
TJER 2012, Vol. 9,  No. 1,  21-30

___________________________________________
*Corresponding author’s e-mail: kal_yani_79@yahoo.co.in 

Classification of Static Security Status Using Multi-Class
Support Vector Machines

S Kalyani*a and  KS Swarupb

*a Department of Electrical and Electronics Engineering, Kamaraj College of Engineering & Technology, Tamilnadu, India
b Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India

Received  23 February 2010; accepted  1 December 2010

Abstract: This paper presents a Multi-class Support Vector Machine (SVM) based Pattern Recognition
(PR) approach for static security assessment in power systems.  The multi-class SVM classifier  design
is based on the calculation of a numeric index called the static security index.  The proposed multi-class
SVM based pattern recognition approach is tested on IEEE 57 Bus, 118 Bus and 300 Bus benchmark sys-
tems.  The simulation  results of the SVM classifier are compared  to a  Multilayer  Perceptron (MLP)
network  and  the Method  of Least  Squares  (MLS).  The SVM classifier was found to give high clas-
sification accuracy and a smaller misclassification rate compared to the other classifier techniques.
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Nomenclature

Skm Complex power flow in branch k-m in Mega-Volt Ampere (MVA)
MVA Limitkm Thermal limit of branch k-m in MVA
|Vk

min| Minimum allowable voltage limit of kth bus in p.u. (taken as 0.90 p.u.)
|Vkmax| Maximum allowable voltage limit of kth bus in p.u. (taken as 1.10 p.u.)
|Vk| Bus voltage magnitude of kth bus in p.u. 
|PGi

min| Minimum generation limit of ith generator bus in Mega Watts (MW)
|PGi

max| Maximum generation limit of ith generator bus in Mega Watts (MW)
|PGi| Real power generation of ith generator bus in Mega Watts (MW)
k Voltage angle at ith bus in radians

SGi Complex power generation at ith bus in MVA
SLi Complex power load at ith bus in MVA
NL Number of branches (includes both transmission lines and transformers) in the system
NB Number of buses in the power system network
NG Number of generators in the power system network
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1. Introduction

The Power System Security is an important concern
in the planning and operational studies of power sys-
tems.   The primary aim of an electric power system is
to provide an adequate uninterrupted supply of electri-
cal power to customer premises within the set limits of
frequency and voltage levels. This task has to be
solved in real time and in a safe, reliable and econom-
ical manner.  Security  assessment is the  analysis  per-
formed  to determine  whether,  and  to what  extent,
the  system  is reasonably safe from serious interfer-
ence  during its operation.  Occurrence  of certain
severe disturbances may cause  the  system  to shift go
to  an  undesirable  emergency  state,  if the  system
security  level is not previously well defined.   Hence,
effective control of power systems demands a quick
security evaluation of their operating states (Arora,
Surana 1996).

Power System Security  enables a  system to remain
secure without serious consequences to any credible
contingencies on pre-selected list. Security analysis
may be broadly classified as Static Security
Assessment (SSA) and Transient Security Assessment
(TSA).  Static  security analysis  evaluates the  post
contingency  steady  state  condition  of the  system
neglecting transient behavior  and  other  time-
dependent variations. Transient security analysis  eval-
uates  system  performance  in terms  of rotor  angle
stability, as it  progresses  after  a disturbance
(Shahidehpour 2003). The traditional method used for
static security analysis involves full AC load flow for
each contingency scenario.  This procedure is highly
time-consuming and infeasible for real time applica-
tions (Pang et al. 1973; Pang et al. 1974).  A method
is, therefore, required to access security using real-
time data.   This leads to the application of the Pattern
Recognition (PR) approach. In recent years, many
Artificial Intelligence (AI) techniques have been pro-
posed to overcome the pitfalls of the traditional
method of security evaluation. AI techniques like the
Self-Organizing Feature Map (Swarup, Corthis  2006),
and the Multilayer Feed forward with a back propaga-
tion algorithm (Saeh, Khairuddin 2008)  have been
applied for the problem of static security assessment.
Various literatures has also reported the use of an ANN
-based Pattern Recognition  approach (Boudour,
Hellal 2006; Luan et al. 2000) - a Genetic-Based
Neural  Network (Azah, Maniruzzaman 2001),  - a
Fuzzy  Logic combined with a Neural  Network
(Haghifam, Zebarjadi 1996),  and a Query-Based
learning  approach in Neural  Networks (Huang 2001)
for the static security evaluation process.  The per-
formance of all these existing techniques are highly
problem dependent and hence their suitability cannot
be underestimated/minimized.  Moreover, because of
the nature  of  the  input  features used, these methods 

are found to be incapable of quickly predicting the
future insecure operation.

