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Abstract: In this paper, the Ant Colony Optimization Algorithm (ACOA) is applied to solve Water
Distribution System design optimization problem proposing two different methods. Considering pipe
diameters as decision variables of the problem, Ant System and Max-Min Ant System, referred to
ACOA1 and ACOA?2 respectively, are applied to determine pipe diameters. In proposed methods, the
ant-based models are interfaced with EPANET as simulator for the hydraulic analysis. Three
benchmark test examples are solved with proposed methods and the results are presented and
compared with those obtained with other existing methods. The results show the capability of the
proposed methods to optimally solve the design optimization problem in which best results are
obtained with ACOA2 in comparison with other available results. Furthermore, the results show the
superiority of the proposed ACOA2 over than the ACOA1 in which the trade-off between the two
contradictory search characteristic of exploration and exploitation is managed better by using Max-
Min Ant System.

Keywords: Water distribution system; Ant colony optimization algorithm; EPANET; Optimal design;
Pipe diameter.
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1. Introduction

A Water Distribution System (WDS) is a man-
made system that is used to convey water from
the source to the user. The main aim of every
WDS is to deliver water to the user when it is
necessary, in the correct quantity and in
accordance with relevant quality standards.
WDSs are therefore considered to be essential
infrastructure in every modern community. As
WDSs continue to get aged and cities continue
to grow, the design of new WDSs and the
rehabilitation or upgrading of existing WDSs
will continue to be a central problem.
Construction of WDS is very expensive due to
cost of WDS components. A quite small change
in the WDS components, therefore, leads to an
enormous saving. The general WDS design
optimization problem, therefore, involves
minimizing the system cost subject to hydraulic
constraints such as meeting minimum allowable
pressure and/or maximum allowable velocity
constraints under design demand levels.

A significant amount of research has focused
on the optimal design, upgrade or rehabilitation
of WDSs. In general, the available methods can
be classified as 1) Linear programming (LP), 2)
Nonlinear programming (NLP), 3) Dynamic
programming (DP) and 4) Evolutionary
Algorithm (EA) such as Genetic Algorithm
(GA), Simulated Annealing (SA), Shuffled Frog
Leaping Algorithm (SFLA), Tabu Search (TS),
Ant Colony Optimization Algorithm (ACOA),
Harmony Search (HS), Particle Swarm
Optimization (PSO), Cross Entropy (CE),
Honey-Bee Mating Optimization (HBMO) and
Differential Evolution (DE) in which they were
usually used for optimal design of WDS.
Haghighi et al. (2011) listed different methods
applied to design of WDS such as enumeration
(Gessler 1985; LP (Bai et al. 2007, NLP Xu and
Goulter 1999; DP Schaake and Lai 1969; GA Jian
and Yanbing 2010; Bi et al. 2015; SA Costa et al.
2000; SFLA Baoyu et al. 2011; TS Lippai et al.
1999; ACOA Afshar 2007; HS Yang et al. 2012);
PSO Babu and Vijayalakshmi 2013; HBMO
Mohan and Babu 2010; CE Shibua and Janga
Reddya 2012; DE Dong et al. 2012 and other EA
and hybrid methods Zhou et al. 2016;
Sheikholeslami et al. 2016) in which some of
them are presented in this paper. Each of these
optimization methods has its own limitations.
For example, calculating derivatives or
requirement of an initial policy to start off the
solution process are some important limitations
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of the conventional mathematical optimization
methods (Mays and Tung 1992). In addition,
DP is known to suffer from the “curse of
dimensionally” when large scale problems are
attempted to solve.

Nowadays, EAs, therefore, have originally
been proposed to overcome the limitations of
the conventional optimization methods.
However, some limitations such as the element
of randomness used in generation of initial
solutions and generating alternative solutions
inherent in most of EAs may reduce their
efficiency. In many large scale cases, generally,
EAs require additional amount of computer
memory which is based on the fact that they
need more objective function evaluations than
conventional optimization methods. In addition,
some EAs such as ACOA have discrete nature
and some others have continuous nature.
Therefore, ACOA is suitable algorithm for
solving discrete problem such as WDS design
optimization problem considered here.

