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Abstract: In this paper, the Ant Colony Optimization Algorithm (ACOA) is applied to solve Water 
Distribution System design optimization problem proposing two different methods. Considering pipe 
diameters as decision variables of the problem, Ant System and Max-Min Ant System, referred to 
ACOA1 and ACOA2 respectively, are applied to determine pipe diameters. In proposed methods, the 
ant-based models are interfaced with EPANET as simulator for the hydraulic analysis. Three 
benchmark test examples are solved with proposed methods and the results are presented and 
compared with those obtained with other existing methods. The results show the capability of the 
proposed methods to optimally solve the design optimization problem in which best results are 
obtained with ACOA2 in comparison with other available results. Furthermore, the results show the 
superiority of the proposed ACOA2 over than the ACOA1 in which the trade-off between the two 
contradictory search characteristic of exploration and exploitation is managed better by using Max-
Min Ant System. 
 

Keywords: Water distribution system; Ant colony optimization algorithm; EPANET; Optimal design; 
Pipe diameter. 

 

تقنية الاحتمالات من خلال نموذج المحاكاة الأمثل لتصميم نظام توزيع المياه باستخدام حساب 

خوارزمية تحسين مستعمرة النمل(البيانية )الرسومات   

 ب و سيد أمين موسوي مولايي *أ رامتين مويني

 
: قام هذا البحث بتطبيق حساب تقنية الاحتمالات من خلال الرسومات البيانية )أكوا( لحل مشكلة تحسين تصميم الملخص

الاعتبار أقطار الأنابيب كمعامل في قرار حل المشكلة. قام نظم توزيع المياه واقتراح طريقتين مختلفتين لذلك . و تم أخذ  في 

على التوالي.  و في هذه   2و اكوا  1صطلحين : اكوا لمالبحث بتطبيق نظام النمل و ماكس مين النمل. ، المشار إلىه با

ج لمحاكاة التحليل الطرق ألمقترحة  تم توصيل النماذج المستندة إلى نظام النمل باستخدام نظام برمجيات إيبانيت كنموذ

الهيدروليكي. وهنا يعمل البحث على حل ثلاث  نماذج اختبار معيارية بالطرق المقترحة ويقوم بعرض النتائج ومقارنتها مع تلك 

التي تم الحصول عليها  باستخدام الأساليب القائمة الأخرى. وقد أظهرت النتائج قدرة الأساليب المقترحة على حل مشكلة 

بالمقارنة مع غيرها من النتائج المتاحة.  كما اظهرت   2ل. حيث تم الحصول على أفضل النتائج  من نظام اكواالتصميم الأمث

الذي تم فيه المفاضلة بين طريقتين متناقضتين من حيث طرق  1النتائج تفوق نظام اكوا  ألمقترح   على نظام اكوا 

 م ماكس مين النمل.الاستكشاف والاستغلال  لمعرفة ايهما افضل باستخدام نظا
 

قطر ،التصميم الأمثل،نظام برمجيات إيبانيت ،خوارزمية تحسين مستعمرة النمل،: نظام توزيع المياه الكلمات المفتاحية

 الأنابيب.
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1.  Introduction 

 
A Water Distribution System (WDS) is a man-
made system that is used to convey water from 
the source to the user. The main aim of every 
WDS is to deliver water to the user when it is 
necessary, in the correct quantity and in 
accordance with relevant quality standards. 
WDSs are therefore considered to be essential 
infrastructure in every modern community. As 
WDSs continue to get aged and cities continue 
to grow, the design of new WDSs and the 
rehabilitation or upgrading of existing WDSs 
will continue to be a central problem. 
Construction of WDS is very expensive due to 
cost of WDS components.  A quite small change 
in the WDS components, therefore, leads to an 
enormous saving. The general WDS design 
optimization problem, therefore, involves 
minimizing the system cost subject to hydraulic 
constraints such as meeting minimum allowable 
pressure and/or maximum allowable velocity 
constraints under design demand levels.  
     A significant amount of research has focused 
on the optimal design, upgrade or rehabilitation 
of WDSs. In general, the available methods can 
be classified as 1) Linear programming (LP), 2) 
Nonlinear programming (NLP), 3) Dynamic 
programming (DP) and 4) Evolutionary 
Algorithm (EA) such as Genetic Algorithm 
(GA), Simulated Annealing (SA), Shuffled Frog 
Leaping Algorithm (SFLA), Tabu Search (TS), 
Ant Colony Optimization Algorithm (ACOA), 
Harmony Search (HS), Particle Swarm 
Optimization (PSO), Cross Entropy (CE), 
Honey-Bee Mating Optimization (HBMO) and 
Differential Evolution (DE) in which they were 
usually used for optimal design of WDS. 
Haghighi et al. (2011) listed different methods 
applied to design of WDS such as enumeration 
(Gessler 1985;  LP (Bai et al. 2007; NLP Xu and 
Goulter 1999; DP Schaake and Lai 1969; GA Jian 
and Yanbing 2010; Bi et al. 2015;  SA Costa et al. 
2000; SFLA Baoyu et al. 2011; TS Lippai et al. 
1999; ACOA Afshar 2007; HS Yang et al. 2012); 
PSO Babu and Vijayalakshmi 2013; HBMO 
Mohan and Babu 2010; CE Shibua and Janga 
Reddya 2012; DE Dong et al. 2012 and other EA 
and hybrid methods Zhou et al. 2016; 
Sheikholeslami et al. 2016) in which some of 
them are presented in this paper. Each of these 
optimization methods has its own limitations. 
For example, calculating derivatives or 
requirement of an initial policy to start off the 
solution process are some important limitations 

