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 تعميم للتوزيع فوق الهندسي 

 على بن مرزوقة , الفضل خليفة الشيخ 

 نقدم في هذا البحث تعديلا للتوزيع فوق الهندسي يأخذ بعين الاعتبار الحالة التي تكون فيها وسيلة المعاينة منحازة إلى                    :خلاصـة   
 ندرس  .تكون تحته كل العينات متساوية الاحتمال     أحد النوعين الذين يجري منهما الاختيار وذلك في مقابلة التوزيع الهندسي الذي             

خصـائص هـذا التوزيع الذي أسميناه التوزيع فوق الهندسي المعمم بما يشمل استخلاص وتقييم نوعاً من التقريب الطبيعي لهذا                    
       .التوزيع

 
ABSTRACT : In this paper we introduce a modification of the hypergeometric distribution that caters for the case 
when the sampling scheme favours the inclusion of units of one of the two types involved, as opposed to the 
hypergeometric distribution under which all samples are equally likely. The properties of the resulting 
distribution, termed the generalized hypergeometric, are studied, including the derivation and numerical 
assessment of a normal approximation of the distribution.  
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                 he celebrated capture re- capture scheme ( see ,  for example,  Tuckwell 1995 ), as  applied  to the  

          estimation of  the number of fish in a lake, runs as follows. Catch a number of fish S, say, from 
the lake, mark them and then release them in the lake. Now, re-catch another sample of fish, of size N, 
say, from the lake. If X is the number of marked fish in this latter sample, then assuming X has a 
hypergeometric distribution, the total number of fish in the lake can be estimated. However, after the 
trauma of being caught and marked, the marked fish might, perhaps, be more likely to be caught again 
compared to the fish that escaped that experience. If that were the case, the hypergeometric model 
would not be applicable. The correct model should make samples with few marked fish less likely and 
samples with many marked fish more likely as compared to the hypergeometric model. One such model 
is the generalization of the hypergeometric distribution that we consider here. 

The distribution first arose when considering a stochastic model for two species competing on a 
fixed number of sites. This model will be described in section 2. The assumptions of the model and the 
resulting equilibrium distribution resemble their counterparts in the stochastic approach to the kinetics 
of chemical reactions (See, for example, McQuarrie 1967, Formosinho and Miguel 1979, and Hall 
1983). We make full use of the techniques used in studying those distributions to investigate the 
properties of the generalized hypergeometric distribution.  

A Stochastic Model for Two Competing Species 

Consider two species A and B with total fixed sizes S and M, respectively, competing on N fixed 
sites. Initially some of the sites, r0 say, are occupied by species A and the rest by species B. We assume 
that all of the sites will continuously be occupied, but the number of sites occupied by either species 
may increase or decrease, respectively, by pushing out, or being pushed out by, members of the other 
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species. More specifically, denoting by X(t) the number of sites occupied by species A at time t, we 
assume that: 
(i) The probability that X(t) increases by one in (t, t+h) is  

 
                       )())())(((1 ho+htX-NtX-SK ; 

(ii) The probability that X(t) decreases by one in (t, t+h) is 
 

                      K X t M - N + X t h+ o h2 ( )( ( )) ( ) ; and 
  

(c) The probability of more than one event in (t, t+h) is o(h), where K1 and K2 are positive constants, 

and o(h) is such that  .0)(lim
0

=
→ h

ho
h

 

It might help the argument to think, tentatively, of the two species as political parties and the N 
sites as seats of a parliament that is being continuously updated according to the rules specified in (i), 
(ii), and (iii). The parameters K1 and K2 are then measures of competitiveness of the two parties. 

Differential Difference Equation and Equilibrium Solution 

Let pr(t) = P( X(t) =  r X(0) =  r0). It easily follows from the assumptions that pr satisfies the 
differential difference equation 

 

    
).())())(((

)()1)(1()()1)(1(

21
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tprNMrKrNrSK

tp+r+N-M+r+Ktp+r-N+r-S K= 
dt

(t)pd

r

+r-r
r

+−+−−−
 (2.1) 

 
The equilibrium solution is obtained by putting the derivative equal to zero and solving for pr = pr(∞). It 
is easy to see that it satisfies 

 
                                   pr-Nr-SK=p+r+N-M+r r+r ))(()1)(1( 1 ,                                  (2.2) 

 where 
                    K=K1/K2.                                                                 (2.3) 

