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Abstract. Chiller systems are used in many different applications in both the industrial and
the commercial sector. They are considered major energy consumers and thus contribute a
non-negligible factor to environmental pollution as well as to the overall operating cost. In
addition, chillers, especially in industrial applications, are often associated with high reliability
requirements, as unplanned system downtimes are usually costly. As many studies over the
past decades have shown, the presence of faults can lead to significant performance
degradation and thus higher energy consumption of these systems. Thus, data-driven fault
detection plays an ever-increasing role in terms of energy efficient control strategies. However,
labelled data to train associated algorithms are often only available to a limited extent, which
consequently inhibits the broad application of such technologies. Therefore, this paper
presents an approach that exploits only a small amount of labelled and large amounts of
unlabelled data in the training phase in order to detect fault related anomalies. For this, the
model utilizes the residual space of the data transformed through principal component
analyses in conjunction with a biased support vector machine, which can be ascribed to the
concept of semi-supervised learning, or more specifically, positive-unlabelled learning.
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Introduction

Chillers are applied across many different fields of both industrial and commercial applications.
As being large energy consumers with accounting up to 40% of a buildings total energy
demand [1], these systems surely open up great potential for optimization. One promising
approach to avoid energy losses while operating these systems is known to be condition
based maintenance (CBM) [2] which constitutes several steps to asses a systems degradation
state, of which fault detection (FD) [3] plays a key-role as it allows to detect novelties caused
by one or multiple faults being present. This is particularly important as chillers can loose up to
30% of their coefficient of performance without any obvious sign of degradation being present
to the operator [4]. Besides avoiding energy wastage, FD also contributes to saving operation
as well as service costs. This can help to predict system malfunctions and therefore prevents
unplanned downtimes, which is especially important for industrial applications as a chiller
breakdown may cause an entire process line to stop [5].
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This topic has attracted the attention of researchers for many decades and a great variety of
models have been proposed to date. Generally, these approaches can be divided into
model-based and data-driven [6]-[8], whereas the former utilizes a reference model to detect
abnormal behaviour. The latter, however, relies on self-adapting algorithms that only require
historical machine data [3] making it possible to develop FD models without any prior
assumptions about the systems structure or the expected fault characteristics. Another
limitation of model-based approaches is that finding a mathematical formulation to model a
dynamical process can be difficult as well as time consuming due to changing operation
conditions [9], and may sometimes even be infeasible when the system complexity is too high.
Data-driven FD models can overcome these issues [3] and are, thus, considered to be more
cost effective [10]. On the other hand, most existing data-driven models require labelled data
of the dedicated system containing both positive (fault-free) and negative (fault) samples,
which are often unavailable. The reason for this is twofold: first, as faults are rare events [11],
certain faults may not have occurred in the past and therefore associated data cannot be
obtained, and second, labelling is conducted by humans and consequently constitutes a high
cost and time factor. However, in most application scenarios one comes across a situation
where a few positive labelled samples and a lot of unlabelled data containing positive and
negative patterns might be available. In this case, the unlabelled data can be exploited in the
training phase in order to increase the model accuracy, which is commonly referred to as
positive-unlabelled (PU) learning. Therefore, the work at hand proposes a PU learning based
fault detection model which utilizes principal component analysis (PCA) in conjunction with the
biased support vector machine (BSVM) [12]. Furthermore, we evaluate the model
performance on two datasets stemming from the experimental investigation of different chiller
types and demonstrate how the proposed model can be more effective compared to classical
novelty detection approaches.

The paper is structured as follows: After this introduction, the related work in this field of
research is briefly described. Then, the model principles and the description of the datasets
used to train and validate the model are presented. In the following section, the model
evaluation is then performed and discussed. Finally, the paper is summarized and an outlook
is given.

