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         ات ریتشي الموجبة تشعبات كایلر لمنحنی

   بوجمعة عنشوش 

  الھدف من ورقة العمل التالیة ھي إعطاء نبذة عن تشعبات كایلر لمنحنیات ریتشي الموجبة.  :خلاصة
 

ABSTRACT: The aim of this paper is to give an overview of some results obtained in the field 
of Kähler manifolds of positive Ricci curvature.  
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1.   Introduction 

ifferential geometry is a cornerstone of modern mathematics. Besides the natural beauty of the subject, it 
has found many applications in various branches of mathematics such as number theory, analysis, topology, 

algebraic geometry and also in some areas of physics, ranging from general relativity to string theory.  
Recently one of the most famous conjectures in topology, the Poincaré conjecture1, was solved by Perelman2, a 
Russian mathematician, using differential geometry, a work for which he was awarded the Fields medal at the 
International Congress of Mathematics in Spain, August 2006. An excellent account of Perelman’s work is given 
by Morgan and Tian in 2007.   

The aim of this paper is to give an overview of an active research area of differential geometry, namely 
Kähler manifolds of positive Ricci curvature.  

Since most of the proofs are either omitted or sketched and since we have in mind a reader who is not 
necessarily an expert in the field, we made an effort to introduce most of the basic notions and definitions, and 
we included references whenever needed, so that he/she can fill the gaps and go through the details by 
himself/herself. 
The paper is organized as follows. In Part 1 we collect some basic Riemannian geometry results mostly needed 

                                                 
1 The Poincaré conjecture states that every simply connected closed three dimensional manifold is homeomrphic 
to S3 , where S3 is the three dimensional sphere.   
2 Building on R. Hamilton’s work on the Ricci flow.  
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in the following sections (readers with a background in Riemannian geometry can skip it). For the sake of 
completeness we included some results3 in Riemannian geometry even though they are not needed in the 
following sections. The main reasons for doing that are; first we believe that they are fundamental results and 
therefore should be known, and secondly it makes a smooth transition to Kähler manifolds introduced in 2, since 
it gives a characterization of Kähler manifolds in terms of holonomy groups. Part 2 deals with Kähler manifolds. 
Part 3 deals with compact Kähler manifolds of positive Ricci curvature. Part 4 deals with Einstein-Kähler 
metrics on Fano manifolds. Part 5 deals with noncompact complete Kähler manifolds of positive Ricci curvature. 

1.1  Riemannian manifolds  
This part is a collection of some definitions and results from Riemannian geometry which will be needed in 

the following parts. The reason for including a section on holonomy groups, even though we don’t need it in the 
following parts, is our belief that it is a fundamental concept in Riemannian geometry and therefore worth 
mentioning.  

Some  of  the  material  covered in  this  part  can be found in most  differential  geometry  textbooks,  such as 
Kobayashi and Nomizu, 1969, Aubin 2001 and Gallot and Hulin, 1990. For  an  account of  the development of 
Riemannian geometry during the second half of the twentieth century, and its main contributors we suggest a 
book, recently published, by Marcel Berger(2000). We expect the reader to have some knowledge of general 
topology (Munkres, 1975) is an excellent reference). As we said in the introduction, readers with a background 
in Riemannian geometry can skip this part.  

1.2  Differentiable manifolds 

Definition 1. A locally Euclidean space M  of dimension n  is a Hausdorff topological space that is locally 
Euclidean, i.e., each point of M  has a neighborhood which is homeomorphic to an open subset of 

n .   
 
Definition 2.  A C

∞
 (resp. real analytic) structure Ψ  on an n − dimensional locally Euclidean space M  is a 

collection Ψ ( ) I
Uα α α

ϕ
∈

= ,  of  pairs ( )Uα αϕ,  such that  

1. ( ) IUα α∈  are open sets of M  satisfying I U Mα α∈∪ = .   

2. U Vα α αϕ : → ,  are homeomorphisms, where Vα  is an open subset of 
nR .   

3. 
1oα βϕ ϕ − :  ( ) ( )U UU Uβ ββ α α αϕ ϕ→∩ ∩  is a ( )resp real analyticC∞ − .  diffeomorphism.  

4. The collection ( ) I
Uα α α

ϕ
∈

,
 is maximal with respect to 3.,  i.e., given any pair ( )U ϕ, ,

 where 
U  is an open subset of M  and U Vϕ : →  is a homeomorphism, where V  is some open subset 

of 
nR ,  such that  

 ( ) ( )1o U U U Uα ααα ϕ ϕϕ ϕ − : → ,∩ ∩  

5. is a C
∞ − (resp. real analytic) diffeomorphism for all Iα ∈ , then ( )U ϕ, ∈ Ψ .   

The collection ( )i i i IU ϕ
∈

,
  satisfying 1. , 2.  and 3.  above is called a C

∞
-atlas.  

Definition 3. A C∞
 (resp. real analytic) manifold of dimension n  is a pair ( )M ,Ψ ,

 where M  is a locally 

Euclidean space of dimension n  and Ψ  is a C∞ −  (resp. real analytic) differentiable structure on M .  The 
manifold ( )M , Ψ

 will be denoted simply by M .The pair ( )i iU ϕ,
 ( or ( iU ,  1

i i
nx x, ..., ) where 

                                                 
3 Holonomy groups.  
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1
i i

i nx xϕ  
 
 

= ,...,
) is called a local chart and 1

i i
nx x 

 
 

, ...,
 is called a local coordinate system (defined in iU ) 

associated to iϕ . A manifold M  is said to be compact (resp. noncompact) if the underlying topological space 
is compact (resp. noncompact).  
 
Example 4.  

1. Every vector space has the structure of a C∞ ,  noncompact manifold. In particular 
n  has the 

structure of a C
∞ ,  noncompact manifold.  

2. The unit sphere  
( )

1
1 2

1 1
1

1
n

n n
in

i
S x R xx

+
+

+
=

 
= ∈ | = ,, ..., 

 
∑

 

is a compact real analytic manifold.  
3. The projective space ( )n P

 defined by  

 ( ) { }( )1 0n n+:= ,  ‚P ∼ù
 

 
where  
 ( ) ( ) ( ) ( )0 0 0 0such thatn nn nx y x yy yx xλ λ∗⇐⇒ ∃ ∈ = ,,..., ,...,, ..., , ...,∼  
 
is a compact actually real analytic manifold.  

4.   An open subset of a C
∞ − manifold is a C

∞ − manifold.  
5. The set of p×q  matrices with real entries ( )p,qM 

 is a finite dimensional real vector space, hence a 

C∞ − manifold.  
6. If 1M and 2M  are C

∞ − manifolds, then 1 2M M×  is a C
∞ − manifold.  

 
Notation 5.  

1.    Let U  be an open subset of a manifold M  and let K be either   or  . In what follows we will 
denote by ( )C U∞ , K

 (resp. ( )C U∞ , K
) the set of infinitely differentiable (resp. r − times 

differentiable) functions on U  with values in .|   
2.    Sometimes we use the word "smooth" to mean of class C

∞ .   
 
Definition 6. A Lie group G  is a C

∞ −  manifold endowed with a group structure which is compatible with its 
differentiable structure, i.e. G  is a group and the map 

 ( ) ( ) 1

G G G
g h g h gh

ν

ν −

: × →

, , = ,a  

is of class C
∞ .   

Let G  and H  be two Lie groups. A map, or a morphism  
G Hϕ : → ,  

is a differentiable map, which is a group homomorphism.  
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Example 7.  The following are Lie groups.  
1. Every finite dimensional real vector space with its underlying abelian group structure is a Lie group.  

2. The torus ( )nn n/ /≅  R
 is a Lie group4.  

3. The linear group ( )GL n , is the set of all n n×  invertible matrices with real entries.  
4. Special linear group:  

( ) ( ){ }nSL n , A M det A 1 .= ∈ = 
 

5. Orthogonal group:  
( ) ( ){ }nO n , A GL n , A A I .= ∈ =  T

 
6. Special orthogonal group:  

( ) ( ){ }SO n , A O n , det A 1 .= ∈ = 
 

7. Unitary group:  
( ) ( ){ }nU n A GL n , A*A I ,= ∈ =

  

where A* A .= T
 

8. Special unitary group:  
( ) ( ){ }SU n A U n det A 1 .= ∈ =

 
9. Simplectic group:  ( ) ( ){ }Sp n , A GL 2n , A JA J ,= ∈ =  T

 

where  n

n

O I
J

-I O
 

=  
   

(10) If G  and H  are two Lie groups, then the direct product G×H  has a structure of a Lie group.  
(11) If G  is a Lie group and H   is a closed normal subgroup of G , then G H∕ has the structure of a Lie group.  

Readers who want more examples and desire to know more about Lie groups, can consult (Warner,1983, Knapp, 
2001, Brocker and Diek or Helgason, 1978).  
 
Remark 8. In all that follows we will assume, without loss of generality, that manifolds are connected.  

Submanifolds 
Definition 9. Let M  be a manifold of dimension N .  A subset N  of M  is a submanifold of dimension p  if for 
every point x n∈ , there exists a local chart ( )U , ,ϕ  with m U∈  such that  

(1) ( ) 1 2U V V ,ϕ ≅ ×  where 1V  (resp. 2V ) is an open subset of p  (resp. n-p ).  
(2) ( ) { }1U N V 0 .ϕ ∩ ≅ × .  

The definition above can be reformulated as follows: For each x n∈ , there exists a local chart ( )( )1U, x ,..., x ,n with  x U∈ such that  ( ) ( ){ }jU N x U x x 0for j p 1,..., n .ϕ ∩ ≅ ∈ = = +
  

                                                 
4 The torus / nR Z  is isomorphic to ( )1S

n

, where 
{ }1S 1 .z z= ∈  =
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 .n+1 fold of-is a submani  
( ){ }n 1n n 1 2

1 n+1 ii 1
S x ,..., x x 1++

=
= ∈ | =∑R

) 1( .Example 10 

(2) The set  
( ) ( ){ }k

p,q p.qM A M rank A k= ∈  =  
 

.  ( ) ( )I
p,q I k p,qM U M< ‚ is a submanifold of 

 
 
(3) Let G  be a Lie group and let H  be an abstract subgroup of G . It is well known that  
H  is a submanifold of G  (and hence a Lie group) H⇔  is closed in G .  

Tangent Bundle 
The aim of this section is to define the tangent bundle TM  of a differentiable manifold M . Let m M∈ , and let 
f (resp. g ) be a differentiable function defined in a neighborhood U (resp. V ) of m . We say that f  and g  are 
equivalent, and we write f g< , if there exists a neighborhood W U V, m W,⊂ ∩ ∈  such that  

f in Wg≡ . 
It is easy to see that R  is an equivalence relation. The equivalence class of a function f defined in a 
neighborhood of m , called a germ of f at m , will be denoted by f . The set of germs at m will be denoted by 

mE  It can be shown that  mE  is an − algebra.  
 
Definition 11. A tangent vector at m M∈  is linear map  

mX :E ,  
satisfying  ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆX f. fX X f ,g g g= +

 
. .,Xi e  is an − derivation of the − algebra mE   

 
Definition 12. (1) The set of tangent vectors to M  at a point m M∈  is called the tangent space to M  at m  
and is denoted by mT M .  
(2) The dual of mT M  , denoted by 

*
mT M , is called the cotangent space of M  at m .  

(3) The disjoint union m M mT M∈C  (resp. 
*

m M mT M∈C ), denoted TM  (resp. *T M ), is called the tangent (resp. 
cotangent) bundle of M .  

2. Vector bundles  

Definition 13. Let M  be a C∞
-differentiable manifold of dimension n . A vector bundLe of rank r  is a 

differentiable manifold E together with:  
(1) A surjective C∞

-differentiable map : E Mπ →  , such that for every x M∈ , ( )1
xE Xπ −=  has a structure of 

a real r- dimensional vector space, where r is independent of x .  
(2) An open covering ( ) IUα α∈  of M  and diffeomorphisms  αφ (called trivializations)  

( )1
U: E U U ,r

αα α αϕ π −= → ×
, 

such that for each x U ,α∈  the map  
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{ }E r rxϕα
χ → × →   

is a  -linear isomorphism. The vector bundle is denoted by ( )E,M,π  or  simply by E .  
Let Uα  and Uβ  are two open subsets of M  such that  

( ) ( ) ( ){ }1
i i 1 1 1 1U U m, ,..., m U , ,..., , i ,r i i i i r

iπ ζ ζ ζ ζ α β− ≅→ × = ∈ ∈ = 
.  

For each couple ( ),α β  , consider the functions  ( )
( ) ( )( ) '

1

, i, k 1 i, j

: U U G r

x x
r

g

x g g

β
α β α α β

β β
α α

ϕ ϕ −

≤ ≤

= ∩ →

=

o

a

L

 

  
where ( ), i, k U U .g Cβ

α α β
∞∈ ∩

 For m U Uα β∈ ∩ , the points ( )1 1m , ,..., r
α αζ ζ

 and  ( )2 1m , ,..., r
β βζ ζ

represent the 
same point on  

( ) ( )1 U U
U U rE

α β
α βπ −

≅

∩
→ ∩ ×

, 

 
if and only if  

( )1 2 i j
1

m m m and m , i=1,..., r.
r

k
gβ β α

αζ ζ
=

= = = ∑
 

  
Example 14. (1) If M  is a differentiable manifold, then M r×  is a vector bundle called the trivial bundle of 
rank r .  
(2) Let M  be a differentiable manifold and consider the projection given by  

( ) m

:           TM M
X  x m X T Mif

π
π

→
= ∈a  

 Then it can easily be seen that ( )TM ,M,π  is a vector bundle of rank dim Mn = R . Similarly for T *M .  
(3) A vector bundle of rank 1r =   is called a line bundle.  
(4) Since a vector bundle is a family of vector spaces of a given dimension parameterized by a C∞

- manifold 
M , we can perform on vector bundles the same operations performed on vector spaces, such as the direct sum, 
the tensor product, the dualization, and so on.  
 
Definition 15.  A Lie aLgebra is vector space V  endowed with a bilinear map  [ ]

( ) [ ]
, : V V V

, , ,ζ η ζ η

× →

a  

called the Lie bracket, such that:  
 

(1) [ ] [ ], , , Vfor allζ η ζ η ζ η= − ∈  , 

(2) [ ] [ ], , , , 0 for all , Vζ η γ γ ζ η ζ η   + = ∈    (Jacobi Identity).  
 

Let G  be a Lie group. It can be shown that the tangent space eT G to G=g  at the identity e  has the structure of 
a Lie algebra and the tangent bundle TG of  G  is trivial, more precisely TG G g≅ × . 
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Definition 16. (1) A section s  of the C∞
-vector bundle ( )E,M ,π  over an (open) subset U  of  M  is a C∞

-map  
s: U E→  such that Us idπ =o . 

The space of C∞
-sections of  E  over U is denoted by ( )U,EΓ . If U M= , then we denote  ( )U,EΓ simply by 

( )EΓ .  
(2) A section of the vector bundle TM (resp. T *M ) over an open set U  of M  is called a vector field (resp. a 
differential form) defined over U . The space C∞

-vector fields over U  will be denoted by ( )U,TMΓ .  

Let M  be C∞
 differentiable manifold of dimension ,m Mn ∈  and let ( )1 nx ,..., x  be a local coordinate system 

defined in an open set U , with m U∈ . A C∞
-vector field X  over U  may be written  

 ( ) ( )
n

i
i=1 i

X x x
x

ζ
∂

=
∂∑

 

where ( )i U,Cζ ∞∈  .  
 
Definition 17. The differential mdf  of a function ( )1f U,C∈   at m M∈  is a linear form on mT M  defined as 

follows: for each 

n

i m
i=1 i

X T M
x m

ζ
∂

= ∈
∂∑

,  

( ) ( )( ) ( )m i
i=1 i

fdf X X f m m
n

x
ζ

∂
= =

∂∑
. 

 
In particular, for if x=  , we have ( ) ( )i imd x X ζ= .  Hence we can write  
 n

m i
i=1 i

fdf dx
x

∂
=

∂∑
 

If ( )1 nx ,..., x is a local coordinate system defined in an open subset U  of M , with m U∈ , then 1 n

,...,
x x

 ∂ ∂
 ∂ ∂   

(resp. ( )1 ndx ,...,dx ) is a C∞
-frame of TM  (resp. T *M  ) over U . The frame ( )1 ndx ,...,dx  is the dual of the 

frame 1 n

,...,
x x

 ∂ ∂
 ∂ ∂   , i.e.  

i i, j,
j

dx
x

δ
 ∂

=  ∂   

where i, j,δ  is the Kronecker symbol.  
 
Definition 18. Let X  and Y  be two vector fields defined in an open subset U  of M . The Lie bracket of X  and 
Y  is the vector field [ ]X, Y  defined by  

[ ]( ) ( )( ) ( )( )X,Y f X Y f Y X f ,= −
 

 
where ( )2f U,TMC∈ . If ( )1 nU, x ,..., x  is a local chart with m U∈  and if  
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n n

i
i=1 i=1i i

X and U
x xi Y inζ η
∂ ∂

= =
∂ ∂∑ ∑

, 

then  [ ]
n n

i

i=1 i=1
X,Y

x x x
i

j j
j j i

ζη
ζ η

 ∂∂ ∂
−  ∂ ∂ ∂ 

∑ ∑
 

 
Embeddings 

Definition 19.  Let M  and N  be two C∞
-manifolds. A C∞

-map f : M N→  is a continuous map such that 
( ) ( )-1ofo : U V mapis a Cϕ ϕ ∞Ψ → Ψ − , 

 for all charts ( ),U ϕ  of M  and ( )V,Ψ  of N  such that ( )1U Vϕ −⊂  .  
 