Nowadays, Pattern Recognition (PR) techniques
have demonstrated great importance in security evalu-
ation of large electric power systems (Sa,  Munro
1984).   In the pattern recognition approach, the main
bulk of simulation is done off-line to generate suffi-
cient data for training set (Pang et al. 1974).  Using the
training data set, the classification function is
designed, from which system security can be judged in
a short period of time.  This  paper  presents  the  appli-
cation of Pattern Recognition  (PR)  approach to static
security  assessment of large scale power systems in
multi-class  mode.  The classifier in the PR system is
designed by Support Vector Machines (SVM).  SVM
is a new and promising tool for learning separating
functions in a PR system with the capability of han-
dling non-linear separability.  The SVM classifier is
designed for multi-class classification based on the
calculation of a term called 'Static Security Index'
(SSI), for each specified contingency.  In this paper,
four class logic is used for the  definition  of system
security  viz., secure,  critically  secure,  insecure,
highly insecure.  An operator  needs to know the exact
severity level of disturbances for a given system oper-
ating condition.  On-line security evaluation allows the
operator to know the security status and determine the
corrective actions.

2. Static Security Assessment (SSA)

Static  security  is the  ability  of the  system  to
reach  a state  within  the  specified secure region fol-
lowing a contingency.  A set of the most probable con-
tingencies is first specified for security evaluation.
This set may include single line outage, a loss of a gen-
erator, or a  sudden increase in load.  The violations of
thermal limits of transmission lines and bus voltage
limits are the main concerns for static security analy-
sis.  In conventional  practice,  security  assessment is
obtained  by analytically modeling the network  and
solving the load flow equations  repeatedly for all of
the prescribed outages,  one contingency  at  a time
(Lo, Peng 1997).   This traditional approach is not
entirely satisfactory because the huge number of sim-
ulations needed to be carried out.

A given system operating condition is said to be
'static secure', if the bus voltage magnitudes and real
power generation of generator buses are well within
their limits, without any occurrence of line overloads.
In this paper, the term, statis security index (SSI) indi-
cates the system security level for a given system oper-
ating condition and a specified contingency.  The SSI
is defined by calculating the Line Overload Index
(LOI), Voltage Deviation Index (VDI) and Generation
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Deviation Index (GDI) as given by Eqs.  (1), (2) and
(3) respectively.

(4)

(5)

where Skm and MVA Limitkm represent the MVA flow
and the MVA limit of branch k-m, |Vkmin|, |Vkmax| and
|Vk| the minimum voltage limit, maximum voltage
limit and bus voltage magnitude of the kth bus respec-
tively.  In addition, PGi

min, PGi
max and PGi represent the

minimum generation limit, maximum generation limit
and real power generation of the ith generator bus
respectively, and NL, NB and NG represent the  num-
ber of lines, buses and generators respectively.   

3. Pattern Recognition (PR) Approach

A pattern is a pair comprised of an observation and
a meaning.  A Pattern Recognition infers  meaning
from observation.  Pattern  Recognition  is defined  as
'the  act  of taking  in raw  data and  taking  an action
based  on the  category  of data'.   It aims to classify
the data or patterns based on either priori knowledge
or on statistical information extracted from the pat-
terns (Pecas et al. 1988).   A complete pattern recogni-
tion system, as shown in Fig. 1, consists of a sensor

that gathers observations to be classified; a feature
extraction mechanism that computes numeric or sym-
bolic information from observations and a classifica-
tion scheme that classifies the observations, relying on
extracted or selected features.

4.  Application  of  Pattern  Recognition to 
Static Security Assessment 

The classification  of power system  state  is the  pri-
mary  stage  of security  assessment  in large scale real
power system  networks.  From a pattern recognition
perspective, the SSA problem  is considered to be  a
classification  problem  whereas the   pre-contingency
system  attributes are  used  to  predict  the post con-
tingency system security status.

