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 الطرق الحديثة لتحليل استقرار الجهد الكهربي لنظم القوى الكهربية
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الجهد ) اتزان  ( تقدم هذه الورقة عرض اجمالي للطرق ذات المهارة  العلمية لموضوع تحليل استقرار              : خلاصة
مالي  يصف عدداً من الطرق المنشورة و المستخدمة لحساب          وهذا العرض الاج  . الكهربي لنظم القوى الكهربية     

و تستخدم هذه الأدلة لتنبأ بقرب عدم استقرار أو انهيار           . أدلة الاستقرار للجهد الكهربي لنظم القوى الكهربية       
، منحنيات القدرة الفعالة و غير الفعالة     : الطرق التي وصفت في هذه الورقة كالآتي        . الجهد الكهربي لنظم القوى   

التحميل بطريقة الحل   ) احتياطي(قيمة أحادية الانحلال، تحليل الطور ، دالة الاختبار، المحددة المخفضة، حافة             
تعتمد هذه  . معاوقة الحمل ودالة الطاقة   / ، حافة التحميل المحلي، ثفنن      ) لسريان الأحمال (المتعدد لسريان القوى  

 على نموذج نظم القوى المستخدم لدراسة سريان القوى و          الطرق على الأعمال الأصلية لمؤلفيها، وتعتمد أيضا      
. الذي يفترض فيه على ان احمال القدرة الفعالة وغير الفعالة أهم العوامل التي تؤدي الى عدم استقرارية الجهد                  

   .)IEEE 30-bus system(تم تطبيق بعض الطرق الموصوفة بالورقة على نموذج نظام القوى المعروف ب 
 
ABSTRACT: This paper presents a literature survey on the subject of voltage stability 
analysis of power systems.  The survey describes several published methods and 
techniques used to determine voltage stability indices. These indices predict proximity to 
voltage instability and collapse problems. The Q-V and P-V curves; singular value 
decomposition; modal analysis; test function; reduced determinant; loading margin by 
multiple power flow solutions; local load margins; thevenin/load impedance; and energy 
function are the methods which have been decribed in the paper. The methods described 
are based on the original work that first proposed them. They are based on the power-
flow system model, where the variation of real and reactive powers are assumed to be the 
main parameters driving the system to voltage instability.  Some of the described 
methods were applied on the IEEE 30-bus power system. 
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1. Introduction 

P roblems related to voltage instability in power systems have been experienced by many utilities and are     
today, in many countries, one of the main concerns in power system operation and planning.  Forcing 

the transmission lines (network) to operate close to their thermal capability (maximum capacity) to avoid 
the cost required for new lines and power plant facilities has lead to many of these voltage instability 
problems, due to inadequate reactive power margin. Several networks collapse caused by voltage instability 
problems were reported in various countries such as USA, France and Japan (Taylor, 1994; Baribier and 
Barret, 1980; Kurita and Sakurai, 1986). 

The phenomenon of voltage instability in power systems is characterized by a continuous decrease 
(drop) of system voltage, which is gradual at the initial stage and then becomes rapid.  Generally this is 
triggered by a disturbance or change in operating conditions, which creates increased demand for reactive 
power in excess of system capacity. The disturbance or change in operating conditions which can lead to 
voltage instability and collapse could be related to the unexpected increase of load level or to a sudden loss 
of transmission line, transformer, a generator, a slow clearing of a system fault or response of various 
control systems (Miller, 1982). 

Kundur (1994) has characterized the voltage collapse based on actual incidents where he described 
this phenomenon, indicating the initiating causes, the problem itself and the resultant phenomenon 
including the time frame of collapse. In the course of finding solutions to voltage stability problems, it is 
very helpful to classify them into two categories: large-disturbance voltage stability  and small disturbance 
voltage stability (Gao et al, 1992; Kundur, 1994). To study and analyze large-disturbance voltage stability, 
a dynamic performance analysis is required using non-linear time simulations. This is a time consuming 
process in terms of CPU time and the engineering effort required for analysing the results.  Small-
disturbance voltage stability on the other hand can be studied with steady state or static approaches using 
linearization of the dynamic equations at a given operating point.  