Definition 20. Let M  and N  be two C∞

-manifolds and ( )m m f mdf : T M T N→
, C∞

-map. The differential is 
defined by  

( )( ) ( )m ˆdf X X ofg g=
, 

where g  is a function defined in a neighborhood of ( )f m  representing ĝ .  
It can be proved that the definition is independent of the choice of a representative of ĝ . If we put N =   in 
Definition 20, then we get the differential of a function which was already defined in Definition 17.  
 
Definition 21. Let M  and N  be two C∞

-manifolds and f : M N→  a C∞
-map.  

(1) The map f  is said to be an immersion if :  
( )m m f mdf : T M T N→

  is injective for all m M∈ .  
(2) The map f  is said to be an  embedding if :  
(a) f  is an injective immersion,  
and  
(b) f  is a homeomorphism between M  and ( )f M , where ( )f M  is endowed with the induced topology of N .  

Isomorphism of Vector Bundles 
Definition 22. Let E and F be two vector bundles over a differentiable manifold M. A map between the vector 
bundles  E and F  is a C∞

 map  
: E F,ν →  

such that:  
(1) ( )x xE F , for all x Mν ⊆ ∈ , 
and  
(2) xx x xE : E Fν ν= →

  is linear for all x M∈ .  
 
The vector bundles E  and F  are said to be isomorphic if there exists a map : E Fν →  such that x x x: E Fν →  is 
an ismorphism for all x M∈ . We denote this by E F≅ .  
A vector bundle (resp. a complex vector bundle) E  over M  is said to be a trivial bundle if  
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Pull-Back of Vector Bundles 

Definition 23. Let be a C∞
-map between two C∞

 manifolds M  and N  and E  a vector bundle over N . The 
pull-back bundle f *E  is a vector bundle over M  defined by  

 ( ) ( )f mmf *E E=
   for all  m M∈ . 

 
The transition functions of  f *E  are given by the pull-back of the transition functions of E .  
Hermitian Metrics on Vector Bundles  
 
Definition 24. A C∞

-frame over an open subset U  of  M  is an r -tuple ( )1,..., rσ σ , where such ( )U,Eiσ ∈ Γ , 

such that ( ) ( )( )1 x ,..., r xσ σ
 is a basis for xE   for all x U∈ .  

Let U  be an open subset of M  such that  ( )1
U: E U U rϕ π ϕ−= → ×%

, 

and let ( )1 i rei ≤ ≤  be the canonical basis of r  To the trivialization ϕ , we associate the C∞
-frame ( )1 i rei ≤ ≤

%
 of  

UE
, where ei%  is defined by  

( ) ( )1e x : x,e x Ui iϕ −= ∈%
 

 
Then any section ( )s U,E∈ Γ  can be written as  

( ) ( ) ( )
1

s x x e x
r

i i
i

a
=

= ∑ %

 

 
with ( )a U,i C∞∈ R . Conversely, to C∞ − frame ( )1,..., rσ σ , ( )U,Eiσ ∈ Γ  we can associate a trivialization of 
E  over U as follows  

( )( )
U

1

: E U

x, a ,...., a

r

r

ϕ → ×

a  

where ( )1a ,..., a r  are defined as follows:  
( ) ( )

1
x a x

r

i i
i

σ σ
=

= ∑
, 

The definition of a C∞ − frame for a complex vector bundle is obvious and is left to the reader.  
 
Definition 25. Let E  be C∞ − complex vector bundle of rank r  over a C∞

 manifold M  of dimension n . A 
Hermitian metric h  on E  is a family ( )x Mh x ∈   , where h x  , is a Hermitian inner product on Ex , such that if 
( ) ( )1 i re ,i C U∞

≤ ≤
∈% C  is a C∞ − frame for the complex vector bundle E  defined in an open set U , then, the 

functions  

( ) ( )( )
i, j

x i j

h : U

x h e ,e ,x x

→ 

% %a
 

are smooth, i.e., 
( )i, jh : U, i, j 1,..., r.C for all∞∈ =C
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3. Tensor and differential forms  

In this section we will assume some knowledge of the properties of tensor and exterior algebras. Let M  be a 
differentiable manifold of dimension n  and consider the following vector bundles  

 ( )( )p,q m M m p,qT M:= T M ,∈t
 

( ) ( )( )p *
m M mM : T MpA ∈= ∧t

, 
( ) ( )p *

m M mp=0
M : T MA

∞

∈
 = ⊗∧ 
 

t
, 

where  

( )
q-timesp-times

* *
m m m m mp,qT M T M .. T M T M .. T M= ⊗ ⊗ ⊗ ⊗ ⊗

64474486447448

 

and  

( )
p-times

p * * *
m m mT M T M ... T M∧ = ∧ ∧

6447448

 . 
 
Definition 26. (1) The vector bundle ( )p,qT M  (resp., ( ) ( )M , MpA A  ) is called the tensor bundle of type ( ),p q  
(resp., the exterior p-bundle, exterior algebra bundle) over M .  
(2) A C∞ − section of the vector bundle ( )p,qT M  (resp. ( ) ( )M , MpA A  ) is called a smooth tensor field of type 
( ),p q   (resp. a smooth differential p − form, a smooth differential form) on M .  

The set of all smooth sections of ( )p,q MT  (resp., ( ) ( )M , MpA A  ) will be denoted by ( )p,q MT (resp., 
( ) ( )M , Mpε ε ).   

If ( )1 xx ,..., n  is a local coordinate system defined in an open subset U of M , with m U∈ ,

n

1x i i=

 ∂
 

∂   (resp. 

{ }n

1dx i i=  ) is a C∞ − frame for TM (resp. 
*
mT M ) over U .  

Therefore we get C∞ − frames for 
( ) ( )p

,TM , T*Mp q ∧
 and ( )p

p 0 T *M∞
=⊗ ∧  over U .  

For example, a differential p − form ω  in U will be written  
( ) ( )

1 1
1

i
1 i ... i n

x ,..., i x dx ... x ,
p

p

p i ia dω
≤ < < ≤

= ∧ ∧∑
 

where 1i
, ..., i pa

are C∞ − functions in U .  

 
Definition 27. Let (resp. β ) be a p − form (resp. q − form). The exterior product of α and β , denoted by 
α β∧ , is a ( )p q+ -form defined by  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
p+q

1 p+q 1 p p 1 p+q
1,..., : ,..., ,...,
pq s

σ σ σ σ
σ

α β ξ ξ ε σ α ξ ξ β ξ ξ+
∈

∧ = ∑
, 

where 1 p+q,...,ξ ξ  are p q+  vector fields, p+qS  is the group of permutations of the set { }1,..., p q+  and ( )ε σ  is 
the signature of the permutation σ .  



KÄHLER MANIFOLDS POSITIVE RICCI CURVATURE   

The exterior product is associative and satisfies  
( ) ( ) ( )pq p q1 for M and Mα β β α α ε β ε∧ = − ∧ ∈ ∈ . 

Theorem 28. There exists a unique operator  ( ) ( )d : M M ,ε ε→  
such that  
(1) ( ) ( )p p+1M Mdε ε⊂ .  

(2) ( ) ( ) ( ) ( )p pd d 1 d , M , Mα β α β α β α ε β ε∧ = ∧ + − ∧ ∈ ∈ .  
(3)  d d 0=o  
(4) If f C∞∈ , then df  is the differential of f .  
If  ( )p Mα ε∈ , then ( )p 1d Mα ε +∈  is defined by  ( ) ( ) ( )

( ) ( )

p 1

1 p+1 p+1
i 1

i+jp 1

1 p+1
1 j p 1

ˆ,..., -1 ,..., ,

ˆ ˆ1 , , ,..., ,..., ,...,

i

i i

i j i j

dα ξ ξ ξ α ξ ξ ξ

α ξ ξ ξ ξ ξ ξ

+

=

+

≤ ≤ +

 = + 

 −  

∑

∑
 

 
where 1 p+1

ˆ ,...,ξ ξ  are vector fields and îξ  means that the vector field iξ  is omitted.  

4.  Riemannian manifolds  

Definition 29. A Riemannian metric on a C∞
 differentiable manifold M  is a tensor field g  of type ( )0,2 , i.e., 

( )0,g 2 M∈T , such that at each mm M, g∈  is a positive definite symmetric bilinear form, i. e.,  
( ) { }mgm X,X 0, X T M 0 ,for all> ∈ Â  
( ) ( ) mgm X,Y gm Y,X X,Y T Mfor all= ∈   

 
Definition 30. A Riemannian manifold is a pair ( )M,g , where M  is a C∞

 differentiable manifold and g  is a 
Riemannian metric.  
Let X  and Y  be two elements of mT M , and let ( )1 nx ,...,x  be a local coordinate system defined in an open 

subset U of M , with m U∈ , and suppose that  

n

i=1
X

x mi

ξ
∂

=
∂∑

 and 

n

i=1
Y

x mi
i

ξ
∂

=
∂∑

  Then  

                                                    
( ) ( )

n

ij
i,j=1

gm X,Y g m ,i jξ ζ= ∑
 

where  

    
( )i,j mg m g ,

x m x mi j

 ∂ ∂
=   ∂ ∂   

 
We write  

          

n

i,j
i,j=1

g g dx xi jd= ⊗∑
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Let ( )M,g  be a Riemannian manifold. Using the metric g , it is possible to compute the length of any curve on 
M  joining any two points x  and y  of M .  
 
Definition 31. Let ( )M,g  and ( )N,h  be two Riemannian manifolds. A C∞ − map  

f : M N→ , 
 

is said to be an isometry if f  is a C∞
-diffeomorphism and if for every m M∈ , and for every m, T Mξ η ∈ , we 

have  
( ) ( ) ( )( ) ( )m mf mh df ,df gm ,ξ η ξ η=

. 
We write  

g f *h=  
 
Example 32. (1) Since the tangent bundle of n  is trivial, i. e., n n nT ≅ ×  , the Euclidean metric on n  
denoted by ecg   is defined by ( ) ( ) n

1 1 1 1m ,v , m ,v T∈   
( ) ( )( )ec 1 1 1 2 1 2g m ,v . m ,v v .v .=

 
(2) Consider the unit sphere  ( ){ }n n+1 2 2

1 n+1 1 n 1S x ,..., x x ... x 1+= ∈ + + =
. 

The Euclidean metric on n+1  induces a metric on 
nS , i.e., if 

n n 1S i +→   
is the obvious embedding of 

nS  in n 1+ , then Sn ecg i*g=  is the "canonical" metric on 
nS , where ecg  is the 

Euclidean metric on n 1+ .  
(3) Let  

( ){ }2n n 2 2
1 n 1 nD x x ,..., x x x ... x 1 ,= = ∈ = + + <

 

 
be the unit disc. Since 

n n nTD D ,≅ ×  then a metric nD
g  on nD  can be defined as follows  ( ) ( )( )

( )D, x 22
g x, , x, :

1 x

ξ η
ξ η

⋅
=

−
 

(4) Every compact connected Lie group admits a bi-invariant metric, i.e., a metric for which left and right 
translations are isometries. For details see (Gallot and Hulin, 1990).  

Partition of unity 
The aim of this section is to introduce a very powerful tool called" partition of unity" which allows one to 
construct global objects such as metrics, differential forms, vector fields,..., by gluing local ones. Partition of 
unity plays also a fundamental role in the definition of integration on manifolds.  
 
Definition 33. Let M  be a C∞

-manifold and let 
( )i IUi ∈  be a covering of M . A C∞

- partition of unity 

subordinate to the covering  
( )i IUi ∈   is a collection of maps 

( )i Iiθ
∈  , where ( )M,i Cθ ∞∈   satisfying:  

(1) supp ( ) Ui iθ ⊆  for all i I∈ , where supp
( ) ( ){ }i xx M 0 .iϕ ϕ= ∈ ≠

  

(2) ( ) [ ]U 0,1 i Ii i for allθ ⊆ ∈   
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(3) For every x M∈ , there exists an open subset x xV , x V∈  such that xi V 0θ ≡
 except for a finite set of iθ .  

(4) For every ( )i I
x M , x 1iθ

∈
∈ =∑  ((3). implies that the sum is finite).  

 
Definition 34. A Hausdorff space M  is said to be paracompact if every open covering { } IUi i∈  of M  there 

exists an open covering 
{ }j j J
V

∈  of M  such that:  

(1) For every j J∈ , there exists ji I∈  such that  jiV Uj ⊂
(we say that 

{ }j j J
V

∈  is a refinement of { }i i IU
∈ ).  

(2) Each point m M∈  has a neighborhood mW  such that m jW V φ∩ ≠  only for finitely many values j  of J  

(we say that 
{ }j j J
V

∈ is locally finite).  

Paracompactness is a generalization of compactness (every Hausdorff compact topological space is 
paracompact).  
 
Theorem 35. Let M  be a paracompact C∞

-manifold and let ( )i i IU
∈  be a covering of M . Then there exists a 

C∞
- partition of unity subordinated to ( )i i IU

∈  .  
 
Theorem 36. There exists at least one Riemannian metric on any paracompact C∞

-manifold.  
The construction goes as follows: Let ( )i I,i iU ϕ

∈  be an atlas of M  and let ( )i Iiθ
∈  be a partition of unity 

subordinate to the covering ( )i i IU
∈ . Fix a scalar product ( )Q .,.  on n  where dim Mn = . Then it is easy to see 

that  ( )
i I

*
i ig θ ϕ

∈

 =  ∑ Q
 

is a metric on M . For more details, see (Aubin, 2001).  

5. The levi-Civita connection  

Definition 37. Let M  be a differentiable manifold. A Linear connection ∇  on M  is a map  
( ): TM TM TM∇ ×  →  

 ( ),Y Yξξ ∇a ,  
satisfying the following conditions  
(1) If mT Mξ ∈ and ( )Y ∈Γ ΤΜ , then mY T Mξ∇ ∈ .  

(2) The restriction of ∇  to ( )mMΤ ×  ΤΜ  is bilinear.  

(3) ( ) ( ) ( )mfY = f Y f m Yξ ξξ∇ ⋅ + ∇
 for all ( )mT M,Y TMξ ∈ ∈   and for all f  differentiable function on M .  

(4) If ( )X TM∈ Γ  and  ( )Y TM∈Γ are such that X  is of class 
rC  and Y  is of class 

1rC +
, then 

( )xY TM∇ ∈ Γ  is of class 
rC .  

 
Definition 38. (1) The torsion of a linear connection ∇  is a map T  defined by  

( ) ( ) ( )T : TM TM TMΓ × Γ → Γ  
( ) ( ) [ ]x YX,Y T X,Y Y- X- X,Y= ∇ ∇a  
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where [ ]X,Y  is the Lie bmcket of the vector fields X  and Y .  

(2) The curvature R  of a linear connection ∇  is a two form with values in Hom ( ) ( )( )TM , TMΓ Γ
,  defined 

by  
( ) ( ) ( ) ( )( )R : TM TM Hom TM TMΓ × Γ → Γ , Γ

 
( ) ( ) [ ]x Y Y x x,YX,Y R X,Y = ∇ ∇ − ∇ ∇ − ∇a

 

For simplicity we write  ( ) [ ] [ ]x Yx Y ,R X,Y , ∇ ∇= ∇ ∇ − ∇
. 

 
Remark 39. One can easily check that:  
(1) The curvature R  is a (1, 3) tensor.  
(2) ( ) ( )R X,Y R X,Y= −  .  
(3) If  T 0= , then  

( ) ( ) ( )R X ,Y R Y, Z X R Z , X Y 0Z + + =  (Bianchi's Identity).  

(4) The value of ( )R X,Y Z  at a point m M∈  depends only on the values X ,Y  and Z  at m .  
 
Theorem 40. Let ( )M ,g  be a Riemannian manifold. Then there exists a unique linear connection which is 

torsion free and compatible with the metric, i.e., a connection 
g∇  satisfying the following two conditions:  

(1) ( )T X,Y 0=  for all ( )X ,Y T M∈ Γ .  

(2) ( ) ( ) ( )g g
x xX g Y, Z g Y, Z g X, Z⋅ = ∇ + ∇

 for all ( )X,Y,Z TM∈ Γ .  

where T  is the torsion of the connection 
g∇ . The connection 

g∇  defined above is called the Levi-civita a 
connection of the metric g and will simply be denoted by ∇ . 
For a proof, see (Aubin, 2001).  
The vector field xY∇ is called the covariant derivative of the vector field Y  in the direction of the vector field 
X .  
The covariant differentiation can be extended to tensors of type ( )p,q , see (Kobayashi and Nomizu, 1969) . In a 

local coordinate system ( )1 nx ,..., x  defined in an open subset U of  M , we write  

i

n
k
ij

k=1j kx x x∂
∂

∂ ∂
∇ = Γ

∂ ∂∑
. 

