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ABSTRACT: A numerical solution is presented for a one-dimensional, nonlinear boundary-value problem of 

thermoelasticity with variable volume force and heat supply in a slab. One surface of the body is subjected to a given 

periodic displacement and Robin thermal condition, while the other is kept fixed and at zero temperature. Other 

conditions may be equally treated as well. The volume force and bulk heating simulate the effect of a beam of hot 

particles infiltrating the medium. The present study is a continuation of previous work by the same authors for the half-

space [1]. The presented Figures display the process of propagation and reflection of the coupled nonlinear 

thermoelastic waves in the slab. They also show the effects of volume force and heat supply on the distributions of the 

mechanical displacements and temperature inside the medium. The propagation of beats provides evidence for 

sufficiently large time values.  

KEYWORDS: Finite difference method; Heat supply; Nonlinear thermoelasticity; Nonlinear wave propagation; 
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 الحل العذدي لمسألت غيز خطيت أحاديت البعُذ في المزونت الحزاريت بقوة حجميت وتغذيت حزاريت في شزيحت مسطحت

فت  وائل محمود وأحمذ فؤاد غالب وإنعام خليفت راوي وحسن أحمذ سكي حسن وعادل عطيت مشزَّ

ًجٌد لٌة حجمْت مخغْزة ًحغذّت حزارّت  معنمذَ حلا عذدّا ٌمسأٌت شزًط حذّت أحادّت اٌبعُذ فِ اٌمزًنت اٌحزارّت اٌلاخطْت فِ شزّحت لانيائْت، ملخص: 

ىنان  ذٌهو ًجٌد شزط رًبن اٌحزارُ، بْنما ّثُبَّج اٌسطح آخز ححج درجت حزارة صفزّت. معاٌشزّحت إساحت دًرّت  ِ. ّعُطَ أحذ سطح  فِ اٌشزّحت

ححُاوِ اٌشزًط اٌمسخخذ مت حأثْز شعاع من اٌجسْماث اٌساخنت اٌخِ حسمظ عٍَ سطح اٌشزّحت ًحخخزليا ٌمسافت ما.ّعُخبز ًإمىانْت ٌفزض شزًط أخزٍ. 

ار اٌمٌجاث اٌمزنت اٌحزارّت ، دُرسج فْو ىذه اٌمسأٌت فِ نصف اٌفزاغ. حبُْن الأشىاي اٌمعزًضت انخش [1]اٌبحث اٌحاٌِ امخذادا ٌبحث سابك ٌنفس اٌمؤٌفْن

اٌشزّحت. وما حبْن أّضا حأثْز اٌمٌة اٌحجمْت ًاٌخغذّت اٌحزارّت عٍَ حٌسّع وً من الإساحت اٌمْىانْىْت ًاٌحزارة  ِاٌلاخطْت اٌمخشاًجت ًانعىاسيا من سطح  

 .داخً اٌٌسظ. ّبُْن اٌحً اٌممذََّ ًجٌد ظاىزة اٌضزباث فِ الأسمنت اٌىبْزة نسبْا

 

 اٌمزًنت اٌحزارّت اٌلاخطْت، الانخشار اٌمٌجِ اٌلاخطِ، اٌمٌة اٌحجمْت، اٌمنبع اٌحزارُ، طزّمت اٌفزًق اٌمنخيْت. :مفتاحيتكلماث 

1. Introduction 

he propagation of nonlinear waves in thermoelastic solids is one of the main topics of Continuum Mechanics. 

Mathematical models describing this phenomenon have been treated by many authors [2, 3]. In classical 

thermodynamics, the basic equations of thermoelasticity yield systems of nonlinear partial differential equations of 

mixed type for which few exact solutions exist. Of theoretical importance are investigations dedicated to the existence, 

uniqueness and stability of the solutions for such systems as in [4-17]. The formation, the development of 

discontinuities and blow-up of the solutions are treated in [8] and[18-22]. Nonlinear thermoelasticity with finite 

velocities of propagation of thermal disturbances was considered in [23], and in relation to an electric field in [24]. 

