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ABSTRACT: In this paper we consider a polynomial P(z) having no zeros in the disk | z |<1. We investigate the
dependence of MaX,_g., | P(2)| on max,_, | P(z)| and obtain a refinement of a famous result due to Rivilin ([5],
[7]). Our results not only generalize some polynomial inequalities but also refine a result by Aziz [1].
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1. Introduction

Let P(z) be a polynomial of degree N . Then ([5] or [6], p. 347), for a fixed R >1, we have

Max ., [P (z)I<R"Max,, ., |P(z)]. @

Equality in (1) holds for the polynomial P(z) = az".
It was shown by Rivilin ( [5], [7]) that if P(z) is a polynomial of degree N having no zeros on | z|<1, then
(1) can be replaced by

R"+1

MaX|z|=RIP(Z)IS{ ]Max|z|=1|P(Z)|' (2
Inequality (2) is sharp and equality holds for P(z2) = a+ 2", |a |9 B].

Aziz [1] has further improved and generalized inequality (2) by proving the following result:

Theorem A. If P(z) is a polynomial of degree N which does not vanish in the disk | z |< k where k >1, then

Max , |P(Z)|S[Rn +1]Max|z|=1|P(Z)|_(E}Min|z|=1“3(z)|- ®)

2
The result is best possible and equality holds for the polynomial P(z) = az" + K", |a || fl=1,k > 1.
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As a generalization of inequality (2), Aziz [1] conjectured the following results.

Conjectured Results. If P(z) is a polynomial of degree N which does not vanish in the disk | z |< k , then

r"+k"

Max ., |P(z) Tk Maxlzl:1|P(z)|,k2<r<1,k <1 (4)
+
and
R"+k" )
MaxlzI:R |P(Z)|SwMaX|Z|:1|P(Z)|,R >k, k >1. (5)

In an attempt to answer inequality (4), Dewan and Hans [4] proved the following partial results.

Theorem B. If P(z) is a polynomial of degree N, which does not vanish in |z |<k,k <1, then for
O<k<r<acx<i,

r"+k"

n n M (p’/l)’

A +k

provided | p’(z) | and | q'(z) | attain the maximum at the same pointon | z |=1, where

M(p,r) >

el
q(z ) =z P(Z=) and Ivla')ﬂﬂ:r | P(Z) |: M (pa r)! M (pvﬂ“) = Ma)ﬁz|=;{ | P(Z) | '
The result is best possible and equality holds for p(z) = z" +k".

Theorem C. If P(z) is a polynomial of degree N, which does not vanish in |z|<k,k <1, then for
O<k<r<i1

r"+k" 1-r"
M > M 1 k
(p.r) [1+k” ] (p, )+[1+knjm(p, ) (6)

provided | p’(z) | and | q'(z) | attain the maximum at the same pointon | z |=1, where

np( L .
q(z)=z P(Z=) and m(p,k)=Min,_, |[P(2)].
The result is best possible and equality in (6) holds for P(z) = z" +k".

In this paper we shall first present the following interesting refinement of Theorem A.

Theorem 1. Let
P(z)=a,z"+a, 2" +...+az+a,,
be a polynomial of degree n which does not vanishin | z |[< k,k >1. Thenfor R >1,

n 1 n H
Mak, . |P(2)E 22 (R +1)Max, . [P @) |7 (R"=p)Min, L P@)] - @)
where
_ 13| +R(a, |+m) o
|8, R + (&, [+m)
and m =Min,_ [P(z)].
The result is sharp and equality in (7) holds for P(z) = OH_ZﬂZ Jal= plI=1.

Remark 1.1. Here we have replaced K by £ simply not to confuse it with the region for which P(z) does not
vanish. Now
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R(la, [+m)+|a, | _
Rlay|+]a,[+m
It is easy to verify the above inquality for p <1 if

EN
la, [+m

o=

>1.

To show it holds, let m = Min,,_, | P(z)| then m<| P(z)| for | z|=1, sothat m|oz" |[<| P(z)| where a

is any real or complex number with | & [< 1. Since P(z) does not vanishin | z|<1 the polynomial

F(z2)=P(z)+omz" = (a, +am)z" +....+q,

a a
0 _I>1 or # >1, for every a with | |<1. Choosing
a, +am

does not vanish in | z |< 1. Therefore,
|a, +am|

argument of & such that
la, +om|= a,[+|a|m
we get
la, > a, [+|a|m|eal|<l.
Letting | & |—> 1 it follows that

|3, X a, [+m.
Now it is easy to verify that for p <1,
L<1 SO (Rn+1)L<R +1
p+l 2 p+1 2

and

2 2 2 p+l p+l
which is true. This shows Theorem 1 is an improvement of Theorem A.
As an application of Theorem 1, we next establish the following result which, in a way, is similar to
inequality (6).

R'-1_R" 1_R"_p

n

Theorem 2. If P(2) :Zajz’ is a polynomial of degree N which does not vanish in |z |<1, then for
j=0

0<r <1, we have

_p (rT+1) +1)MaX|z|:r|P(Z)|_pinin IP@)EMax,.,[P@)] O

p+1l " +1 r e
_ 13, [+R (&, [+m)

and .
lag IR + (&, [+m)

The result is best possible and equality in (9) holds for the polynomial P(z) = az" + 8, where |a |5| S |= 1.

