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Abstract. The comprehension of form generally assumes a euclidean three-dimension-
al perspective. I argue here that non-euclidean geometry has much to offer in under-
standing structures of atomic crystals, molecular liquid crystals and related mesoporo-
us inorganic materials and biominerals.
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I have been pleasantly surprised by the continuing interest of colleagues in 
the note, which offers an alternative perspective of topologically complex struc-
tures from the conventional the-dimensional euclidian view. Hence this slightly 
updated version. Naturally, my choice of examples to illustrate the thesis that 
many structure can be fruitfully described as two-dimensional hyperbolic pat-
terns has dated somewhat. For example, the theoretical crystalline schwarzites 
discussed here remain undiscovered, despite their likely theoretical stability. 
The focus on such materials has shifted, with more recent report of amorphous 
schwarzites.

Stephen T. Hyde

1. INTRODUCTION

This essay is a story about “ways of seeing”, and how those ways run 
beneath the more visible tracks that mark the course of the hard sciences. 
I am interested in exploring the applications of geometry, particularly non-
euclidean geometries, to our comprehension of form, shape and dimension. 
The story is focused on the world of atoms and molecules, and their con-
densed forms.

The title of this article is adapted from the movies. “Boxing Helena” is 
a provocative film by Jennifer Lynch, that appeared in 1993. Its notoriety 
centres on the story: an obsessed surgeon keeps a beautiful young Helena – 
limbless – in a box, in an attempt to capture her heart. Of course, he fails. 
To this geometer, the movie is an attractive metaphor for the ultimate steril-
ity of conventional euclidean geometric descriptions, that imprison all forms 
into the box-like grid of euclidean space. Many forms are perhaps better 
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described within curvilinear grids, which lie at the heart 
of non-euclidean geometries.

Form is too sterile an issue for most physicists, who 
opt to explain the energetics of form. Biologists, follow-
ing Goethe’ s example, explore the morphology of liv-
ing things, and classify according to phenotype. I stand 
betwixt these extremes, asking what are the possibili-
ties of form? and how much are they constrained by the 
shape of space itself? This is a surprisingly vexed subject, 
and I can only offer some preliminary insights, which 
were inspired by the recognition of unusual forms in 
solid and liquid crystals (explored at length in HYDE 
et al., 1997; see also VON SCHNERING and NESPER, 
1987). However, these insights alone lead to some inter-
esting reflections on the nature of science, and the fra-
gility of some of its unquestioned assumptions about 
seeing, and perception of shape.

2. MORPHOLOGY IN THE LARGE: SNAIL SHELLS

The writings of the Harvard biologist, Stephen Jay 
Gould, unfailingly elicit a sense of wonder at the palae-
ontologists’ careful unravelling of the multi-stranded 
skein of life’s evolutionary processes. Gould’ s own field 
is the evolution of land snails. In a recent story, “Unen-
chanted Evening”, Gould recounts a poignant tale of 
the demise of an indigenous Tahitian snail, genus Par-
tula, due to the introduction of the voracious Euglan-
dina snail by over-zealous and ignorant French scien-
tific bureaucrats (GOULD, 1993). Euglandina were intro-
duced in 1977; by 1988, Partula was gone forever from 
most of the islands, and over seventy years of continuous 
research on Partula by a number of eminent snail biolo-
gists was abruptly terminated.

This work began in 1917, when Henry Edward 
Crampton undertook the first of twelve expeditions to 
the Tahitian islands. Crampton was to spend the next 
50 years of his life trekking though the lush, inaccessible 
terrain of the islands, collecting specimens of Partula, 
followed by painstaking analysis. Crampton compared 
different populations and the effect of local environment 
and genetic isolation on the evolution of Partula. He 
elected to index specimens by the shape of their shell. 
Over 200,000 specimens were subjected to Crampton’ s 
vernier calipers.

The morphology of these shells is pretty much like 
that of the common garden snail: a twisted and curved 
cone like the final flourish atop a meringue. To reduce 
this form to numbers, Crampton made four measure-
ments on each shell, illustrated in the beautiful engrav-
ing reproduced in Fig. 1, taken from his own work. 

Notice the rectangular grid imposed on the shell. 
Crampton measured the lengths AB, FB, CD and ED for 
each shell, and then calculated averages and standard 
deviations for each population (to eight significant fig-
ures – by hand!). 

According to Crampton, “These figures, together 
with a single line of text, may be all that represents two to 
eight weeks of mathematical drudgery … Yet the employ-
ment of such methods is justified in the final results.” 
(quoted in GOULD, 1993).

How “justified” was the persistent Crampton in 
his final upbeat assessment of half a century of work? 
According to Gould, the work ranks with the best evo-
lutionary studies. Yet I can’t help feeling that Crampton 
could have profited better from a more careful choice 
of metrology of the form of these shells. His rectilinear 
dimensions seem to me to be a classic case of shoehorn-
ing (to borrow a favourite word of Gould), forcing the 
swirling, twisted shells into flat rectangular boxes: one 
around the outer form and a second around the opening 

Figure 1. Crampton’s engraving of the Partula shell, overlayed with 
his measuring grid.
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of the shell. To recall the analogy with Hollywood: as 
Helena is constrained by a box, so Crampton’ s beloved 
Partula is unnaturally confined between a pair of boxes!

Geometry is a far more versatile tool than the recti-
linear lengths Euclid’s codification suggest. It underwent 
a revolution last century, following utter failure to justify 
Euclid’s parallel postulate. After more than two thou-
sand years, the ad hoc nature of that postulate was real-
ised, and its removal was shown to yield no collapse of 
the edifice that is Geometry – rather, a multitude of new 
“Non-Euclidean” Geometries were immediately erect-
ed. Gauss, Lobachevsky, Bolyai, (1820’s) and Riemann 
(1850’s) are credited with these advances (although 
Gauss refused to publicise his findings in the area, ter-
rified of “the clamour of the Boeotians”). The work did 
not filter through to mathematicians until the end of the 
last century, largely due to the efforts of Helmholtz in 
Germany and Clifford in England.

Despite the sea-change in geometry, Euclid’s pro-
gram remains largely unchallenged as the definitive 
geometry for all but the most curious students of space 
and form. Rectilinear grids, like Crampton’ s, and the 
euclidean vocabulary of form – polyhedra, spheres and 
cylinders – are still routinely assumed to span the vari-
ety of possible forms in the sciences.

