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1. Introduction

Sleep apnea is complete or partial cessation of breath-
ing during sleep. Obstructive sleep apnea (OSA) is the
common form of apnea that occurs when the upper air-
ways are partially or completely obstructed for 10 seconds
or more due to the relaxation of the dilating muscles. The
dilating muscles contract during inspiration to prevent the
collapse of the upper airways caused by inward air  suc-
tion  (Rodenstein, et al. 1990).  Hypoapnea  is   a   form
of apnea  where  the  airways   partially    collapse     and 
_________________________________________
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cause 50% reduction of air accompanied by drops in oxy-
gen desaturation of at least 4% followed by compensating
hyperventilation (Rodenstein,  et al. 1990; Tsi 1999;
AASM Task Force Report, 1999; Penzel, 2000).

The severity of the apnea is measured by Apnea
Hypoapnea Index (AHI), which is the number of apnea
and hypoapnea episodes per hour. OSA is said to be mild
if AHI is between 5 and 15 per hour, moderate if AHI is
between 15 and 30 per hour, and severe if AHI is greater
than 30 per hour. If AHI is less than 5 per hour, the case is
considered normal (AASM Task Force Report, 1999). 

The most commonly used technique for sleep analysis is
an overnight polysomnographic recording, which is an
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overnight monitoring of sleep-related body functions,
such as brain activity, eye movements, muscle activity, leg
and arm movements, heart rate, air snoring, respiration
effort, and blood oxygen level. These activities are meas-
ured by several special electrodes and sensors attached to
the body. Although the polysomnography provides reli-
able results in the diagnosis of sleep disorders, it is expen-
sive, time consuming and inconvenient to the patient
(Boyer and Kapur, 2002). 

Usually, patients undergo a primary diagnosis, by pri-
mary screening techniques, to evaluate their condition,
after which a decision is made if further in depth diagno-
sis is required through polysomnography (Stevenson,
2003; Pack, 1993).   These techniques are also helpful for
follow up of treatment. An example of primary diagnosis
techniques is the pulse oximetry, which is based on meas-
uring oxygen saturation in the blood via an oximeter
attached to a fingertip or ear. The presence of apnea is
evaluated by measuring the number of oxygen desatura-
tions per hour, which is also called oxygen desaturation
index (ODI). However, the screening results by oximetry
methods are inconsistent as reported by Pack (1993) and
Netzer (2001). 

The development in biomedical signal processing tech-
nology has led several researchers to propose other meth-
ods for apnea detection and screening by processing and
manipulating one or more of the body activities such as
the electrocardiogram (ECG) signal, electroencephalo-
gram (EEG) signal and the heart rate variability (HRV) or
the R-R intervals (RRI).  This study utilized the RRI data,
which is extracted from ECG data records, to accomplish
the screening process.

The pattern of ECG signal is composed of several
waves that are repeated on every beat. These waves were
named arbitrarily as P, Q, R, S and T as shown in Fig.1.
The beat is recognized by the QRS waves, which are also
called QRS complex. The beat is said to be normal (N) if
it is originated from the sino-atrial node of the heart, and
ectopic if it is originated elsewhere. The time between
peaks of two consecutive R waves of the ECG signal is
referred to as R-R interval (RRI), which is used to meas-
ure the heart rate. Heart Rate Variability (HRV) implies
the variation of heart rate that has been proven to accom-
pany the variation of several physiological activities such
as breathing, thermoregulation and blood pressure
changes (Task Force of the European Society of

Cardiology and the North American Society of Pacing and
Electrophysiology, 1996).

Theoretically, in OSA the cessation of breathing will
cause the respiration center in the brain to activate its
autonomic components (sympathetic and parasympathet-
ic) that send feedback impulses to the heart to compensate
for the lack of oxygen and low blood pressure. This inter-
action between the heart and the brain is reflected into the
beat-to-beat variation of the heart rate. Therefore, the
analysis of HRV should somehow reveal the variations in
breathing. 

Many algorithms manipulate HRV or RRI data either
in frequency-domain or in time- domain, to extract screen-
ing parameters. Several studies have examined HRV using
spectral analysis techniques under different conditions
(Task Force of the European Society of Cardiology and
the North American Society of Pacing and
Electrophysiology, 1996) and in OSA (Khoo, et al. 1999).
In (Drinnan, et al. 2000), the FFT is applied directly on the
RRI signal, and the area  under the spectral curve between
0.01 and 0.05 Hz is divided by the area between 0.005 and
0.01 Hz. The algorithm used led to the classification accu-
racy of  93.3 % when applied to the MIT challenge data.
Another technique employed the Hilbert transformation of
the RRI time series to derive the instantaneous amplitudes
and frequencies of the series (Mietus, et al. 2000).  Some
basic statistics such as the mean and the standard devia-
tion were calculated for every 5-minute sliding window.
A comparison is made between the probability distribu-
tion of the measured statistics in order to set up detection
threshold limits. The algorithm used obtained accuracy of
93.3% on MIT challenge data. A comparison of several
time domain and frequency domain algorithms for apnea
detection is found in the work reported by Penzel et al.
(2002). 

