hypothesis 
significance testing, we rejected the null hypothesis for p 
≤0.05. All analyses were performed in R (R Core Team, 2018) 
and the scripts used are available as Supplementary Material 
2 and at https://github.com/pdodonov/publications.

Results

When the FGs were combined, the responses were 
either positive or neutral. Thus, monoculture and polyculture 
had negative effects (p<0.007), whereas agroforestry and 
pasture did not have statistically significant effects (p ≥0.07) 
(Table 4). The only habitats in which habitat conversion 
effects were consistently negative (p<0.007) were savanna and 
tropical and subtropical rainforests, and habitat conversion 
did not have statistically significant effects for other types 
of native habitats (p≥0.09). When combining the vegetation 
types, negative effects were observed both in the temperate 
and tropical zones (p<0.01).

Concerning the FGs, when combining the climate 
zones, six groups (cryptic species, fungus-growers, predators, 
subordinate Camponotini, cold- and tropical-climate specialists), 
responded negatively (p<0.02) to habitat conversion, whereas 
the other groups did not respond (p≥0.08) (Table 5). The 
cold- and tropical-climate specialists, as well as predators, 
cryptic species, and subordinate Camponotini, responded 
negatively (p<0.02) in the temperate zone too. In the tropical 
zone, however, only the fungus-growers and predators were 
negatively affected (p<0.008) by habitat conversion, with the 
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other groups having neutral responses (p≥0.07). The only 
significant positive effect (p=0.04) of habitat conversion was 
observed for hot-climate specialists in the temperate zone. 

Finally, arboreal ants, army ants, dominant Dolichoderinae, 
generalists, generalized Myrmicinae, and opportunists were 
not affected (p ≥0.07) by habitat conversion. 

Disturbed Habitat Number of 
observation 

Number of 
studies

 Number of observations 
considering the FGs Response Significance

Agroforestry 5 2 30      -0.2 0.4324

Monoculture 9 5 49 -0.3111 0.0057

Pasture 29 9 149 -0.119 0.0702

Polyculture 13 5 75 -0.2667 0.006

       Native Habitat Number of 
observation

Number of 
studies

Number of observations
considering the FGs Response Significance

Grassland 7 2 35       -0.2 0.1809

Savanna 2 1 12 -0.6667 0.007

Scrub, heath and shrublands 15 3 68 -0.0441 0.7154

Tropical and subtropical 
rainforest 16 8 89 -0.2969 0.0025

Tropical dry forest 2 1 16 -0.2857 0.1653

Woodland 14 6 83 -0.1471 0.0925

Table 4. Average response values of ant functional groups and significance for disturbed habitat and native habitat. Significant results 
(P < 0.05) are in bold.

Discussion

Negative effects habitat conversion to monocultures 
and polycultures were observed, as well as a lack of effect 
of conversion to agroforestry and pastures. These changes 
were observed in both the temperate and the tropical zones, 
with more FGs affected in temperate ecosystems. In general, 
the more specialized FGs (e.g. predators and cryptic species) 
responded negatively whereas more generalist groups did not 
respond to the habitat conversion. These results are partially 
consistent with our hypotheses and highlight the sensitivity of 
more specialized FGs to land use changes, especially in the 
temperate zone.

Conversion to monoculture and polyculture can thus 
affect both the taxonomic and functional ant diversity (Philpott 
et al., 2008; Fayle et al., 2010; Liu et al., 2016; Groc et al., 
2017; Saad et al., 2017; Rivera-Pedroza et al., 2019). This 
may be due to the intensive management of some of these 
land uses, in which, in addition to removing vegetation cover 
and soil preparation, the use of fertilizers and pesticides 
impacts the ant fauna (Lobry de Bruyn, 1999; Matlock & 
de La Cruz, 2003; Steinbauer & Peveling, 2011; Queiroz 
et al., 2012; Nickele et al., 2013). Additionally, the loss of 
diversity and simplification of vegetation structure that results 
of these processes modifies important habitat characteristics 
for ants, such as microhabitat structure, supply of nesting 
sites, temperature, availability/access to resources, as well as 
competitive interactions (Andersen, 1995, 2000; Hoffmann 
& Andersen, 2003; Philpott & Foster, 2005; Armbrecht et 
al., 2006; Pacheco et al., 2009; Amaral et al., 2019). In turn, 