3. MORPHOLOGY OF ATOMS AND MOLECULES

In my own area of research – condensed mat-
ter – similar spatial assumptions to that unknowingly 
invoked by Crampton abound 1. Consider, for example, 
the complex atomic arrangements in zeolites. These 
materials are central to modern society, used as cata-
lysts to “crack” crude oil, forming petrol. Millions of 
tonnes of a single zeolite catalyst, faujasite, are used 
annually to make petrol. Zeolites are made up of com-
plex (predominantly) silica frameworks – over one 
hundred distinct frameworks have been reported to 
date (MEIER and OLSON, 1992). Although they are 
solids, the interior of a zeolite crystal is accessible to 
sufficiently small molecules, which can diffuse along 
the channels in the framework. From the perspective 
of non-euclidean geometry (detailed later), they are all 
surface, and no volume! It is not surprising then that 
zeolites are excellent catalysts, for catalysts generally 
work by enhanced reactivity due to surface adsorption 
(Blum et al., 1993).

1 With the notable exception of physicists including Maurice Kléman, 
Jean-Franccois Sadoc, Nicolas Rivier, Remy Mosseri and colleagues, see 
“Geometry in Condensed Matter Physics”, World Scientific, Singapore, 
1991.

Understanding of the chemical functionality of 
these materials relies on comprehension of their atom-
ic structures: i.e. the relative arrangements of atoms, 
and bonds, in space. Ball-and-stick models emphasise 
the topology of the bond network, that links the silica 
units into an infinite polymer. Alternatively, they are 
described in terms of packings of convex polyhedra. 
Examples of both representations are shown in Fig. 2. 

Both descriptions are implicitly euclidean and three-
dimensional, involving linear links between atoms and 
plane-faced convex polyhedra. The polyhedral language 
is a rich one – see for example (O’KEEFFE and HYDE, 
1996) – though we shall see it is not necessarily optimal 
for all purposes.

Our second example of atomic structures concerns 
allotropes of carbon. The simplest structure of (sp2 
hybridised) carbon is that of graphite, which contains 
stacked flat hexagonal sheets of carbon atoms. But we 
now know that this is not the only possible form that sp2 
hybridised carbon polymers can adopt. Warped forms of 
graphitic carbon result in cage-like fullerenes (Fig. 3).

Fullerenes can be described as faceted balls or 
rounded polyhedra, in contrast to the extended f lat 
sheets of graphite. The “shapes” of these allotropes can 
be quantitatively related to their atomic structure by 
Euler’ s equation, which asserts that the numbers of 
faces (F), edges (E) and vertices (V) in a closed (convex) 
polyhedron fulfil the condition:

V–E+F= 2 (1)

We can rewrite this equation in a more useful form 
for closed polyhedral networks, such as those of the 
fullerenes. Each ring (a shortest circuit) in the net is a 
face, and each link between vertices an edge. Denote the 
number of edges meeting at each vertex by z, and the 
(average) size of the rings in the network by n. For a pol-
yhedral net, containing R rings, (1) becomes:

 (2)

Graphite, whose ring size is equal to 6 and connec-
tivity is equal to 3, can only just be described as a con-
vex polyhedron – an infinitely large one (of infinite radi-
us – flat). Indeed, if n = 6 is inserted into (2), the sum

 (3)

so that an unlimited number of rings are required, 
forming a (flat) infinite polyhedron. On the other hand, 
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if the ring sizes in graphite were exclusively equal to 5, 
the number of rings, R, in a polyhedron fulfils Eq. (2):

 (4)

Indeed, the simplest hypothetical closed fullerene 
contains just twelve 5-rings and twenty carbon atoms 

(C20), lying at the vertices of the Platonic polyhedron, 
the dodecahedron (Fig. 4).

A curious property emerges from Eq. (2). The addi-
tion of an arbitrary number of 6-rings does not change 
the number of 5-rings in the closed shell polyhedron, 
since (from (3)), 6-rings do not contribute to the equation. 
Thus, regardless of the number of 6-rings, twelve penta-
gons – and only twelve – are to be found in all closed-shell 
fullerenes (built of 5- and 6-rings). If more than 12 penta-
gons are inserted, Eq. (1) no longer holds, and the network 
instead continues to spiral inwards around itself, produc-
ing a network which shares many of the characteristics of 
the Partula shell. The network no longer closes on itself 
seamlessly, but contains spiral edges, shown in Fig. 5. Such 
exposed edges – along which the carbon atoms have only 
two bonds – are not going to remain so for long. These 
structures are unlikely to form under normal conditions.

What happens if 7- or 8-rings are introduced to 
these three-connected networks? From Eq. (2), it is clear 
that the presence of these rings precludes the formation 
of convex or flat polyhedra, since

(a)

(b)

Figure 2. Pictures of zeolites: (a) Ball and stick model of the anal-
cime framework. Links represent Si-O-Si bonds in the idealised sili-
cate, balls the Si positions. (b) Polyhedral model of the structure of 
sodalite (face-sharing truncated octahedra), with Si at the vertices.

(a)

(b)

Figure 3. (a) The planar network of (three-connected) carbon 
atoms in graphite, (b) some (three-connected) fullerene networks 
(carbon atoms lie at each vertex): (L to R) C60 and C740 (courtesy of 
Myfanwy Evans).
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 (5)

is negative (so that formally, a negative number of 
rings must be found in the convex polyhedron, cf. Eq. 
(2)). To cope with the shapes formed by three-connect-
ed networks containing larger rings than 6-rings, we 
need to generalise Euler’s equation (1), introducing a 
new parameter, χ, known as the Euler-Poincare char-
acteristic.

 (6)

The contribution to the Euler-Poincare characteris-
tic of 7- and larger rings is, from Eq. (5) above, negative. 
What does this mean in space?

Three-connected nets containing >6-rings are forced 
to warp, so that they lie on saddle-shaped surfaces, in 
contrast to the convex polyhedral surfaces formed by 

5-rings. It is useful to think of the curving of graphite 
layers as a disclination process: 5- and 7-rings resulting 
in positive and negative disclinations respectively (Fig. 6).

The saddle-shape that results by insertion of negative 
disclinations in graphite is most evident when the aver-
age ring-size is close to 6, but slightly larger. (This situ-
ation can be realised simply by inserting a large number 
of hexagons into a cluster of 7-, 8-, … rings, since the 
hexagons do not affect the value of the characteristic, 
χ) Depending on the number and arrangement of hep-
tagons or octagons, seamless crystalline porous frame-
works or disordered sponge-like sheets can result, analo-
gous to the boundary-free fullerenes shown in Fig. 3.