 
Definition 41. The functions 

k
ijΓ  defined in U  are called the ChristoffeL SymboLs of the Levi-Cevita connection 

∇ .  
Easy computations in a local coordinate system ( )1 nx ,..., x defined in an open subset U of M  show that the 
Christoffel symbols can be expressed in terms of the metric as follows  n

k k
ij ijj i

i j

1 g g g g
2 x x x=1


 



 ∂ ∂ ∂
Γ = + −  ∂ ∂ ∂ 

∑
 

where 
( )k

1 k, n
g





≤ ≤  is the inverse of the matrix 
( )ij 1 i,j n
g

≤ ≤  .  
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6.  Sectional and ricci curvatures  

Curvature is a fundamental and central concept in Riemannian geometry. In this section we will introduce two 
types of curvatures, namely the sectional curvature and the Ricci curvature.  
Let ( )M, g  be a Riemannian manifold and R  its curvature. Using the metric g , we can view R  as a ( )0,4  
tensor (denoted also by R ) as follows  

( ) ( )( )R X,Y,Z,W : g R X,Y Z,W=
 .  

The properties of R  can be summarized in the following  
 
Proposition 42. The Riemannian curvature R  satisfies the following properties  
(1) ( ) ( ) ( ) ( )R X,Y,Z,W R Y,X,Z,W R X,Y,Z,W R Y,X,W,Z= − = = . 

(2) ( ) ( )R X,Y,Z,W R Z,W,X,Y= . 

Let ( )m2,T MG be the Grassmannian of 2-dimensional vector subspaces of mT M  and let  
( ) ( )m M m2,TM U 2,T M∈=G G  

be the corresponding Grassman bundle.  
Let mu  be a two dimensional vector subspace of  mT M  with basis ( ),ξ η . Then it can be shown that the real 
number  

( )
( )( )

( ) ( ) ( )
m

m 2
m m m

g R , ,

g , g , g ,

ξ η ξ η

ξ ξ η η ξ η
=

−
T u

 

 
is independent of the choice of the basis ( ),ξ η  of mu .  
 
Definition 43.  Let ( )M ,g  be a Riemannian manifold. The sectional curvature of ( )M ,g  at m M∈ , denoted by 

( )sect m , is the function  ( ) ( )
( ) ( ) ( )

m

m m m

sect m : 2,T M
sect m

→

=



a

G
u u T u  

  
Remark 44.  If ,ξ η  are two linearly independent vectors in mT M , then we put  

( )( ) ( )msect m ,ξ η = T u . 
where mu  is the plane spanned by the vectors ,ξ η .  
We will say that ( )sect resp. , , cc≥ ≤ > <  if  

( )( ) ( ) ( )( ) ( )( )m msect m , cg , resp.sect m , , , cg , ,ξ ξ ξ ξ ξ ξ ξ ξ≥ ≤ > <
 

for all vectors, mT Mξ ∈  and for all m M∈ .  
 
Definition 45. Let ( )M,g  be a Riemannian manifold. For each m M∈ , the Ricci curvature tensor of ( )M,g at 
m , denoted by ( )gRi mc  is defined by  ( )

( ) ( )
g m mRi m : T M T M

, Ric ,

c

ξ η ξ η

× → 

a  
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 where  ( ) ( )( )
( )n

i=1

Ric , Trace Ric ,

Ric , , e ,i ie

ξ η ζ ξ ζ η

ξ η

=

= ∑
a

 

 
and ( )1i i n

e
≤ ≤  is a mg -orthonormal basis of mT M .  

 
As defined, gRic  is a bilinear form which will sometimes simply be denoted by Ric  if the metric is clear from 

the context, and ( )gRi mc  will simply be denoted by mRic .  

As in the case of sectional curvature, we will say that ( )Ri . , , cc c resp≥ ≤ > <  if  
( ) ( ) ( ) ( )( )m m m mRic , cg , resp.Ric , , , cg , ,ξ ξ ξ ξ ξ ξ ξ ξ≥ ≤ > <

 

for all vectors mT Mξ ∈ and for all m M∈ .  

7.   A volume comparison theorem  

The positivity of the Ricci curvature imposes strong topological and geometric constraints on Riemannian 
Manifolds as shown in Theorem 46, Theorem 57 and Theorem 58 below.  
 
Theorem 46. ( Myers, 1941) Let ( )M,g  be a complete Riemannian manifold and suppose that  

gRic ,c≥   
where c  is a positive constant. Then M  is compact and its fundamental group is .finite.  
 
Remark 47. Negative Ricci curvature has no topological implications on Riemannian manifolds of dimension 

3≥  as is shown by the following result.  
 
Theorem 48. (Lohkamp, 1994) Any manifold of dimension 3≥  admits a metric with negative Ricci curvature.  
 
Definition 49. Let ( )M,g be a Riemannian manifold and let ( ): a,b Mγ → , be a differentiable map (called a 

smooth curve). The length of the curve denoted by ( )ι γ  is given by  
( ) ( ) ( ) ( )( )tg t , t dt ,

b

a γι γ γ γ= ∫ & &
 

where  ( ) ( ) ( )
t

d dt t d , t a,b ,
dt dt
γ

γ γ
  = = ∈    

&

, 

dγ is the differential of the map γ  and 

d
dt  is the unit vector on  .  

The length of a piecewise smooth curve is the sum of the lengths of its smooth pieces.  
 
Definition 50. (1) The distance between two points x  and y , denoted by ( )gd x , y

, is the infimum of the 

lengths (With respect to the metric g ) of all piecewise 
1C -curves from x  to y .  
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(2) The metric g  induces a distance function gd on M , giving a metric space ( )gM , d
. We say that the metric 

g is complete if ( )gM , d
 is a complete metric space.  

 
Remark 51. It can be proved that the topology of M  induced by the metric gd  is the same as the original 
topology of M .  
 
Definition 52. The geodesic ball ( )gB m, r  centered at m and with radius r  is defined by  

( ) ( ){ }g gB m, r x M  d m, x r= ∈ <
,  

where gd  is the distance function induced by the Riemannian metric.  

Integration of differential forms on manifolds 

Let M  be an C∞
-manifold of dimension n  and let ϖ  be a smooth n -form defined on M . The aim of this 

section is to give a meaning to the following expression  
M

ρϖ∫   , 

where ρ  is a compactly supported function on M , i.e., supp ( ) Kρ ⊆  , where K  is a compact subset of M . 
Let us start first with the following  
 
Definition 53. Let M  and N  be two C∞

-manifolds and f : M N→  a C∞
-map. If Φ  is a smooth n -form on 

N , then f *Φ  is the smooth N -form defined on M  by  
( ) ( ) ( ) ( ) ( )( )1 n m 1 m nf mmf * ,..., : df ,...,df ,ξ ξ ξ ξΦ = Φ

 , 

for all m M∈  and for all 1 n m,..., T Mξ ξ ∈  

Let M, ρ  and ϖ w be as above. Suppose first that supp ( ) iUρ ⊆  , where ( )i iU ,ϕ
is a local chart 

and ( )1 nx ,...,x  are the corresponding local coordinates. Then  
( ) ( )1

i 1 n 1 n* x ,..., x dx ... dx ,iϕ ϖ ϑ− = ∧ ∧
 

where iϑ is a smooth function defined in ( )i iUϕ  with real values. We put  

(1) 
( )( )i i

1
iM U

*
ϕ

ρϖ ϕ ϖ−=∫ ∫   

(2) 
( )( ) ( )

( )i i

1
i 1 n 1 n 1 nU

o x ,..., x x ,..., x dx ... dxiϕ
ρ ϕ ϑ− ∧ ∧∫   

We have to prove that the definition is independent of the choice of the local chart containing the support of ρ . 

For this, suppose that ( )j jU ,ϕ
 is a local chart and ( )1 ny ,..., y  are the corresponding local coordinates with 

supp ( ) jUρ ⊆ , and put  

(3) 
( )( )j j

1
jM Uϕ

ρϖ ϕ ϖ−=∫ ∫
  

(4)  
( )( ) ( ) ( )

j

1
j 1 n j 1 n 1 nU

o y ,....,y y ,...,y dy ... dy
ϕ

ρ ϕ ϑ− ∧ ∧∫
 

where jϑ  is defined by  
( ) ( )1

j j 1 n 1 n* y ,...,y dy ... dyϕ ϖ ϑ− = ∧ ∧
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In general the right hand side of the expressions (1) and (3) are not necessarily equal, but if we restrict ourselves 
to "orientable manifolds" then we can choose an atlas of local charts such that (1) and (3) are equal. To be more 
precise, let us introduce the following  
 
Definition 54. (1) A C∞

-manifold M  is said to be orientable if there exists a C∞
-atlas ( )i i i IU ,ϕ

∈  such that the 

Jacobian Jac ( )1
i joϕ ϕ −

 of the C∞
 -diffeomorphism  

( ) ( ) ( )1
i j j i j i i jo : U U U Uϕ ϕ ϕ ϕ− ∩ → ∩

 

is positive for all i , j I∈ , i.e.,  
( ) ( )( )

1 1

1 n

1
i j j

n n

1 n

y y
x x

Jac o x : det 0 ,

y y
x x

ϕ ϕ ϕ−

∂ ∂ ⋅ ⋅ ⋅ ∂ ∂ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

= >⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

∂ ∂ ⋅ ⋅ ⋅ ∂ ∂   

 
for all i , j I∈  and for all i jx U U∈ ∩ , where ( ) ( )( )1 n 1 nx ,..., x . y ,..., yresp

 is the system of local coordinates 

corresponding to the chart ( ) ( )( )j j i iU , . U ,respϕ ϕ
.  

(2) The manifold M  is said to be oriented if such an atlas has been chosen.  
(3) A chart ( )U,ϕ   is said to be compatible with the orientation if  

( )1
iJac o 0, ifor allϕ ϕ − >

. 

It can be shown that  
 
Theorem 55. A C∞

-man(fold M of dimension n is orientable if and only (f there exists a differential n -form ω  
such that m 0ω ≠  for all m M∈ .  
If M  is oriented and the atlas 

( )i IU ,i iϕ
∈  is compatible with the orientation, then  

( )
( )

( )( )i i j j

1 1
i jU U

* * ,
ϕ ϕ

ϕ ϖ ϕ ϖ− −=∫ ∫
 

 
i.e., the integral M

ρϖ∫  is independent of the choice of the local chart.  

Suppose now that ρ  is a smooth function defined on M  with compact support. Then we define M
ρϖ∫  as 

follows  
        

iM M
i I

Xρϖ ρϖ
∈

= ∑∫ ∫
                                                                     (5) 

where ( )i i IX
∈ is a partition of unity subordinate to an atlas ( )i IU ,i iϕ

∈  which is compatible with the orientation. 
The right hand side of (5) is a finite sum and it can be proved that it is independent of the choice of the partition 
of unity.  
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Integration over riemannian manifolds. 

Let ( )M,g  be a Riemannian manifold of dimension n , let ( ) ( )( )i 1 i nU, U, xϕ
≤ ≤

=
 be a local chart, and suppose 

that f is a measurable function on M  with compact support included in U . Then the integral gM
fdV∫  is 

defined as follows  
( )( )( )

( )( )( )1 1
g ij 1 nM M

fdV f x det g x dx ...dx
ϕ

ϕ ϕ− −=∫ ∫  

If f  is a measurable function with compact support in M , then we define gM
fdV∫  as follows  

i

g i gM M
fdV X fdV

∈

= ∑∫ ∫
 

where 
( )

i IiX
∈ is a partition of unity subordinate to an atlas 

( )
i I

U ,i iϕ
∈  .It can be proved that the sum is well 

defined, i.e., only a finite number of terms in the sum are nonzero, the sum is independent of the choice of the 
atlas and of the partition of unity subordinated to it.  
Suppose now that M  is oriented and let 

( )
i I

U ,i iϕ
∈

=A
 be an atlas which is compatible with the orientation. Let 

( )U,ϕ  be a local chart belonging to A  and let ( )1 nx ..., x  be the local coordinate system associated to ϕ  and 
consider the following n -form:  

( )( )x ij x1 ndet g x d ... dx ,ϖ = ∧ ∧
 

where det ( )ijg
 is the determinant of the metric 

n
ij i ji=1

g g dx dx= ⊗∑ . Consider another local chart ( ),V υ ∈/ A  

and let ( )1 ny ,..., y  the corresponding local coordinates, and put  
( )( )y ij 1 ndet g y dy ... dyϖ = ∧ ∧

 

An easy computation shows that  
x y in U Vϖ ϖ= ∩ . 

Therefore ϖ  is a global n -form, called the volume form associated to the Riemannian metric g  and it will be 
denoted by gdV .  
 
Definition 56. The volume of the geodesic ball ( )gB m, r  denoted by ( )( )g gvol B m, r

 is given by  
( )( ) ( )g

g g B m,r
vol B m , r : dVg= ∫  

The following two results are very important and will be needed in part 4.  
 
Theorem 57. (Bishop and Crittenden, 1964) Let ( )M ,g  be a complete noncompact Riemannian manifold of 
positive Ricci curvature, dim M n=R . Then  

( )( ) n
g gvol B m, r cr r 0,for all≤ >

 
where c  is a positive constant independent of r .  
There is a generalization of Bishop's Theorem by Gromov, but for our purposes, Bishop's Theorem is enough.  
The proof of Bishop's (resp. Gromov's) Theorem (Theorem 57) uses special local coordinates coming from the 
exponential map and some properties of Jacobi fields, for more details, see (Gallot and Hulin, 1990).  
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Theorem 58. (Calabi, Yau, see [14]) Let ( )M,g  be a complete noncompact Riemannian manifold of nonnegative 
Ricci curvature. Then  

( )( )g gvol B m,r cr r 0for all≥ >
, large enough.  

de Rham isomorphism 

Definition 59. (1) A p - form w is called closed, or d - closed, if d 0ω = .  
(2) A p -form ω  is called exact if dω β=  for some ( )p 1−  -form β .  

Since 
2d 0= , every exact form is closed. Hence we see that the vector space of exact p -forms is a subspace of 

the space of closed p-forms.  
 
Definition 60. The 

thp  de Rham cohomology group of  M , denoted by ( )p
DRH M  , is given by  

( ) { } { }p
DRH M p / pclosed forms exact forms= − −  

de Rham's Theorem says that ( )p
DRH M  is isomorphic to the 

thp  singular cohomology5 of M . More precisely 
consider the following map  ( ) ( )

[ ] [ ] [ ]( )

*p
DR p

Z

X : H M H M ,

Zω ω ω

→

= ∫


a
 

 where ( )pH M,  is the singular 
thp  homology group with real coefficients, ( )*

pH M,  its dual, W is a 

representative of its de Rham cohomology class [ ]ω , and Z  is a 
thp  cycle representing its real differentiable 

singular homology class [ ]Z . The fact that the map X is well defined is an easy consequence of Stokes theorem. 
For more details, see (Warner, 1983).  
 
Theorem 61. (de Rham) The map X  is an isomorphism.  
If M  is a compact oriented manifold, then Poincare duality implies that   

( ) ( )* p
pH M, H M,≅   

Combining de Rham isomorphism and Poincare isomorphism, we obtain  
( ) ( )* p

p DRH M, H M≅  

Definition 62. Let M  be a compact manifold. The nonnegative integer ( )ib M  defined by  
( ) ( )i

i DRb M dim H M ,=   
is called the i th−  Betti number of the manifold M .  
 

Holonomy groups 
The aim of this section is to introduce the "holonomy group" of a Riemannian manifold and to state two of the 
fundamental results in Riemannian Geometry, namely de Rham's and Berger's Theorems. The material of this 
section will not be used elsewhere in this paper, so it may be skipped if the reader whishes to do so.  
To any Riemannian manifold ( )M,g of dimension n n, we can associate a closed subgroup of ( )SO n , called the 
holonomy group of the metric; lots of information about a Riemannian metric is encoded in its holonomy group. 
Let us first define the holonomy group.  

                                                 
5 For more details on singular (co)-homology, the readers can consult [20].   
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Let ( ): a,b Mγ →  be a smooth curve. The tangent vector 

d
dt
γ

 to the curve γ  is defined by  
( )

00

0
tt

d d , t a,b
dtdt

dγ
γ

  = ∈     , 

where dγ  is the differential of the map γ  and 

d
dt  is the unit vector on  . For a function f defined in a 

neighborhood of' ( )0tγ , we get  
( ) ( ) ( )

0t 0

d fd f t
dt dt

γγ  
=  

 

o

 

Let ( )M ,g  be a Riemannian manifold of dimension n  and let ∇  be the Levi-Cevita on M .  
 
Definition 63. (1) A vector field X  along a curve ( ): a,b TMγ →  is a map  

( )X : a ,b TM→  

such that ( ) ( ) ( )tX t T M t a,bfor allγ∈ ∈
.  

 
(2) A vector field X   is said to be parallel along a differentiable curve γ  if  

d
dt

X 0.γ∇ =
 

Let  ( )
n

i 1 n

i=1 i

X X ,..., ,
x

and γ γ γ
∂

= =
∂∑

 

be the expression of the vector field X  and the curve γ  in a local chart ( )( )1 nU, x ,..., x
.  

