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ABSTRACT: The aim of this paper is to give an overview of some results obtained in the field
of Kéhler manifolds of positive Ricci curvature.
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1. Introduction

ifferential geometry is a cornerstone of modern mathematics. Besides the natural beauty of the subject, it
has found many applications in various branches of mathematics such as number theory, analysis, topology,
algebraic geometry and also in some areas of physics, ranging from general relativity to string theory.
Recently one of the most famous conjectures in topology, the Poincaré conjecturei, was solved by Perelmanz, a
Russian mathematician, using differential geometry, a work for which he was awarded the Fields medal at the
International Congress of Mathematics in Spain, August 2006. An excellent account of Perelman’s work is given
by Morgan and Tian in 2007.

The aim of this paper is to give an overview of an active research area of differential geometry, namely
Kéhler manifolds of positive Ricci curvature.

Since most of the proofs are either omitted or sketched and since we have in mind a reader who is not
necessarily an expert in the field, we made an effort to introduce most of the basic notions and definitions, and
we included references whenever needed, so that he/she can fill the gaps and go through the details by
himself/herself.

The paper is organized as follows. In Part 1 we collect some basic Riemannian geometry results mostly needed

1 The Poincaré conjecture states that every simply connected closed three dimensional manifold is homeomrphic
to S3, where S? is the three dimensional sphere.
2 Building on R. Hamilton’s work on the Ricci flow.
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in the following sections (readers with a background in Riemannian geometry can skip it). For the sake of
completeness we included some resultss in Riemannian geometry even though they are not needed in the
following sections. The main reasons for doing that are; first we believe that they are fundamental results and
therefore should be known, and secondly it makes a smooth transition to Kdhler manifolds introduced in 2, since
it gives a characterization of Kahler manifolds in terms of holonomy groups. Part 2 deals with Kdhler manifolds.
Part 3 deals with compact Kéhler manifolds of positive Ricci curvature. Part 4 deals with Einstein-Kéhler
metrics on Fano manifolds. Part 5 deals with noncompact complete Kéhler manifolds of positive Ricci curvature.

1.1 Riemannian manifolds

This part is a collection of some definitions and results from Riemannian geometry which will be needed in
the following parts. The reason for including a section on holonomy groups, even though we don’t need it in the
following parts, is our belief that it is a fundamental concept in Riemannian geometry and therefore worth
mentioning.

Some of the material covered in this part can be found in most differential geometry textbooks, such as
Kobayashi and Nomizu, 1969, Aubin 2001 and Gallot and Hulin, 1990. For an account of the development of
Riemannian geometry during the second half of the twentieth century, and its main contributors we suggest a
book, recently published, by Marcel Berger(2000). We expect the reader to have some knowledge of general
topology (Munkres, 1975) is an excellent reference). As we said in the introduction, readers with a background
in Riemannian geometry can skip this part.

1.2 Differentiable manifolds

" is a Hausdorff topological space that is locally

0.

Definition 1. 4 locally Euclidean space M of dimension

Euclidean, i.e., each point of M has a neighborhood which is homeomorphic to an open subset of

Definition 2. 4 g (risp. real analytic) structure Y onan " = dimensional locally Euclidean space M isa
collection ¥ =\Yer Pelacs of pairs @ Pl sych that

U =
1. « )O‘EI are open sets ofM satisfying Vet U =M.

o, U, —>V

n
2 @’ are homeomorphisms, where = % is an open subset of R".
-1, o .
3 PO B (Ua mUﬁ)—> o, (Ua mUﬁ) sa C (resp. real analytlc) diffeomorphism.
U, U,p),
4. The collection ( “’QDO‘)O‘EI is maximal with respect to 3., i.e., given any pair (P) where

QO U—V . 14

U isan open subset of M an is a homeomorphism, where is some open subset

ofR > such that
000, 0, (UNU.)—0(UNU.),
5. isa € (U,(p) Sy,

U o)

~ (resp. real analytic) diffeomorphism for all & € I , then

The collection i€l satisfying 1. , 2. and 3 above is called a c” -atlas.

o M,¥Y
Definition 3. 4 C (resp. real analytic) manifold of dimension ™ is a pair ( ’ )’ where M is a locally

2

Euclidean Zpace \ff)dimension N oand ¥ isa Cc” - (resp. real ana( tic) differentiable structure on. M. 7pe

manifold will be denoted simply by M. 1pe pair i» i ( or (U"j xl""’x”) where

3 Holonomy groups.
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i i

‘ X yeris X ,
)) is called a local chart and ( ! ") is called a local coordinate system (defined in U’ )

o, =[x1’,...,xn
associated to Pi . A manifold M s said to be compact (resp. noncompact) if the underlying topological space

is compact (resp. noncompact).

Example 4.

00

n
1. Every vector space has the structure of a c, noncompact manifold. In particular 0" has the
o0

structure of a > noncompact manifold.

n+l
S" = {(xl,...,x,,ﬂ) eR"™| 2 X! = 1},

i=1

2. The unit sphere

is a compact real analytic manifold.
4 P i ﬁ 5 .
defined by

P"(0):=( ", {oju)~,

3. The projective space

where (xo,...,xn) ~ (yo,...,yn) <= 31 €l " such that (xo,...,xn) = l(yo,...,yn),

is a compact actually real analytic manifold.
4. An open subset of a c” ~ manifold is a c” ~ mani ojd.
5. Thesetof PXA s atrices with real entries P Z
Cc”
6. IfM‘ and "2 are C” ~ manifolds, then M, x M, isa C” ~ manifold.

is a finite dimensional real vector space, hence a

~ manifold.

Notation 5.
1. LaU béog;zgpelg jubset ofaéncgzig)ld M and iet K be cither U or U . n what follows we will
’ (resp. ) the set of infinitely differentiable (resp. T — times

differentiable) functions on U vith values in | .

2

denote by

c”.

2. Sometimes we use the word "smooth" to mean of class

Definition 6. 4 Lie group G isa c” - manifold endowed with a group structure which is compatible with its
differentiable structure, i.e. G isa group andxh&map—> G

(g,h) = v(g,h) =gh™,

c”.
Let G and H pe two Lie groups. A map, or a m%rglgsm o

is of class

>

is a differentiable map, which is a group homomorphism.
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Example 7. The following are Lie groups.
1. Every finite ar’limenﬁsional real \j%ctor space with its underlying abelian group structure is a Lie group.

~

2. The torus is a Lie groupa.

3. The linear group GL(n,0) is the set of all "> invertible matrices with real entries.
o Spgefal Imangrons i Ay

QYRS yaTA1,).

6. Spseé?t(l o[rt)ho onalétzoupmdetA _ l}

TSR GL(n.0 ) A*A =1, ),

AT
where AT=A".

8. Spec’l(ll “”’{“’y Ulifjdet A=1).

9. Szmp(ecﬂf)grf €GL(2n, D)|ATIA =1},

where Jo Ol
1,0

(10) If G and H are two Lie ]_?roups then the direct product Gx H has a structure of a Lie group.
(11) If is a Lie group and ™ is a closed normal subgroup 0] , then G/ H has the structure of a Lie group.

Readers who want more examples and desire to know more about Lie groups, can consult (Warner,1983, Knapp,
2001, Brocker and Diek or Helgason, 1978).

Remark 8. In all that follows we will assume, without loss of generality, that manifolds are connected.
Submanifolds
Definition 9. Ler M be a manifold of dimension N A subset N of M is a submanifold of dimension p if for

every point X € there exists a local chart U.e), with M €U sych that
) p(U)zV, ><V

ere Vi (resp. 2) is an open subset of o® (resp. 0.
2) ? (UNN) {v (ﬁ

'(’@e )gleﬁng{lo above can be reformulated as follows: For each X €7, there exists a local chart
" ith X €Ugych th
¢(UNN) _R):)e f“ L S n}.

)" 1_ _
4 The torus R/Z" i isomorphic to (S ) , where > _{ZGD |||Z||_1}
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S* = {(Xl,...,xnﬂ) eR™ | ZT: X = 1}

Example 10. (1) is a submani-fold of U "

(2) The set M (0)={AeM, ( Olrank A=k

p.q

1
is a submanifold of Mo(B): UM (D )

(3) Let G peaLie group and let H be an abstract subgroup of G | 1t is well known that

H s a submanifold of G (and hence a Lie group) <H is closed in O .

Tangent Bundle
The aim of this section is to define the tangent bundle TM of a differentiable manifold M. Let m €M | and let
f (resp. g ) be a differentiable function defined in a neighborhood u (resp. V) of M We say that f and € are
equivalent, and we write f<g , if there exists a neighborhood WclnV,meW, such that
f=ginW

It is easy to see that R s an equivalence relation. The equivalence class of a function f defined in a
tllzeighborhood of M calleéi a germ of f at M will be denoted by f . The set of germs at m will be denoted by
m It can be shown that —m isan U — algebra.

Defl'iinition 11. A tangent vector at M €M s [inear map

X:E,

satisfying AAN AU AN L A (R
X(f.g) = fX(g)+gX(f),

Le,X is an U — derivation of the U — algebra E..

Definition 12. (1) The set of tangent vectors to M at a point M €M g called the tangent space to M ar m
and is denoted by "™

(2) The dual of ™M | denoted by
(3) The disjoint union L PV
cotangent) bundle of M .

.M , is called the cotangent space of M qr m |

M (resp. v TM ), denoted TM (resp. ™M ), is called the tangent (resp.

2. Vector bundles

Definition 13. Let M be ¢ €~ -differentiable manifold of dimension ™. A vector bundLe of rank ¥ is a
differentiable manifold E together with: E -2 (X
¢ -differentiable map T - E=>M such that for every X€M | =x = & ( ) has a structure of

a real T~ dimensional vecto)r space, where 1 is independent of X .

(1) A surjective

(2) An open covering ( aJact of M and diffeomorphisms . (called trivializations)
¢, By, =n(U,)>U, <07,

8]

such that for each XE Yo the map
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E, —2 5 {xpx0" >

is a U -linear isomorphism. The vector bundle is denoted by (E’M’”) or simply by E.

Let U, and Uy are two open subsets of M such that , ,
! (Ui)—:>Ui x[" = {(m,g“l’,...,g“]’ )|m el,, (C]’,...,Cl’)e U}, i=a,p
For each couple C) , consideg fhe fynetignsU, NU, - GL(r)
X = gf (X) :(gf,i,k (X)) .

1<i,j<r '

b eC”(U NnU,). m,C%,..,C° m,, ;PP
where Sk ( “ ﬂ) For M€ Ua "Us , the points ( por s ) and ( 26156, )represent the
same point on E = (U AU )><E v
[z (UaUp) a B
if and only if

m, =m, =m and ¢’ :igf (m)¢y, i=1,...r.

k=1

Example 14. (1) If M is a differentiable manifold, then MXU" s a vector bundle called the trivial bundle of
rank ¥ .
(2) Let M be a differentiable manifold and consider the¥bjeetion givévl by

Xt n(x)=m if XeT, M
Then it can easily be seen that (TM ’M’ﬂ) is a vector bundle of rank n =dimg M. Similarly for T*M |

(3) 4 vector bundle of rank " =1 is called a line bundle.

(4) Since a vector bundle is a family of vector spaces of a given dimension parameterized by a . manifold
M | we can perform on vector bundles the same operations performed on vector spaces, such as the direct sum,
the tensor product, the dualization, and so on.

Definition 15. A Lie aLgebra is vector space V[e}ldo%d Vith Vbilinear map
(C.n)=[¢Cm] .

called the Lie bracket, such that:

1) [C,n]:—[C,n] forall {,meV

2) [C,[n,y]}[%[éﬂ?ﬂ =0 forallg.neV (Jacobi Identity).

9=TGw0G at the identity © has the structure of

Let O beaLie group. It can be shown that the tangent space
TG=Gxg

a Lie algebra and the tangent bundle TG ot G s trivial, more precisely
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(E,M

Definition 16. (1) 4 section s of the C” vector bundle ,n) over an (open) subset U of M isa o -map

s:U—>E such that ﬂos:ld”.

I'(U,E)

The space of C” sections of E over U is denoted by Af U=M , then we denote F(U’E) simply by

I'(E)

(2) 4 section of the vector bundle TM (resp. T*MY) over an open set U of M is called 1@ (Iejct%l(}{‘j‘eld (resp. a
differential form) defined over U The space C”" yector fields over U il be denoted by ’ .

Let M be C” differentiable manifold of dimension ™ € M and let (X"""X“) be a local coordinate system

defined in an open set U with meU A C” vector field X over U may be written

X()= 26 ()5

where §ec (U0 )
1
Definition 17. Th()e(dif' entialp df,, (Fifafunction fec (U’[ ) at MEM s g linear form on .M defined as
= 1 e m
Sfollows: for each ! i | ,

df, (X)=X(f)(m)= ZC s—;(m)

=X. d(x. X)=¢C.
In particular, for F=x , we have (X‘)m( ) C‘. Hence we can write

df = anidxi

o OX,

1

[i 1}
If (10, ) is a local coordinate system defined in an open subset U of M| with M €U then oo,

(resp. ([lxé""’dx“a) )jis a ¢ frame of TM (resp. T*M ) over U . The frame (dx,,....dx,) is the dual of the
o, (iJ s
an

ox, T ox
Definition 18. Let X and Y be two vector fields defined in an open subset U of M. The Lie bracket of X and

frame "
Y is the vector field X, Y] defined by

,Le.

where 3, is the Kronecker symbol.

