
TJER Vol. 11, No. 1, 69-76

__
*Corresponding author’s e-mail: albusaid@squ.edu.om

Complementing Digital Logic Design with Logisim
SA Al-Busaidi

Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University, PO Box 33,
PC 123, Al-Khoud, Muscat, Sultanate of Oman

Received 30 April 2013; accepted 23 March 2014

Abstract: Classified as free and open source software (FOSS), Logisim is a delightful tool that can eas-
ily be used to reinforce a solid understanding of the theoretical concepts related to a digital logic design
course. Unlike LogicWorks, one of the most attractive features of Logisim is its ability to include user
built libraries. This can result in the development of a library that models the complete set of integrated
circuits (ICs) required for a digital logic design course. As a consequence, numerous merits can be
observed regarding a student's learning level within such a course.

Keywords: Data sheet, Digital logic design, Free and open source software (FOSS), Integrated circuit
(IC), LogicWorks, Logisim.

(FOSS),
(ICs)

(FOSS)Circuits
.(IC) Integrated

70

SA Al-Busaidi

1. Introduction

A digital logic design course was developed at
Sultan Qaboos University (SQU) to introduce students
to the fundamental theory and basic design blocks of
digital circuits. Students of theoretical fundamentals
delve into Boolean algebra, a subarea of algebra asso-
ciated with digital circuits. The fundamental gates,
namely the AND, OR, NOT, Exclusive-OR gates
(XOR), NOR and a combination of AND and NOT
gates (or NAND gates), are a direct product of the use
of Boolean algebra. These gates constitute the basic
units for all digital logic design.

To complement both the theoretical background and
the design of digital circuits, the course includes
experiments that progress at an equivalent pace with
the course lectures. Each experiment can be divided
into two components: a pre-lab that is associated with
a software simulation tool and the actual physical
implementation of the experiment. The significance of
the pre-lab is that it obligates students to practice the
theory through simulation prior to conducting the
experiment. On this basis, students not only conduct
their experiments in a shorter time frame but also save
resources through minimizing incorrect connections
that could lead to the destruction of an integrated cir-
cuit (IC). Accordingly, software packages that can be
utilized for simulation purposes are a core requirement
for the successful delivery of digital logic design
courses (Ahmad et al. 2013(a); Ahmad et al. 2013(b);
Ahmed and Ruelens 2013; Ahmed et al. 2012;Ahmed
and Al-Abri 2012; Ahmad and Al-Abri 2010; Al-
Lawati and Ahmad 2003 and Al-Busaidy 2013).

This paper aims to share an experience using the
free and open source software (FOSS) tool Logisim
for a digital logic design course. In section 2, a
detailed account of the topics covered in the course is
given. Section 3 outlines the lab experiments that are
assigned to complement the course's theoretical con-
tent. This is then followed in section 4 by a brief his-
tory and the current deployment of Logisim. Section
5 outlines the method by which Logisim was adopted
within this course. In sub-section 5(a), an account of
the basic capabilities of Logisim is given while in sub-
section 5(b) the method of extending Logisim's library
is outlined. The results of adopting this tool within the
course are then given in section 6, followed by a con-
clusion in section 7.

2. Digital Logic Design Course

This section recounts in detail the topics that are
covered within the digital logic design course at SQU.
The initial part of the course touches upon the con-

cepts of signed and unsigned decimal number repre-
sentation in binary, binary ones complement and bina-
ry twos complement. The conversion process of num-
bers is then expanded to include the conversion to and
from the octal and hexadecimal bases. On the other
hand, the representation of the alphanumeric keys
associated with the keyboard is demonstrated through
the American Standard Code of Information
Interchange (ASCII) codes. The concept of including
the parity bit for the purpose of detecting errors linked
to ASCII code transmissions is also introduced.