The Euler-Poincare characteristic, (Eq. (6)), is “quan-
tised” for boundary-free surfaces, and related to the 
number of channels within surface. If the underlying 
surface is periodic, the characteristic per unit cell is like-
wise quantised, and so discrete families of frameworks 
containing 7-, 8-, … rings are possible, analogous to the 
twelve 5-rings present in a closed shell fullerenes con-
taining only 5- and 6-rings. Such structures have been 
proposed as possible modifications of graphitic carbon. 
They have been christened “Schwarzites”, in honour of 
the celebrated nineteenth-century German mathemati-
cian, Hermann Amandus Schwarz (MACKAY and TER-
RONES, 1991). Examples of hypothetical schwarzite 
frameworks are illustrated in Fig. 7.

What happens as the density of negative disclina-
tions (and the average ring-size) increases? For example, 
insertion of 8-rings, rather than 7-rings results in frame-
works that are no longer clearly sheet-like, rather they 
appear three-dimensional, and morphologically similar 
to zeolite frameworks (Fig. 8).

Geometrically, no quantitative transition accom-
panies this apparent shift of form of three-connected 
schwarzite frameworks with increasing disclination 
density; rather our perception of the structural form 
is changing. When the ring-size barely exceeds six, the 
larger rings surrounding tunnels of the network are 
perceived to be open, while we mentally “fill in” the 

Fig. 4. Da Vinci’ s engraving of a regular dodecahedron, whose ver-
tices locate the relative positions of carbon atoms in the fullerene, 
C20.

Figure 5. Kroto and Mackay’s hypothetical spiral graphitic carbon 
structures, adapted from KROTO (1988).
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smaller rings, to form a continuous (and open) saddle-
shaped sheet. By contrast, when the ring-size in the 
surface becomes significantly larger than six, the rings 
surrounding pores approach the same size as the rings 
in the saddle-shaped sheet, and we mentally fill in tun-
nels (closing them off) and sheet-rings, leading to the 
(closed cell) infinite-polyhedral description, such as 
the sodalite description shown in Fig. 2. An apparently 
uniform network twists through space, and the struc-
tures are perceived as conventional three-dimensional 
frameworks.

Complex zeolite-like morphologies can also be 
found in molecular materials. It now appear that 
porous arrays are common in macromolecular assem-
blies, including biological systems (GUNNING, 1965; 
LANDH, 1995; HYDE et al., 1997). These shapes too lie 
beyond the usual vocabulary of (euclidean) form, and 

descriptions have inevitably been deficient. For example, 
biologists studying the shapes of organelles within cells 
have resorted to exotic terms such as “undulating tubu-
lar bodies” or “tubulo-reticular structures” to account 
for the complex forms deduced from stained optical-
microscopic sections of membranes in cells (Fig. 9). 

Whereas the channels in zeolites are typically a 
few Angstroms in diameter, those in cell organelles are 

Figure 6. (Left/Right) The formation of rings less than/greater than 
6-rings in a flat graphite sheet (tiled by hexagons) leads to positive/
negative disclinations. Copyright Chris Ewels (www.ewels.info).

Figure 7. Bonding networks in some hypothetical crystalline 
“schwarzites”, due to LENOSKY et al. (1992) (confined within a unit 
cell). The average ring-sizes here are equal to 6.2, including 6- and 
7-rings only.

(a)

(b)

Figure 8. Cubic schwarzites containing only 6- and 8-rings: poly-
benzene (a) D and (b) P (O’KEEFFE et al., 1992).
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microns. Th e very large dimensions of cell membranes 
are not yet understood.

Th e major component of cells is the lipid bilayer. 
Synthetic bilayer membranes can be reconstituted in 
vitro using only lipids (and water). Lipids, or related 
synthetic surfactant molecules (collectively called sur-
factants), spontaneously assemble in water to separate 
the oily chains – which abhor water – from the polar 
and water-soluble head groups. In some cases, namely 
“bicontinuous cubic phases” of surfactant- or lipid-water 
mixtures, the membranes display identical morphologies 
to those of the organelle membranes. Th ese structures 
were originally described in terms of intertwined arrays 
of channels (Fig. 10), similar to the tunnel arrangements 
in zeolites (LUZZATI and SPEGT, 1967). In contrast to 
the membranes in vivo, the channels of these in vitro 
membranes are typically 20-50 Å across.

Identical structures are also found in inorgan-
ic materials “templated” with surfactants, with pore 
sizes ranging between 20-150 A (BECK et al., 1992; 
ALFREDSSON and ANDERSON, 1996), and copolymer 
mixtures (typically 1000 A diameter) (HASEGAWA et 
al., 1987, 1993; HAJDUK et al., 1994) (Fig. 11).

It turns out that there are deep structural similarities 
between zeolites, schwarzites, surfactants and polymer 
molecular aggregates. In fact, all of these materials can 
be described by a generic structural motif, the hyperbolic 
surface. Th ese materials can be related to periodic hyper-
bolic surfaces. Th e most prevalent examples found to date 

are cubic surfaces: the D-surface (or “diamond” surface), 
the P surface and the gyroid, shown in Fig. 12.

The possibility of describing “three-dimensional” 
atomic frameworks, such as those of zeolites and schwar-
zites, in terms of two-dimensional hyperbolic spaces is 

Figure 9. Stained sections through the pro-lamellar body (the light-
harvesting photosynthetic centre) of a dark-adapted plant. (Insets: 
Fits due to Landh, described later in the text.) Adapted from HYDE 
et al. (1997). Figure 10. LUZZATI and SPEGT’S model (1967) of the mesostruc-

ture of a cubic phase, consisting of two intertwined rod networks, 
enclosing water (reversed phases) or the lipid/surfactant chains 
(normal phases).

Figure 11. Electron micrograph of silica templated from a copoly-
mer material, whose nanostructure (inset) corresponds to a single 
rod network in Fig. 10. Image courtesy of Hirokazu Hasegawa.
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evident in the examples shown in Fig. 13. Some molecu-
lar assemblies too are perfectly described in terms of these 
surfaces. For example, the membrane sections agree exact-
ly with calculated sections through the D surface (insets, 
Fig. 9). In order to map these frameworks onto two-
dimensional hyperbolic space, the edges of the frameworks 
must be curved, to form geodesics in that space.

Description is the fi rst stage of science. I hope that 
the examples shown above reveal the complexity of this 
step alone, and the dangers inherent in too limited a cat-
alogue of form. Th e next step requires some explanation 
of why that description is a useful one. Some progress 
has been made towards that second goal, outlined below.

4. DIFFERENTIAL GEOMETRY, NON-EUCLIDEAN 
GEOMETRY AND TOPOLOGY

In order to appreciate the nature of non-euclidean 
structures, the concept of dimensionality and the impor-
tance of periodic hyperbolic surfaces in these materials, 
we need fi rst to digress a little into geometry.

