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1.Introduction 

Optimization of parameters in machining is a non
linear model with constraints, so it is difficult to con-
ducted this optimization using conventional approach-
es.  As an  alterna-tive,  non-conventional  approaches
________________________________________
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have become useful approaches to solve machining
parameter optimization problems. The LINGO solver
program is global optimization software; it gives min-
imum values of surface roughness and their respective
optimal conditions.  In many real machining applica-
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surface methodology on the basis of the experimental results. The surface roughness prediction model
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problems concisely, solve them,  and analyze the solution in engineering sciences, operation research etc.
The LINGO solver program is global optimization software.  It gives minimum values of surface rough-
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tions, three conflicting objectives are often considered.
These are the maximum production rate, minimum
operational cost, and quality of machining. Therefore,
three cutting parameters and tool geometries need to
be determined in a turning operation: cutting velocity
feed rate, depth of cut, and tool nose radius.  The pur-
pose of the turning operation is to produce low surface
roughness.  Proper selection of cutting parameters and
tools can produce longer tool life and lower surface
roughness.  Hence, the design of experiments by fac-
torial input, with response surface methodology
(R.S.M). applied to cutting parameters, was adopted to
study the surface roughness (Abhang, Hameedullah
2010). Hard turning eliminates the series of operation
required to produce the component and thereby
reduces the metal cutting cycle time.  This results in
improvement of productivity (Konig et al. 1984). The
proper selection of the cutting tool inserts and cutting
conditions plays an important role in  process planning
for steel turning. This task is traditionally completed
by the process planner by taking the data from the
hand books and cutting tool catalogues. Since different
cutting tool inserts are available with different geome-
tries, coatings and materials, it becomes difficult for
the process planner to decide the required inserts on
the basis of available data (Wang et al. 2002). It is nec-
essary that reliable mathematical models be formulat-
ed so that optimum selection of  tool geometry and
cutting parameters can be achieved. To date very few
models have been developed for the case of EN-31
alloy steel turning incorporating tool geometry (tool
nose radius) and the cutting conditions. Researchers
have studied the effect of the metal cutting parameters
on surface roughness, but the combined effect of tool
nose radius and cutting parameters (cutting speed, feed
rate, and depth of cut) has not been studied properly. 

Therefore, in this paper, an effort has been made to
develop the mathematical models incorporating tool
geometry (tool nose radius) and cutting conditions by
performing the experiments on the EN-31 alloy steel
with a tungsten carbide tool and then optimizing the
turning process by LINGO-solver programmer. Suresh
et al. (2002) have developed a surface roughness pre-
diction model for turning mild steel using a response
surface methodology.  As surface roughness prediction
model has also been optimized by using genetic algo-
rithms. Feng, Wang (2002) have developed empirical
models for surface roughness prediction in finish turn-
ing. They have included work piece hardness, feed
rate, and tool point angle, depth of cut, cutting speed
and cutting time. Ozel, Karpat (2005) studied the pre-
dictive modeling of surface roughness and tool wear in
hard turning using regression and neural networks.
The cutting tool used was made of cubic boron nitride.
In this study, effects of cutting edge radius, work-piece

hardness, cubic-baron-nitride (CBN) context, cutting
length, cutting speed and feed rate on surface rough-
ness and tool wear were experimentally investigated.
Effective rake angle was kept constant in this study.
Dilbag (2007) studied the optimization of tool geome-
try and cutting parameters for hard turning. The cut-
ting tool used was made of mixed ceramic inserts. In
this study, effects of cutting speed, feed rate, and neg-
ative rake angle and tool nose radius on surface rough-
ness were experimentally investigated. However,
effective depth of cut has been kept constant through
out the study. Yang, Tarng (1998) employed the
Taguchi method to investigate the cutting characteris-
tics of S45C steel bars using tungsten carbide tools.
The optimal cutting parameters namely, cutting speed,
feed rate and depth of cut for turning operations with
regard to performance indexes such as tool life and
surface roughness are considered. Kopac et al. (2002)
investigated the optimal machining parameters for
achieving good surface roughness in fine turning of
cold pre-formed steel C15 E4 (ISO). Manna,
Bhattacharyya (2004) took the significant cutting
parameters into consideration and used multiple linear
regression mathematical models relating the surface
roughness height Ra and Rt to the cutting parameters
for turning Al/SiC-MMC.  Aslan et al. (2007) used an
orthogonal array and analysis of variance to optimize
cutting parameters in turning hardened AISI4140 steel
with a Al2O3 ceramic tool coated with TiCN. The flank
wear and surface roughness had been selected as
investigated quality objectives and the authors tried to
determine optimal values of cutting parameters, such
as cutting speed, feed rate and depth of cut.  Nalbant et
al. (2007) used the Taguchi method to find good sur-
face roughness in turning of AISI 1030 steel bars using
TiN coated tools in terms of three cutting parameters,
namely insert radius, feed rate and depth of cut.           