[XY](£) =X (Y ()= Y (X(F)),

2
, feC*(U.T™)

wher f (U’Xl""’x“) is a local chart with M €U gnd if
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N 0 N 0
;C[ aXi an ;nl aXi mn

then . ig 81]] B ag
= ax ax

Embeddings

Deﬁnltlpn 19. Let M gnd N be two o -manifolds. A o -map f:M =N s 4 continuous map such that
Wofop : ¢ (U) > ¥(V)isa C*—map

-1
for all charts (U’ (p) OfM and (V’\P) ofN such that Uceo (V) .

df ;T M—>T,

Definition 20. Ler M and N be two €~ -manifolds and fm) ™" c” -map. The differential is

defined by dt, (X)(8) = X dof)

where & isa function defined in a neighborhood of f(m) representing g

It can be proved that the definition is independent of the choice of a representative of & If we put N=0 i
Definition 20, then we get the differential of a function which was already defined in Definition 17.

Definition 21 Let M and N petwo € -manifolds and f:M—>N aC” -map.

(1) The }'gflp T lﬁ/fmldlto bﬁan immersion if :

)" s injective for allMm €M |

(2) The map T is said to be an embedding if :

(a) T is an injective immersion,

and

() T is a homeomorphism between M and f(M) , Where f(M) is endowed with the induced topology of N,

Isomorphism of Vector Bundles

Definition 22. Let E and F be two vector bundles over a differentiable manifold M. A map between the vector
bundles Eand F isa € map

v:E—>F,
such t at F, forall M
( 1) E)cF,, forall xe ’
and
v.=v, :E_>F
() * BT * s linear for all X€M
The vector bundles E and ¥ are said to be isomorphic if there exists a map V * E—>F such that v B o> K is

an ismorphism for all X €M _ We denote this by E=F |
A vector bundle (resp. a complex vector bundle) E over M is said to be a trivial bundle if
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Pull-Back of Vector Bundles

Definition 23. Let bea €~ -map between two o manifolds M and N and E a vector bundie over N . The
pull-back bundle T*E s a vector bundle over M defined by

(f*E)m:Ef(m) forall MEM |

The transition functions of f*E are given by the pull-back of the transition functions of E .
Hermitian Metrics on Vector Bundles

Definition 24. 4 C~ -frame over an open subset U of M isan T -tuple (61""’6" ) , Where such % € F(U’E) ,

such that (Gl (%), (x)) is a basis for E, forall X€U

Let U bean open subset of M such that . - ,
¢:E,=1"(U)>Uxop
and let (ei )Kiﬁf be the canonical basis of 1" To the trivialization ¥ , we associate the cr -frame (ei )Kiﬁf of

U, where & is defined by
g, (x) =¢" (x,e[)x eU

seF(U,E)

Then any section can be written as v

a.eC”(U,R c,..,0.) o.eI'(UE
i 1 I i

00
with . Conversely, to O frame , we can associate a trivialization of

E over U as follows @:Ey = Uxl "

- (x.(a),....a,))

where (al’""a’) are defined as follows: r
o (X) = Zaicr,. (X)
i=1

>

The definition ofa €~ ~ frame for a complex vector bundle is obvious and is left to the reader.

Definition 25. Let E pe €~ ~ complex victor bundle of rank T over a o manifold M of dimension " . 4

Hermitian metric 0 on E is a family\"*/xM | where "~ | is a Hermitian inner product on =, such that if

(ei)‘ﬁiﬁf €C (U’C) isa € ~ frame for the complex vector bundle E defined in an open set u , then, the
h-:U— 0

functions i

h-:eC” (U,C) forall i,j=1,...,r.
are smooth, i.e., "’
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3. Tensor and differential forms

In this section we will assume some knowledge of the properties of tensor and exterior algebras. Let M be a
differentiable manifold of dimension ” and consider the following vector bundles

T M=t ((TmM)M),
A7 (M) =ty (A7 (ToM))

AM)=t (Iéom (T;M)j

>

where

p-times q-times
—_— —_——
(T,.M), =T,M®.®T,MOT,M®.®T,M
and

p-times

A (T,M) =ToM AL AT, M

A" (M), 4(M) (p.q)

Definition 26. (1) The vector bundle Thq (M) (vesp., ) is called the tensor bundle of type

(vesp., the exterior p-bundle, exterior algebra buydle) over M

00 p i
2) 4 C" = section of the vector bundle pﬂ( (resp. 4 (M)’ A(M) ) is called a smooth tensor field of type
(p.q)

(resp. a smooth differential p= form, a smooth differential form) on M |

The set of all smooth sections of Tp’q(M) (resp., A (M)’A(M) ) will be denoted byTp’q (M) (resp.,

& (M).s (M) |

X;

) {i}“
If (X”""X") is a local coordinate system defined in an open subset Uof M| with meU ) (resp.

{dx"}f=1 )isa C” = frame for TM gresp. .M ) over U,

W, PR e (rm) v

pa and P°

Therefore we get C” — frames for

For example, a differential P™ form @ in U willie written .
o(x)= a, ..,lp(X)dX,.] AANdX,

1,2
I<ij<.<i,<n

a. ,..,1 o .
where ?are €~ functions in U .

Definition 27. Let (resp. B ) be a P= form (resp. q4= form). The exterior product of % and B , denoted by

AP i PF D) o defined
,isa {gc Tﬁ)e{gj..,gm):zi Z g(c)a(56(1),...,50(13))ﬁ(éjg(p”),...,éjo(m))

O ESpig

E

where &irsSpig are P79 vector fields, S is the group of permutations of the set {Lp+aj and £(o) is

the signature of the permutation © .
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The exterior product is associative and satisfies
anB=(-1)"Bra for a e’ (M)and Bee’ (M)

Theorem 28. There exists a unique operator
queop d:&(M)>&(M),

such thlg( M)c e (M)

(1)
@) d(oc /\ﬁ):da /\ﬁ-l-(—l)poc AdB,aee’ (M),ﬁ eg(M)'
3) dod=0
@1 T€C then df is the% rentlal ofpﬁl i
g @ €¢" (M) , then Mg, f&ﬁ& [ (. ‘3p+1)]+
p+l i n "
> (1) a([e;l.,e;f],e;,...,e;l.,...,e;j,...,egpﬂ)
1<j<p+l1
where 51’""5*’” are vector fields and & means that the vector field & is omitted.

4. Riemannian manifolds

Definition 29. A4 Riemannian metric on a € differentiable manifold M is a tensorfeldg of type (0’2) , l.e.,

geT 2( ) , such that at each ™ M. g, is a positive definite symmetric bilinear form, 1. e.,
gm(X X)>0 forall XeT MA{ }

gm(X,Y) = gm(Y,X) for all XY e T M

Definition 30. A Riemannian manifold is a pair (M,g) , where M is q c” differentiable manifold and g isa
Riemannian metric.

Let X and Y be two elements of .M , and let ( P “)goe a local cogrdinate system defined in an open

6x,.| and B '1’8Xi|m

subset U of M| with M€ U and suppose that Then

gm(X,Y) =3 g;(m)&c,

where ( ) 0 0
.lm)= —_—
8\ = En| o T Bx, m

We write o= Zgu dx, ® dx

ij=1
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g

Let (M,g) be a Riemannian manifold. Using the metric ©, it is possible to compute the length of any curve on

M joining any two points X and Y of M,
Definition 31. Let (M,g) and (N’h) be two Riemannian manifolds. A - map

f:M—>N

is said to be an isometry if ¥ is a c” -diffeomorphism and if for every M €M | and for every &nel,M ,

By (dF, (6),dF,, () = gm(&.n)

we
have

We write
g=f*h

I

Example 32. (1) Since the tangent bundle o gr is trivial, i. e., ™" ™ x r[, the Euclidean metric on 1"
denoted by 8= is defined by (v, ) (m,.v/) € TO

Eec ((mHVl )'(ml sVa )) =V

<
©

2) Consider the unit sph
(2) Consider the unit sphere S ={(xy0X,, ) €0

X; +..+ X :1}

n+l

. . n+l | . no . n i n+l
The Euclidean metric on 1" induces a metric on S e, if S >U

n n+l =1%
is the obvious embedding of " O , then 8 =178« s the "canonical” metric on S

, Where 8 s the

. . n+l
Euclidean metric on U™ |

3) Let
(3 Le .

{x =(x],...,xn)eD !

x"2 =x12+...+xi <1} R

be the unit disc. Since

D" =D"x1", gtgy{(&@f%?(x?’?)))ﬁn: fﬂmf)%ﬁned as follows
1=

(4) Every compact connected Lie group admits a bi-invariant metric, i.e., a metric for which left and right
translations are isometries. For details see (Gallot and Hulin, 1990).

Partition of unity

The aim of this section is to introduce a very powerful tool called" partition of unity” which allows one to
construct global objects such as metrics, differential forms, vector fields,..., by gluing local ones. Partition of
unity plays also a fundamental role in the definition of integration on manifolds.
(Ui )igl b . M c” .. .

e a covering of M. A4 - partition of unity

0.). ©

is a collection of maps (6)... , where 6, eC™(M,0)
((p[.) = {x € M|(pi (x) # 0}.

Definition 33. Let M pe a €~ -manifold and let

U, )
subordinate to the covering (U satisfying:

(1) supp (Qi) <l forall 1€1 where supp
@) 6,(U,)<[0,1] for all iel
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V,xeV =0

0.
 such that ™

(3) For every X €M | there exists an open subset except for a finite set of 0
X € M’Z'E 0. (x) =1

(4) For every el ((3). implies that the sum is finite).

Definition 34. 4 Hausdf Vf space M is said to be paracompact if every open covering {Ui}fel of M there
exists an open covering JEJ of M such that:

U, Vij, .
jed i (we say that ¥ is a refinement of {U' }iel ).
W, NV, #¢

i<

Dol
(1) For every , there exists 5% such that

(2) Each poi?{/m €M has a neighborhood W such that only for finitely many values j of J

1) jes

(we say that is locally finite).

Paracompactness is a generalization of compactness (every Hausdorff compact topological space is
paracompact).

Theorem 35. Let M be a paracompact c” -manifold and let (U‘ )iel be a covering of M. Then there exists a

0 . . ) U,)
¢ - partition of unity subordinated to* ~ /il |

Theorem 36. There exists at least one Rie({r]annign metric on any paracompact CE —njram‘fold.
#P)ia be an atlas of M and let \"

"Jiel be a partition of unity
n=dimM

The construction goes as follows: Let

. . U,). . . n .
subordinate to the covering ( ‘)'E' . Fix a scalar product Q( ) on U" where . Then it is easy to see

at > 0, (Q)]
is a metric on M . For more details, see (Aubin, 2001).

5. The levi-Civita connection

DefinitloT 37. Let M be a differentiable manifold. A Linear connection VonMisqa map

V:TMx TM —> ™
(&.Y)— V.Y
sansfymg the followmg conditions
(1)1f§ (l ? VgYeTmM.
(2) The restriction of Voo T'“MX l—(TM) is bilinear.

& v (fY)=(&-1)Y,, +f(m)V,Y foran SETaM Y € [(T™M)
@ 1If X el (TM) Y eI'(TM)
V.Y eI'(TM)

and for all ¥ differentiable function on M. .

and are such that X is of class C" and Y is of class CM, then

is of class ¢

Definition 38. (1) The torsion of a linear connection s.a ma, efined b
M 4 T: r(’TM)xr(TM v (ZT{/[ Y

(X,Y)> T(XY)=V, Y-V, X-[X,Y]
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where [X’Y] is the Lie bmcket of the vector fields X and Y .
v (r(T™), T (T™))

(2) The curvature R of a linear connection V is a two form with values in Hom , defined

B R: T(TM)xI'(TM) -  Hom (T(TM),T(TM))
(X.Y) B R(XY)=V.V,-V,\V -V,
For simplici .
or simplicity we write R(X,Y) _ [V ]_ V[vx,vy]

Remark 39. One can easily check that:
(1) Thf cur ature R is 51 (1, 3) tensor.

)
(R))}Z Z+R Y,Z)X+R(Z,X)Y=0
Y)Z

(Bianchi's Identity).

(4) The value of (X’ at a point M €M depends only on the values XY nd Z g m

M :
Theorem 40. Let ( ,g) be a Riemannian manifold. Then there exists a unique linear connection which is

g . L
torsio %ree and compatzble with t?e IKt/I tric, i.e., a connection ¥ satisfying the following two conditions:

all €

X g(Y,2)= g(VéY z)+g(X viz) X,Y,ZeT(TM)

2) forall
where T is the torsion of the connection V. The connection V* defined above is called the Levi-civita a
connection of the metric g and will simply be denoted by v

For a proof, see (Aubin, 2001).

The vector field ¥ * is called the covariant derivative of the vector field Y in the direction of the vector field
X .

The covariant differentiation can be extended to tensors of type (p,q) , see (Kobayashi and Nomizu, 1969) . In a
local coordinate system (X%, ) defined in b of@n Stfetk Usf M, we write

LRV
o an purio) &}

k
Definition 41. The functions T defined in U are called the ChristoffeL SymboLs of the Levi-Cevita connection
\Y

. . . X seens X .
Easy computations in a local coordinate system( e “)deﬁned in an open subset Uof M show that the

Christoffel symbols can be expressed i m tei\‘?omfe@netrlc apfollowsp ]

t—g ———g
= ox, &l 6XJ 8~ axl &ij

(gkl)lgk!gn (gij)lgi,an )

where is the inverse of the matrix
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6. Sectional and ricci curvatures

Curvature is a fundamental and central concept in Riemannian geometry. In this section we will introduce two

types( of curvatures, namely the sectional curvature and the Ricci curvature. (0 4)

Let be a Riemannian manifold and R its curvature. Using the metric € we can view R asa '
335 fo}lows

ten(SOf \g'(,lefmtj;d aés Rb(%(§( asfo

The properties of R can be summarized in the following

Proposition 42. The Riemannian curvature R satisfies the ollown operties
ﬁf, O 2 RSB ORKS Z WLR ekl e propert

2 R(X Y.ZW)=R(ZWXY)

Let G (2 T M) be the Grassmannian of 2-dimensional vector subspaces of .M and let
G(2,T™M)=U,_,,G(2.T,M)

meM

be the corresponding Grassman bundle.

