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1. Introduction

With the era of low cost commodity hardware, clusters
of workstations (COW) are emerging as platforms for par-
allel and distributed computing environments. Computers
connected through LAN or WAN form an infrastructure
Grid Computing Foster and Kesselman, (1997). They
form a high computing power for massive parallel pro-
cessing that can be accessed by wide spectrum of applica-
tion programmers. But the communication cost over the
available networking facilities is still very high compared
to computing cost. Besides,  it   lacks  the   necessary   reli-
ability  found  in  typical multi-processor interconnection
__________________________________________
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networks. To overcome this deficiency, synchronous mes-
sage-passing communication may need to be enforced for
many parallel applications or middleware software. In
general, synchronous communication adds overhead to
the already high cost of communication. Furthermore, it
may develop deadlock problems among the communicat-
ing tasks.  Regardless of any constraints, parallel pro-
grams must be efficiently partitioned and scheduled on a
COW to achieve any perceivable gain in performance.

Scheduling tasks, efficiently, on distributed memory
architectures is still a challenging problem. A multi-step
scheduling approach has been proposed by many
researchers, such as (Sarkar, 1989;  Liou and Palis, 1997),
in order to reduce the complexity of the scheduling prob-
lem by using low cost heuristics. In this work, we adopt a
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two-step approach for scheduling  synchronous    parallel
programs on  distributed-memory architectures. In the
first step, tasks of the program are clustered to reduce the
communication cost and to avoid deadlocks, assuming
unbounded number of processors. In the second step, clus-
ters are mapped and their tasks are ordered for execution
on the available number of processors.

The main contribution of this work is an algorithm,
called Guided Load Balancing with Synchronization
(GLB-Synch). It is a basis for mapping and ordering tasks
on processors with synchronous communication. The
GLB-Synch algorithm is based on the GLB algorithm for
cluster mapping that was introduced by Radulescu
(2001). However, the GLB-Synch algorithm performs
both cluster-mapping and task-ordering, and retains the
low complexity of the unbounded number of processors
(UNC) schedule applied in the first step.

The rest of the paper is organized as follows. The next
section introduces a background and some definitions
related to this paper and the related work. Section 3 pres-
ents the GLB-Synch algorithm, while section 4 presents
the performance study. Finally, section 5 is the conclusion.

2.  Background and Related Work

2.1  Preliminaries

The execution behavior of the program DAG is the
macro-dataflow model. However, the execution of each
task consists of three phases: receive, compute and send.
The receive phase includes receiving all messages
required by the task for its execution to start. The compute
phase is the phase in which the instructions of the task are

executed without interruption. We assume a synchronous
communication protocol. The send phase includes sending
all messages to all dependent tasks in parallel. However,
the sender task is blocked, waiting for acknowledgements,
until all receiving tasks actually receive the messages.

2.2   Multi-Step Scheduling
The multi-step scheduling process can be achieved by

two or three steps. First, clustering of tasks without dupli-
cation can be performed, assuming unbounded number of
processors. Second, clusters are mapped on the available
processors. Third, the tasks of the mapped clusters are
ordered for execution on the processors. The clustering
problem has been shown to be NP-complete
(Papadimitriou and Yannakakis,  1999; Sarkar, 1989).
Polynomial-time heuristic algorithms have been proposed
for the clustering problem based on the critical path analy-
sis  (Sarkar, 1989; Wu and Gajski, 1990; Gerlasoulis and
Yang, 1993;  Kwok and Ahmad,  1999; Kadamuddi and
Tsai, 2000; Shirazi et al. 1990;  Lee et al. 2003).  An
overview of cluster-mapping is given next.

2.2.1  Mapping Clusters to Processors
Cluster-mapping is needed when the number of avail-

able processors is less than the number of clusters. There
are a number of approaches that are proposed in literature.
However, the issue of mapping clusters to processors has
not been given enough attention in the literature, and there
is much room to explore on this topic. In the next para-
graphs, we discuss some of the approaches reported in the
literature.