The course also includes arithmetic operations on
pairs of numbers that are represented in binary. Of par-
ticular interest is the key concept of performing the
binary subtraction operation using the binary twos
complement. The outcome of this method demon-
strates the underlying ingenuity of utilizing a single
arithmetic operation, addition, to conduct two different
operations, addition and subtraction. By representing
numbers in the binary twos complement, the subtrac-
tion operation can be converted into the addition oper-
ation. Justifiably, in this case only an adder is required
to manipulate the pair of binary numbers.

The next portion of the course introduces the con-
cept of Boolean algebra along with its associated the-
ories and propositions. Through Boolean algebra, a
complete set of basic functions for two variables is
derived by means of a truth table. Among the functions
are the well known AND, OR, NOT, exclusively-OR
(XOR), NAND, NOR and exclusively-NOR (XNOR)
functions. These functions, along with their schematic
gate representation, are clearly shown at this stage.
This is followed by introducing the concept of trans-
forming AND, OR and NOT gates into either a NAND
or NOR-only equivalent. As a consequence of this
equivalent representation, both gates are coined as uni-
versal gates.

The combination of different sets of the basic func-
tions permits for the emergence of new and more com-
plex functions. These new functions can be made to
reflect upon the ability of solving specific real life
problems in light of digital design. In deriving these
functions, the truth table that relates both input vari-
ables to the output function is essential. The function
can be read directly from the truth table in either the
sum of standard product form or the product of stan-
dard sum form (Tocci et al. 2010). A function in this
form requires only two gate levels, which is essential
if a gate propagation delay is critical to the design. On
the other hand, by mapping every possible output of
the functions from the truth table, the concept of the
Karnaugh (K)-map is introduced as a methodology to

71

Complementing Digital Logic Design with Logisim

derive the minimized number of literal equivalent
functions. Although this could be alternatively
achieved through Boolean algebra manipulations, that
may be a long and exhaustive procedure; however, the
K-map is a graphics tool that is both intuitive and sim-
ple. The outcome- minimized number of literal func-
tion that is derived can be represented in either the
sum-of-product form or the product-of-sum form
(Tocci et al. 2010). A function derived using this
method not only requires only two gate levels but also
requires a minimum number of gates. This translates
into the reduction of both propagation delay and the
required power consumption of the design.
Furthermore, at this stage of the course, functions
derived from the combination of AND, NOR and
NOT gates are converted into NOR and NAND equiv-
alents. Two methods can be used for the conversions:
Boolean algebra or a graphics method.

After establishing these basics, the course then
focuses on numerous designs of digital circuits that
perform useful functions. In effect, at this stage the
focus is on application of digital circuits. For such rea-
sons, it is essential to differentiate between two types
of digital circuits-namely combinational circuits and
sequential circuits. Whereby the input signals in com-
binational circuits flow in only one direction and lack
memory devices, the defining attributes of sequential
circuits are the signal feedback and memory devices.
From a different perspective, sequential circuits can be
viewed as a combinational circuit with the two afore-
mentioned attributes. As a consequence, the course
delves primarily into combinational circuits before
introducing the concepts of memory and sequential
circuits.

A number of functional circuits are introduced in
the combinational design portion of the course. This
includes the half and full adder and subtractors, two bit
multiplier, decoder, encoder, multiplexer (MUX) and
comparator circuits. It is worthwhile noting at this
stage that the students experience a transition from
theory to design. As it had been earlier stated, a sub-
tractor can be replaced by an adder through converting
the binary number into its twos complement form.
Henceforth, at this stage, it is clearly shown how this
can be achieved using the full adder circuit with an
external XOR gate to perform both addition and sub-
traction operations.

On the other hand, the concept of the latch and flip-
flop (FF) along with its different types are introduced
in the sequential circuit portion. This includes three FF
types-namely the data-flip-flop (D-FF), Jack Kilby
flip-flop (JK-FF) and toggle flip-flop (T-FF). Unlike
its combinational circuit counterpart, the analysis of
sequential circuits requires state tables instead of truth
tables. State tables comprise the current state of the
memory devices along with the input variable from