Putting r = 0,1,...,   and making successive substitutions leads to the equilibrium solution 
 

                          r

r

0p = K S!N!(M - N)!
r!(S - r)!(N - r)!(M - N + r)!

p .                                            (2.4) 

 
The constant p0 can be obtained by noting that the summation of pr over all values of r is equal to 1. 
This distribution is a generalization of the hypergeometric distribution and can justifiably be called a 
generalized hypergeometric (gh) distribution. However, the term generalized distribution may mean a 
different thing in the literature. See for example, Johnson and Kotz (1969), pp. 158-60. The 
hypergeometric distribution corresponds to the special case K = 1. In fact, stressing the dependence on 
K,   pr can be written as 
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Putting K = 1 and summing over all r gives 
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That is , the distribution reduces to the hypergeometric distribution. Thus, if K =1, the number of sites 
occupied by species A is effectively determined by taking a simple random sample of size N from the 
S+M units in the two species and counting the units that belong to species A. In this case all samples of 
size N are equally likely. The case K > 1 is more favorable to inclusion of units of type A than the case 
K = 1. One should expect that situations in which a few sites are occupied by A are less likely, and those 
in which many sites are occupied by A are more likely, compared to the hypergeometric case. The 
reverse should be expected when K<1. It is reasonable to interpret the number of sites r occupied by 
species A as few or many according as r is less than or greater than the average number of sites, µ, 
occupied by species A.  One obvious result to expect is that µ(K) should be an increasing function of K. 
We now see how these expectations are met by the gh distribution. 
 
Let G x K( , ) and H x( ) denote, respectively, the probability generating functions (pgf) of the gh 
distribution and the hypergeometric distribution. Thus H x G x( ) ( , )= 1 . Now, from (2.5),  we have 
 

         (1)p(Kp(1)pK=(K)p 00r
r

r ) .                                               (2.7) 
 Summing over all r gives 

)(Kp(1)p=H(K) 00                                                        (2.8) 
 
Likewise, multiplying both sides of (2.7) by r, summing over all r and using the above result gives 
 

                                                   H(K)(KHK=(K) )′µ .                                                   (2.9) 
Note also that 

H(K)(1)pK=(K)p r
r

r .                                                 (2.10) 

Multiplying both sides by xr and summing over all r expresses the pgf G in terms of H as 
 

                                   )H(K(Kx)H=K)G(x, .                                                  (2.11) 

Using (2.11), or multiplying both sides of (2.2) by xr and summing over all r, leads to the following 
differential equation of G(x, K) 

                        KSNG - (K(S + N - 1)x + M - N + 1) dG
dx

+ (Kx - 1)x d G
dx

= 0
2

2 .                          (2.12) 

Let )()1()( KppK rrr =ψ  for r a non-negative integer in the support of rp  . It follows from (2.10) 
that 

r
r KKHK /)()( =ψ                                                    (2.13) 

We can now prove the following theorem. 
 
Theorem 1: Keeping the other parameters fixed: 
(a) )(Krψ  is an increasing or decreasing function of K according as r < µ(K) or r > µ(K); 
(b) µ(K)  is  an increasing functions of K. 
Proof: The first assertion follows by differentiating (2.13) with respect to K, noting where the derivative 
is positive or negative, and expressing the condition in terms of )(Kµ , using (2.9). The assertion 
concerning µ(K)  follows if we can establish that the derivative  with respect to K is positive. It follows 
from (2.9) that 
 

                   ( )[ ]22}][][{ KH(K)HK-(K)HK(K)HH(K)=
dK

(K)d ′′′+′µ
     (2.14)    

 
Differentiating both sides of (2.11) twice with respect to x and putting x = 1 gives 
 

   µµσ -+=1))-E(X(X=H(K(K)HK 22)2 ′′ .                                       (2.15) 
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 Substituting forµ(K)  its expression in (2.9) leads to 
 

                                
d (K)

dK
= (K)

K
> 0

2µ σ .                                                         (2.16) 

     
The essence of the comparison between the gh and the hypergeometric distributions is captured in the 
following corollary that easily follows from Theorem 1 . 

Corollary:  

(a)  pr(1) > pr(K) if and only if r < µ(K); 
(b)  µ(K) > µ(1) if and only if  K >1. 