Lemmas
For the proof of Theorem 1, we need the following Lemmas. The first Lemma is due to Dubinin [3, Theorem 5].

Lemma 1. If
P(z)=a,z"+a, 2" +.....+ a2z +a,,

is a polynomial of degree N which does not vanish in | z |<1, then for every R>1

R
PRz = 2RI 16 Ry 12 =1 )
Rlay | +la, |

where
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Q2)=2"plu2)
Equality is attained for the polynomial P(z) whose zeros lie on the unit circle | z |= 1.
Our next lemma is due to Aziz and Mohammad [2].
Lemma 2. If P(z) is a polynomial of degree N, then forall R >1 and 0<8<2x
|P(Re")|+|Q(Re") < (R" +1)Max,, | P(2) |

where
_onp(l
Q(z)=z P(Z=)-
2. Proofs of Theorems

Proof of Theorem 1. Let m = Min,,_, | P(z)|. Then m<| P(z)| for |z|=1 so that m|az" |<| P(z)| for
| z|=1, where « is any real or complex number with | [<1.
Since the polynomial
P(z)=a,z"+a, 2" +....+az+a,,
does not vanish in | z|<1, an application of Rouches Theorem shows that the polynomial P(Z) +amz" does
not vanish in | z|< 1, so that the polynomial
F(z) =P(z)+omz"
=(,+am)z"+a, 2" +...+az +a,,
does not vanish in | z|<1 forevery a, | |<1.

Let
n 1 n 1 - -
G(z)=z"F(=)=2"P(=)+am=Q(z) + am
z z
R,
and Q(z)=z"P(=).
z
Using Lemma 1, it follows that
IF) Rl R ram | o0y, for Jz|>1.
Rla,|+|a, +am|
This implies

a, |+R|a +am —
|P(z)+amz”|s| o[ +R1a, ||Q(z)+am|.
Rla,|+|a,+am]|

We now show that for | |<1 and R >1,
|8 [+R[a, +am | _|a,[+R (&, [+m)
Rla,|+|a, +am| Ria|+(a,|+m)

11

Inequality (11) holds if
|, I” R+R*|a, | (| &, | +am)+|a, | (| &, | +am)+R(a, +em)( &, |+m)
>la, " R+R*|a,|la,+m|+|a,|(a,|+am)+R|a, +am]|(]a, |+m),
which after a simple calculation, yields
R?|a, I{(la, |+am)-|a, +m[}2 a, |{( a, | +am) - ( a, | +m)}.
This implies R > 1, which is true. Hence (11) is established.
Taking in particular z = Re'?, where R>1 and 0< 0 < 27, we get
|P(Re'?)+amR"e™ |< p|Q(Re'’)+am | 12)
for every a with | |[<1. Choosing the argument of « in (12) such that
| P(Re'’) +amR"e™ |=| P(Re'’) | +| | MR",
we get
|P(Re")|+| | R'm < p|Q(Re") [ +p| x| m.
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This gives
IP(Re")|+|a|mR" - p)< p|QRe”)|, 0<0<2r. (13
Letting | & | > 1 in (13), we get
IP(Re')|+(R" — p)m < p|Q(Re'?)|, 0<6<2r.
Adding p| P(Re'?)| on both sides it follows that
(p+1) [ P(Re”) | +(R" ~ p)m < pf] P(Re"") | +| Q(Re"") [},
forall 8, 0<@<2r.
This gives, with the help of Lemma 2, that

(p+1)|P(Re)[+(R" —p)m < p(R" +1)Max ., | P (z)| (14)
forall 8, 0<0<2r.
From (14), it follows that

i n 1 n
IP(Re’) < L—(R" +1)Max,,, |P(z)|-———(R" - p)m
p+1 p+1

forall 8, 0 <6 < 27, which is equivalent to the desired result. O
Proof of Theorem 2. All the zeros of P(z) lie in |z [>1; therefore for O < r <1, the polynomial P(rz) has all

1
the zeros in | Z [> = > 1. Applying Theorem 1 to the polynomial P(rz), we obtain
r

n 1 n
'\/l"51)(|z|:1||:)(rz)|S £ (R +1)|\/|aX|Z‘:1|P(rZ)|——(R -1)m.
p+l p+1
Equivalently,
n 1 n )
Max,,, | P(Rz) |< L (R" +1)Max,_, | P(z)|-—— (R" - p)Min,_ | P(2) .
p+l p+1

1
Taking R = =, then for 0 < <1, we obtain
r

r"+1 1 A-pr") ..
LD a1 P@) - S i | P@) I Max,, [ P(2)],
p+l r p+l r
which proves Theorem 2. O

3. Conclusion

We generalize some polynomial inequalities and refine a previous result on the dependence of
MaX,,_gs; | P(2)| on max,, | P(z) |, where P(2) isa polynomial having no zeros in the disk | z |<1.
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