(&)

Let Yn be a two dimensional vector subspace of .M with basis . Then it can be shown that the real

number T (u ): gm(R(é,n)é,n)
" g (6.8)gn () -g. (Em)

(5:77) ofu

is independent of the choice of the basis

Definition 43. Let (M ,g) be a Riemannian manifold. The sectional curvature of (M ,g) at MEM | denoted by

sect(m) , Is the function sect(m) . G (2, TmM) - .

u > sect(m)(u,)=T (u,)

m

Remark 44. If &n are two linearly independent vectors in .M , then we put

sect(m)(&,m)=T (u,

where Ym is the plane spanned by the vectors
> <
We will say that sect = c(resp. =7 C) if

sect(m)(é,é) >cg. (é,é) (resp.sect(m)(é,é) <,>,<cg (5,5)),

ceT,M and forall meM

S

for all vectors,

Definition 45. Let (M,g) be a Riemannian manifold. For each M €M | the Ricci curvature tensor of (M,g) at
m  denoted by Ric, (m) is defined R)'[cg (m) . TMxT.M— 0
(&n) = Ric(&n)
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where Ric(é,n):Trace(C HRic(éj,é’)n)

=Z?21<Ric(§,ei)n,e,>,

and (e,. )‘Sfﬁﬂ is a & -orthonormal basis of M

As defined, Ric, is a bilinear form which will sometimes simply be denoted by Ric if the metric is clear from

the context, and Ric, (m) will simply be denoted by Ric,, .

. . . Ric>c(resp.<,>,<c) .
As in the case of sectional curvature, we will say that ( P ) if

Ric, (&,&)>cg, (5,5)(resp.Ricm (£.8)<,>,<cg, (5,5)),
teT M

for all vectors m¥and forall meM |

7. A volume comparison theorem

The positivity of the Ricci curvature imposes strong topological and geometric constraints on Riemannian
Manifolds as shown in Theorem 46, Theorem 57 and Theorem 58 below.

Theorem 46. ( Myers, 1941) Let (M,g) be a complete Riemannian manifold and suppose that
Ric, > ¢
g b

where € is a positive constant. Then M is compact and its fundamental group is finite.

Remark 47. Negative Ricci curvature has no topological implications on Riemannian manifolds of dimension
23 g4sis shown by the following result.

Theorem 48. (Lohkamp, 1994) Any manifold of dimension 23 admits a metric with negative Ricci curvature.

Definition 49. Let (M,g) be a Riemannian manifold and let Y :(a,b) -M

smooth curve). The length of the curve denoted b A l(y) is given b
()= o (07 (Ot

where })(t):i_}t/(t):|:dy (%ﬂt te(ab),

>

, be a differentiable map (called a

d

dy is the differential of the map Y and 4 is the unit vector on U .

The length of a piecewise smooth curve is the sum of the lengths of its smooth pieces.

d (x,
Definition 50. (1) The distance between two points X and Y, denoted by g( y) , Is the infimum of the

c y

1
lengths (With respect to the metric g ) of all piecewise ~ -curves from X to
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M,d,
(2) The metric & induces a distance function d, on M | giving a metric space ( £ ) . We say that the metric

d,) .
g is complete if ¢/ is a complete metric space.

d, .
Remark 51. It can be proved that the topology of M induced by the metric "¢ is the same as the original
topology of M|

Definition 52. The geodesic ball B, (m,r) centered at M and with radius t is defined by
B, (m,r)= {x eM|d,(m,x)< r}

E

where "% is the distance function induced by the Riemannian metric.

Integration of differential forms on manifolds

Let M be an € -manifold of dimension ” and let @ be a smooth 7 -form defined on M . The aim of this
section is to give a meaning to the following expressi.on

M
H

p)cK

where P is a compactly supported function on M| i.e., supp( , where K is a compact subset of M .

Let us start first with the following

Definltlon 53. Let M and N be two —mamfolds andf M->N , C” -map. If © is a smooth " -form on
, then £* Q@ s the smooth N orm d nedo
LN 0 (6., (),

forall ME M and for all 51""’5“ €T.M

M, p

p)c U, , where (Ui’(pi)is a local chart

Let and @ w be as above. Suppose first that supp(

and(xl""’x“) are the corresponding local coordinates. Then
((pfl)*w =9, (X, X, )dX, A..AdX,,

whe % is a smooth nctlon defined in # (U) with real values. We put

pw = o8

N A

@ J.q;,(u,)(p()(p; )(x] e & )9,. (x] . & )dxl A.ndx,

We have to prove that the definition is independent of the choice of the local chart containing the support of P

Uj:(pj d (yl""’yn)

For this suppose that is a local chart an

S“"‘T L

L(Uj)(poqoj )(y],....,yn)Sj(y],...,yn)dy] Aondy,

are the corresponding local coordinates with

“4)

where 9 is defined by
((pj’l )*w =9 (yl,...,yn )dy1 Ao.ndy,
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In general the right hand side of the expressions (1) and (3) are not necessarily equal, but if we restrict ourselves
to "orientable manifolds" then we can choose an atlas of local charts such that (1) and (3) are equal. To be more
precise, let us introduce the following

Definition 54. (1) 4 ¢ -manifold M s said to be orientable if there exists a C” _atlas (Ui’(pi )iel such that the

-1

Jacobian Jac Pio®; of the € -dlfeomo hism oy, dy,
‘O(pJ Lo (Uiny, %P (U, @UJ)
is positive for all i.je I, ie., ]
JaC((piO(p; )((pj(x)):: det| - --- - |>0,
ayl’] e . aYn
ax1 aXn
Jor all el and for all xelnl , Where (X],...,xn)(resp. (y],...,yn )) is the system of local coordinates

corresponding to the chart (Uj,(pj)(resp (U0 )) .

(2) The ma i{;ol% M s said to be oriented if such an atlas has been chosen.

(3) A4 chart is said to be compatible with the or, ientation if
Jac(pop, 3>0 for all i

It can be shown that

Theorem 55. AOCx -man(fold M of dimension n is orientable if and only (f there exists a differential ™ -form @
such that ©n * forall MEM |

U ) . L o
If M s oriented and the atlas )‘El is compatible with the orientation, then

J.w.(U.)((pi_1 ) ‘o= J:pj(uj)(goj_] )*w )

@
i.e., the integral '[ u? is independent of the choice of the local chart.

@
Suppose now that P is a smooth function defined on M with compact support. Then we define J wP as

follows IM pw = ZIM X, p@
iel (5)

U,.9,),

where ( ‘)'EI is a partition of unity subordinate to an atlas ( il which is compatible with the orientation.

The right hand side of (5) is a finite sum and it can be proved that it is independent of the choice of the partition
of unity.
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Integration over riemannian manifolds.

(U’(P) = (U’(Xi )ISiSn )

Let (M,g ) be a Riemannian manifold of dimension 7, let be a local chart, and suppose

that T is a measurable function on M with compact support included in Y . Then the integral ‘™ is

.[M fdv, = L(M)f(qoil (X)) det(gij ((Pq (X))) dx,...dx,

defined as follows

fdV,
If T is a measurable function with compact S]II\E)P&){;g in % jf l\z}f?fwgdeﬁne .[ M ® a5 follows
iel

Xi Ui’(pi
where ( “'is a partition of unity subordinate to an atlas )'f‘ It can be proved that the sum is well

defined, i.c., only a finite number of terms in the sum are nonzero, the sum is independent of the choice of the
atlas and of the partition of unity subordin&te:d(tﬁ it, )

Suppose now that M is oriented and let @ be an atlas which is compatible with the orientation. Let

(U,(p) be a local chart belonging toA and let (X""’X“) be the local coordinate system associated to ? and

consider the following " -form:
o, = 1[det(gij (x))dxl Aondx,

=2 dx ®dx, (Vv)eA

where det (gij) is the determinant of the metric 7. Consider another local chart

and let (y‘ e y“) the corresponding local coo7djna:(§:s, and put
o, = det(gij (y))dy1 A..ndy,

An easy computation shows that .
Y P o,=o,in UNV

Therefore @ is a global * -form, called the volume form associated to the Riemannian metric & and it will be
denoted by dv, .

1 (B
Definition 56. The volume of the geodesic ball B, (m,r) de;]ated b(%;VVO g ( g (m,r)) is given by
B

Volg(Bg(m:r)'_ o(mr) €

The following two results are very important and will be needed in part 4.

Theorem 57. (Bishop and Crittenden, 1964) Let(M’g) be a complete noncompact Riemannian manifold of

. o dimgpM=n
positive Ricci curvature, R . Then

vol, (Bg (m,r)) <cr" forallr>0,

where € is a positive constant independent of T .
There is a generalization of Bishop's Theorem by Gromov, but for our purposes, Bishop's Theorem is enough.
The proof of Bishop's (resp. Gromov's) Theorem (Theorem 57) uses special local coordinates coming from the
exponential map and some properties of Jacobi fields, for more details, see (Gallot and Hulin, 1990).
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Theorem 58. (Calabi, Yau, see [14]) Let (M,g) be a complete noncompact Riemannian manifold of nonnegative
Ricci(cu atuljj. Then

vol (B, (m,r))>cr for all >0
EAE , large enough.

de Rham isomorphism

Definition 59. (1) 4 p - form w is called closed, or d_ closed, if do=0

2)4 p -form @ is called exact if o =dp for some (p B 1) -form B .

Since d*=0 , every exact form is closed. Hence we see that the vector space of exact P _forms is a subspace of
the space of closed p-forms.

th P
Definition 60. The P de Rham cohomology group of M, denoted by H (M) , is given by
H, (M) = {closedp - forms} / {exactp —forms}

p
DR

th
de Rham's Theorem says that (M) is isomorphic to the P singular cohomologys of M . More precisely

consider the following map X: Hpy (M) - H, (M U )

o] [0]([2])=[,o

th )
where H, (M’D ) is the singular p homology group with real coefficients, H, (M’D )
th

p

its dual, W is a

representative of its de Rham cohomology class ,and Z is a cycle representing its real differentiable

singular homology class [Z] The fact that the map X is well defined is an easy consequence of Stokes theorem.

For more details, see (Warner, 1983).

Theorem 61. (de Rham) The map X is an isomorphism.

If M is a compact oriented manifold, then Poincare duality implies that
M,0) =H"(M, 0

Combining de Rham isomorphism and Poincare isomorphism, we obtain
H, (M,D ) =H}, (M)

Definition 62. Let M be a compact manifold. The nonnegative integer b (M) defined by
b, (M) =dim_ H, (M),

is called the =" Betti number of the manifold M. .

Holonomy groups

The aim of this section is to introduce the "holonomy group" of a Riemannian manifold and to state two of the
fundamental results in Riemannian Geometry, namely de Rham's and Berger's Theorems. The material of this
section will not be used elsew 1\r/[e irj this paper, so it may be skipped if the reader whishes to dg so

g

To any Riemannian manifold of dimension " n, we can associate a closed subgroup of (n) , called the

holonomy group of the metric; lots of information about a Riemannian metric is encoded in its holonomy group.
Let us first define the holonomy group.

5 For more details on singular (co)-homology, the readers can consult [20].
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dy
Let /” (a,b) M be a smooth curve. Thg1 tangent v c({ dt ¢5 the curve 7 is defined by
@ =Iﬂdy (— } , b, € (a,b)
dt|1o dt [t
d
where dy is the differential of the map 7 and 9t is the unit vector on . For a function f defined in a
neighborhood of 7(t) , we get dy d(foy)
— 1 ()= = |(t)
dt dt

Let (M ,g) be a Riemannian manifold of dimension M and let ¥ be the Levi-Cevita on M .

Definition 63. (1) 4 vector field X along a curve Y :(a,b) - ™
X: (a ,b) —T™M

is a map

such that X(t) € Ty(l) M for all te (a,b) '

(2) 4 vector field X is said to be parallel along a djjzyeyem@ble curve ¥ if

dt

Let XziXigandyz(y‘,...,y“),

i=1 i

4

(U, (xl,...,xn )) .

be the expression of the vector field X and the curve * in a local chart

Th o | dX no dy'
- VyX=0s) x, > T (7 (1) X (1) o _,
at E iK1 dt  |ox;
. (6)
Let ™ and ™2 be two points of M and let Y :[a,b] -M be a continuous curve which is smooth in (a,b)’

and joining Mand ™2 e, Y (a) ™ and ¥ (b) = M2 and let X be a vector in TuM . Since the equation (6)
1 te [a,b]

is linear, by Cauchy's theorem, it has a unique solution X(t) for a satisfying X(a) =X .

Definition 64. The vector X, = X(b) is called the parallel transport of X from My 4o M2 along the curve .

The parallel transport along a piecewise smooth curve ¥ is defined in an obvious way. Then to each piecewise
curve | is associated an isometry (with respect to the scalar _Froduct on T.M and T,M induced byg )
T,:T, Mo>T, M

This map is both linear and invertible and so defines an element of GL(T‘“M) Let m€M and consider
=m

lo(m) = {}/ : [a,b] - M|7/ piecewise and smooth, y (a) =.7/ (b)
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lo(m). . . .
It can be shown that ( )1s a group under composition of paths. To a composition niers , We associate the
linear transformation ] Lol : T.M—>T. M

nev2 72

Definition 65. The holonomy of v (or g) based at M s defined as
hol, (Vg) = {ly e GL(T, M)| ye lo(m)}

hol, (V¢) . O(n) L
The holonomy is a subgroup of the orthogonal group , moreover, it is a Lie group. If
holm( ) hol,, (Vg) R VL . . m,,m
' and 2 are the holonomy groups of the connection at the points = >"2, then there

exists an element AeO (n) such that
hol, (V*)=Ahol, (V*)A™

This allows us to speak of "the" holorromy group of a Riemannian manifold (M,g) and denote it simply by
hol(V*®
© ( ) . If we consider in the definition of the holonomy group only contractible closed curves, then we obtain

what is called the restricted holonomy group, and it can be proved that the two coincide in case the manifold M
is simply connected.