of the conventional mathematical optimization 
methods (Mays and Tung 1992).  In addition, 
DP is known to suffer from the “curse of 
dimensionally” when large scale problems are 
attempted to solve.  
     Nowadays, EAs, therefore, have originally 
been proposed to overcome the limitations of 
the conventional optimization methods. 
However, some limitations such as the element 
of randomness used in generation of initial 
solutions and generating alternative solutions 
inherent in most of EAs may reduce their 
efficiency. In many large scale cases, generally, 
EAs require additional amount of computer 
memory which is based on the fact that they 
need more objective function evaluations than 
conventional optimization methods. In addition, 
some EAs such as ACOA have discrete nature 
and some others have continuous nature. 
Therefore, ACOA is suitable algorithm for 
solving discrete problem such as WDS design 
optimization problem considered here.  
     ACOA is one of the EAs that has specific 
characteristic for solving NP-hard combinatorial 
discrete optimization problems with reasonable 
computational time cost. For WDS design 
optimization problem, the pipe diameters are 
discrete variables in design process and, 
therefore continuing optimization methods 
cannot determine them properly. The specific 
characteristic of ACOA is that in ACOA each 
artificial ant incrementally builds a solution by 
adding opportunely defined solution 
components to a partial solution under 
construction. This specific unique feature, 
namely incremental solution building 
capability, is very useful for solving 
optimization problems of sequential nature. 
This algorithm has been inspired in the real ant 
colony behaviour for finding the shortest path 
from food source to the nest. Starting with Ant 
System (AS) (Colorni et al. 1991), a number of 
algorithmic approaches based on this 
characteristic of real ant was developed and 
applied with considerable success to a variety of 
combinatorial optimization problems from 
academic as well as from real world 
applications. Many other algorithms have been 
proposed to improve the performance of AS, 
such as Ant Colony System (ACS), Elitist Ant 
System (ASelite), Elitist-Rank Ant System (ASrank) 
and Max-Min Ant System (MMAS). 
Advancements have been made on the AS to 
improve the operation of the decision policy 
and the manner in which the policy 
incorporates new information to help explore 
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the search space of the problem. These 
developments have primarily been aimed at 
managing the trade-off between the two 
contradictory search characteristic of 
exploration and exploitation. Ali et al. 2009; 
Ostfeld 2011; Stutzle et al. 2011; and Chandar 
Mohan and Baskaran 2012) reviewed an amount 
of research work in the field of using ACOA to 
solve different optimization problems in the last 
20 years. A review of the literature reveals that 
studies on the application of ACOA to different 
optimization problems has not been 
satisfactorily fruitful and is worth further 
investigation. Numerous papers on the ACOA 
application for optimization of water 
engineering problems such as sewer network 
design (Moeini and Afshar 2013a), WDS design 
(Zeccchin et al. 2007) and reservoir operation 
(Moeini and Afshar, 2013b)  have been 
published in recent years. 
     In this paper, one of the EAs with discrete 
nature means ACOA is used to effectively solve 
one of the most important discrete problem 
means optimal design of WDS by proposing 
two different methods. In the proposed 
methods, the ACOA is used to determine pipe 
diameters as the discrete decision variables of 
the problem. AS and MMAS referred to ACOA1 
and ACOA2 respectively, are applied to 
determine pipe diameters. MMAS is applied 
here to overcome the premature convergence 
problem to suboptimal solution which is well 
trained in AS by managing the trade-off 
between the two inconsistent search 
characteristic of exploration and exploitation. By 
determining the pipe diameters of WDS, a 
hydraulic analysis is required. For the hydraulic 
analysis, in this paper, the ACOA-based models 
are interfaced with EPANET as simulator. Three 
benchmark test examples are solved here with 
proposed methods and the results are presented 
and compared with those obtained with other 
existing methods. It is worth noting that many 
different EAs  have been used to solve this 
problem.  However, based on the discrete 
nature of design of WDS, here, ACOA is used to 
solve this problem in order to overcome the 
limitations of pervious works. In some 
researches, the hydraulic analysis is based on 
the simplified assumptions such as considering 
inaccurate value for hydraulic value coefficients 
equations. However, EPANET simulator is used 
here for the hydraulic analysis. In addition, in 
some researches the continues nature of EAs are 
used to solve discrete nature problem of WDS 
design and in some other researches the 

equations of simulation model are solved using 
iterative numerical or traditional methods and 
therefore some of the WDS components such as 
pump cannot be easily modelled. Here, this fact 
is regarded considering third test example in 
which the WDS is fed by pump. The efficiency 
of these innovations is fully presented and 
highlighted in section “Model application and 
results” by comparison of the results obtained 
with proposed methods with other available 
results. 