one end, and the next state along with the output vari-
able from the other end. In relating the next state to the
current state it becomes necessary to determine the
input function of each FF used within the design.
Interestingly, the analysis of sequential circuits can,
therefore, be conducted in two stages. First, a combi-
nation stage, in which all memory elements are virtu-
ally removed from the design and the concern, is in
obtaining the input FF equations for each memory ele-
ment. Second, in the next state stage, analysis is con-
ducted only on every individual memory element;
hence the complete circuit is virtually removed with
only the memory devices remaining. The analysis of
sequential circuits finally leads to a graphic represen-
tation of the state table in the form of a state diagram.
The course then focuses on the reverse process, or the
design process. Initially, a state table is derived from a
specific state diagram. The state table is derived taking
into consideration a specific configuration of memory
elements. The choice of memory elements will dictate
the design of each FF input equation according to the
FF characteristic table. From the state table, the design
can subsequently be obtained.

After this theoretical background, the design of
sequential circuits in the form of registers and counters
are demonstrated. Two designs of registers in particu-
lar are studied-namely the parallel load parallel shift
register and the serial load serial shift register. For
counters, two designs of counters are studied: the
asynchronous ripple counter and synchronous
up/down counter.

Finally, the course terminates by briefly introduc-
ing different programmable devices such as random
access memory (RAM), programmable logic device
(PLD), programmable logic array (PLA) and program-
mable array logic (PAL). At this stage, the design
methodology of deriving a read only memory (ROM)
device using a decoder and implementing a function
using a PLA are both demonstrated.

3. Lab Experiments

This section highlights the five lab experiments
conducted at the same pace as the theoretical aspect of
the course. In the first experiment, the newcomer is
introduced to the experimentation work area, the
breadboard, and the various types of ICs within the lab
environment. This can be viewed as no more than a
mere familiarization exercise.

Experiment 2 includes two parts. The aim of the
first part is to convert a logical expression into a work-
ing digital circuit. As for the second part, the aim is to
demonstrate how Boolean algebra can be utilized to
express functions in equivalent forms.

The focus in experiments 3 and 4 is on designing
combinational circuits. Experiment 3 is used to design

72

SA Al-Busaidi

half and full adders, while experiment 4 demonstrates
how to successfully include decoders and multiplexers
in a design. At this stage, the K-map is used to simpli-
fy the function to be implemented in the experiment.

Finally, the focus in experiment 5 is on the design
of sequential circuits. In previous years, the experi-
ment involved designing and implementing a 2-bit
up/down counter using the D-FF. This year, as a sim-
ple upgrade, the requirement was to design two
sequential circuits that could count the number of ones
in an 8-bit sequence. For each design, the main con-
straint factor was the types of ICs that had to be
included within each design. The first design required
the use of a single parallel load serial shift register, a
full adder and four D-FFs, while the second design
required a single parallel load serial shift register and
a 4-bit synchronous up/down counter.

From the list of experiments, it is clear that students
are exposed to a plethora of ICs through this course.
Table 1 gives an extensive list of the ICs related to
both the course content and experiments.

4. A Brief History and Current Deploy-
ment of Logisim

Logisim was introduced in 2000 by Carl Burch who
was, at the time, based in the Department of Computer
Science at the College of St. Benedict and at St. John's
University. Burch realized that students require a sim-
ulator to build logic circuits without the superfluous
knowledge linked to its physical building. The out-
come of his realization was a key motivating factor to
his development of Logisim. Another motivating fac-
tor was the unjustifiable cost that is usually tagged
onto commercial products. This is especially true in
circumstances in which institutions only benefit from
an extremely small portion of the complete capabilities
of an extensive software product. Such a case can be
directly related to the software simulation product
requirement for a basic course such as digital logic
design. The next logical step for the author, therefore,
was to build the digital logic software Logisim.

Burch´s concern for adopting appropriate software
for digital logic design was shared by other institutes.
This shared concern could be regarded as one of the
main drivers behind spreading the Logisim project
beyond its point of origin, and the use of Logisim as a
teaching aid has experienced phenomenal growth dur-
ing the twelve years since its creation.

