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In the human body, the skin is the largest 
organ and is composed of three primary layers. 
The epidermis, the outermost superficial layer, is 

composed of multiple layers of keratinocytes. Basal 
keratinocytes divide to produce suprabasal keratinocytes 
that pass through several stages of differentiation and 
ultimately give rise to non-nucelated cells in the super- 
ficial stratum corneum. The cornified keratinocytes in 
conjunction with the dense intercellular structures 
comprise the impermeable hydrophobic skin barrier 
that prevents noxious substances and pathogens from 
getting into the human body and halts water vapor- 
isation from the body. Melanocytes residing adjacent 
to the basal keratinocytes manufacture melanin and 
deliver it to neighboring keratinocytes. The epidermal 
antigen-presenting cells, known as Langerhans cells, 
capture exogenous and endogenous antigens and present 
them to the regional draining lymph nodes to provoke 
an immune response. The dermis, the middle layer 

of skin, is composed of extracellular matrix, collagen, 
fibroblasts, endothelial cells and mast cells. It maintains 
the skin through the provision of nutrients and oxygen 
via its extensive vascular network and is the main 
contributor to the physical properties of the skin as an 
excessive deposition of extracellular matrix, collagen 
and fibroblast could lead to abnormal wound healing. 
It also conveys the sensory nerve endings from the 
epidermis to the deeper layer of the skin and hosts the 
hair follicles. The hypodermis, the innermost layer of 
skin, is mainly formed of adipose tissue that functions 
as a heat insulator and acts as an energy storage site.1 

As an integrative system, the skin maintains 
homeostasis, provides an immunological barrier, synth- 
esises melanin pigments and plays a major role in 
sensation. Current evidence indicates that transient 
receptor potential (TRP) channels play a crucial role 
in mediating and adjusting these different functions.2 
Furthermore, disturbances in the expression or function 
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abstract: Transient receptor potential vanilloid 4 (TRPV4) channel responds to temperature, as well as various 
mechanical and chemical stimuli. This non-selective cation channel is expressed in several organs, including the 
blood vessels, kidneys, oesophagus and skin. In the skin, TRPV4 channel is present in various cell types such as 
keratinocytes, melanocytes and sensory neurons, as well as immune and inflammatory cells, and engages in several 
physiological actions, from skin homeostasis to sensation. In addition, there is substantial evidence implicating 
dysfunctional TRPV4 channel—in the form of either deficient or excessive channel activity—in pathological 
cutaneous conditions such as skin barrier compromise, pruritus, pain, skin inflammation and carcinogenesis. 
These varied functions, combined with the fact that TRPV4 channel owns pharmacologically-accessible sites, 
make this channel an attractive therapeutic target for skin disorders. In this review, we summarize the different 
physiological and pathophysiological effects of TRPV4 in the skin.
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الملخ�ص: ت�صتجيب قناة مُ�صْتَقبلة فانلويد 4 ذات الجهد الموؤقت للحرارة  بالأ�صافة الى محفزات ميكانيكية وكيميائية مختلفة. توجدهذه 
القناة غير النتقائية للايونات الموجبة في العديد من اأع�صاء الج�صم ، بما في ذلك الأوعية الدموية والكلى والمريء والجلد. وفي الجلد 
الع�صبية الح�صية وكذلك الخلايا  ال�صباغية والخلايا  الكيراتينية والخلايا  اأنواع مختلفة من الخلايا، مثل الخلايا  القناة في  توجد هذه 
المناعية واللتهابية، حيث تنخرط في العديد من العمال الوظيفية التي تتراوح من ا�صتِتْباب الجلد اإلى الإح�صا�س. بالإ�صافة اإلى ذلك 
هناك قدر كبير من الأدلة التي ت�صير اإلى وجود اختلالت وظيفية بهذه القناة، اما على هيثة نق�س اأو فرط في ن�صاط القناة، في حالت 
مر�صية جلدية مثل اختلال حاجز الجلد والحكة والألم واللتهاب الجلدي والت�سرطن. هذه الوظائف المتنوعة، اإلى جانب حقيقة امتلاك 
هذه القناة لموا�صع يمكن الو�صول اإليها دوائيا، تجعلها هدفًا جذابًا لعلاج ا�صطرابات الجلد. في هذا ال�صتعرا�س نلخ�س الآثار الوظيفية 

والفيزيولوجيا المر�صية المختلفة لهذه القناة في الجلد.
الكلمات المفتاحية: قناة مُ�صْتَقبلة فانلويد 4 ذات الجهد الموؤقت؛ جلد؛ بَ�سَرة؛ خلايا كيراتينية؛ األم؛ حكة؛ ورم ميلانيني. 
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of these channels can result in abnormal keratinocyte 
differentiation, skin pigmentary and inflammatory 
diseases and possibly carcinogenesis.