Remarlk 66. Thefollowmglove(lvg le GL(T M)|y € 10( ), y is acontractible curve}

hol £
is a connected normal subgroup of " ( ) , and is called the restricted holonomy group.

ol (V®
Definition 67. (1) The representations of ( ) in .M are isomorphic and therefore called the holonomy

representation. (M )
(2) A Riemannian manifold *8) is irreducible if its holonomy representation is irreducible.

Theorem 68. (de Rham 1952) Let (M,g) be a connected, simply connected complete Riemannian manifold.

Then:
(1) there exists a canonical decomposition

1sometric

(M,g) = (M,,g,)x(M,,g,)x..x(M,,g,)

M, ,gi),i =1,...k

where (Mo,go) is a Euclidean space (possibly reduced to a point) and ( are irreducible simply

connected complete Rlerﬁtanman mamfolds

@) For M= {(Mm)eM =, ho L, (V¢) = 0(T, M)

, let be the holonomy group of M; at ™ and let

.
hol, (V ) be then the holonomy of (M.g) at M,

Then hol, (V#)=hol, (V*)xhol, (V¥)x..x hol, (v#),

hol, (V*)xhol, (V¥)x..xhol, (V*) .
Tm M= TmoMOXTmlMl X"'XkaMk

where the action of

is through the product representation. Such a decomposition is unique up to an order.
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The symmetric spaces were classified by E. Cartan around 1920 and their holonomy groups are well
understood. For example, a compact symmetric space is a homogeneous space G/H , Where Gisa compact Lie
group and H is the identity component of the fixed locus of an involution of G and the holonomy G/H js Hg,
So we can exclude symmetric spaces from our study of the holonomy of Riemannian manifolds.

Theorem 69. (Berger, 1953) Let (M,g) be an irreducible simply connected Riemannian manifold which is not

‘ . . hol(VE) (M,g) . .
isomorphic to a symmetric space. Then the holonomy of is one of the following groups

nol(v=) dim M Type of the metric
SO (n) n Generic Riemannian
U (1) 2r Kahler
SU (r), I=3 2r Calabi-Yau
Sp (1) 4r Hyper Kédhler
Sp (r) Sp (1) 4r Quaternion - Kéhler
R 7 Ricci Flat
Spin(7) 8 Ricci Flat

Remark 70. (1) Initially it was thought that there is no manifold with holonomy G, or Spin (7), but recently, D.
Joyce was able to construct a compact 7-dimensional manifold with holonomy ~?* (see [28]) , and a compact 8-

dimensional manifold with holonomy Spin (7), (see Joyce, 1996).
2 Si
SCRFE su(2m) e U(2m) < S0(4m)

we deduce that every hyperkahler manifold is a Calabi- Yau manifold, every Calabi- Yau manifold is a Kdihler
manifold, and every Kdihler manifold is orientable. Kdhler manifolds will be introduced in Part 2, but we will not
study the other types of manifolds in this paper.
(3) It is very well known that the groups appearing in Berger's list (Theorem 69) are connected to the three
division algebras U (real numbers), € (complex numbers), H (quaternions). The connection is stated as
follows

SO(I'Z) . . on
- is a group of automorphism of Y .
- U(n) and SU(D) are groups of automorphisms of "
_Sp (n) and Sp(n)Sp(l) are groups of automorphisms of H" where H is the space of quaternions.
.G and Spin (7) can also be realized as automorphism groups of some other structures.

Kahler manifolds will be the subject of Part 2. As for the other classes of manifolds, excellent accounts can be
found in (Salamon, 1989, Joyce, 2000, Beauville, 2006, Bryant, ).

Part 2. Kiihler manifolds

hol(V#
We have seen in the previous part that if the holomony ( )of a simply connected irreducible complete

Riemannian manifold (M,g) of dimension 27 is icluded in U(n , then the manifold is "Kéahler".

6 For more details on symmetric spaces, see [23].
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The aim in this part is to give a short introduction to" Kdhler manifolds". Since we mentioned the Hodge
decomposition theorem without proof, skipped some other fundamental results in Klihler geometry, and since
most of the proofs are either sketchy or missing, we suggest the following references (Kobayashi and nomizu,
1969, Griffiths and Harris, 1978 and Demailly, ) for more detail.

9. Holomorphic functions

Definition 71. Let © be cg no qmply g nnected open subset of C" 4 complex valued function £ on Q is called
holomorphic if for each RS R there eyists a peigh orho N and a power series
Z )(Zl - Zﬂ)@l

Ay peensOly €L 50

f(z Y . .
that converges to ( ) for Z€ U, where " are complex numbers and o is the set of nonnegative

integers. We denote by H (Q) the set of holomorphic functions on 2.

= n . = L+ —1 B n n
Let * (Z"""Z“ be the coordinate system of U " . Write 25 = %ajn %2 and identify U " with U * Via the
d
correspondence (Z1rs2, ) > (XX Xy )
and consider the followmg&lotatld o _1 0 i 1 0 N 0
oz, 2| ox,,, ox,, | 0z, 2\ 0x,,, x,,

(7

The following characterization of holomorphic functions is very useful

Theorem 72. of

H(Q)= {f L.(Q)—==0 for j=1,2,...,n},

aZj

L. (Q) . . . . o . .
where ’OC( ) is the set of locally square integrable functions on €2 and the derivative is taken in the sense of

distributions.
For a proof of Theorem 72 see (Ohsawa, 2002).

Definition 73. Let €2 (resp. Q' ) be a nonempty connected open subset of ! (resp. U " ).
(1) 4 map .
0 =(0,0 ) QL0

. L 0. Q>0 . 1<j<m
is called holomorphic if each ™) is holomorphic, .
If (p(Q) cQ , then we write

Q= ((pl,...,(pk):Q - Q'
Suppose that ™ =" A holomorphic map ,
y:Q—->Q

is called a bihol, hism if there is a hol hi
is called a biholomorphism if there is a holomorp zc:mézp%Q
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such that . .
yoy =id, and ¢o¥ =id

Qo

where idg (resp. ldQ’) is the identity map of €2 (resp. Q' ). In case Q= Qg bihlomorphism v:iQ->Q is
called an automorphism of €2 .

The set of automorphisms of €2 denoted by Aut (Q) is a group under composition of mappings. A beautiful
theorem of H. Carlan says that if € is a bounded domain in ¢ , then Aut (Q) is a Lie group. Bedford & Dadok

and Saerens and Zame proved independently that any compact Lie group can be realized as the automorphism
group of a pseudoconvex domain in some cr o

10. Complex manifolds

If in Definition 2 we consider open subsets of U " instead of open subsets of I ", and biholomorphisms instead
of € -diffeomorphism, then we get what we call" a complex structure” on M.,

Definition 74. A complex manifold of dimension n is a pair(M’W) , where M is a locally Euclidean space of

dimension n and Y is a complex structure on M. The manifold (M’W) will be denoted simply by M.

(Uno) (or (Uinz..2,))

The pair , is called a local complex chart and (Zl""’z“)is called a local complex

coordinate system defined in Ui .

We have already defined in the category of C” . manifolds what. we mean by a submanifold, an embedding, an

immersion, a ¢ -map between manifolds, isomorphism of vector bundles, pull back of vector bundles,...etc.
With obvious modifications, we get the notions of complex submanifolds, holomorphic embeddings,...etc.

For more details, the interested reader can consult (Kobayashi and Nomizu (1969) or other textbooks dealing

with complex manifolds.

Z)yenZ, )

i e , is called a local complex chart and ( is a local complex coordinate system defined in Ui ,

the , ,
@; (‘Un ) < 0 ﬁ " Put Zj = X2j71 +\/_—1f)i[2j: Ul_] :1,...,}'1,

I

amd tonsider the following maps

m > (x) (m),....x5, (m))

The maps fi, oﬁlgl i (Ua ﬁUﬁ)—>ﬁa (Ua mUﬁ) ’

are € - diffeo higms
The collection =« isa C -atlas on M. This € -structure on M is called the underlying C” structure of

the complex manifold M.
An example of a complex manifold, which will play a fundamental role in what follows, is given by:

Example 75. The projective space p*
The projective space deserves a special attention. Since it plays a very important role in what follows, we will try
to describe it in some detail. As a set, the projective space is defined by
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P =(0""\{0})/ [

Yhere the eﬂzlvalence U s d?( neéby

Wi such that Zy,- ..,Zn)zh (WO,...,Wn).

Denote by ™ the projection m0™! \{O - P

where [ZO""’Z“] is the equivalence class of(zo""’z“) . The projective space P" can be equipped with a

complex atlas Ui, )OSiS" as follows: Let

U, ={(202,)€C™"z, 20}, i=0,...m,

. . i Ui - 0"
and consider the following map
z zZ., z z
0 -1 +1
(ZO,...,Zn)I—) — e —— 2,
z, zZ, 1z, z,

The maps Vi are continuous and it is clear that

V. (295 2y ) =W, (YoreosYn ) € [Z0sor 20 | = [ YooY |

U, =n(0, : n
Let ( ) .Then the map ?; U -l

z Z. Z. V4

0 i-1 i+] n
[Zoronz, ]l |20, 000 2ot Tn
Zi .

is a well def ned bijective map. The maps P are open, for, if Vs an open subset of U; then

o (V)=w, (7 0, Ur and 0" o
is opg)n Tl herefore (tﬁf m% real(zﬁs @Teomorphlc between and Y, moreover,

the maps
Z Z. 1 z Z
0 i-1 i+1 n-1
(ZgseeZy)) I—)(—,...,—,—,—,...,—J ,
Z; Zy Z; 7 Z;

are bift{ojlom rphic.
Thus \ =P haisn gs defined above is a complex atlas, which gives P the structure of a complex manifold.

The projective space P" isa compact complex m}c)zngold( Svmqj
=7 ,

where
Szn“z{(zo,...,zn)e w |z

=

Example 76. The following are complex manifolds:
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M
(2) Any %p(en sitbset of U,
(3) Let ") be the set of all T -dimensional vector subspaces of | ", called the Grassmannian manifold of T -

is a compact complex manifold of dimension rn- r) Af

r,n

linear subspaces of "It can be proved that G

t=1_then we get the projective space P

4 If 7t and T2 are complex manifolds, then M

1M, is a complex manifold. More examples of complex

manifolds will be given below.

Definition 77. A complex Lie group is a comflesGanif§hd G endowed with a group structure such that the map
(gh) »v(gh)=gh”,

is holomorphic.

Example 78. The followi(zg c[zrf complex Lie groups:
n,

(1) The linear group GL . is the set of all "* " invertible matrices with complex entries.
2) Special li :
(2) Special linear group SL(n,[ ): {A c GL(n, D) | det A =1}

(3) The special orthogonal group SO(n,[ ) _ {A . SL(n, D) | ATA = In}

4) T 1 :
(4) The complex symplectic group Sp(n,[ )= {A e GL(Zn, D) | ATIA = J},

where Io 0 -1,
1, 0 )’

n

and L, is the identity matrix of GL(H’E ) .
For more details, the interested reader can consult (Warner,1983, Knapp,2001 or Helgason,1970).

Quotient Manifolds

A very important procedure to construct new complex manifolds from known ones is given as follows. Let G be
a subgroup of the group of automorphisms of a complex manifold M, It is easy to see that the relation U defined
in M by xUy if there exists an clement &€ G such that g(x
M/G

is an equivalence relation. The set of

equivalence classes is denoted by In general, the quotient space M/G of a complex manifold M is not

necessarily a complex manifold. Butl\t/p; gnposing some constraints on G, the complex structure on M will induce
a complex structure on the quotient .

Definition79. (1) 4 subgroup G of the automolizahism group of a complex manifold M is said to be properly

discontinuous if for every compact sets ! and "2 of M,
#{geGlg(K,)NK, # ¢} <+,

i.e., the number of elements geG such that g(KI ) K, #¢ is finite.



BOUDJEMAA ANCHOUCHE

G\{id,, |

(2) The subgroup G is said to be fixed point free if no element of has a .fixed point, where ld,, is the

identity automorphism of M.

Theorem 80. Let G be a subgroup of the group of automorphisms of a complex manifold M. If G is fixed point
free and properly discontinuous, then the quotient space M/G has a canonical structure of a complex manifold
induced from that of M.

Example 81. Torus.
Consider the yector space U™ (which has the structure of a complex Lie group) and take 21 yectors
L; =V j), j=1..,2n ﬁ)jﬁ}]gjgzn

which are U -linearly independent. The vectors generate a discrete

subgrou 2n
group Gz{erujhjeD},
j=1

of U " Then it can be shown that 1" =U"/G js {411))1 mpw¢t complex manifold (actually a compact complex

J)1<j<on

commutative Lie group) called a Torus. The vectors .atle called the periods of T" and the matrix

is called the period matrix.

Example 82. Hopf Manifold. | |
]

1 1= =
Let PP an pe 1 complex numbers such that for j=lon, and let G <g> be the cyclic group

\{(0...,0)}

ﬁ
- (042,00 0,2, ).

