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Abstract. Dermatological in vivo measurements are used for various purposes, e.g. health
care, development and testing of skin care products or claim support in marketing. Especially
for the last two purposes, in vivo measurements are extensive due to the quantity and
repeatability of the measurement series. Furthermore, they are performed manually and
therefore represent a nonnegligible time and cost factor. A solution to this is the
implementation of collaborative robotics for the measurement execution. Due to various body
shapes and surface conditions, common static control procedures are not applicable. To solve
this problem, spatial information obtained from a stereoscopic camera can be integrated into
the robot control process. However, the designated measurement area has to be detected and
the spatial information processed. Therefore the authors propose a concept towards
segmenting arm areas through a CNN-based object detector and their further processing to
perform robot-based in vivo measurements. The paper gives an overview of the utilization of
RGB-D images in 2D object detectors and describes the selection of a suitable model for the
application. Furthermore the creation, annotation and augmentation of a custom dataset is
presented.
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Introduction

Efficacy and safety studies play a key-role for the development of skin care products. Their
core concept is based on performing dermatological laboratory tests on predefined skin areas
that are reclusively conducted by specifically trained lab personal. However, the quantity and
repeatability of these series of measurements constitutes a major challenge, as they are
mostly carried out manually and therefore represent a nonnegligible cost and time factor. A
solution to this is the implementation of collaborative robotics for the measurement execution.
It goes without saying that common control procedures based on statically programmed
software modules cannot be used, since robot-controlled skin measurements must contain
additional information on the various body shapes and surface conditions. Furthermore, the
position and orientation of the measurement area must be taken into account, which have to
be dynamically updated during the measurement process. To solve this problem, information
obtained from an image processing system can be integrated into the robot control process. In
our previous work, the application of collaborative robotics for the execution of in vivo
measurements was proposed [1] by identifying the measurement areas through markers (as
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shown in Figure 1). Furthermore, by using a stereoscopic camera spatial coordinates could be
determined by performing multiple linear regression. With the information provided, the target
coordinates for the robot movement path could be computed as waypoints. However, this
approach requires the manual marking of the measurement areas, which seems infeasible in
practice. Therefore, the automatic definition of measurement areas can be of high value, as it
reduces time and associated costs and may contribute to a higher repeatability. One solution
is to use deep learning object detection for image processing with the aim of detecting certain
body parts within the image such as upper arm, forearm or hands. More specifically image
segmentation methods to retrieve body shapes and contours from the image, which can be
further used to identify the respective measurement area. For this, stereoscopic camera depth
information being obtained next to RGB (red-green-blue colour image) for each pixel can be
used to extract useful features for the subsequent object detection tasks. Zhou et al. [2] and
Xing et al. [3] have already shown that the use of RGB-D images (RGB with depth information)
can outperform the RGB baseline models. With two types of state-of-the-art object detectors
namely, two-/multi-stage or single-stage detector, there is a trade-off between the faster
single-stage and the more accurate multi-stage detector [4]. For the online application in a
robot control sequence, both speed and accuracy are critical. More recent developments show
that this compromise is no longer valid. For example, Wang et al. [5] presented a single-stage
focal loss based RetinaNet detector that outperformed the multi-stage detectors in accuracy.
Li et al. [6] presented a multi-stage light-head Region-based Convolutional Neural Network,
which outperformed the single-stage detectors You Only Look Once (YOLO) and Single Shot
Multibox Detector (SSD) in speed and accuracy. Although many researchers dedicated their
work to the field of image object detection and many approaches exists throughout the
literature [7–11], the combination with robot based in vivo measurements is rarely considered
in the past and remains a challenge to date. Therefore, this paper proposes a concept for
segmenting arm areas into upper arm, forearm and hand, with the focus on in vivo
dermatological measurements performed on the forearm. After this introduction, related works
is followed by a concept. Furthermore, this work delivers an overview of state-of-the-art
models in terms of applicability to the given application. After selecting a suitable model, it is
presented in more detail and the creation of a dataset is described and discussed. Finally, a
conclusion is given.