Most of the time, voltage stability analysis requires study of the wide range of system conditions and 
various contingencies.  For this type of applications, the steady state or static analysis approach is more 
suitable and if properly used can provide insight into the voltage instability problem (Gao et al, 1992). 

The analysis of voltage stability for a given system state involves the examination of the following 
two-aspects (Kundur, 1994): 
• Proximity of voltage instability: How close is the system to voltage instability? 
• Mechanism:  What are the voltage weak points and what areas are involved? How and why does 

instability occur?  What are the contributing factors?  Proximity provides information regarding voltage 

 248



STATE OF THE ART METHODS FOR ELECTRIC POWER SYSTEMS 

 249

security whereas the mechanism provides useful information, which may lead to prevention of voltage 
instability (such as system modification or operating policies and strategies), thus avoiding voltage 
collapse. 

A number of techniques and methods have been proposed in the literature for voltage stability analysis 
using steady state (static) method (Mansour et al, 1994;  Kundur 1994;  Gao et al, 1992; Venkov, 1975; 
IEEE Working Group, 1990; Cigre Task Force, 1993) .  In the past, some utilities have used P-V and Q-V 
curves at specific small number of load buses (D’Aquila et al, 1993; Pal 1993; Suzuki et al, 1992; Mansour 
et al, 1994; Vaahedi, 1999; Schluter, 1998).  Most of these approaches are based on power flow modes 
which are time consuming and do not provide insight into the causes of stability problems (Kundur, 1994).  
Other techniques have been suggested such as modal analysis (Gao et al, 1992; Morrison et al, 1993; 
Kundur, 1994; Mansour et al, 1994; Ellithy et al 2000), singular value decomposition (Löf et al, 1992; Löf 
et al, 1993; Liu et al, 1998), sensitivity analysis (Bakovic and Phadek, 1992; Flatabo and Dommel 1990), 
energy function (Overbye and DeMacro, 1995; El-Keib and Ma, 1995), test functions (Seydel, 1988), 
reduced Jacobian determinant (Ganizares et al, 1995), reactive power optimization (Tamura et al, 1983), 
Thevenin and load impedance (Zii/Zi) indicator (Chebbo et al, 1992), artificial neural network (Jeyasurya, 
1990; El-Keib and Ma, 1995), neuro-fuzzy networks (Liu et al, 1998), local margins (Nagao et al, 1997), 
and loading margin by multiple power-flow solutions (Yorino et al, 1997).  These methods have wider 
approach and can predict voltage collapse in complex networks. 

2. Methods of Voltage Stability Analysis 

Methods to predict proximity to voltage collapse are considered an important issue by power 
researchers and technical staff in power systems operation, as these methods could be used on-line or off-
line to help dispatchers to know how close the system is to collapse.  The main objective of these methods 
is to determine scalar magnitude that can be monitored as system parameters change.  The methods should 
have predictable results and should be computationally inexpensive, especially for online system 
observation.  This section describes some of the methods mentioned in the literature, with special 
consideration given to the modal analysis and the singular value decomposition (SVD) method, due to their 
capability of providing information regarding voltage stability of the complete system.  Furthermore, they 
can also identify the individual voltage unstable mode and the degrees of participation of various 
components in the power system as well as provide better information with respect to the mechanism of 
voltage instability. 

2.1   Q-V and P-V Curves Method (Continuation Method) 

Q-V and P-V curves are currently in use at some utilities (Suzuki et al, 1992) for determining 
proximity to voltage collapse so that operators can make timely preventive measures to avoid system loss.  
The Q-V curves (reactive power-voltage curves) are used in this voltage stability study since they directly 
assess shortage of reactive power.  

The Q-V curve technique is a general method of assessing voltage stability. These curves are presently 
the workhorse method of voltage stability assessment at many utilities. Q-V curves show the sensitivity and 
variation of bus voltages with respect to the reactive power injection. A typical Q-V curve is shown in 
Figure 1. The Q axis shows the reactive power that needs to be added or removed from bus to maintain a 
given voltage at a given load. From Figure 1-b, it can be seen that the curve gives the reactive power margin 
at the test bus. The reactive power margin is the mega volt-amps reactive (MVAR) distance from the 
operating point to the furthest right hand point of the curve. This curve can be used as an index for voltage 
instability (dQ/dV becomes negative). Near the nose of Q-V curve, sensitivities get very large and then 
reverse their sign. The Jacobian matrix becomes singular at the nose of the curve. This is called a saddle 
bifurcation node (Yokoyama and Sekine, 1989).    