It is evident from the above-mentioned literature
that all the models studied only cutting parameters
(i.e., cutting conditions) for the turning process.
Additionally, the optimization of the tool geometry
(considering effective tool nose radius) and the metal
cutting conditions for the EN-31 alloy steel turning-
have never  been reported. Therefore, an effort has
been made in this paper to obtain the optimum values
of the tool geometry and the cutting conditions for
minimizing the surface roughness by LINGO-solver
software.  

2.  Methodology  

In this work, experimental results were used for
modeling using response surface roughness methodol-
ogy (RSM).  RSM is a collection of mathematical and
statistical techniques that are useful for the modeling
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and analysis of problems in which response of interest
is influenced by several variables and the objective is
to optimize the response. RSM is practical, economi-
cal and relatively easy for use.  Additionally it has
been widely researched in the modeling metal cutting
process (Birdie 1993, Hasegawa et al. 1976;
Montgomery 1991). RSM was also successfully used
for application in tool life testing (Abhang et al. 2010;
Mehrban et al. 2008) surface analysis and tool wear
rate in metal cutting. The experimental data was uti-
lized to build a mathematical model (first order, sec-
ond order, and an exponential model) by the regression
method. This mathematical model was taken as objec-
tive function and was optimized using a LINGO-
solver programmer to obtain the machining conditions
for the required surface finish The following linear
relationship is commonly used for representing the
mathematical models in metal cutting:

Y = Ø (v, f, d, r) + (1)

Where, v, f, d, and r are the speed, feed, depth of
cut and tool nose radius respectively of the metal cut-
ting processes, and is the error, which is normally
distributed with mean = 0 according to observed
response Y and Ø is the response function. The rela-
tionship between surface roughness and other inde-
pendent variables is modeled as shown below:

Ra = c va fb dc rd (2) 

Where c is constant, b, c, and d are the exponents.
Equation (2) can be represented in linear mathematical
from as shown:

ln Ra = ln (c) + alnv + b ln (f) + c lnd + dlnr (3) 

The constants and exponents a, b, c and d can be
obtained by the method of least squares. The first-
order linear model developed from the equation, can
be represented as follows.   

Y1 = y- = boxo + b1x1 + b2x2 + b3x3 + b4x4 (4) 

Where, Y1 is the estimated response based on first-
order equation on the logarithmic scale, y is the meas-
ured surface roughness  xo = 1(dummy variable), x1, x2,
x3 and x4 are logarithmic transformations of cutting
speed, feed rate, depth of cut, and tool nose radius,
respectively. the experimental error is  and b-values
are the estimates of corresponding parameters. If this
model is not sufficient to represent the process, then
the second-order model will be developed. The gener-
al second order model is as given below:

(5)
Where Y2 is the estimated response based on sec-

ond order equation, the parameters bo, b1, b2, b3, b4,
b11, b12, b13  and b44  are to be estimated by the method
of least squares. 

Optimization  of  Surface finish by the LINGO-
solver Approach

LINGO is a mathematical modeling language
which is used in linear and non-linear optimization in
engineering sciences, operation research, etc.The sim-
plicity of operation and computational efficiency are
the two main attractions of the LINGO solver
approach. Optimization helps find the answer that
yields the best result, or attains the highest profit, out-
put, or happiness. It also has the potential to find the
answer that achieves the lowest cost, minimize surface
roughness, minimizes waste, or prevents discomfort.
Through the LINGO solver optimization we can
obtain the global optimum values (i.e., minimization
or maximization characteristics).