Related Works

Object recognition is one of the most important application fields of image processing [12] and
can be used for different objects and tasks, e.g. faces [13], cars [14] or cats and dogs [15].
Histograms of oriented Gradients (HOG) [16], Scale Invariant Feature Transform (SIFT) [17] or
Haar-like cascade filters [18] are used for feature extraction and Support Vector Machines
(SVM) [19] or Deformable Part-based Models (DPM) [20] are used for classifying based on
recognized features. For the detection of more than one object in an image or even objects of
different classes it is necessary not only to classify but also to localize the object, this process
is called object detection [21]. Most modern object detectors are based on convolutional
neural networks (CNN), and although CNNs were proposed by LeCun as early as the 1980s
[22] and used for character recognition [23], development stagnated in the early 2000s [21].
With the advancements in GPU computing [24, 25], larger annotated datasets [21] and deeper
networks [26], CNNs, like other neural networks, become more advanced and receive more
attention in recent years [21].

As mentioned in the previous section, the image identification and segmentation of arm areas
is of significant interest to extract the shape and surface of the forearm. A similar problem was
coped with in [27] or [28] where body parts for pose estimation where detected. Another
model has been proposed in [29] for hand gesture recognition. Other application additionally
considered the use of RGB-D data and showed that it can improve the model performance
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[30],[31]. Chandra et al. [32] use RGB-D data to segment the limbs, torso and head of a
person through a fully convolutional network for the use of a mobility assistance robot. Other
works addressed the use of RGB-D images to train CNNs, for example in [33] proposed an
R-CNN based model in this context. The depth information was primarily utilized for extracting
significant features from the provided image. Another approach is proposed in [34] who
implemented a YOLO based approach for detecting objects by using RGB-D images. The
authors extended the structure of YOLOv3 by adding another channel in the input layer for the
depth information. In addition to the 2D object detection approach, there are 3D object
detectors [35, 36] for three-dimensional bounding box estimation. These utilize point clouds
and are applied for pose estimation and scene understanding.

Concept

As mentioned in the introduction, the authors presented in their previous work an image
processing system for performing robot-assisted dermatological in vivo measurements. As
shown in Figure 1, measurement areas were defined using markings on a forearm, which
were then used to transform the relevant depth information with the intrinsic and extrinsic
parameters into the coordinate system of the camera. With this spatial information and the
pixel coordinates of the target positions from the RGB image, target coordinates were
computed and passed to the robot control system as waypoints.

Figure 1. Marker based approach for defining the measurement area [1].

However, placing new markers on the forearm for each measurement seems to be impractical
and may not be user-friendly. Therefore, in this work, a concept is presented to replace the
markers with an CNN object detector for recognition and localization of the forearm. As input,
the object detector receives the depth information in addition to the RGB values for each pixel.
The output is expected to be the localization as well as the correct classification of the object
contained in the respective picture. For this purpose a bounding box is output for each object,
consisting of an anchor point in pixel coordinates and the height and width of the box.
Although the authors focus on measurements on the forearm, the neighbouring body parts,
hand and upper arm, are detected as well in order to identify the measurement area enclosed
by. Due to the functionality of the bounding box determination via the parameters of the
Intersection over Union (IoU) [37], the authors expect a higher robustness and better accuracy
of the assignment, in particular of the transition areas between hand and forearm as well as
forearm and upper arm. Subsequently, the bounding box of the forearm is used as Region of
Interest (ROI) to perform an instance segmentation. This is described as determination of the
affiliation of pixels to a certain object. For this purpose, the depth information is used to
perform a background subtraction as described for different methods in [38] or [39]. Due to the
setup and positioning of the camera, the authors are confident that the background is well
described in both, the RGB image and especially in the depth information and that the
subtraction can be performed reliably. The concept is shown in Figure 2 and the area relevant
for this work is highlighted. To give further context on how the segmented information is used
in the system, the next steps are also shown.
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The pixels segmented to the forearm are used as ROI to transform them into camera
coordinates. Unlike the marker based approach, the spatial information of the whole forearm is
extracted by a multiple linear regression. With this information and a determined pose,
measurement area(s) of a fixed size are fitted on the forearm. From here, the target
coordinates are computed and passed to the robot as already shown in Figure 1.

Figure 2. Proposed concept for segmenting arm areas and its further context in the image
processing system.