ACOA is one of the EAs that has specific
characteristic for solving NP-hard combinatorial
discrete optimization problems with reasonable
computational time cost. For WDS design
optimization problem, the pipe diameters are
discrete variables in design process and,
therefore continuing optimization methods
cannot determine them properly. The specific
characteristic of ACOA is that in ACOA each
artificial ant incrementally builds a solution by
adding  opportunely  defined  solution
components to a partial solution under
construction. This specific unique feature,
namely  incremental  solution  building
capability, is very useful for solving
optimization problems of sequential nature.
This algorithm has been inspired in the real ant
colony behaviour for finding the shortest path
from food source to the nest. Starting with Ant
System (AS) (Colorni et al. 1991), a number of
algorithmic  approaches based on this
characteristic of real ant was developed and
applied with considerable success to a variety of
combinatorial optimization problems from
academic as well as from real world
applications. Many other algorithms have been
proposed to improve the performance of AS,
such as Ant Colony System (ACS), Elitist Ant
System (AS.iite), Elitist-Rank Ant System (ASrank)
and Max-Min Ant System (MMAS).
Advancements have been made on the AS to
improve the operation of the decision policy
and the manner in which the policy
incorporates new information to help explore
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the search space of the problem. These
developments have primarily been aimed at
managing the trade-off between the two
contradictory search characteristic of
exploration and exploitation. Ali et al. 2009;
Ostfeld 2011; Stutzle et al. 2011; and Chandar
Mohan and Baskaran 2012) reviewed an amount
of research work in the field of using ACOA to
solve different optimization problems in the last
20 years. A review of the literature reveals that
studies on the application of ACOA to different
optimization  problems has not been
satisfactorily fruitful and is worth further
investigation. Numerous papers on the ACOA
application  for optimization of water
engineering problems such as sewer network
design (Moeini and Afshar 2013a), WDS design
(Zeccchin et al. 2007) and reservoir operation
(Moeini and Afshar, 2013b) have been
published in recent years.

In this paper, one of the EAs with discrete
nature means ACOA is used to effectively solve
one of the most important discrete problem
means optimal design of WDS by proposing
two different methods. In the proposed
methods, the ACOA is used to determine pipe
diameters as the discrete decision variables of
the problem. AS and MMAS referred to ACOA1
and ACOA2 respectively, are applied to
determine pipe diameters. MMAS is applied
here to overcome the premature convergence
problem to suboptimal solution which is well
trained in AS by managing the trade-off
between the two inconsistent search
characteristic of exploration and exploitation. By
determining the pipe diameters of WDS, a
hydraulic analysis is required. For the hydraulic
analysis, in this paper, the ACOA-based models
are interfaced with EPANET as simulator. Three
benchmark test examples are solved here with
proposed methods and the results are presented
and compared with those obtained with other
existing methods. It is worth noting that many
different EAs have been used to solve this
problem. However, based on the discrete
nature of design of WDS, here, ACOA is used to
solve this problem in order to overcome the
limitations of pervious works. In some
researches, the hydraulic analysis is based on
the simplified assumptions such as considering
inaccurate value for hydraulic value coefficients
equations. However, EPANET simulator is used
here for the hydraulic analysis. In addition, in
some researches the continues nature of EAs are
used to solve discrete nature problem of WDS
design and in some other researches the
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equations of simulation model are solved using
iterative numerical or traditional methods and
therefore some of the WDS components such as
pump cannot be easily modelled. Here, this fact
is regarded considering third test example in
which the WDS is fed by pump. The efficiency
of these innovations is fully presented and
highlighted in section “Model application and
results” by comparison of the results obtained
with proposed methods with other available
results.

2. Ant Colony Optimization Algorithm
(ACOA).

The ACOA is based on the natural foraging
behaviour of a colony of real ants to find the
shortest path between food source and their
nest. When ants are travelling, they deposit a
substance called pheromone which is more
attractive for other ants to follow them. Ants can
smell pheromone and they incline to choose
probability paths marked by strong pheromone
concentrations when choosing their path. It has
been shown experimentally that this pheromone
trail following behaviour can give rise to the
emergence of the shortest paths once employed
by a colony of ants. Based on the real ant
behaviour, the ACOA was developed (Colorni
et al., 1991). The original and simplest version of
ACOA is AS. Later, many other algorithms such
as MMAS have been developed to overcome the
limitations and improve the performance of the
AS. Here, AS and MMAS are used to solve WDS
design optimization problem proposing two
different methods.

Definition of proper graph is the first step of
process for solving an arbitrary optimization
problem using ACOA. A graph G=(DP,OP,CO),
therefore, can be defined, where DP=
{dpl,dpz,....dp|} is the set of decision points,

oP= {opij} is the set of options j ( j=1, 2,...,]) at
each of the decision point i (i=1,2,...,I) and
finally CO= {coi j} is the set of costs associated
with options OP= {Opij}. (Moeini and Afshar,
2009).