No-one is able to offer a complete catalogue of 
form. Geometric studies following the program out-
lined by Riemann in 1853, and still in progress, suggest 
that the variety of forms relevant to physical systems in 
n-dimensions (n-manifolds) is rich. Th e problem of enu-
merating all four- (and higher dimensional) manifolds 
is unsolvable; the jury is still deliberating in the case of 
three-manifold (THURSTON, 1997). Two-dimensional 
surfaces can however be catalogued to a limited degree 
using concepts from diff erential geometry and topology. 
Diff erential geometry is concerned with the local shape 
of a surface – the shape of a small patch on the surface. 
By contrast, topology deals with the global structure, the 
connectivity, of the surface.

The shape of a surface patch can be succinctly 
described by its Gaussian curvature, which can be posi-
tive, negative, or zero (Fig. 14).

Surfaces of zero Gaussian curvature are called fl at, 
despite the fact that they can be planar, cylindrical or 
conical. Why? Because it turns out that a rectangular fl at 
grid, such as that adopted by Crampton, can be wrapped 
onto any surface of zero Gaussian curvature, with-
out distortions of the distances between vertices or the 
right-angles between edges (measured along the surface 
patch rather than through space). Th is fact is known to 
us all: a fl at sheet of paper can be wrapped onto a cylin-
der without any stretching or crinkling.

Th e case of zero Gaussian curvature is that exam-
ined in detail in euclidean geometry. Th e other cases 
correspond to (two-dimensional) non-euclidean geom-
etries: saddle shapes belong to hyperbolic geometry and 
spherical (or ellipsoidal) caps to elliptic geometry.

In fact, Euclid also analysed other shapes, such as 
polyhedra, and spheres. But he saw these shapes exclu-
sively within the context of three-dimensional (f lat) 
space – in his view the convex polyhedra and sphere 
marked the boundaries of a fi lled inner volume. Within 
the curved two-dimensions lying on the surface of these 
forms, many geometrical features would have surprised 
Euclid. For example, a triangle – all of whose sides are 
“lines” in the sense that they are the shortest trajectories 
between the vertices (great circles) – can be traced on 
the sphere whose vertex angles sum to 3π/2, rather than 
the customary π (Fig. 15).

A sheet of paper cannot be wrapped onto a sphere 
without folding the paper so that some doubling up 
occurs. In the process, the euclidean rectangular grid 
drawn on the sheet becomes distorted, and lengths and/
or angles within the grid on the sphere are no longer 
the same as those in the original fl at grid. Indeed, the 

Figure 12. (Left  to right) Portions of the D-surface, the P surface and the gyroid. Figure courtesy Myfanwy Evans.
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elliptic cap – of positive Gaussian curvature – results 
from excision of a sector from the plane and reglue-
ing. Similarly, if a wedge is inserted into the flat sheet, 
a hyperbolic saddle-shape results, of negative Gaussian 
curvature.

This local classification scheme based on Gaussian 
curvature may appear at first sight trivial, but it is the 
simplest universal geometric classification. Look, for 
example, at the shapes of potato crisps (Fig. 16): you’ll 
find blistered chips, of positive Gaussian curvature, flat 

portions (zero Gaussian curvature) and saddles (negative 
Gaussian curvature)!

Another happy hunting ground for local shape 
can be found in leaves. (This was first pointed out to 
us by William Thurston.) Cabbage leaves, for exam-
ple, are elliptic, many eucalyptus leaves are euclidean, 
and mignonette (or “coral”) lettuce leaves are decidedly 
hyperbolic. Some examples are shown in Fig. 17.

The rich structural variety within the hyperbolic 
domain – readily apparent from the variety of shapes 

(a) (c)

(b) (d)

Figure 13. (a): The sodalite zeolite framework lying in the D-surface. Vertices of the framework occupy identical cartesian locations to those 
in Fig. 2, the edges have been curved to lie in the surface. (b): Fragment of the analcime framework in the D surface, marked in black on 
the surface. (c), (d): Two schwarzite frameworks: polybenzene D and P. (Pictures courtesy of Stuart Ramsden.)
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in mignonette leaves – is diffi  cult to appreciate without 
some familiarity with the concepts of global structure, 
described in part by the topology of the surface. Topol-
ogy is oft en called “rubber sheet geometry”, since surfac-
es which can be bent into each other (without tearing or 
gluing) are topologically equivalent.

For example, all convex polyhedra are topologi-
cally equivalent (called “homeomorphic”) to the sphere. 
Imagine a rubber balloon stretched over an inner skel-
eton shaped to form the edges of a polyhedron. Blow the 
balloon up more, until the skeleton rattles within it – a 
sphere results. Topologically speaking, convex polyhedra 
and spheres are indistinguishable – all have an Euler-

Poincare characteristic of two (Eq. (6)). Th e diff erence 
between spheres and faceted convex polyhedra lies in 
their distribution of Gaussian curvature over the surfac-
es; for the sphere it is everywhere homogeneous, while it 
is concentrated at the isolated vertices of polyhedra.

For two-dimensional surfaces in three-dimensional 
euclidean space, geometry and topology are inextrica-
bly linked by the Gauss-Bonnet theorem. Th is theorem 
reveals the importance of Gaussian curvature in a topo-
logical sense. To understand the theorem, we need to 
introduce a dimensionless curvature measure: the “inte-
gral curvature”, which is defi ned to be the integral of 
the Gaussian curvature (∬surfaceKda) over the area of the 
surface.

Th is integral curvature is proportional to the Euler-
Poincare index, provided the surface is closed, and thus 
free of boundary arcs:

∬surfaceKda=2πχ (7)

Th is result is strikingly succinct. It asserts that no 
matter how a surface is stretched or squashed, its inte-
gral curvature remains fi xed, since these distortions do 
not aff ect the Euler-Poincare index. In other words, its 

Figure 15. A fl at euclidean triangle placed on the sphere builds a 
spherical triangle, whose vertex angles add up to an angle exceed-
ing to 180°: the example shown has an angle sum of 270°. Figure 
courtesy Myfanwy Evans.

Figure 14. Caps, sheets and saddles with positive, zero, and negative Gaussian curvature.

Figure 16. Th e variety of surface form in potato crisps.
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Gaussian curvature distribution and area are coupled 
to give constant integral curvature. Th e Euler-Poincare 
index is simply related to another topological measure, 
known as the “genus” of the surface. For the usual “two-
sided” surfaces the surface genus, g, is related to the Eul-
er-Poincare characteristic by the equation:

χ=2-2g (8)

(Th e formula does not hold for “one-sided” or “non-
orientable” surfaces, such as the Mobius strip, or for sur-
faces with boundary arcs.)