Then  

             

( ) ( )( ) ( ) ( )j in n
j k

d ik
j 1 i , k 1 jdt

dX t d t
X 0 t X t 0

dt dt xγ

γ
γ

= =

  ∂
∇ = ⇔ +  = 

∂  
∑ ∑

.                                     (6) 

 
Let 1m  and 2m  be two points of M  and let [ ]: a , b Mγ →  be a continuous curve which is smooth in ( )a , b , 

and joining 1m  and 2m , i.e., ( ) 1a mγ =  and ( ) 2b mγ =  and let 1X  be a vector in m1T M . Since the equation (6) 

is linear, by Cauchy's theorem, it has a unique solution ( )X t  for all [ ]t a , b∈  satisfying ( ) 1X a X= .  
 
Definition 64. The vector ( )2X X b=  is called the parallel transport of 1X  from 1m  to 2m  along the curve γ .  
The parallel transport along a piecewise smooth curve γ  is defined in an obvious way. Then to each piecewise 
curve γ  is associated an isometry (with respect to the scalar product on m1T M and m2T M  induced by g )  

1 2m m: T M T Mγ →T
 

This map is both linear and invertible and so defines an element of ( )mGL T M . Let m M∈  and consider  
( ) [ ] ( ) ( ){ }piecewise and smooth,o m : a,b Ml a b mγγ γ γ= → = =

. 
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It can be shown that ( )o ml is a group under composition of paths. To a composition 1 2γ γo , we associate the 
linear transformation  

1 2 1 2 m mo : T M T Ml l lγ γ γ γ= →o  

Definition 65. The holonomy of ( )g or g∇  based at m  is defined as  
( ) ( ) ( ){ }g

m mh o l l GL T M o mlγ γ∇ = ∈ ∈
 

The holonomy ( )g
mh o l ∇

 is a subgroup of the orthogonal group ( )O n , moreover, it is a Lie group. If 
( )

1

g
mh o l ∇

 and ( )
2

g
mh o l ∇

 are the holonomy groups of the connection 
g∇  at the points 1 2m , m , then there 

exists an element ( )A O n∈  such that  
( ) ( )

2 1

g g 1
m mh o l Ah o l A−∇ = ∇

 

This allows us to speak of "the" holorromy group of a Riemannian manifold ( )M ,g  and denote it simply by 
( )gh o l ∇

. If we consider in the definition of the holonomy group only contractible closed curves, then we obtain 
what is called the restricted holonomy group, and it can be proved that the two coincide in case the manifold M  
is simply connected.  
 
Remark 66. The following set  ( ) ( ) ( ){ }0 g

m mh o l l GL T M lo m , is a contractible curveγ γ∇ = ∈ ∈
 

is a connected normal subgroup of ( )g
mh o l ∇

, and is called the restricted holonomy group.  
 
Definition 67. (1) The representations of ( )g

mh o l ∇
in mT M  are isomorphic and therefore called the holonomy 

representation.  
(2) A Riemannian manifold ( )M ,g  is irreducible if its holonomy representation is irreducible.  
 
Theorem 68. (de Rham 1952) Let ( )M ,g  be a connected, simply connected complete Riemannian manifold. 
Then:  
(1) there exists a canonical decomposition   

( ) ( ) ( ) ( )
isometric

0 0 1 1 k kM ,g M ,g M ,g ... M ,g≅ × × ×  

where ( )0 0M ,g is a Euclidean space (possibly reduced to a point) and ( )i iM ,g ,i 1,...,k=  are irreducible simply 
connected complete Riemannian manifolds.  
(2) For ( )1 km m ,...,m M= ∈ , let ( ) ( )i

g
m m ih o l O T M

i
∇ ⊂

 be the holonomy group of iM  at im  and let 
( )g

mh o l ∇
 be then the holonomy of ( )M ,g  at m .  

Then  ( ) ( ) ( ) ( )0 1 k

2 0 1 k

g g gg
m m m mh o l h o l h o l ... h o l ,∇ ≅ ∇ × ∇ × × ∇

 

where the action of  ( ) ( ) ( )0 1 k

0 1 k

g g g
m m mh o l h o l ... h o l∇ × ∇ × × ∇

 on 
0 1 km m 0 m 1 m kT M T M T M ... T M ,≅ × × ×

 
is through the product representation. Such a decomposition is unique up to an order.  
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The symmetric spaces were classified by E . Cartan around 1920 and their holonomy groups are well 
understood. For example, a compact symmetric space is a homogeneous space G/H , where G is a compact Lie 
group and H  is the identity component of the fixed locus of an involution of G and the holonomy G/H  is H 6. 
So we can exclude symmetric spaces from our study of the holonomy of Riemannian manifolds.  
 
Theorem 69. (Berger, 1953) Let ( )M ,g  be an irreducible simply connected Riemannian manifold which is not 

isomorphic to a symmetric space. Then the holonomy ( )gh o l ∇
 of ( )M ,g  is one of the following groups  

 ( )gh o l ∇
 dim M Type of the metric 

SO (n) n Generic Riemannian  
U (r) 2r Kähler  

SU (r) , r 3≥  2r Calabi-Yau 
Sp (r) 4r Hyper Kähler  

Sp (r) Sp (1) 4r Quaternion - Kähler 
2G  7 Ricci Flat 

Spin(7) 8 Ricci Flat 
 
Remark 70. (1) Initially it was thought that there is no manifold with holonomy 2G  or Spin (7), but recently, D. 
Joyce was able to construct a compact 7-dimensional manifold with holonomy 2G  (see [28] ) , and a compact 8-
dimensional manifold with holonomy Spin (7), (see Joyce, 1996).  
(2) Since  

( ) ( ) ( ) ( )Sp m SU 2m U 2m SO 4m⊂ ⊂ ⊂   
we deduce that every hyperkahler manifold is a Calabi- Yau manifold, every Calabi- Yau manifold is a Kähler 
manifold, and every Kähler manifold is orientable. Kähler manifolds will be introduced in Part 2, but we will not 
study the other types of manifolds in this paper.  
(3) It is very well known that the groups appearing in Berger's list (Theorem 69) are connected to the three 
division algebras   (real numbers), c  (complex numbers), H  (quaternions). The connection is stated as 
follows  
- ( )SO n  is a group of automorphism of n .  

- ( )U n and ( )SU n  are groups of automorphisms of 
nc .  

- ( )Sp n  and ( ) ( )Sp Sp 1n  are groups of automorphisms of nH , where H  is the space of quaternions.  
- 2G  and Spin (7) can also be realized as automorphism groups of some other structures.  
Kähler manifolds will be the subject of Part 2. As for the other classes of manifolds, excellent accounts can be 
found in (Salamon, 1989, Joyce, 2000, Beauville, 2006, Bryant,       ).  

Part 2. Kähler manifolds  

We have seen in the previous part that if the holomony ( )ghol ∇
of a simply connected irreducible complete 

Riemannian manifold ( )M,g  of dimension 2n  is icluded in ( )U n , then the manifold is "Kähler".  
 

                                                 
6 For more details on symmetric spaces, see [23].  
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The aim in this part is to give a short introduction to" Kähler manifolds". Since we mentioned the Hodge 
decomposition theorem without proof, skipped some other fundamental results in Klihler geometry, and since 
most of the proofs are either sketchy or missing, we suggest the following references (Kobayashi and nomizu, 
1969, Griffiths and Harris, 1978 and Demailly,    ) for more detail.  

9.   Holomorphic functions  

Definition 71. Let Ω  be a nonempty connected open subset of 
nC . A complex valued function f on Ω  is called 

holomorphic if for each ( )0 0 0
1 n, ...,z z z= ∈ Ω

, there exists a neighborhood U  and a power series  ( ) ( )1 n

1 n
1 n 0

0 0
,..., 1 1 n n

,...,
c z z ... z z

α α

α α
α α ≥∈

− −∑
  

that converges to ( )f z  for z U∈ , where 1 n,...,cα α  are complex numbers and 0≥  is the set of nonnegative 

integers. We denote by ( )H Ω  the set of holomorphic functions on Ω .  

Let ( )1 nz z ,..., z=  be the coordinate system of n . Write 2 j-1 2 jz x 1xj = + −
 and identify n  with 2n  via the 

correspondence  
( ) ( )1 n 1 2 2nz ,..., z x ,x ,...,xa , 

and consider the following notation  

    2 1 2 2 1 2

1 1: 1 , : 1
z 2 x x 2 x xz jj j j j j− −

   ∂ ∂ ∂ ∂ ∂ ∂
= − − = + −      ∂ ∂ ∂ ∂ ∂∂    .                                  (7) 

 
The following characterization of holomorphic functions is very useful  
 
Theorem 72.  ( ) ( )2

oc
j

ff L 0 j 1,2,..., n ,
zlH for

 ∂
Ω = ∈ Ω  = = 

∂   

where ( )2
ocLl Ω  is the set of locally square integrable functions on Ω  and the derivative is taken in the sense of 

distributions.  
For a proof of Theorem 72 see (Ohsawa, 2002).  
 
Definition 73. Let Ω  (resp. ′Ω ) be a nonempty connected open subset of n  (resp. m ).  
(1) A map  

( ) m
1 k,..., :ϕ ϕ ϕ= Ω →   

is called holomorphic if each j :ϕ Ω →    is holomorphic, 1 j m≤ ≤ .  

If  ( )ϕ ′Ω ⊆ Ω , then we write  
( )1 k,..., :ϕ ϕ ϕ ′= Ω → Ω  

Suppose that m n= . A holomorphic map  
: ′ψ Ω → Ω  

  
is called a biholomorphism if there is a holomorphic map  

:φ ′Ω → Ω  
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such that  
o id o id ,and φ′Ω Ωψ ψ = Ψ =  

  
where idΩ  (resp. id ′Ω ) is the identity map of  Ω (resp. ′Ω ). In case ′Ω = Ω , a bihlomorphism :ψ Ω → Ω  is 
called an automorphism of Ω .  
The set of automorphisms of Ω  denoted by Aut ( )Ω  is a group under composition of mappings. A beautiful 

theorem of H. Carlan says that if Ω  is a bounded domain in 
nc , then Aut ( )Ω  is a Lie group. Bedford & Dadok 

and Saerens and Zame    proved independently that any compact Lie group can be realized as the automorphism 
group of a pseudoconvex domain in some nC   7 . 

10.  Complex manifolds  

If in Definition 2 we consider open subsets of n  instead of open subsets of n , and biholomorphisms instead 
of C∞

-diffeomorphism, then we get what we call" a complex structure" on M .  
 
Definition 74. A complex manifold of dimension n is a pair ( )M,ψ , where M is a locally Euclidean space of 

dimension n and Ψ  is a complex structure on M. The manifold ( )M,ψ  will be denoted simply by M.  

The pair ( ) ( )( )i i i 1 nU , or U , z ,..., zϕ
, is called a local complex chart and ( )1 nz ,..., z is called a local complex 

coordinate system defined in iU  .  
We have already defined in the category of C∞

- manifolds what. we mean by a submanifold, an embedding, an 
immersion, a C∞

-map between manifolds, isomorphism of vector bundles, pull back of vector bundles,...etc. 
With obvious modifications, we get the notions of complex submanifolds, holomorphic embeddings,...etc.  
 
For more details, the interested reader can consult (Kobayashi and Nomizu (1969) or other textbooks dealing 
with complex manifolds.  
If ( )i iU ,ϕ , is called a local complex chart and ( )1 nz ,..., z   is a local complex coordinate system defined in iU  , 
then   

( ) n 2n
i iU .ϕ ⊆ ≅   Put j 2 j-1 2jz x 1xi i= + − , j 1,..., ,n=  and consider the following maps  

( ) ( )( )

2n

i

1 2n

: U

m x m ,..., x m ,
i

i i

→ 

a

ñ

 

The maps  ( ) ( )1 : U U U U ,α β β α β α α β
− ∩ → ∩oñ ñ ñ ñ

 
 
are C∞

- diffeomorphisms.  
The collection 

( )
i I

U ,i i
∈

ñ
 is a C∞

-atlas on M. This C∞
-structure on M is called the underlying C∞

-structure of 

the complex manifold M.  
An example of a complex manifold, which will play a fundamental role in what follows, is given by:  
 
Example 75. The projective space nP   
The projective space deserves a special attention. Since it plays a very important role in what follows, we will try 
to describe it in some detail. As a set, the projective space is defined by  
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{ }( )n n+1 \ 0 / ,=  P
 

where the equivalence   is defined by  
( ) ( ) *

0 n 0 nz ,..., z w ,..., w ⇔ ∃ ∈ Ch  such that ( ) ( )0 n 0 nz ,..., z w ,...,w= h .  
 
Denote by π  the projection  { }

( ) [ ]

n+1 n

0 n 0 n

: \ 0

z ,..., z z ,...,z ,

π →

a

P

 

  
where [ ]0 nz ,...,z  is the equivalence class of ( )0 nz ,..., z  . The projective space nP  can be equipped with a 

complex atlas ( )i 0 i nU ,i ϕ
≤ ≤  as follows: Let  

( ){ }n+1
0 nU z ,...,z z 0 , i 0,..., n,i i= ∈  ≠ =% C

 

and consider the following map  
( )

n

0 i-1 i+1 n
0 n

i i

: U

z z z zz ,...,z ,..., , ,..., ,
z z z z

i i

i i

ψ →

 
 
 

% 

a

 

 The maps iψ  are continuous and it is clear that  
  

( ) ( ) [ ] [ ]0 n 0 n 0 n 0 nz ,..., z y ,...,y z ,..., z y ,...,yi iψ = ψ ⇔ =  

Let ( )U Ui iπ= %
 .Then the map  

[ ]

n

0 i-1 i+1 n
0 n

i i

: U

z z z zz ,..., z ,..., , ,...,
z z z z

i i

i i

ϕ →

 
 
 



a

 

is a well defined bijective map. The maps iϕ  are open, for, if V  is an open subset of Ui , then 
( ) ( )( )1V Vi iϕ π −= ψ

 is open. Therefore the map iϕ  realizes a homeomorphic between Ui  and n , moreover, 
the maps  

( ) ( )

( )

1
j j

0 i-1 i+1 n-1
0 n-1

j j

o : U U U U

z z z z1z ,...,z ,..., , , ,..., ,
z z z z z

j i i i j i

j j j

ϕ ϕ ϕ ϕ− ∩ → ∩

 
  
 

a

 

are biholomorphic.  
Thus ( )i 1 i nU ,i ϕ

≤ ≤   as defined above is a complex atlas, which gives nP  the structure of a complex manifold.  

The projective space nP  is a compact complex manifold, since  ( )n 2n+1S ,π=P
 

where  
( ){ }2 22n 1 n+1

0 n 0 nS z ,...,z z ... z 1+ = ∈  + + =
 . 

 
Example 76. The following are complex manifolds: 
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(1) n .  
(2) Any open subset of n . 
(3) Let ( )r,nG be the set of all r -dimensional vector subspaces of n , called the Grassmannian manifold of r -

linear subspaces of n . It can be proved that ( )r,nG  is a compact complex manifold of dimension ( )r n - r  . 1f 
r 1= , then we get the projective space nP .  
(4) If 1M  and 2M  are complex manifolds, then 1 2M M×  is a complex manifold. More examples of complex 
manifolds will be given below.  
 
Definition 77. A complex Lie group is a complex manifold G endowed with a group structure such that the map  

( ) ( ) 1

G G G
 g,h g,h gh ,

ν

ν −

× →

=a  

is holomorphic.  
 
Example 78. The following are complex Lie groups:  
(1) The linear group ( )GL n, : is the set of all n n×  invertible matrices with complex entries.  
(2) Special linear group:  ( ) ( ){ }SL n, A GL n, det A 1= ∈  = 

. 

(3) The special orthogonal group  ( ) ( ){ }nSO n, A SL n, A A I= ∈  =  T

 

(4) The complex symplectic group:  ( ) ( ){ }Sp n, A GL 2n, A JA J ,= ∈  =  T

 

where  n

n

0 I
J ,

I 0
− 

=  
   

and  nI   is the identity matrix of ( )GL n, .  
For more details, the interested reader can consult (Warner,1983, Knapp,2001 or Helgason,1970).  

Quotient Manifolds 
A very important procedure to construct new complex manifolds from known ones is given as follows. Let G be 
a subgroup of the group of automorphisms of a complex manifold M. It is easy to see that the relation   defined 
in M by x y  if there exists an element g G∈  such that ( )y g x=  is an equivalence relation. The set of 
equivalence classes is denoted by M / G  .In general, the quotient space M / G of a complex manifold M is not 
necessarily a complex manifold. But by imposing some constraints on G, the complex structure on M will induce 
a complex structure on the quotient M / G .  
 
Definition79. (1) A subgroup G of the automorphism group of a complex manifold M is said to be properly 
discontinuous if for every compact sets 1K  and 2K   of  M,  

( ){ }1 2g G g K K ,φ∈  ∩ ≠ < + ∞#
 

i.e., the number of elements g G∈  such that ( )1 2g K K φ∩ ≠   is finite.  
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(2) The subgroup G is said to be fixed point free if no element of { }MG \ id  has a .fixed point, where MId  is the 
identity automorphism of M.  
 
Theorem 80. Let G be a subgroup of the group of automorphisms of a complex manifold M. If G is fixed point 
free and properly discontinuous, then the quotient space M / G  has a canonical structure of a complex manifold 
induced from that of M.  
 