Pattern Recognition can be seen as a classification
process which is normally employed to reduce the on-
line computational requirements. In designing a
Pattern Recognition system, a considerable amount of
work is done off-line. This work is used for the gener-
ation  of a set of characteristic operating  points  nec-
essary  to  design a classification  function  called the
'security  function'.   Once the  classifier is derived,  an
actual  assessment of any  new data  sample  located
on-line can be made  by evaluating the security  func-
tion  and can be classified as belonging to any one of
the multi-classes described.  This makes the PR system

(1)

(2)

(3)
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much faster than any other method of security assess-
ment. The sequence of steps performed in the off-line
and on-line stages in applying a pattern recognition
approach to static security evaluation is shown in Fig.
2.

4.1 Pattern Generation
The success of pattern recognition relies on a good

training set.  The training set patterns may be obtained
on-line from real-time occurrences or can be synthe-
sized from off-line simulations  (Laveen 1974).   In
this paper, the train set and test set patterns are gener-
ated by off-line simulations.  Different operating con-
ditions were considered by varying the system load
from 50% to 200% of base load.   For each operating
scenario, single line outages (one at a time) are simu-
lated and a load flow solution is obtained.   Evaluating

the static security index (SSI) as given by Eq. (5), each
pattern is labeled as belonging to one of four classes -
Secure, Critically Secure, Insecure and Highly
Insecure.  All variables describing an operating condi-
tion constitute the components of Pattern vector repre-
sented as X = {x1, x2, xn}. These variables include
loads, generation's power flows in lines, voltage mag-
nitude and angle at buses.  The primary variables
called steady state variables, forming the components
of pattern vector are given below:

X = {|V |k, k, SGi, SLi, Skm} 

where

|V|k voltage magnitude at bus i

Figure 1.  Block diagram of pattern recognition (PR) approach

Figure 2.  SVM based pattern recognition for static security assessment
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k voltage angle at bus i
SGi complex power generation  at generator bus i
SLi complex power load at load bus i
Skm MVA power flow in branch  k-m

4.2 Feature Selection
The number of variables describing the power sys-

tem state in the pattern vector is significantly large.
This phase involves selecting from a large set of vari-
ables  that will give more useful information to build
the classification function.  These variables are termed
features and the process of obtaining them is called
feature selection (Siri  et al. 1992).  The features form
the components of a vector called feature vector repre-
sented as Z = {Z1, Z2, …., Zm}. The importance of fea-
ture selection is to reduce the unclear of dimensional-
ity and the search space for learning algorithm.

Input features may be selected by engineering judg-
ment. But such selections will be subjective with the
possibility of important variables that are rejected.  A
common method  of feature  selection is sequential
feature  selection,  consisting  of two components  - an
objective  function  called criterion  and a sequential
search  algorithm.   In this paper, a 'Sequential Forward
Selection' (SFS) method for feature selection process
is used.  The criterion which this method seeks to min-
imize over all feasible feature subsets is the misclassi-
fication rate for classification models.  The SFS
method  starts with  an empty  candidate set and  adds
feature  variables  sequentially  until addition  of fur-
ther  variables  does not decrease the criterion  (mini-
mization of misclassification).

4.3 Multi-Class SVM Based Classifier Design
After  extracting the  desired  features  by using

sequential  forward  feature  selection  method,  the
final step  is to design a classification  function.   The
classifier represents the boundary between the separat-
ing classes.  The design of the classifier is based on the
design (training) set.  There are many training algo-
rithms like least squares, linear programming, etc.
Although these existing algorithms, are  less time con-
suming to use, they were found to have poor classifi-
cation accuracy.  The main requirements for a security
function are high classification accuracy and less mis-
classification rate.  Hence, a need arises to devise a
more suitable learning algorithm.  This led to the idea
of applying a recently introduced machine learning
tool called the Support Vector Machine (SVM) in the
classification phase of the PR system.  The following
section gives a brief introduction to the Multi-Class
SVM and the procedure to use for classification.