Sarkar (1989) used a list-scheduling based method to
map the clusters to processors, called List Cluster
Assignment (LCA). It is an incremental algorithm that
performs both cluster-mapping and task-ordering in a sin-
gle step.  Kim and Browne (1988) proposed a mapping
scheme for clusters based on their linear clustering algo-
rithm. The clusters are first merged in order to reduce their
number to be at most equal to the number of processors.
Then the process is followed by heuristics to optimize the
mapping step. Mainly, the heuristics would choose a
processor which has the most appropriate number of chan-
nels among currently unallocated processors. Wu and
Gajski (1990) proposed a mapping scheme for clusters
based on a dedicated traffic scheduling algorithm that bal-
ances the network traffic. The algorithm used generates an
initial assignment by a constructive method; then, the
assignment is iteratively improved to obtain a better map-
ping. The heuristic is based on minimizing the total com-
munication traffic. Yang and Gerasoulis (1994) employed
a work profiling method for merging clusters, called
Wrap Cluster Merging (WCM) algorithm. First, clusters
are sorted in an increasing order of aggregate computa-
tional load. Then, a load balancing algorithm is invoked to
map the clusters to the processors, so that every processor
has about the same load.

The work of  Liou and Palis (1997) investigated the

     In  this work, a parallel program  is modeled as a 
weighted directed acyclic graph (DAG), G = (V, E, ω, 
λ), where V is the set of task nodes, E is the set of 
communication  edges, ω is the set of task computation 
weights, and λ is the set of edge communi cation costs. 
An edge eij = (ni, nj) ∈ E represents a data dependence 
constraint between the two tasks ni and nj, where the 
execution of nj must start after receiving all input from 
ni. The communication  cost of message passing along 
an edge eij is denoted by cij = λ(eij), and the 
computation weight of a task ni is denoted by ω(ni). We 
will refer  to the source and destination nodes of an edge 
by the parent node and the child node, respectively. A 
node that does not have any parent is called an entry 
node, while a node, which does not have any child, is 
called an exit node. Pred(ni) is the set of immediate 
predecessors of ni, and Succ(ni) is the set of immediate 
successors of ni. The length of a path is defined as the 
sum of all computation weights of nodes and all 
communication costs of edges along the path. The 
critical path of  a DAG is the path from an entry node to 
an exit node that has the maximum length. The 
computation to communication ratio of a parallel 
program (PCCR) is defined as its average computation 
weight divided by its average communication cost.  
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problem of mapping clusters to processors. They have
shown the effectiveness of using the two-phase scheduling
approach, in which the task clustering is followed by the
cluster-mapping step, over the one-phase scheduling.
They proposed a clustering algorithm, called CASS-II
(Clustering and Scheduling System II), and introduced
three algorithms for cluster-mapping schemes, namely, the
LB (Load-Balancing) algorithm, CTM (Communication
Traffic Minimizing) algorithm, and the RAND (Random)
algorithm. They applied randomly generated task graphs
in an experimental study using their clustering algorithm
and cluster-mapping schemes. Their work shows that,
when task clustering is performed before cluster-mapping,
load balancing is the preferred approach for merging clus-
ters. Compared to CTM, LB is fast, easy to implement and
produces significantly better schedules.

Radulescu (2001) proposed two algorithms for map-
ping clusters to processors in a multi-step scheduling
approach. Both algorithms aim at achieving a better cost-
performance ratio. The first algorithm, called Guided
Load Balancing (GLB), exploits knowledge about the task
start times that were computed in the clustering step.
Accordingly, clusters are mapped in the order of their start
times to the least loaded processor at that time. The sec-
ond algorithm, called List Load Balancing (LLB), aims at
improving the load balancing throughout the program
execution time by performing cluster-mapping and task-
ordering in one step. There are two benefits reported for
this integration. First, it allows dynamic load balancing
through the execution of the mapping process, because
only the ready tasks are considered in the mapping
process. Second, it considers communication costs, when
selecting tasks for mapping, as opposed to other cluster-
mapping algorithms, such as WCM and GLB, which  do
not.

The work by  Lee et al. (2003),  introduced a multi-step
scheduling approach using a block dependency DAG, that
represents the execution behavior of block sparse
Cholesky factorization operation in a distributed-memory
system. The proposed scheduling algorithm consists of
two stages. In the first stage, a clustering algorithm, called
Early-Start Clustering (ESC), is used to cluster tasks while
preserving the earliest start time of a task without limiting
the potential degree of parallelism, and without consider-
ing the number of available processors. In the second
stage, a cluster mapping algorithm, called Affine Cluster
Mapping (ACM), is used to allocate clusters to a given
number of processors. The ACM algorithm attempts to
reduce the communication overhead and balance the
workloads among the processors based on two criteria.
These are the affinity of a cluster with respect to a proces-
sor, in terms of the sum of communication costs required
when the cluster is mapped to other processors, and the
amount of workload required for a cluster. The work by
Lee et al. (2003) shows by experiments the effectiveness
of applying the proposed scheduling algorithm, compared
to other processor mapping methods that are used for par-
allelizing the sparse Cholesky factorization operation. The

experiments were conducted on a Myrinet cluster system
and using benchmark sparse matrices