Th e shape – give or take the bending or stretching 
allowed within topology – of any orientable surface is 
always homeomorphic to a single sphere, decorated with 
some number of distinct handles. An orientable surface 
of genus g is topologically equivalent to a sphere with g 
handles, so that the genus is equal to the number of han-
dles. Th at is the origin of the quantisation of topology 
mentioned above. Th us the average value of the Gaussian 
curvature, <K>, defi ned by the ratio of the integral cur-
vature to the surface area,

〈K〉≡∬surfaceKda/∬surfaceda

is positive for genus zero surfaces, zero for genus one, 
and negative for genus two, three, … surfaces. Th is topo-
logical characterisation off ers a useful classifi cation of 
surface forms.

Convex polyhedra, which are homeomorphic to 
the sphere, are genus zero forms. Th e next case, genus 
one, includes all donut-shaped surfaces, cups, … all are 

homeomorphic to a sphere with one handle (illustrated 
in Fig. 18).

Since the donut has a genus equal to one, its average 
value of the Gaussian curvature vanishes, and its aver-
age geometry is fl at! How is this so? Well, the integral 
curvatures of the hyperbolic and elliptic regions cancel 
exactly, no matter how asymmetric the torus: from a 
coff ee cup, or a ball with a single tiny handle spanning 
its surface (Fig. 19). We say that the donut is inhomoge-
neous, in that its Gaussian curvature changes from point 
to point along the surface.

Th e “fl at torus” is a donut-shaped surface – unreal-
isable in euclidean three-space, but realisable in three-
dimensional spherical space – which is homogeneous 
in its Gaussian curvature. Th us, its Gaussian curvature 
is everywhere zero, in contrast to the inhomogene-
ous donut in three-dimensional euclidean space, whose 
Gaussian curvature oscillates about zero. Th e fl at torus 
can be reticulated with a distortion-free square (two-
dimensional Cartesian) grid of arbitrary mesh size.

A particularly interesting way to represent the torus, 
which reveals its average euclidean geometry follows 
from gluing of opposite edges of a rhombus. If the hori-
zontal edges of the rhombus are glued together, a cylin-
der results. Gluing the other pair of edges (now loops), 
closes the cylinder on itself, forming a torus (Fig. 20).

Given our interest in spatially periodic structures, 
which underlie the arrangement of atoms in crystals, 
this is a very suggestive construction, reminiscent of the 
repeated zone scheme in quantum mechanics, and Born-
von Karmann boundary conditions. Indeed, this con-
struction allows a single unit cell of the two-dimensional 

Figure 17. (L to R): Cabbage (elliptic), eucalyptus (parabolic) and lettuce (hyperbolic) leaves with positive, zero and negative curvature.



56 Stephen T. Hyde

lattice, or periodic array (the rhombus), to be mapped 
into the torus. 

An infi nite two-dimensional lattice can be wrapped 
an infi nite number of times around the torus, covering 
the torus once for each unit cell. (In mathematical jar-
gon, the plane, tiled by a two-periodic lattice, is the uni-
versal cover of the torus.)

Th e construction begs to be extended to the domain 
of true crystals which exhibit three-dimensional lattic-
es. In this case, the unit cell is a rhombohedron. Just as 
(opposed) edges separated by a lattice vector of the two-
dimensional lattice are glued to form the torus, oppo-
site faces of the unit cell can be glued to form a three-
dimensional (solid) version of the torus, called naturally 
enough, the 3-torus.

Alternatively, we have seen that three-periodic 
hyperbolic surfaces can be used to describe three-peri-
odic structures, by mapping these three-dimensional 
structures onto the two-dimensional crystalline hyper-
bolic surfaces. Th ese infi nite surfaces have unbounded 
genus. However, they have a fi nite number of handles 
within a single unit cell, and they can be catalogued 
according to their symmetries, and genera per unit 
cell. Th e unit cell topology is that of the boundary-
free surface, formed by imposition of Born-van Kar-
man boundary conditions, “gluing” boundary elements 
in pairs. Since they contain three independent lattice 
vectors, they must have genus (at least) three per unit 
cell, in contrast to the (genus-one) torus characteris-
ing a two-dimensional planar lattice. If the “unfolding” 
procedure of Fig. 20 is generalised to a higher genus 
g-torus, the resulting “fl attened” surface is a polygon 
containing (at least) 4g sides (just as the torus of genus 

one gives a four-sided rhombus), shown in Fig. 21 for a 
two-torus.

It was noted above that the fl at torus – a homoge-
neous parabolic structure (i.e. of constant Gaussian cur-
vature) – is unrealisable in euclidean three-space. Are 
there homogeneous hyperbolic surfaces in this space? 
Th is question is a deep one, which was answered par-
tially in a famous paper on non-euclidean hyperbolic 
geometry by the Italian geometer Beltrami in 1856 
(STILLWELL, 1982). Just as euclidean (two-dimension-
al) geometry lies in the fl at plane, hyperbolic geometry 
lies in the so-called “hyperbolic plane”. Beltrami showed 
that some essential features of the hyperbolic plane were 
to be found in a homogeneous hyperbolic surface, called 
the “pseudosphere”, shown in Fig. 22. In fact, the hyper-
bolic plane can be considered as the universal cover of 
the pseudosphere, since it wraps an unlimited number of 
times about the pseudosphere (STILLWELL, 1982).

Notice that this surface contains a cusp at its waist. 
Early this century, David Hilbert proved that any homo-
geneous hyperbolic surface in euclidean three-space nec-
essarily contains such singularities. In the terminology 
of contemporary condensed matter physics, hyperbolic 
geometry is necessarily “frustrated”2 in our space, unlike 
(two-dimensional) euclidean or elliptic geometries. 

“Pseudosphere” refers nowadays to any surface of 
constant negative Gaussian curvature. All such surfaces 

2 An uncharacteristically emotive term for physicists, perhaps misplaced. 
Aft er all, the frustration lies with us rather than condensed matter!

Figure 18. Homeomorphism between a donut, a sphere with 
one handle and a cup. Image from Roy and Kesselman, ArXiV 
2201.06923.

Figure 19. Decomposition of a torus into (left ) a hyperbolic surface 
(K<0) and (right) an elliptic surface (K>0). On average, the torus is 
fl at, as the hyperbolic and elliptic fractions have equal and opposite 
integral curvatures, for any torus, regardless of its particular geometry.