2.1. Ant System (AS)

The original and simplest version of ACOA is
AS. The basic steps of solving optimization
problem using AS can be defined as follows
(Colorni et al. 1991):
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1. At the start of the process, some proper
values are initialized to the amount of
pheromone trail on all options opjj.

2. A colony with the size of M is selected
and at one time, each of them is placed
randomly on the decision points of the
problem.

3. By using a transition rule for selection
proper option at each decision point i,
(Eq. 1), each arbitrary ant, m, starts its
movement from one decision point to
the next and the solutions are
incrementally constructed. This
procedure is repeated until all decision
points of the problem are covered.

[ij (1 * [l
J

pijj(m,t) =
(V1O ns 1B
2 [rij (01 [nij]
1
In Eqn. 1, pjj(m,t) is the probability that the
ant m selects option j of the ith decision point,
opjj, at iteration f; 7 j(t) is the concentration of
pheromone on option 0p;; at iteration t; njjis

the heuristic value of option 0p;;, and o and

are pheromone and heuristic sensitivity para-
meters, respectively.

4. The cost of the solution, f(qo)m , is calculated
when ant m creates a complete solution,

(@7

5. When steps 3 and 4 are repeated for all ants,
M, at each iteration f, the pheromone is
updated using the general form of Eq. 2 for
the pheromone updating rule.

Tjj(t+1) = prjj(t) + Atij 2

In Eqn. 2, 7jj(t+1) is the amount of

pheromone trail on option opjj at iteration #+1;
Tjj(t) is the concentration of pheromone on

option opjj at iteration £ p(0<p<l) is the

pheromone evaporation coefficient and = Ag;;

J
represents the change in  pheromone
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concentration associated with option opjj which

is defined as Eqn. 3:

M
Atjj= X Atirjn =

m=1

M

> if option jischosen
m=1f (¢)™ 3)
by thebest ant
0 otherwise

In Eqn. 3, f ((p)m is the cost of the solution

produced by the ant m and R is pheromone
reward factor.

6. Steps 2 to 5 are continued until convergence
criterion is met.

2.2. Max-Min Ant System (MMAS)
The most important issue that can be

experienced by all ACOAs is premature
convergence to suboptimal solutions. To
overcome this problem, the MMAS was

developed by Stutzle and Hoos (2000). The
basis of MMAS is the provision of dynamically
evolving bounds on the pheromone trail

intensities (Tij(t) ) which are defined as follows

(Egns. 4 and 5):
R

_ 4
f ((P)best @)

1
Tmax (1) = E

1/I)

() = Tmax (1) - (Pbest)

©)
Javg- (Pbest !

™Tm

In Egs. 4 and 5 tpjn(t) and tmax(t)
represent the lower and upper limit on the
pheromone trail strength at iteration ¢,

best

respectively; f (¢) is the cost of the solution

produced by the best ant at each iteration, ppest

is the probability that the best solution is
constructed again; ., represents the average
number of options available at decision points
of the problem; and [ is the number of decision
points.

In MMAS, only the cost of iteration-best ant
is used for calculating the change of pheromone
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Atjj = ArﬁeSt =
———— if option jischosen (6)
f ((P) best
by thebest ant
0 otherwise

Arij which is defined as Eqn. 6.

In Eqn. 6, f ((p)beSt is the cost of the solution

produced by the best ant. It is worth noting that
application of MMAS to some benchmark
optimization problems has shown that MMAS
overcomes the stagnation problem, hence
improves the performance of the ACOAs
(Afshar and Moeini 2008).

3. Water Distribution System Design
Optimization Problem

WDSs consist of interconnected elements such
as pipes, tanks, pumps and other components.
Such systems are used to transfer treated water
from one or more sources to users spread over a
wide area. Designing an effective WDS with
minimum cost is a quite complex task which can
be achieved by formulating and solving it as an
optimization problem.

Optimal WDS design requires optimal
determination of WDS components such as pipe
diameters, tank and pumping station positions
and heights leading to a complex optimization
problem with a large number of hydraulic
constraints. Having a suitable and cost-effective
WDS is normally interpreted as finding the
solution for this problem that minimizes total
cost without violating the constraints.

The standard description form of a WDS
design optimization problem with a pre-
specified layout can be presented as follows.
The objective function of this problem can be
formulated as Eqn. 7 in which it is minimizing
the total construction cost of WDS.