 

2. Ant Colony Optimization Algorithm 
(ACOA). 

 
The ACOA is based on the natural foraging 
behaviour of a colony of real ants to find the 
shortest path between food source and their 
nest. When ants are travelling, they deposit a 
substance called pheromone which is more 
attractive for other ants to follow them. Ants can 
smell pheromone and they incline to choose 
probability paths marked by strong pheromone 
concentrations when choosing their path. It has 
been shown experimentally that this pheromone 
trail following behaviour can give rise to the 
emergence of the shortest paths once employed 
by a colony of ants. Based on the real ant 
behaviour, the ACOA was developed (Colorni 
et al., 1991). The original and simplest version of 
ACOA is AS. Later, many other algorithms such 
as MMAS have been developed to overcome the 
limitations and improve the performance of the 
AS. Here, AS and MMAS are used to solve WDS 
design optimization problem proposing two 
different methods. 
     Definition of proper graph is the first step of 
process for solving an arbitrary optimization 
problem using ACOA. A graph G=(DP,OP,CO), 
therefore, can be defined, where DP=

 Idp,....,2dp,1dp  is the set of decision points, 

OP=  ijop  is the set of options j ( j=1, 2,…,J) at 

each of the decision point i (i=1,2,…,I) and 

finally CO=  ijco  is the set of costs associated 

with options OP= 
ijop . (Moeini and Afshar, 

2009). 
 

2.1. Ant System (AS) 
     The original and simplest version of ACOA is 
AS. The basic steps of solving optimization 
problem using AS can be defined as follows 
(Colorni et al. 1991): 
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1. At the start of the process, some proper 
values are initialized to the amount of 

pheromone trail on all options ijop .  

2. A colony with the size of M is selected 
and at one time, each of them is placed 
randomly on the decision points of the 
problem.  

3. By using a transition rule for selection 
proper option at each decision point i, 
(Eq. 1), each arbitrary ant, m, starts its 
movement from one decision point to 
the next and the solutions are 
incrementally constructed. This 
procedure is repeated until all decision 
points of the problem are covered.  

 









J

1j

]ij[)]t(ij[

]ij[)]t(ij[
)t,m(ijp                            (1) 

 

     In Eqn. 1, )t,m(ijp  is the probability that the 

ant m selects option j of the ith decision point, 

ijop , at iteration t; )t(ij  is the concentration of 

pheromone on option ijop  at iteration t; ij is 

the heuristic value of option ijop , and   and 

are pheromone and heuristic sensitivity para-
meters, respectively. 
 

4. The cost of the solution, m)(f  , is calculated 

when ant m creates a complete solution,

m)( .  

5. When steps 3 and 4 are repeated for all ants, 
M, at each iteration t, the pheromone is 
updated using the general form of Eq. 2 for 
the pheromone updating rule. 

 

ij)t(ij)1t(ij                                          (2) 

 

     In Eqn. 2, )1t(ij   is the amount of 

pheromone trail on option ijop  at iteration t+1; 

)t(ij  is the concentration of pheromone on 

option ijop  at iteration t; )10(   is the 

pheromone evaporation coefficient and 
ij
  

represents the change in pheromone 

concentration associated with option ijop  which 

is defined as Eqn. 3: 
 
























                 otherwise                       0

ant best  by the                        

chosen  is joption  if   
m)(f

RM

1m

M

1m

m
ijij

               (3) 

     In Eqn. 3, m)(f   is the cost of the solution 

produced by the ant m and R is pheromone 
reward factor.  
 
6.  Steps 2 to 5 are continued until convergence  

criterion is met. 
 
2.2. Max-Min Ant System (MMAS) 
     The most important issue that can be 
experienced by all ACOAs is premature 
convergence to suboptimal solutions. To 
overcome this problem, the MMAS was 
developed by Stutzle and Hoos (2000).  The 
basis of MMAS is the provision of dynamically 
evolving bounds on the pheromone trail 

intensities ( )t(ij ) which are defined as follows 

(Eqns. 4 and 5): 

 
best)(f

R

1

1
)t(max


                                     (4) 

  
I/1)bestp.(avgJ

)I/1)bestp(1( )t(max)t(min


                      (5)  

 

     In Eqs. 4 and 5, )t(min  and )t(max

represent the lower and upper limit on the 
pheromone trail strength at iteration t, 

respectively; best)(f   is the cost of the solution 

produced by the best ant at each iteration, bestp  

is the probability that the best solution is 
constructed again; Javg represents the average 
number of options available at decision points 
of the problem; and I is the number of decision 
points.  
     In MMAS, only the cost of iteration-best ant 
is used for calculating the change of pheromone 
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

















                 otherwise                   0

ant best  by the                    

chosen  is joption  if   
best)(f

R

best
ijij

                    (6) 

ij  which is defined as Eqn. 6. 

