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Abstract: In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRN-
LAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popu-
lar methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is
done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the pow-
erful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learn-
ing algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural
learning adaptive system (MRNLAS).  In MRNLAS, the error between the reference and neural learning adaptive
models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different
methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS).  The reactive
power- based methods are simple and free from integral equations as compared to flux based methods. The advan-
tage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RP-
MRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is
compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same
system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated
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1.  Introduction

Accurate knowledge of speed is essential for high
performance speed control in induction motors. The
speed can be measured by using mechanical sensors
such as resolvers/pulse encoders. However, these sen-
sors are usually expensive, bulky, subject to failure
under hostile industrial environments, and require spe-
cial attention, such as continuous maintenance and cal-
ibration. Being prone to sensor failure also increases
the cost and size of the drive system. Hence,
researchers have been motivated to use estimated
speed instead of measured speed, and sensor-less con-
trol of induction motors has become popular. 

Speed is estimated using instantaneous stator volt-
ages and currents along with the motor model. Other
approaches to estimate speed use rotor slot harmonic,
extended kalman filters (EKF),  the extended luen-
bergern observer (ELO), saliency techniques and
MRAS (Bose 2002; Chen and Sheu 2002; Ferrah et al.
1997; Holts 1993; Hurst et al. 1994; Jansen and
Lorenz 1996; Karanayil et al. 2007; Kubota 1994;
Maiti et al. 2008; Maurizio and Marcello 2005;
Mondal et al. 2002; Ohtani 1992; Peng and Fukao
1994; Rajashekara et al. 1996; Rashed and Stronach
2004; Schroedl 1996; Shauder 1992; Vas 1998; Yang
and  Chin 1993).  MRAS schemes offer simpler imple-
mentation and require less computational efforts as
compared to other methods and are, therefore, the
most popular among the strategies used for sensor-less
control IM drives (Chen and Sheu 2002; Karanayil et
al. 2007; Kubota 1994; Maiti  et al. 2008; Ohtani
1992; Peng and Fukao 1994; Shauder 1992; Yang and
Chin 1993).

In a MRAS system, the outputs of two models, one
independent of the rotor speed (reference model) and
the other dependent (adjustable model) are used. The
error vector is driven to zero by an adaptation mecha-

nism (PI-controller) which yields the estimated rotor
speed. Depending on the choice of output quantities
that form the error vector (e.g., flux, stator current,
back electro-motor force (EMF), reactive power), sev-
eral MRAS structures are possible. The most common
MRAS structure is that based on the rotor flux error
vector (Kubota 1994; Maiti et al. 2008; Ohtani 1992;
Peng and Fukao 1994; Shauder 1992; Yang and  Chin
1993). The selection of reactive power as a function
for a MRAS-based speed estimator deduces a simpler
system model, which is easier to design and imple-
ment and become advantageous in real time applica-
tions (Maiti et al. 2008; Peng and Fukao 1994).
Conventional MRAS schemes use PI controller as the
adaptive mechanism for speed estimation.

Recently, the use of  NNs for identification and con-
trol of nonlinear dynamic systems in power electronics
and drives has been proposed as NNs  they are capable
of approximating wide range of nonlinear functions to
any desired degree of accuracy (Chen and Sheu 2002;
Karanayil et al. 2007; Lazhar  et al. 1999; Mondal et
al. 2002; Narendra and Parthasarathy 1990; Vas 1998).
Powerful learning algorithms have been developed for
neural networks (Fredric and Ivica 2008; Hagan et al.
1996). 

In this paper neural learning algorithm is employed
for the adaptation mechanism in MRAS instead of the
PI-controller. In this MRNLAS-based speed estima-
tion, the error between the reference model and the
neural learning adaptive model is back propagated to
adjust the weights of the neural learning adaptive
model to estimate the speed of an induction motor
drive. A number of learning algorithms are available
for supervised learning in the  NN.  As this application
requires on-line learning, back propagation with the

Nomenclature

Vds, Vqs - d and q components of stator voltage 
Ids, Iqs - d and q components of stator current

dr, qr - d and q components of rotor flux
Ls, Lr, Lm - stator, rotor and mutual inductances
Rs - resistance of stator phase winding
Rr - resistance of rotor phase winding
Tr - rotor time constant

= 1-(Lm
2/LsLr) - total leakage factor

e - stator frequency
sl - slip frequency
r - rotor mechanical speed

Q - reactive power
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momentum algorithm is chosen as it the simplest algo-
rithm with minimum time for convergence.