N
Minimize Ct = > c|IL|
=1

)

In Eqn. 7, Ct is the total cost of the pipes in
the WDS; L, is length of the Ith pipe; C,is per
unit cost of the /th pipe and N is the total

number of existing pipes. The cost function is to
be minimized under the following constraints.
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Continuity equation: A continuity constraint
should be satisfied for each node as follows:

2 q-
lein(k)

2.q1 = Qk
leout(k)

In Eqn. 8, Q« is the required demand at
consumption node k; (), is the flow rate in pipe /;
in(k) is the list of the pipes incoming to node k;
out(k) is the list of the pipes out coming from

node k; and K is the total number of exiting
nodes in the WDS.

Energy equation: The energy constraint for
each loop in the network of WDS can be written
as follows:

>J1=0
lep

©)

In Eqn. 9, J| is the head loss in the Ith pipe
and P is the total number of loops in the WDS.

Several equations can be used to evaluate the
hydraulic parameters of WDS such as head
losses in the pipes. Here, Hazen-Williams
equation is used to find hydraulic parameters.
Therefore the head losses can be calculated as
follows:

al
= AL gy
J| MLI(ChJ d|

In Eqn. 10, Jj is the head loss in the Ith pipe;
d| is the diameter of pipe [; ch| is the Hazen-

Williams coefficient of pipe I; (], is the flow rate
in pipe I and p,y,A are constant coefficients of
Hazen-Williams equation.

Nodal pressure head: The maximum and
minimum values should be defined for the
nodal pressure head of WDS as Eq. 11 in which
the nodal pressure head of WDS should be
within this range.

Hmin < Hk <Hmax (11)

In Eqn. 11, Hyg is the pressure head at node
K; Hmaxis the maximum required pressure

head; and Hmin is the minimum required

pressure head.

Flow velocity: The maximum and minimum
values should be defined for flow velocity of
WDS pipes as Eq. 12 in which the flow velocity
of WDS pipes should be within this range.
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Vmin <M < Vmax (12)

In Eqn. 12, V] is the flow velocity in the /th
pipe; Vmax is the maximum flow velocity; and
Vmin is the minimum flow velocity.

Commercial pipe diameters: A set of
commercially available WDS pipe diameters
should be defined for WDS pipe diameters as
Egn. 13 in which the WDS pipe diameters
should be selected from it.

djeD (13)

In Eqn. 13, d| is the diameter of pipe [ and D

denotes the set of commercially available pipe
diameters.

It should be noted that the penalty method is
often used to effectively guide solutions of
optimization problems from one infeasible
solution area to a feasible solution one. Here,
the penalty method is applied for formulation of
the WDS as an unconstrained optimization
problem. In the used method, therefore, nodal
pressure head and flow velocity constraints are
added in the original objective function.
Therefore, a new problem can be defined by the
minimization of the penalized objective function
of Eq. 14 subject to the constraints defined in
Eqgns. (8) to (13):

N
Cp= 2ol + ap(CSW, +CSWH)

i=1

2
N N

csvvzz(l_ Vi ] +Z(L_
=1\ Vmin =1\ Vmax

JZ
2
CSVy = §(1_ Hk ] S (L_
k=1 Hmin k=1\ Hmax

In Eqn. 14, Cp is the penalized total cost

JZ
(14)

function of WDS; o is the penalty parameter

with a large enough value to ensure that any
infeasible solution will have a higher total cost
than any feasible solution; CSVy, is a measure of

the flow velocity constraint violation of the trial
solution and CSWH is a measure of the nodal

pressure head constraint violation of the trial
solution. It should be noted that in calculating
the CSV, the summation ranges over those
nodes and pipes at which a violation of
constraints (11) and (12) occurs, that is the terms
in parentheses are positive. Other hydraulic
constraints are satisfied among using simulation
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program (EPANET). In other words, EPANET
satisfies the continuity and energy conservation
equations while calculating the flow rate in each
pipe and the pressure head at each node.
Furthermore, here, the flow velocity and the
nodal pressure head constraint violations have
the same penalty parameter value due to the
fact that these constrains are normalized.

4. Methodology

The WDS design optimization problem is
solved here by proposing the simulation-
optimization approach. In the proposed
approach, the EPANET software is used as a
simulator and ACOA is used as an optimization
method with the goal of finding pipe diameters.
Here, the optimization model is coded in
MATLAB and linked with EPANET.

In the proposed approach, at first, a proper
graph should be defined to formulate the WDS
design as an optimization problem using
ACOA. This graph consists of a set of nodes
referred to as decision points and edges referred
to as options available at each decision points.
Here the decision variables of the problem are
the pipe diameters of the WDS which are
determined in ACOA1 and ACOA2 methods
using AS and MMAS, respectively.