3.  Experimental Details 

A detailed survey has been carried out to find out
how metal cutting parameters, namely cutting  speed,
feed rate, depth of cut and tool nose radius of the sin-
gle point cutting tool were selected for experimenta-
tion. The range of each parameter is set at three differ-
ent levels, namely low, middle and high based on
industrial practices as shown in Table 1. The factorial
design with eight added centre points (24 + 8) used in
this work is a composite design. The complete design
consists of 24 experiments as shown in Table 2  (all
factors are in coded form).  The coded number for
variables used in Tables 1 and 2 are obtained from the
following transformation equations as suggested by
(Birdie 1993; Montgomery 1991):

X1 = (ln v - ln 112) / (ln 112- ln 39)                 (6)

X2  = (ln f - ln 0.10) / (ln 0.10 - ln 0.06)         (7)

X3 = (ln d - ln 0.4) / (ln 0.4- ln 0.2)               (8)

X4 = (ln r - ln 0.8) / (ln 0.8- ln 0.4)               (9)  

Where x1 is the coded value of cutting speed v, x2
is the coded value of feed rate f, x3 is the coded value
of depth of cut d, and x4 is the coded value of tool
nose radius r.



40
LB Abhang and  M Hameedullah

In this investigation, a commercial alloy steel work
piece (EN-31 steel alloy) is machined on heavy duty
lathe machine (LTM-20). The chemical composition
of the material is shown in Table 3. This material is
suitable for a wide variety of automotive type applica-
tions the construction of axles, roller bearings, ball
bearings, shear blades, spindles, mandrels, forming
and molding dies, rollers, blanking and forming tools,
knurling tools and spline shafts.  These are all exam-
ples of automotive components produced using  mate-
rials where turning is the prominent machining process
used. An optical surface roughness measuring micro-
scope was used to measure surface roughness (Ra) of
the machined components. The surface roughness was

measured at three equally spaced locations around the
circumference of the workpieces to obtain statistically
significant data for each test. The cutting tools used for
experimentation were CNMA 120404, CNMA
120408, CNMA 120412 and diamond shape carbide
(Make: Widia India Limited, Bangalore).  The tool
holder used for experimentation was WIDAX SCLCR
1212, Fo9 (ISO Designation).

4.  Results and Discussion

The experimental study was conducted to see the
effect of cutting parameters and tool geometry (i.e.,
nose radius) on the outcome of the steel turning
process. The variation of surface roughness with
respect to the variables are shown in Figs. 1 through 5.
It can be observed that cutting speed (v) and nose
radius (r) have a negative influence, while feed rate (f)
and  depth of cut (d) have a positive influence on the
surface roughness (Ra).  The surface roughness (Ra) of
EN-31 steel decreased with increased cutting speed (v)
and tool nose radius (r) whereas it increased with an
increasing feed rate (f) and depth of cut (d). It can also
be seen that the feed rate influences the surface rough-
ness more predominantly than the other factors. Large
values of tool nose radii also yield low surface rough-
ness as compared to the smaller tool nose radii of the
cutting tool (Fig. 5).  Hence smaller values of feed rate
and depth of cut must be selected in order to achieve
better surface finish during the steel turning process.
In order to under stand the relationship between the
machining response and parameters, the experimental
results were used to develop the mathematical models

Table 1.  Process variabls and their levels

Table 2.  Design matrix with experimental results

Table 3.  Chemical   composition  of  an  alloy   steel 
[EN-31] work piece

Table 4.  ANOVA  for  the  first-order   model  (first
block)

Note: DF = degree of freedom, s = significant

Table 5.  ANOVA for the second-order model (whole
block)

Note: DF = degree of freedom, s = significant
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using RSM.  In this work, a commercially available
statistical Minitab software package was used for the
computation of the regression constants and expo-
nents. The developed equations clearly show that the
feed rate is the most influencial parameter on surface
roughness followed by tool nose radius and depth of

cut. This is in agreement with the work of  (Birdie
1993; Sundaram, Lambert 1981).  The increase in feed
rate increases surface roughness, but surface rough-
ness decreases with increasing cutting velocity and
tool nose radius. During machining, if the feed rate is
increased, the normal load on the tool also increases