Not only has it become popular in the United States,
but it also has crossed international borders. In the US,
it has been adopted by 75 different institutions, includ-
ing Brown University, the Georgia Institute of
Technology, and Princeton University. Outside of the
US, it has been adopted by more than 30 institutes. It
has spread across 15 European countries, including
Germany, France and the United Kingdom. On the
other side of the Pacific, it is used in seven institutions
in both Australia and New Zealand. In Latin America,
11 institutions use Logisim in countries including
Brazil and Argentina.

However its popularity in Asia is still lagging, with
only 8 Asian institutes having adopted Logisim,
including those in Saudi Arabia, Singapore and, more
recently, Oman. As of this publication, no institute in
Africa has accepted Logisim.

These findings have been compiled in Table 2,
which summarizes the global spread of Logisim.

5. Integrating Logisim Into the Course

In previous years, the software package LogicWorks
from Capilano Computing Systems (Richmond,

Table 1. A list of required IC used in the digital logic
design course (Datasheet, 2000).

73

Complementing Digital Logic Design with Logisim

British Columbia, Canada) was the main simulation
tool used in labs. On the positive side, it has a free ver-
sion targeting academic institutions. However,
LogicWorks also has limitations within the university
context. Although LogicWorks is a versatile piece of
software, it includes an extensive component library
which is unnecessary for the course. Furthermore, as
LogicWorks is a commercial product, graduating stu-
dents either would have to purchase a copy of the soft-
ware to pursue any digital design circuit simulation
based on LogicWorks, or would be forced to work at a
company or institute with access to the software in
order to continue using it after graduation. Both sce-
narios are highly improbable given the relatively small
electronics industry in the Sultanate of Oman.

Furthermore, while building experiments for the
digital logic design course around LogicWorks, two
important deficiencies were observed. First, within the

digital logic design course, students design and ana-
lyze circuits with direct connections to single gates.
Unfortunately, this would rarely be the situation in the
real world. Circuits are naturally built around ICs
which include, in most cases, multiple gates within a
single chip. Ideally, the simulations of all experiments
must be conducted using the ICs found within the lab.
This, however, could not be attained using
LogicWorks as it did not include all of the desired ICs
within the lab environment.

Second, if a particular IC did exist in the
LogicWorks library, its implementation was a source
of confusion to the newcomer. This can be explained
by observing the equivalent IC pin assignments of
both the actual and simulation components.
Unfortunately, the software company did not attempt
to match the pin layout of the actual component when
including the IC in the library. Figure 1 clarifies this
problem using as an example the 3-to-8 decoder, IC
74138 (Data Sheet 2000). Figure 1a is the actual com-
ponent layout while Figure 1b shows the LogicWorks
model layout. As a result of this IC layout mismatch,
the task of experimenting with and the simulation of
digital circuits becomes all the more daunting and con-
fusing to new students.

To contain the three constraining factors found in
LogicWorks, Logisim was recently adopted at SQU to
fit the digital logic design course simulation niche.
The best part is that Logisim is FOSS which complies
with the general public license (GPL). Under this
license, students not only experience using the soft-
ware as a computer aided design (CAD) tool for the
course as undergraduates, but are further encouraged
to take it along with them after graduating.
Accordingly, this software can be considered a person-
al CAD tool that can assist graduates in the pursuit of
building digital logic circuits at both professional and
personal levels. Moreover, Logisim is light weight
software in that it requires only a small amount of
computing estate and is deployable in Windows, Linux
and Mac operating systems. This is attributed to the
fact that the software was created using Java.

Furthermore, the built in component libraries com-
prises most of the basic units required for designing
digital logic circuits, which is more than required to
successfully deliver the course as shall be outlined in
the next section. Finally, Logisim has been built with
the capability of expanding its built-in library with
user-defined libraries. This final feature can be con-
sidered one of the most attractive of this software.
Consequently, any instructor of digital logic design
can readily tailor the software package according to
both the course requirement and lab experiments.

5.1 (A) Logisim's Basic Capabilities
This section is devoted to showing the various built-

Table 2. The global spread of Logisim.