2.2.2  Scheduling with Synchronous Communi-
cation

Most scheduling algorithms for distributed-memory
parallel architectures assume the use of an asynchronous
communication protocol for a message-passing system.
However, parallel computing on a network of worksta-
tions or over the Internet is not as reliable as that per-
formed on parallel machines. Therefore, the requirement
for synchronization at the application level becomes emi-
nent for many software systems.

In a synchronous communication, the sender is blocked
until an acknowledgement is received from the receiver.
This waiting time is called the blocking delay. A deadlock
occurs when a sender gets blocked indefinitely, waiting
for an acknowledgment from a receiver task in another
cluster. At the same time, the receiver task cannot start
execution, because one of its predecessor tasks has been
blocked indefinitely, waiting for an acknowledgment from
a task in some other cluster. A direct deadlock situation
between two clusters occurs due to a cyclic dependency
relation between them. In general, a deadlock situation
may arise due to a chain of dependency relations among a
subset of tasks. In this work, we consider direct deadlock
situations only. Based on the task execution phases, the
following definitions of time parameters characterize the
scheduling of a task node in a scheduled DAG with syn-
chronous communication.

The issue of scheduling on distributed-memory paral-
lel architectures with synchronous communication has not
been given enough attention in literature. However, the
works of  Kadamuddi and Tsia (2000) and Arafeh (2003)
address this issue, assuming a multi-step scheduling
approach. Both propose clustering algorithms for tasks
with synchronous communication, in which deadlocks are
detected and avoided as part of the task clustering step.

The work presented in this paper uses the clustering
algorithm, called NLC-SynchCom, by Arafeh (2003) for
the task-clustering step. The algorithm proceeds in one
pass in the forward direction from entry nodes to exit
nodes, one level at a time. The algorithm starts assuming

• s_receive(ni): Start time for receiving 
messages by task node ni 

• e_receive(ni): End time for receiving messages 
by task node ni 

• s_compute(ni): Start time for computation by 
task node ni 

• e_compute(ni): End time for computation by 
task node ni 

• s_send(ni): Start time for sending 
messages by task node ni. 

• e_send(ni): End time for sending messages by 
task node ni. 
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each task node is in a cluster by itself. Therefore, there are
|V| clusters at the beginning of the algorithm. Each node
in a cluster is designated by its status as a Head, Tail,
Regular or Singleton. A node in a cluster by itself is given
the status of a Singleton node. The Head task of a cluster
is the one that must be scheduled first due to its prece-
dence with respect to all other tasks in the cluster.
Similarly, the tail task of a cluster is the one that must be
scheduled last due to its precedence with respect to all
other tasks in the cluster.  A Regular task in a cluster is
one that is not a Singleton,  Head or Tail.  The selection of
a parent node, ni, at level l that will be merged with one of
its child nodes is determined using two priority schemes.
The first scheme is used to determine the priority of a par-
ent node at level l for merging. It is defined by the parent's
completion time, e_send(parent), in descending order. The
second scheme is used to determine the priority of merg-
ing a child node nj for a parent ni. This priority depends on
the maximum remaining time left to the completion of
execution from a parent node, ni, to an exit node, exclud-
ing ni. Since a merging step would zero a (parent, child)
edge, then the parent node and all its descendant nodes
may have their completion times changed accordingly.
Thus, the priorities of the parent nodes at each level are
found dynamically before the nodes of that level are
scanned for merging. On the other hand, the remaining
time to the completion of execution for each node is com-
puted at the initialization time only.

A priority is given to merge the parent node with a child
node which leads to the highest remaining time to comple-
tion. A selected child node nj has to pass two tests before
merging can be finally applied. These are the deadlock
detection and the merging check tests. First, the deadlock
detection test ensures that a merging step of a child with
its parent's cluster would not cause a deadlock case for the
parent's cluster with any other existing cluster in the DAG.
Second, the merging check test ensures that a merging
step of a child node with its parent's cluster would not
cause an increase in the application's execution time. This
execution time is referred to in this paper by the DAG
Parallel time, PT. The (parent, child) edge is zeroed and
merging is performed, only, if both tests are passed suc-
cessfully. The complexity cost of the NLC-SynchCom
algorithm is O(v(log v + e2)), where v is the number of
nodes and e is the number of edges in a DAG. For further
details, see the paper by Arafeh (2003).