Overall, TRP channels are non-selective cation 
channels that mediate the influx of calcium ions (Ca2+), 
magnesium and monovalent cations into different 
cells.2 A functional TRP channel is formed of a central 
hydrophilic channel pore surrounded by four subunits 
consisting of six transmembrane protein segments with 
C- and N-terminals protruding into the cytoplasm.3,4 
To date, the TRP superfamily is composed of a total 
of 29 members divided into seven subfamilies based 
on amino acid arrangement, including the ankyrin, 
canonical, melastin, mucolipin, polycystin, no-mecha- 
noreceptor potential and vanilloid (TRPV) subfamilies.2,5,6 
These channels are found in various tissues and organs, 
with almost every cell expressing at least one subtype, 
and engage in several physiological cellular processes, 
including proliferation, apoptosis, cell death, mechano-
sensation, cell volume regulation, secretion, control of 
vascular permeability and blood vessel tone, as well 
as angiogenesis.7–11 Moreover, TRP channels can be 
gated by a wide range of physical and chemical stimuli 
such as mechanical forces, temperature and various 
ions and small molecules.12,13 Seemingly, TRP channels 
are crucial players in multiple facets of health and 
ailment.14 

Like other tissues and organs in the body, the skin 
expresses many different TRP subtypes that signif- 
icantly influence its proliferation, growth and integrity 
via different mechanisms, as well as its functioning in 
both healthy and diseased states.15,16 The skin has an 
extracellular calcium gradient, consisting of low levels 
near the basal keratinocytes and relatively higher concen- 
trations around the superficial epidermal keratinocytes. 
Several types of TRP channels mediate calcium influx 
into sensory neurons, immune cells, keratinocytes and 
melanocytes in the skin; this potentially explains how 

these channels affect cellular proliferation, differ- 
entiation, cell migration, cytotoxicity and the secretion 
of paracrine and autocrine chemicals.17 Calcium is of 
particular importance to epidermal keratinocytes as 
it promotes their progressive differentiation while 
being pushed apically by actively dividing basal cells.18 
Abnormal homeostasis of calcium, as in conditions 
such as Darier’s disease or Hailey-Hailey disease, leads 
to poor adhesion between keratinocytes, disrupted 
epidermal differentiation, keratosis and other skin 
malfunctions.19,20

Another important function of TRP channels is 
their ability to cause membrane depolarisation as a 
result of thermal, mechanical and chemical stimuli.2 
Subsequently, TRP channel-mediated depolarisation 
triggers action potential firing in cutaneous sensory 
neurons, leading to sensations of temperature, itching 
and pain.21 Furthermore, TRP channel stimulation 
can also depolarise non-excitable cells and alter other 
cellular processes, such as the release of adenosine 
triphosphate (ATP) from keratinocytes.22 

The fourth member of the TRPV subfamily 
(TRPV4) was initially reported as an osmo- or mechano- 
sensor that can be stimulated by moderate warmth 
(>27°C) and ultraviolet (UV) light, as well as stimulated 
or inhibited by various chemical stimuli, including 
GSK1016790A, the synthetic phorbol ester 4α-phorbol 
12,13-didecanoate and HC-067047.23–30 Like other 
subtypes, TRPV4 is expressed throughout the body 
including the hippocampal neurons, endothelial cells, 
oesophageal, gastric and urinary bladder epithelia 
as well as skin keratinocytes, where it contributes to 
numerous physiological processes.9,10,26,30–33 Figure 1 
illustrates the various functions of TRPV4 channels in 
different skin cells. Although several TRPV4 agonists 
and antagonists have been studied in animal models, 
none have yet been tested in human clinical trials 
[Table 1].29,34–49 

 
Figure 1: Diagram illustrating the functional expression of transient receptor potential vanilloid 4 channel in different skin cells.
ATP = adenosine triphosphate.
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This review will discuss the functional expression 
of TRPV4 channel in various types of cells in the 
skin, as well as its contribution to different cutaneous 
physiological and pathological processes. 