74

SA Al-Busaidi

in libraries of Logisim from a primer installation per-
spective. Logisim includes seven built-in libraries,
namely a wiring, gates, plexers, arithmetic, memory,
base and input/output library. In the wiring library, the
most important components are the input and output
probes, clock, power and ground. As for the gates
library, it includes all of the basic gates. The multiplex-
er (MUX), demultiplexer (DEMUX) and decoder all
form part of the plexer library. Included within the
arithmetic library are the four basic arithmetic opera-
tors along with the comparator component. All three
types of FFs, including the counter, register, shift reg-
ister, random access memory (RAM) and read-only
memory (ROM), form part of the memory library.
While in the base library, the tools poke, edit, select,
wire, text and label are readily available to the user.
Finally, the input/output library contains a button, joy-
stick, keyboard, light emitting diode (LED), and
seven-segment and hexadecimal displays.

5.2 (B) Extending Logisim's Library
Although the built-in library included within

Logisim can suffice to conduct most of the experi-
ments, the built-in library components and the actual
ICs have different layouts. This layout difference can
be a major cause of confusion for the newcomer to the
field. Furthermore, certain ICs require a particular
sequence of pin configurations to operate correctly. As
an example, consider the parallel load serial out shift
register, IC 74165. Its package layout and pin assign-
ment taken from an in-house built Logisim library is
depicted in Fig. 2. To operate this IC correctly, its cor-
responding function table is shown in Table 3
(DataSheet 2002).

To successfully shift 8-bits from the input pins 3 to
6 and 11 to 14, to output pin 9, it is first necessary to
load the data correctly. The parallel load operation of
bits A to H into the IC requires that pin 1, indicated by

SH/LD', be initially low. This is followed by assigning
pins 2 and 15 to low while subsequently changing pin
1 to high. The loaded bits can now be shifted out to pin
9. For every clock cycle, a transition from low to high
will shift out one bit at a time, commencing from
loaded bit H up to loaded bit A. Finally, as a bit is
transferred to an adjacent pin, a new value from pin 10
is loaded at every clock cycle.

From this example, it can be stated that it is imper-
ative that a component within Logisim operates in line
with its function table from the IC's data sheet. This
correspondence between the actual and simulation
components has clearly not been included with the
built-in library components of Logisim. However,
included within Logisim is a particularly delightful
feature that allows users to build their own libraries.
To achieve this, a user simply designs a circuit in the
usual manner and saves it. Upon opening a new proj-
ect, the saved file can be included as a Logisim library.
It was therefore, a logical step to build up a library
inclusive of all the components found within the digi-
tal lab. As a result, the ICs listed in Table 1 were all
modeled in accordance to each individual IC function
table and pin layout.

6. Gained Experiences of Using Logisim

In contrast to the previous years where the pre-lab
were designed at the gate level, the fall semester of
2012 has seen a shift from this routine. Given that all
the necessary ICs had their equivalent model in our in-
house built library IC0V2.cir, every pre-lab was simu-
lated at the IC level.

By enforcing this shift, a number of visible merits
were clearly observed. First, students realized that if
their pre-lab operated as specified, then the physical
work was no more than a mere copy and paste opera-
tion from the Logisim work pane onto the breadboard.
From this perspective, the meaning of simulation
gained a completely new dimension and students start-
ed to appreciate the concept of simulating prior to
building. Moreover, the time students spent pondering

Figure 1. The difference between the actual chip
layout (a) and LogicWorks layout (b).

(a) (b)

Figure 2. A Logisim representation of the in-house
built parallel load serial out shift register
IC 74165.

75

Complementing Digital Logic Design with Logisim

over their connections on the breadboard was also
shortened.

Second, it was observed that the number of dam-
aged components could be significantly reduced.
Third, by exposing students to the function tables
within data sheets, it was evident that students man-
aged successfully to operate ICs with which they had
had no prior experience. This had been achieved
through the mindset that an unfamiliar IC should be
treated as a black box which operates according to its
function table only. This was especially true under the
revised experiment 5 that required students primarily
to understand the operation of each individual IC from
its data sheet prior to connecting the ICs together. In
this final experiment, students had to think in terms of
designing a complete circuit composed of multiple ICs
and viewing each IC as a simple block achieving one
specific task.