>*n“n

generated by the automorphism g:0°" \{(0,...,0)}
zn)

(20

%e grou . n(\}{ ( Ois 63(}e)d/ Gpoint free and properly discontinuous. Therefore the quotient space
Ghotn o , called the Hopf manifold, is a compact complex manifold. It can be proved that

“e s diffeomorphic to $* %8 , where s is the I -dimensional sphere.

Example 83. Iwasawa manifold.

Let M be the subgroup of ~ ° . ) defined 2z z
M=4|0 1 z, |(zl,zz,z3)eD3 .

00 1
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, U[i]={a+bilabe {
Denote by G the discrete group of matrices with entries in the ring of Gaussian integers
1z z
G=4|0 1 z | (21,22,23) € ([ [i])3 ’
001

>

ie.,

It can be shown G acts by biholomorphisms,o n/l\(/l}iuch that the quotient M/G , known as the Iwasawa manifold,
is a compact complex manifold, with My (

Blow-Up of Manifolds

A second procedure to construct new complex manifolds from given ones is the blow-up. In this section we will
explain what is meant by blowing up a complex manifold at a point.

Let us first start with a special case: M = Where A tTe unit ? ydisc, i.e.,

:

and consider the following qg% :={(( 2y, o[ Wy, ])eA“XP“llzw W, 0}

It can be shown that ~¢ is a complex manifold and that
biholomorphic

Ao} = ANa(0)

and ' (0)=pP™,

where 7 is the projection
T @g - A

(22 ) Wi Wa]) 5 (212,)

g“ . n E=77,'7] (0)

The complex manifold ~° s called the blow-up of A" and is called the exceptional divisor.

dim, M =n and let m be a point of M. The

Consider now the general case, i.e., let M be a complex manifold,
meU, (p(m):O and (p(U)z

"blow up" of M at m is defined as follows: Let (U,(p) be a local chart, with
the unit polydisc in <" Then

Definition 84. The blow up of M | denoted b@ (i/[d\e{ne as gllows
: m})u,

(M\{m})u, 4 U e

where means that ~ is replaced with

It can be shown that the definition of M is independent of the choice of the local coordinates.

From the definition, we see that M is a complex manifold which comes equipped with a projection
T n > M,

such that biholomorphism

M, \z " (m) = M\{m},

m
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n-1

-1
and * (m) is called the exceptional divisor.

1N

11. Holomorphic vector bundles

Definition 85. Let M be a complex manifold of dimension 1. A holomorphic vector bundle of rank rover M is

a complex manifold E together with

. FE—>M

_ 1
(1) A surjective holomorphic map , such that Ec=n (X) has a structure of a complex T -

dimensional vector Spfff’ )/vhere I js independent of X.

< of M and biholomorphisms < called trivializations
¢, E, ="' (U,)>U,x0"

lu, —

(2) An open covering

such that for each xel, , the map
E —25{xjx]" > I,

is a U -linear isomorphism. Example 86.
(1) If M is a complex manifold, then MXU" is a vector bundle of rank T | called the trivial bundle.
(2) The tangent bundle T'M of a complex manifold M (see 9 below for a definition).

3) (LNeIS M be a compact complex manifold and denote by its universal COKES, GL(V
T, its fundamental group actingﬁn M on the right, and let p.ﬂl( - ( )
representation of &l (M) Then V, =Mx V

be a complex linear

is a holomorphic vector bundle over M | where
Mx V=Mxv/0,

and (m,,v,)0(m,,v,)< 3 gen, (M) such that
m,=m,.g and v, = p(g’])v1

Almost Complex Manifolds

Definition 87. An almost complex structure Jona € -differentiable manifold M is a section of End(TM) ,
meM,J} = —idy idy

such that at each , where is the identity transformation of T.M . An almost complex

manifold is a pair (M’J) where M jsq C” -differentiable manifold and ' is an almost complex structure.

Remark 88. (1) It can be shown that every almost complex manifold is orientable and of even dimension.
(2) Not every orientable manifold of even dimension can carry an almost complex structure, for example Borel

and Serre (1951) proved that the spheres S* do not admit an almost complex structures if " #2,6

Proposition 89. Every complex manifold es an almost complex structure.
! X, +v-1

Z,yeenZ, ) € Z. =X, X, oo . X yeeesX X X
Let V7177 ,and put 1 T2 2 With respect to the coordinate system ( Pt 2“), we
define an almost complex stryctuge ag follows 0 0 )
J = and J =— ,j=12,..,n.
axzj-] 2j X2j 0x

®)
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Therefore, every complex manifold is an almost complex manifold. The converse is not true in general, i.e., an
almost complex manifold need not be a complex manifold. But if we impose some restrictions on the almost

complex structure then the converse becomes true. Define the torsion '’ of an almost complex structure J by
N (XY)=[IXIY]-[X, Y]-J[X,JY]-T[IX, Y],

where X and Y are vector fields. The torsion N, is a tensor, called the Nijenhuis tensor.

- o . . . N/(XY)=0
Definition 90. An almost complex structure is said to be integrable if has no torsion, i. e., if
all vector fields X and Y .

for

Theorem 91. (Newlander and Nirenberg, 1957) An almost complex structure is a complex structure if and only if

it has no torsion.
JeEnd(TM)

Let M be a complex manifold and be the almost complex structure induced from the complex

structure of M see Birkenhake and Lange (1992), where ™ tar'llgei\l/llt bundle of the underlying C” _manifold

M | The endomorphism J extends to the complex vector bundle "“ ", where U is tlzle complexification of
TM=TM® [

=0y y

the real tangent space of the underlying C” ‘manifold M ,l.e., . From , we deduce

that o o
TM=T"M®T"M,

T'M={XeT M|JX=v-1X | and "M = {X e T M| JX = —/=1X | )
Then 7'M s a holomorphic vector bundle of rank ” and T"M s the conjugate of TLOM, ie.,

TYM=T"M . We can identify TM with T]’OMl ia the_correspondence
TM3X 5 X—~/-1 JXje T'M

10
( K 5 j (10)
U,(z,02, =x, A Ix,, .
Consider a local complex chart ( (Z‘ “ )) where 2/~ Y21 T lxzf. Then O 0% constitutes a
basis for TM over [ . (also a basis for M overg ) ie.,
0 0 0
TM =span, {—,...,——, | M =span ; yorey——
axl aX2n ax] ax2n

and 0z, 0y (resp. % 0, ) a basis for ™M (resp. ™M ), where oz, and 0, are as in 7, in

th d
other words, T M =span ﬂ’m,i’ﬁ’m’i ,
0z, 0z, 0z; 0z,
d
aZl aZn 821 aZn

1

The dual of the holomorphic vector bundle T""M il be denoted by Qy .

f- M—>N

Let M and N be two complex manifolds. Recall that a ¢ -map between the underlying .

manifolds is said to be holomorphic if
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-1,
yofop™ :¢ (U) -V (V) is a holomorphic map,
-1
for all local complex charts (U.0) of M and (Vaw) of NV such that Uce (V) At each point M€ M | the

differential )
df : TM—>T, N,
is an [ -l B lexificati i (denoted also by df )
is an inear map. By complexification, we get-a linear m oted also by
Gt NS (RS
In general ({710 1.0
df.((T M)m) z(T N)f(m)

It can be shown that

Theorem 92. Let M and N be two complex manifolds and f:M->N, C” -map between the underlying ¢
manifolds. Then 1 is holomorphzcdﬁfma(r(s{-wi\l){){) c (TI,ON)f(m) for all meM

12. Differential forms on complex manifolds

a local chart and let (Zl""’z“)

LoeeesX X

Let M be a complex manifold of dimension @ a differential P _form, (U,(p)

o

. . z
be the system of complex coordinates associated to ? put “
(U,(xl,...,xn,xnﬂ . o ))

the local coordinates of the underly%%xg ='ma2f°ldalir}...,ipl(tk) dx; A.ndx,
I<i<..<i,<2n

n+17"'7x2n ) are

2J1 X2 Then (X

we write

Ayl

? are complex valued functions on U. From
z,=2; =X, +N-IX,, Z; =%, —V-Ixy;,

where

we deduce that 1

_ 1 _
i =§(Zj+zj)’ X25 = 2\/_—1(2.7‘ 7,

Hence , 1 _
dx,;, =E(dzj +dzj) and dx,; =

—dz, )
2J-1 (12)

By substituting 12 in 11, we get z b, . ok (z)dzjl A.ndzyp Adz AAdZ

r+s=p

Definition 93. A differential for _ —
iff é[: b ik, (z)dzjI Aondzyp Adz ALAdZ (13)
is called a differential form of type (r,s) .

Thena P -form ¢ canbe expressed in a unique way as
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0=> 0"

r+s=p
]

where 0 is a form of type (r,s), It can be shown that the type of a form is independent of the choice of the

. . C'
local complex coordinates. For a functlon < ( ) , weshaye

Weput ot =3 4, and 3f = Zs—fd—

i=1 OZ; i=1 U4;

1
In the same way, for an (r ) form 9 as in (13) with coefficients in ¢ ( ’ )’ we put
00=Y (b, o ¢ (2))rdzy A ndz AdZ AL AdT,

wdrKpenK

and 06 =Z(5bj.,...,' . (z))/\dzjl ANendz, AdZ, AAdZ,

9 SN 8

Theorem 72 is equivalent to H( ) {f el loc( ) |3f=0 }

Definition 94. 4 holomoryhic P -form is a (p.0) form @ satisfying 00 =0

Remark 95. It is possible to define integration of smooth differential forms on any complex manifold, since it
can be shown that every complex manifold is orientable. For a proof, see Kobayashi and Nomizu (1969).

13. Kiahler manifolds

. . . . M,J) . . . . S
Definition 96. A Hermitian metric on an almost complex manifold ( ) is a Riemannian metric g which is

invariant under the almost comp(lex stru)cture( )l( e, Y)
for all vector fields X and Y .

: M,J
Theorem 97. Every paracompact almost complex manifold ( ’ ) admits a Hermitian metric.

The proof goes as follows: Let I be a Riemannian metric on the underlying C” _manifold M whose existence is

guaranteed by Theorem 36. Then the metric & defined by
g(X,Y)=h(X,Y)+h(JX,JY).

for all vector fields ~*Y is a Hermitian metric. The fundamental (1,1) -form associated to the Hermitian metric
& is given by
o, (X, Y)=g(X,JY).

A very important class of Hermitian manifolds is given by what we call "Kdhler manifolds" .

Definition 98. A Kdhler manifold is a pair (M,g) , where M is a complex manifold and & is a Hermitian
metric whose associated (1, 1) form Pe g closed, i.e., do, =0.
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Let (M,g) be a Hermitian manifold. Then the Hermitian inner product € in T.M can be extended to a unique

complex symmetric bilinear form in th(: (zrznplext gent space T'Mof M 1f X and Y are two holomorphic
12 ’ n
of M as

X = Zé—andY Z“:g“i

1 l

vector fields written in the local chart

then . =
g(X,Y) = Z;gi,jgicj' >
ij=
where B 0 0
gi,j (Ill) - E;nl E§ETI|rn ’E%ng m |*
i J
Then the metric is usually written as rzg dz ®dz,

ij=l1

(gi,j (Z))ISiSn

1<j<n

.

The matrix is a positive definite Hermitian symmetric matrix. The associated (1, 1) form ¢ is

given by o, = \/—z g5 dz ndz; .

ij=1

The length of a tangent vector

X:ancgiieTmM

i1 0z

is given by

The(g'gf}l 99ag{1’j_Hermitian manifold (M,g) is Kdhler if and only if one of the following conditions is satisfied.

) oz 0z, :
agij _ agi,/\f
@ %

(3) For every MEM | there exists an open neighborhood U of M and a differentiable real junction T defined

.U 2
in such that = of
o, =~-100f ie., g- =
s 55" o0z,

There are other equivalent characterization of Kéhler manifolds which will not be given here.

Example 100. (1) Every Hermitian manifold of dimension one is necessarily Kéihler.
(2) The complex Euclidean space ¢ equipped with the "Euclidean” metric
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8. (z)= \/—_lzn:dz[ ®dz_l. {resp. 0, = \/—_lzn:dzi /\dz_ij
i=1

i1

is a complete Kdhler manifold with zero curvature.
(3) The unit ball b {Z ()0 | [ = /anlzilz 3 1} ’
i=1

is a complex manifold which can be endowed with a complete Kdihler metric, called the Bergman metric, with
negative curvature.

O/A , is a Kdhler manifold, since it can be shown that the Euclidean metric on U !
induces a Kéhler metric on " 1\ .
(5) Every complex sub manifold of a Kdhler manifold is Kdhler, it is enough to take the induced metric.

(4) The complex torus

Example 101. The Fubini-Study metric on P
The projective space P carries %C?”OUC‘E wetri¢ called the Fubini-Study metric and defined as follows (the
notations are those of Example 75):' ’
[Zo Zin Zin Zy j
[2gnz,] b |22, 00 B Za ]

i i i i

0, =—
o 2rm
2
Then on UY, , we have _ -l ao1n| 1% Z“ Zi
2n z, =07,
= w3 [
- 2” n Zk:o _
= a)i
Zi
. z, . o . . U nU,
The last equzallly is a consequence of the fact that ~/ 1is a nonvanishing holomorphic function on ' 7,
Zi
z.
hencelIn !’

is pluriharmonic, i.e.,
2
z

Z;

«/——lﬁéln

=0
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Therefore we have a global (1,1) form, denoted by Ors | defined by
W =0, in U

Z .
=7
w, =

[2g5-r2, | € U, z RN . _ R
For =% i/fzft(l + Z/‘:l Wﬂhﬂyz?&n‘ﬁu%gfwﬁwfzw w,dw; )(Z_/‘:l w,dw, )

O = in U, ,

27 n 2)? '
(1+Zj:] J )

. . U(n+1 .. n . . . U(n+1) . .
Since the unitary group ( ) acts transitively on P and since ©rs s invariant under ( ), it is

enough to check the positive definiteness of Drs gt the pot [1’0"" 0] . But at the point [1’0""’0] , we have
a)Fs([ 0])——Zdw ndw,

P",
which is positive definite. Therefore ( ng) is a Kdhler manifold, where Ers , called the Fubini-Study metric,
is the Kdhler metric whose associated (1,1) form is s,

The Fubini-Study metric can also be described as the Kdihler metric 8 on P" whose associated (1,1) form

@ s satisfies J=1 = n
(2.