Model Comparison and Selection

For the CNN object detector in the proposed concept, a suitable model must be selected. For
this purpose, first an overview of the underlying models and their further developments for the
utilization of depth information is given. Afterwards the models are compared and one is
selected, which is then described in more detail.

A Brief Overview of Object Detection

In this section, pre-selected object detectors are described and the deployment of depth
information based on the RGB models is presented. Selected are Region-based CNN, Fast
Region-based CNN, Faster Region-based CNN, You Only Look Once and Single Shot
MultiBox Detector.

Region-Based Convolutional Neural Network

Girshick et al. [7] propose a region-based CNN (R-CNN) for object detection. The localization
problem is solved by proposing regions for an input image. At test time, about 2000 regions
are proposed and each of them is scaled to a defined size. For the region proposal the
selective search algorithm [40] is used. The size of the warped region represents the size of
the input layer of the CNN. For each region, a feature vector is extracted and classified by a
class-specific linear SVM. Gupta et al. [33] use depth images to encode geometric features,
namely, horizontal disparity, height above ground and angle (HHA), and generate colour
images from them. The authors used two CNNs to extract the features from the RGB images
and the HHA features.

Fast Region-Based Convolutional Neural Network

Girshick et al. [8] propose a further development of R-CNN, the Fast R-CNN. The authors
address the long training and test time and achieve a higher accuracy compared to R-CNN.
First, a feature map is created for a whole image by several convolutional and pooling layers.
Then, a ROI is generated for each proposed object and a feature vector is extracted through a
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pooling and two fully-connected layers. Via further fully-connected layer the architecture ends
in two different output layers. On the one hand a softmax layer for classification of the object
and on the other hand an output layer for the bounding box regression. Yuanzhouhan et al.
[41] propose RGB-D Fast R-CNN, the network inputs the entire RGB and depth image in two
parallel Fast R-CNNs. Two convolutional feature maps are output, which are then
concatenated for classification and bounding box regression.

Faster Region-Based Convolutional Neural Network

With the improvements of Fast R-CNN or SPP-net [42], the limitations of modern object
detectors are in the region proposal methods. Ren et al. [9] propose Faster R-CNN with a
Region Proposal Network (RPN) to address this problem. RPNs basically consist of multiple
convolutional layers. Regions are proposed from the convolutional feature maps while
simultaneously determining the region boundaries of the object. In principle, Faster R-CNN
consists of an RPN for region proposal and Fast R-CNN for object detection. By proposing to
share the convolutional features between the RPN and the object detection network, the
computational cost is compensated. Ren et al. [43] propose Parallel RCNN for human
detection. Parallel RCNN enhances the performance of simultaneously extracting features in
RGB and depth images from two CNNs. Further the authors are experimenting with different
methods of encoding depth images, e.g. HHA [33].

You Only Look Once

Redmon et al. [10] propose You Only Look Once (YOLO), a new method for object detection.
Unlike other object detectors, YOLO views detection not as a region proposal problem but
instead as a single regression problem. It processes entire images as input, dividing them into
grid cells for this purpose. Each of these cells or cell combinations predicts a certain number
of bounding boxes with confidence score. This score indicates how securely an object is
located in the box and how well this box fits the contained object. Furthermore, for each box a
probability of association with a specific class is predicted. These two are then combined to a
final detection. Takahashi et al. [34] propose Expandable YOLO (E-YOLO), in which another
channel is added in the input layer for depth information. Further, the authors introduce the 3D
IoU with Volume of Overlap and Volume of Union for a better 3D bounding box proposal.
Ophoff et al. [44] propose a different approach. They use a separate network stream for the
RGB and depth information each and fuse them by a concatenation layer. For the fusion, the
authors experiment with different positions of the fusion layer in the network. The authors refer
to the proposed model as RGB-D Fusion YOLO.

Single Shot MultiBox Detector

Liu et al. [11] propose with Single Shot MultiBox Detector (SSD) a similar single-stage
approach to [10]. SSD takes a whole image as input with ground truth boxes for training. With
an input size of 300 x 300 pixel, SSD is faster and more accurate than YOLO with 448 x 448
pixel. The authors use VGG-16 as the base network and then add multiple feature layers. By
using multi-scale convolutional bounding boxes that are output to these added feature layers,
the bounding box regression problem is solved more efficiently. Further, the authors
experiment with different datasets and larger input sizes of images. Sharma and Valles [45]
present a base network for processing RGB-D images with SSD. The authors use two parallel
streams with convolutional layers for the RGB and depth image. These are then fused using
fully connected layers and additional feature layers are added for the detection. This is
referred to as RGB-D Fusion SSD.