The learning algorithm is based on the powerful
steepest descent method (Fredric and Ivica 2001;
Hagan et al. 1996).  In this method, the weights of NN
are adjusted in steps to minimize the performance
index: mean squared error.  The learning rate
employed in the algorithm determines the step size.
Greater  learning rates mean faster learning within the
of NN, but, this can lead to oscillations in the output
and result in a missed global minimum point. To over-
come this difficulty and reduce oscillations in the out-
put, a momentum term is added to smooth the oscilla-
tions and accelerate the convergence. 

Hence, in this paper a novel RP-MRNLAS is pro-
posed. Its speed estimation is compared with the pop-
ular RF-MRNLAS to identify the most suitable speed
estimation method for speed sensor-less induction
motor drives.

Section 2 briefly outlines the proposed RP-MRN-
LAS-based speed estimator utilizing reactive power
equations for both the reference model and the neural
learning adaptive model and popular RF-MRNLAS.
Section 3 describes the closed loop operation of spee
sensor-less-vector controlled induction motor drives.
Section 4 details the simulation results obtained for the
proposed RP-MRNLAS based speed estimator.
Section 5 compares the proposed RP-MRNLAS with
the popular RF-MRNLAS. Section 6 concludes the
paper.

2.  MRNLAS-Based Estimator

2.1. The RF-MRNLAS   Structure 
The speed of an induction motor can be estimated

using the neural learning algorithm-based MRAS sys-
tem as illustrated in Figure 1.  In this method of speed
estimation, the rotor fluxes of the induction motor are
selected to represent the actual and estimated state
variables. Two independent observers are used to esti-

mate the rotor flux of the induction motor. Equation 1
is  based on stator voltages and currents and is called
as voltage model equation and (reference model) is
independent of speed, and Eqn. (2) is based on stator
currents and rotor speed, and is called a current model
equation. The current model equations are classified as
a neural learning adaptive model (Karanayil et al.
2007;  Ben-Hrahim et al. 1999; Vas 1998). The neural
learning algorithm is used as an adaptive mechanism
for rotor speed estimation.

The flux estimations which use voltage model equa-
tions are used as the reference value, and the flux esti-
mation using a neural representation of current model
equations are used as estimated values. The difference
between these stated variables is then used by the neu-
ral learning mechanism (adaptation mechanism) to
track the actual speed. The learning continues until the
performance index is met.

Voltage Model

(1)

Current Model

(2)

The Eqn. (2) is rewritten in neural network formand
is given in Eqns. (3, 4).

(3)

Figure 1.  Speed estimation using flux based MRNLAS (RF-MRNLAS)

19

Reactive Power based Model Reference Neural Learning Adaptive System for Speed Estimation in Sensor-less Induction
Motor Drives



(4)
where,

Ts is the sampling time.

The updated equations for the rotor speed estima-
tion of RF-MRNLAS are given in (Karanayil et al.
2007; Ben-Brahim et al. 1999; Vas 1998). The RF-
MRNLAS schemes require pure integrators in the ref-
erence models since it is the voltage model of an
induction motor. The selection of an reactive power as
a function for the MRNLAS (RP-MRNLAS) based
speed estimator deduces a simpler system model,
which is easier to design and implement and becomes
advantageous in real time applications (Maiti et al.
2008; Peng and Fukao 1994). Also, the reference
model obtained using reactive power is independent of
the pure integrator.

2.2. Proposed Reactive Power based MRNLAS 
Structure (RP-MRNLAS)

The stated variable used is the reactive power. The
reference model and neural learning adaptive model
compute instantaneous reactive power (Qref) and
steady-state reactive power (Qest) respectively. The
reference model is independent of e whereas the
adjustable model depends on e. The error signal ( =
Qref - Qest) is back propagated to adjust the weight ( e
= Weight) of the neural learning adaptive model. The
rotor speed ( r) is then computed using r = e - s1,
where, e is the stator frequency and s1 is the slip
frequency. 

The block diagram of the proposed reactive power
based MRNLAS (RP-MRNLAS) system for
rotor/motor speed estimation is illustrated in Figure 2.
The equations defining the induction motor reference

model and adjustable model based on reactive power
are given below.

The d and q axis stator voltages of an induction
motor can be expressed on a synchronously rotating
reference frame as given in (5) and (6).

(5)

(6)

The actual instantaneous reactive power (Qref)
absorbed by the induction motor can be expressed as
in (7).  Using the flux and parameter of the induction
motor, the estimated reactive power (Qest) can be
expressed as Eqns. (8, 9).  Rewriting Eqn. (9) in the
form of neural network, it is given in Eqn. (10).