7 (o) = gﬁaln
where m: 0o} pP"

ﬁ
(Zgrzy) P> 202y ]

n

Some basic properties of Kdhler manifolds can be summarized in the following

Thegre(n 02 LetM be a f nspact Kdihler manifold. Then
(1) % is the 2K~ Betti number of M .

(2) Every holomoryhzc - form on M s closed.
For a proof, see (Griffiths and Harris, 1978).

where

Hodge Decomposition

The following decomposition theorem, called the Hodge decomposition Theorem plays a fundamental role in the
understanding of the structure of compact Kdhler manifolds. The existence of such decomposition implies
restrictions on the topology of compact Kahler manifolds. Some of its corollaries will be used to construct
compact complex manifolds without Kahler structure.

Theorem 103. Let M be a compact thl:%ﬂﬁ&%@l&%[@anj_kﬁ’j (M)

i (M) =1 (M) .
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where HY (M) = H (M, Q), )

ij
For the definitions of the spaces H (M) and a proof of Theorem 103, we suggest [21].

As a consequence of Theorem 103, we have the following

Corollary 104. Let M be a compact Kéhler manifold. Then the odd Betti numbers 0. (M are even, i.e., Baca (M)

are even.
The proof of the corollary is straightforward. From (14), we deduce that

b, (M)=2,, . b"(M)
bY (M) =b¥ (M) ,
where b (M) = dimH" (M) By puttmg - ‘K k
b52 +1-s j
2k+l

Remark 105. [t is very important to mention that not every Hermitian manifold is Kdhler, as is shown in the
following examples.

0 dz, dz,-zd
Example 106. (1) Let M/G pe the IwasavAvquani oold géﬁneﬁ;lz%f EZxZa ple 83. For A€M e have
= z, .

00 0

dz,,dz dz, -z,dz, on M are left invariants under G and therefore induce holomorphic

, —z,dz

2 and

one forms on the quotient manifold M/G | Since dz

The one-forms
2 is not closed, by Theorem 102 the Iwasawa

manifold MG carries no Kéhler structure.

M
() Let  “*  be the Hopf manifold defined in Example 82 and suppose that "= 2 It can be shown that
g2y gl b, (M ) =1, b, (M

Gt G where

O s,

, =1,
" is diffeomorphic to . Hence " is the first Betti number

M
of ™ . Then, by Corollary 104, the manifold ~— “* carries no Kdhler structure.
14. Projective manifolds
Definition 107. A projective manifold (or a smooth projective variety) is a closed submanifold of p" for some
positive integer .

We collect some of the properties of projective manifolds in the following

Theorem 108. (1) If M, and~M2 are projective, then ~Ml xM, is projective.

() If M s projective, then M, is projective, where M, is the blow-up of M gt mM€M
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(3) Every compact Riemann surface, i.e., compact complex manifold of dimension one, is projective.

Let ” be an integer =2 . A torus T"=0%/G s not necessarily projective (the notations are those of Example
81).

Theorem 109. Let " be an integer 22 . A torus " =0"/G projective if and only if and only if the lattice
A satisfies {1) ATITA=0

DN-1ATI A0

2nx2n J

for some alternating

integral matrix
N-IA A

, where the condition 2) above means that the matrix

is positive definite.

Definition 110. A4 torus T which is a projective variety is called an Abelian variety. Readers who want to
know more on Abelian varieties can consult (Birkenhake and Lang, 1992, Griffiths and Harris, 1978 or
Mumford,1974) .

Remark 111. Every projective manifold M is necessarily Kihler, since the restriction of the Fubini-Study
metric of P" 1o M s Kihler. The converse is not true, i.e., not every Kdhler manifolds is projective. For

example if we take any lattice N not satisfying the conditions in Theorem 109, then T" =0%/G s Kéhler but
not projective. Therefore, we have -
{Projective Manifolds} = {Compact Kédhler Manifolds}

Definition 112. 4 quasi-projective variety is ¢ an open subset (in the Zariski topology) of a projective variety.
The readers who want to know more about complex algebraic geometry, can consult the following references:
Demailly, , Griffiths and harris, 1978 or Shafarevich, 1977.

Part 3. Compact Kiihler manifolds of positive ricci curvature (Fano Manifolds)

Compact Kéhler manifolds of positive Ricci curvature playa very important role in the classification of complex
algebraic varieties. The aim of this section is to give an overview of some of the main results in this area. In all
what follows, we will assume some knowledge of sheaf theory, a very nice introduction can be found for
example in Kodaira, 1986 or Griffiths and Harris, 1978.

15. Chern curvature of a hermitian line bundle

Let M be a compact complex manifold and consider the following exact sequence of sheaves

0->0 -0, >0, —250,

(15)
where U is the constant sheaf, Ou the sheaf of holomorphic functions and Ou the sheaf of nonvanishing
holomorphic functions. The exact sequence (153 induces an exqct sequence ofl cohomology groups

0—->H'(MI)->H"(MO,) —>H°fM,0M —H'(M,

H' (M0, ) >H' (M0, )—>H* (M) - .. 16)
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The set of holomor[ihlc) line bundles on M constitute a group under the tensor product called the Picard group

and denoted by It can be proved that

i H'(M,0,, i
Proposition 113. Plc(M)is isomorphic to ( M). In what follows, we will identify PIC(M) with

H' (M0, )

5(L)eH>(M,1) LeH' (MO},

Definition 114. The image
L . o (L)
and is denoted by .

of a line bundle is called the first Chern class of

2
DR

(M) using the following

de Rham Isomorphism

o(L)eH (MO)cH (M) = H3, (M)

In what follows, we will identify «(L) to its image in

Definition 115. Let M be a complex manifold of dimension n. The first Chern class of M denoted by “ (M) is
defined by _
a(M)=¢ (kM] )

where » o
Ky =A"T"M,

is the anticanonicalline bundle of a complex manifold M. .
(L) (v)

Let \"*"/ be a Hermitian line bundle over M | and let * il be an open covering of M such that
L, ——U;xl
is an isomorphism. The point ( ) is identified with the point

i o ’(M C) (m,gﬁ(m)é’)erx[ '

g

The ﬁJncti()ns /i are nonvanishing holomorphic functions defined in Uiny; . It is very easy to check that the

g,‘i .
: i
functions , satisfy the following relat%ognﬂglj “1in U,NU,

ik =i in UnN Uj NU; (17)

Conversely, given a set of nonvanishing holomorp.hﬁ f(l%nﬁtions

E

(gﬁ ),-j

satisfying (17), we can define a line bundle with transition functions 7, as
follows: We put
p L=(II,(U,x0))/ €

where I ; is the disjoint union, and

Uix = (zc) Uz é)EUJX ifand only if Z2=2" and &=, (2)¢

A%
For each M€M and V'€ L, we define the norm | " with respect to the metric h as follows
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Ilz-cf e,
where it ¥/ is € function defined in Ujs and (m,g“) =1 (V) . The definition of i implies that

(p[=q0[+1n| g ; | in UnNU,.

g 1n|g,~, ,-|

Since ©/ is a non vanishing holomorphic function, it follows that

it is pluriharmonic, i.e.,
\/——1661n|g,’j| =0.

Therefore = =
V=100, =~-168 | in U U, ,

and hence defines a global (1,1) formon M .
” o (L.h) .
Definition 116. The Chern curvature of the Hermitian line bundle , is the real closed (1,1) form given by
0, =/-1d¢,
Eijfi; . .

{ N }"JE‘ be as above, and assume that all the intersections Uiny; are simply
- 1 *
- I:{gf,.f}:l €H (M’OM) 8

vanishing on uiny, , then choose a branch\?f—llog &) , Which is one valued holomo lphic function, and put
(10g 9, —logg, +logg, )

Remark 117. Let {Uf}ie‘ and

connected (if nonempty). Then . Since the holomolphic functions are non

Then it can be shown that the Chern class ' (L) is {given by

a(L)=[{o,}]em (M),
To state the next theorem we need the following definitions.

Definition 118. Let M be a complex manifold.
(1) A subset D of M is called a hypersurface if for every M €M | there exists a neighborhood U of M and a
nonzero holomoIphic function t on U such that

DNU={xeU]| f(x)=0}.
(2) A divisor D is a formal linear combination of a finite number of irreducible analytic hypersurfaces D, with
integer coefficients i.e., D= ZVI.D[,V[ ell.

(a) The divisor D is said to %eﬁ‘ective ifv" =0 , and it is called a reduced divisor ifv" =1 for all l
=>»D

D= .
(b) An effective divisor v ' s called a simple normal crossing divisor if D is reduced, each component

D, is smooth, and for X € D | there exist (U’Z) , X€ u , a local complex chart, such that
UnD={zeU|z..z =0}

for some K<n

D= v.D. U,z
To each divisor ZV "', we can associate a line bundle, denoted [D] as follows: Let ( ! ) and

xeU nNnU .
] & be two local coordinate systems and suppose that

U,ND, ={zeU, | £ (z)=0}; I=jk,
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fij

| =i a .
where f; is a holomorphic function in Up.I=jk . Then i is a nonvanishing function in U;nU Put

fiu(2)= “[i 8} (18)

Then it is easy to see that #* satisfies the condition (17), and hence are the transition functions of a line bundle.

f.
Definition 119. The line bundle with transition functions { J’k} defined in 18 is called the line bundle associated
to the divisor D and denoted by [D] .

Remark 120. Over projective algebraic manifolds, every line bundle L is of the form [DL] for some divisor

D, .
L ie.,

L=[D,]

Theorem 121. Let (L’h) be a Hermitian line by c\l/_lover and let O, be its curvature. Then
¢ (L)= [ c) }eHz (M)
T

o £ g

where is the cohomology class of 2 in ( ) . Moreover, is independent of the

choice of the metric h.
For a proof, see Griffiths and Harris (1978).

M,dim, M=n

Deﬁnltlon 122. Let L=>M pe 4 line bundle over a compact complex manifold and let

(L) eH’ (M . ) be the first Chern class of L. We say that all is positive (resp. negative) and write

cl(L)>O cl(L)<O . et
v (resp. ) if the cohomology class can be represented by a (1,1) closed real form

Q=—-) '-dz,ndz,,

2r ij=1 K

D, 7 )i<isn
1<j<n

is positive definite (resp. negative definite) at each point M €M _ The line bundle L
a (L) <0

where the matrix

is said to be positive (resp. negative) if 4 (L) >0, (resp ).

Remark 123. It can be shown that a line bundle L =M over a compact Kihler manifold M is positive if and
only if there exists a Hermitian metric on L with positive curvature.
The expression of the Ricci curvature in the Kdhler case is very simple, more precisely we have

P ition 124. Let (M i 7
roposition et (M,g) be a compacéf(zafrier old wfr(f ®dz,



BOUDJEMAA ANCHOUCHE

Then Ric, = —ﬁagln[det(gij)]>

and

|
{ERICJ =c, (M) R

I .
[— Ric, } 1 Ric
where |27 is the de Rham cohomology class of 2

g

16. Line bundles on projective spaces

Pic(P"

The aim of this section is to sketch a proof of the fact that the Picard group of ( ) is an infinite cyclic
Pic(P"

group and then construct a generator of ( )

Proposition 125.

isomorph
Pic(P") = 0

Proof. (Sketch of a proof): We start fqu the follow Wejl Ovif factd
1 if r even (19)

From (103) and (19), we deduce that dim_ 17 (P“,Q"n ) _ 0 %f P#q

P 1 if p=q

In particular . R . . 0

dim, H” (P ’Op“ ) =0 if p>1(since OPn = Qpn ). 20)

From the exact sequence (16), and (20{)),13)(%93(13%% Pa; o ) ~ (P“ ] )
= 0. )= 0).

The Proposition follows from the well known fact that
H (]P )= C

Pic(P"
A construction of a generator of ( ) , called the tautological line bundle, goes as follows

Definition 126. The tautological line bundle over P denoted by O (_1) , is the line subbundle of the trivial
bundle P"x0"" defined as follows: I,
0,.(-1)= {([z],g) eP"x0™ | Ee Dz}

The dual of the line bundle 0, (_1) will be denoted by 0, (1) ,1.e.,
0,. (1) =0, (1

For a positive integer K , we put
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0,.(k)=0, (1)® =0,, (1)®...®0,, (1)

P

k-times

L (-1)®" =0, (-1)®..®0,, (-1)

0,.(k)=0

P

- .0, (1
A definition of OP“ ( 1) (resp Pt ( )) in terms of its transition functions is left to the reader. It can be shown

that

Proposition 127. The Picard group of P" g generated by the line bundle Op (1) , Le.,
PIC(P ) = <Op" (1)>
For a proof Proposition 127, see Kodaira (1986).

Remark 128. (1)

() If P is the canonical line bundle of P" | then
K, =0, (-n-1)

(D) If{ D jsa sTrooth hiyfersurfaﬁe ogfegree inP" ie.,

[Z(): —Z (): »Z

where T is a homogeneous polynomial of degree d then

0]28. ()

Proposition 129. The Fubini-Study (1,1) form @rs op P represents the first Chern class of the line bundle

0, (1)
4 (Op" (1)) =[© k]

P ,lLe.,

Therefore, O, (1) is positive.