Overview of SVM
Sims is a learning systems designed to automatical-

ly trade off accuracy and complexity by minimizing an

upper bound on generalization error.  SVM is more
suitable for classification problems, particularly those
involving more than two classes.  The SVM paradigm,
originally designed for the  binary  classification  prob-
lem,  has  a nice geometrical interpretation  of discrim-
inating  one class from another  by  a hyper plane  with
the  maximum  margin (Abhisek  2007).   SVM per-
forms the job of classification by implementing a non-
linear mapping of input vectors to a high dimensional
feature space, where a linear decision surface is con-
structed.

This paper focuses on a  static security evaluation
problem, which in also this paper, is a multi-class PR
problem.  Due to various complexities, a direct solu-
tion of a multi-class problem using a single SVM for-
mulation is usually avoided.  The better approach is to
use a combination of several binary SVM classifiers to
solve a given multi-class problem.  Popular methods
are:  one-versus-all method using a winner- takes-all
strategy; one-versus-one method implemented by
max-wins voting (Kai-Bo, Sathiya 2005).   In this
paper,  the latter technique was used,presisely, the
one-versus-one method for designing the multi-class
SVM classifier. Each of the two methods is briefly dis-
cussed as follows:

A)  One-Versus-All (OVA)
This is conceptually the simplest multi-class SVM

classification method.   It  constructs k SVM models,
class 1 (positive)  versus all other  classes (negative),
class 2 versus all other classes, ...  , class K versus  all
other  classes, where K is number  of classes (Chih,
Chih-Jen 2003), A comparison of methods for multi-
class support vector machines.  Taiwan). Given  a set
of training  data  samples of length £ (x1 , y1) , (x2, y2

) , . . . , (xe, ye) ; xi RM , where each training  sample
xi has  M features  describing  a particular signature
and  belongs to  one of the  K classes, ie.,  y {y1, . .
. , yK }.  The  basic concept  behind  SVM is to search
for a balance between the regularization term  ½ (wi)T

wi and the training  errors.  Classification of new
instances in the one-versus-all method is done by a
winner-takes-all strategy, in which the classifier with
the highest output function assigns the class.  For a
multi-class problem defining K classes, one needs to
solve k quadratic programming (QP) optimization
problems of size £. Hence, this approach is computa-
tionally expensive and not commonly preferred.

B)  One-Versus-One (OVO)
This method constructs K (K - 1)/2 binary classi-

fiers, where each one is trained on data from two class-
es.  In other words, for every pair of class, a binary
SVM problem is solved. The classification in one-ver-
sus-one method is done by a max-wins voting strategy
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(MWV).  After each of the K (K - 1)/2 binary classi-
fiers make its vote, the decision function assigns an
instance x to a class having largest number of votes
(Kai-Bo, Sathiya 2005; Chih-Wei, Chin 2006).   In this
case, a tie occurs with two classes having identical
votes, the one with smallest index is selected.  One of
the benefits of this approach is that for every pair of
classes, a smaller optimization problem is dealt with,
thereby resulting in saving of total computation time.
Hence, if in an average, each class has £/K data points,
only the K (K - 1)/2 Quadratic Programming (QP)
problems of size less than £ have to be solved. This is
found to be quite less compared to the OVA approach,
where K number of QP problems, each of size £ needs
to solved.

SVM Training Algorithm for Classification Task
The procedure or steps involved in applying SVM

for the problem of multi-class classification is as fol-
lows:

1. Data Scaling/Preprocessing
The input features in train set and test set needs to

be scaled properly before applying SVM. This is
important as the kernel values depend on the inner
products of the feature vector.  Scaling prevents the
domination of any feature over the other because of
higher numeric values involved and also avoids
numerical difficulties during calculation.   It is  recom-
mended to linearly scale each attribute to  the range of
[0, 1].

2. Design of SVM Model

Choice of Kernel
The Radial Basis Function (RBF) kernel is the first

choice because of its widely-known accuracy.  Further,
it is capable of handling non-linear relations existing
between the class labels and input attributes. The sec-
ond reason is that RBF kernel, unlike other kernels,
has only one kernel parameter, thereby reducing the
complexity of the model.