Figure 20. Gluing protocol for a torus from a rhombus. Figure 
courtesy Myfanwy Evans.
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are equivalent in a two-dimensional sense, despite the 
fact that their global shapes – their embedding in euclid-
ean three-space – can vary. Other examples are shown 
in Fig. 23.

A simple model of the pseudosphere can be con-
structed from the euclidean plane as follows. Build a 
plane from equilateral triangles – six around each ver-
tex, in order to tile the plane without overlap or gaps. 
Now insert a seventh triangle at each vertex (a negative 
disclination), and stitch the “plane” back together. As the 
size of the plane grows, the structure becomes less and 
less rigid, and a number of diff erent global shapes can be 
formed. Th e presence of tunnels – common to the more 
complex hyperbolic surfaces – can be seen in the natu-
ral tendency of the sheet to wrap onto itself, surround-
ing open “pores”. Indeed, as the warped plane grows 
outwards, the surface is forced to either self-intersect or 
spiral around itself (Fig. 24). Th is feature of hyperbolic 
geometry can be ascribed to the limited “space” avail-
able to contain surfaces in three-dimensional euclidean 
space: there is not enough room to contain the hyper-
bolic plane.

Many leaves, particularly ivies, display locally 
homogeneous two-dimensional hyperbolic geometry. 

Adjacent portions of growing leaves necessarily crowd 
onto each other, and further growth cannot continue 
without deforming their homogeneous form, and fl at-
tening the growth fronts (Fig. 25). Th e inhomogeneous 
geometry of these leaves is due to the structure of three-
dimensional euclidean space itself!

Th is frustration – inherent to homogeneous hyper-
bolic geometry – means that we need to look beyond 
pseudospheres and consider nearly-homogeneous hyper-
bolic surfaces, free of cusps. Th e best candidates found 
to date are the three-periodic hyperbolic surfaces. (Th e 
simplest examples of these surfaces are called Infi nite 
Periodic Minimal Surfaces, or IPMS, named by Alan 
Schoen, the NASA physicist who discovered many exam-
ples in the 1960’s (SCHOEN, 1970).)

While these surfaces are free of cusps, their Gaussian 
curvature varies from point to point, and they are inho-
mogeneous. Further classifi cations of IPMS can be made. 
We consider here only those (orientable) surfaces which 
are free of self-inter sections (also called embedded triply 
periodic minimal surfaces, of ETPMS). Examples of IPMS 
(which are all embedded) are shown in Figs. 12 and 26.

Figure 21. An octagon can be glued to form a genus two surface. Figure courtesy Myfanwy Evans.

Figure 22. Th e pseudosphere, a surface of constant negative Gauss-
ian curvature.

Figure 23. Some pseudospheres: (Left ) A cusp-free section of one 
member of Dini’ s surfaces. (Right) Kuen’s surface, including cusps.
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The importance of IPMS lies principally in their 
topological structure, rather than their local geo-
metric form characteristic of minimal surfaces (zero 
average curvature). They provide us with a much 
fuller catalogue of surface form than had been avail-
able until very recently. In many physical systems, the 
structures formed need not be precisely minimal sur-
faces (i.e. equally concave and convex at all points on 
the surface).

It appears that the most nearly homogeneous hyper-
bolic three-periodic minimal surfaces are those of genus 
three per (geometric) unit cell and cubic crystallograph-
ic symmetry: the D, P and gyroid surfaces illustrated in 
Fig. 12. Th ese crystalline surfaces are topologically the 
most complex hyperbolic forms possible (of unbounded 
genus), and it may seem surprising that they are nearly 
homogeneous structures in our space. But lower genus 
hyperbolic forms necessarily contain elliptic regions, or 
boundary “ends” that are asymptotically fl at; both cases 
lead to larger curvature inhomogeneities than those of 
IPMS and related surfaces. It is more diffi  cult to com-
pare the homogeneity of crystalline hyperbolic surface 
with related “molten” surfaces. But limited data reveal 
that the homogeneity of minimal surfaces increases with 
genus per unit cell, so that crystalline surfaces are natu-
rally favoured. Some examples of genus three and four 
surfaces are illustrated in Fig. 26.

If that hypothesis is confi rmed, it off ers a novel view 
of crystallinity in the physical world. Th e conventional 
three-dimensional euclidean perspectives ascribes crys-

tallinity to long-range interaction across space (and min-
imisation of the resulting energies). Within a hyperbolic 
perspective however, the induction of three-dimensional 
periodicity may be driven by the local (and two-dimen-
sional) requirement of minimisation of curvature varia-
tions. Th e occurrence of triply-periodic hyperbolic forms 
is the natural consequence of a striving for a single pre-
ferred curvature. Th e physical meaning of curvature – a 
hitherto “hidden variable” – can be recast into more 
conventional terms, described below.

5. QUASI-HOMOGENEOUS HYPERBOLIC FORMS IN 
CONDENSED MATTER

Euler’ s equation, and its generalisations, imply that 
the generic form of a network depends only on the aver-
age ring size and network connectivity. From Eq. (7), a 

Figure 24. A faceted model of the hyperbolic plane, containing sev-
en equilateral triangles at every vertex. Th e arrows mark pores.

Figure 25. Some nearly-homogeneous hyperbolic leaves (arrowed) 
in an ivy. Notice the crowding of growing leaves, particularly evi-
dent in the arrowed leaves.
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hyperbolic layer structure results whenever the Euler-
Poincare characteristic is negative, once the average ring 
size in the network, n, and the connectivity of the net-
work, z, fulfi lls the inequality (cf. Eq. (6)): 

 (9)

Th e connectivity of covalent chemical frameworks 
is set by the bonding arrangement of the atoms. For 
example, in all but the densest silicates each silicon is 
bonded to four oxygen atoms. Further, this situation 
favours tetrahedral coordination around each silicon 
(or framework aluminium) atom, favouring ring sizes of 
at least fi ve. Th us, most silicates are hyperbolic (cf. Eq. 
(8)). Th e conventional geometric parameters of covalent 
frameworks – preferred bond lengths, bond angles and 
torsion – can be translated to give a preferred Gaussian 
curvature for the framework, which, by the argument 
above, is necessarily negative (HYDE, 1993a; HYDE et 
al., 1993). Th e standard concepts of solid-state chemis-
try then imply a preferred Gaussian curvature for sili-
cate networks – i.e. a homogeneous hyperbolic surface 

on which the silica lies. Th e formation of networks lying 
on crystalline hyperbolic surfaces is, in the light of this 
argument, quite natural.