Epidermal Barrier Function

In the skin, the epidermal barrier restricts extensive 
epidermal water loss and prevents dehydration and 
noxious substances and pathogens from entering the 
body. This barrier function is upheld by a hydrophobic 

cornified layer formed of an uninterrupted sheet of 
keratin-rich cells enclosed in an extracellular unionised 
lipid layer.50,51 Other equally indispensable structures 
include the intercellular junctions underneath this 
cornified layer, such as the adherens junctions (AJs) 
and tight junctions (TJs).52,53 

In mice, TRPV4 is expressed in epidermal kera- 
tinocytes and its stimulation—either by temperature or 
selective agonists—accelerates barrier regeneration.54,55 
Moreover, TRPV4 is specifically colocalised with AJ 
components, mainly β-catenin and E-cadherin, at the 
plasma membrane of these keratinocytes, thus supp- 
orting its role in epidermal barrier homeostasis.33 
Warm temperatures provoke TRPV4-mediated Ca2+ 
influx into keratinocytes, resulting in their subsequent 
differentiation and cell-cell contact formation.33 This 
promotes the development of an intact cell-cell junction- 
dependent barrier, including both TJs and AJs, and is 
disrupted in TRPV4-deficient mice.33 

Thermal and chemical stimulation of TRPV4 
channel also elevates intracellular calcium in human 
keratinocytes and contributes to the formation of 
intercellular junctions, thus reinforcing intercellular 
barrier integrity in both ex vivo and in vitro experiments, 
with the knockdown of this channel compromising 
the formation of augmented transepithelial resistance 
in cultures of human keratinocytes.56 Indeed, TRPV4 
activation due to warm temperatures and chemical 
agonists reinforces the TJ-associated barrier of human 
keratinocytes via the upregulation of TJ structural 
proteins occludin and claudin-4, and accelerates barrier 
function recovery in ex vivo human skin after cornified 
layer removal.57 However, while there is evidence 
supporting the function of TRPV4 in skin barrier 
formation, its role in wound healing has not yet been 
elucidated.

Sensory Functions

There is substantial evidence supporting the involve- 
ment of TRPV4 channel in the transduction of different 
sensory modalities. In some cases, these functions are 
mediated by the neurally-expressed TRPV4 channel, 
while in other cases these are mediated via expression 
in keratinocytes and other skin-residing cells.

thermoception

The conscious or unconscious perception of atmospheric 
temperature is a physiological process that is pivotal 
for body temperature homeostasis and the avoidance 
of dangerous or life-threatening thermal extremes. 
Cutaneously, heat is perceived by free nerve endings 
that connect to small diameter fibres or by epidermal 
keratinocytes with abundant TRPV4 expression.25,58 In 

Table 1: Animal studies involving transient receptor potential 
vanilloid 4 channel agonists and antagonists29,34–49

Selectivity In vivo 
(route/
species)

Agonist

4αPDD29,34 Non-selective + (intraplantar/
mice)

PMA29 Non-selective -

5,6-EET38–40 Non-selective -

DMAPP41 Non-selective + (intraplantar/
mice)

BAA42 Non-selective -

N-arachidonoyl taurine43 Non-selective -

Apigenin44 Unknown -

CBDV and THCV29 Non-selective -

RN-174745 Non-selective -

GSK1016790A29,36 Non-selective + (IV, SC/mice)

Antagonist

Gd3+46 Non-selective 
TRPV

-

La3+46 Non-selective 
TRPV

-

RR29,46,47 Non-selective -

Capsazepine48 Non-selective 
TRPV

-

RN-173448 Selective -

Butamben48 Non-selective -

Citral48 Selective -

GSK20537,48 Selective + (topical/mice)

HC-06704735,48 Selective + (SC/mice)

GSK219387448,49 Non-selective + (IV, IP/mice 
& rats)