     In Eqn. 6, best)(f   is the cost of the solution 

produced by the best ant. It is worth noting that 
application of MMAS to some benchmark 
optimization problems has shown that MMAS 
overcomes the stagnation problem, hence 
improves the performance of the ACOAs 
(Afshar and Moeini 2008). 

 

3. Water Distribution System Design 
Optimization Problem 

 
WDSs consist of interconnected elements such 
as pipes, tanks, pumps and other components. 
Such systems are used to transfer treated water 
from one or more sources to users spread over a 
wide area. Designing an effective WDS with 
minimum cost is a quite complex task which can 
be achieved by formulating and solving it as an 
optimization problem. 
     Optimal WDS design requires optimal 
determination of WDS components such as pipe 
diameters, tank and pumping station positions 
and heights leading to a complex optimization 
problem with a large number of hydraulic 
constraints. Having a suitable and cost-effective 
WDS is normally interpreted as finding the 
solution for this problem that minimizes total 
cost without violating the constraints. 
     The standard description form of a WDS 
design optimization problem with a pre-
specified layout can be presented as follows. 
The objective function of this problem can be 
formulated as Eqn. 7 in which it is minimizing 
the total construction cost of WDS.  
 





N

1l
lLlcTCMinimize                                         (7)  

 

     In Eqn. 7, TC  is the total cost of the pipes in 

the WDS; lL  is length of the lth pipe; lc is per 

unit cost of the lth pipe and N is the total 
number of existing pipes.  The cost function is to 
be minimized under the following constraints. 

     Continuity equation: A continuity constraint 
should be satisfied for each node as follows: 
 









)k(inl )k(outl

K,.......,1kkQlqlq         (8) 

 

     In Eqn. 8, Qk is the required demand at 

consumption node k; lq is the flow rate in pipe l; 

)k(in  is the list of the pipes incoming to node k; 

)(kout  is the list of the pipes out coming from 

node k; and K is the total number of exiting 
nodes in the WDS. 
     Energy equation: The energy constraint for 
each loop in the network of WDS can be written 
as follows: 

 

P,......,1p0

pl
lJ 



                         (9) 

 

     In Eqn. 9, lJ  is the head loss in the lth pipe 

and P is the total number of loops in the WDS. 
     Several equations can be used to evaluate the 
hydraulic parameters of WDS such as head 
losses in the pipes. Here, Hazen-Williams 
equation is used to find hydraulic parameters. 
Therefore the head losses can be calculated as 
follows: 

 N,......,1l
l

d
lch

lq
lLlJ 

















             (10)  

     In Eqn. 10, lJ  is the head loss in the lth pipe; 

ld  is the diameter of pipe l; lch  is the Hazen-

Williams coefficient of pipe l; lq  is the flow rate 

in pipe l and  ,,  are constant coefficients of 

Hazen-Williams equation.  
    Nodal pressure head: The maximum and 
minimum values should be defined for the 
nodal pressure head of WDS as Eq. 11 in which 
the nodal pressure head of WDS should be 
within this range. 

 

K,......,1kmaxHkHminH          (11)  

 

     In Eqn. 11, kH  is the pressure head at node 

K; maxH is the maximum required pressure 

head; and minH  is the minimum required 

pressure head. 
     Flow velocity: The maximum and minimum 
values should be defined for flow velocity of 
WDS pipes as Eq. 12 in which the flow velocity 
of WDS pipes should be within this range. 
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N,......,1lmaxVlVminV               (12)  

 

     In Eqn. 12, lV  is the flow velocity in the lth 

pipe; maxV is the maximum flow velocity; and 

minV is the minimum flow velocity. 

     Commercial pipe diameters: A set of 
commercially available WDS pipe diameters 
should be defined for WDS pipe diameters as 
Eqn. 13 in which the WDS pipe diameters 
should be selected from it. 
 

N,.....,1lld D                                 (13) 

     In Eqn. 13, ld  is the diameter of pipe l and D 

denotes the set of commercially available pipe 
diameters.  
     It should be noted that the penalty method is 
often used to effectively guide solutions of 
optimization problems from one infeasible 
solution area to a feasible solution one. Here, 
the penalty method is applied for formulation of 
the WDS as an unconstrained optimization 
problem. In the used method, therefore, nodal 
pressure head and flow velocity constraints are 
added in the original objective function. 
Therefore, a new problem can be defined by the 
minimization of the penalized objective function 
of Eq. 14 subject to the constraints defined in 
Eqns. (8) to (13): 
 

)HCSVvCSV(p

N

1i
lLlcpC 



                                      
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2N
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
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


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2K
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1
maxH
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kH
1HCSV 
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




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


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













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                                                                               (14) 

     In Eqn. 14, pC  is the penalized total cost 

function of WDS; p  is the penalty parameter 

with a large enough value to ensure that any 
infeasible solution will have a higher total cost 

than any feasible solution; vCSV  is a measure of 

the flow velocity constraint violation of the trial 

solution and HCSV  is a measure of the nodal 

pressure head constraint violation of the trial 
solution. It should be noted that in calculating 
the CSV, the summation ranges over those 
nodes and pipes at which a violation of 
constraints (11) and (12) occurs, that is the terms 
in parentheses are positive. Other hydraulic 
constraints are satisfied among using simulation 

program (EPANET). In other words, EPANET 
satisfies the continuity and energy conservation 
equations while calculating the flow rate in each 
pipe and the pressure head at each node. 
Furthermore, here, the flow velocity and the 
nodal pressure head constraint violations have 
the same penalty parameter value due to the 
fact that these constrains are normalized. 