(7)

(8)

(9)

(10)

where

The neural learning algorithm is obtained for the
model represented by  Eqn. (10), where W1 represents
the weight of the network and P is a function of cur-
rents, flux and parameter of the induction motor.
Hence, the inputs to the neural learning adaptive
model are current and flux as shown in Figure 2.  The

Figure 2.  Speed estimation using reactive power based MIRLAS (RP-MRNLAS)

qs ds ds qs
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energy function E minimizes the difference between
actual and estimated reactive power and is given in
Eqn. (11). The back-propagation learning rule with
momentum is used to minimize the energy function.
For the neural learning adaptive model, the change in
weight is given in Eqn. (12).  Appropriate choice of
learning rate ( and momentum ( ) will yield the best
result. The weight update equations are given in Eqn.
(13). The estimated stator frequency ( e) can be calcu-
lated from W1 and rotor speed r) and is obtained
using the relation r = e - s1.

(11)

(12)

(13)

3.  Speed-Sensorless Vector Controlled IM 
Drives 

The speed-sensorless vector control presented here
is indirect field oriented control (rotor flux oriented
control). Figure 2 shows the overall block diagram of
the speed-sensorless drive system of an induction
motor using an MRNLAS speed estimator. The system
consists of a solid state IM drive system, rotor flux ori-
ented control, and MRNLAS speed estimator. MRN-
LAS speed estimator as explained in section 2.  Rotor
flux oriented control consists of a PI speed controller,
a current acontroller, and a pulse width modulation
(PWM) generator.

The torque command is generated as a function of
the speed error signal, and is generally processed
through a PI controller. The torque and flux command
are processed in the calculation block. The three phase
reference current generated from the functional block
is compared with the actual current in the hysteresis
band’s current controller and the controller takes the
necessary action to produce PWM pulses. The PWM
pulses are used to trigger the current source inverter to
drive the induction motor.

4.  Simulation  Results  and  Discussion of 
Proposed RP-MRNLAS

The performance of the proposed RP-MRNLAS
based rotor speed estimator utilizing the reactive
power method for induction motor is experimented
and analyzed extensively under various operating con-
ditions. The Matlab/Simulink block diagram is shown
in Figure 5.  The sample results for the proposed
model are shown for the following operating condi-
tions as listed below: 

1.  Rated speed at no load
2.  Rated speed at full load
3.  Rated speed at change of load

a) Ramp load
b) Step load

4.  Step change in speed
(i) No load
(ii) Full load

5.  Low speed at no load

The performance of the speed estimator for operat-
ing condition 1 is as shown in Figure 5.  Both the actu-
al and estimated speeds are shown when the motor
operates at the rated speed under the no load condition.
The estimator is tested under the loaded condition and
the speed estimated is recorded for the operating con-
dition-2 and presented in Figure 6. The estimated
speed tracks the actual speed very well in both tran-
sient and steady states and settles down to yield a
speed that is similar to the actual speed in both condi-
tions. The speed estimator performance for ramp load
changes is presented in Figure 7.  The motor at no-load
is loaded and unloaded gradually from 1.5  to 2.5 sec-
onds. The speed estimator performance for step load
changes is presented in Figure 8. The motor, when run-
ning at the rated speed of no load has  at 1.5 seconds,
a step change in load (100%),  and step load (100%) is
rejected at 2.5 seconds. The speed estimation for oper-
ating condition 4 is shown in Figures 9 and 10. The
speed of the motor is made to change from 100 to 50%
at 2 seconds,  and from 50 to 100% in 4 seconds under
the, no load condition in Figure 9.  The motor speed is
made to change from 100 to 50%  at 2 seconds and 50
to 100% in 4 seconds under the  rated load condition
as shown in Figure 10.  The speed estimation for the
low speed condition is shown in Figure 11. The speed
of the motor is made to run at a low speed of 3.8 radi-

k E P

Figure 3.  Sensor-less  vector  controlled  IM   drives
with MRNLAS speed estimators
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ans/second under the no load condition.
The steady state and transient performance of the

proposed RP-MRNLAS for speed estimation under
various operating conditions are studied extensively.

Figure 4.  Matlab/simulink block diagram of sensorless controlled IM drives with MRNLAS speed estimates

Figure 5. Actual  and  estimated  rotor  speed during
starting with no load

Figure 6. Actual  and  estimated  rotor  speed during 
starting with full load

22

K Sedhuraman, S Himavathi and A Muthuramalingam



From the results obtained, the proposed model esti-
mated speed very well for all operating conditions, and
settled to a speed similar to actual speed. 