Model selection

In this work, the model selection is divided in two consecutive steps. First, the RGB baseline is
compared in its performance and then the RGB-D models are compared in relation to the
baseline, while at the same time evaluating whether the model is suitable for the application
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presented. Some researchers may argue that the ranking assignment is not of high scientific
value, which is indeed the case, but the wide variety of hardware and architectures and
datasets makes it difficult to compare objectively. This applies in particular to the assessment
of suitability, which is why it has to be regarded as subjective and will subsequently be
addressed in the conclusion.

For the comparison of baseline performance, the metrics of mean Average Precision (mAP)
and test time are used. In addition, the used architecture and dataset is given. The mAP gives
the average over the precision over all classes of a dataset. The test time indicates how long
the model needs to process one image during runtime. The comparison is given in Table 1.

Table 1. Comparison of different object detector models.

Model Architecture Dataset mAP Test time [s]
R-CNN [7] AlexNet VOC07 58.5 9.8

VGG16 VOC07 66.0 47.0
Fast R-CNN [8] VGG16 VOC07 66.9 0.32
Faster R-CNN [9] VGG16 VOC07+12 73.2 0.2
YOLO [10] VGG16 VOV07+12 66.4 0.048

GoogLeNet VOC07+12 63.4 0.022
SSD [11] VGG16 VOC07 74.3 0.017

Table 1 shows that single-stage detectors such as YOLO or SSD can achieve the accuracy of
Faster RCNN and are thereby significantly faster in test time. The next step is to compare the
RGB-D models from the previous section. The models are benchmarked against their own, if
known, RGB baseline to show the effect of using additional depth information. Since test time
is often not specified, the effect on it is further estimated with ∆ for better, ◦ for neutral and ∇
for worse compared to the baseline. The same metric is finally used to assess whether the
model could be used for use case presented in this paper. The results are shown in Table 2.

Table 2. Comparison and rating of different RGB-D models.

Model Dataset mAP Test time [s] Suitable?
R-CNN NYUD2 19.7 -*
R-CNN + HHA [33] NYUD2 32.5 -* ∇ ∇
Fast R-CNN B3DO 39.9 -*
RGB-D Fast R-CNN [41] B3DO 41.9 -* ∇ ∇
Faster R-CNN custom 90.0 -*
Parallel R-CNN [43] custom 91.5 -* ∇ ◦
E-YOLO [34] custom -* 0.023 ∆

YOLOv2 KITTI 39.87 -*
RGB-D Fusion YOLOv2 [44] KITTI 48.16 -* ∇ ∆

RGB-D Fusion SSD [45] Princeton +
Washington
RGB-D

99.43 -* ∆

* not available

The additional processing of depth information can basically be divided into three methods.
First method, the encoding of the depth information into a three-channel colour image and
processing in a parallel CNN. Similarly, in the second method the depth information is
processed in a parallel CNN stream as a single channel input and then fused, with different
approaches to when the fusion takes place in the network. And finally for the third method
adding another input channel for the depth information. In general, the processing of additional
depth information is considered to have a negative impact on the test time, since it requires
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additional computations. The authors consider a test time of about 0.033 to 0.05 seconds per
image, which corresponds to 20 to 30 frames per second, to be suitable. Therefore, the
models based on the R-CNN family must be classified as not suitable for our application.
Choosing between E-YOLO, RGB-D Fusion on YOLO or SSD, the authors opt for the latter.
The decision is based on four considerations:

• First, SSD performs better in terms of accuracy and test time on the baseline (as shown
in Table 1).

• Second, starting from the baseline, there are opportunities to sacrifice speed for
accuracy.

• Third, the method of using a separate CNN stream for depth information is well known,
as shown by other methods compared here.

• And fourth, the application for which the model is proposed, the grasping of different
objects with a mobile robot arm, has certain similarity to our intention.