Problems including moving boundaries and multiphase systems with interfaces related to melting, solidification and 

evaporation processes were treated in [25-27]. The methods of solution of the various systems of equations of 

nonlinear thermoelasticity are numerous. They are mainly based on finite elements or finite differences [6, 12, 20, 28-

38]. In [30] the author uses an uncoupled numerical scheme to investigate wave propagation driven by initial 

conditions only. It relies on a finite element technique for the spatial variable, in combination with an uncoupled 

difference scheme for the time variable. The method of finite volumes is used in [27, 39]. An extended finite element 

method to treat crack propagation, stress concentration or flows with interfaces is used in [40]. In [32], the authors treat 
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a one-dimensional problem for a half-space with prescribed harmonic displacement at the boundary. A Poincaré 

expansion in a small parameter was used to obtain the near-field solution, while the multiple-scale technique took care 

of the far-field solution. In both methods, the authors obtained a particular solution for the thermoelastic problem, a 

solution that does not satisfy any thermal boundary conditions at the bounding surface. Other techniques for tackling 

nonlinear initial/boundary-value problems of continuum mechanics are also available in the literature. Examples are 

the Method of Finite Volumes, which relies on the possibility of writing the basic field equations in the form of 

conservation laws [39], and the Differential Quadrature Method introduced by Richard Bellman and collaborators [41-

43], which is an efficient computational tool for finding solutions of nonlinear initial/boundary-value problems and was 

successfully applied for solving various engineering problems. This last method makes it possible to avoid difficulties 

that may arise from quasi-linearization.  

In the present work, we use a restriction to thermoelasticity of a fully nonlinear model introduced in [44] to solve 

a concrete problem of nonlinear wave propagation in a slab, under volume force and bulk heating. One face of the slab 

is under periodic displacement and Robin thermal condition, while the other one is fixed and kept at zero temperature. 

This is a continuation of previous work by the same authors for the half-space [1]. The main differences here reside in 

the fact that the far boundary is now fixed, and the time values are allowed to become large enough so as to capture the 

reflected waves from both surfaces of the slab. Other boundary conditions are also possible without any further 

complications. In this model, the governing field equations, constitutive relations and boundary conditions are derived 

in material form within the frame of rigorous thermodynamics. For details concerning the material form of the 

equations of Continuum Mechanics, we refer to [45]. An illustrative application of the present model on one-

dimensional wave propagation was treated in [46] using a multiple scale technique. Another application was 

considered in [47] for a one-dimensional, nonlinear thermoelastic wave propagation in a half-space using a finite 

difference scheme. Amirkhanov [39] investigated a similar problem for a slab using finite volumes, but with no bulk 

force and for a different boundary condition and for a different  heat supply. A problem for a half-space was treated in 

[1]. It was shown that the proposed numerical method correctly represents the phenomenon of thermoelastic wave 

propagation. The case with three displacement components was investigated in [48]. The present model of 

thermoelasticity relies on the hypothesis that all material coefficients of the medium are functions of strain. This is 

equivalent to using a free energy function which can be expanded in Taylor's series in its arguments: strain and 

temperature. Such an approach provided a consistent way to derive the governing system of equations for 

thermoelasticity for such media, uniformly approximated up to the desired degree of accuracy in terms of the small 

parameter of strain. Details may be found in [44]. 

The motivation for introducing body force and heat supply is as follows: Let a beam of heated particles be 

directed towards the slab. A fraction of those particles penetrates the medium, as a result of which momentum and heat 

supply are transmitted to the particles of the medium. Thus a field of volume force is created and a bulk heat source is 

established inside the medium. The authors are not aware of any available experimental evidence that can be used to 

infer a mathematical form of these fields. For the present purposes, this phenomenon has been modeled using 

sufficiently smooth functions that decrease exponentially with time and with depth for both the volume force and the 

heat supply. Other forms could also be used for a concrete form of the heat supply function [39]. The left bounding 

surface of the slab is subject to a given displacement and to a heat radiation condition, while the right boundary is kept 

fixed and at zero temperature. These rest conditions allow the use of the same numerical technique as in [1]. 

The study of systems of nonlinear parabolic, or mixed parabolic-hyperbolic equations presents many technical 

difficulties and may be carried out using different numerical techniques, as is apparent from the given list of references. 

The merits and disadvantages of each method may be found in specialized textbooks or monographs. In view of the 

simplicity of the domain geometry, we have opted for a finite-difference scheme which has been tested for 

effectiveness and reported in previous publications [47, 49-52]. In each case, the numerical results have rendered 

correctly all the expected characteristics of the solution. 