In this paper a new technique is presented. This tech-
nique computes the statistical signal characterization
parameters for the power spectral density (PSD), which is
computed using different spectral estimation techniques,
of the pre-processed RRI data. So instead of finding the
power at different frequency bands in the PSD, statistical
parameters are calculated for the estimated PSD. These
parameters depend on the morphology (number of maxi-
ma and minima) of the PSD. 

The paper is organized as follows: 
Section 2 deals with the pre-processing steps of the data

used in this work. In Section 3, Welch and Burg spectral
analysis techniques are introduced. The statistical signal
characterization method is discussed in Section 4. Data
implementation steps are explained in Section 5. Different
results of Burg and Welch Methods are listed and com-
pared in Section 6. This section also includes the results of
parametric methods other than Burg. Moreover, a compar-
ison with other techniques (Drinnan, et al. 2000; Mietus,
et al.  2000) are also provided in this section. Conclusions
are given in Section 7. 

Figure 1.  ECG pattern
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2. Data: Sources and Pre-Processing

2.1 The Data
The ECG records are drawn from the database of

Massachusetts Institute of Technology (MIT) (PhysioNet:
An NIH/NCRR Research Resource for Complex
Physiologic Signals).  The ECG signals (single channel)
were extracted from polysomnographics recordings with
sampling rate of 100 Hz and 12-bit resolution for an aver-
age duration of 8 hours. The database contains 35 trial
records and 35 test records. Each set of the records con-
tains 20 OSA records, 10 normal records, and 5 borderline
records. Apnea records are those having 100 minutes or
more of apnea during the recordings and at least one hour
with apnea/hypoapnea index of 10 or more. The normal
records are those having less than 5 minutes of apnea dur-
ing the recording. The borderline records are those having
5 to 99 minutes of apnea during the recording, and at least
one hour with apnea/hypoapnea index of 5 or more
(PhysioNet: An NIH/NCRR Research Resource for
Complex Physiologic Signals). In this study we only used
the apnea records and the normal records; borderline
records are excluded. The trial data is used to set up the
classification factor. This factor is then used to classify the
test data.

2.2 Pre-processing of Data
RRI series could be exposed to different types of errors

throughout its generation process. The original ECG may
be exposed to different type of physiological and environ-
mental interferences that could overwhelm the ECG fea-
tures and lead to detection of false QRS peaks or misde-
tection of normal QRS peaks (Friesen, et al. 1990).
Moreover, the variation of heartbeats is non-periodic and
would result in non-periodic variation of the instantaneous
RRI and irregular inter-sample spacing. Furthermore, the
QRS detection algorithm, regardless of its accuracy, could
miss normal peaks or detect false or ectopic beats. Large
errors induced by missing values, outliers, non-stationari-
ty and irregular inter-sample spacing could influence the
accuracy of any analysis technique. Therefore the RRI
data usually undergo several processing and filtering
stages before they can be used in an analysis. 

Figure 2 shows the pre-processing steps needed before
applying the new technique. The QRS detection, which is
the primary process for every ECG signal analysis tech-
nique, is accomplished by the “ecgpuwave” software
(PhysioNet: An NIH/NCRR Research Resource for
Complex Physiological Signals). The RRI data are the
normal-to-normal (N-N) intervals obtained directly from
QRS detector without any smoothing and filtering steps;

therefore it could contain false intervals, missed and/or
ectopic intervals. 

Removing of outliers is achieved by using a 41-points
moving average filter (MAF). Re-sampling at 1 Hz and
substituting for the missed peaks are then accomplished
by simple linear interpolation (Mietus, et al. 2000).  The
re-sampling and the estimation of missed values are
intended to have an equally spaced RRI data and preserve
the temporal sequence that is necessary for the frequency
domain analysis (Bigger, 2000). 

The next processing steps are intended to emphasize
the oscillations of RRI data that are commonly found in
apnea patients but less common in normal subjects. These
oscillations lie in the VLF band of RRI spectrum, espe-
cially between 0.01 and 0.04 Hz. A high pass filtering
(HPF) is used to remove the oscillations below 0.01 Hz.
HPF is implemented by a local de-trending over an 81-
point moving window, which gives a highpass 3db cutoff
at 0.01 Hz. 