Model Description

With the selection of the RGB-D Fusion SSD model, it is described in more detail. The RGB
and depth image are scaled to 200 x 200 pixel images and processed in two parallel CNN
streams for convolution and feature extraction. These consist of five convolutional layers with
maxPooling after the second, fourth and fifth layer. In addition, batch normalization is
performed in the depth CNN stream after each convolutional layer. After feature extraction, the
two CNN streams are merged via a concatenation through three fully connected layers [45].
From here on, the original SSD architecture [11] is used with four additional convolutional
layers ending in a softmax layer for classification followed by a non-maximum suppression
layer for fitting the bounding box. The whole architecture is shown in Figure 3.

Figure 3. Network Overview of SSD with RGB-D Architecture derived from [45].

With the presentation of a concept and selection of a model, the following section deals with
the creation of a dataset.

Dataset

For the very specific use case of detecting forearms, a custom dataset is created. The
creation consists of three steps, data acquisition, annotation, and augmentation of the data.
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For the data acquisition the setup from previous work is used, consisting of the collaborative
robot UR3e from Universal Robots and an Intel RealSense D435i stereoscopic camera, which
is attached on top of the robot’s arm. The robot moves to five different positions in one pass.
Each of these positions is randomized, within certain limits, to allow variation in depth and
viewing angle. At each position, an RGB and depth image is captured. For each forearm, 2 to
3 passes are made in different poses. A total of 750 images are taken from 35 people. Further
on, the images have to be labelled manually with the areas corresponding to the forearm,
hand and upper arm. Each of them represents an individual label which consists of selected
pixel coordinates. Due to the setup described above, there are three different possible
combinations. Figure 4 shows an example of the annotation process for three images, with
forearm and upper arm in row (a), forearm and hand in row (b) and all three labels in row (c).

Figure 4. Annotation process for (a) forearm and hand, (b) forearm and upper arm and (c) all
three labels.

In the final step, the raw images are augmented to a larger database. In order to achieve a
certain robustness against changes in brightness and illumination, the image is converted to
the HSV colour space and augmented in the H-S, H-V, S-V and HSV channels. The change in
the corresponding channels is randomized within certain limits. Afterwards it is transferred
back to the RGB colour space. To provide greater variation, rotations of 90°, 180° or 270° are
applied. This results in seven different modes of augmentation. Attention must be given during
rotation in regard to the annotated coordinates; they must also be rotated accordingly. Figure
5 shows an example of the augmentation for three images. In total the dataset consists of
6000 annotated images.

Discussion

It should be noted that model selection is not a trivial task and developers may draw different
conclusions, as quantitative comparison of all models is only possible to a limited extend.
Therefore, future work will address this issue in more detail by comparison multiple
architectures in terms of accuracy and computational resources. Further, other methods to
use depth information in 2D object detectors will be considered. Especially E-YOLO is
interesting because of its simplicity and lightweight implementation. Moreover, the single
channel input of the depth stream can be replaced by a three channel one, which allows the
use of encoded depth images. Another field of research intersecting with this application are
3D object detectors. As aforementioned, in this work, the transformation of the camera depth
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Figure 5. Image in RGB, image in HSV, augmented image in HSV, augmented image in RGB
(from left to right), first row: H-V modified and rotated by 270°, second row: S-V modified, third
row: H-S modified.

data into the 3D space is conducted after detecting the object of interest. Thus, only the area
of interest is transformed while comparatively few computational resources are occupied.
Despite that, the application of 3D object detectors could also be favourable. However, this
may include the transformation of all depth points instead of a designated area only, which can
be computationally expensive. Finally, further research projects will also focus on the
generalisation ability of the model to generalise well by enhancing the dataset with, for
example, different genders and skin colours.

Conclusion

In this paper, a concept for the detection and segmentation of arm areas using CNN-based
object detectors with the context of automated execution of robot-based dermatological in vivo
measurements is presented. The concept is based on previous work and gives further details
on the use of the segmented arm areas in the image processing system. By deploying a
stereoscopic camera both RGB images as well as associated depth information becomes
available, which is considered in the derived concept. Furthermore, this paper gives an
overview about methodologies to apply depth information in 2D object detectors and points out
challenges within the described application framework. Besides, the creation, annotation and
augmentation of a custom dataset is presented.
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