The present system of equations was investigated in [1, 47]. In the second of these references, it was shown that 

one of the characteristic curves of this system clearly expresses parabolicity, meaning that a temperature field installs 

instantaneously in the half-space. The other characteristic corresponds to the propagation of a coupled thermoelastic 

wave. In dimensionless variables, the velocity of propagation of this latter wave is close to unity, being slightly 

affected by both strain and temperature. This is clear from the form of the equation of motion. Thus there is only one 

time scale to be considered, as distinct to other studies where two time scales are necessary for the description of the 

model [53]. The model does not involve any phase transitions as in other publications that deal with the problems of 

melting, solidification and evaporation [26, 27] and the extension to include such effects requires more elaboration on 

the method used and the computational techniques. Moreover, the calculations have avoided the regions where shock 

formation occurs because the method does not allow consideration of allow one to effectively consider this 

phenomenon, especially in the presence of reflected waves. Attention has been mainly focused on the process of 

reflection of waves at the boundaries. Beats are shown to develop due to the interaction of different wave components 

with slightly different frequencies.  
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2.  Formulation of the Problem 

 Let L  be the thickness of the slab. The basic field equations and boundary conditions for the in-depth 

mechanical displacement and temperature as given in [1,47] read:   

                                  
2

1 2(1 2 3 ) = ( ) ( , ),tt xx x x x x xu u u u u f x t           (1)               

21
( ) ((1 ) )) = ( , ), 0 < < ,

2
x x t x x xau bu u g x t x L     

                                            
(2) 

under the initial conditions  

                ( ,0) = ( ,0) = 0,tu x u x                                                    (3) 

                  ( ,0) = ( ,0) = 0,tx x                                                                                               (4) 

                              0 x L   

 and the boundary conditions  

                              0(0, ) = (1 cos ), (1 (0, )) (0, ) = , 0,x xu t u t u t t H t      (5) 

 and  

                              
( , ) = 0, ( , ) = 0.u L t L t                                                                                                         (6) 

 The symbols u and  denote, respectively, the dimensionless elastic displacement and the dimensionless 

temperature, x and t are the spatial (depth) coordinate and the time. The suffixes suffices denote differentiation. The 

constants involved in these equations have obvious physical significance as expressing the dependence of the different 

material coefficients on strain [32]. They will be assumed to have the following orders of magnitude:  

                              
1 3

1= (1), = (1 10 ), = (10 ),O O to O   
 

               
3 1 1

2 = (10 ), = (10 ), = (10 ),O a O b O   
 

               = (1), = (1).O H O  

The above governing equations were derived in [32] on the basis of rigorous thermodynamics and in material 

configuration. Therefore, the boundary conditions are set on a well-defined boundary and do not involve any 

approximations. 

The dimensionless heat flow vector component ,Q specific entropy ,s and stress component are determined 

from the constitutive relations by the expressions:  

              = (1 ) ,x xQ u    (7) 

              21
= ,

2
x xs au bu    (8) 

              
2 3

1 2

1
= ( ).

2
x x x xu u u u           (9) 

 A finite difference method is used to find a numerical solution of the previous coupled equations under the 

prescribed initial and boundary conditions. The numerical method and the results are briefly discussed in the following 

sections. More details may be found in [1, 47].  

3. Finite Difference Scheme 

 A combined approach of quasilinearization and the finite difference iterative method is used to solve the 

problem. This method has been tested for accuracy and efficiency in previous work [49-52]. Details of the method may 

be found in these references, and also in [1].  

Let ( )nU and ( )n denote the numerical values of u and  at the n -th iteration and let (0)U and (0) be the initial 

guess. We consider the Picard approximation [54] for equations (1) and (2) under which the functions in the sequence 
( )nu and ( )n satisfy the boundary conditions specified for u and . There is linear convergence of the sequence ( )nu  

and ( )n to the solution of the original nonlinear problem. 