The P-V curves (active power-voltage curves) are the most widely used method of estimating voltage 
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security, providing megawatt (MW) margin type indices. The P-V curve is used to determine the MW 
distance from the operating point to the critical voltage. A typical P-V curve is shown in Figure 1-a. The P-
V curves are also useful for conceptual analysis when the load characteristics as a function of voltage are 
analyzed. While P-V curves are helpful in understanding the phenomena of voltage stability and collapse, 
they are not so useful for determining the reactive power support needed at various points in a power 
system. 

 
 

 

Figure 1. P-V and Q-V curves 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2   Singular Value Decomposition Method 

The Singular Value Decomposition (SVD) method is a very useful tool for analyzing matrices and 
related problems in many fields.  It has been applied to power systems for voltage stability analysis to 
obtain decomposition of the Jacobian matrix (Löf et al, 1993). For a real square matrix A of size n, the 
singular value decomposition is given by                          

                                                            (B-1) T
iii

n

i

T vuVU σ∑
=

==Α
1

S

Where U and V are n x n orthogonal matrices, ui and vi are called the left and right singular vectors 
respectively, and  S  is a diagonal matrix with                                

       [ ])()(S AdiagA iσ=      i = 1, 2 , 3,…,n                                              (B-2) 
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where σi≥0 for all i. The diagonal elements in the matrix S are usually ordered so that σ1≥σ2 
≥σ3≥……≥σn≥0. If the matrix A has rank r (r≤n), its singular values σ1, σ2, σ3,… σr   are the only nonzero 
entries in the nxn diagonal matrix  S . 

To use the above theory for voltage stability analysis, the linear power-flow equation based on the 
Newton-Raphson method has to be found which is established by the power-flow Jacobian matrix J 
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where P∆  is the incremental change in bus real power, Q∆  is the incremental change in bus reactive 
power,  is the incremental change in bus voltage angle and V∆ is the incremental change in bus 
voltage magnitude.  Hence the full Jacobian matrix can be written as, 
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Now, if the singular value decomposition is applied to J, one has  
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The minimum singular value, (J) is a measure of how close the Jacobian to singularity.  In the case of a 
small distrubance, let 
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where  is the last column of V. 
 

From the above equations it can be concluded that for the minimum singular value and corresponding 
left and right singular vectors (Lof et al, 1992), the following apply: 

 
� The smallest singular valueσ  is an indicator of the proximity to the steady state stability limit. 

� The right singular vector,  corresponding tonv nσ  indicates sensitive voltage. 
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n� The left singular vector, u corresponding to nσ  indicates the most sensitive direction for changes of 
active and reactive power injections. 

2.3   Modal Analysis Method  

As  mentioned  in  Conference  Internationale  Des  Grands  Reseaux   Electriques   a  Haute  Tension 
( CIGRE ) Task Force, (1993), there is a need to have an analytical method which can predict voltage 
collapse in complex power system networks. There is also a need to consider more detailed steady state 
models for main system components such as generators, Static Var Compensators (SVCs), induction motors 
and voltage dependent static loads. The modal analysis (eigenvalue analysis) method was proposed by Gao 
et al, (1992), to meet the above requirements.  It involves the calculation of a small number of eigenvalues 
and related eigenvectors of a reduced Jacobian matrix.  However, by using the reduced Jacobian, the focus 
is on voltage and reactive power characteristics.   

From equation (B-3), and at any operating point we may keep P constant and voltage stability is 
evaluated by considering incremental changes between Q and V. Based on the above assumption let  

 in equation (B-3), so that 0=P∆
[ ] VJVJJJJQ RPVPQQV ∆=∆−=∆ −1

θθ                               (C-1) 
and 

                                                   (C-2) QJV R ∆=∆ −1

where 

                            [ ]PVPQQVR JJJJJ 1−−= θθ                                           (C-3) 
 

RJ  is called the reduced Jacobian matrix of the system and it directly relates the bus voltage magnitude to 
the bus reactive power injection.  The elimination of the real power and angle part from equation (B-1) 
allows us to concentrate on the analysis of the reactive demand and supply problem of the system and also 
minimize the computational effort (Gao et al, 1992). 