In other words, a simple linear regression is used to esti-
mate the trend line of the RRI series over a sliding 81-
point window. The estimated value at the center of each
window forms the high pass filtered RRI series (RRI-HF)
(Mietus, et al. 2000).  This set of data is now ready for the
analysis. 

3.  Spectral Analysis

Spectral analysis is used to find the PSD, which is the
frequency content of a signal or a system based on a finite
set of data. The various techniques of PSD estimation can
be classified into non-parametric and parametric methods. 

3.1 Non-Parametric Methods  
Nonparametric methods estimate the PSD directly from

the signal itself by FFT. The simplest method of such
methods is the periodogram, which is the magnitude
squared of the FFT of the signal or a section of the signal.
Examples of improved versions of the periodogram are
Welch's method, which is one of the most popular non-
parametric techniques. It is employed in this study as an
example of such methods (Kay, 1988).

This method uses the following steps to compute the
PSD of a signal: 

1. Apply a non-rectangular data window (Hamming) to
different sections of the signal. 

2. Find the periodogram, that is the magnitude squared of
the FFT of the windowed section. 

3. Compute the average of the periodograms of all sec-
tions. 

QRS 
Detection 

Remove 
Outliers 

    ECG RRI Resample  
1 Hz 

HPF RRI-HF 

Figure 2.  Block-diagram of pre-processing steps
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3.2 Parametric Methods
Parametric methods are based on modeling the signal,

to estimate its PSD, as the output of a linear system driv-
en by white noise. These methods firstly estimate the
parameters (coefficients) of the linear system that hypo-
thetically construct the signal. The most commonly used
linear system model is the all-pole model, a filter with all
of its zeroes at the origin in the z-plane. The output of data
of such a filter for white noise input is called an autore-
gressive (AR) process of order P, which represents the
number of poles. Examples of parametric methods are the
Yule-Walker autoregressive (AR) method, covariance
method (Pcov), modified covariance method (Pmcov) and
the Burg method (Proakis and Manolakis, 2000).

The Burg method, which is used in this study as an
example of parametric techniques, is based on minimizing
the forward and backward prediction errors while satisfy-
ing the Levinson-Durbin recursion (Marple, 1987). This
method avoids the calculation of the autocorrelation func-
tion; and instead computes the reflection coefficients. This
method has a good accuracy in estimating the AR model
for short data length and ensures stable AR model. Simply,
the Burg method has the following steps: 

1. Select an order to the all-pole filter model. 
2. Estimate the lattic reflection coefficients from the  sig-

nal. 
3. Fit an AR model to the estimated reflection coefficients. 

Some parametric methods generate frequency compo-
nent estimates for a signal based on an eigenanalysis or
eigendecomposition of the correlation matrix. Examples
are the multiple signal classification (MUSIC) method

and the eigenvector method, Peig  (Proakis and
Manolakis, 2000).

In Fig. 3, the spectrums of both normal and OSA data
segments are estimated using  Welch (with N=128) and
Burg (with N =128, P=10) algorithms. 

4.  Statistical Signal Characterization

The statistical signal characterization (SSC) is a
method that characterizes a waveform not only as a func-
tion of the frequency component amplitudes (like FFT)
but also as a function of the relative phases of its frequen-
cy components (Hirsch, 1992). The input waveform to the
SSC process is basically divided into segments where
each segment is bounded by two extrema: maxima and
minima as shown in Fig. 4. The segment amplitude, An,
and the segment period, Tn, are defined as: 

(1)

n=1,2,3,                                     (2)

There are four SSC parameters that can be computed
from the time-domain signal. The parameters are the
amplitude mean Ma, the period mean Mt, the amplitude
mean deviation Da, and the period mean deviation, Dt: 

(3)

(4)
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(5)

(6)

where Ai is the amplitude of the ith segment, and Ti  is the
period of the ith segment and Ns is the total number of
segments.

The SSC process is usually applied to a time domain
signal. In this work, the SSC process is modified by apply-
ing it to the spectrum (PSD) of a time domain signal.  For
example, a similar figure to Fig. 4 can be plotted by con-
sidering the maxima and the minima in the spectral signal
as in Fig.  5. In Fig. 4 the x-axis represents the time where-
as in Fig. 5 it represents the frequency. Hence, correspon-
ding changes have to be applied to Eqs. (4) and (6) by
replacing any time point with a frequency point.