Adjusting the Kernel Parameters
There are two parameters associated with RBF ker-

nels - the Penalty parameter, C the and RBF Kernel
parameter, .  The goal is to identify optimal (C, ) for
the classifier to accurately predict the unknown data
(test data). This can be achieved by a technique called
'Cross-Validation'. In a v-fold cross validation, the
whole training set is divided into v subsets of equal
size.  Sequentially one subset is tested using the clas-
sifier trained on the remaining (v-1) subsets.    Thus,
each instance  of the  train  set is predicted  once and
the  cross-validation accuracy  is the  percentage of
data  samples that are correctly  classified (Min et al.

2005).   In this study, a grid search is used on C and 
using 5-fold cross validation.  All pairs  of (C, )  were
tried  and  the  one with  highest  cross- validation
accuracy  was selected.  It was also realized that using
exponentially growing sequences of C and is a prac-
tical method to identify optimal parameters.  These
sequence was used  C = {2-5, 2-3, . . . , 215}   and   =
{2-15, 2-13 , . . . , 25 } in the SVM experiment.

3. Training and Testing  the SVM Model
After designing the SVM model with the chosen

kernel and optimal parameters, it is trained with the
scaled input-output train set data samples.  Once the
performance of the SVM classifier is found satisfacto-
ry in the training phase, the model is validated with
test data samples to access its overall performance.

5. Performance   Evaluation  of  the Class-
fier

The performance of the SVM classifier is validated
by calculating the following performance measures for
train set, test set and combined set (combination of
train and test sets).

(1)   Mean Squared Error (MSE)

N No. of data set samples
DOk Desired    Output    obtained   from   off-line 

simulation
AOk Actual Output obtained from SVM classifier 

model

(2)       Classification Accuracy (CA)

(7)
(3)        Misclassification (MC) Rate

(8)

In power system security evaluation, it is impor-
tant to ensure that the misclassification rate is kept at
minimal.  In particular, the chances of a highly inse-
cure state being wrongly predicted  as secure, needs to
be reduced,  as it may be lead to failure of control
actions and hence a severe 'blackout'. Thus, the classi-
fication system for security evaluation must be effi-
ciently designed to have high classification accuracy
and a low misclassification rate.

(6)



27

Classification of Static Security Status using Multi-Class Support Vector Machines

6. Simulation Results and Discussion

The proposed multi-class SVM based pattern recog-
nition approach to static security evaluation is imple-
mented on 57 Bus, 118 Bus and 300 Bus IEEE stan-
dard systems. The multi-class SVM classifier is
designed and tested using LIBSVM software package
(Cin-Chung, Chih-Jen 2004).   Normally in power sys-
tem networks, transmission lines are permitted to carry
power to a maximum limit of 125% to 130% of sched-
uled value so as to meet the small increase in demand.
This will not pose serious problems as the transmis-
sion line is normally designed to meet this require-
ment. However, the system losses will increase due to
large the amount of heat dissipation involved. Based
on this, the MVA limit of the lines and transformers is
taken as 130% of the base case MVA flow in the sim-
ulation work. The  security  limit  of voltage  magni-
tude at  load  buses  is imposed  in the  range  of 0.90
pu to  1.10 pu.   

6.1  Data Generation
Different scenarios have been considered by vary-

ing the system real power generation and load from
50% to 200% of base case values.  The variation in
real power generation is limited to its minimum and
maximum values.   Contingencies of single-line out-
ages are simulated for each operating condition.   For
a given operating  condition  and  specified contin-
gency,  a load flow solution  by Fast  Decoupled
method  is obtained  and the  Static  Security  Index as
given by Eq.  (5) is calculated. In the calculation of
SSI, the weighting factors for LOI, VDI and GDI are
assumed as W1 = 3, W2 = 2 and W3 = 1.5 respectively.
These  weighting  factors  are fixed based  on the  order
of priority  in requirement  of system  security.   SSI is
a percentage measure of system security level, taking
value in the range between 0 and 100. Based on the
computed value of SSI, data patterns in each operating
condition are categorized in one of the following four
classes.