The eigenvalues and eigenvectors of the reduced Jacobian matrix lead to the identification of voltage 
stability characteristics of the system. The eigenvalues identify the different modes, which may create the 
voltage instability of the system. The proximity to instability is provided relatively by the magnitude of the 
eigenvalues and the mechanism of instability is provided by the eigenvectors. 
 
Let:                                                 

        ηζΛ=RJ                                                                    (C-4) 
 
where ζ is the right eigenvector matrix of , Λ is the diagonal eigenvalue matrix of , and η is the left 

eigenvector matrix of . 
R RJ

RJ
J

From equations (C-2) and (C-4), we have 

                                       QQV
i i

ii ∆=∆Λ=∆ ∑−

λ
ηζηζ 1                                                  (C-5) 

Each eigenvalue and the corresponding right and left eigenvectors, define the ith mode of the system. The 
ith modal reactive power variation is: 

                                            iimi kQ ζ=∆                                                                     (C-6)   
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The corresponding ith modal voltage variation is: 

                                             mi
i

mi QV ∆=∆
λ
1

                                                             (C-7) 

It is seen that when the reactive power variation is along the direction of , the corresponding 
voltage variation is also along the same direction and the magnitude is amplified by a factor which is equal 
to the magnitude of the inverse of the corresponding eigenvalues. 

iζ

The system is voltage stable if all the eigenvalues of  are positive, and  is voltage unstable if at 
least one of the eigenvalues is negative. The smaller the magnitudes of the eigenvalues, the closer the 
corresponding modal voltage to being voltage unstable. If the eigevalue is zero, the system is on the verge 
of voltage instability. 

RJ

The elements (bus, branch and generator) which participate in each mode can be obtained as follows: 

Bus Participation Factors: The participation factor of bus k to mode i  (Kundur, 1994) is given by  
 

                                                ikkikiP ηζ=                                                                 (C-8) 
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indicates the contribution of the ith eigenvalue at bus . The size of bus participation in a given mode 
indicates the effectiveness of remedial actions applied at that bus in stabilizing the mode. The bigger the 
value of  the closer the load bus (load area) to voltage instability.  

k

Branch and Generator Participation Factors:  The participation factor of branch lj to mode  (Kundur, 
1994) is given by  
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The branches with high  are those which cause mode i  to be weak.  ljiP
The participation factor of generator  to mode  is  gk i
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Generators with high  are those which maintain stability of mode . gkiP i

lkt

2.4   The Test Function Method 

This voltage stability index is based on a family of scalar test functions, (Seydel, 1988) given as,  
 

                                       llk
T
llk eJJet 1−=                                                             (D-1) 

Where J corresponds to the system jacobian matrix, e  is a unit vector, and  l
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J lkJ
c

where I represents the identity matrix. At the voltage collapse point  is singular and  is guaranteed 

not to be singular, and if l k == , then  

                                         ccc
T
ccc eJJet 1−=                                                                 (D-3) 

 
The test function family is a function of the system variables and parameters. As the system approaches 
collapse, the system variable change, and the critical test function  shows a quadratic shape as a function 
of load margin ∆β. Thus, 

cct

a

                                                                                                                  (D-4) 2
ccat≈∆β

 
where  is a scalar constant. This allows tcc to be used to determine the system proximity to collapse.  The 
test function index is independent of system size, which is not the case for sensitivity factors. However, 
determining the critical buses c is a disadvantage of using  (D-3) for tcc as this might lead to significant 
computational costs. 