 

Moments of the gh Distribution 

It is difficult to express the moments of the gh distribution, including the mean and variance, in 
simple algebraic functions of the parameters. In this section we develop relations  that provide 
convenient means of evaluating the mean and variance without the need to compute the probabilities in 
(2.4). Note that putting x = 1 in (2.12) leads to the relationship 

 
µ µ σ µ µ σ(M - N + )+ = K(S - )(N - )+ K2 2 .                                 (3.1) 

 
We need to eliminate σ 2 in order to get a relation involving µ alone. This can be achieved by 
investigating the variation of the mean with each of the four parameters of the distribution keeping the 
others fixed. In the case of K this leads to a first order differential equation, while for M, S, and N it 
leads to recurrence relations. As for other moments, it can be shown, by differentiating (2.12) r times 
and putting x = 1, that the factorial moments satisfy the relations 

 
0=1)m-+(K1)m+r+N-M+1)-2r-N+-(K(Sr)m-r)(N-K(S rrr 21 ++ , (3.2) 

r = 0, 1, 2,... 
 

Variation of the Mean with K 

Substituting (2.16) in (3.1) and noting that when K = 1 the mean reduces to that of the corresponding 
hypergeometric distribution, we get the following theorem. 

 
Theorem 2: The mean of the gh distribution varies with K according to the differential equation 

 

                           )-)(N-K(S-)+N-(M=
dK
d1)-K(K µµµµµ

, (3.3) 

with initial value 
         )( M+SNS=(1)µ .                                                           (3.4) 

 
It is difficult to solve this differential equation analytically but a numerical solution should be possible. 
Once the mean is computed, σ 2( )K  can be evaluated from (3.1). Note also, from (2.16), that σ 2( )K  
can be obtained from the slope of the curve ofµ( )K  at K.  

Recurrence Relations for the Mean 

First note that, considering the dependence of pr on S, for fixed K, M, and N, we have from (2.4) 
 

                                 )11 (Sp)-(Sp(S)pr)-(S=)-(SpS 00rr ,     (3.5) 
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true for all r . Summing over all r gives 
 

                                                 )1][ (Sp)-(Sp(S)-S=S 00µ .                                             (3.6) 
 
Multiplying (3.5) by r and summing over all r leads to 
 

                             )1][1 2 (Sp)-(Sp(S)-(S)-(S)S=)-(SS 00
2 σµµµ . (3.7) 

 
Substituting (3.6) in (3.7) we get 
 
                                                         ]1].[[2 )-(S-(S)(S)-S=(S) µµµσ .                                          (3.8) 
 
Following similar steps, it can be shown that 
 

                             ]11].[[2 )-N,-(M-N)(M,N)(M,-N=N)(M, µµµσ .                          (3.9) 
 
Finally, by interchanging M and S, and µ and µB, where µB is the average number of sites occupied by 
species B, it follows from (3.8) that 
 

       ]1].[[2 )-(M-(M)(M)-M=(M) BBB µµµσ .                                    (3.10) 
 
But B (M)= N - (M)µ µ . Thus 
 

                        ]1].[[2 (M)-)-(M(M)+N-M=(M) µµµσ .                                  (3.11) 
   
 
Substituting (3.8), (3.9), and (3.11) in (3.1) and introducing suitable starting values for computational 
purposes leads to the following theorem. 
 
Theorem 3: The mean varies with each of the parameter(s) shown as argument, with the other 
parameters fixed, according to the following recurrence relations 
 
(i) ]11[]11[ )-(SK)-(+KN+S+N-M)-(SKS-)-(SS+KSN=(S) µµµµ , with µ(0) = 0.     (3.12) 
 
(ii) ( )]11[]11[ -MK)-(+M)+K(S)-(MK)-N)(-(M-KSN=(M) µµµ ,  with µ(0) = N.            (3.13)   
 
(iii) ]111[]111[ )-N,-(MK)-(+KS+M)-N,-(MK)-N(+KSN=N)(M, µµµ ,                    (3.14) 
 with µ(0, M) = 0 and µ(N, 0) = N. 
 

 
It is desirable to have a relation that describes the variation of the mean with N alone. This easily 

follows by suitably substituting (3.14) in either of (3.12) or (3.13). The resulting relation is given in the 
following corollary. 
 