Figure 1. Surface roughness and feed rate relationship (depth of cut 0.2mm and nose radius 0.44 mm)

Figure 2. Surface roughness and cutting speed relationship (depth of cut 0.20mm and nose radius 0.4mm)

Figure 3. Surface roughness and depth of cut relationship (tool nose radius 0.4 mm and feed rate 0.6 mm/rev.)
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and it will generate heat which in turn increases the
surface roughness. This is anticipated as it is well
known that for a given tool nose radius, the theoretical
surface roughness is generally (Ra = f2 /32r)
(Sundaram, Lambert 1981). Thus, with an increase in
depth of cut, the surface roughness value increases,
because with an increase in depth of cut chatter may
result causing degradation of the workpiece surface
(Chen 2000), and a larger tool nose radius reduces sur-
face roughness. The surface roughness values obtained
by using an insert radius of 1.2 mm were less than the
surface roughness values obtained by using the insert
radii of 0.8 mm and 0.4 mm. The reason for obtaining
better surface quality with in insert radius of 1.2 mm
than with the other two inserts may be ascribed to the
form of better roundness of this insert than the other
two. 

4.1 The Roughness Models 
The proposed first order model developed from the

above functional relationship using the RSM method
is as follows:

Ra = 8.6 - 0.00017v + 28.2f + 3.74d - 0.688r (10) 

The transformed equation of surface roughness pre-
diction is as follows: 

Ra = 26.049 (v-0.0265 f0.224 d0.114 r-0.038)          (11)

Equation (11) is derived from the Eq. (10)  by sub-
stituting the coded values of  x1, x2, x3 and x4 in terms
of lnv, lnf, lnd and lnr. The analysis of variance and the
F-ratio test have been performed to justify the fitness
of the mathematical model. Since the calculated value
of the F-ratio is more than the standard tabulated value
of the F-ratio for surface roughness as shown in Table
4, the model is adequate.  Their  p-values smaller than
5% or equal to zero, at a 95% confidence level to rep-
resent  the definite relationship between the machining
parameters and machining response for the turning
process. The multiple regression coefficient of the
first-order model was found to be 0.8671.This shows
that the first order can explain the variation to the
extent of 86.71%. In order to see whether a second-
order model can represent more accurately than the
first order, a second order model was developed. It is
to be noted from the second-order equations that some
of the coefficients are not considered. Only significant

Figure 4. Surface roughness and tool nose radius relationship (depth of cut 0.2 mm and feed rate 0.06 mm/rev.)

Figure 5.  Surface roughness and tool nose radius relationship (depth of cut 0.4 mm and feed rate 0.1 mm/rev.)
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parameters and their coefficients are included in the
second-order equation. The remaining insignificant
parameters are omitted. The student's t-test was
applied to determine the significance and non-signifi-
cance of these parameters and their coefficients.

The second-order mathematical model is as follows:

Y2 = 5.13 + 0.0155v + 55.0f + 9.51d 
+ 0.60r - 0.0000 51v2 + 0.0187f2 - 0.0110d2 

- 0.00102r2 - 48.6vf- 10.5 vd - 0.38dr  (12)

Where, Y2 is the estimated response of surface
roughness based on second-order equation, v is the
cutting speed in meters/minute, f is the feed rate in
mm/revolution, d is the depth of cut in mm and r is the
tool nose radius in mm.  It is observed that feed rate
has positive influence followed by depth of cut, cut-
ting speed, and tool nose radius on the surface rough-
ness (Ra). The surface roughness (Ra) of En-31 steel
decreased with increasing cutting speed (v) and tool
nose radius, whereas it increased with an increase in
feed rate and depth of cut. The analysis of variance for
the second order model is shown in Table 5.  The
model is adequate since their p-values are smaller than
5% or equal to zero at a 95% confidence level to rep-
resent the relationship between the machining param-
eters and machining response for the turning process.
The multiple regression coefficient of the second order
was found to be 0.8983. This means that the second-
order can explain the variation to the extent of 89.83%.
Since the difference of multiple regression coefficients
between the first order and the second order is only
3.12%, it can be concluded that the first order model is
adequate to represent the steel turning process under
consideration. The first order mathematical model acts
as an objective function in order to minimize the out-
put surface roughness factor.