2.5   The Reduced Determinant Method  

This method or technique as defined by Ganizares et al, (1995), is based on assuming that active and 
reactive power variations occur only at the system bus of interest l . The load-follow Jacobian matrix can be 
re-ordered so that the mismatch powers for bus l  are the last ones. This gives:  
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where A, B, C and D represent the corresponding blocks of Jacobian matrix J . Also D is a 2 x 2 matrix.  
Equation (E-1) can be reduced to:  
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The matrix  is well defined at operating points. Thus, the determinant of  is  '
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llD  becomes zero only at the collapse point.  
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'
llD

'
ccD cc D

Results for changes in the loading factor β obtained for different operating points show that det  
provides similar information and behavior as that of a test function. Hence the loading margin can also be 
defined using det  instead of  in equation (D-3). Matrix  in (E-3) can be obtained by a partial 

factorization of the corresponding load-flow Jacobian 

t '
ll

J . This suggests slightly less computation cost than 
determining the test function t  in (D-1). lk

2.6   The Loading Margin Method by Multiple Power-Flow Solutions  

This method calculates an approximation to the closest loadability by using a pair of multiple power 
flow solutions (Yorino et al, 1997). The loading margin index is defined as the amount of additional load 
increase (specific pattern) for a particular operating point that may cause a voltage collapse. Loading margin 
is widely accepted as an index of voltage collapse and can be easily generalized to be associated with the 
margin of some other parameter that is varied until the system reaches voltage collapse.  For example: if the 
loads were temperature dependent, then one could define a “temperature margin” to voltage collapse. The 
advantages of the loading margin can be summarized as: 

 
• It is straightforward and can be easily understood. 
• It is not based on a specific model. 
• It is an accurate index. 
• It accounts for the pattern of load increase. 
The disadvantages of the loading margin can be summarized as: 
• It is computationally more expensive. 
• It requires the assumption of a direction load increase. 
 
2.7   The Local Load Margins Method  

This index of proximity (Nagao et al, 1997) is based on the distance from the initial load (  in MW) 

to the nose of the P-V curve (  in MW).  At a fixed power factor and as the load at node i  is 

increased, the load margin  assumes that at other loads the loads remain constant. Hence, 
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This equation allows the computation of a voltage stability margin for each load point. Its computation is 
relatively easy. However, a voltage stability margin has to be evaluated for the whole power system. 
Therefore, one needs to calculate  for the number of load nodes in the system, which may be 
impractical. 
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This index is strongly based on a power flow model and therefore, more studies are required for other 
types of load models. Computational cost is the main disadvantage of this index, as these local margins 
have to be calculated for all the load buses so that proximity to collapse can be predicted with more 
accuracy. 

2.8   The Thevenin/Load Impedance (Zii/Zi) Method 

It has been shown by Chebo et al, (1992), that the voltage collapse of the system at load bus i occurs when 
the impedance of the load is equal to the equivalent impedance looking into the port between i and the 
ground i.e. Zii=Zii (Zii/Zi =1). Where Zii is the magnitude of Thevenin impedance seen by load i and Zi is the 
magnitude of impedance of load i. For a secure system at bus i we must have Zii/Zi less than one (Zii/Zi <1). 
This voltage collapse proximity indicator (Zii/Zi) has also been used by these authors for reactive power 
dispatch to minimize the possibility of voltage collapse in the system. 

2.9   The Energy Function Method 

The energy function method has been described by DeMacro and Overbye, (1990), where a scalar 
energy function is measured depending on the system voltage magnitudes and phase angle. This scalar 
measure has a property of defining a local minimum of this energy. The energy function defines the height 
between the operable solution and a low voltage solution. It is also called potential barrier  (Jeyasurya, 
1994). As the power system approaches operating point to voltage collapse, the height of the barrier 
decreases. 

The height of the potential barrier can provide an indicator of the proximity to voltage collapse. The 
energy measure is computed as:  
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where n is the number of buses in the system, Gij and Bij are the elements of the bus admittance matrix; Vi is 
the bus voltage magnitude; θ the bus voltage angle, P the vector of net real power into each bus, and Qi the 
reactive power into bus i. The superscript s stands for an operable solution and u for the type-one low-
voltage solution for the same loading condition. 

This method provides an indicator or a measure, where the energy measure decreases as the load 
increases. It is approximately zero near the point of voltage collapse.  A large value of the energy measure at 
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lightly loaded conditions indicates that the system is away from voltage collapse. The sensitivities of the 
energy measure at different controllers can be determined. 