3. Cluster-Mapping and Scheduling with
Synchronous Communication

3.1  Description of the GLB-Synch Algorithm
The GLB-Synch algorithm is an extension of

Radulescu GLB algorithm for mapping clusters to proces-
sors (Radulescu, 2001). However, the GLB-Synch algo-
rithm performs both cluster-mapping and task-ordering in
the context of synchronous communication. The algo-
rithm uses the information obtained during the clustering

step, based on the NLC-SynchCom algorithm, for map-
ping clusters to a distributed-memory system of unbound-
ed number of homogeneous processors that are fully con-
nected. Eventually, the NLC-SynchCom algorithm sched-
ules the tasks on the virtual processors, assuming each
cluster is allocated to one virtual processor and there is
Unbounded Number of Processors or Clusters (UNC).
Therefore, we will refer to the DAG and schedule gener-
ated by the NLC-SynchCom algorithm by  the clustered
DAG and the UNC schedule, respectively. Each node of
the clustered DAG represents a cluster or virtual proces-
sor, and each directed edge between two clusters repre-
sents a communication link connecting them. The GLB-
Synch algorithm uses the cluster start time, Ts(C), to rep-
resent the priority of a cluster, C, for mapping. The start
time of a cluster is the start time for a computation phase
of the header task in the cluster, and it is given by

(1)

where  t is a task of cluster C.

Similar to GLB, the cluster, which has the earliest start
time, is mapped first. In case of a tie, the cluster with the
highest workload is mapped first. If there is still a tie, a
cluster is selected randomly. Based on the execution phas-
es of a task, the UNC schedule allocates time slots for all
the phases, with no consideration for overlapping compu-
tation with communication. At this stage, it is more natu-
ral to consider the existence of some overlapping between
the computation and the communication phases, as clus-
ters are mapped to physical processors. In this work, we
assume that the duration of the receive phase is implicitly
handled by a communication processor, and the acknowl-
edgment of a received message is handled by the message-
passing system. Each scheduled task should have all its
expected messages to be received declared to the mes-
sage-passing system ahead of the start time of its receive
phase. Only when all the needed messages have arrived,
the task can start the computation phase. However, the
duration of the sending phase is still considered explicitly
as part of the task's schedule on a processor to enforce
synchronization. The GLB-Synch algorithm maps clusters
to a distributed-memory system of bounded number of
homogeneous processors that are fully connected. Since a
complete interconnection network is assumed, there is no
consideration for bandwidth contention. Furthermore,
each processor is assumed to have unlimited number of
communication ports and unlimited memory space.

Since the workload of a task, t, includes the duration
starting from  s_compute(t) till  e_send(t), then the work-
load of a cluster is defined as

(2)

Because a cluster is not a schedulable unit, the GLB-
Synch algorithm maps a cluster to the least loaded proces-
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sor as in the GLB algorithm. It is expected that clusters
mapped to the same processor to be interleaved due to the
task-ordering step. The workload of a processor, p, is
defined as

(3)

where, ψ(p) is the subset of clusters mapped to processor
p. As a consequence, all inter-cluster communication costs
among the mapped subset of clusters must become zero.

The algorithm achieves the objective of scheduling
tasks on the processors in three steps. In the first step, it
assumes that the process of cluster-mapping is generating
super-clusters, constructed as aggregates of the mapped
clusters to the target processors. In this step, all the time
parameters of all tasks are recomputed, due to the zeroing
of the inter-cluster communication costs, without per-
forming the task-ordering (i.e. sequentialization) process.
It may look as if each aggregate of clusters (i.e. virtual
processors) is mapped to a shared-memory multiproces-
sor.