 

4. Methodology 
 
     The WDS design optimization problem is 
solved here by proposing the simulation-
optimization approach. In the proposed 
approach, the EPANET software is used as a 
simulator and ACOA is used as an optimization 
method with the goal of finding pipe diameters. 
Here, the optimization model is coded in 
MATLAB and linked with EPANET.  
     In the proposed approach, at first, a proper 
graph should be defined to formulate the WDS 
design as an optimization problem using 
ACOA. This graph consists of a set of nodes 
referred to as decision points and edges referred 
to as options available at each decision points. 
Here the decision variables of the problem are 
the pipe diameters of the WDS which are 
determined in ACOA1 and ACOA2 methods 
using AS and MMAS, respectively. 
     In the proposed methods, the pipes of WDS 
are considered as decision points. The options 
available at each decision point are, therefore, 
defined by a finite number of commercially 
available pipe diameters.  Figure 1 represents 
the problem graph defined for ACOA1 or 
ACOA2, where vertical lines show the decision 
points, dashed small lines show the components 
of commercially available pipe diameters  
(j=1,…..J)  at each decision point  i (i=1,…..I), 
and finally the bold small lines show a trial 
solution on the graph constructed by an 
arbitrary ant.  
     By determining the pipe diameters of WDS, 
the ACOA-based models are interfaced with 
EPANET for the hydraulic analysis. For both 
methods, Eqn. 14 is used to calculate the total 
cost of the trial solutions generated. Finally, 
optimal pipe diameters are determined using 
proposed methods. Figures 2 and 3 illustrate the 
process of solution constructions in ACOA1 and 
ACOA2 formulations, respectively. 
     It is worth noting that the different hydraulic 
softwares have been developed for pipe 
network analysis such as EPANET, Water CAD, 
Water GEMS, MIKEURBAN and so on. Each of 
these software’s has its advantages and 
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limitations. Due to more advantages of 
EPANET software, this software is used in this 
paper. In other words, EPANET is freeware, 
user friendly and free source software that 
everybody can simply use it. Due to these noted 
facts and its accuracy and availability, EPANET 
is so popular in the field of water distribution 
analysis and therefore it is used here.  EPANET 
water distribution system simulator is the most 
commercial hydraulic model which has been 
developed by the US Environment Protection 
Agency. The EPANET performs extended-
period simulation of hydraulic and water 
quality behaviour within pressurized pipe 
networks. This well-documented and tested 
public domain simulator provides a convenient 
platform for implementing the simulation-
optimization approach (Rossman 2000). Here, 
the EPANET software is linked to MATLAB 
with the help of EPANET toolkit. EPANET 
toolkit is a Dynamic Link Library (DLL) of 
functions and an extension of EPANET 
simulation package that allows developers to 
customize EPANET software accordingly 
(Rossman  1999).  If other pipe network analysis 
software can be linked to MATLAB, these 
software can be easily considered as simulators. 
 

5. Model Applications and Results 
 
     In order to show the ability and performance 
of the proposed methods for the optimal design 
of WDS, three benchmark examples are applied 
here with different scales. Therefore, small (test 
example I), medium (test example II) and large 
scale (text example III) test examples are presen-  

ted and solved here using proposed methods. 
Furthermore, in the third test example, the WDS 
is fed by a pump; however, in the first and 
second test examples the WDS is fed by gravity. 
The first test example (I) as shown in Fig. 4 is 
the two-loop WDS (Alperovits and Shamir 
1977). This WDS network has 7 nodes, 8 pipes 
and two loops in which it is fed by gravity from 
a reservoir with a 689 (ft) fixed head. All WDS 
network pipes lengths are 3281 (ft) and their 
Hazen-Williams coefficient are 130. The 
minimum nodal pressure head is 98.4 (ft). 
Fourteen commercial candidate pipe diameters 
for each pipe with corresponding cost values are 
listed in Table 1.  Details of the network 
including nodal ground elevations and water 
demand are given in Table 2. 
     The second test example (II) is the New York 
City Water Supply Tunnels (NYCWST) 
problem.  Figure 5 shows the network of this 
problem in which it consists of 20 nodes 
connected via 21 pipes (Schaake and Lai 1969). 
Table 3 represents the pipe lengths, existing 
diameters, minimum nodal required pressure 
head and water demands of this network. The 
original form of this WDS has pressure 
constraint violations at nodes 16, 17, 18, 19, and 
20.  Therefore, this  WDS  is  to   be modified by 
adding duplicate pipes in parallel with the 
existing pipes to meet the minimum nodal 
pressure head requirements. For each duplicate 
pipe, there  are 15 different diameter sizes  and  
the  option  of  no  pipe  as shown in Table 1   
with  corresponding  cost  values.   This WDS is 
fed by gravity from a reservoir with a 300 (ft) 
fixed head. All pipes Hazen-Williams constant 
are equal to 100. 
 