Proof. (Sketch of the proof) We will construct a Hermitian metric on the line bundle O (1) , and we will show
that its curvature coincides with the Fubini-Study metric. Since the fiber of the line bundle O (_1) at a point
[Z] eP" . .

is given by

Op",[L] (—1) =0z

then, we define a Hermitian metric I on Oy (_1) as followts

|20z )= 2 [

If s P"oU —»0""\{o0}

(zl,...,zn) — (l,zl,....,zn)

is a local section, then

sz
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The curvature of the metric b is given by

2. =ridkkE 2

Hence the the curvature of the induced Hermitiafl mggig "Ll (2. the (;Hlal bundle 0, (1) is given by
n/Jlh

:J——laéln[uzn]zirj
i=1

t can be shown (see Griftiths an arri age that h therefore ~ ") is independent of the local liftin
It can be shown (see Griffith de—]lag30)h (th) dependent of the local lifting

—A.
(21) .By Theorem 121, the (1,1) form 2 represents the first Chern class of the line bundle Op (1) . Since
J-1 5

2r

the Fubini-Study metric ®rs on P" s equal to , we deduce that “rs represents the first Chern class

of the line bundle OP" (1) .

17. Kodaira embedding theorem

As was said above, every projective manifolds is Kahler, but the converse is not true. Kodaira's embedding
Theorem gives a characterization of projective manifolds among compact Kéhler manifolds as those admitting
positive line bundles, more precisely we have

Theorem 130. (Kodaira, 1954) (Kodaira Embdding Theorem) Let (M,g) be a compact Kéhler manifold and let

L>M peq holomorphic line bundle. Then L is positive if and only if there exists a holomorphic embedding
y: M->P"

m - y(m),

of M into some projective space such that . o
V(0. (1))=2

for some positive integer

Proof. (Sketch of a Proof) Suppose Ehat such an jmbeddmg V' exists. Since “rs represents

C, (Opn (1))’ W* (O)Fs) Vic (O fb}ﬂ QQV(qysfdy 1t(13)a)Pos1tlve (1,1) form. But

represents \V[
=c, (L®V ) =vc, (L).

Hence v represents “ (L) ,ie, L is positive.
The converse is hard. For a proof, see (Kodaira, 1954), or (Griffths and Harris, 1978).

Corollary 131. 4 compact Kéihler manifold (M,g)

Proof. By Proposition 124,

with positive Ricci curvature is projective.
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[ziRicg} =c, (M)

4

-1 —
Hence K is positive. The corollary from the Kodaira's Embedding Theorem by taking L=Ky .

Definition 132. A holomorphic line bundle L>M syera compact Kihler manifold M is said to be ample
(resp. very ample) if there exists an embeddin M— ’P: 501’ positive integer " such that
=y (0, () e resn. L= v (0. (D] 7

P for some positive integer

(M,g) is projective if and only if there exists a Kéihler metric 1 (not

Theorem 133. A compact Kdhler manifold
[0,]eH* (M[])

necessarily equal to g ) such that the cohomology class " "1 is rational, i.e., > where @b is

the (1,1) form associated to the Kihler metric I .

i: embedding n i*
Proof. (Sketch of the proof) Suppose that M is projective, i.e., M *=>P" Then the restriction ' “rs of

the Fubini-Study metric on P" to M js a Kihler metric on M . Since the Fubini-Study metzic is jhe ﬁgs( l\%%ejn

1o | € ,

class of the autological line bundle O on P it has integral cohomology class, i.c.,

For the converse, see Griffiths and Harris (1978).
As a consequence of Hodge decomposition Theorem, we have the following

Corollary 134. Let(M’g) be a compact Kdhler manifold satisfying
2 _
H?(M,0,,)=0. 22)

Then M is projective.

Proof. (Sketch of the Proof) The assumptilc_)lr}!@(%\gI ,IDS jﬂui]—\]/%’lze{]]{/[to

’n=o.

H" (M, 0).
0,,...0,

Then Hodge Decompostion Theorem implies that
g p p HQ?M’D )=

Then there exists 9 -closed (1,1) -forms on M such that their cohomology classes

[0]...[6,]e*(MP) {6.].---[6, 1}

a

. . H* (M, :
constitute a basis for ( ’ ) Hence, there exists k real numbers

k
o, =;ai [6]

2% suh that

Choose K rational numbers Biseees By suh that B is ve clfse] to % and consider the following (1,1) form
=) B0 ]

i=1

[@]en* (M)

Then @ is d -closed, positive, and satisfies .Theorem 133 implies that M is projective.
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18. Fano manifolds

—~1 -1
Definition 135. A projective manifold is said to be Fano if Ky is ample, where Ky is the anticanonical line

bundle.

Example 136. (1) There is only one Fano manifold of dimension one, it is P

(2) Fano manifolds (1)3( flzmensw two aze8 called Dlgé ezz0 suy’aces and are completely classzf ed. They
areP' xP'xP* 4ng P> ’p’“ - where PPl is obtained by blowing up P? g PioeoPy
in general position.

(3) The projective space P" is a Fano manifold.

(4) Let M be a smooth complete intersection 0[ v hyp(rsurfaaes oﬁdegree dy....d

v in P" . Then

iy n+ -Zd

i=1

il

zl 4, <n+lL

(5) Let G bea complex reductive group and P a parabolic subgroup of G Then the homogeneous space
M=G/P is 4 Fano manifold.

From the algebro-geometric point of view, a Fano manifold M is a smooth projective variety with ample
anticanonical bundle ™ , and from the differential geo- metric point of view, a Fano manifold M is a compact

In particular, M is Fano if and only if

complex manifold admitting a K&hler metric with positive Ricci curvature. The two definitions are equivalent by
Yau's solution of the Calabi conjecture

Theorem 137. (Yau, 1977) 4 smooth projective variety M is Fano if and only if M admits a Kihler metric
with positive Ricci curvature.

As was mentioned before, there is close interplay between curvature and topology of a manifold. In the case of a
compact Riemannian manifold, we have seen (Theorem 46) that the fundamental group is finite. In the Kéhler
case we can say more.

Theorem 138. (Kobayashi, 1961) A compact Kihler manifold M with positive Ricci curvature is simply
connected, i.e.,
T, (M) =0.

The proof uses the Riemann-Roch-Hirzubruch Theorem, Myer's Theorem, and the following result of Bochner
Proposition 139. A compact Kéihler manifold of positive Ricci curvature admits no non-zero holomorphic p_

forms, for p=
For a proof see Kobayashi (1987).

Part 4. Einstein-Kéhler metrics on fano manifolds

Definition 140. (1) A Kihler metric 0 on a compact complex manifold M is said to be Einstein-kihler if
1c, =cw, ,

where € is a constant, ®h s the closed (1,1) form associated to the Kéiihler metric h and b s the Ricci (L,1)

form associated to the Kéihler metric h .

(2) A compact Kihler manifold M is said to be Einstein-Kéhler if it admits an Einstein-Kdhler metric.

One of the main problems related to Fano manifolds and not solved yet is to decide when a compact Kéhler
manifolds of positive Ricci curvature has an Einstein- Kéhler metric. Obstructions to the existence of Einstein-
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Kéahler metrics on compact Kihler manifolds of positive Ricci curvature were discovered by several
mathematicians. Below, we will introduce two obstructions discovered by Matsushima and Futaki and an
invariant constructed by Tian.

19. Matsushima's obstruction

Let M be a complex manifold. An automorphism (biholomorphism) F:M->M of M isa holomorphic map

from M to M such that there exists a holomorphic map G:M->M with GoF=FoG =id,, , where idy, is
the identity map of M . The set of automorphisms of M, denoted by (M) , has a structure of a group under

the composition of maps. In case the complex manifold M is compact, we can say more,
Theorem 141. Let M be a compact complex manifold. Then Aut(M)

y(M) =Lie(Aut(M))

For a proof, see (Kobayashi and Nomizu, 1969).

is a complex Lie group and its Lie

algebra consists of holomorphic vector fields of M .

Definition 142. A complex Lie group G s called reductive if the Lie algebra 9 of G s isomorphic to the
complexification of the Lie algebra k of a compact 6@ g K e,
[

The Lie algebra K is called a real. form of the Lie algebm 9.

Example 143. (I)IfG - GL(n,[ ) , then G=K , where K= U(n) . Moreoverg gl(n . )E M ( D) ’

k=u(n)={Aegl(n1) [A+A" =0},

and

(2)1fG=SO(n ’) then G =K' \where K=80(n) . Moreover
g=so(nl)= {Aeg1( )| A+A" =0}, k={Aegl(n0)lA+AT=0}.
n .

3)1 G=Sp(n,0) Cthen =K' here K =Sp(n) . Moreover

9= {Aegl(2n) TATI A = o} ={ egl(2n,0) | ATT+JA=0}.

More details about Lie groups (resp. algebraic groups) can be found in (Knapp, 2001) or (Brocker, et al., 1985)
(resp. (Borel, 1991) or (Humphreys, 1975).
ut(M)

A
Theorem 144. (Matsushima, 1957) The automorphism group of a compact Einstein-Kdihler manifold

of positive Ricci curvature is reductive.
At the level of Lie algebras, Matsushima's theqrem jays thatif M be a compact Einstein-Kéhler manifold with

non zero Ricci curvature then the Lie algebra of infinitesimal isometries (or Killing vector fields) is a

real form of the Lie algebra h (M) of holomorphic vector fields, i.e.,
h(M)=i(M)®~-1i(M).
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¢ (M)<O0, Aut(M =0.
Remark 145. If ! ( ) then ( ) is finite, and consequently h(M) 0 . Therefore
) ) ] ¢ (M) >0.
Matsushima's Theorem is not obvious only when .
P*(p,, 2
Example 146. (Futaki, 1988 ) Let (pl Pz) be the projective plane P~ biown up at two points PisP2 .t can
P*(p,,
be shown that (p ! Pz) is a compact Kdhler manifold with positive Ricci curvature whose automorphism
group is not reductive, therefore it camﬁo( 1\c/[aj’ry an Einstein-Kdhler metric.

In dimension two, the reductivity of is the only obstruction to the existence of Einstein-Kiihler metrics

as shown by the following result

Theorem 147. (Ti?n, 1)990) Any compact complex surface M yisn positive Ricci curvature admits an Einstein-
Kiéihler metric if

In higher dimension, there are other obstructions to the existence of Einstein-Kéhler metrics besides
Matsushima's obstruction.

is reductive.

20. Futaki's invariant

For the construction of Futaki's invariant, we need the following

(p.p)

Lemma 148. Let 0 be a real form on a compact Kéihler manifold which is cohomologous to zero, i.e.,

0=dp . Then there exists a (p -Lp -1) form N such that

0 =/—1d0n.

The proof uses the Hodge Theorem for the 0 operator (see [33], Proposition 7.24, for the details).]

ec(M) . 7-RiG

() ()
Let £ bea(l,1) form associated to a Kéhler metric & and suppose that £ Then <7

a (M)
represents also , and by Lemma 1418, we have _
— Ric, -, =+/~160F, ,
27.[ g 4 o

F
where “¢ is a global function in M hich is dgfined up to a constant. In (Joyce, 2000), Futaki introduced the
L h(M)S

X |—>LF(X)=2£7T1 X(E, oy

following linear functional

, Ly . ) weq (M)
Theorem 149. (Futaki, 1983) The functional ¥ is independent of the choice of the Kihler form .
Aut(M)

In particular Ly is invariant under the automorphism group of M ana Ly is a Lie algebra

. : , , L .
homomorphism. Moreover, if M admits an Einstein-Kéihler metric, then ~F vanishes identically.
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The follovﬁz%v[ej(ample exhibits an example of a compact Kdhler manifold M yith positive Ricci curvature

such that is reductive, but ~ T is not identically

Z€10.

: r X N r
Example 150. (Futaki, [18]) Let Y and S be two positive integers, 7o PIxPT P the projection to the

w,: P"xP"—>P° o
first factor, and "2 the projection to the second factor. Let

E..=7,0, (1)®7,0,. (1)>P"xP°,

P’

M. E,.
andlet "° be the total space of the projective bundle ( s ) . It can be shown that
" ¢ (Mr’s) >0 3
h(M
2) ( oS ) is reductive,
3 T=1and =2 then Ly #0.
Therefore ~ “2 is a Fano manifold which cannot carry an Einstein-Kdihler metric with positive Ricci curvature.

There are other generalizations of Futaki's invariant which we will not consider in this paper.
21. Tian's invariant

The vanishing of the Futaki invariant is a necessary condition for the existence of a Einstein-Kéhler metric but
not a sufficient one. In Tian (1997)L Tian_constructed a compact Kéhler manifold which does not admit any

Einstein-Kihler metric even though T

M,g)
Let us introduce Tian's invarianf: let ’ g) be a compact Kéhlef manifold of dimension ™, and let
2
P(Mg)=1¢eC (M,D)|a)¢=a)g+ 68(P>0,Sl:/lp(|)=0 ,

2

where o, = \/__12 . (z)dz, /\dz_j,

ij=1

. . . . . o, >0 o .
is the associated (1,1) form expressed in local holomorphic coordinates, and where ¢ means that isa

positive definite (1,1) form.

. M, . o

Proposition 151. Let ( g) be as above. Then there exists two positive constants ¢ and a such that
Cand * such that @ () n
jM € o, <c,

forall Pe P(M,g)'

Consider the followin% gnMV?é')agtS%%f;geg l())}f "l;li%n> %’99'[71\4)5,,1@(1)@; <c forall g P (M,g)}.
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Theorem 152. (Tian, 1997) Let (M,g) be a Fano manifold of dimension ™, where D represents the first

Chern class of M | i.e., [a)gJ —a (M) If

n
t(M —_—
( ’g)>n+1’

then M admit.z an Einstein-Kdhler metric.