In the second step, the GLB-Synch algorithm performs
task-ordering, based on start times of tasks for the compu-
tation phase.  All tasks allocated to the same processor are
sorted topologically in an increasing order of their start
computation time, s_compute.  If two tasks have the same
s_compute time, the task with the highest blocking delay
is scheduled first.  The blocking delay of a task, t, is
defined as the time it is waiting for acknowledgments for
all messages sent by that task, and it is computed by
(e_send(t) - s_send(t)).  If there is still a tie, a task is
selected randomly.  In the third step, the mapped tasks to
the same processor are scheduled using their precedence
order.  Let Tir (p) denote the processor ready time on a par-
tial schedule.  It is initialized by zero, and it is defined as
the end time of the last task, ti, scheduled on that proces-
sor.  Accordingly, a task ti+1, is scheduled for execution at
Tir (p), if the current start time for the computation phase,
s_compute(ti+1) is less than or equal to Tir (p).  Otherwise,
the task ti+1 is scheduled to start execution at its designat-
ed s_compute time.  The GLB-Synch algorithm is
described text.

GLB-Synch Algorithm

Input:
1.  A clustered DAG
2.  The Table of time parameters (i.e. UNC schedule)
3.  Number of processors.

Output:

1.  A mapping of the clusters to the processors
2.  Tasks schedule on the processors.

Algorithm Steps:

1.  Compute the start time, Ts(C), and the workload, Tw(C)
for each cluster, C.

2. Sort the clusters in an increasing order based on Ts,
breaking ties by choosing the cluster with the highest
workload. If there is still a tie, select one randomly.

3.  For each cluster, C, do
*  Map C to a processor, p, with the least workload.
*  Zero the inter-cluster communication cost between

any currently mapped clusters to p and C.
*   Update the workload of processor p:

(4)

4.  Update the UNC schedule due to the mapping step.
5.  For each processor, p, do

*  Perform task-ordering for all tasks mapped to p based
on s_compute time, breaking ties by choosing the
task with the highest blocking delay. If there is still
a tie, select one randomly.

*  For each task ti mapped to a processor 

(5)

Else

(6)

3.2  Complexity Analysis
The following notations are used to characterize the

time complexity of the GLB-Synch algorithm.

c: The number of clusters.
e: The number of DAG edges, |E|.
v: The number of DAG vertices, |V|.
m: The number of processors.

The GLB-Synch algorithm performs cluster-mapping,
task-ordering and scheduling on the processors, based on
the clustering step for synchronous communication. The
GLB-Synch algorithm assumes that the formulation of
clusters, along with the computation of their workloads,
have been performed in the clustering step. Besides, it
assumes that task clusters are deadlock-free, since all gen-
erated clusters by the clustering step had passed the dead-
lock detection test successfully.

Theorem 1. The time complexity of the GLB-Synch algo-
rithm is O(mc + mv logv + ev).

Proof. The start time of a cluster, Ts(C), is the s_compute

If ))(_)(( 1
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i
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time of the Head task of C. Then, the cost of the first step
is O(c). In step 2, clusters are sorted in O(c logc) time.
The determination of the least loaded processor, pj, takes
O(m) steps. While, the process of zeroing the inter-cluster
communication costs between the already mapped clus-
ters to pj and the current one to be mapped needs O(e).
Accordingly, step 3 of the algorithm takes O(c(m+e)) time.

The updating of the UNC schedule at step 4 takes O(ev)
steps, due to the need to find the e_receive(ti) and the
e_send(ti) time for each task ti.  Finally, step 5 of the algo-
rithm takes O(mv logv) steps.  Because, the algorithm
orders all tasks mapped to a processor in O(v logv) steps,
then schedules tasks on a processor in O(v) steps.  Since
m < c and c < v, the total time complexity of the GLB-
Synch algorithm is O(pc + mv logv + ev).

4.  Performance Study

A performance study has been conducted on the multi-
step approach for scheduling tasks with synchronous
inter-task communication. The study is based on the sim-
ulation of the multi-step scheduling approach using the
NLC-SynchCom algorithm for the clustering step, and the
GLB-Synch algorithm for the cluster-mapping and task-
ordering steps. The performance study had adopted ran-
domly generated DAGs for experimentation. Synthesized
random DAGs are generated so that the results would not
be biased towards regular graph structures or certain
graph shapes, allowing various DAG characteristics to be
considered. The objectives of the performance study
include assessing the cost of the multi-step scheduling
approach in the context of synchronous communication,
evaluating the outcome of the multi-step scheduler, and
discovering the points of deficiencies and limitations. In
this section, the definitions of the chosen performance
metrics in the study are given next. Then, the simulation
set-up for experimentation is described. Finally, the per-
formance results are presented and discussed.