PDD = phorbol-12,13-didecanoate; PMA = phorbol 12-myristate 13-acetate; 
EET = epoxyeicosatrienoic acids; DMAPP = dimethylallyl pyrophosphate; 
BAA = bisandrographolide A; CBDV = cannabidivarin; THCV = tetrahy- 
drocannabidivarin; SC = subcutaneous; IV = intravenous; TRPV = tran- 
sient receptor potential vanilloid; Gd3+ = gadolinium; La3+ = lanthanum; 
RR = ruthenium red; IP = intraperitoneal.
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mice, warm temperatures elicit currents in primary 
keratinocytes, with most heat-elicited responses 
seemingly mediated by TRPV4.54 

It is possible that TRPV4 participates in the Ca2+ 
homeostasis of keratinocytes in response to slight 
variations in skin temperature, which might in turn 
affect Ca2+-dependent processes, such as keratinocyte 
proliferation and differentiation or intercellular junction 
formation.59,60 On the other hand, another explanation 
is that TRPV4 expression in keratinocytes results in 
the secretion of mediators such as ATP, which in turn 
stimulates adjacent afferent nerve fibres and, hence, the 
transduction of warmth.61–63 Additionally, TRPV4 is 
involved in sensations of innocuous warmth, although 
the effect in TRPV4-deficient mice was modest and 
condition-dependent, with the mice exhibiting pref- 
erences for slightly warmer temperatures during a 
thermal gradient assay.64

mechanosensation

Mechanosensation involves the transduction of mech- 
anical stimuli into neural signals, with mechanoreceptors 
in the skin responsible for the sensation of touch. Both 
low- and high-threshold dorsal root ganglion (DRG) 
neurons express TRPV4 channel.58 In addition to its 
expression by free nerve endings, TRPV4 is also present 
in cutaneous mechanosensory terminals, including 
Merkel nerve endings, Meissner corpuscles and intra- 
epidermal and penicillate terminals. This distribution 
indicates that the sensation of pressure by TRPV4 
channel is transmitted through A- and C-fibres, where it 
plays a role in cutaneous mechanosensation.58 Another 
possibility is that TRPV4 channel in keratinocytes 
respond to mechanical stimuli by releasing ATP, which 
is subsequently recognised by the neighbouring sensory 
fibres that mediate mechanotransduction.61–63

nociception

Nociception refers to the detection of stimuli causing 
pain. Significantly elevated levels of TRPV4 expression 
in keratinocytes have been observed among patients 
with breast pain, correlating with the higher expression 
of nerve growth factor in these keratinocytes and, 
hence, sensitisation of the nociceptive nerve fibres.65

Furthermore, TRPV4 has been implicated in osmotically- 
evoked pain behaviours and acute mechanical noci- 
ception, as well as mechanical hyperalgesia in inflamm- 
atory and neuropathic pain.66–76 

While TRPV4 does not contribute to the normal 
somatosensory detection of mechanical stimuli, it 
plays an important role in mechanical hyperalgesia, 
as it interacts with α2β1 integrin and the Src protein-
tyrosine kinase to form a molecular complex that 
functions only in the setting of nerve injury or inflamm- 

ation.77 Additionally, kinins can sensitise TRPV4 to 
induce mechanical hyperalgesia, a mechanism thought 
to contribute to the maintenance of mechanical hyper- 
algesia and paclitaxel-induced chronic pain in mice; 
accordingly, these receptors may present potential 
targets for the treatment of chemotherapy-induced 
neuropathy.34 

Some proalgesic factors, such as protease-activate 
receptor 2 agonists, also provoke mechanical hyper- 
algesia mediated by TRPV4 channel.78 In diabetic mice, 
TRPV4 blockade by the selective antagonist HC067047 
prevented the development of mechanical allodynia, an 
effect seemingly independent of changes in the expression 
level of TRPV4 in the sensory neurons.35,79 More-
over, inflammation-induced thermal hyperalgesia is 
reportedly impaired in TRPV4-deficient mice.80

Sunburn-Associated Hyperalgesia

Additionally, TRPV4 is involved in hyperalgesia assoc- 
iated with sunburn. Exposure to UVB rays induced a 
TRPV4-mediated calcium influx into cultured mouse 
keratinocytes, with the subsequent release of endothelin 
(ET)-1, a pruriceptive/nociceptive peptide.81 Furthermore, 
UVB-induced inflammation, as well as thermal and 
mechanical hyperalgesia, are reduced in TRPV4-def- 
icient mice or those treated with TRPV4 channel 
blockers.81 Following sunburn, knocking out kera- 
tinocyte-specific TRPV4 in mice curtailed the secretion 
of proinflammatory factor interleukin (IL)-6, conseq- 
uently decreasing the numbers of recruited neutrophils 
and macrophages.81