agroforestry had a neutral effect, possibly due to land uses such 
as shade cocoa and coffee plantations that maintain a fraction 
of the native vegetation and have microclimates similar or 
close to those of natural vegetation, increasing the availability 
of food, nesting sites, and hiding places to the ants and other 
arthropods (Perfecto et al., 1997; Philpott & Armbrecht, 2006; 
Delabie et al., 2007; Groc et al., 2017; Amaral et al., 2019). 
Although pastures did not have significant effects, this result 
should be treated with caution, as pastures are open areas with 
sun exposure and cattle trampling, with limited food resources 
and nesting sites that directly impact on the ant fauna (Neves 
et al., 2012; Cantarelli et al., 2015). Still, it is possible that the 
lower intensity of management practices (e.g. the low rate of 
application of agricultural inputs) compared to monocultures, 
as well as the growth of shrubs and the occurrence of scattered 
trees, may result in smaller differences in ant FGs between 
pastures and native habitats (Dias et al., 2008; Neves et al., 
2012; Frizzo & Vasconcelos, 2013; Queiroz et al., 2017).

The negative effects were prominent in the conversion 
of tropical and subtropical rainforest and savanna. These 
environments are structurally and compositionally complex, 
and the reduction of this complexity likely affects the 
availability of resources and conditions necessary for ants, 
impacting the abundance and composition of several FGs in 
these habitats (Andersen, 1995, 2000; Hoffmann & Andersen, 
2003). On the contrary, the conversion of tropical dry forest, 
scrub, heath and shrublands, grassland, and woodland to 
anthropogenic land uses, show non-significant effects on 
ant FGs. Although this may be due to idiosyncrasies of the 
evaluated studies, it is possible that environments such as 
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Table 5. Average response values of ant functional groups for climatic zone, functional group and functional group by climatic zone. 
Significant results (P<0.05) are in bold.

  Functional Groups  Number of observations Number of studies Response Significance

Arboreal 14 4      -0.3 0.3359

Army ants 6 3       -0.5 0.215

Cryptic species 17 9 -0.5625 0.0072

Dominant Dolichoderinae 44 12 -0.1053 0.3879

Fungus-growers 7 3 -0.8333 0.0064

Generalists 11 4 -0.1429 0.8198

Generalized Myrmicinae 45 13 0.0588 0.6491

Opportunists 49 14 0.2174 0.0871

Predators 28 11 -0.6818 0.0001

Subordinate Camponotini 29 10 -0.6316 0.0001

Cold-climate specialists 9 4 -0.6667 0.0202

Hot-climate specialists 37 8  0.1923 0.1288

Tropical-climate specialists 7 4         -1 0.0013

 Functional Group in Temperate zone Number of observations Number of studies Response Significance

Cryptic species 8 3  -0.875 0.0032

Dominant Dolichoderinae 38 8 -0.1351 0.2829

Generalized Myrmecinae 38 8 0.0714 0.6256

Opportunists 38 8 0.1579 0.2817

Predators 6 3     -0.8 0.019

Subordinate Camponotini 24 6 -0.8571 0.0001

Cold-climate specialists 8 3    -0.75 0.0147

Hot-climate specialists 34 6 0.2917 0.0451

Tropical-climate specialists 4 2        -1 0.0257

  Functional Group in Tropical zone Number of observations Number of studies Response Significance

Arboreal 14 4       -0.3 0.3411

Army ants 6 3       -0.5 0.2147

Cryptic species 9 6     -0.25 0.518

Dominant Dolichoderinae 6 4           1 0.0739

Fungus-growers 7 3 -0.8333 0.0089

Generalists 11 4 -0.1429 0.8193

Generalized Myrmecinae 7 5          0 1

Opportunists 11 6       0.5 0.1286

Predators 22 8 -0.6471 0.0008

Subordinate Camponotini 5 4           0 1

Cold-climate specialists 1 1           0 1

Hot-climate specialists 3 2          -1 0.0753

Tropical-climate specialists 3 2          -1 0.0748

Climatic Zone  Number of 
observations

Number of 
studies

Number of 
observations 

considering FGs
Response Significance

Temperate 38 8 198 -0.1386 0.0177

Tropical 18 9 105 -0.3125 0.0002
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scrublands, heathlands, and grasslands select predominantly 
generalist species adapted to more stressful environmental 
conditions  (such as the species of ants of Dominant 
Dolichoderinae, Generalized Myrmicinae, Opportunists in 
relation to the habitat and/or diet generalists), thus being less 
affected by habitat conversion. On the other hand, a lack of 
effect could also have been observed if some groups (probably 
more specialized) were harmed while others (generalists) 
were favored, generating a substitution of FGs (Andersen, 
1997, 2000; Hoffmann & Andersen, 2003; Underwood & 
Fisher, 2006).