 
Example 81. Torus.  
Consider the vector space n  (which has the structure of a complex Lie group) and take 2n  vectors ( )1 ,..., , j 1,..., 2n

j j j nυ υ υ= =
 which are  -linearly independent. The vectors 

{ }j 1 j 2n
υ

≤ ≤  generate a discrete 

subgroup  2n

j j j
j 1

G r r ,υ
=

 
=  ∈ 

 
∑ 

 

of n  . Then it can be shown that 
n n / G= T  is a compact complex manifold (actually a compact complex 

commutative Lie group) called a Torus. The vectors 
{ }1 j 2njυ

≤ ≤  are called the periods of nT  and the matrix  

1 n
1 1

1 1
2n 2n

...
. ... .
. ... .
. ... .

...

υ υ

υ υ

 
 
 
 Λ =
 
 
 
   

 is called the period matrix.  
 
Example 82. Hopf Manifold.  
Let 1 n,...,ϕ ϕ  an be n  complex numbers such that j 1α >

  for j 1,..., ,n=  and let G g=  be the cyclic group 
generated by the automorphism  ( ){ } ( ){ }

( ) ( )

n n

1 n 1 1 n n

g : \ 0,...,0 \ 0,...,0

z ,...,z z ,..., z .α α

→ 

a  

  
The group G is fixed point free and properly discontinuous. Therefore the quotient space ( ){ }( )1 n

n
,...,M \ 0,...,0 / Gα α = 

, called the Hopf manifold, is a compact complex manifold. It can be proved that 
1 n,...,Mα α   is diffeomorphic to

2n-1 1S S× , where 
jS  is the j -dimensional sphere.  

 
Example 83.  Iwasawa manifold.  
Let M be the subgroup of ( )3GL   defined by  

( )
1 3

3
2 1 2 3

1 z z
M 0 1 z z ,z ,z .

0 0 1

  
  =  ∈  
  
  


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Denote by G the discrete group of matrices with entries in the ring of Gaussian integers 
[ ] { }i a bi a,b= +  ∈ 

, 

i.e.,  
( ) [ ]( )

1 3
3

2 1 2 3

1 z z
G 0 1 z z ,z ,z i ,

0 0 1

  
  =  ∈  
  
  



 

It can be shown G acts by biholomorphisms on M such that the quotient M / G , known as the Iwasawa manifold, 
is a compact complex manifold, with ( )dim M / G 3= .  

Blow-Up of Manifolds 
A second procedure to construct new complex manifolds from given ones is the blow-up. In this section we will 
explain what is meant by blowing up a complex manifold at a point.  
Let us first start with a special case: nM = ∆  where n∆  is the unit polydisc, i.e.,  ( ){ }n

1 n 1 nz ,...,z 1,..., 1 ,z z∆ =  < <
 

and consider the following set   ( ) [ ]( ){ }n n n-1
0 1 n 1 n i j j i: z ,...,z , w ,...,w z w - z w 0∆ = ∈ ∆ ×  =P

 

It can be shown that 
n

0∆  is a complex manifold and that  
{ }  ( )

biholomorphic
n n 1

0\ 0 \ 0 ,π −∆ ≅ ∆  
and  

( )1 n-10 ,π − ≅ P  
where π  is the projection  

 n n
0:π ∆ → ∆  

                                                    ( ) [ ]( ) ( )1 n 1 n 1 nz ,...,z , w ,..., w z ,...,za
 

 
The complex manifold 

 n
0∆  is called the blow-up of n∆  and ( )1 0E π −=  is called the exceptional divisor.  

Consider now the general case, i.e., let M be a complex manifold, dim M n=  and let m be a point of M. The 
"blow up" of M at m is defined as follows:  Let ( )U,ϕ  be a local chart, with ( )m U, m 0ϕ∈ =  and ( ) nU ,ϕ = ∆  

the unit polydisc in 
nc . Then  

 
Definition 84. The blow up of M , denoted by mM  is defined as follows  

 { }( ) n
m 0M : M \ m ,π= ∪ ∆

 

where { }( ) n
0M \ m π∪ ∆

 means that U  is replaced with 
n

0∆ .  

It can be shown that the definition of mM  is independent of the choice of the local coordinates.  
From the definition, we see that mM  is a complex manifold which comes equipped with a projection  

m: M M,π →  
such that  

( ) { }
biholomorphism

1
mM \ m M \ m ,π − ≅  
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and ( )1 n-1mπ − ≅ P  is called the exceptional divisor.  

11.  Holomorphic vector bundles  

Definition 85. Let M  be a complex manifold of dimension n . A holomorphic vector bundle of rank rover M  is 
a complex manifold E  together with  
(1) A surjective holomorphic map MEπ →:  , such that ( )1

x xE π −=  has a structure of a complex r -
dimensional vector space, where r  is independent of x .  
(2) An open covering ( )Uα α∈  of  M  and biholomorphisms α'  called trivializations  

( )1
U: U U rE

αα α αϕ π −
 = → ×

 

 
such that for each x Uα∈  , the map  

{ } r r
x x ,E ϕ α→ × →   

 
is a  -linear isomorphism. Example 86.  
(1) If M  is a complex manifold, then M r×  is a vector bundle of rank r , called the trivial bundle.  
(2) The tangent bundle 1,0MT  of a complex manifold M  (see 9 below for a definition).   
(3) Let M  be a compact complex manifold and denote by M  its universal cover,  

( )1 Mπ its fundamental group acting on M  on the right, and let ( ) ( )1: M GL Vρ π → be a complex linear 

representation of ( )1 Mπ . Then 
V M Vρ ρ= ×  is a holomorphic vector bundle over M , where  

 M V M V/ ,ρ× = ×   
and  ( ) ( ) ( )

( )
1 1 2 2 1

1
2 1 2 1

m ,v m ,v g M

m m .g v v

such that

and

π

ρ −

⇔ ∃ ∈

= =



g
 

Almost Complex Manifolds 

Definition 87. An almost complex structure J  on a C∞
-differentiable manifold M  is a section of ( )d MnE T , 

such that at each m

2
m Mm M ,J id∈ = − T , where mMidT  is the identity transformation of mMT . An almost complex 

manifold is a pair ( )M,J  where M  is a C∞
-differentiable manifold and J  is an almost complex structure.  

 
Remark 88. (1) It can be shown that every almost complex manifold is orientable and of even dimension.  
(2) Not every orientable manifold of even dimension can carry an almost complex structure, for example Borel 
and Serre (1951)  proved that the spheres 

nS  do not admit an almost complex structures if 2,6n ≠ .  
 
Proposition 89.  Every complex manifold cames an almost complex structure.  
Let ( ) n

1 nz ,...,z ∈ , and put j 2 j-1 2 jz x 1x= + −  With respect to the coordinate system ( )1 n n+1 2nx ,...,x ,x ,...,x , we 
define an almost complex structure as follows  

         2 j-1 2 j 2 j 2 j-1

J J , j 1,2,..., n.
x x x x

and
   ∂ ∂ ∂ ∂

= = − =      ∂ ∂ ∂ ∂                                               (8) 
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 Therefore, every complex manifold is an almost complex manifold. The converse is not true in general, i.e., an 
almost complex manifold need not be a complex manifold. But if we impose some restrictions on the almost 
complex structure then the converse becomes true. Define the torsion JN  of an almost complex structure J  by  

( ) [ ] [ ] [ ] [ ]J X,Y JX, JY X,Y J X, JY J JX, Y ,N = − − −  
where X  and Y  are vector fields. The torsion JN  is a tensor, called the Nijenhuis tensor.  
 
Definition 90. An almost complex structure is said to be integrable if has no torsion, i. e., if ( )J X,Y 0N =  for 
all vector fields X  and Y .  
 
Theorem 91. (Newlander and Nirenberg, 1957) An almost complex structure is a complex structure if and only if 
it has no torsion.  
Let M  be a complex manifold and ( )J Mnd∈E T  be the almost complex structure induced from the complex 

structure of M see Birkenhake and Lange (1992), where MT  tangent bundle of the underlying C∞
-manifold 

M . The endomorphism J  extends to the complex vector bundle MT , where MT  is the complexification of 
the real tangent space of the underlying C∞

-manifold M , i.e., M M= ⊗ T T . From 
2

Mid= −
TJ

, we deduce 
that  1,0 1,0M M M ,= ⊕T T T  

   { } { }1,0 1,0M X M JX 1X and M X M JX 1X= ∈  = − = ∈  = − − T T T T
                        (9) 

 Then 1,0MT  is a holomorphic vector bundle of rank n  and 1,0MT  is the conjugate of 1,0MT , i.e., 
1,0 1,0M M≅T T . We can identify MT  with 1,0MT  via the correspondence  

   
( ) 1,01M X X 1 JX M

2
− −∋ ∈aT T

                                                          (10) 

Consider a local complex chart ( )( )1 nU, ,...,z z
 where 2 1 2x 1xj j jz −= + − . Then 1 2n

,...,
x x

 ∂ ∂
 ∂ ∂  constitutes a 

basis for MT over  . (also a basis for MT  over c  ), i.e.,  

1 2n 1 2n

M span ,..., , M span ,..., ,
x x x x

   ∂ ∂ ∂ ∂
= =   

∂ ∂ ∂ ∂   
  T T

 

and 1 2n

,...,
z z

 ∂ ∂
 ∂ ∂   (resp. 1 2n

,...,
z z

 ∂ ∂
 ∂ ∂   ) a basis for 1,0MT (resp. 1,0MT ), where 1z

∂
∂  and 1z

∂
∂  are as in 7, in 

other words,  

1 n 1 n

M span ,..., , ,..., ,
z z z z

 ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂ 
 T

 

and  1,0 1,0

1 n 1 n

M span ,..., , M span ,...,
z z z z

   ∂ ∂ ∂ ∂
= =   

∂ ∂ ∂ ∂   
 T T

 

  
The dual of the holomorphic vector bundle 1,0MT  will be denoted by 

1
MΩ .  

Let M  and N  be two complex manifolds. Recall that a C∞
-map f : M N→  between the underlying C∞

-
manifolds is said to be holomorphic if  
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( ) ( )1o f o : U Vϕ ϕ−ψ → ψ is a holomorphic map, 

for all local complex charts ( )U,ϕ  of M  and ( )V,ψ  of N  such that ( )1U Vϕ −⊂ .  At each point m M∈ , the 
differential  

( )m f mdf : M N ,→T T
 

is an  -linear map. By complexification, we get a linear map (denoted also by df )  ( ) ( ) ( )m f mdf : M N→ T T
 

In general  ( )( ) ( ) ( )
1,0 1,0

m f m
df : M N⊄T T

 

It can be shown that  
 
Theorem 92. Let M  and N  be two complex manifolds and f : M N→  a C∞

-map between the underlying C∞
-

manifolds. Then f  is holomorphic if and only if  ( )( ) ( ) ( )
1,0 1,0

m m f m
df M N m Mfor all⊆ ∈T T

 

12.  Differential forms on complex manifolds  

Let M  be a complex manifold of dimension ,n ω  a differential p -form, ( )U,ϕ  a local chart and let ( )1 nz ,...,z  

be the system of complex coordinates associated to ϕ . Put j 2 j-1 2 jz x 1x= + − . Then ( )1 n n+1 2nx ,...,x ,x ,...,x  are 

the local coordinates of the underlying C∞
-manifold in U.  In ( )( )1 n n+1 2nU, x ,...,x ,x ,...,x

 we write  

           
( ) ( )

1i i i
1 i<...<i 2n

x a ,..., i x dx ... dx ,
p

p

pω
≤ ≤

= ∧ ∧∑
                                               (11) 

 where ia ,..., i p  are complex valued functions on U.  From  
j j 2j-1 2j j 2 j-1 2 jz z x 1x , z x 1x ,= = + − = − −  

we deduce that  ( ) ( )2 j-1 j j 2 j
1 1x z +z , x z - z
2 2 1 j j= =

− . 

 
Hence ,  

 
( ) ( )2 j-1 j j 2 j j j

1 1dx dz d and dx dz d .
2 2 1

z z= + = −
−                                            (12) 

 By substituting 12 in 11, we get  ( )
11 j1 j k kj,...,j ,k ,...,k

r s p
b dz ... dz dz ... dz .

r sp s
zω

+ =

= ∧ ∧ ∧ ∧ ∧∑
 

 
Definition 93.  A differential form  

       ( )
1 1 1j1,...,j ,k ,...,k j j k kb z dz ... dz dz ... dz

r s r s
θ = ∧ ∧ ∧ ∧ ∧∑                                            (13) 

is called a differential form of type ( )r,s .  
Then a p -form θ  can be expressed in a unique way as  
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r,s

r s p
θ θ

+ =

= ∑
, 

where 
r,sθ  is a form of type ( )r,s ,  It can be shown that the type of a form is independent of the choice of the 

local complex coordinates. For a function ( )1f U,C∈  , we have  n n

i i
i=1 i=1

f fdf dz dz .
z zi i

∂ ∂
= +

∂ ∂∑ ∑
 

We put   n n

i 1 i 1

f ff dz and f dz
z zi i

i i= =

∂ ∂
∂ = ∂ =

∂ ∂∑ ∑
 

In the same way, for an ( )r,s form θ  as in (13) with coefficients in ( )1 U, ,C   we put  
( )( ) 11 1 j1 j k kj ,..., j ,k ,...,kb z dz ... dz dz ... dz ,

r sr s
θ∂ = ∂ ∧ ∧ ∧ ∧ ∧ ∧∑  

and  ( )( ) 11 1 1j ,..., j ,k ,...,kb z dz ... dz dz ... dz .
r sr s j j k kθ∂ = ∂ ∧ ∧ ∧ ∧ ∧ ∧∑  

Theorem 72 is equivalent to  ( ) ( ){ }2
locf f 0 .H LΩ = ∈ Ω ∂ =

 

Definition 94. A holomoryhic p -form is a ( )p,0  form ω  satisfying 0ω∂ =  . 
 
Remark 95. It is possible to define integration of smooth differential forms on any complex manifold, since it 
can be shown that every complex manifold is orientable. For a proof, see Kobayashi and Nomizu (1969).  

13.  Kähler manifolds  

Definition 96.  A Hermitian metric on an almost complex manifold ( )M,J  is a Riemannian metric g which is 
invariant under the almost complex structure, i.e.,  

( ) ( )g JX, JY g X,Y=  for all vector fields X  and Y . 
 
Theorem 97. Every paracompact almost complex manifold ( )M,J  admits a Hermitian metric.  

The proof goes as follows: Let h  be a Riemannian metric on the underlying C∞
-manifold M whose existence is 

guaranteed by Theorem 36. Then the metric g  defined by   
( ) ( ) ( )g X,Y h X,Y h JX, JY .= +  

for all vector fields X,Y is a Hermitian metric. The fundamental (1,1) -form associated to the Hermitian metric 
g  is given by  

( ) ( )g X, Y g X,JY .ω =  
A very important class of Hermitian manifolds is given by what we call "Kähler manifolds" .  
 
Definition 98.  A Kähler manifold is a pair ( )M,g , where M  is a complex manifold and g  is a Hermitian 
metric whose associated (1, 1)  form gω  is closed, i.e., gd 0.ω =   
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Let ( )M,g  be a Hermitian manifold. Then the Hermitian inner product g  in mMT  can be extended to a unique 
complex symmetric bilinear form in the complex tangent space MT  of  M . If X  and Y  are two holomorphic 
vector fields written in the local chart ( )( )1 nU, z ,...,z

of  M  as  n n

i i
i=1 i=1i i

X and Y ,
z z

ξ ζ
∂ ∂

= =
∂ ∂∑ ∑

 

then  ( )
n

i, i jj
i,j 1

g X,Y g ,ξ ζ
=

= ∑
 

where  
( )i, m m mj

ji

g m g , .
z z

 ∂ ∂
=   ∂ ∂   

Then the metric is usually written as  ( ) ( )
n

i, i jj
i,j 1

g z 1 g z dz dz
=

= − ⊗∑
 

The matrix 
( )( )i, 1 i nj

1 j n
g z ≤ ≤

≤ ≤  is a positive definite Hermitian symmetric matrix. The associated (1, 1) form gω  is 

given by  ( )
n

g i, i jj
i,j 1

1 g z dz dz .ω
=

= − ∧∑
 

The length of a tangent vector  n

i m
i,j 1 i

X M
z

ξ
=

∂
= ∈

∂∑ T
 , 

is given by  ( )
n 

i, j
i,j 1

X g z i jξ ξ
=

= ∑
 

 
Theorem 99.  A Hermitian manifold ( )M,g  is Kähler if and only if one of the following conditions is satisfied.  

(1)  

i, k,g g
z z

j j

i

∂ ∂
=

∂ ∂ ; 

(2)   

, ,g g
z z
i j i k

k i

∂ ∂
=

∂ ∂ ; 

(3) For every m M∈ , there exists an open neighborhood U  of m  and a differentiable real junction f  defined 
in U  such that  2

i, jg U
i j

f1 f . ., g
z z

i eω 

∂
= − ∂∂ =

∂ ∂  

There are other equivalent characterization of Kähler manifolds which will not be given here.  
 