Similarly, TRPV4 immunoreactivity is increased 
in human skin after exposure to UVB rays.81 A recent 
study found that γ-irradiation of keratinocytes prompted 
TRPV4-mediated ATP release, thereby stimulating 
the P2Y11 receptor and resulting in the release of IL-6 
and IL-8 via the p38 mitogen-activated protein kinase 
(MAPK)-nuclear factor-κB signalling pathway.82 There- 
fore, as both TRPV4 and ET-1 apparently play a role 
in acute photodermatitis in humans, TRPV4 channel 
may be a potential curative target for UVB- and γ 
irradiation-induced dermatitides.82

pruritus 
Chronic itching is a major clinical symptom in many 
skin disorders. Itch-sensitive neurons are stimulated 
by a wide range of exogenous itch-causing compounds 
(i.e. pruritogens). Additionally, keratinocytes and skin- 
resident immune cells have the ability to release 
endogenous pruritogens—including ATP, ETs, prosta- 
glandins, histamine, nitric oxide and serotonin—which 
can directly activate or sensitize the primary sensory 
neurons and cause itching, thus implying that the skin 
plays a role in the inception of itching sensations.83,84 
In both humans and mice, several TRP channels are 
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key mediators of itching sensations as they directly 
activate the peripheral pruriceptors or mediate the 
release of pruritogens from keratinocytes and other 
skin-resident cells.84–86

The involvement of TRPV4 in the sensation of 
itching is supported by a growing amount of data; for 
instance, in mice, the subcutaneous injection of 
GSK1016790A, a TRPV4 agonist, induced itch-related 
behaviours.36 Moreover, TRPV4 contributes to histamine- 
and serotonin-induced acute itching, although its exact 
role is uncertain.87 An intradermal injection of serotonin 
in TRPV4-deficient mice induced significantly less 
scratching compared to wild-type controls.88 Serotonin- 
induced itching is also suppressed by the pharmacol- 
ogical inhibition of TRPV4 or 5-hydroxytryptamine 
(HT)-2 receptor, suggesting that 5-HT2-mediated 
itching is interceded by a downstream TRPV4-
dependent pathway.88 On the other hand, scratching 
behaviours evoked by histamine injection reportedly 
differ little between TRPV4-deficient and wild-type 
mice.88 

In a murine model of chronic itching, TRPV4 
activation promoted downstream 5-HT signalling, with 
TRPV4-expressing keratinocytes and dermal macro- 
phages involved in non-allergy- and allergy-related 
chronic itching, respectively.89 Moreover, scratching 
behaviours evoked by all histaminergic pruritogens 
(including histamine, ET-1 and compound 48/80) 
were significantly diminished in keratinocyte-specific, 
tamoxifen-induced TRPV4-deficient mice; moreover, 
the topical application of a TRPV4 blocker, GSK205, 
on wild-type mice also reduced scratching reactions 
evoked by these pruritogens.37 

These findings indicate that TRPV4 channel plays 
a role in histaminergic itching. Histamine induces a 
TRPV4-dependent Ca2+ influx into the keratinocyte 
through the histamine H1, H3 or H4 receptors, resulting 
in the phosphorylation of MAPK and extracellular 
signal-regulated kinase (ERK), and triggering signalling 
of the itching sensation.37 However, it is not clear if 
topically-applied inhibitors of TRPV4, histamine 
receptors or MAPK/ERK signalling pathways also act 
on cutaneous sensory nerve endings in addition to 
skin-resident cells. Besides the phenotypic differences, 
whether TRPV4 expression in the skin or the DRG 
neurons is the main mediator of itch is still an open 
question; Akiyama et al. proposed that serotonin-
evoked scratching was mediated by TRPV4 functionally 
expressed in DRG neurons, whereas Chen et al. 
theorised that histaminergic itching was mediated by 
TRPV4 expressed in epidermal keratinocytes.37,88

Chloroquine (CQ) is another well-established 
pruritogen which can be used to induce acute histamine- 
independent itch model in mice. Interestingly, two 

studies reported different outcomes with regards to 
CQ-elicited itching in TRPV4-null mice; in the first, CQ-
elicited itching was significantly elevated in TRPV4- 
deficient mice in comparison with wild-type mice, 
whereas the other study found that CQ-induced 
scratching was not affected in TRPV4-deficient mice.37,88

Therefore, the exact role of TRPV4 in mediating acute 
itching warrants further research.