As expected, the conversion of habitat as a whole 
(without separating between natural and anthropogenic land 
uses) negatively impacted several FGs of ants, with this effect 
being more pronounced in temperate habitats. Although 
disturbance impacts tend to be greater in habitats that are 
structurally complex (Arcoverde et al., 2018), it is possible 
that ant FGs of temperate native habitats are more vulnerable 
to conversion, as more groups have been affected in this 
zone (cryptic species, predators, subordinate Camponotini, 
cold- and tropical-climate specialists) than in the tropics 
(fungus-growers and predators). This suggests that the loss 
of structural heterogeneity and complexity, as well as the 
typical habitat conditions and resources in anthropogenic 
land uses, has more significant consequences for ant FGs in 
temperate native (Andersen, 1995, 1997; Gómez et al., 2003; 
Underwood & Fisher, 2006; Gollan et al., 2011;  Castillo-
Guevara et al., 2019). Finally, it is possible that, as tropical 
areas are generally more species-rich, this high species richness 
results in greater resistance or resilience to habitat conversion 
(Tilman et al., 2014).

The most affected FGs were cryptic species, fungus-
growers, predators, subordinate Camponotini, cold- and 
tropical-climate specialists. Such effects were also observed 
when evaluating temperate ecosystems separately, with the 
exception of hot-climate specialists, which were favored, and 
fungus-growers, which had significant losses recorded only in 
the tropics, similarly to the predators. In general, these groups 
are more specialized than those that were not affected. The 
response of predators and cryptic species to conversion may 
be due to their specificities to their own habitat conditions and 
high specialization of requirements, being especially sensitive 
to disturbances (Andersen & Majer, 2004; Underwood & 
Fisher, 2006; Kone et al., 2012). This could also be the case of 
subordinate Camponotini, which also tend to occur in complex, 
heterogeneous and shaded habitats with abundant leaf litter for 
nesting and foraging (Andersen, 1997; Hoffmann & Andersen, 
2003; Hill et al., 2008; Parui et al., 2015; Assis et al., 2018). 

The FGs cold- and tropical-climate specialists are 
composed of ants that have important restrictions in habitat 
tolerance, such as variation in temperature and humidity 
(Andersen, 1995, 1997; Castillo-Guevara et al., 2019). In 
temperate regions, the occurrence of cold-climate specialists 
in native habitats, such as oak forests, is favored by the 

microclimate conditions of low temperature and sun exposure 
(Cuautle et al., 2016; Castillo-Guevara et al., 2019); in addition, 
ant species richness and overall abundance of this FG may 
decrease as land use intensifies (Gómez et al., 2003). It is 
possible that the same explanation applied to tropical-climate 
specialists. The FGs hot-climate specialists, in turn, were 
favored by habitat conversion in temperate regions. This 
may be due to increased temperatures in converted areas (see 
Gómez et al., 2003; Schnell et al., 2003; Gollan et al., 2011). 
Still, some studies observed this group only or mostly in 
native vegetation (see Gómez et al., 2003; Yates & Andrew, 
2011; House et al., 2012).

Although studies suggest that some fungus-growers 
(e.g. leaf-cutting ants) are favored by agricultural land uses, 
deforested areas, edges and disturbed environments (Jonkman, 
1979; Vasconcelos & Cherrett, 1995; Wirth et al., 2007; 
Siqueira et al., 2017), we found a negative effect on this 
group in the tropics. Fungus-growers ants form a peculiar 
FG, with habits associated with fungal gardening, for which 
they use residues from arthropods and carcasses and/or live 
or dead plant material to grow their symbiotic fungus or yeast 
(Delabie et al., 2000; Mehdiabadi & Schultz, 2010). Forest 
habitat loss has been related to decreased abundance of this 
group in Argentina (González et al., 2018). The impacts of 
habitat conversion in fungus-growers FGs probably occurred 
because some land uses, with intensive management, in 
addition to homogenizing the habitat, affect strongly the ant 
fauna through the use of pesticides and soil preparation with 
effects on the structure of the nests, as well as the availability 
of the organic substrate for cultivation of the fungus (Lobry 
de Bruyn, 1999; Queiroz et al., 2012; Nickele et al., 2013). 
Our results show that, although some species may be favored 
by habitat conversion, fungus-growers ants in general are 
negatively impacted by it. 