M,g

Estimates of were used by several authors to prove the existence of Einstein-Kahler metrics on certain

Fano manifolds.

22. Uniqueness of einstenin-kihler metrics with positive ricci curvature

EK (M
Let M be a Fano manifold, and let ( ) be the set of all Einstein-Kihler metrics on M . The

Aut, (M)

EK(M
automorphism Aut(M) acts on ( ) via pull-back. Let be the identity component of Aut(M)'

Theorem 153. (Bando and Mabuchi, 1985) Suppose that EK(M) *¢ and let go be an Einstein-Kdhler metric.

Th
" EK (M) = Aut, (M).g,,

>

i.e., any Einstein-Kdihler metric & s of the form V& for some v € Aut, (M)

Remark 154. If , then the Einstein-Kdhler metric is unique if it exists.

Part 5. Complete noncompact Kihler manifolds of positive ricci curvature

The structure of noncompact manifolds is richer and at the same time harder to explore than the structure of
compact manifolds. Complete noncompact Kahler manifolds of positive ricci curvature are less studied, and
therefore less understood compared to Fano manifolds. Nonetheless, lots of partial results have bee proved
although a general theory is still missing. In this part, we will survey some of these results, close to the author's
interests, obtained on this topic.

23. Construction of complete kihler metrics of positive ricci curvature

The problem of existence of complete Kahler metrics of positive Ricci curvature on smooth quasi-projective
varieties was considered by several authors, among them S. T. Yau, G. Tian, R. Kobayashi, S. K. Yeung, and
others.

By solving certain complex Monge-Ampere equations, where the ideas are close to the ones introduced by Yau
in his solution of the Calabi conjecture, G. Tian and S. T. Yau, proved the following

Theorem 155. (Tian, Yau 1990) Suppose that M is a smooth complex projective variely(znd tha[‘ D)Q)M is a
smooth ample divisor. Let €2 be any smooth closed (1,1) form in the cohomology class

MA\D 4dmits a complete Kihler metric whose Ricci curvature form is equal to the restriction of 2 to M\D

As a consequence, we get
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-1
r X K- ®|[D N
Corollary 156. Let M and D<M pe as above. If ( M [ ]) M\D

Kiéihler metric with positive Ricci curvature. To state the next Theorem, we need the following
(M. g)

curvatyye js said to be of standard type if it satisfies the following three conditions
U

(2) there exists a constant  such that for all

is ample, then admits a complete

2

Definition 157. A complete noncompact Kdhler manifold of dimension " 22 with positive Ricci

r>0,

vol, (Bg (xo,r))

(3) there exists a constant 2 such that for ﬁllsle:;r‘cl(?\/ll\;[|’ < )

(1 + r(m))2

>

vol, (Bg (xo,r))

. . . . sect(m) . . .
Ricci (1, 1) form associated to the Kdhler metric & , and ( ) is the sectional curvature of & at the point
m

g

. . B, (x,,r) . . Ric, .
where is the volume of the geodesic ball g( 0 )Wllh respect to the metric ©, ¢ s the

Simultaneously with Tian and Yau, using the continuity method for the Monge-Ampere equation, Yeung
obtained the following

dim, M >2

Theorem 158. (Yeung 1990) If M is a smooth projective variety with , and D is a smooth

red I o] (Ky®[D]) y .
hypersurface such that the associated line bundles and ¥ M are positive, then the affine variety

MAD yimits a complete Kéihler metric of positive Ricci curvature and of standard type.

Example 159. Let M=P".nz2 and let D be a smooth hypersurface in p* of degree, where I<d<n_gSince

-1
= K, ®D =0 ,(n+1-d
[D] Op (d) and( M [ ]) P ( ) are positive, Yeung's Theorem, (Theorem 158) implies that
M=P"\D samits a complete Kdihler metric of positive Ricci curvature and of standard type.
An extension of Kobayashi's result (Theorem 138) to the noncompact case was obtained by Tsuji

Theorem 660. (Tsuﬁ3,711988) Let M be a smooth projective variety and let D be a simple normal crossing

K- ®[D Vi
divisor. If ' ™M is ample then MAD simply connected, i.e.,

7, (M\D)=0

24. Compactification of complete Kédhler manifolds of positive ricci curvature

One way to approach noncompact complete Kéhler manifolds of positive Ricci curvature is to try first to
compactify them (if it is possible to do that), i.e., realize them as open subsets, in the Zariski topology, of some
projective manifolds, via some "noncompact" version of Kodaira embedding. This was achieved by Mok (1990)
for complete Kéhler manifolds of positive Ricci curvature and of standard type. More precisely, Mok's result
says that
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Theorem 161. (Mok, 1990) Let (M,g) be a complete noncompact Kcihler manifold of dimension " 22 ywith

positive Ricci curvature and of standard type. DT heiM Is's biholomoryhic to a quasi-projective variety M\D ,
where M is a smooth projective variety and Bt

{sj}j“ cH' (M, Ky)

is a normal crossing divisor. More precisely, there

-1
exists a finite set of sections of class r for some positive integer q , where K is the
anticanonical line bundle, such that v,: M—> Mc P"

me |s,(m),...s, (m)|,
¥,: M=M\D

is an embedding, and "9

-1
Mok's embedding Theorem says more or less that K is "ample" and can therefore be seen as a noncompact
analogue of Kodaira's embedding Theorem.

Remark 162. It can be proved, under the #glu(ﬁgign#o%‘l Z('hﬁrﬁn)agg }x’) ’(see Borel and Serre, 1951) that
d thereft
and therefore " (M’Qﬁj o

Remark 163. (1) The completeness of the metric in the noncompact case is crucial. All metrics are complete on
compact manifolds.
(2) The constmint on the volume growth is natural, since by combining the Calabi -Yau's theorem (Theorem 58)

and Bishop's Theorem (Theorem 57), on a corzplete iemannian manjfold with positive Ricci curvature we have
< vol, Bg’('xo,r% <c,r

(3) A4n extension of Mok's embedding theorem to the case of a volume growth slower than Euclidean was
obtained by To (1991).

25. Logarithmic kodaira dimension of complete Kihler manifolds of positive ricci curvature

M,D
To introduce the logarithmic Kodaira dimension of ( ) , we need some definitions.

Definition 164. A closed subset ¥ of a complex manifold M,n =dim, M,

is called an analytic sub\;‘ariejym if for
every ME€M | there exists a neighborhood U of M and a finite number of holomorphic functions ' ~~*™ on
U | called defining functions, such that
’ fining f VmU:{er\fm(x):...:fm (x):O}.
1 v(m)

. meV : L . U . +m . TR SRV i
A point is called a smooth point, if there exists an open subset - of M and defining functions
in U’ such that
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o(fm ..o
rankyzrank . ... . =k
8(21,...,zn)
of’  Of7
oz, oz

The integer X is called the codimension of Voar m | The set of smooth points is denoted by Vsm.

It can be proved that if Vom is connected, then it is a complex submanifold of M of dimension 7 -k , in which

. codim, V =k
case we write .

Remark 165. The defining functions of an analytic subvariety in a neighborhood o.t a point are not unique.

Definition 166. Ler M and N be two projective a \gebmzc mamfolds

rational ma rom to IV, denote o , is given by a holomorphic ma
1) 4 rational map ¥ M 1o N | denoted by given by a holomorphic map
v: M\V—>N,
where ¥ is a subvariety of M | such that codim, V 2 2 .
(2) We say that a rational map\P : M —>N birational, if there exists a rational map ¢: N-—>M . oh

that ¥ °

If such a birational map

is the identity as a rational map.

¥ M-->N exists, then we say that the algebraic manifolds M and " are

birational.

Let 90 M -—->P ¢: M\V ——->P

be a rational map defined by a holomorphic map ,
codim V >2
. and let

={(m,¢(m)}eM\V><P“}.

where V isa subvariety of M | such that

Denote by I'v the closure (in the Zariski topology) of L, in MxP" and by
w,:I'y >P",

the projection to the second factor. The image ¢(M) of M is given by
$(M)=x (rwg).
N |H 4 ®[D

veS(M,(Ky ®[D]))

Let M be a smooth pI'O_]CCtl anifol normal crq)s 1visor-o M and) let
S e i

S (M,(Ky; ®[D])) %0
¢ M

-

Let us assume that and fpr, , consider the rational map

==

m e ¢, (m)=[o} (m)....0% (m)] .

where
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, =dim, HO( (K ®[D ])) 1,

and

(0.}, ) H'(M, (k,; ®[D])’)

is a basis for

Definition 167. The Logarithmjc Wdﬁé@i%m@&gj)%*ﬁﬁ\l) denoted by E( ) , is given by
k(M)=k(M\D)= s dim ¢, (M) ifS (M,(Ky ®[D]))#4 .

veS (M, (K ®[D]))

Remark 168. The Logarithmic Kodaira dimension has the following properties: (1) It is independent of the

COmpaCtlficatlon, L.e., l‘f biholomorphic biholomorphic

M = M\D = M,\D,,

M1 (resp. Mz) . 51 (resp. 52) .
where is a smooth projective variety and is @ normal crossing divisor on
M, (resp. Mz) . . )
and if the isomorphism
J— biholomorphic __
M\ D1 = M2\ D2
extends to a birational map sirational
M - >M,

then K(Mi\D,)=Kk(M:\D, ) (24)

For a proof of (24) , see Litaka (1977).
(2) It is not a biholomorphism invariant. For a proof, see Hartshorne (1970).

Theorem 169. (Anchouche, 1998) Let (M,g) be a complete noncompact Kdhler manifold (M,g) of dimension

M,D
n22 \ith positive Ricci curvature and of standard type and let ’ be the compactification obtained in

Theorem 161. Then _
k(M) =—©

> M )°

Proof. (Sketch of the Proof) In all wha follows, we identi M with M\D  Remark first that
H' (M, (KI'@ ®[1D‘j§u =

T, (MK ).

. . Ko . . o
where is the set of meromorphic sections of = M which are holomorphic in M and admitting poles

along the divisor D of order at most V.
Stepl: We establish the following inequality
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o+l
4 2 n+3
(n+3)v _n < ; n
s, @, <¢ In o, s

B, (xr) B,(xr)|  IT7

2
¢ =1 [Sp, ||1

WhereseHo( (K ®[ ]) )

5 0=5, s

is the section of the line bundle [D" ] defining the divisor D", ie.,

i is the norm of the section SD, defined by a fixed Hermitian metric hi on the line bundle [Di],

and 115111 is the norm of the section S with respect to the metric on Ky induced from the metric 9 .
1
Step 2: Let v, =—1n—+c[qu+1n[2"s ||D

||l

=< S |

A, u=Tr(Ric
where Y is a solution of the equation # ( g)

(see Mok, 1984) , Ay is the Laplacian associated to the

Kiéhler metric & is chosen in such a way that Yiand V2 are subharmonic functions, and % are the sections of
q

Ky appearing in Mok's qp]b(@;d)img;T@@)qmlhﬁl T re(@éo fxs, 2 )he\ﬁ r{sy)&tép@ggntatlon

-+
P B, (xo r)

where Gy (’) is the Green kernel of the geodesic ball B, (xo,r) for the operator A .

Step 3: There exist a constant € such that

—ca)—<\/786HH H ,

where M is the Fubini-Study metric on M.

Step 4: Using the previous Jtep#,vwé]g@y)ug Ct);g1 (y) <cr® ln(r(x) + 2) fori=1,2.

B, (x)
The estimate above is the hardest pat of the proof.

Step 5: Using the inegua
T <cr +r+2) fori=1,2.

get

ity 0%) tained in Tep 4 folloxyng a 51(1 %ar scheme developed by John-Nirenberg, we

B, (x.r)

where @i’r is the solution of the followi gmgi@?lelj['S:p@oﬁl&ng (X,r)
S} OB (xr)=v.
Jo>T | g( ) \V]
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Step 6: using the previous steps, we get n+l

Hs(x) |:r2n+2 (Cx +ln2(r+r(x)+2))]n+3

4
(n+3yv < ¢ o
r

C . . . . .
where the constants € and “X are independent of T. Since N = 2, the theorem is obtained by letting
=+ . For more details, see Anchouche (1998).

The vanishing_theorem abgve puts a lot of restriction on the structure of the manifold M , for example if we

assume that ¢ then, as a consequence of Theorem 169 and Miyanishi's classification of open

algebraic surfaces [40], we obtain the following

Theorem 170. (Anchc(uﬁheD)998) Let M pe g complete Kdhler surface of positive Ricci curvature and of

standard type, and let be the compactification obtained in Theorem 161. Then

(1) M s a rational surface.

. . 1
(2) Each component ! of D is a smooth rational curve, ice., 3 is isomoryhic to P

3) D isa tree.
(4) None of the components 1 is exceptional.

The Theorem above is a consequence of Theorem 169 and Miyanishi's classifi- cation of quasi projective
surfaces of logarithmic Kodaira dimension % The fact that the Kahler manifold M is of infinite volume
implies part (4) of the Theorem 170. 4

2
In [2], it has been shown that the " sections of the line bundle Kx , and the volume form of the metric g

have no essential singularities near the divisor at infinity D Asa consequence we obtain a comparison between
the form forms of the complete Kéhler metric and the Fubini-Study metric of the compactification. In the

dim. X =2

case of

, we establish a relation petween the number of components of the divisor D and the
H‘(CX, Q—(logD)
X

dimension of the logarithmic groups
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