 
Figure 1. Problem graph defined for ACOA1 or ACOA2. 
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Figure 2. Process of solution constructions in ACOA1. 
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Figure 3.  Process of solution constructions in ACOA2. 
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Table 1. Candidate pipe diameters and corresponding cost of test examples. 

Test 
example 

Candidate pipe diameters Cost of candidate pipe diameters 

I 
{1,2,3,4,6,8,10,12,14,16,18,20,22,2
4} (in) 

{2,5,8,11,16,23,32,50,60,90,130, 170, 300, 550} 
(units/meter) 

II 
{36,48,60,72,84,96,108,120,132,14
4,156, 168, 180, 192, 204} (in) 

{93.5,134.0,176.0,221.0,267.0,316.0,365.0,417.0, 
469.0,522.0,577.0,632.0,689.0,746.0,804.0}(dollar/
foot) 

III 
{80,100,125,150,200,250,300,350} 
(mm) 

{37890,38933,40563,42554,47624,54125,62109,715
24} (won/meter) 

 

Table 2. Nodal data for test example I. 

Nodal data 

Ground elevation (m)  Demand (m3/h) Node 

210 Reservoir 1 

150 100 2 

160 100 3 

155 120 4 

150 270 5 

165 330 6 

160 200 7 

 
 
 

 

 

 

 

 

 

 

   

Figure 4.  Network of two-loop WDS (test example I). 
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Table 3.  Pipe and nodal data for test example II. 
Nodal data Pipe data 

Min 
Head 

(ft) 

Demand 
(Cft/s) 

Node 
Existing 

Diameter 
(in) 

Length 
(ft) 

pipe 

300 Reservoir 1 180 11600 1 

255 92.4 2 180 19800 2 

255 92.4 3 180 7300 3 

255 88.2 4 180 8300 4 

255 88.2 5 180 8600 5 

255 88.2 6 180 19100 6 

255 88.2 7 132 9600 7 

255 88.2 8 132 12500 8 

255 170 9 180 9600 9 

255 1 10 204 11200 10 

255 170 11 204 14500 11 

255 117.1 12 204 12200 12 

255 117.1 13 204 24100 13 

255 92.4 14 204 21100 14 

255 92.4 15 204 15500 15 

260 170 16 72 26400 16 

272.8 57.5 17 72 31200 17 

255 117.1 18 60 24000 18 

255 117.1 19 60 14400 19 

255 170 20 60 38400 20 

   72 26400 21 

  

51 

52 
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Table 4. Pipe and nodal data for test example III. 

Nodal data Pipe data 

Ground elevation (m)  Demand (cmd) Node Length (m) Pipe 

71 Reservoir 1 165 1 

56.4 153 2 124 2 

53.8 70.5 3 118 3 

54.9 58.5 4 81 4 

56 75 5 134 5 

57 67.5 6 135 6 

53.9 63 7 202 7 

54.5 48 8 135 8 

57.9 42 9 170 9 

62.1 30 10 113 10 

62.8 42 11 335 11 

58.6 37.5 12 115 12 

59.3 37.5 13 345 13 

59.8 63 14 114 14 

59.2 445.5 15 103 15 

53.6 108 16 261 16 

54.8 79.5 17 72 17 

55.1 55.5 18 373 18 

54.2 118.5 19 98 19 

54.5 124.5 20 110 20 

62.9 31.5 21 98 21 

61.8 799.5 22 246 22 

   174 23 

   102 24 

   92 25 

   100 26 

   130 27 

   90 28 

   185 29 

   90 30 
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Table 5. Values of ACOA1 and ACOA2 parameters for all test examples. 

Method Iteration Ant       
bestp  

ACOA1  1000 100 2 0.2 0.95 - 

ACOA2 1000 100 2 0.2 0.95 0.2 

 
Table 6. Maximum, minimum and average solution cost values over 10 runs. 