For the computational work, consider a finite interval on the x -axis. The domain in the x t  plane is discretized 

by a grid with step length =x h  and time step =t h . The exact values of u and  at the grid point ( , ) ( , )x t rh sk  

are denoted by ,r sU and ,r s . One takes  

                                           

2

, 1, 1 1, 1 1, 1 1, 1

1
| = [ ] ( ),

4
x r s r s r s r s r su u u u u O h

h
            

                                           

2 2 2 2

, 1, 1 1, 1 1, 1 1, 12

1
| = [( ) ( ) ] ( ),

8
x r s r s r s r s r su u u u u O h

h
            

                                           
, 1, 1 , 1 1, 1 1, 1 , 12

1
| = [ 2 2

2
xx r s r s r s r s r s r su u u u u u

h
           

2

1, 1] ( ),r su O h    
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2

, , 1 , , 12

1
| = [ 2 ] ( ),tt r s r s r s r su u u u O k

k
     

                                

2 2

, 1, 1 1, 1 1, 1 1, 1

1
| = [ ] ( ),

4
xt r s r s r s r s r su u u u u O h k

hk
             

                                 
, , 1 , 1

1
| = [ ],

2
r s r s r s     

                                 

2

, 1, 1 1, 1 1, 1 1, 1

1
| = [ ] ( ),

4
x r s r s r s r s r s O h

h
                

                                 

2

, , 1 , 1

1
| = [ ] ( ),

2
t r s r s r s O k

k
      

                                

2

, 1, 1 , 1 1, 1 1, 1 , 1 1, 12

1
| = [ 2 2 ] ( ),

2
xx r s r s r s r s r s r s r s O h

h
                      

 Substituting this into (1) and (2) and neglecting the truncation error, the resulting equations take the form  

                            1 1 1 1= 4r r r rqU qU qU W d      

     
2

2 1 3 1 4 5 5 2 4 9 3 4 2[ ( ) ( ( ) 4 ) ( )]r r rq V d V d d q d q R d q q d        

     
2

2 1 23 1 24 25 5 22 4 21 3 4 22[ ( ) ( ( ) 4 ) ( )]r r rq Y d Y d d q d q Z d q q d        

     
2

2 1 3 1 4 25 5 2 4 21 4 2[ ( ) ( ( ) 4 ) ( )]r r rq Y d Y d d q d q R d q d       

                                                  
2 2

2 1 23 1 24 5 5 22 4 9 4 22[ ( ) ( ( ) 4 ) ( )] 2 ,r r r rq V d V d d q d q Z d q d k         (10) 

             
2 2

1 1 1 8 4 2 3 2 4 28 3 28= ( ) ( )r r rp p p d p d p d p d p d            

                                     
5 1 6 1 7 2 5 1 26 1 27 28[ ] [ ]r r r r r rp R d R d R d p Z d Z d Z d          

                                     
5 1 6 1 7 2[ ]r r rp Z d Z d Z d     

                                     
5 1 26 1 27 28[ ] 2 ,r r r rp R d R d R d k       (11) 

              
=1,2, , 1, = 0,1,2, , = 0,1,2, ,r N s n  

                      

( ) ( ) ( ) ( 1)1
, 1 , , 1 , 1, , , ,
n n n ns s

r s r r s r r s r r s rR S Z 
           

                               

( ) ( ) ( ) ( 1)1
, 1 , , 1 , 1, , , ,
n n n ns s

r s r r s r r s r r s rU V U W U Y U U
       

                               

2 22 2 2

1 2

1 2 3 4 5 ,2 3 2 4

3
= , = 2(1 ), = , = , = , = , ,

22 8 8
r s r

k kk k k
q q q q q q q f

hh h h h

  
    

                               
1 2 3 4 5 ,2 2 3

= , = 2 1, = 2 1, = , = , = , ,
28 2

r s r

k b a k
p p p p p p p p g

hh h h


     

                               1 1 1 2 1 1 3 1= 1 , = , = 2 ,r r r r r r rd qV q V qV d V V d V V         

                               4 1 5 1 1 6 1= 2 , = 2 , = ,r r r r r r rd V V d V V V d V V        

                               7 1 8 1 2 1 9 1 1= , = , = ,r r r r r r rd V V d pR p R pR d R R         

                               21 1 1 22 1 1 23 1= , = , = 2 ,r r r r r rd Z Z d Y Y d Y Y        

                               24 1 25 1 1 26 1= 2 , = 2 , = ,r r r r r r rd Y Y d Y Y Y d U U        

                               27 1 28 1 1= , = ,r r r rd U U d U U     

and the superscript n denotes the final number of iterations required to obtain an acceptable approximation to the 

values of ,r sU and ,r s at the grid points on the line =t sk subject to  

 ( 1) ( ) 8

, ,| |<10 ,1 < < 1max
n n

r s r s
r

U U r N    (12) 

and  

 ( 1) ( ) 8

, ,| |<10 ,1 < < 1.max
n n

r s r s
r

r N     (13) 
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The local truncation error of schemes (10) and (11) is of the order 
2 2( )O h k .  