Related Works

Data-driven novelty detection has been the subject of research for many years and a great
variety of supervised machine learning were presented. For example, Han et al. [13] proposed
to first reduce the dataset dimensionality using PCA and then train a support vector machine
(SVM) classifier in a multi-class fashion to perform fault detection and fault diagnosis in a
single task. This idea was later adopted by Beghi et al. [14] and Li et al. [15], who trained their
model in the PCA residual space rather than the principal component space and showed that
this approach could significantly improve the fault detection accuracy. Besides, both work
considered the problem as a single-class learning task [16], where in [14] the one-class
support vector machine (OCSVM) [17] and in [15] the support vector data description (SVDD)
[18] is applied. The difference between the two is that the OCSVM classifier tries to solve for a
hyperplane that best separates a positive labelled pattern from the rest of the space, whereas
the SVDD classifier aims to find a hypersphere enclosing most of the data. It is worth noting
that both algorithms yield equal results when used in conjunction with invariant kernels, such
as the radial basis function (RBF) kernel [16]. Feature extraction has also been one of the
major concerns of other papers such as, for example, in [19] and [20], where the authors
applied genetic algorithms in different variations in order to select characteristic features (CF).
In both cases, the SVM has been adapted for the final classification task. Other approaches
considered the application of linear discriminant analysis [21], Bayesian networks [22] or
statistical models [11]. Although many promising approaches were proposed, only few
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contributions exist in this field of research considering the case when only a minor number of
positive labelled and high number of unlabelled samples are available. Compared to labelled
fault samples, labelled fault-free data is easier to obtain as, for instance, after commissioning
the chiller or after performing maintainable actions. One example is given in [20], where the
authors combined a Kalman filter with a recursive SVM to exploit unlabelled samples.
Similarly, the model in [11] is developed in a semi-supervised fashion. Another approach is
given by Fan et al. [9], who applied a transfer learning model to incoporate prior-knowledge
from another chiller type. Even though some work in this field has already been conducted, a
full understanding of PU learning for FD tasks as well as the effect of the number of available
positive samples onto the model performance is still lacking. Therefore, this paper proposes a
novel approach, namely the PCA-R-BSVM algorithm, for PU learning based novelty detection
for industrial chillers and validates its performance based on two datasets. Furthermore, we
compare our approach with the existing PCA-R-SVDD [15], or more specifically with the
PCA-R-OCSVM [14] model, under the assumption that only a limited number of positive
labelled samples is available.

Model

This section describes the model principles and describes PCA as well as the BSVM algorithm
in more detail. Furthermore, a classification metric is introduced that can be employed for
evaluating the classification performance based on positive and unlabelled data. This is
especially crucial for optimizing the model’s parameter as most metrics require the presence
of positive and negative labelled instances in the validation phase.

Principal Component Analysis

PCA is an unsupervised technique that has been widely applied for many dimensionality
reduction tasks. In general, it is a linear transformation algorithm which aims to find a new
data representation of uncorrelated features, namely the principal components (PC) [14], such
that most of the data variance is represented by the first transformed features. Let X € R™**
be data sampled from the target chiller, with n being the number of observations and k the
number of dimensions. The entire dataset can then be expressed as
D={(x1,y1),--.,(xn,yn)} With y; € {1, —1} for positive and unlabelled instances respectively.
After processing the data X, one receives a transformed data representation that can be
decomposed into the modelled PC space X € R™<(k=kr) and the un-modelled residual
subspace X € R"**r to whose features we will refer to as the residual components (RC)
throughout this paper (kg is the number of RC). It is worth noting that while the PC space
contains most of the data variance, the RC subspace contains noise as well as abnormal
information [23]. As has been shown in previous studies [11], [14], [15], training a FD model in
the RC space rather than the PC space can significantly improve its classification accuracy as
the former is more sensitive to novelties.

Biased Support Vector Machine

The BSVM algorithm has been proposed by Liu et al. [12] and its working principle is similar to
the idea of training the original SVM with imbalanced data, i.e. when instances from one class
appear more frequently than from the other class. However, its motivation is slightly different
as it assigns high weights to positive and low weights to unlabelled samples in order to bias
the data to the favour of the known positive pattern. On the other hand, low weights are
assigned to unlabelled patterns as these may also contain positive instances whose labels
remain unknown during the training phase. As a consequence, this approach can be assigned
to the field of semi-supervised machine learning. Following this idea, the primal form of the
optimization problem can be formulated as
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where w is a vector orthogonal to the hyperplane, C* and C~ the regularisation parameters
assigned to positive and unlabelled samples accordingly, &; a slack variable used to solve for a
soft-margin decision boundary [16], and b the bias term. Furthermore, we denote z; as any
observation from the dataset using only its residual information after PCA transformation and
n, the number of positive labelled samples in the dataset. Substituting (1)) into its Lagrangian
dual form, one may use kernels in order to solve for a non-linear decision boundary in the
input space. The decision function for an unknown observation z is defined as

h(z) = Zaiyik (T,2i) +b (2)
i=1

where «; are the Lagrangian multiplies and (-, -) the kernel function. Similar to previous
studies [14], [19], [20], [24], [25], we apply the RBF kernel function, which is given as

k(& 5) = (o(@), ¢(d5)) = exp(—y 1T — 75 (3)

where ¢(+) is a non-linear mapping function and ~ the kernel width parameter that must be
tuned.