Test 
example 

Method 

Cost value 

Scaled 
Standard 
deviation 

No. of 
runs 
with 
final 

feasible 
solution 

CPU 
time 
for 

each 
run (s) 

Minimum Maximum Average 

I 
ACOA1  419000 (units) 487000 (units) 433200 (units) 0.0480 10 128 
ACOA2 419000 (units) 441000 (units) 421900 (units) 0.0163 10 137 

II 
ACOA1  71.27 (M$) 105.98 (M$) 83.99 (M$) 0.1188 10 307 
ACOA2 38.64 (M$) 53.63 (M$) 45.87 (M$) 0.1180 10 327 

III 
ACOA1  175783163 (Won) 176018101 (Won) 175856569 (Won) 0.0006 10 367 

ACOA2 175783163 (Won) 175783163 (Won) 175783163 (Won) 0 10 392 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.   Network of New York WDS (test example II). 
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     Figure 6 shows the third test example (III) of 
GoYang network which is first constructed in 
South Korea (Kim et al. 1994). This WDS 
network consists of 22 nodes, 30 pipes, 9 loops 
and is fed by a pump (4.52 kW) from a reservoir 
with a 71-m fixed head. Details of the WDS 
including pipe lengths, and nodal ground 
elevations and water demands are given in 
Table 4. The Hazen-Williams constant is equal 
to 100 for all pipes. The minimum nodal 
pressure head is 15 meter above ground level. 
Eight commercial candidate diameters for each 
pipe with corresponding cost values are listed in 
Table 1. 
     A set of preliminary runs is first conducted to 
find the proper values of AS and MMAS 
parameters referred to ACOA1 and ACOA2 
respectively, as shown in Table 5 for all three 
test examples. For both methods of all test 
examples, a colony size of 100 with maximum 
number of 1000 iterations amounting to 
maximum number of 100,000 function 
evaluations is used.  
     Table 6 shows the results of 10 runs carried 

out using different randomly generated initial 

guess for all test examples along with the scaled 

standard deviation, the number of final feasible 

solutions and CPU time for each run. It is 

clearly seen from Table 6 that all measures of 

the quality of the final solutions such as the 

minimum, maximum and average cost and the 

scaled standard deviation are improved when 

using ACOA2 compared to ACOA1. It should 

be noted that, due to the fact that premature 

convergence does not occur in ACOA2 by 

providing dynamically evolving bounds on the 

pheromone trail intensities, the ACOA2 has 

been able to outperform the ACOA1. In other 

words, the results show the superiority of the 

MMAS, in conjunction with the ACOA2, over 

than AS, in conjunction with the ACOA1, in 

which the trade-off between the two 

contradictory search characteristic of 

exploration and exploitation is managed better 

using MMAS. In order to show the efficiency of 

proposed methods, these results are compared 

with those obtained with other existing 

methods. Comparison of the results shows that 

the best results are obtained using ACOA2 with 

no extra computational time cost due to the 

unique feature of ACOA. Therefore, the 

proposed method is useful to solve NP-hard 

combinatorial discrete optimization problems 

such as optimal design of WDS. 

 
 
Figure 6.  Network of GoYang WDS (test example III). 
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     Nodal pressure head is one of the most 
important constraints of WDS design 
optimization problem. Here, the maximum and 
minimum pressure head of all test examples 
obtained with ACOA2 are presented to show 
the efficiency of proposed methods. For text 
example I, the maximum pressure head 
occurred at node 2 is 174.72 ft and the minimum 
pressure head occurred at node 6 is 99.87 ft. For 
text example II, the maximum pressure head 
occurred at node 2 is 294.207 ft and the 
minimum pressure head occurred at node 19 is 
255.054 ft. In addition, in case study II, the 
pressure head at node 16 and 17 are 260.077 and 
272.868, respectively. Finally, for text example 
III, the maximum pressure head occurred at 
node 3 is 27.94 meter and the minimum 
pressure head occurred at node 15 is 15.1 meter. 
It is worth noting that the obtained pressure 
heads are satisfied nodal pressure head for all 
test examples.    
     Different methods have been proposed and 
used to solve text examples I,II and III. At first, 
the best results obtained with the proposed 
ACOA2 for test example I are compared with 
some other available results. The comparison of 
the results shows that the optimal solution of 
419000 units is obtained at the expense of 4700 
function evaluations using ACOA2. It is worth 
noting that the ACOA2 has been able to 
outperform the methods of Abebe and 
Solomatine (1999) and Savic and Walters (1997). 
Furthermore, this compares favourably with 
about 250000 function evaluations required by 
the Savic and Walters (1997) using GA1, about 
53000 function evaluations required by Cuncha 
and Sousa (1999) using SA, about 100000 
function evaluations required by of Prasad and 
Park (2004) using GA, about 11155 function 
evaluations required by of Eusuff and Lansey 
(2003) using SFLA, about 5100 function 
evaluations required by of Afshar (2007) using 
ACO and about 7467 function evaluations 
required by Wu et al. (2001) using Fast Messy 
Genetic Algorithm (FMGA) to get the least cost 
solution of 419000 units. The comparison of 
these results indicates that the ACOA2 has been 
able to outperform other methods with no extra 
computational time cost due to the unique 
presented feature of this proposed method. 
     In addition, the results of test example II 
obtained with the proposed method are 
compared here with some other available 
results using different value for constant 

coefficient of Hazen-Williams equation )( . The 

ACOA2 is able to get the optimal solution of 
38.64 (M$) in 9900 function evaluations

)669.10(  . This can be compared 

approvingly with about 200000 function 
evaluations required by Murphy et al. (1993) to 
find the solution of 38.80 (M$) using GA