4.1  Performance Metrics
The performance metric considered for assessing the

cost of each step of the multi-step scheduler is the execu-
tion time. The performance metrics considered for evalu-
ating the outcome of the scheduling steps are based on the
Schedule Length (SL). We will refer to SLo as the original
schedule length of an application DAG. It is the parallel
time for executing a DAG on an unbounded number of
processors. SLo is equal to the length of the critical path of
the DAG. The schedule length obtained from executing a
DAG on a uniprocessor is referred to by SL1, and it is
defined as

(7)

The schedule length obtained by the clustering step (i.e.
the UNC schedule) is referred to by SLc. It is also based
on an unbounded number of processors. The schedule
length obtained by mapping and scheduling the tasks on
bounded number of processors, m, is referred to by SLm.
The speedup factor, SPm, is defined as the ratio of execut-
ing a parallel program on a uniprocessor to its execution
on m processors, and it is given by

(8)

Definition 1 Normalized Schedule Length NSL(m).  In
this work, we define the Normalized Schedule Length,
NSL(m), as the ratio of the schedule length of a DAG on
m processors, SLm, to its original schedule length, SLo.
That is,

(9)

Definition 2 Utilization U(m). The utilization of a system
of m processors, U(m), is defined as the percentage of the
m processors' time that is kept busy during the execution
of a parallel program due to a certain allocation Hwang,
(1993). Let b(vi , pj) be the blocking time of task vi due to
synchronization,  when it is executed on pj. Hence,

(10)

where, x(vi , pj) is a 0-1 function defined as follows:

(11)

and

(12)

Definition 3 Efficiency E(m). The Computing Efficiency,
E(m), or the Efficiency for short, is defined as the actual
percentage of the computing time performed by the m
processors during the execution of a parallel program.
The Efficiency indicates the actual degree of speedup
achieved on m processors compared with the maximum
value Hwang, (1993). It is given by,

(13)

Definition 4 Synchronization Overhead Ratio SOR(m).
Let Bm be the average blocking (i.e. synchronization time)
for scheduling tasks of a parallel program on bounded
number of processors, m. Accordingly, the
Synchronization Overhead Ratio, SOR(m), is defined as
the ratio of the average blocking time per processor to the
schedule length, SLm, where,
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(14)

(15)

Definition 5 Load Imbalance Factor LIF(p). Let Tw(pj)
refer to the workload of processor pj. Therefore, the Load
Imbalance Factor, LIF(p), is defined as the percentage of
the average processor's time that is kept idle during the
execution of a parallel program. Actually, it indicates the
percentage of non-utilized processor's time, and it is given
by

(16)

From definitions 2, 3 and 4, the utilization is character-
ized by the following Lemma.

Lemma 1. The utilization U(m) is characterized in terms
of  the efficiency, E(m), and the synchronization overhead
ratio, SOR(m), for scheduling a parallel program on m
processors  as

(17)

Proof. Let bave be the average blocking time in a DAG,
and Bm the average blocking per processor for scheduling
the DAG on m processors.  Accordingly, the utilization
can be rewritten as

(18)

(19)

4.2  Simulation
The use of randomly generated Directed Acyclic

Graphs (DAGs) to model parallel applications is a com-
mon practice in the evaluation of proposed scheduling
heuristics for parallel and distributed computing systems.
The use of simulation provides a basis to evaluate the
scheduling algorithm independent of the hardware imple-

mentation and its organization. Many approaches have
been proposed in the literature on how to generate synthe-
sized DAGs randomly (Kasahara Laboratory, Japan,
2004). In this work, a random graph generator is imple-
mented to generate weighted DAGs, as defined in this
paper, with various characteristics based on a method that
uses the following factors:

1. The number of tasks, v. 
2. The shape factor, α., of a DAG: We assume 

the height ( i.e. number of levels) of a DAG is 
randomly generated from a uniform 
distribution with a mean value, Lmean, equal to 
v1/2/α.  Similarly, the width for each level in 
the DAG is randomly generated from a 
uniform distribution with a mean value, Wmean, 
equal to α v1/2. 

3. The maximum out -degree of a node in a DAG.  
4. The maximum span of an edge in a DAG.  
5. The Computation to Communication Ratio, 

CCR: It is taken as the ratio of the average 
computation weight to the average 
communication cost. Values of CCR in the 
range 0.1-0.7 represent fine granularity, values 
in the range 0.8 -1.4 represent medium 
granularity, and values greater that 1.4 
represent coarse granularity.  

6. The mean computation weig ht, ωmean: The 
computation weight of each node is 
determined randomly from a uniform 
distribution with a mean ωmean. 