Example 100. (1) Every Hermitian manifold of dimension one is necessarily Kähler.  
(2) The complex Euclidean space 

nc  equipped with the "Euclidean" metric  
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( )
n n

ec
1 i,j 1

g z 1 dz dz . 1 dz dz
eci i g i i

i
resp ω

= =

 
= − ⊗ = − ∧ 

 
∑ ∑

. 

is a complete Kähler manifold with zero curvature.  
(3) The unit ball  

( )
n

2n n
1 n

i=1
B z z ,..., z z z 1 ,i

  = = ∈  = < 
  

∑

 

is a complex manifold which can be endowed with a complete Kähler metric, called the Bergman metric, with 
negative curvature.  
(4) The complex torus 

n / Λ , is a Kähler manifold, since it can be shown that the Euclidean metric on n  
induces a Kähler metric on 

n / Λ .  
(5) Every complex sub manifold of a Kähler manifold is Kähler, it is enough to take the induced metric.  
 
Example 101. The Fubini-Study metric on nP  . 
The projective space nP  carries a canonical metric called the Fubini-Study metric and defined as follows (the 
notations are those of Example 75):  

[ ]

n n

0 i-1 i+1 n
0 n

i i

: U

z z z zz ,...,z ,..., , ,..., .
z z z z

i i

i i

ϕ ⊂ →

 
 
 



a

P

 

 
On Ui  , consider the closed (1,1) form defined by  n

k 0

z1 1n .
2 z

k
i

i

ω
π =

 −
= ∂∂   

 
∑

 

Then on U ,Ui j , we have  

n

k 0

2
n

k 0

n

k 0

z1
2 z

z z1 1n
2 z z

z1 1n
2 z

k
j

j

i k

j i

k

i

i

ω
π

π

π

ω

=

=

=

 −
 = ∂∂
 
 

 −  = ∂∂
 
 
 −

= ∂∂   
 

=

∑

∑

∑

 

 The last equality is a consequence of the fact that 

z
z

i

j  is a nonvanishing holomorphic function on U Ui j∩ , 

hence In 

2
z
z

i

j  is pluriharmonic, i.e.,  
2

z1 1n 0
z

i

j

− ∂∂ =
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 Therefore we have a global (1,1) form, denoted by FSω , defined by  
FS Ui iinω ω=  

For [ ]0 nz ,...,z Ui∈  ,  put 

z
w

z
j

j
i

=
.  An easy computation gives  ( ) ( ) ( )( )

( )

2n n n n

1 1 1 1

FS 22n

j 1

1 w dw dw w dw w dw1 U ,
2 1 w

j j j j j j jj j j j

i

j

inω
π

= = = =

=

+ ∧ −−
=

+

∑ ∑ ∑ ∑

∑
 

Since the unitary group ( )U n 1+  acts transitively on nP , and since FSω  is invariant under ( )U n 1+ , it is 

enough to check the positive definiteness of FSω  at the point [ ]1,0,...,0  . But at the point [ ]1,0,...,0 , we have  
[ ]( )

n

FS
j 1

11,0,...,0 dw dw ,
2 j jω
π =

−
= ∧∑

 

 
which is positive definite. Therefore ( )n

FS,gP
 is a Kähler manifold, where FSg , called the Fubini-Study metric, 

is the Kähler metric whose associated (1,1) form is FSω .  
The Fubini-Study metric can also be described as the Kähler metric FSg  on nP  whose associated (1,1) form 

FSω  satisfies  
( )

n
*

FS
j 0

1 1n z ,
2 jπ ω
π =

 −
= ∂∂  

 
∑

 

where  { }
( ) [ ]

n+1 n

0 n 0 n

: \ 0

z ,...,z z ,...,z

π →

a

P

 

  
Some basic properties of Kähler manifolds can be summarized in the following  
 
Theorem 102.  Let M be a compact Kähler manifold. Then  
(1) ( )2kb M 1≥ , where ( )2kb M  is the 2k - th  Betti number of M  .  
(2) Every holomoryhic p - form on M  is closed.  
For a proof, see (Griffiths and Harris, 1978).  

Hodge Decomposition 
The following decomposition theorem, called the Hodge decomposition Theorem plays a fundamental role in the 
understanding of the structure of compact Kähler manifolds. The existence of such decomposition implies 
restrictions on the topology of compact Kähler manifolds. Some of its corollaries will be used to construct 
compact complex manifolds without Kähler structure.  
 
Theorem 103. Let M  be a compact Kähler manifold. Then  ( ) ( )

( ) ( )

k i,j
i j k

i,j j,i

H M, H M

H M H M

+ = ≅ ⊕


=



                                                              (14) 
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 where  
( ) ( )i,j j i

MH M H M,≅ Ω
 

  
For the definitions of the spaces ( )i,jH M and a proof of Theorem 103, we suggest [21].  
As a consequence of Theorem 103, we have the following  
 
Corollary 104. Let M be a compact Kähler manifold. Then the odd Betti numbers 0. (M are even, i.e., ( )2k 1b M+  
are even.  
The proof of the corollary is straightforward. From (14), we deduce that  

( ) ( )
( ) ( )

i,j
r i j r

i,j j,i

b M b M

b M b M ,
+ =

 =


=

∑

 

where ( ) ( )i,j i,jb M dim H M= . By putting r 2k 1,= +  we get  
( ) ( )

k
s,2k 1-s

2k+1
s 0

b M 2 b M .+

=

 
=  

 
∑

 

Remark 105. It is very important to mention that not every Hermitian manifold is Kähler, as is shown in the 
following examples.  
 
Example 106. (1) Let M / G  be the Iwasawa manifold defined in Example 83. For A M∈ , we have  1 3 1 2

-1
2

0 dz dz - z dz
A dA 0 0 dz .

0 0 0

 
 =  
 
   

  
The one-forms 1 2dz ,dz  and 3 1 2dz z dz−  on M  are left invariants under G and therefore induce holomorphic 
one forms on the quotient manifold M / G . Since 3 1 2dz z dz−  is not closed, by Theorem 102 the Iwasawa 
manifold M / G carries no Kähler structure.  
 
(2) Let 1 n,...,Mα α   be the Hopf manifold defined in Example 82 and suppose that 2n ≥ . It can be shown that 

1 n,...,Mα α  is diffeomorphic to 
2n-1 1S S× . Hence ( )1 n1 ,...,b M 1,α α =

where ( )1 n1 ,...,b M 1,α α =
 is the first Betti number 

of 1 n,...,Mα α  . Then, by Corollary 104, the manifold 1 n,...,Mα α  carries no Kähler structure.  

14.  Projective manifolds  

Definition 107.  A projective manifold (or a smooth projective variety) is a closed submanifold of nP  for some 
positive integer n .  
We collect some of the properties of projective manifolds in the following  
 
Theorem 108. (1) If 1M  and 2M  are projective, then 1 2M M×  is projective.  

(2) If M  is projective, then mM%  is projective, where mM%   is the blow-up of M  at m M∈ .  
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(3) Every compact Riemann surface, i.e., compact complex manifold of dimension one, is projective.  
Let n  be an integer 2≥ . A torus 

n n / G= T  is not necessarily projective (the notations are those of Example 
81).  
 
Theorem 109. Let n  be an integer 2≥ . A torus 

n n / G= T   is projective if and only if and only if the lattice 
A satisfies  1

1

1) 0

2) 1 J 0

−

−

 ∧ ∧ =


− ∧ ∧ >

T

T

J

 

 
for some alternating 2 2n n×   integral matrix J , where the condition 2) above means that the matrix 

11 −− ∧ ∧> J  is positive definite.  
 
Definition 110.  A torus nT  which is a projective variety is called an Abelian variety. Readers who want to 
know more on Abelian varieties can consult (Birkenhake and Lang, 1992, Griffiths and Harris, 1978 or 
Mumford,1974) .  
 
Remark 111. Every projective manifold M  is necessarily Kähler, since the restriction of the Fubini-Study 
metric of nP  to M  is Kähler. The converse is not true, i.e., not every Kähler manifolds is projective. For 
example if we take any lattice Λ  not satisfying the conditions in Theorem 109, then 

n n / G= T  is Kähler but 
not projective. Therefore, we have  

{Projective Manifolds} ≠
⊂

 {Compact Kähler Manifolds} 

 
Definition 112. A quasi-projective variety is a  an open subset (in the Zariski topology) of a projective variety. 
The readers who want to know more about complex algebraic geometry, can consult the following references: 
Demailly,      , Griffiths and harris, 1978 or Shafarevich, 1977.  

Part 3. Compact Kähler manifolds of positive ricci curvature (Fano Manifolds)  

Compact Kähler manifolds of positive Ricci curvature playa very important role in the classification of complex 
algebraic varieties. The aim of this section is to give an overview of some of the main results in this area. In all 
what follows, we will assume some knowledge of sheaf theory, a very nice introduction can be found for 
example in Kodaira, 1986 or Griffiths and Harris, 1978.  

15. Chern curvature of a hermitian line bundle  

Let M  be a compact complex manifold and consider the following exact sequence of sheaves  
 

* exp0 0 ,M M→ → → → O O                                                       (15) 
 
where   is the constant sheaf, MO  the sheaf of holomorphic functions and 

*
MO  the sheaf of nonvanishing 

holomorphic functions. The exact sequence (15) induces an exact sequence of cohomology groups  
 ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 * 1

1 1 * 2

0 H M, H M, H M, H M,

H M, H M, H M, ...

M M

M M
δ

→ → → → →

→ → →

 



O O

O O
                                 (16) 
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The set of holomorphic line bundles on M  constitute a group under the tensor product called the Picard group 
and denoted by ( )Pi Mc  .It can be proved that  
 
Proposition 113. ( )Pi Mc is isomorphic to ( )1 *H M, MO

.  In what follows, we will identify ( )Pi Mc  with 
( )1 *H M, MO

 .  
 
Definition 114. The image ( ) ( )2H M,Lδ ∈   of a line bundle ( )1 *H M, ML ∈ O

 is called the first Chern class of 
L  and is denoted by ( )1c L  .  

In what follows, we will identify ( )1c L  to its image in ( )2
DRH M  using the following   

( ) ( ) ( ) ( )
de Rham Isomorphism

2 2 2
1 DRH M, H M, H Mc L ∈ ⊂ ≅   

 
Definition 115.  Let M  be a complex manifold of dimension n. The first Chern class of M  denoted by ( )1 Mc  is 
defined by  

( ) ( )1
1 1 MM : kc c −=

 
where  1 n 1,0

MK M ,− = Λ T  
 
is the anticanonicalline bundle of a complex manifold M .  
Let ( ), hL  be a Hermitian line bundle over M , and let ( )iUi ∈  be an open covering of M  such that  

iU iUiL → ×ñ
׀   

is an isomorphism. The point ( )M, Uiζ ∈ ×  is identified with the point  
( ) ( )( )1o M, m,g m Uj i ji jζ ζ− = ∈ ×ñ ñ

. 

The functions g ji  are nonvanishing holomorphic functions defined in U Ui j∩ . It is very easy to check that the 

functions 
( ) ,
g ji i j  , satisfy the following relation  

         

g g 1 in U U
g g g U U U

ji ij i j

ji ik jk i j kin

= ∩
 = ∩ ∩                                                   (17) 

Conversely, given a set of nonvanishing holomorphic functions  g : U U ,ji i j∩ →   

satisfying (17), we can define a line bundle with transition functions 
( ) ,
g ji i j , as  

follows: We put    
( )( )i iU /L = ×C  

 

where C  is the disjoint union, and  
( ) ( )i jU z, z , Uξ ξ′ ′× ∈ ×  ∋    if and only if  z z′=  and ( ),g z .i jξ ξ′ =   

For each m M∈ , and mv L∈  we define the norm hv
 with respect to the metric h as follows  
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( )2 m2
hv ,je ϕζ −=  

where it jϕ  is C∞
 function defined in U ,j  and ( ) ( )m, vjζ = ñ . The definition of i'  implies that  

,1n g in U U .i i i j i jϕ ϕ= + ∩
 

Since ,i jg  is a non vanishing holomorphic function, it follows that  ,1n gi j  is pluriharmonic, i.e.,  
,1 1n g 0.i j− ∂∂ =

 
Therefore  

1 1 in U U ,i j i j− ∂∂ = − ∂∂ ∩' '  
and hence defines a global (1,1) form on M .  
 
Definition 116. The Chern curvature of the Hermitian line bundle ( ), hL , is the real closed (1,1) form given by  

h i1 ϕ= − ∂∂Θ  

Remark 117.  Let { }iUi ∈  and  
{ }, i,ji jg

∈  be as above, and assume that all the intersections U Ui j∩  are simply 

connected (if nonempty). Then 
{ } ( )1 *

,g H M,i j ML  = ∈  O
. Since the holomo1phic functions ,i jg  are non 

vanishing on U Ui j∩ , then choose a branch of  log ,i jg  , which is one valued holomo1phic function, and put  
( )1 log log log

2ijk jk ik ijσ
π
−

= − − +g g g
 

Then it can be shown that the Chern class ( )1c L  is given by  
( ) { } ( )2

1 H M, .ijkc L σ = ∈  
 

To state the next theorem we need the following definitions.  
 
Definition 118.  Let M  be a complex manifold.  
(1) A subset D  of M  is called a hypersurface if for every m M∈ , there exists a neighborhood U  of  m  and a 
nonzero holomo1phic function f  on U  such that  

( ){ }D U x U | f x 0 .∩ = ∈ =
 

(2) A divisor D  is a formal linear combination of a finite number of irreducible analytic hypersurfaces Di  with 
integer coefficients i.e.,  D D , .i i i

ν

ν ν= ∈∑ 
 

(a) The divisor D  is said to be effective if 0iν ≥ , and it is called a reduced divisor if 1iν =  for all i .  
(b) An effective divisor 

D Diν
= ∑  is called a simple normal crossing divisor if D  is reduced, each component 

Di  is smooth, and for x D∈ , there exist ( )U,z , x U∈ , a local complex chart, such that  
{ }1 kU D z U| z ...z 0∩ = ∈ =  

for some k n≤ .  
To each divisor 

D Di iν
ν= ∑ , we can associate a line bundle, denoted [ ]D  as follows: Let ( )jU ,z

 and 
j kx U U∈ ∩ , be two local coordinate systems and suppose that  

( ){ }I
I i I iU D z U | f z 0 ; I j,k,∩ = ∈ = =
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 where 
|fi  is a holomorphic function in IU , I = j,k  . Then 

j
i

i

f
f k

 is a nonvanishing function in j kU U∩  Put   

( ) ( )
( )

i
j,k i

i

f z
f z

f z

ij

k

ν
 

= Π   
                                                                       (18) 

 
Then it is easy to see that j,kf  satisfies the condition (17), and hence are the transition functions of a line bundle.  
 
Definition 119. The line bundle with transition functions { }j,kf

 defined in 18 is called the line bundle associated 

to the divisor D  and denoted by [ ]D .  

Remark 120. Over projective algebraic manifolds, every line bundle L  is of the form [ ]DL  for some divisor 
DL , i.e.,  

[ ]DLL ≅  

Theorem 121.  Let ( ), hL  be a Hermitian line bundle over M  and let hΘ  be its curvature. Then  
( ) ( )2

1 h DR
1c H M

2
L

π

 −
= Θ ∈ 

  , 

 

where 
h

1
2π

 −
Θ 

   is the cohomology class of 
h

1
2π
−

Θ
 in ( )2

DRH M  . Moreover, 
h

1
2π

 −
Θ 

  is independent of the 

choice of the metric h.  
For a proof, see Griffiths and Harris (1978).  
 
Definition 122. Let ML →  be a line bundle over a compact complex manifold M,dim M n=  and let 

( ) ( )2
1 H M,c L ∈   be the first Chern class of L . We say that ( )1c L   is positive (resp. negative) and write 
( )1 0c L >  (resp. ( )1 0c L < ) if the cohomology class ( )1c L  can be represented by a (1,1) closed real form  n

i j
i,j 1

1 dz d ,
2 i jz
π =

−
Ω = ∧∑ '

 

where the matrix 
( )1 i n,

1 j n
i jϕ ≤ ≤

≤ ≤  is positive definite (resp. negative definite) at each point m M∈ . The line bundle L  

is said to be positive (resp. negative) if ( )1 0,c L >  (resp. ( )1 0c L < ).  
 
Remark 123. It can be shown that a line bundle ML →  over a compact Kähler manifold M  is positive if and 
only if there exists a Hermitian metric on L  with positive curvature.  
The expression of the Ricci curvature in the Kähler case is very simple, more precisely we have  
 
Proposition 124.  Let (M,g) be a compact Kähler manifold, where  ( ) ( )

n

i, j
i,j 1

g z 1 g z dz dzi j
=

= − ⊗∑
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Then  ( )g i, jRic 1 1 det g ,n  = − − ∂∂    

and  
( )g 1

1 Ric c M ,
2π

  =    

where 
g

1 Ric
2π

 
    is the de Rham cohomology class of 

g
1 Ri

2
c

π  

 
16.  Line bundles on projective spaces  

The aim of this section is to sketch a proof of the fact that the Picard group of ( )nPic P
 is an infinite cyclic 

group and then construct a generator of ( )nPic P
.  

 
Proposition 125.  