4. Numerical Method 

 The difference scheme (10) and (11) as presented in [47] is a three-level iterative scheme. It may be written in 

the form  

                                  
1 1 1 = ,r r rqU qU qU F    (14) 

                                  
1 1 1 = ,r r rp p p G       (15) 

                                               
=1,2, , 1, = 0,1,2, , = 0,1,2, ,r N s n  

 where  

       
2

1 2 1 3 1 4 5 5 2 4 9 3 4 2= 4 [ ( ) ( ( ) 4 ) ( )]r r r rF W d q V d V d d q d q R d q q d          

              
2

2 1 23 1 24 25 5 22 4 21 3 4 22[ ( ) ( ( ) 4 ) ( )]r r rq Y d Y d d q d q Z d q q d        

              
2

2 1 3 1 4 25 5 2 4 21 4 2[ ( ) ( ( ) 4 ) ( )]r r rq Y d Y d d q d q R d q d       

              
2 2

2 1 23 1 24 5 5 22 4 9 4 22[ ( ) ( ( ) 4 ) ( )] 2 ,r r r rq V d V d d q d q Z d q d k         (16) 

       
2 2

8 4 2 3 2 4 28 3 28 5 1 6 1 7 2= ( ) ( ) [ ]r r rG d p d p d p d p d p R d R d R d          

               
5 1 26 1 27 28 5 1 6 1 7 2[ ] [ ]r r r r r rp Z d Z d Z d p Z d Z d Z d          

               
5 1 26 1 27 28[ ] 2 ,r r r rp R d R d R d k       (17) 

 and 
1 2 3 4 5 1 2 3, , , , , , , , ,q q q q q q p p p p  and 

4p  are defined above. For = 0,s  one has  

       1,1 1 ,1 1,1 ,0 1, 1 1 , 1 1, 1= 4 ( )r r r r r r rqU qU qU U qU qU qU             

                                                 2 1,1 1, 1 1,1 ,1 1, 1 , 1[( )( 2 2 )r r r r r rq U U U U U U            

                                                  1,1 1, 1 ,1 1,1 , 1 1, 1( )(2 2 )]r r r r r rU U U U U U            

                                                   1,1 ,1 1,1 , 1 1, 1[ 2 2 ]r r r r rU U U U U          

                                                   
2 2

5 1,1 1,1 1, 1 1, 1[ (( ) ( ) )r r r rq U U U U          

                                                  4 ,1 , 1 1,1 1,1 1, 1 1, 14 ( )] [ ]r r r r r rq                

                                                   3 4 1,1 1,1 1, 1 1, 1[ ( )]r r r rq q U U U U           

                                                  
2

,02 ,rk f  (18) 

     1,1 1 ,1 1,1 1, 1 2 , 1 1, 1=r r r r r rp p p p p p                  

                                                4 1,1 1,1 1, 1 1, 1( )r r r rp U U U U          

                                                
2 2

3 1,1 1,1 1, 1 1, 1[( ) ( ) ]r r r rp U U U U          

                                                 5 1,1 1, 1 1,1 1, 1 ,1 , 1[( )( )r r r r r rp U U U U             

                                                 1,1 1, 1 ,1 , 1 1,1 1, 1( )( )r r r r r rU U U U             

                                                 ,1 , 1 1,1 1, 1 1,1 1, 1( )( )]r r r r r rU U U U             

                                                ,02 .rkg  (19) 

 From initial conditions (3), (4)  

                     , 1 , 1 , 1 , 1

, ,| = , | = ,
2 2

r s r s r s r s

t r s t r s

U U
U

k k

     
  

 then 
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   ,1 , 1 ,1 , 1

,0 ,0| = = 0, | = = 0.
2 2

r r r r

t r t r

U U
U

k k

   
  

 Hence  

                                         ,1 , 1 ,1 , 1= , = .r r r rU U     

  

Therefore, (14) and (15) finally assume the form  

                             
1 1 1 1= ,r r rqU qU qU F    (20) 

                             
1 1 12 = ,r r rp p p G       (21) 