7. The mean communication cost, λmean: The 
mean communication cost of a DAG is equal 
to ωmean/CCR. Each communication cost of an 
edge is determine d randomly from a uniform 
distribution with a mean λmean. 

     For the purpose of generating random DAGs in this 
study, we have arbitrarily  chosen ωmean to be 20. Three 
values of CCR are considered.  0.5, 1.0 and 5.0 , to 
represent fine, medium and coarse granularity  
respectively. To contr ol the structure of the  DAG, we 
have limited the outdegree  of a node to be within the 
range 1-Wmean. Also, the span of an edge is limited to be 
within 1- ⎡0.25 x height ⎤. Three values for the shape 
factor, α, are considered. These are 0.5, 1.0, and 2.0. 
An α < 1.0 represents a DA G with a long height and 
low degree of parallelism; while an α > 1.0 represents a 
shorter DAG with high degree of parallelism. The 
width of a DAG level l indicates the degree of 
parallelism at that level. Therefore, the mean width of a 
DAG, Wmean, is adopted as a measure of the potential 
for the degree of  parallelism in the DAG.  The 
relationship between the mean width, Wmean of a DAG 
and the number of nodes, v, of the DAG for constant 
values of α  are shown in Fig.  1. The plots shown in 
Fig. 1 indicate the  potential  speedup expected by 
scheduling a DAG on m processors. Accordingly, 
values of m >> Wmean are not expected to have any 
significant speedup improvements in the PT of a DAG. 
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Simulation experiments were conducted to measure the
cost of each step of the multi-step scheduling techniques
used in this work. Ten groups of synthesized DAG sizes
were generated. These range from 50 to 500 nodes with an
increment of 50. For each DAG size, v, and shape factor,
α, we have generated 100 random DAGs. The NLC-
SynchCom algorithm is applied on each generated DAG
for clustering tasks with synchronous communication.
The resultant clustered DAG is taken as an input to the
GLB-Synch algorithm for mapping and ordering the tasks
on the processors.

4.3  Performance Results
The cost of each step in our multi-step scheduling

scheme is measured against the number of nodes in a
DAG. Figures 2 and 3 show the average execution time for
the clustering step, and the mapping and ordering step,
respectively, versus the number of nodes. The average
execution time for the mapping and ordering step is taken
over all the number of processors considered in the simu-
lation runs. Three cases are considered for each schedul-
ing step, based on the shape factor of the DAG. For both
steps, the execution time increases as the DAG size and
the degree of parallelism (i.e. α) in the DAG increase.
From the plots, it can be deduced that the cost of the map-
ping and ordering step is much less than the cost of clus-
tering, in general. The cost of mapping and ordering does

not exceed 25% of the cost of clustering for DAG sizes
greater than 100 nodes.

In order to assess the performance of the GLB-Synch
algorithm, we have to focus a little on the main perform-
ance features of the NLC-SynchCom algorithm. The main
objective of performing the clustering step is to reduce the
communication cost in the DAG by merging tasks onto
clusters, where each cluster can be assigned to a proces-
sor. In this way, the clustered DAG would have better
PCCR relative to the initial value of the DAG's PCCR.
The results, shown in Figs. 4 and 5, indicate the role of the
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clustering step in improving PCCR and reducing the com-
munication cost, respectively, for DAGs with PCCR=1.0.
Both measures tend to degrade at higher DAG sizes and
shape factors, as shown in Figs. 4 and 5. However, the
NLC-SynchCom algorithm imposes restrictions on merg-
ing nodes to clusters that may cause an increase in the
DAG's PT. Therefore, the UNC schedule length, SLc, is
always less than or equal to SLo. For example, the paral-
lel time is reduced by about 9% for DAGs with a size of
50 nodes, PCCR=1 and  α = 0.5. The ability of the algo-

rithm for PT reduction degrades, generally, with higher
DAG sizes.  For example, the PT reduction is about 1%,
for DAGs with a size of 500 nodes, PCCR = 1.0 and  α =
0.5. This brief characterization of the clustering step
should support understanding the outcomes of the map-
ping and ordering step (for more details see Arafeh, 2003).