( )nPic
isomorph

≅ P
 

 Proof. (Sketch of a proof): We start from the following well known fact  

      
( ) ( )n n

r

0 if r odd
b dim H ,

1 if r even
r 

= = 


 P P
                                                      (19) 

 From (103) and (19), we deduce that  ( )n
p n 0 if p q

dim H ,
1 if p q

q ≠
Ω =  =

 P
P

 

In particular  ( )n n n
p n 0dim H , 0 if p 1 (since ).= ≥ = Ω P P P

P O O
                                      (20)  

 
From the exact sequence (16), and (20), we deduce that  ( ) ( ) ( )n

n 1 n * 2 nPic H , H , .≅ ≅


P P PO
 

The Proposition follows from the well known fact that  ( )2 nH , ≅ P
 

A construction of a generator of  ( )nPic P
 , called the tautological line bundle, goes as follows  

 
Definition 126. The tautological line bundle over nP , denoted by ( )n 1−

P
O , is the line subbundle of the trivial 

bundle n n+1×P  defined as follows:  ( ) [ ]( ){ }n
n n+11 , | .zz ξ ξ− = ∈ × ∈ 

P
PO

 

The dual of the line bundle ( )n 1−
P

O  will be denoted by ( )n 1
P

O , i.e.,  
( ) ( )n n

*1 : 1− =
P P

O O  
For a positive integer k , we put  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n

n n n n

k-times

k-times

k 1 1 ... 1

-k 1 1 ... 1

k

k

= ⊗ = ⊗ ⊗

= − ⊗ = − ⊗ ⊗ −

644474448

64444744448
P P P P

P P P P

O O O O

O O O O  

  
A definition of  ( )n 1−

P
O  ( )( )nresp. 1

P
O

 in terms of its transition functions is left to the reader. It can be shown 
that  
 
Proposition 127. The Picard group of  nP  is generated by the line bundle ( )n 1

P
O , i.e.,  

( ) ( )n
nPic 1=

P
P O

 
For a proof  Proposition 127, see Kodaira (1986).  
 
Remark 128. (1)  
(2) If  nK

P  is the canonical line bundle of  nP , then  
( )n nK n 1≅ − −

P P
O  

(3) If D  is a smooth hypersurface of degree d  in nP , i.e.,  
[ ] ( ){ }n

0 n 0 nD z ,...,z | f z ,...,z 0 ,= ∈ =P
 

 where f  is a homogeneous polynomial of degree d , then  
[ ] ( )nD d≅

P
O  

Proposition 129. The Fubini-Study (1,1) form FSω  on nP  represents the first Chern class of the line bundle 
( )n 1

P
O  , i.e.,  

( )( ) [ ]n1 FS1c ω=
P

O
 

Therefore, ( )n 1O
P  is positive.  

 
Proof. (Sketch of the proof) We will construct a Hermitian metric on the line bundle ( )n 1

P
O , and we will show 

that its curvature coincides with the Fubini-Study metric. Since the fiber of the line bundle ( )n 1−
P

O  at a point 
[ ] nz ∈ P  is given by  

[ ] ( )n , z
1 .z.− = 

P
O

 

 
then, we define a Hermitian metric h  on  ( )n 1−

P
O  as follows  

( )
n

22
0 n h i

i 0
z ,...,z z

=

= ∑
 

If  { }
( ) ( )

n n+1

1 n 1 n

: U \ 0

z ,...,z 1, z ,....,z

s ⊃ → 

a

P

 

is a local section, then  
( )

n
22

0 n h i
i 1

z ,....,z 1 zs
=

= + ∑
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The curvature of the metric h  is given by  
( ) 2

h 1 n h1 1n s z ,...,z= − − ∂∂Θ
 

Hence the the curvature of the induced Hermitian metric *h on the dual bundle ( )n 1O
P is given by  

( )

( )

* *

2
1 nh h

2
1 n h

n
2

i
i 1

1 1n s z ,...,z

1 1n s z ,...,z

1 1n 1 z
=

= − − ∂∂

= − ∂∂

 
= − ∂∂ + 

 
∑

Ä

 

It can be shown (see Griffiths and Harris, page 30) that  hÄ  ( therefore *h
Ä ) is independent of the local lifting 

(21) .By Theorem 121, the (1,1) form 
*h

1
2π
− Ä

represents the first Chern class of the line bundle ( )n 1
P

O . Since 

the Fubini-Study metric FSω  on  nP  is equal to 
*h

1
2π
− Ä

 , we deduce that FSω  represents the first Chern class 

of the line bundle ( )n 1
P

O . 

17.  Kodaira embedding theorem 

As was said above, every projective manifolds is Kähler, but the converse is not true. Kodaira's embedding 
Theorem gives a characterization of projective manifolds among compact Kähler manifolds as those admitting 
positive line bundles, more precisely we have  
 
Theorem 130.  (Kodaira, 1954) (Kodaira Embdding Theorem) Let ( )M,g  be a compact Kähler manifold and let 

ML →  be a holomorphic line bundle. Then L  is positive if and only if there exists a holomorphic embedding  
n: Mψ → P  

( )m m ,ψa  
of  M  into some projective space such that  

( )( )n
* 1 L ν⊗ψ =

P
O

 
for some positive integer ν .  
 
Proof. (Sketch of a Proof) Suppose that such an embedding ψ  exists. Since FSω  represents 

( )( ) ( )n
*

1 FSc 1 , ωψ
P

O
 represents 

( )( )n1c 1 ψ  P
O

 and obviousely it is a positive (1,1) form. But  ( )( ) ( )( )( )
( ) ( )

n n
*

1 1

1 1

c 1 c 1 ,

c c .L Lν

υ

ν⊗

 ψ = / 

= =

P P
O O

 

Hence 
( )*

FS
1

ω
ν

ψ
 represents  ( )1c L , i.e., L  is positive.  

The converse is hard. For a proof, see (Kodaira, 1954), or (Griffths and Harris, 1978).   
 
Corollary 131.  A compact Kähler manifold ( )M,g  with positive Ricci curvature is projective.  
Proof. By Proposition 124,  
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( )1
1 Ric c M

2 gπ
  =    

  
Hence 

-1
MK is positive. The corollary from the Kodaira's Embedding Theorem by taking 

-1
MKL = .   

 
Definition 132.  A holomorphic line bundle ML →  over a compact Kähler manifold M  is said to be ample 
(resp. very ample) if there exists an embedding 

nM υ/→P   for some positive integer n  such that 
( )( )n 1L ν ψ⊗ =

P
O

 for some positive integer 
( )( )( )n

*. 1 .resp Lν π= ψ
P

O
    

 
Theorem 133. A compact Kähler manifold ( )M,g  is projective if and only if there exists a Kähler metric h  (not 

necessarily equal to g ) such that the cohomology class [ ]hω  is rational, i.e., [ ] ( )2
h H M, ,ω ∈   where hω  is 

the (1,1) form associated to the Kähler metric h .  
 
Proof. (Sketch of the proof) Suppose that M  is projective, i.e., 

i: embedding nM → P . Then the restriction 
*

FSi ω  of 
the Fubini-Study metric on  nP  to M  is a Kähler metric on M . Since the Fubini-Study metric is the first Chern 
class of the autological line bundle ( )n 1

P
O  on nP , it has integral cohomology class, i.e., ( )* 2

FSi H M,ω  ∈  
. 

For the converse, see Griffiths and Harris (1978).   
 As a consequence of Hodge decomposition Theorem, we have the following  
 
Corollary 134.  Let ( )M,g  be a compact Kähler manifold satisfying 

( )2
MH M, 0.=O                                                                            (22) 

Then M  is projective.  
 
Proof. (Sketch of the Proof) The assumption (22) is equivalent to  ( ) ( )2,0 0,2M, M, 0.H H= =   
Then Hodge Decompostion Theorem implies that  

( ) ( )2 1,1H M, H M, .≅   
Then there exists d -closed (1,1) -forms 1,..., kθ θ  on M  such that their cohomology classes 
[ ] [ ] ( )2

1 ,..., M,k Hθ θ ∈   and [ ] [ ]{ }1 ,..., kθ θ
 constitute a basis for ( )2H M,  .Hence, there exists k real numbers 

1,..., kα α  suh that  
[ ]

1

k

g i i
i

ω α θ
=

= ∑
. 

  
Choose k  rational numbers 1,..., kβ β  suh that iβ  is very close to iα  and consider the following (1,1) form  

[ ]
1

.
k

i i
i

ϖ β θ
=

= ∑
 

Then ϖ  is d -closed, positive, and satisfies [ ] ( )2H M,ϖ ∈  .Theorem 133 implies that M  is projective.   
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18.   Fano manifolds  

Definition 135. A projective manifold is said to be Fano if 
1

MK−

 is ample, where 
1

MK−

 is the anticanonical line 
bundle.  
 
Example 136. (1) There is only one Fano manifold of dimension one, it is 1P . 
 (2) Fano manifolds of dimension two are called Del-Pezzo surfaces and are completely classified. They 
are 1 1 2× ×P P P  , and ( )2

1p ,..., p , 1 k 8,k ≤ ≤P  where ( )2
1p ,..., pkP  is obtained by blowing up 2P  at 1p ,..., pk   

in general position.  
(3) The projective space nP  is a Fano manifold.  
(4) Let M  be a smooth complete intersection of ν  hypersurfaces of degree 1d ,...,dν  in nP . Then  

n
1

M
i=1

K n 1- d .i

ν
−  

= + 
 

∑O
P

 

In particular, M  is Fano if and only if ii=1
d 1.nν

< +∑  
(5) Let G  be a complex reductive group and P  a parabolic subgroup of G . Then the homogeneous space 
M G / P=  is a Fano manifold.  
From the algebro-geometric point of view, a Fano manifold M  is a smooth projective variety with ample 
anticanonical bundle 

1
MK−

, and from the differential geo- metric point of view, a Fano manifold M  is a compact 
complex manifold admitting a Kähler metric with positive Ricci curvature. The two definitions are equivalent by 
Yau's solution of the Calabi conjecture  
  
Theorem 137. (Yau, 1977) A smooth projective variety M  is Fano if and only if M  admits a Kähler metric 
with positive Ricci curvature.  
As was mentioned before, there is close interplay between curvature and topology of a manifold. In the case of a 
compact Riemannian manifold, we have seen (Theorem 46) that the fundamental group is finite. In the Kähler 
case we can say more.  
 
Theorem 138. (Kobayashi, 1961) A compact Kähler manifold M with positive Ricci curvature is simply 
connected, i.e.,  ( )1 M 0.π =  
The proof uses the Riemann-Roch-Hirzubruch Theorem, Myer's Theorem, and the following result of Bochner  
Proposition 139. A compact Kähler manifold of positive Ricci curvature admits no non-zero holomorphic p -
forms,  for p 1≥ ..  
For a proof see Kobayashi (1987).  

 Part 4. Einstein-Kähler metrics on fano manifolds  

Definition 140. (1) A Kähler metric h  on a compact complex manifold M  is said to be Einstein-kähler if  
h hRic c ,ω=  

where c  is a constant, hω  is the closed (1,1) form associated to the Kähler metric h  and hRic  is the Ricci (1,1) 
form associated to the Kähler metric h .  
(2) A compact Kähler manifold M  is said to be Einstein-Kähler if it admits an Einstein-Kähler metric.  
One of the main problems related to Fano manifolds and not solved yet is to decide when a compact Kähler 
manifolds of positive Ricci curvature has an Einstein- Kähler metric. Obstructions to the existence of Einstein-
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Kähler metrics on compact Kähler manifolds of positive Ricci curvature were discovered by several 
mathematicians. Below, we will introduce two obstructions discovered by Matsushima and Futaki and an 
invariant constructed by Tian.  

19.  Matsushima's obstruction  

Let M  be a complex manifold. An automorphism (biholomorphism) F : M M→  of M  is a holomorphic map 
from M  to M  such that there exists a holomorphic map G : M M→ with MG o F Fo G id= = , where Mid  is 
the identity map of M . The set of automorphisms of M , denoted by ( )Aut M  , has a structure of a group under 
the composition of maps. In case the complex manifold M  is compact, we can say more,  
 
Theorem 141. Let M  be a compact complex manifold. Then ( )Aut M is a complex Lie group and its Lie 

algebra ( ) ( )( )M ie Aut M= Ly
 consists of holomorphic vector fields of M .  

For a proof, see (Kobayashi and Nomizu, 1969). 
 
Definition 142.  A complex Lie group G  is called reductive if the Lie algebra g  of G  is isomorphic to the 
complexification of the Lie algebra k  of a compact Lie group K , i.e.,  ≅ ⊗


g k

 

The Lie algebra k  is called a real. form of the Lie algebm g .  
 
Example 143. (1) If ( )G G n,= L , then G K= 

, where ( )K U n= . Moreover ( ) ( )nl n, M ,≅ g g=  and 
( ) ( ){ }*n A l n, A A 0 .u= = ∈  + =k g

 

(2) If ( )G SO n,=   , then G K= 

, where ( )SO nK =  . Moreover  
( ) ( ){ }*o n, A l n, A A 0 ,= = ∈  + = g s g

and 
( ){ }A l n, A A 0 .∈  + =k= g T

.  

(3) If ( )G Sp n,=  , then G K= 

, where ( )K Sp n= . Moreover  
( ){ }A l 2n, A J JA 0 ,∈  + =g = g T

and 
( ){ }A l 2n, A J JA 0 .∈  =k= g T +

  

More details about Lie groups (resp. algebraic groups) can be found in (Knapp, 2001) or (Brocker, et al., 1985) 
(resp. (Borel, 1991) or (Humphreys, 1975).  
 
Theorem 144. (Matsushima, 1957) The automorphism group ( )Aut M

 of a compact Einstein-Kähler manifold 
of positive Ricci curvature is reductive.  
At the level of Lie algebras, Matsushima's theorem says that if M  be a compact Einstein-Kähler manifold with 
non zero Ricci curvature then the Lie algebra ( )Mi

 of infinitesimal isometries (or Killing vector fields) is a 

real form of the Lie algebra ( )h M of holomorphic vector fields, i.e.,  
( ) ( ) ( )h M M 1 M .i i= ⊕ −
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Remark 145.  If ( )1 M 0,c <
 then ( )Aut M

 is finite, and consequently ( )h M 0.= . Therefore 

Matsushima's Theorem is not obvious only when ( )1 M 0.c >
 .  

 
Example 146. (Futaki, 1988 ) Let ( )2

1 2p ,p%P
 be the projective plane 

2P  blown up at two points 1 2p ,p . It can 

be shown that ( )2
1 2p ,pP

 is a compact Kähler manifold with positive Ricci curvature whose automorphism 
group is not reductive, therefore it cannot carry an Einstein-Kähler metric.  
In dimension two, the reductivity of  ( )h M is the only obstruction to the existence of Einstein-Kiihler metrics 
as shown by the following result  
 
Theorem 147. (Tian, 1990) Any compact complex surface M  with positive Ricci curvature admits an Einstein-
Kähler metric if ( )h M   is reductive.  
In higher dimension, there are other obstructions to the existence of Einstein-Kähler metrics besides 
Matsushima's obstruction.  

20.   Futaki's invariant  

For the construction of Futaki's invariant, we need the following  
 
Lemma 148. Let θ  be a real ( )p,p

 form on a compact Kähler manifold which is cohomologous to zero, i.e., 
dθ β= . Then there exists a ( )p -1,p -1

 form η  such that  
1 .θ η= − ∂∂  

The proof uses the Hodge Theorem for the ∂  operator (see [33], Proposition 7.24, for the details).  

Let gω
 be a (1,1) form associated to a Kähler metric g  and suppose that ( )1 Mg cω ∈

 .Then 
g

1 Ri
2

c
π  

represents also ( )1 Mc
, and by Lemma 148, we have  

g
1 Ri 1 F ,

2 ggc ωω
π

− = − ∂∂
 

where 
F

gω  is a global function on M  which is defined up to a constant. In (Joyce, 2000), Futaki introduced the 

following linear functional  
( )

( ) ( )
F

n
F gM

h M:

1X X X F .
2 gω ω
π

→

−
= ∫a

CL

L
 

 
Theorem 149. (Futaki, 1983) The functional FL  is independent of the choice of the Kähler form ( )1 Mcω ∈

 . 

In particular FL  is invariant under the automorphism group ( )Aut M
 of M  and FL  is a Lie algebra 

homomorphism. Moreover, if M  admits an Einstein-Kähler metric, then FL  vanishes identically.  
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The following example exhibits an example of a compact Kähler manifold M  with positive Ricci curvature 
such that  ( )Mh

is reductive, but FL  is not identically  
zero.  
 
Example 150. (Futaki, [18]) Let r and s  be two positive integers, 1 : r s rπ × →P P P  the projection to the 

first factor, and  2 : r s sπ × →P P P the projection to the second factor. Let  
( ) ( )* *

r,s 1 21 1 ,r s
r sπ π= ⊕ → ×O OP P P PE

 

and let ,Mr s  be the total space of the projective bundle 
( ),r sEP

 . It can be shown that  

(1) 
( )1 r,sM 0 ,c >

,  

(2) 
( )r, sh M

is reductive,  

(3) If  r 1=  and s 2,= , then F 0.≠L ,  

Therefore 1,2M
 is a Fano manifold which cannot carry an Einstein-Kähler metric with positive Ricci curvature.  

There are other generalizations of Futaki's invariant which we will not consider in this paper.  

21. Tian's invariant  

The vanishing of the Futaki invariant is a necessary condition for the existence of a Einstein-Kähler metric but 
not a sufficient one. In Tian (1997), Tian constructed a compact Kähler manifold which does not admit any 
Einstein-Kähler metric even though F 0=L . 