6.2  Design of Multi-class SVM Model
The steady state variables obtained from load flow

solution are recorded as pattern variables. The vari-

ables included in the pattern vector are bus voltage
magnitude, bus voltage angle, complex power genera-
tion at generator buses, complex power load at load
buses and MVA flow in all branches.  The large size
pattern vector is reduced by sequential forward
approach of the feature selection.  This  selects the

pattern variables  having  higher  discriminating power
and  hence determines  the feature  vector,  which is an
optimal  subset  of pattern vector.  The data samples in
the feature vector are randomly split into two parts -
train set and test set.  The multi-class SVM classifier
model is designed using the training data samples.
The performance of SVM classifier depends on the
type of kernel function and SVM parameters.  The
Radial Basis Function (RBF) was chosen as kernel
function in our SVM experiment. The parameters of
SVM model to be tuned are the  Penalty parameter (C)
and the RBF kernel parameter ( ).  The optimal values
of these parameters are obtained by a '5-fold Cross
Validation' procedure for a cross-validation accuracy
of 100%.  The SVM model designed is validated by
rating its performance, when subjected to randomly
generated test set samples, whose class labels are
unknown.

6.3  Test Case Results
Table 1 shows the results of data generation and fea-

ture selection of the PR system.  The total number of
operating scenarios simulated and number of cases
belonging to each class is shown for the test cases
studied.   The  number  of feature  variables  extracted
from the  pattern vector,  as seen from Table 1 is sig-
nificantly less, as is evident from the figure of
Dimensionality Reduction  (defined as the ratio  of
number  of components  in the feature  vector  to that
in the pattern vector).  The SVM classifier is trained
using the normalized values of selected features.  The
data samples in the feature vector are normalized to a
range of [0, 1] using the min-max normalization
method. It is the one of the widely used techniques for
the data scaling process. It performs linear transforma-
tion on original data by scaling the data in each attrib-
ute to fit in a specific range.

Table 2 shows the results of classification in train-
ing, testing and combined phases for IEEE 57 Bus, 118
Bus and 300 Bus test systems.  The results of SVM
classifier is compared with Multilayer Perceptron
(MLP) and Method of Least Squares (MLS) classifiers
in terms of performance measures.   The  MLP  net-
work,  designed  and  trained using the Neural
Network  toolbox  in Matlab 7.6, consists  of a hidden
layer  with  the 30 neurons  of 'tansig' transfer  func-
tion.   The network is trained with the Levenberg
Marquardt algorithm (Learning rate = 0.05;
Performance goal = 0.001; Epochs = 600). It can be
easily  seen from Table 2 that the SVM classifier gives
a fairly high classification  accuracy  and a less mis-
classification  rate,  in particular for class K=4,  com-
pared  to MLP and MLS classifiers. Furthermore, the
time taken by the SVM algorithm is much compared to
MLP network, even for a large size system.  Figure
3(a) and 3(b) shows the cross validation plot  of the
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SVM classifier trained with  the RBF  kernel using 5-
fold cross validation technique  for the IEEE  57 bus
and  IEEE  300 bus systems  respectively.   The  opti-

mal  values of SVM parameters obtained  for a cross
validation  accuracy  of 80%, as seen from  Fig. 3(a)
for IEEE  57 bus, are  Penalty parameter,  C  = 211 =

Table 1.  Results of pattern generation and feature selection stages of PR system

Table 2.  Classification results on train, test and combined sets for multi-class SSA

* As there are no samples belonging to the class of Static Highly Insecure (Class K=4)

Case Studies  
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2048 and  RBF  kernel  parameter, = 2-2 = 0.25.
The SVM parameters selected for the IEEE 300 bus
for a cross validation accuracy of 80%, seen in  Fig.
3(b), are Penalty parameter, C = 22 = 4 and RBF  ker-
nel parameter, = 20 = 1.00.

7.  Conclusions

In this paper, the SVM based Pattern Recognition
(SVM-PR) approach for static security evaluation in
multi-class mode is presented. The proposed multi-
class SVM-PR model was tested on IEEE standard test
systems.    Simulation   results showed that high accu-
racy security functions are realizable with an SVM
classifier. The SVM classifier also proved to give a
lower misclassification rate compared to MLP or any
equivalent methods.  A good classification system
should to reduce the  chances  of highly insecure
states  being erroneously predicted  to almost  zero
(misclassification rate  corresponding  to  Class  K=4).
This is achieved by the SVM classifier, thereby reduc-
ing the posibility of failure of the control actions.
Future work will focus on the improvement of per-
formance of the SVM classifier by adopting different
methods for feature selection and SVM parameter tun-
ing.
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