                                            =1,2, , 1, = 0,1, ,r N n  

 where  

                       
2 2

1 2 1 23 1 24 25 5 22 4 21 3 4 22= 2 2 ( ) 2 ( ( 4 ) ( 2 )) 2 ,r r r r rF V q Y d Y d d q d q Z d q q d k           

                       
1 5 1 26 1 27 28= 2 ( ) 2 .r r r rG p Z d Z d Z d k       

Schemes (14), (15) and (20), (21) form two tridiagonal linear systems of equations that are used, together with 

conditions (5) and (6), to find the values of ,r sU  and , ,r s = 0,1,2, ,r N  and =1,2,s . The numerical method for 

solving schemes (14), (15) and (20), (21) subject to the given initial and boundary conditions is as follows: 

(I) For the first time level   

1.  Put 

                            
( )

,0 ,1, , ,n

r r r r r rV U W V Y U    

                            
( )

,0 ,1, , ,n

r r r r r rR S R Z     

for all r .  

2.  Calculate 
( 1)

,1( )n

r rU U   from scheme (20) by the backward sweep method using the given boundary conditions and 

the initial conditions.  

3.  Calculate the values of 
( 1)

,1( )n

r r

   from (21) by the backward sweep method using the calculated values of 
rU  

(calculated from (2)), the boundary conditions and the initial conditions.  

4.  Use the calculated values of 
rU  (set 

( 1) ( 1)

,1 ,1,n n

r r r rY U Z    ) to calculate improved values of 
( 1)

,1

n

rU 
 from scheme 

(20).  

5.  From scheme (21), calculate improved values of 
r  using the improved values of 

rU  calculated in the previous 

step.  

6.  Repeat the iterative procedure (4) and (5) until conditions (12) and (13).  

(II) Repeat the same at further times, where the values obtained for 
rU , ( =1,2,..., )r N I  and 

r ( = 0,1...., )r N  from 

step (I) and initial conditions (3), (4) are the initial conditions for schemes (14), (15), while their boundary conditions 

are given by (5). 

In order to solve (20), (21) one uses Thomas' algorithm [55] to avoid round-off error growth in machine 

computation, as follows:    

1.  To solve (20), take the solution of (20) in the form  

 1= , = 1, 2, ,1.r r r rU AU B r N n     (22) 

Substitute the values of 
1rU 

 from (22) into (20) and compare the coefficients of the resulting equations with (22). 

This gives the relations:  

                                  
1 1= ,r rE q qA   

                                 = ,r

r

q
A

E
 (23) 

                                 1 1
= , = 1,2, , 1.r

r

r

qB F
B r N

E

 
  (24) 

 Taking = 0r  in (22) and using the boundary condition 

 0= (1 cos ),u u t  

 we get 

 
0 0 1 0(1 cos ) = ,u t A U B   

 then 

 0 0 0= (1 cos ), = 0,B u t A  (25) 

where 
0u  is given. The scalars rA and rB are computed from 23 in a forward sweep-manner subject to the initial values 

given by (25) and initial conditions (3), (4). Using the stored values of rA and ,rB the solution rU  is obtained by a 

backward sweep subject to the known boundary condition NU . System (14) can be solved in a similar manner.  
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2.  To solve (20), take the solution in the form  

  
1= , = 1, 2, ,1,r r r rC D r N n      (26) 

then substitute the values of 
1r  from (26) into (21) and compare the coefficients of the resulting equations with (26). 

This gives the relations:  

                                 
1= 2 ,r rK C   

                                  
1

= ,r

r

C
K

 (27) 

                                               

1 1
= , = 1,2, , 1.r

r

r

pD G
D r N

pK

 
  (28) 

  

In this case, one uses the boundary condition 

                                              (1 ) = .x xu H    

One has 

                                                             1 1 1= , = ,
2

r r r r

x x

U U
U

h h

    
  

hence,  

                                                           

1 0 1 1

=0 =0| = , | = .
2

x r x r

U U
U

h h


  

  

Therefore, 

                                                           1 0 1 1

0(1 ) = ( )( ) = ,
2

x x

h U U
u H

h h

 
  

   
   

so we may write 
1  in the from  

                                                           
2

1 0 1

1 0

2
= .

h H

h U U 



  

 
 (29) 

 Equation. (21) at = 0r  is  

                                                           
1 0 1 =02 = 1| .rp p p G      (30) 

Substitute the value of 
1  from (29) into (30) to get 

                                                          
2

=0

1 0

1 0

1|
(1 ) = ,

2

rGh H

h U U p 
  

 
 (31) 

which can be written in the form 

                                                          1 0 1 =0 1 0

0 2 2

1 0 1 0

( ) ( 1| )( )
= .