Th is thesis is a controversial one and further work 
is required to determine its general applicability. How-
ever, it does lead to useful insights regarding the silicate 
density and the link between density and ring sizes in 
the framework, noted elsewhere (HYDE, 1993a; HYDE 
et al., 1993). Further, it allows for clear defi nition of the 
pore geometry in low-density silicates, such as zeolites. 
Many other silicates form nets on crystalline hyperbolic 
surfaces that self-intersect (and are not embedded), lead-
ing to three, two-, one- and zero-dimensional channel 
systems (FISCHER and KOCH, 1996).

Th e non-euclidean approach also aff ords particularly 
simple estimates of relative energies of schwarzites, gra-
phitic tubes and fullerenes, derived from plate elasticity 
theory (applied to graphitic monolayers!) (HYDE and 
O’KEEFFE, 1996) and suggests common stability crite-
ria for both molecular assemblies, such as liquid crystals, 
and atomic crystals. At a more philosophical level, this 
description challenges conventional notions of dimen-
sionality in these systems.

Figure 26. Unit cells of some IPMS (left  to right): S’-S’’ surface (genus 4), CLP surface, H’-T surface (both genus 3). Images courtesy of Ken 
Brakke.

Figure 27. Th e shape of a bread-slice can be changed by selective grilling. If the fl at slice (left ) is grilled on one side only, it becomes elliptic 
(middle); further grilling of the other side as well gives a hyperbolic slice (right).
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A two-dimensional hyperbolic perspective also 
off ers novel insights into structures and genesis of so-
called “bicontinuous phases” (such as cubic phases) in 
surfactant-water systems. Here too, the complex convo-
luted forms adopted by these systems can be traced to 
the requirement of a homogeneous hyperbolic structure, 
a frustration best relieved by the formation of IPMS or 
similar structures.

These structures are not bonded by the strong-
ly directional covalent linkages present in the atomic 
frameworks considered above. Rather they are held 
together by hydrophobic and other weak interactions. A 
topological analysis based on ring sizes is thus not useful 
in these molecular systems. Another feature of hyper-
bolic geometry is at work in these systems. Th e lipid lay-
ers are themselves made up of chemically distinct com-
ponents: their head-groups are exposed to water on both 
external surfaces, and their interior contains the oil-like 
chains. So in contrast to the surface model for atomic 
frameworks, lipid layers are modelled by fi lms, of fi nite 
thickness, wrapped onto surfaces. Th e fi lm shape is gov-
erned by the variation of cross-sectional areas through 
the molecular fi lm.

Th is feature can be simply demonstrated with the 
aid of a slice of bread and a griller. Th e uncooked slice 
can be considered a fl at fi lm. If the bread is grilled from 
one side only, it will emerge from the grill curved exclu-
sively towards the cooked face – the once-fl at slice is 
now elliptic. Th is curvature is due to the fact that the 
heated bread surface has shrunk in area compared with 
the other, cooler, surface. Now grill the bread on the 
other side. Th e resulting toast is no longer elliptic, but 
hyperbolic, resembling a saddle. In this case, both exter-
nal faces have shrunk compared to interior – a situation 
that can only be resolved by the formation of a saddle 
(Fig. 27).

If a potato slice is substituted for the bread, deep-
frying the potato forms a potato crisp. Here too, surface 
shrinkage results in the characteristic saddle-shaped 
potato crisp, shown in Fig. 16. (Th e blistered, elliptic 
crisps in Fig. 17 are presumably due to local moisture 
gradients that result in some stretching of the surface.)

A lovely example of our poor intuition of hyper-
bolic forms is displayed in Fig. 28, which reveals a most 
unlikely form for a potato crisp: the crisp is elliptic, 
its boundary hyperbolic! Th e image is reminiscent of 
Cramptons’ euclidean boxes; here the hyperbolic form is 
recognisably curved, yet its form has been “shoehorned” 
into a more familiar elliptic geometry.

A similar explanation accounts for the shape of ten-
side assemblies in water. Th e form of these assemblies 
depends on many factors; the most important being 

molecular shape and water content. Th e molecular shape 
can be characterised by a generalised shape parameter, 
related to the diff erence in cross-sectional area at both 
ends of the molecule. If these areas are equal, aggrega-
tion of the molecules into a sheet can be accommo-
dated without any curving of the sheet. If the head-
group cross-sectional area is less than that at the chain 
ends, the sheet must curve towards the head-groups to 
accommodate the cone-shaped molecules, just as the 
slice of bread toasted on one side only curves ellipti-
cally (Fig. 29). Th e form of the molecular monolayer is 
thus dictated by the area diff erence across the monolayer 
(ISRAELACHVILI et al., 1976; HYDE, 1990). If the mol-
ecules assemble to form a bilayer, three surface areas 
must now be accommodated – the two head-group areas 
on both external faces of the bilayer, and the area of the 
mid-surface through the bilayer, set by the chain-ends 
(Fig. 30).

Again, if all of these areas are equal, the bilayer is 
fl at. If the head-group area exceeds the that of the chain 
ends, the confi guration is frustrated in euclidean three-
space, and a “blistered” bilayer results (cf. the bubbles 
in crisps). If the cross-sectional area of the mid-surface 
set by the chain-ends is larger than that of the outer 
faces (set by the head-group area), the bilayer must warp 
– just as the toast cooked on both sides – and adopt a 
hyperbolic geometry. Th ese average molecular dimen-
sions determine a preferred Gaussian curvature of the 
bilayer. If the bilayer contains a single chemical spe-
cies, that preferred curvature has a single value, and the 
resulting membrane morphology is one that satisfi es 
that value as nearly as possible within the constraints of 

Figure 28. Roman signwriter’s view of an unlikely elliptic potato 
crisp, whose boundary is hyperbolic (cf. Fig. 16).
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three-dimensional euclidean space. Clearly then homo-
geneous geometries are preferred, and the formation of 
(meso)crystalline hyperbolic membranes – as in cubic 
phases – is not surprising (Fig. 30).

Th e formation of curved fi lms due to area mismatch 
between parallel layers is also common in atomic sys-
tems. A beautiful example of this is the mineral imogo-
lite, found around the base of tropical volcanoes. Imo-
golite consists of two bonded layers: silica and gibbsite 
(CRADWICK et al., 1972) (Fig. 31). Th e slight diff erences 
in bonding dimensions between these two structures 
lead to a mismatch of areas, which is accommodated by 
regular curving of the alumino-silicate sheets, into long 
20 Å cylinders (HYDE, 1993b). Th e formation of cyl-
inders, of zero Gaussian curvature, is possible without 
changing the local atomic arrangement (i.e. ring sizes, 
connectivity) in either (originally) layer, viz. regular hex-
agonal nets. Th at follows from Eqs. (6) and (7), since the 
integral curvature remains zero, and so the eff ective Eul-
er characteristic also remains zero. Hyperbolic and ellip-
tic forms – structured at larger distances than are usu-
ally associated with atomic structures – are also likely in 
other silica composites, such as allophane, asbestos, and 
many serpentines.