Some FGs were not affected by the conversion 
of native habitats, including dominant Dolichoderinae in 
temperate and tropical ecosystems, which can be explained 
by their environmental tolerance, being favored mainly 
by warmer conditions and open habitats (Andersen, 1995, 
1997; Hoffmann & Andersen, 2003). Similarly, the lack of 
response of generalized Myrmicinae is probably due to their 
broad environmental tolerance allowing them to predominate 
in environments with moderate levels of disturbance and 
shaded habitats (King et al., 1998; Hoffmann & Andersen, 
2003; Andersen & Majer, 2004). Opportunists also had a 
neutral effect on conversion, as it is a group with broad 
habitat tolerance that can occur in a range of environments, 
generally favored in disturbed sites and with low productivity 
(Andersen, 1990, 1995, 1997). 

Arboreal ants, army ants, and cryptic species also 
had neutral responses (in general or in one of the climatic 
zones), probably due to the existence of negative and positive 
responses of these FGs in different observations. The neutral 
response of arboreal ants is possible because some land uses 

https://www.linguee.com/english-portuguese/translation/together+with.html
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still maintain trees that provide nesting sites, a limiting factor 
for this FG (Majer & Delabie, 1999; Schonberg et al., 2004; 
Kone et al., 2012). Army ants, in turn, are harmed in highly 
disturbed habitats (Matsumoto et al., 2009) by the lack of 
adequate bivouac sites, unfavorable microclimate and few 
organisms living in leaf litter and fallen logs (Roberts et al., 
2000; Peters et al., 2011). However, the active search for 
preys associated with the nomadic behavior (Gotwald, 1995), 
the environmental tolerance and broader diet of some army 
ant species, may allow the occurrence of this FG in anthropic 
environments (Perfecto, 1992; Roberts et al., 2000; Delabie 
et al., 2007; O’Donnell et al., 2007; Matsumoto et al., 2009; 
Schleuning et al., 2011; Assis et al., 2018). Cryptic species 
are more diverse and abundant in forest habitats, associated 
with tree cover (Majer et al., 2004; Dalle Laste et al., 
2019), and in our study they were negatively affected by the 
conversion of habitat except in the tropical zone. It is then 
possible that in tropical environments some components of 
this group have plasticity that allows their occurrence in land 
uses beyond the forest.

The neutral response of cold-climate specialists to 
conversion in the tropical region may not reliable as there 
were only two observations from a single study, for this 
group. Generalist ants did not respond to habitat conversion, 
probably because of this group’s ability to use different sites 
for nesting and food sources (i.e., broad ecological niche), 
permitting their occurrence in native habitats (Kone et al., 
2012; Pacheco et al., 2017; Saad et al., 2017) as well as in 
anthropogenic land uses (Kone et al., 2012; Assis et al., 
2018), with survival and even dominance in homogeneous 
and simplified environments (García-Martínez et al., 2015; 
Assis et al., 2018). In the tropical region, habitat conversion 
did not affect subordinate Camponotini even though this 
group is usually associated with complex and shaded habitats 
(Parui et al., 2015), suggesting a broader flexibility to their 
occurrence in this region.

Our results highlight that habitat conversion plays an 
important role in the loss of biodiversity. Although we have 
not detected the effect of habitat conversion for all FGs of 
ants considered in the review, we have evidenced, in general, 
a negative impact on part of the groups, where polyculture 
and monoculture have stronger impacts than pastures and 
especially agroforestry. These effects are especially evident 
on the more specialized groups.  In addition, although some 
groups were not affected by habitat conversion, positive 
effects were seldom observed. In addition, we found more 
observations in the temperate than in the tropical regions, 
indicating that further studies in tropical regions are needed 
to better understand these impacts. In general, our study 
points out the importance of remnants of native habitats for 
the shelter and protection of specialized organisms, while 
also ensuring the ecosystem services mediated by them 
– especially compared to more managed systems, like 
monocultures and polycultures. 
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