3. Numerical Results 

The singular value decomposition method, modal analysis method, and Q-V curves technique have 
been applied to the IEEE 30- bus system. Figure 2 shows the single- line diagram of the IEEE 30-bus 
system. This system is a part of the American Electric Power Service Corporation network, which is made 
available to electric utility industry as a standard test case for evaluating various analytical methods and 
computer programs for the solutions of power system problems. A MATLAB computer program  (Ellithy et 
al, 2000) was used to obtain the power-flow solutions and the corresponding matrices.  
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Figure 2. IEEE 30-Bus Power System 
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Table 1.  Power-flow result for base case 
 

                                                                          GENERATION                                              Load  

  BUS 
    # 

   Voltage 
Magnitude 
     (p.u) 

 Voltage Angle 
 
         (p.u)              

    Pg 

           

     (p.u) 

   Qg 
   
  (p.u)  

   PL 
  
  (p.u) 

   QL 
 
 (p.u) 

     1 1.060 0.000 2.614 -0.130 0.000 0.000 
     2 1.043 -5.509 0.400 0.568 0.217 0.127 
     3 1.019 -7.987 0.000 0.000 0.024 0.012 
     4 1.010 -9.651 0.000 0.000 0.076 0.016 
     5 1.010 -14.414 0.000 0.394 0.942 0.190 
     6 1.009 -11.378 0.000 0.394 0.942 0.190 
     7 1.001 -13.144 0.000 0.000 0.228 0.109 
     8 1.010 -12.135 0.000 0.404 0.300 0.300 
     9 1.048 -14.522 0.000 0.000 0.000 0.000 
     10 1.040 -16.172 0.000 0.000 0.058 0.020 
     11 1.082 -14.522 0.000 0.177 0.000 0.000 
     12 1.054 -15.438 0.000 0.127 0.000 0.000 
     13 1.071 -15.438 0.000 0.127 0.000 0.000 
     14 1.038 -16.337 0.000 0.000 0.062 0.016 
     15 1.033 -16.406 0.000 0.000 0.082 0.025 
     16 1.041 -16.022 0.000 0.000 0.035 0.018 
     17 1.035 -16.336 0.000 0.000 0.090 0.058 
     18 1.023 -17.025 0.000 0.000 0.032 0.009 
     19 1.020 -17.200 0.000 0.000 0.095 0.034 
     20 1.024 -17.001 0.000 0.000 0.022 0.007 
     21 1.025 -16.616 0.000 0.000 0.175 0.112 
     22 1.025 -16.600 0.000 0.000 0.000 0.000 
     23 1.018 -16.767 0.000 0.000 0.032 0.016 
     24 1.006 -16.901 0.000 0.000 0.087 0.067 
     25 0.983 -16.279 0.000 0.000 0.000 -0.000 
     26 0.964 -16.729 0.000 0.000 0.035 0.023 
    27 0.977 -15.626 0.000 0.000 0.000 0.000 
    28 1.008 -11.984 0.000 0.000 0.000 0.000 
    29 0.956 -16.978 0.000 0.000 0.024 0.009 
    30 0.944 -17.951 0.000 0.000 0.106 0.019 

 
Modal analysis was applied for two cases (base case and the stressed case). The stressed case was 

obtained by increasing the reactive power at bus number 30. Table 1 shows the power-flow results for the 
base case. The eigenvalues of the two cases are shown in Table 2.  From Table 2, it can be seen that all 
eigenvalues are positive indicating that the system is voltage stable. The eigenvalue λ1 is the least stable 
mode (critical mode). For the stressed case, the system is on the verge of instability (λ1 =0.0366) but not 
actually unstable.    

Table 3 gives the participation factors of the critical mode λ1 for the base and stressed cases. From the 
participation factors of the base case, it is clearly seen that the highest participation factor corresponds to the 
load bus 30. Based on this information, bus 30 is the weakest bus in the system. It can be concluded that the 
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power stress in bus 30 can lead to voltage instability. Bus 30 was stressed and the results have confirmed 
that it is the weakest bus and the critical eigenvalue mode became much smaller. 