Fourth, given that the components used in the sim-
ulator were identical to the real world components,
groups of students could easily work together at their
own leisure. This permitted the labs to be less fre-
quented by digital logic design students, especially at
the end of semester when students flock to conduct
experiments in preparation for the lab exam. Finally,
as Logisim follows in the footsteps of FOSS, students
were encouraged to take their personal copies of the
software and the in-house built IC library. With this
final merit, it is hoped that all digital logic design stu-
dents will continue using the software to solve real life
problems through simulation prior to building a func-
tional product.

7. Conclusions

In the FOSS world, there are applications that suit
almost every field. This includes with no exception the
field of CAD tools required for digital logic design
courses. One particularly nice piece of software is
Logisim. On the one hand it is light weight and can run
on practically every operating system. On the other, it
can be tailored and expanded in accordance with digi-
tal logic design course requirements.

In our course, it was possible to change students'
perspectives towards the importance of simulation by

having them build an extensive IC library which
includes ICs that are linked to both the course and its
experiments; this was only achievable given Logisim's
capability to include new libraries. This permitted
modeling of ICs in their actual pin configuration while
realizing the IC's function table. Through this, stu-
dents gained greater insight into how individual IC
components should be treated and connected to build a
functional system. Finally, as an added benefit of
FOSS, students were encouraged to use this CAD tool
to tackle new problems of the type that may be
encountered in their future engineering careers.

References

Ahmad A, Ruelens D, Ahmad S (2013a),
Development of verification tool for minimal
boolean equation. IEEE Technology and
Engineering Education, (ITEE) 8(4):29-34.

Ahmad A, Al-Busaidi SS, Al-Mushrafi MJ (2013b),
On properties of PN sequences generated by
LFSR - a generalized study and simulation model-
ing. Indian Journal of Science and Technology
10(10):5351-5358.

Ahmad A, Ruelens D (2013), Development of digital
logic design teaching tool using MATLAB &
SIMULINK. IEEE Technology and Engineering
Education 8(1):7-11.

Ahmad A, Al-Abri D, Al-Busaidi SS (2012), Adding
pseudo-random test sequence generator in the test
simulator for DFT approach. Computer
Technology and Applications 3(7):463-470.

Ahmad A, Al-Abri D (2012), Design of a pseudo-ran-
dom binary code generator via a developed simu-
lation model. ACEEE International Journal on
Information Technology 2(1):33-36.

Ahmad A, Al-Abri D (2010), Design of an optimal
test simulator for built-in self test environment.
Journal of Engineering Research 7(2):69-79.

Al-Busaidi S (2013), Complementing digital logic
design with Logisim. Proceedings of Free and
Open Source Software Conference (FOSSC-13),
held at Sultan Qaboos University, Muscat, Oman
18-19 February, 4-9.

Table 3. Function table of IC 74165.

76

SA Al-Busaidi

Al-Lawati A, Ahmad A (2003), Realization of a sim-
plified controllability computation procedure - A
MATLAB-SIMULINK based tool. Journal for
Scientific Research - Science and Technology
8:131-143.

Burch C (2000), Logisim: A graphical system for
logic circuit design and simulation. Journal of
Educational and Resources in Computing 2(1):5-
16.

Data Sheet of "IC DM74LS138 Decoder /
Demultiplexer", Fairchild Semiconductor,

Revised March 2000.
Data Sheet of "IC 74165 Parallel-Load 8-Bit Shift

Register", TI, SDLS0620, Revised February 2002.
http://maps.google.com/maps/ms?ie=UTF8&oe=UTF

8&msa=0&msid=209845857912254026337.0004
9c67b154d0e5433a0.

Tocci RJ, Widmer NS, Moss GL (2010), Digital
Systems: Principles and Applications. Eleventh
Edition, Prentice Hall.