2 ( )

rh U U G h U U

h U U h H p h U U h H

   

   

    
 

     
   (32) 

Taking = 0r  in (26) and comparing with (32), we get 
2

1 0

1 0

= ,
h U U h H

KK
h U U

 

 

  

 
 

                                                                  
0

1
= ,C

KK
 (33) 

                                                                 

=0

0

1|
= ,

2

rG
D

pKK
  (34) 

where
1U is obtained from (1),

=01|rG can be determined from (31), knowing the initial condition. Similarly as in (1), Cr 

and Dr are computed from (27) in a forward sweep manner ( =1,..., 1)r N   subject to the initial values given by (33). 

Using the stored values of rC and ,rD the solution r is obtained by a backward sweep subject to the known boundary 

condition = 0.N System (15) can be solved in a similar manner. 

 

5.  Stability 

 The study of stability of the difference scheme used for the system of equations introduced earlier relies on the 

investigation of the eigenvalues of the amplification matrix A  defined by  

, 1 ,= ,r s r sA B    

where ,r s denotes the vector of unknowns at level , .r s The non-homogeneous terms are obviously included in the 

matrix term ,B hence they do not affect the eigenvalues of .A  Thus, the stability is the same as for the associated 
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homogeneous difference scheme [56]. This has been investigated in [47]. According to this reference, the 

homogeneous schemes  associated with the nonhomogeneous difference schemes (10-11) are unconditionally stable 

and the local truncation error is of the second-order in both temporal and spatial dimensions. The numerical results 

show good stability up to sufficiently large values of time. However, the present scheme does not capture the formation 

of discontinuities which must occur at the (dimensionless) breaking distance 310L  [32, 47].  

6.  Numerical Results and Discussion 

 The numerical calculations for the mechanical displacement and temperature distributions in the slab were 

carried out for the following values of the slab thickness L  and the amplitude 
0u of the prescribed harmonic 

displacement at the boundary:  

 
0= 600, = 0.008.L u  

The volume force and heat supply functions are both taken as smooth functions decreasing exponentially with x  and t  

in the form: 

       
2( , ) = ( , ) = (1 ) .t t xf x t g x t t e e e    (35) 

 This is different from the expression for the heat supply function used in [39]. 

The Figures show the effect of three factors: the boundary displacement, the volume force and the heat supply. 

Each Figure has four components, labeled from (a) to (d): Label (a) corresponds to the case when the motion is caused 

only by the boundary displacement, i.e. when = = 0f g . Labels (b) and (c) correspond respectively to the cases when 

0, = 0f g and = 0, 0.f g  Label (d) corresponds to the case when 0, 0.f g  Relatively large values of time were 

needed to evidence the reflection of the waves from both boundaries. One notices the remarkable stability of the 

solution on these large time intervals. 

Figures 1-2 show in perspective the distributions of the mechanical displacement and of the temperature as 

functions of the distance, for the different time values. The reflection of the wave is obvious and is accompanied for 

both the displacement and the temperature by a reverse of the amplitude. This is due to the nature of the imposed 

boundary conditions at the far boundary of the slab. For the chosen values of the different physical parameters, it is 

seen from Figure 1 that the mechanical displacement produced only by the heat supply is always negative due to 

dilatation, and is much smaller than that driven only by the volume force, hence this force shadows the effect of a heat 

supply. Thus the Figures corresponding to labels (b) and (d) (the two bottom Figures) are almost identical. One cannot 

draw the same conclusion about the distribution of temperature in the slab. In fact, Figures 2-c and 2-d show marked 

differences near the left boundary where the heat supply is concentrated. A small thermal disturbance associated with 

the thermoelastic wave is seen on Figure 2-c progressing in the positive direction and then reflecting from the far 

boundary. Figures 2-c and 2-d clearly show the mixed parabolic-hyperbolic character of this heat wave.  

Figures 3-4 represent the distributions of displacement and temperature as functions of time at the location 

= 400x  in the slab. One clearly sees on these Figures the instants of time when the waves reflected from the left and 

from the right boundaries reach the considered location in the slab. One can notice from Figure 3 that the amplitude of 

the temperature decays with time, a fact that is compatible with the chosen function of heat supply. 