5.  Performance Comparison of RP-MRN-
LAS and RF-MRNLAS

The comparisons of RP-MRNLAS and RF-MRN-
LAS for speed estimation at an steady state were car-
ried out and the results obtained are consolidated and
presented in Table 1. 

Both MRNLAS-based speed estimator have been
shown to track the actual speed over a wide range of
1.8 rad/sec to 156.8 radians/seconds in Table I. From
the results obtained, RF-MRNLAS estimated rotor
speed  tracks  the actual rotor speed with an accuracy
of 0.02% for a normal operating speed range and a
maximum of 0.69% at low and very low speeds. The

Figure 7.  Actual and estimated  rotor speed for ramp
change in load

Figure 8.  Actual and  estimated  rotor speed for step
change in load

Figure 9.  Actual  and  estimated   rotor   speed    for 
change in speed (100% to 50%) at no load

Figure 10.  Actual  and   estimated   rotor  speed  for
change  in speed  (100% to 50%)  at  full 
load

Figure 11.  Actual and estimated rotor speed at low
speed condition
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proposed RP-MRNLAS estimates the speed with an
accuracy of 0.01% for a normal operating speed range
and a maximum value of 0.05% at low and very low
speeds. The result presented for both estimators is a
0.2 meters/second sampling time to track the speed for
the stated accuracy. From Table I, it is clear that the
proposed RP-MRNLAS model has better accuracy

The performance of RP-MRNLAS and RF-MRN-

The performance of RP-MRNLAS and RF-MRN-

12(a) and 12(b).  For the comparison, both the figures
are shown at the same scale. From the results obtained,
it is seen that the RP-MRNLAS based speed estima-
tion displays stable performance tracks at  actual speed
well, whereas RF-MRNLAS becomes unstable and
fails to estimate. Thus, the  RP-MRNLAS-based speed
estimator is found to be less sensitive to the dc bias

integrator in the reference model of the RP-MRNLAS,
where as rotor speed estimated from the RF-MRNLAS
gets deviated from the actual speed due to the presence
of the integrator in the reference model (voltage
model).  It is also noted that the error in the rotor speed
keeps on increasing with time. Thus, from the above
analysis, it is understood that RP-MRNLAS exhibits
stable performance where as RF-MRNLAS shows
unstable performance with the presence of a small dc
bias. The proposed RP-MRNLAS-based speed estima-
tor is accurate, less complex, and free from integrator
drift problems, so it is a promising alternative to RF-
MRNLAS with speed estimators and sensor-less, vec-
tor controlled IM drives.

6.  Conclusions

This paper proposes a novel reactive power-based

Table 1.  Steady state performance comparison of MRNLAS based speed estimators

Figure 12.  Response  of    MRNLAS   based   speed 
estimator for integrator drift problem: (a)
RP-MRNLAS (b) RF-MRNLAS
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MRNLAS (RP-MRNLAS) for speed estimation. The
choice of reactive power as a functional candidate in
RP-MRNLAS based speed estimation makes the sys-
tem model equations simpler and easier to design. The
proposed method is compared with existing rotor flux
MRNLAS (RF-MRNLAS). Both the flux-based and
reactive power-based MRNLAS speed estimators
work very well under all operating condition (1.8 radi-
ans/second to 156.8 radians/second). The maximum
percentage of speed error between the actual and esti-
mated speed for the proposed RP-MRNLAS is found
to be less than 0.05%, where as the RF-MRNLAS has
a maximum error of 0.69%.  Hence, it can be conclud-
ed that the proposed reactive power-based MRNLAS
(RP-MRNLAS) is superior in terms of accuracy.

The integrator drift problem of RP-MRNLAS and
RF-MRNLAS are analyzed and the results obtained
are presented. The RF-MRNLAS requires pure a inte-
grator in the reference model, where as the RP-MRN-
LAS-based model is completely independent of inte-
gration problems.  Hence,  RP-MRNLAS outperforms
the RF-MRNLAS at low speeds.

The RP-MRNLAS-based speed estimator utilizes
reactive power and neural learning adaptations is
shown to exhibit good performance over a wide oper-
ating range with improved accuracy. The proposed
RP-MRNLAS-based speed estimator, which is accu-
rate, less complex and resistent to integrator drift prob-
lems is a more promising alternative than the RF-
MRNLAS-based speed estimators for sensor-less, vec-
tor-controlled IM drives.
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