Corollary: The mean varies with N according to the following relation 
 

][][ 1)-(NK)-(1+1+N-M+KS1)-(N-SKN=(N) µµµ , with initial value µ(0) = 0.          (3.15) 
                                                                   
Elsheikh (1997) has derived similar recurrence relations for the equilibrium means of some 
distributions arising in chemical reactions. These relations are best illustrated by an example. 
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Example 

Consider a gh distribution with parameters M = 6, S = 5, N = 4, and K = 2. The distribution can be 
worked out using (2.2). It turned out that it has mean and variance given by µ = 632/275, and 2σ  = 
51576/2752. Using relation (3.14), the most feasible in this case, with the given starting value, one can 
directly verify that µ(1) = 5/8, µ(2) = 28/23, µ(3) = 87/49, and finally, µ(4) = 632/275, in agreement 
with the correct value. The variance now can be obtained from (3.1). The other relations given by 
Theorem 3 give exactly the same values. Note that for the latter relations the variance can also be 
obtained from (3.8), or (3.9), or (3.11) according to the relation that was used to obtain the mean. 

Approximating the Mean and Variance 

Note that when the minimum of N, S, M is fairly large then µ(S) should not differ much from µ(S-1). 
Using this in (3.12), the mean can be expected to be well approximated by the positive root of the 
equation 

                              µ µ µ µ(M - N + )= K(S - )(N - ) .                                              (3.16) 
 

Differentiating (3.16) with respect to K and using (2.16) gives 
 

             )-)(N-K(S=+)-K(N+)-K(S++N-(M 2 µµσµµµµ ][ .    (3.17) 
Using (3.1) again we get 

                                             
µµµµσ +N-M

+
-S

+
-N

+=
2

11111
.                                          (3.18) 

 
Numerical computation using the recurrence equations derived in section 3 indicates that the error in 
these approximations does not exceed 1, irrespective of the values of the parameters. Noting that the 
random variable is integer-valued, the approximations are thus very good. 

 Maximum Likelihood Estimation 

First assume that all parameters of the distribution are known except K. This situation may arise 
when we suspect that the sampling scheme is favorable to one of the two types concerned and we want 
to quantify the extent of that. The likelihood function is conveniently expressed in (2.10). 
Differentiating with respect to K and equating the derivative to zero gives the maximum likelihood 
estimate (MLE) of K as the solution of the equation 

 
                                                       H(K)K=rH(K) ′ .                                                            (4.1) 

 
Using (2.9), we have the MLE of K as the solution of 
 

                                                              µ(K)= r                         (4.2) 
 
Using (4.2) with (3.16), we get an approximate expression of the MLE of K as 

 
                       ( )r-Nr)-(Sr)+N-r(M=K̂ .                                                   (4.3) 

 
The second situation to consider is when all parameters are known except M. We think of M here as the 
number of unmarked fish, and we assume that K is known from previous experiences. It is 
straightforward from (2.4) that 

 
                     (M))P-(Mr)P+N-(M=)-(M(M)PN)P-M(M rr 11 00 . (4.4) 

 
Summing over all r gives 



A GENERALIZATION OF THE HYPERGEOMETRIC DISTRIBUTION   
 

 

 121

     )-(M)P+N-(M=(M)N)P-M(M 100 µ .                                     (4.5) 
 
Using (4.5) in (4.4) we can express the likelihood ratio (LR) as 
 

                                 
r+N-M

+N-M=
)-(MP

(M)P=LR(M)
r

r µ
1

.                                          (4.6) 

The MLE of M is given as 
    }LR(M):{M=M 1maxˆ ≥ .                                               (4.7) 

This simplifies, in light of (4.6), to  
                                  $ maxM = {M: (M) r}µ ≥ .                                                 (4.8) 

Since µ obviously increases with M (see (3.10)), it follows that $M  is given by the integer part of the 
solution for M of the equation 

                                           µ(M)= r                                                             (4.9) 

Using (4.9) with (3.16) gives an approximate expression of $M  as  
 

                                     





r
r)+r)-r)(K(S-(N=M̂ .                                             (4.10) 

where [ x ] is the integer part of x. It is interesting to note that when K = 1 the approximate MLE of M 
reduces to that given by the hypergeometric distribution. 

It is to be noticed from the preceding derivation that the same likelihood equation resulted in the 
estimation of K and M. If both of them are unknown, it is necessary to take more than one observation 
from the distribution.  