The performance results are shown in Figs. 6-10. They
are taken for DAGs with  α =1.0 and sizes of 50, 250 and
500 nodes. This should provide us with bases of uniformi-
ty in our comparisons, analyses and assessments. This
does not mean that the effect of the shape factor has been
ignored, or that it does not have a role on the type of
results generated. On the contrary, all performance results
in this work scale proportionally with the value of α.
Figures 6-10 show the relationships of the normalized
scheduling length, NSL, the speedup, SP, the utilization,
U, the efficiency, E, and the load imbalance factor, LIF,
against the number of processors, respectively. In particu-
lar, simulation results were collected for number of
processors equal to 1, 2, 4, 8, 16 and 32. However, curve
fitting techniques were applied in order to obtain smooth
curves in those figures.

The results shown in Fig. 6(a), (b) and (c) depict the
relationship between the NSL(m) of DAGs with PCCR
valus equal to 0.5, 1.0 and 5.0, respectively, versus the
number of processors, m.  The NSL results are high with
small number of processors, but they approach optimal
values at high number of processors.  The NSL values are
optimal in the cases of DAG size of 50 nodes, and close to
optimal for higher sizes, when m > 16.  The next set of
results is for the average speedup factor against the num-
ber of processors.  They are shown in Fig. 7(a), (b) and (c)
for PCCR values equal to 0.5, 1.0 and 5.0, respectively.
Before the crossover points, the speedup factor is higher
for lower DAG sizes.  While after the crossover points, the
speedup factor becomes higher for higher DAG sizes.

The crossover points in the speedup curves are expect-
ed. Because, the potential degree of parallelism (repre-
sented by the average DAG width) for smaller DAG sizes
would have higher opportunity to match the available
number of processors, before the crossover points, than
large DAG sizes. Accordingly,  SLm of smaller DAG sizes
on low number of processors would be close to SLo, as
shown in Fig. 6 by the relationship between the NSL and
the number of processors, m. However, the high potential
degree of parallelism found in large DAG sizes would not
have an opportunity for exploitation with a limited num-
ber of processors. Accordingly, their SLm values would be
much larger than SLo due to processing tasks allocated to
the same processor sequentially. But the situation changes
after the crossover points, as more processors become
available, since they can match the potential degree of
parallelism found in high DAG sizes. The discrepancies in
the crossover points among the three curves is attributed
to the average PCCR of the DAGs.

It is very clear that the speedup does not scale linearly
with the number of processors. Definitely, synchronous
communication has a serious drawback on limiting the
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Figure 10.  The Load Imbalance Factor versus
the number of processors
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degree of speedup that can be achieved. To clarify this
point, we compare between the results of the utilization,
U(m), and the efficiency, E(m). Figure 8(a), (b) and (c)
shows the U(m) versus the number of processors, m, for
PCCR values equal to 0.5, 1.0 and 5.0, respectively, using
three DAG sizes of 50, 250 and 500 nodes. Similarly, Fig.
9(a), (b) and (c) shows  E(m) versus the number of proces-
sors using the same parameters. Both measures would
have U(m) = E(m) = 1 at  m=1. However, at  m = 2 the
utilization is high, it is greater than 87%. While the effi-
ciency drops sharply to a value as low as 17%. The differ-
ences between the values of U(m) and E(m) are attributed
to the Synchronization Overhead Ratio, SOR(m), as
shown previously. This is the blocking time due to syn-
chronous communication, during which a sender is wait-
ing for an acknowledgement from a receiver. The differ-
ence between U(m) and E(m) is very wide in the case of
fine granularity tasks, but it becomes narrower as the
granularity increases. The results of the Load Imbalance
Factor, LIF(m), are shown in Fig. 10(a), (b) and (c). They
are taken for α = 1.0 and PCCR values equal to 0.5, 1.0
and 5.0, respectively. In general, the behavior of the
LIF(m) results is the complement of the U(m).

5.  Conclusions

This work has introduced a low cost algorithm, called
GLB-Synch. It is intended to perform task mapping and
ordering, in the context of synchronous communication as
a part of a multi-step scheduling approach. We have
shown by analysis that the complexity of the GLB-Synch
algorithm is O(mc + mv logv + ev). The simulation results
show that a multi-step scheduling using the
NLC_SynchCom and the GLB_Synch algorithms for
clustering, and mapping and ordering, respectively, retain
the same low complexity cost for both steps. The perform-
ance study has shown limited speedup gain over different
DAG shape factors. The limitations in the achieved
speedups are mainly attributed to the synchronization
overhead. Further improvements in clustering and map-
ping techniques are needed to achieve high performance,
unless the objective for synchronous parallel and distrib-
uted computing is otherwise.
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