Let us introduce Tian's invariant: let ( )M,g
 be a compact Kähler manifold of dimension n , and let  

( ) ( )2
g

M

1P M,g C M, 0, sup 0 ,
2

ω ω
π

 − = ∈  = + ∂∂ = 
  

 φφ φ φ>
 

where  ( )
n

g i, i jj
i,j 1

1 g z dz dz ,ω
=

= − ∧∑
 

 
is the associated (1,1) form expressed in local holomorphic coordinates, and where " 0"ω >φ  means that ω'  is a 
positive definite (1,1) form.  
 
Proposition 151. Let ( )M,g  be as above. Then there exists two positive constants c and a such that  
c and α such that   ( )z n

gM
e c ,α ω− ≤∫ '

 

for all ( )P M,g∈φ
.  

Consider the following invariant defined by Tian (1997) :  ( ) ( ) ( ){ }z n
gM

t M,g sup 0 c > 0, e c for all P M,g .αα ω−= >  ∃ ≤ ∈∫ φ φ
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Theorem 152. (Tian, 1997) Let ( )M,g  be a Fano manifold of dimension n , where gω  represents the first 

Chern class of M , i.e., ( )g 1 Mcω  =  . If  
( ) nt M,g ,

n 1
>

+  

then M  admits an Einstein-Kähler metric.  
Estimates of ( )t M,g  were used by several authors to prove the existence of Einstein-Kähler metrics on certain 
Fano manifolds.  

22.  Uniqueness of einstenin-kähler metrics with positive ricci curvature  

 Let M  be a Fano manifold, and let ( )MEK
 be the set of all Einstein-Kähler metrics on M . The 

automorphism ( )Aut M  acts on ( )MEK
 via pull-back. Let ( )0Aut M  be the identity component of ( )Aut M .  

 
Theorem 153. (Bando and Mabuchi, 1985) Suppose that ( )MEK φ≠  and let go be an Einstein-Kähler metric. 
Then  

( ) ( )0 0M Aut M . ,EK g= , 

i.e., any Einstein-Kähler metric g  is of the form 
*

0gψ  for some ( )0Aut M .ψ ∈  

 Remark 154.  If ( )h M 0=
, then the Einstein-Kähler metric is unique if it exists.  

Part 5. Complete noncompact Kähler manifolds of positive ricci curvature  

The structure of noncompact manifolds is richer and at the same time harder to explore than the structure of 
compact manifolds. Complete noncompact Kähler manifolds of positive ricci curvature are less studied, and 
therefore less understood compared to Fano manifolds. Nonetheless, lots of partial results have bee proved 
although a general theory is still missing. In this part, we will survey some of these results, close to the author's 
interests, obtained on this topic.  

23. Construction of complete kähler metrics of positive ricci curvature  

The problem of existence of complete Kähler metrics of positive Ricci curvature on smooth quasi-projective 
varieties was considered by several authors, among them S. T. Yau, G. Tian, R. Kobayashi, S. K. Yeung, and 
others.  
By solving certain complex Monge-Ampere equations, where the ideas are close to the ones introduced by Yau 
in his solution of the Calabi conjecture, G. Tian and S. T. Yau, proved the following  
 
Theorem 155. (Tian, Yau 1990) Suppose that M  is a smooth complex projective variety and that D M⊂  is a 

smooth ample divisor. Let Ω  be any smooth closed (1,1) form in the cohomology class 
[ ]( )( )1

MK D
−

⊗
. Then 

M \ D  admits a complete Kähler metric whose Ricci curvature form is equal to the restriction of Ω to M \ D .  
As a consequence, we get  
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Corollary 156. Let M  and D M⊂  be as above. If [ ]( ) 1

MK D
−

⊗
 is ample, then M \ D  admits a complete 

Kähler metric with positive Ricci curvature. To state the next Theorem, we need the following  
 
Definition 157.  A complete noncompact Kähler manifold ( )M,g  of dimension 2n ≥  with positive Ricci 
curvature is said to be of standard type if it satisfies the following three conditions  
(1) 

n
gM

Ric ,< +∞∫   

(2) there exists a constant 1c  such that for all r 0 ,>  
( )( )g 0vol B x , rg  

(3) there exists a constant 2c  such that for all m M ,∈   ( )
( )( )
2

2

c| sect M | ,
1 r m

≤
+

 

  
where ( )( )g 0vol B x , rg  is the volume of the geodesic ball ( )g 0B x , r with respect to the metric g , Ricg  is the 

Ricci (1, 1) form associated to the Kähler metric g , and ( )sect m  is the sectional curvature of g  at the point 
m .  
Simultaneously with Tian and Yau, using the continuity method for the Monge-Ampere equation, Yeung 
obtained the following  
  
Theorem 158. (Yeung 1990) If M  is a smooth projective variety with dim M 2≥ , and D  is a smooth 

hypersurface such that the associated line bundles [ ]D and [ ]( ) 1

MK D
−

⊗
 are positive, then the affine variety 

M \ D  admits a complete Kähler metric of positive Ricci curvature and of standard type.  
 
Example 159. Let 

nM , 2n= ≥P  and let D  be a smooth hypersurface in nP  of degree, where 1 d n≤ ≤ . Since 
[ ] ( )nD d=

P
O  and [ ]( ) ( )n

1

MK D n 1 d−
⊗ = + −

P
O

  are positive, Yeung's Theorem, (Theorem 158) implies that 
nM \ D= P  admits a complete Kähler metric of positive Ricci curvature and of standard type.  

An extension of Kobayashi's result (Theorem 138) to the noncompact case was obtained by Tsuji  
 
Theorem 160. (Tsuji, 1988) Let M  be a smooth projective variety and let D  be a simple normal crossing 
divisor. If [ ]( ) 1

MK D
−

⊗
 is ample then M \ D  is simply connected, i.e.,  

( )1 M \ D 0π =
 

24. Compactification of complete Kähler manifolds of positive ricci curvature  

One way to approach noncompact complete Kähler manifolds of positive Ricci curvature is to try first to 
compactify them (if it is possible to do that), i.e., realize them as open subsets, in the Zariski topology, of some 
projective manifolds, via some "noncompact" version of Kodaira embedding. This was achieved by Mok (1990) 
for complete Kähler manifolds of positive Ricci curvature and of standard type. More precisely, Mok's result 
says that  
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Theorem 161. (Mok, 1990) Let ( )M,g  be a complete noncompact Kähler manifold of dimension 2n ≥  with 

positive Ricci curvature and of standard type. Then M  is biholomoryhic to a quasi-projective variety M \ D , 
where M  is a smooth projective variety and 

1
jj 0

D D
=

= ∑  is a normal crossing divisor. More precisely, there 

exists a finite set of sections 
{ } ( )n 0 q

j Mj
s H M, K−⊂

 of class 2L  for some positive integer q , where 
-1
MK  is the 

anticanonical line bundle, such that  

( ) ( )

n
q

0 n

: M M P

m s m ,..., s m ,

ψ → ⊂

  a
                                                    (23) 

is an embedding, and q : M M \ Dυ =/ .  

 Mok's embedding Theorem says more or less that 
-1
MK  is "ample" and can therefore be seen as a noncompact 

analogue of Kodaira's embedding Theorem.  
 
Remark 162. It can be proved, under the assumption of Theorem 161, (see Borel and Serre, 1951) that  ( ) ( )1 1M M \ D ,π π= < +∞# #

 

and therefore  0 1H M, 0
M

 Ω = 
   

Remark 163. (1) The completeness of the metric in the noncompact case is crucial. All metrics are complete on 
compact manifolds.  
(2) The constmint on the volume growth is natural, since by combining the Calabi -Yau's theorem (Theorem 58) 
and Bishop's Theorem (Theorem 57), on a complete Riemannian manifold with positive Ricci curvature we have  

( )( ) 2n
1 g g 0 2c r vol B x , r c r≤ ≤

 
(3) An extension of Mok's embedding theorem to the case of a volume growth slower than Euclidean was 
obtained by To (1991).  

25.  Logarithmic kodaira dimension of complete Kähler manifolds of positive ricci curvature 

To introduce the logarithmic Kodaira dimension of ( )M, D
, we need some definitions.  

 
Definition 164. A closed subset V  of a complex manifold M, dim M ,n =   is called an analytic subvariety if for 
every m M∈ , there exists a neighborhood U  of m  and a finite number of holomorphic functions ( )

m m
1 mf ,...,fν  on 

U , called defining functions, such that  
( ) ( ) ( ){ }m m

1 mV U x U| f x ... f x 0 .ν∩ = ∈ = = =
 

A point m V∈  is called a smooth point, if there exists an open subset U′ of m and defining functions 
m m

1 kf ,...,f  
in U′ such that  
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( )
( )

m m
1 1

1 n

m m
1 k

1 n

m m
k k

1 n

f f. . .
z z
. . . . .f ,...,f

rank rank k .. . . . .
z ,...,z

. . . . .
f f. . .
z z

 ∂ ∂
 ∂ ∂ 
 

∂  
= = ∂  

 
 ∂ ∂
 ∂ ∂   

 
The integer k  is called the codimension of V  at m . The set of smooth points is denoted by smV .  
It can be proved that if smV  is connected, then it is a complex submanifold of M  of dimension - kn , in which 
case we write odim V kc = .  
 
Remark 165. The defining functions of an analytic subvariety in a neighborhood o.t a point are not unique.  
 
Definition 166. Let M  and N  be two projective algebraic manifolds.  
(1) A rational map Ψ  from M  to N , denoted by : M  ---- NΨ > , is given by a holomorphic map  

: M \ V N,ψ →  
where V  is a subvariety of M , such that odim V 2c ≥ .  
 
(2) We say that a rational map : M  ---- NΨ >   is birational, if there exists a rational map : N  ---- Mφ >  such 
that φΨ o   is the identity as a rational map.  
If such a birational map : M  ---- NΨ >  exists, then we say that the algebraic manifolds M  and n  are 
birational.  
 
Let 

n: M  ----φ > P  be a rational map defined by a holomorphic map 
n: M \ V  ----φ > P ,  

where V  is a subvariety of M , such that odim V 2c ≥ , and let  
( )( ){ }n

ψ m, m M \ V .φ = ∈ × P
 

Denote by ψΓ  the closure (in the Zariski topology) of ψΓ  in nM × P  and by  
n

ψ2 ,π :Γ → P  
the projection to the second factor. The image ( )Mφ  of M  is given by  

( ) ( )ψ2M .φ π= Γ
 

 Let M  be a smooth projective manifold, D  be a normal crossing divisor on M  and  let  [ ]( )( ) [ ]( )( ){ }0
M MM, K D : | H M, K D 0 .

ν
ν⊗ = ∈ ⊗ ≠NS

 

Let us assume that 
[ ]( )( )MM, K D 0⊗ ≠S

, and for 
[ ]( )( )MM, K Dν ∈ ⊗S

, consider the rational map  

( ) ( ) ( )

N

0 N

: M  ---

m m m ,..., m ,

ν

ν

ν

ν ν
ν

φ

φ

>

 =  a

P

φ φ
 

where  
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[ ]( )( )0
MN dim H M, K D 1,

ν

ν = ⊗ −

 

and  
{ }0 N,...,

ν

ν νφ φ
is a basis for 

[ ]( )( )0
MH M, K D

ν
⊗

 

 
 Definition 167. The Logarithmic Kodaira dimension of M M \ D= , denoted by ( )k M , is given by  

( ) ( )
[ ]( )( )

[ ]( )( )
( ) [ ]( )( )

M

max M

M

M, K D
k M k M \ D dim M M, K D .

M, K D

if
ifν

φ
φ φ

ν

−∞ ⊗ =
= = ⊗ ≠
 ∈ ⊗



S
S

S
 

 
 Remark 168. The Logarithmic Kodaira dimension has the following properties: (1) It is independent of the 
compactification, i.e., if  

biholomorphic biholomorphic

1 1 2 2M M \ D M \ D ,≅ ≅  
 
where ( )1 2M . Mresp

 is a smooth projective variety and  ( )1 2D . Dresp
is a normal crossing divisor on 

( )1 2M . Mresp
 and if the isomorphism  

biholomorphic

1 21 2M \ D M \ D≅  
extends to a birational map  

birational 
1 2M  ---- M>  

then  ( ) ( )1 21 2k M \ D k M \ D=
                                                                (24) 

 
For a proof of (24) , see Litaka (1977).  
(2) It is not a biholomorphism invariant. For a proof, see Hartshorne (1970).  
 
Theorem 169. (Anchouche, 1998) Let ( )M,g  be a complete noncompact Kähler manifold ( )M,g  of dimension 

2n ≥  with positive Ricci curvature and of standard type and let ( )M, D
 be the compactification obtained in 

Theorem 161. Then  
( )k M = −∞  

Proof. (Sketch of the Proof) In all what follows, we identify M  with M \ D . Remark first that  
[ ]( )( ) ( )0

,DM MH M, K D M,K ,
ν

ν⊗ ≅ ϒ
 

where ( ),D MM, Kνϒ
is the set of meromorphic sections of MK  which are holomorphic in M and admitting poles 

along the divisor D  of order at most ν .  
Step1: We establish the following inequality  
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( )

( ) ( )g g

n 1
2 n 3

4
n 3 n n

g g2g n
B x,r B x,r 1 D

1s c 1n ,
s

ii i

ν ω ω

+
+

+

=

  
  ≤    Π   

∫ ∫
 

where 
[ ]( )( )0

MH M, K Ds
ν

∈ ⊗
is the section of the line bundle [ ]Di  defining the divisor Di , i.e., 

( )1
Ds 0 , s

i ii D i
D− =

 is the norm of the section SD, defined by a fixed Hermitian metric hi on the line bundle [Di], 

and 115111 is the norm of the section s  with respect to the metric on MK  induced from the metric g .  
Step 2: Let  

n

1 2n i 0
1 D

11n c qu 1n s
s

i

i

i i
=

=

  
ψ = − + +  

  Π
∑

 

           

n

2
i 0

c qu 1n si
=

  
ψ = +  

  
∑

 

where u  is a solution of the equation ( )gu Ricgr∆ = T
(see Mok, 1984) , g∆  is the Laplacian associated to the 

Kähler metric g,c  is chosen in such a way that 1ψ and 2ψ  are subharmonic functions, and si  are the sections of 
q

MK−

 appearing in Mok's embedding Theorem 161. Therefore, we get the Riesz Representation  ( ) ( ) ( )( )
( )

( ) ( )0

0

x n
0 0 g g

B x ,r

x x 1im G x , y y y ,
g

j j jρρ
ω

→+∞
ψ = ψ + ∆ ψ∫

 

where ( )0xG .,.ρ  is the Green kernel of the geodesic ball ( )0B x , rg  for the operator g∆ . 
Step 3: There exist a constant c  such that  

i

n 2

DM Mi
1

c 1 s c ,
i

ω ω
=

− ≤ − ∂∂ ≤∏
 

where  Mω
 is the Fubini-Study metric on M .  

 
Step 4: Using the previous steps, we get  ( ) ( ) ( )( )

( )

n 2n
gg

B x,r

y y cr 1n r x 2 for 1,2.
g

j iω∇ψ ≤ + =∫
 

 The estimate above is the hardest pat of the proof.  
 
Step 5: Using the inequality obtained in Step 4 and following a similar scheme developed by John-Nirenberg, we 
get  ( ) ( ) ( )( )

( )

n 2n 2 2
,r gg

B x,r

y y cr 1n r x r 2 for 1,2.
g

j j iω +ψ − ≤ + + =∫ Θ
 

where ,riΘ
 is the solution of the following Dirichlet's problem  

( )
( )0 in B x,rg , r g

| B x,r, r g

j

j j

∆ =
 ∂ = ψ

Θ

Θ
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Step 6: using the previous steps, we get  

( ) ( )
( )( )( )

n 1
2n 2 2 n 34 x

3
2n

r c 1n r r x 2
s x c

r
n ν

+
+ +

+

 + + + ≤
 

where the constants c  and xc  are independent of r . Since n 2≥ , the theorem is obtained by letting 
r → + ∞ . For more details, see Anchouche (1998).   
The vanishing theorem above puts a lot of restriction on the structure of the manifold M , for example if we 
assume that dim M 2=C  then, as a consequence of Theorem 169 and Miyanishi's classification of open 
algebraic surfaces [40], we obtain the following  
 
Theorem 170. (Anchouche, 1998) Let M  be a complete Kähler surface of positive Ricci curvature and of 

standard type, and let 
( )M,D

 be the compactification obtained in Theorem 161. Then  

(1) M  is a rational surface.  
(2) Each component jD

 of  D is a smooth rational curve, i.e., jD
 is isomoryhic to 

1P .  

(3) D  is a tree.  
(4) None of the components jD

 is exceptional.  
The Theorem above is a consequence of Theorem 169 and Miyanishi's classifi- cation of quasi projective 
surfaces of logarithmic Kodaira dimension −∞ . The fact that the Kähler manifold M is of infinite volume 
implies part (4) of the Theorem 170.  
In [2], it has been shown that the 

2L  sections of the line bundle 
q

XK−

, and the volume form of the metric g  

have no essential singularities near the divisor at infinity D . As a consequence we obtain a comparison between 
the form forms of the complete Kähler metric g  and the Fubini-Study metric of the compactification. In the 

case of dim X 2=C , we establish a relation between the number of components of the divisor D and the 

dimension of the logarithmic groups 
( )i 1

H X, log D
x

.Ω 
 
    
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