Figures 5-6 show the distributions of displacement and temperature in the slab at two time levels = 2100t and 

= 2200.t Here, the wave front is moving to the left after the second reflection on the right boundary and before 

reaching the left one. One can clearly see a phenomenon of beats ahead of the wave. The region occupied by the beats 

disappears gradually as the wave front moves further. 

Figures 7-8 show the effect of variation of the thermoelastic coefficient (
1 ) on wave propagation, as viewed by 

an observer fixed inside the slab at the location = 400.x As this coefficient gets larger, one clearly sees on Figure 7-a 

the shift of the wave front conditioned by the small increase of the velocity of propagation of the thermoelastic wave. 

We have also treated the case with only one period of the driving mechanical displacement at the left boundary. 

The mechanical boundary condition in this case is: 

 0 (1 cos ), 0 < 2 ;
(0, ) =

0, > 2 .

u t t
u t

t





 



 (36) 

The corresponding results are shown on Figures 9-14. In particular, Figure 10-c shows the thermoelastic wave 

propagating on the background of the heat supply, while Figures 13-14 show the propagation of beats.  
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Figure 1. Displacement U. 

 

 
Figure 2.  Temperature   . 
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Figure 3. Displacement U as a function of time at x = 400. 

 

 
Figure 4. Temperature   as a function of time at  x = 400. 
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Figure 5. Displacement U for large times. 

 

 
Figure 6. Temperature   for large times. 
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Figure 7. Displacement U as a function of time at x = 400 for two values of   . 

 

 
Figure 8. Temperature   as a function of time at x = 400 for two values of    . 
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Figure 9. Displacement U for one pulse. 

 

 
 

Figure 10. Temperature   for one pulse. 
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Figure 11. Displacement U as a function of time at x = 400 for one pulse. 

 

 
Figure 12. Temperature   as a function of time at x = 400 for one pulse. 
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Figure 13. Displacement U for one pulse for large times. 

 

 
Figure 14. Temperature   for one pulse for large times. 
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7. Conclusions 

 The following conclusions are due:   

1.  A finite difference iterative method has been used to solve a one-dimensional, nonlinear problem of thermoelasticity 

involving bulk force and heat supply in a slab. A periodic boundary displacement and Robin thermal condition pertain 

at the left boundary of the slab, while complete rest prevails at the other boundary. In a previous work, the used 

numerical method was shown to exhibit unconditional stability. An iteration process at each time level and the use of 

Thomas' algorithm to avoid round-off error growth and minimize the storage machine computation guarantees the 

efficiency of the method and good accuracy. The present calculations confirm these facts up to sufficiently large values 

of time to allow multiple reflections at both boundaries. The (dimensionless) time period, however, could not exceed 

the dimensionless breaking distance, so that the calculations did not capture the shock wave formation.  

2.  The method was successfully applied to other boundary displacements, not necessarily periodic. In particular, the 

case of a boundary displacement consisting of only one time period was also considered. Plots are provided for this 

case (c.f. Figures 9-14). Other boundary conditions on the right face of the slab are also possible, without any further 

complications.  

3.  As concerns the used set of equations, the present work is closely related to [32, 39, 47] and is a continuation of [1].  

4.  The wave nature of the solution is clearly represented, while the diffusive character of heat propagation can also be 

seen on the plots (c.f. Figures 2-c and 10-c). Thus the mixed parabolic-hyperbolic character of the solution is 

evidenced. Therefore, one may conclude that the proposed numerical method has correctly reproduced the main 

characteristics of the solution.  

5.  The successive reflections at the boundaries as viewed by an observer located inside the medium are illustrated on 

Figures 3,4 and 11,12.  

6.  The small increase in the velocity of propagation of the thermoelastic wave due to heat is illustrated on some plots 

by comparing the results for two values of the thermoelastic coefficient (c.f. Figure 7).  

7.  The study of the wave propagation at sufficiently large time values has put in evidence a phenomenon of 

propagation of beats. This is a result of the interaction of different wave components with slightly different 

frequencies.  

8.  The solutions presented may be used to study the propagation of nonlinear coupled thermoelastic waves at 

sufficiently small times, before shock formation, so that the results of [1] for the half-space are fully retrieved. In 

addition, the results may be used to detect the existence of a force field or a heat supply distribution in the medium.  
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