In the proposed methods, the pipes of WDS
are considered as decision points. The options
available at each decision point are, therefore,
defined by a finite number of commercially
available pipe diameters. Figure 1 represents
the problem graph defined for ACOA1l or
ACOA2, where vertical lines show the decision
points, dashed small lines show the components
of commercially available pipe diameters
(j=1,.....J) at each decision point i (i=I,.....I),
and finally the bold small lines show a trial
solution on the graph constructed by an
arbitrary ant.

By determining the pipe diameters of WDS,
the ACOA-based models are interfaced with
EPANET for the hydraulic analysis. For both
methods, Eqn. 14 is used to calculate the total
cost of the trial solutions generated. Finally,
optimal pipe diameters are determined using
proposed methods. Figures 2 and 3 illustrate the
process of solution constructions in ACOA1 and
ACOAZ2 formulations, respectively.

It is worth noting that the different hydraulic
softwares have been developed for pipe
network analysis such as EPANET, Water CAD,
Water GEMS, MIKEURBAN and so on. Each of
these software’s has its advantages and
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limitations. Due to more advantages of
EPANET software, this software is used in this
paper. In other words, EPANET is freeware,
user friendly and free source software that
everybody can simply use it. Due to these noted
facts and its accuracy and availability, EPANET
is so popular in the field of water distribution
analysis and therefore it is used here. EPANET
water distribution system simulator is the most
commercial hydraulic model which has been
developed by the US Environment Protection
Agency. The EPANET performs extended-
period simulation of hydraulic and water
quality behaviour within pressurized pipe
networks. This well-documented and tested
public domain simulator provides a convenient
platform for implementing the simulation-
optimization approach (Rossman 2000). Here,
the EPANET software is linked to MATLAB
with the help of EPANET toolkit. EPANET
toolkit is a Dynamic Link Library (DLL) of
functions and an extension of EPANET
simulation package that allows developers to
customize EPANET software accordingly
(Rossman 1999). If other pipe network analysis
software can be linked to MATLAB, these
software can be easily considered as simulators.

5. Model Applications and Results

In order to show the ability and performance
of the proposed methods for the optimal design
of WDS, three benchmark examples are applied
here with different scales. Therefore, small (test
example [), medium (test example II) and large
scale (text example III) test examples are presen-

2 -

i=1 —
dp:

dp..

dpi

ted and solved here using proposed methods.
Furthermore, in the third test example, the WDS
is fed by a pump; however, in the first and
second test examples the WDS is fed by gravity.
The first test example (I) as shown in Fig. 4 is
the two-loop WDS (Alperovits and Shamir
1977). This WDS network has 7 nodes, 8 pipes
and two loops in which it is fed by gravity from
a reservoir with a 689 (ft) fixed head. All WDS
network pipes lengths are 3281 (ft) and their
Hazen-Williams coefficient are 130. The
minimum nodal pressure head is 98.4 (ft).
Fourteen commercial candidate pipe diameters
for each pipe with corresponding cost values are
listed in Table 1. Details of the network
including nodal ground elevations and water
demand are given in Table 2.

The second test example (II) is the New York
City Water Supply Tunnels (NYCWST)
problem. Figure 5 shows the network of this
problem in which it consists of 20 nodes
connected via 21 pipes (Schaake and Lai 1969).
Table 3 represents the pipe lengths, existing
diameters, minimum nodal required pressure
head and water demands of this network. The
original form of this WDS has pressure
constraint violations at nodes 16, 17, 18, 19, and
20. Therefore, this WDS is to be modified by
adding duplicate pipes in parallel with the
existing pipes to meet the minimum nodal
pressure head requirements. For each duplicate
pipe, there are 15 different diameter sizes and
the option of no pipe as shown in Table 1
with corresponding cost values. This WDS is
fed by gravity from a reservoir with a 300 (ft)
fixed head. All pipes Hazen-Williams constant
are equal to 100.

dp..

Figure 1. Problem graph defined for ACOA1 or ACOA2.
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Define input data and model parameters (ant number (M), iteration number (7), &, 3, 0 )

v

Define the problem

v

Set pheromone=1 forall 0p, vVi=l.I&j=1..J

v

Set 1 =1

Set m=1
;I

v
Start from arbitrary node

]

Choose an option (pipe diameter) using Eg. (1) and move to the next option (pipe)

v

All decision points are

I+1=1

3 Y

| ¢ es

3 Simulation of WDS (EPANET Toolkit)
+

= v

Compute objective function and constraint violations (Eq. 14)

No

Yes

Update pheromone of (Egs. 2 & 3)