Classification Metric

One major aspect of PU learning based classification approaches is how to evaluate the
classification performance as most metrics require positive as well as negative samples to be
available in the dataset. It goes without saying that this is particularly crucial for any parameter
optimisation process, such as grid-search, because for any subset of chosen parameters, the
algorithm’s performance must be evaluated on a given test dataset. Throughout this paper we
apply a metric proposed by Lee and Liu [26] which was also applied in the original BSVM
paper [12]. Similar to the well-known F-Score, the chosen accuracy metric is formulated as
r2/Pr[h(X) = 1], where r is the recall and Pr[h(X) = 1] is the probability that a pattern is
classified as positive. As stated in [12], this metric behaves similar to the F-Score metric as it
is low when either recall or precision is low and high when both values are high.

Overview

The model development can generally be distinguished in the preprocessing phase, PCA
based feature extraction and parameter optimisation. In general, preprocessing combines
three steps, namely: (a) steady-state detection, which is conducted to exclude transient
system states from the dataset; (b) data-filtering to increase the signal-to-noise ratio; and (c)
data scaling to exclude the negative influence of the different units on the classification result.
It is worth noting that we applied the steady-state detector proposed by Beghi et al. [11] in this
paper. In the following step, PCA is conducted on the available labelled fault-free samples,
which represents the basis for mapping all further data samples into the PC and RC space.
The reason for this is that with the PCA model trained on the fault-free data, the RC become
more sensitive to faults as these features are subject to changes when novelties are present.
As shown in Figure [T} grid-search is introduced for parameter optimisation. In particular, the
model depends on the parameters ~, C* and C—, which are determined through this
searching strategy. In addition, the number of residual components kp is adjusted in a similar
way. Although solely positive labelled and unlabelled instances are utilized in the training
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phase, a fully labelled dataset containing actual positive as well as negative samples is used
for validation purposes.
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Figure 1. Training and testing procedure
Datasets

In this study, two datasets of two different chiller types is used for training and validating the
model. The first datasets was collected during the experimental investigation of a 316kW
water-cooled centrifugal chiller. In project ASHRAE RP-1043, carried out by Comstock et al.
[27], seven typical chiller faults at four levels of severity were experimentally investigated. The
other dataset has its roots in one of our previous works where various faults were investigated
using @ 100kW ammonia based screw compressor chiller [28], as shown in Figure 2l The data
acquisition procedure was similar to that of the ASHRAE RP-1043 project, in which each fault
was experimentally investigated at four levels of severity, starting from the lowest level and
increasing to the highest. In both projects a test-sequence was defined consisting of several
operating states, with each state meeting a steady-state criterion before moving to the next
one. As listed in Table [T} 23 features were selected that are shared between both dataset. In
the following, these datasets are utilized to train and validate the proposed model. Moreover, it
is demonstrated how the model performs with only a minor number of positive samples being
available in the training phase.
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Table 1. Chosen features

Symbol

Description

i
fo
I3
Ja
f5
fe
I
Is
fo
fio
Ju
fi2
J13
f14
J1s
f16
fiz
fis
f19
f0
fa1
Jo2
fo3

Vapor-Liquid
Seperator

Evaporator

Compressor pressure lift

Coefficient of performance

Isentropic compressor efficiency
Polytropic compressor efficiency
Instantaneous compressor power
Instantaneous compressor current
Evaporator cooling rate

Condenser heat rejection rate

Energy balance

Evaporator water inlet temperature
Evaporator water outlet temperature
Condenser water inlet temperature
Condenser water outlet temperature
Refrigerant temperature in Evaporator
Refrigerant discharge temperature
Refrigerant suction temperature
Refrigerant discharge superheat temperature
Refrigerant suction superheat temperature
Evaporator approach temperature
Evaporator water temperature difference
Condenser water temperature difference
Refrigerant pressure in evaporator
Refrigerant pressure in condenser

Suction Line

Condenser

Compressor

Figure 2. Test facility
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Results

The model is characterized by two essential aspects; first, it is based on the RC space after
processing the data using PCA, and second, it is trained in a semi-supervised fashion as
unlabelled data is exploited in the training phase. As can be seen in Figure 3] the fault patterns
become more distinct in the RC space. This is because most of the data variance is
represented by the first principal components and is induced due to changing operating
conditions rather than novelties. Therefore, by removing the PC from the dataset and
exploiting the RC space instead, one may yield higher fault detection accuracy.