)669.10(  , about 1000000 function 

evaluations required by Savic and Walters 
(1997) to find the solutions of 40.42 (M$) and 
37.13 (M$) using GA2 and GA1, respectively,

)5088.10(  , about 46016 function evalua-

tions required by Lippai et al. (1999) to find the 

solution of 38.13 (M$) using TS )669.10(  , 

about 1000000 function evaluations required by 
Cunha and Sousa (1999) to find the solutions of 

37.13 (M$) using SA )5088.10(  , about 

37186 function evaluations required by Wu et al. 
(2001) to find the solutions of 37.83 (M$) and 
37.13 (M$) using two formulations of Fast 
Messy Genetic Algorithm named FMGA1 and 

FMGA2, respectively, )5088.10(  , about 

31267 function evaluations required by Eusuff 
and Lansey (2003) to find the solutions of 38.13 

(M$) using SFLA )669.10(  , about 6000 

function evaluations required by Geem (2006) to 
find the solutions of 36.66 (M$) using HS 

)5088.10(  , about 7760 function 

evaluations required by Afshar (2009) to find 
the solutions of 38.64 (M$) using compact GA 

(cGA) )669.10(  , about 18200 function 

evaluations required by Afshar (2007) to find 
the solutions of 38.64 (M$) using ACO 

)669.10(  , about 13928 function 

evaluations required by Maier et al. (2003) to 
find the least-cost solution of 38.64 (M$) using 

ACOA )669.10(   and finally about 22635 

function evaluations required by Zecchin et al. 
(2006) to find the least-cost solution of 38.64 

(M$) using MMAS )67.10(  .  It is worth 

noting that the solutions of Lippai et al. (1999) 
and Eusuff and Lansey (2003) are infeasible. In 
other words, the minimum required pressure 
head is not satisfied at nodes 17 and 19 when 
obtained diameters are simulated in EPANET 
software. In addition, a smaller value for 
constant coefficient of Hazen-Williams equation 

)(  leads to smaller head losses and therefore 

smaller pipe diameters in which these solutions 
are infeasible when they are simulated in 
EPANET software. Comparison of the results 
shows that ACOA2 has been able to outperform 
the other used methods with no extra 
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computational time cost due to the unique 
feature of this method which is presented 
before. In addition, the near optimal solution of 
Maier et al. (2003), Zecchin et al. (2006) and 
Afshar (2007), 38.64 (M$), is obtained here using 
proposed ACOA2 with smaller computational 
time. 
     Finally, the results of test example III 
obtained with the proposed method are 
compared with some other available results. 
The ACOA2 is able to find the optimal solution 
of 175783163 (Won) in just 8600 function 
evaluations. This compares favourably with 
those obtained with other existing methods. 
Kim et al. (1994) solved the problem using a 
projected Lagrangian algorithm supported by 
GAMS/MINOS and then converted the 
continuous diameters to discrete commercial 
diameters. They obtained 179142700 (Won) 
while the original cost was 179428600 (Won). 
Furthermore,  the present result can be 
compared with about 10000 function 
evaluations required by Geem (2006) to get the 
solutions of 177135800 (Won) using HS. It is 
worth noting that the ACOA2 has been able to 
outperform all existing methods with no extra 
computational time cost due to the unique 
presented feature of this proposed method. 
     Superior performance of the ACOA2 
compared to ACOA1 is already attributed to the 
provision of dynamically evolving bounds on 
the pheromone trail intensities and 
methodology of calculating the change of 

pheromone ij . This fact reflected in the 

typical convergence curves shown in Figs. 7, 8 
and 9  for test example I, II and III, respectively. 
It is seen that the population of ACOA2 has 
solution costs way below that of ACOA1 due to 
the fact discussed before. 
 

6. Conclusion 
 
In this paper, the Ant Colony Optimization 
Algorithm (ACOA) was applied to solve Water 
Distribution System (WDS) design optimization 
problem using two different methods named 
ACOA1  and  ACOA2.   Pipe  diameters  of  the  
WDS network were determined in both ACOA1 
and ACOA2 methods using Ant System (AS) 
and Max-Min Ant System (MMAS), 
respectively. For the hydraulic analysis, here, 
the ACOA-based models were interfaced with 
EPANET as simulator. Three benchmark test 
examples were solved using proposed methods 
and the results were presented and compared. 

While two proposed methods showed good 
performance in solving the problems under 
consideration, the ACOA2 was observed to 
produce better results for WDS design 
optimization problem and to be less sensitive to 
the randomly generated initial guess required to 
start the solution process represented by the 
scaled standard deviation of the solutions 
produced in ten different runs. In other words, 
the results showed the superiority of the 
ACOA2 over other the ACOA1 in which the 
trade-off between the two contradictory search 
characteristic of exploration and exploitation 
was managed better using MMAS which is in 
conjunction with the ACOA2. It was also shown 
that the ACOA2 consistently gave better quality 
solutions than existing traditional and heuristic 
search methods with less computational effort 
due to the unique presented feature of this 
proposed formulation. 
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