Binomial and Normal Approximations of the Distribution 

Assume K and N are finite, S → ∞, M → ∞, such that S/M  = λ . It follows from (2.2) that 
 

                                                  pr)-(NK=p)+(r r1+r λ1 .                                              (5.1) 
This corresponds to a binomial distribution with parameters N and p = Kλ /(1+Kλ). If N is large the 
normal approximation of the binomial distribution should be in effect. 

A normal approximation of the distribution, not necessarily through the binomial, is also possible. 
The derivation that follows is essentially due to Dunstan and Reynolds (1981).  We have , from (2.2),  

 

                              
r)+N-r(M

)+r-)(N+r-K(S=
p
p

1-r

r 11
.                                             (5.2) 

 
If the minimum of N, S, and M is large, the mode m defined by 
 

                    }{ 1>pp:r=m rr 1max − ,                                              (5.3) 

approximately satisfies the equation 
                                 )+m-)(N+m-K(S=m)+N-m(M 11 .                               (5.4) 

It follows from (5.2) that, for j > 0 

 
p
p

p
p

Tm j

m

m i

m ii

j

i
i

j
+ +

+ −= =

= =∏ ∏
11 1

                                             (5.5) 

where 

                i
-1 -1T (1 - i

S - m+ 1
)(1 - i

N - m+ 1
)(1+ i

m
) (1+ i

M - N + m
)≅ .              (5.6) 

Thus, 
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]exp[ )
m+N-M

1+
m-S

1+
m-N

1+
m
1-i(T i ≅ .                                       (5.7) 

It follows that 

               m+ j

m

2p
p

(- j )≅ exp
2 2σ

,                                                         (5.8) 

where 

                                       
1 = 1

m
+ 1

N - m
+ 1

S - m
+ 1

M - N + m2σ
.                      (5.9) 

Hence the distribution can be approximated by a normal distribution with mean µ and variance σ2 as 
given by (5.4) and (5.9). As the mean of the distribution is well approximated by the solution of (3.16), 
the approximate mean can be used in place of the mode.  

As noticed by Hall (1983), the derivation above is rather vague about the relative sizes of the 
parameters for which the approximation holds, apart from the requirement that the values of M, S, and N 
should be large, which is almost always met as far as chemical reactions are concerned. Hall has 
provided conditions on the parameters under which the distribution converges to normality. The 
approach we adopt here is to resort to numerical computations. 

 Numerical Assessment of the Normal Approximation 

The analysis is restricted to N S M≤ , . We considered values of N  from as small as 10. The 
cumulative distribution function corresponding to (2.4) was computed at each possible integral value 
and compared to the value given by the normal distribution function with mean and variance given by 
(3.16) and (3.18), respectively. A continuity correction was used. For each set of parameters the 
maximum difference was recorded. The approximation was taken as satisfactory so long as the 
maximum absolute difference  does not exceed 0.001. 

Initially, extensive exploratory computations were carried out by varying the parameters N, M, S, 
and K. It was noticed that the quality of the approximation was closely related to the values of N and 
µ/N, where µ is the approximate mean given by the positive solution of (3.16). A program was then 
written to facilitate the investigation of the range of values of µ/N, for each N, under which the 
approximation is satisfactory. The calculations were run separately for K K< >1 1and . It was 
found that the approximation can be good for values of N as small as 30.  
The results can be summarized for the two cases of K as follows. 
 
Case of K > 1: 
(i) For N ≥ 30  the approximation is found to be satisfactory for µ/N ∈ [0.23, 0.59] and it gets better 

as K approaches 1. 
(ii) For N ≥ 50  also the approximation is found to be satisfactory provided µ/N ∈ [0.15, 0.69] and it 

gets better as K approaches 1. 
(iii) For N ≥ 100  also the approximation is found to be satisfactory provided µ/N ∈ [0.086, 1.0] and 

for all values of K. 
 

Case of K < 1: 
(i) For N ≥ 30  the approximation is found to be satisfactory for µ/N ∈ [0.399, 1.0) and it gets better 

as K approaches 1. 
(ii) For N ≥ 50  also the approximation is found to be satisfactory provided µ/N ∈ [0.282, 1.0) and it 

gets better as K approaches 1. 
(iii) For N ≥ 100  also the approximation is found to be satisfactory provided µ/N ∈ [0.092, 1.0) and 

for all values of K. 
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