Solids can also be structured at the ultrastructural 
level – typically microns. Th e biological world is replete 

with examples of such materials, particularly in animal 
skeletons. A striking example can be found in the hard 
calcite plates in many sea-urchins. Scanning EM imag-
es reveal complex “fenestrated” crystals, whose mor-
phology bears remarkable resemblance to the P-surface 
(NISSEN, 1969; DONNAY and PAWSON, 1969). Th ere 
is some distortion of the cubic symmetry of the P mor-
phology, perhaps enough to refl ect the underlying rhom-
bohedral symmetry of calcite (Fig. 32). Here the calcite 
gives the sea-urchin a lightweight suit of armour: it is 
riddled with tunnels, and its strength-to-weight ratio 
exceeds that of concrete!

One side of the surface contains the hard inorganic 
calcite crystal, the other the life-giving proteins. How 
does this extraordinary ultrastructure form? Clearly, 
it is infl uenced by the presence of proteins, both water-
insoluble structural ones and soluble material. Could it 
be that the proteins assemble to form an ultrastructured 
aqueous container – in the shape of one labyrinth sys-
tem of the P-surface – in which the calcite is precipi-
tated? It is likely to be more complex than pure templat-
ing. For example, smoothly curved magnesian calcites 
can be crystallised in vitro from solutions containing 
small amounts of organic additives, such as citric acid 
(F. C. Meldrum, private communication) suggesting that 
occluded proteins within the crystal assist in the forma-
tion of the curved surfaces.

Perhaps the most enigmatic feature of these shells is 
their glassy properties, conchoidal fracture and smooth-
ly curved faces – coupled with apparently perfect crys-
tallinity (as evidenced by X-ray diff raction) (LOWEN-
STAM and WEINER, 1989). Note, however, that the 
fractures along individual traberculae are oft en fl at, and 
typical of cleavage planes of calcite.

It may be more than coincidental that smoothly 
curved inorganic crystal aggregates (alkiline earth car-
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Figure 29. Schematic view of the relation between the average 
“wedge-shape” of a lipid or surfactant molecule (top) and the cur-
vature of a monolayer of such molecules immersed in water (bot-
tom).

Figure 30. Left : View of a hyperbolic molecular bilayer, showing 
the (green) interface, which traces the surface running through the 
centre of the bilayer between the chain ends and parallel interfaces 
(blue) traced out by the head-groups in both monolayers. Right: 
Global view of one possible hyperbolic bilayer geometry – the 
P-surface.
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bonates, including calcite) can be “crystallised” in silica 
gels to form smoothly curved shapes, that act optically 
as single crystals, but whose diff ractions patterns are 
powder-like (GARCIA-RUIZ, 1985; GARCIA-RUIZ and 
MORENO, 1997). Th e formation of curved morpholo-
gies is conventionally ascribed to the biological realm, 
yet these aggregates are purely inorganic (Fig. 33).

A fi nal example is the mineral, saddle dolomite, 
which exhibits well-defi ned crystallinity, yet grows to 
form smoothly curved faces, with radii of curvature of 
the order of centimetres. Th e origins of curvature in 
this mineral (and related minerals such as ankerite) are 

unclear: its very occurrence severely strains convention-
al three-dimensional euclidean pictures of crystals and 
crystal growth.

6. FINAL THOUGHTS

Th is exploration of the world of condensed mat-
ter has been designed to highlight the oft en forgotten 
active role of space and geometry in our perceptions of 
form and shape. Indeed, it has been argued by a num-
ber of respectable scientists that much of physics is no 

gibbsite
layer

silica
 layer

radius of curvature
ca.20Å

Figure 31. (Left ) Cross-section through a sector of cylindrical imogolite sheet (image adapted from CRADWICK et al., 1972) (Right) Elec-
tron microscopic image of imogolite cylinders (scale bar 200 Å, image adapted from WADA, 1987).

Figure 32. Scanning EM images of a skeletal plate of the sea-urchin Cidaris rugosa, aft er chemical treatment of the plate to remove pro-
teinaceous tissue which lines the open channels in the living creature. Th e channels are microns wide (images courtesy Hans-Udde Nissen).
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more than geometry; witness the remarkable state-
ment of Arthur Stanley Eddington, the noted British 
cosmologist, earlier this century: “A fi eld of force repre-
sents the discrepancy between the natural geometry of a 
coordinate system and the abstract geometry arbitrarily 
assigned to it”. Th is idea, only possible post Riemann, 
bears some refl ection. At the smallest length scale, in 
the sub-atomic world and at huge length scales, in the 
cosmological Universe, the assumed geometry of a refer-
ence frame is laid bare, and scientists regularly confront 
issues of dimensionality and curvature. Yet those of us 
probing matter between these extremes of length persist 
with the familiar euclidean assumptions. In 1959, Lan-
celot Whyte wrote, “Exact science is mainly built on the 
sense of sight, and if no one has ever seen a straight line 
‘ looking straight’, or rather if no one knows exactly what 
that means, and if continuous straight objects are really 
open patterns of discrete particles, why does physical 
theory still prefer to assume that the fundamental laws 

are engraved on continuous rectangular frames as fi elds 
extending to infi nity?”

How much does Whyte’s complaint hold true for 
biology and chemistry? Let’s go back to the Tahitian 
islands, and the humble Partula of Crampton. Recall his 
nearly one million measurements of the form of the Par-
tula shell, and detailed statistical analyses? Following our 
exploration of elliptic and hyperbolic forms, it seems des-
perately crude to engrave the exquisite swirls and twists 
of these shells on Crampton’ s rectangular frame! Rather, 
curvature and torsion seem to be the outstanding mor-
phological features of these shells. How that curvature 
and torsion is encoded during growth of the shells is 
unknown, but – given the extraordinary ability of organ-
ic “soft  matter” such as lipids and proteins to fashion the 
morphology of “hard” inorganic matter – the general fea-
tures of the form itself should not surprise us. Th at form 
is far removed from Crampton’ s carefully drawn rectan-
gles, boxing Partula forever in a euclidean grid.

30µm 10µm
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20µm 30µm
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Figure 33. Field emission scanning EM images of barite crystals grown in silica gels (pH ca. 12, photo courtesy Anna Carnerup).
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