Ramin = 8.68 - 0.00017v + 28.2f + 3.74d - 0.688r
(13) 

The constrained optimization problem is stated the
objective function of minimum Ra using the above
model. The constraints are subjected to, 39 < v < 189,
0.06 < f < 0.15, 0.2< d < 0.6 and 0.4 < r < 1.2, xi1 < xi
< xi4.  In this case xi1 and xi4 are the upper and the
lower bounds of process variables  xi, and x1, x2, x3,
and x4 are the logarithmic transformation of cutting
speed, feed rate, depth of cut and tool nose radius.
Table 6 shows a global optional solution found at step:
6 with optimum machining conditions. The objective
value obtain by LINGO-solver is 10.26223 µm.

4.2 Optimization
The objective of the optimization was to find cut-

ting parameters within the speed range of 39
miters/minute to 189 meters/minute; the feed rate
range 0.06 mm/revolution to 0.15 mm/revolution, a
depth of cut range from 0.2 mm to 0.6 mm and a tool
nose radius range of 0.4 to 1.2 mm.  Cutting parame-
ters all should be carried out so that  the surface rough-
ness (Ra) is minimized. The best result consisted of
speed of 189 meters/minute, a feed rate of 0.06
mm/revolution, a depth of cut of 0.2 mm and a tool
nose radius of 1.2 mm. This gave an optimum surface
roughness (Ra) of 10.26 µm corresponding to the
dezirable 95% confidence interval. Hence in order to
reduce machining time and to achieve a better surface
finish and metal removal rate, a combination of a high
speed and a low feed rate, with a lower depth of cut
and high tool nose radians  must be selected for the
machining process. This optimization approach is
quite advantageous in order to have the range of the
surface roughness values and their corresponding opti-
mum machining conditions for certain ranges of input
machining parameters.  It would be helpful for a man-
ufacturing engineer to select the machining conditions
for the desired machining performance of the product.
This LINGO-solver approach provides global opti-
mum machining conditions for corresponding mini-
mum values of surface roughness. The LINGO-solver

Table 6.  Global optimum solution

Table 7.  Confirmation test results

Note: v cutting speed m/min. f feed rate mm/rev, d depth of cut mm and  r nose radius mm
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approach, used to optimize the mathematical model,
was found to be the most useful technique for research.
With the known boundaries of surface roughness and
machining conditions, machining could be performed
with a relatively high rate of success, with selected
machining conditions.

4.3 Verification Test of Optimal Result
After identifying the most effective parameters, the

final step is to verify the optimal values of parameters
and the surface roughness (i.e., response) by conduct-
ing confirmation experiments and comparing the
results of these validation runs with respects to the val-
ues obtained by the LINGO-solver optimization
model. The validation experiments were conducted
according to the optimal process parameter levels (i.e.,
high cutting speed, low feed rate, low depth of cut and
high tool nose radius). Three trials were conducted and
the corresponding surface roughness values were
measured. The average experimental values and soft-
ware predicted value  are 10.29 µm and 10.26 respec-
tively, at the 95% confidence levels. The Table. 7
shows experimental values and optimal values of sur-
face roughness. The experimental values were com-
pared with the predicted values from the LINGO-
solver and the software found that the experimental
values were very close to the predicted values. 

5.  Conclusions

A reliable surface roughness model for steel turning
was developed using RSM and incorporated cutting
speed, feed rate, depth of cut, and the tool nose radius.
The study was optimized by the LINGO-solver
approach, which is a global optimization technique.
This has resulted in a fairly useful method of obtaining
process parameters in order to attain the required sur-
face quality. The optimal parameter combination of the
turning process corresponded to a cutting speed of 189
mitres/minute, a feed rate of 0.06 mm/revolution, a
depth of cut of 0.2 mm, and a tool nose radius of 1.2
mm by the Lingo-solver approach.This has validated
the trends available in the literature and extended the
data range to the present operating conditions, apart
from improving the accuracy and modeling by involv-
ing the most recent modeling method. The application
of LINGO-solver optimization to obtain optimal
machining conditions will be quite useful at the com-
putational planning stage in the production of  high
quality goods with tight tolerances by a variety of
machining operations, and in the adaptive control of
automated machine tools.
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