To initially set up the screening algorithm, the SSC

were applied to the trial data. This is in order to find the
best SSC parameter(s) that screen the OSA patients from
normal subjects. Only two parameters (Ma and Da), which
are both related to the amplitude of the PSD, are found to
be useful in our work. Figure 6 shows the steps of deter-
mining the two SSC parameters from the estimated
specrum of the (RRI-HF) data.

5.  Data Implementation

5.1. Performance Measures 
The performance of the technique is evaluated by three

main metrics: specificity, sensitivity and accuracy as
defined below (Rangayyan, 2001).

(7)
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(8)

(9)

where TP, TN, FN, FP are defined in Table 1 (Rangayyan,
2001), and T is the total number of data under test. 

Sensitivity represents the ability of a classifier to detect
the positive cases, e.g. OSA. Specificity indicates the abil-
ity of a classifier to detect negative cases, e.g. normal sub-
jects. Accuracy represents the overall performance, which
indicates the percentage of correctly classified positives
and negative cases from the total cases.

5.2. Implementation Procedure 
The following procedure is implemented in this work: 

1. Estimate the PSD of all successive segments of the
RRI-HF data using Welch or Burg method or any
other method. 

2. Compute the SSC parameters (Ma and  Da) of the
PSD of all successive segments. 

3. Find the maximum values, Max (Ma) and Max (Da)
among the results of all segments. 

4. Calculate (CR) as the sum of Max (Ma) and Max (Da). 
5. Find (manually) the threshold value of (CR) to identi-

fy the trial data with best performances. This can be
done by sketching a line that can separate better
between the data results of both groups (normal and
apnea). 

6. Find the performance of the algorithm on test data
using the same threshold. 

7. Compute the overall performance of the screening
process.

6.  Results and Discussion

In order to study the effect of the transform length N
and the filter order P in the performance of the algorithm,

the procedure is repeated for N = 64, 128 and 256 for both
Welch and Burg methods, and for P = 10, 14 and 20 for
Burg method. Other filter orders were also attempted but
the results obtained were low and, therefore, been exclud-
ed.

6.1. Results 
Tables 2-4 show the performance results of Welch

method at different transform lengths N. Tables 5-9 show
the results for Burg method at different transform length N
and filter order P.

The best accuracy obtained for trial data by Welch
method is 93.3% with N=128 and 256. For test data the
maximum accuracy is 86.7%, obtained with N=256. The
overall performance shows that the accuracy increases
from 81.7% to 90% with N increasing  from 64 to 256.
Moreover, the overall specificity is constant at 85%;
whereas sensitivity (detection of more OSA cases)
improves with increasing N causing the improvement in
accuracy.

The maximum accuracy obtained by Burg method for
trial and test data are 96.7% and 90% respectively. The
best overall accuracy is 93.3%. These results are obtained
with N=128 and P = 14. Moreover, by observing the Burg
accuracy results in Tables (5,7,9) for P=14, which are
80%, 93.3% and 81.7%, it can be noticed that the increase
in N had not always lead to better results. In addition, the
results of Burg method with N=128 at different filter order
show that the accuracy is not improving consequently
with increasing the filter order. Therefore, the results of
Burg method depend on selecting an optimum filter order
and transform length N. The parametric Burg method
results in better screening capability (accuracy=93.3%)
than the non-parametric Welch method (accura-
cy=90.0%).

Other parametric methods have been tested with N=128

100.
FPTN

TN(%) ySpecificit
+

=

 Normal OSA 
Normal TN FP 

OSa FN TP 

Table 1.  Confusion matrix

Efficiency Trial Test Overall 
Sensitivity 85% 75% 80% 
Specificity 70% 100% 85% 
Accuracy 80% 83.3% 81. 7% 

Table 2.  Results of Welch method (N=64, CR=0.517)

Efficiency Trial Test Overall 
Sensitivity 90% 85% 87.5% 
Specificity 100% 70% 85% 
Accuracy 93.3% 80% 86.7% 

Table 3.  Results of Welch method (N=128, CR=0.378)

Efficiency Trial Test Overall 
Sensitivity 100% 85% 92.5% 
Specificity 80% 90% 85% 
Accuracy 93.3% 86.7% 90% 

Table 4.  Results of Welch method (N=256, CR=0.27)

100.
FNTNFPTP

TNTP(%) Accuracy
+++

+=

Figure 6.  Statistical signal characterization
parameters
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and P=14 for performance comparison with Burg. The
methods and their results are shown in Table 10. The
results of Welch and Burg methods are also shown in this
table for comparison. The parametric methods resulted in
different accuracies above 80%. The second best accuracy
after Burg is 90%, which is obtained by Peig method. 