S 25{~ e Normal
. a s i ® Reduced Evaporator Flow
. . 2.01 e Reduced Condenser Flow
4 . . . Non Condensable Gases
47 '_..‘,,! S F 157 e Refrigerant Leak
,° & 3 5%
J R E
0 P g ag Y &
Sg" ooge o' "o .' lr.’. o
g Lir X T R 051
01 ad ¥ 22 . s 2oy R S ew &,
R qgn§ 2 4%
“ s I Y, - . o o 0.0 ,
” .. 4 ﬁ ”..ah. .". ‘ 8o W0 e 4% e, .
AR A —0.51 o . e *l.lat
0 A . -8 .
-4 * e oo .« *°
° PC1| i, ° PC 10
-4 -2 0 2 4 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
N e -
0 0.6-8‘.,.. )
4 R
.o 0.4 Shr
S e 0" > o ' ““ .
=T e A ] "k
‘h . .. :4. . W 02 3
5] ’ . . .
L Y T | o R
. 5""“‘ c-élk X e . ~0.21 VA s o
N éziﬁr i s e
IR 5§$* i 041 L
24 ,“. -” %) o '{,‘:’ . :§.... “e —0.6 1
o' 2 % % o -
d . PC1| -0.8+ PC 10
-2 3 2 -1 o 1 2 3 a -06 ~04 —02 0.0 02 0.4

Figure 3. Scatter plot of the principal component and residual space after PCA
transformation: upper left: the two first PC (screw compressor), upper right: residual subspace
(screw compressor), lower left: the two first PC (centrifugal compressor), lower right: residual
subspace (centrifugal compressor)

One crucial aspect of the proposed model is its performance in dependence on the available
number of positive labelled instances in the training phase. To show how the model performs
on real-world data, we select 1000 observations from the normal and 250 the fault dataset for
each chiller type, of which 2/3 is used for training and parameter optimisation and 1/3 for
testing. It should be noted that all faults are treated as one class as they represent novelties in
this study. We then define a fraction of positive labelled samples # and mark them as positive,
whereas the rest, i.e. positive and negative patterns, are defined as unlabelled (-1). As shown
in Figure [1] we repeat the model training process described previously for an increasing ¢ and
compare the model’s classification accuracy with the PCA-R-OCSVM baseline model. For
comparison purposes, we train the baseline model in a similar fashion using the classification
metric introduced previously. In general, the PCA-R-OCSVM algorithm requires three
parameters to be optimized for of which the parameter v replaces C* and C'~, whereas ~ and
kg are equally utilized by both algorithms. Note that in the following, the test dataset is
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Figure 4. Accuracy plot over fraction of positive labelled samples: models trained on - upper:
screw chiller dataset, lower: centrifugal chiller dataset

exploited for comparison purposes using the F-Score metric to evaluate the classification
performance. As shown in Figure [ one can see that the proposed model outperforms the
baseline algorithm. This becomes even more distinct when 6 is low, which certainly proofs that
by incorporating unlabelled data in the training process, the model’s classification accuracy
can be significantly improved. The most significant difference between both models is at
0=0.05, where the baseline model deviates by 20% considering the screw-chiller dataset and
more then 35% when applied on the centrifugal-chiller one. Throughout the experiments, the
proposed PCA-R-BSVM model proofed to yield better classification results compared to the
baseline algorithm by reaching scores as high as 0.97. Furthermore, its accuracy converges
faster with increasing values of 6, which shows that it can be successfully applied for FD tasks,
even when only a minor number of positive labelled samples is available.

Summary

In this paper a PU-Learning based novelty detection model was introduced for fault detection
tasks. While relying on PCA or, more specifically, on the extracted residual components, it was
shown that the model was highly sensitive to faults. Besides, it was shown how the model
performs with only a limited number of positive samples being available in the training phase
while the rest, including actual positive and negative observations, are treated as unlabelled
data samples. The key-points of the proposed model can be summarized as follows:
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1.

Applying PCA onto the dataset can significantly improve the model performance when
the first principal components, i.e. the ones associated with the largest values if
eigenvalues, are removed from the dataset and the residual components are used for
training the classifier

. The proposed PCA-R-BSVM could outperform an existing novelty detection algorithm

and performs well, even with only few labelled data being available

. The model performance was validated on two datasets stemming from different chiller

types
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