Figure 2. Process of solution constructions in ACOA1.
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Define input data and model parameters (ant number (M), iteration number (T), a’,ﬂ,p, Pres

v

Define the problem

v

Set pheromone=1 forall op, Vi=1,.I& j=1...,J

v
Set o/ H.
e

Compute 7. & T

max min

v
Set t =1
g
Start from arbitrary node

»]

(Egs. 4 & 5)

Choose an option (pipe diameter) using Eq. (1) and move to the next option (pipe)

v

All decision points are

-~
I

3 l Yes ~

] A

3 Simulation of WDS (EPANET Toolkit)

= 7

Compute objective function and constraint violations (Eq. 14)

v

m=M

No

Yes

Update pheromone of (Egs. 2 & 5)

No

Figure 3. Process of solution constructions in ACOA2.
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Table 1. Candidate pipe diameters and corresponding cost of test examples.

Test
example

Candidate pipe diameters

Cost of candidate pipe diameters

4} (in)

II

I (mm)

{1,2,3,4,6,8,10,12,14,16,18,20,22,2

{36,48,60,72,84,96,108,120,132,14
4,156, 168, 180, 192, 204} (in)

{80,100,125,150,200,250,300,350}

{2,5,8,11,16,23,32,50,60,90,130, 170, 300, 550}

(units/ meter)

{93.5,134.0,176.0,221.0,267.0,316.0,365.0,417.0,
469.0,522.0,577.0,632.0,689.0,746.0,804.0}(dollar/
foot)

{37890,38933,40563,42554,47624,54125,62109,715

24} (won/meter)

Table 2. Nodal data for test example I.

Nodal data
Node | Demand (m3/h) | Ground elevation (m)
1 Reservoir 210
2 100 150
3 100 160
4 120 155
5 270 150
6 330 165
7 200 160
(2] [1] ?
O 20 ;
(7] 3]
[4]
o, O
5 4
(8] (5]
7 (6] 6
O O

Figure 4. Network of two-loop WDS (test example I).
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Table 3. Pipe and nodal data for test example II.

Pipe data Nodal data
pre T pme T noge Demend g
(in) (ft)
1 11600 180 1 Reservoir 300
2 19800 180 2 924 255
3 7300 180 3 924 255
4 8300 180 4 88.2 255
5 8600 180 5 88.2 255
6 19100 180 6 88.2 255
7 9600 132 7 88.2 255
8 12500 132 8 88.2 255
9 9600 180 9 170 255
10 11200 204 10 1 255
11 14500 204 11 170 255
12 12200 204 12 117.1 255
13 24100 204 13 1171 255
14 21100 204 14 92.4 255
15 15500 204 15 924 255
16 26400 72 16 170 260
17 31200 72 17 57.5 272.8
18 24000 60 18 117.1 255
19 14400 60 19 117.1 255
20 38400 60 20 170 255
21 26400 72
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Table 4. Pipe and nodal data for test example IIL.

Pipe data Nodal data

Pipe Length (m) Node Demand (cmd) Ground elevation (m)

1 165 1 Reservoir 71
2 124 2 153 56.4
3 118 3 70.5 53.8
4 81 4 58.5 54.9
5 134 5 75 56
6 135 6 67.5 57
7 202 7 63 53.9
8 135 8 48 54.5
9 170 9 42 57.9
10 113 10 30 62.1
11 335 11 42 62.8
12 115 12 37.5 58.6
13 345 13 375 59.3
14 114 14 63 59.8
15 103 15 4455 59.2
16 261 16 108 53.6
17 72 17 79.5 54.8
18 373 18 55.5 55.1
19 98 19 118.5 54.2
20 110 20 124.5 54.5
21 98 21 315 62.9
22 246 22 799.5 61.8
23 174
24 102
25 92
26 100
27 130
28 90
29 185
30 90
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Table 5. Values of ACOA1 and ACOA?2 parameters for all test examples.