Figures 7 and 8 show the results (computed values of
CR) of all data using both Welch and Burg algorithms
respectively at FFT length N=128 and filter order P =14
(for Burg only). In these figures an optimum threshold
value (CR) is selected manually (see the line sketched
between the two groups) from the trial data, with a value
of 0.378 for Welch method and 0.63 for Burg method. Any

subject with (CR) above the threshold is classified as nor-
mal and any subject with (CR) less than the threshold is
classified as OSA. 

6.2. Comparison with other Methods 
The new technique is compared with other methods by

Drinnan, et al. (2000)  and  Mietus, et al. (2000). The
results of screening of both trial data and test data are
shown in Table 11. By applying the new technique with
Burg spectral analysis to the trial set, we could correctly
classify 29 out of 30 of combined OSA and normal sub-
jects. When this technique is applied to the test set, it cor-
rectly classified 27 out of 30 of the subjects. The results
show that this method have overall better performances
compared to other methods used in the comparison. 

7.  Conclusions

A new method for OSA screening is investigated in this
paper. It is based on estimating the SSC parameters of the
spectral analysis of the pre-processed and filtered RRI
data. Two basic algorithms are used for the spectral esti-
mation (Welch and Burg) as examples to non-parametric
and parametric spectral analysis techniques respectively.
The work shows significant results in screening of sub-
jects with OSA from those of normal controls. 

This study has shown that the morphology of the spec-
trum could be used to screen OSA and normal subjects by
deriving relevant statistical parameters. Common spectral
methods usually find and compare spectral power
between two different frequency bands (Drinnan et al.
2000). The study also revealed that both parametric and
non parametric methods have obtained acceptable results
(accuracy above 85%). However, parametric method
could over-perform non-parametric method if optimum
filter order and transform length are selected.

The best sensitivity result of implementing this tech-
nique with Burg method (N = 128, P = 14) and Welch
method (N = 256) is 92.5% for both. The specificity of

Efficiency Trial Test Overall 
Sensitivity 80% 75% 77.5% 
Specificity 80% 90% 85% 
Accuracy 80% 80% 80% 

Table 5.  Results of Burg method (N=64, P=14, 
CR=0.648)

Efficiency Trial Test Overall 
Sensitivity 80% 80% 80% 
Specificity 80% 90% 85% 
Accuracy 80% 83.3% 81.7% 

Table 6. Results of Burg method (N=128, P=10,
CR=0.72)

Efficiency Trial Test Overall 
Sensitivity 100% 85% 92.5% 
Specificity 90% 100% 95% 
Accuracy 96.7% 90% 93.3% 

Table 7.  Results of different burg method (N=128,
P=14, CR=0.63)

Efficiency Trial Test Overall 
Sensitivity 90% 85% 87.5% 
Specificity 80% 100% 90% 
Accuracy 86.6% 90% 88.3% 

Table 8.  Results of Burg method (N=128, P=20,
CR=0.532)

Efficiency Trial Test Overall 
Sensitivity 95% 65% 77.5% 
Specificity 90% 90% 90% 
Accuracy 90% 73.3% 81.7% 

Table 9.  Results of Burg method (N=256, P=14,
CR=0.6)

Parameter Yuler Pcov Pmusic Pmcov Peig Welch Burg 
Sensitivity 80% 85% 85% 86.7% 90% 87.5% 92.5 
Specificity 90% 90% 80% 86.7% 90% 85% 95 
Accuracy 83.3% 86.7% 83.3% 86.7% 90% 86.7 93.3 

CR 0.6 0.62 0.468 0.632 0.588 0.378 0.63 

Table 10.  Results of parametric and non-parametric methods, N=128, P=14

Method Trial Test Overall 
Accuracy 

New-Welch-128 28/30 24/30 83.3% 
New-Welch-256 28/30 26/30 90% 
New-Burg-128 29/30 27/30 93.3% 

Mietus 26/30 28/30 90% 
Drinnan 27/30 27/30 90% 

Table 11. Screening results of different methods
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both algorithms are 95% and 85% respectively, while the
total accuracy is about 93.33% with Burg algorithm and
about 90% with Welch spectral estimation method. The
most important advantage of this technique is that a sin-
gle-parameter is used for screening. We would like to

pointout that this is a screening technique and is not pure-
ly diagnostic. It helps to short-identify patients who need
full polysomnography especially in a very busy center like
the one we have at Sultan Qaboos University Hospital in
Oman. 

Figure 7.  Results of all data using Welch method (N=128)

Figure 8.  Results of all data using Burg method (N=128)
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