 
Table 2.  Eignvalues and  singular value decomposition of  Jacobian matrix JR 

 
            Modal Analysis  Singular Value Decomposition 

Eigenvalue 

     λi 

 

Base Case 

 

Stressed Case 

 

Base Case 

 

   Stressed Case 

1 0.5060 0.0371 0.5060 0.0366 
2 1.0238 0.8235 1.0238 0.8265 
3 1.7267 1.3301 1.7267 1.3338 
4 3.5808 3.3288 3.5808 3.3411 
5 4.0507 3.5145 4.0507 3.5224 
6 5.4527 3.9509 5.4525 3.9508 
7 6.0207 5.1156 6.0207 5.1171 
8 7.4360 6.3687 7.4361 6.3751 
9 8.7857 8.5863 8.7857 8.5864 
10 11.0447 10.7369 11.0442 10.7383 
11 13.6334 12.3384 13.6333 12.3410 
12 13.7279 13.3416 13.7278 13.3416 
13 16.3753 14.7664 16.3757 14.7719 
14 18.0785 17.5596 18.0784 17.5601 
15 19.1258 18.7216 19.1264 18.7228 
16 19.7817 19.4681 19.7817 19.4681 
17 23.0739 22.4080 23.0736 22.4096 
18 23.4238 22.9447 23.4245 22.9457 
19 35.3863 34.8404 35.3868 34.8414 
20 37.8188 36.9723 37.8188 36.9723 
21 59.5431 58.1663 59.5429 58.1664 
22 65.9541 65.3731 65.9551 65.3744 
23 100.6465 97.5208 100.6465 97.5209 
24 110.2056 109.1565 110.2079 109.1592 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Similarly, the singular value decomposition (SVD) was obtained for the base and stressed cases. The 

SVD results are given in Table 2. The SVD results have confirmed the same results as the modal analysis 
method. 

The Q-V curves and P-V curves for the buses 30, 29, 24, and 23 were computed and are shown in 
Figures 3 and 4. These curves are used to determine the MW- and MVAR- distance to the voltage 
instability point of the weakest load buses.  The P-V curves at different power factors for the weakest bus 
(bus 30) are also computed and are shown in Figure 5. From the curves it can be observed that buses 30 and 
29 have less reactive power margins (i.e. less stability margins). 

These agree with the bus participation factors given in Table 3. From Table 2, these buses have high 
participation in the critical mode which is on the verge of becoming unstable. The advantage of modal 
analysis is that it identifies groups of buses, which participate in the voltage instability.    
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Figure 3. Q-V curves for the load buses 30, 29, 24 and 23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. P-V curves for the load buses 30, 29, 24 and 23  
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Table 3. Participation factors of system buses for 
               base case and stressed case 

 
          Base Case 

                    λ1 =0.506 
Stressed Case 

         λ1 = 0.0371 
Bus 
  # 

Participation 
           Factor 

Participation 
     Factor 

  3 0.0004 0.0001 
  4 0.0005 0.0001 
  6 0.0005 0.0002 
  7 0.0002 0.0001 
  9 0.0037 0.0004 
  10 0.0121 0.0011 
  12 0.0037 0.0003 
  14 0.0081 0.0006 
  15 0.0111 0.0009 
  16 0.0079 0.0006 
  17 0.0115 0.0009 
  18 0.0165 0.0010 
  19 0.0179 0.0011 
  20 0.0172 0.0011 
  21 0.0176 0.0018 
  22 0.0189 0.0021 
  23 0.0238 0.0029 
  24 0.0395 0.0075 
  25 0.1055 0.0413 
  26 0.1729 0.0454 
  27 0.1028 0.0762 
  28 0.0025 0.0013 
  29 0.1934 0.2389 
  30 0.2118 0.5743 

 

Figure 5. P-V curves for bus 30 at different  power factors. 
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4. Conclusions 

The Methods for static analysis of voltage stability problems have been briefly described in this paper. 
Based on these methods, indices are determined to predict proximity to voltage collapse.  Some of these 
methods were applied on the IEEE 30-bus system for demonestration of these techniques. Other methods 
and techniques (Carpenter et al, 1984; Tamura et al, 1982; El-Keb and Max, 1995; Kwanti et al, 1986; 
Chang and Su, 1998) are mentioned in the references but due to space limitation these have not been 
discussed in this paper.  
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