Method Iteration Ant (04 p P Ppest
ACOA1 1000 100 2 0.2 0.95 -
ACOA2 1000 100 2 0.2 0.95 0.2
Table 6. Maximum, minimum and average solution cost values over 10 runs.
Cost value l\rll(:.n(;f CPU
Scaled . time
Testl Method Standard pntl} for
éxampie Minimum Maximum Average deviation na each
feasible run (s)
solution
I ACOA1 419000 (units) 487000 (units) 433200 (units) 0.0480 10 128
ACOA2 419000 (units) 441000 (units) 421900 (units) 0.0163 10 137
I ACOA1 71.27 (M$) 105.98 (M$) 83.99 (M$) 0.1188 10 307
ACOA2 38.64 (M$) 53.63 (M$) 45.87 (M$) 0.1180 10 327
I ACOA1 175783163 (Won) 176018101 (Won) 175856569 (Won) 0.0006 10 367
ACOA2 175783163 (Won) 175783163 (Won) 175783163 (Won) 0 10 392

Figure 5. Network of New York WDS (test example II).
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Figure 6 shows the third test example (III) of
GoYang network which is first constructed in
South Korea (Kim et al. 1994). This WDS
network consists of 22 nodes, 30 pipes, 9 loops
and is fed by a pump (4.52 kW) from a reservoir
with a 71-m fixed head. Details of the WDS
including pipe lengths, and nodal ground
elevations and water demands are given in
Table 4. The Hazen-Williams constant is equal
to 100 for all pipes. The minimum nodal
pressure head is 15 meter above ground level.
Eight commercial candidate diameters for each
pipe with corresponding cost values are listed in
Table 1.

A set of preliminary runs is first conducted to
find the proper values of AS and MMAS
parameters referred to ACOA1l and ACOA2
respectively, as shown in Table 5 for all three
test examples. For both methods of all test
examples, a colony size of 100 with maximum
number of 1000 iterations amounting to
maximum number of 100,000 function
evaluations is used.

Table 6 shows the results of 10 runs carried

out using different randomly generated initial
guess for all test examples along with the scaled
standard deviation, the number of final feasible
solutions and CPU time for each run. It is
clearly seen from Table 6 that all measures of

the quality of the final solutions such as the
minimum, maximum and average cost and the
scaled standard deviation are improved when
using ACOA2 compared to ACOAL. It should
be noted that, due to the fact that premature
convergence does not occur in ACOA2 by
providing dynamically evolving bounds on the
pheromone trail intensities, the ACOA2 has
been able to outperform the ACOAL. In other
words, the results show the superiority of the
MMAS, in conjunction with the ACOA2, over
than AS, in conjunction with the ACOAI, in
which the trade-off the
contradictory search characteristic

between two

of
exploration and exploitation is managed better
using MMAS. In order to show the efficiency of
proposed methods, these results are compared
with those obtained with other
methods. Comparison of the results shows that
the best results are obtained using ACOA2 with
no extra computational time cost due to the
the

proposed method is useful to solve NP-hard

existing

unique feature of ACOA. Therefore,

combinatorial discrete optimization problems
such as optimal design of WDS.

[11] [10]
20(‘ 224 51 11,
[12] 8] [9) [24]
[13] [1] [27] [29]
19 5 23] 10 13 7,
[14] [2] [25] [28] [30]
3 [3] 4 [4] 64 12 15
17Nl [15] 5 5 | [ 71
26
[17] 16 [19] (=1 L8]
[18] 7 8 9

Figure 6. Network of GoYang WDS (test example III).
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Nodal pressure head is one of the most
important  constraints of WDS = design
optimization problem. Here, the maximum and
minimum pressure head of all test examples
obtained with ACOA2 are presented to show
the efficiency of proposed methods. For text
example [, the maximum pressure head
occurred at node 2 is 174.72 ft and the minimum
pressure head occurred at node 6 is 99.87 ft. For
text example II, the maximum pressure head
occurred at node 2 is 294.207 ft and the
minimum pressure head occurred at node 19 is
255.054 ft. In addition, in case study II, the
pressure head at node 16 and 17 are 260.077 and
272.868, respectively. Finally, for text example
III, the maximum pressure head occurred at
node 3 is 2794 meter and the minimum
pressure head occurred at node 15 is 15.1 meter.
It is worth noting that the obtained pressure
heads are satisfied nodal pressure head for all
test examples.

Different methods have been proposed and
used to solve text examples I,II and III. At first,
the best results obtained with the proposed
ACOA?2? for test example I are compared with
some other available results. The comparison of
the results shows that the optimal solution of
419000 units is obtained at the expense of 4700
function evaluations using ACOA2. It is worth
noting that the ACOA2 has been able to
outperform the methods of Abebe and
Solomatine (1999) and Savic and Walters (1997).
Furthermore, this compares favourably with
about 250000 function evaluations required by
the Savic and Walters (1997) using GA1, about
53000 function evaluations required by Cuncha
and Sousa (1999) using SA, about 100000
function evaluations required by of Prasad and
Park (2004) using GA, about 11155 function
evaluations required by of Eusuff and Lansey
(2003) using SFLA, about 5100 function
evaluations required by of Afshar (2007) using
ACO and about 7467 function evaluations
required by Wu et al. (2001) using Fast Messy
Genetic Algorithm (FMGA) to get the least cost
solution of 419000 units. The comparison of
these results indicates that the ACOA2 has been
able to outperform other methods with no extra
computational time cost due to the unique
presented feature of this proposed method.