Regulation of Hair Foll icle 
Cycle

A recent study reported TRPV4-positive immunore- 
activity in intact human hair follicles during the 
anagen growth phase, with immunoreactivity detected 
in the cortex of the bulbar hair shaft as well as the 
inner and outer root sheath layers of the hair follicle 
epithelium.90 Moreover, in vitro TRPV4 activation 
increased the number of apoptotic cells in areas with 
matrix keratinocytes and inhibited hair elongation, 
suggesting a regulatory role in hair follicle cycling.90 

Role in Skin Diseases

An overview of the contribution of TRPV4 to different 
cutaneous diseases and its potential role in treatment 
is shown in Table 2.33,55,57,81,91–100

non-malignant diseases

Acne vulgaris is one of the most common skin diseases in 
humans and is characterised by the overproduction of 
sebum, unwanted sebocyte proliferation and inflamm- 
ation.101 In human sebocytes, TRPV4 is functionally 
expressed and its activation exerts both lipostatic and 
antiproliferative effects.91 As such, TRPV4 could be 
potentially beneficial in acne treatment. Additionally, 
several genetic TRPV4 mutations reportedly cause 
Charcot-Marie-Tooth disease type 2C, a hereditary 
neurodegenerative disease associated with sensori- 
motor neuropathy.92–94

Rosacea is a chronic dermatitis that is accompanied 
by neurogenic inflammation. Compared with healthy 
skin, different types of rosacea display elevated expr- 
essions of different TRPV channels (including TRPV4), at 
either the molecular or protein levels, suggesting that 
TRPV dysregulation may be an important mechanism 
underlying the initiation and maintenance of this 
condition.95 Additionally, TRPV4 expression is elevated 
in both Langerhans and dermal cells in rosacea and can 
be stimulated under inflammatory conditions and by 
rosacea-related factors; accordingly, TRPV4 could be 
involved in the underlying inflammation in rosacea.95 
A recent study revealed that TRPV4 is a key driver for 
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mast cell-mediated skin inflammation in rosacea.102 

malignant and premalignant 
diseases

Although TRPV4-related immunoreactivity and mess- 
enger ribonucleic acid transcripts are maintained at high 
levels in healthy or inflamed skin, they are abrogated in 
keratinocytic tumours. In both premalignant lesions 
and non-melanoma skin cancers, TRPV4 is markedly 
downregulated or even absent, seemingly as a result 
of the release of keratinocyte-derived IL-8, suggesting 
that the selective downregulation of TRPV4 appears to 
be an early diagnostic marker of skin carcinogenesis.96 

Moreover, in human melanoma A375 cell lines, 
TRPV4 stimulation suppresses cell proliferation and 
induces cell apoptosis.97 A recent study revealed that 
TRPV4 stimulation, with calcium signalling involvement, 

mediates human melanoma A375 cell death by regulating 
the Akt pathway-driven antitumour process.98 While 
the involvement of TRPV4 in tumourigenesis has 
yet to be fully explored, these findings suggest that 
TRPV4 expression might serve as a prognostic or early 
diagnostic biomarker in human melanomas, while 
TRPV4 activation could even hold potentially curative 
properties.98

Conclusion

Overall, TRPV4-mediated processes are not only 
limited to sensory functions, such as itching and pain, 
but also play a crucial role in keratinocyte proliferation 
and differentiation as well as skin barrier formation, 
maintenance and regeneration. Therefore, modifying 
TRPV4 function could improve skin barrier function, 
especially in conditions where there is a breach in 
the cornified layer-dependent barrier. Moreover, 
TRPV4 channel may be involved in certain diseases, 
thus providing possibilities for therapeutic targeting. 
For example, TRPV4 inhibition could help in the 
treatment of UVB-induced inflammation and acne 
vulgaris, whereas TRPV4 activation or upregulation 
could be of therapeutic value in the treatment of both 
melanoma and non-melanoma skin cancers. 
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