In addition, the results of test example II
obtained with the proposed method are
compared here with some other available
results using different value for constant
coefficient of Hazen-Williams equation () . The
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ACOA2? is able to get the optimal solution of

38.64 (M$) in 9900 function evaluations
(1£=10.669). This can be compared
approvingly with about 200000 function

evaluations required by Murphy et al. (1993) to
find the solution of 38.80 (M$) using GA
(1 =10.669), 1000000
evaluations required by Savic and Walters
(1997) to find the solutions of 40.42 (M$) and
37.13 (M$) using GA2 and GAl, respectively,
(14 =10.5088), about 46016 function evalua-
tions required by Lippai et al. (1999) to find the
solution of 38.13 (M$) using TS (x =10.669),
about 1000000 function evaluations required by
Cunha and Sousa (1999) to find the solutions of
3713 (M$) using SA (u=10.5088), about
37186 function evaluations required by Wu et al.
(2001) to find the solutions of 37.83 (M$) and

3713 (M$) using two formulations of Fast
Messy Genetic Algorithm named FMGA1 and
FMGA?2, respectively, (x=10.5088), about
31267 function evaluations required by Eusuff
and Lansey (2003) to find the solutions of 38.13
(M$) using SFLA (x=10.669), about 6000
function evaluations required by Geem (2006) to
find the solutions of 36.66 (MS$) using HS
(1=10.5088), 7760
evaluations required by Afshar (2009) to find
the solutions of 38.64 (M$) using compact GA
(cGA) (1 =10.669), about 18200 function
evaluations required by Afshar (2007) to find
the solutions of 38.64 (M$) using ACO
(£=10.669), about 13928  function
evaluations required by Maier et al. (2003) to
find the least-cost solution of 38.64 (M$) using
ACOA (¢ =10.669) and finally about 22635
function evaluations required by Zecchin et al.
(2006) to find the least-cost solution of 38.64
(M$) using MMAS (u =10.67). It is worth
noting that the solutions of Lippai et al. (1999)
and Eusuff and Lansey (2003) are infeasible. In
other words, the minimum required pressure
head is not satisfied at nodes 17 and 19 when
obtained diameters are simulated in EPANET
software. In addition, a smaller value for
constant coefficient of Hazen-Williams equation

about function

about function

(1) leads to smaller head losses and therefore

smaller pipe diameters in which these solutions
are infeasible when they are simulated in
EPANET software. Comparison of the results
shows that ACOAZ2 has been able to outperform
the other used methods with no extra
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computational time cost due to the unique
feature of this method which is presented
before. In addition, the near optimal solution of
Maier et al. (2003), Zecchin et al. (2006) and
Afshar (2007), 38.64 (M$), is obtained here using
proposed ACOA2 with smaller computational
time.

Finally, the results of test example III
obtained with the proposed method are
compared with some other available results.
The ACOAZ2 is able to find the optimal solution
of 175783163 (Won) in just 8600 function
evaluations. This compares favourably with
those obtained with other existing methods.
Kim et al. (1994) solved the problem using a
projected Lagrangian algorithm supported by
GAMS/MINOS and then converted the
continuous diameters to discrete commercial
diameters. They obtained 179142700 (Won)
while the original cost was 179428600 (Won).
Furthermore, the present result can be
compared with about 10000 function
evaluations required by Geem (2006) to get the
solutions of 177135800 (Won) using HS. It is
worth noting that the ACOA2 has been able to
outperform all existing methods with no extra
computational time cost due to the unique
presented feature of this proposed method.

Superior performance of the ACOA2
compared to ACOALI is already attributed to the
provision of dynamically evolving bounds on
the  pheromone  trail intensities and
methodology of calculating the change of

pheromone ATij. This fact reflected in the

typical convergence curves shown in Figs. 7, 8
and 9 for test example I, I and 1II, respectively.
It is seen that the population of ACOA2 has
solution costs way below that of ACOA1 due to
the fact discussed before.

6. Conclusion

In this paper, the Ant Colony Optimization
Algorithm (ACOA) was applied to solve Water
Distribution System (WDS) design optimization
problem using two different methods named
ACOA1 and ACOA2. Pipe diameters of the

WDS network were determined in both ACOA1
and ACOA2 methods using Ant System (AS)
and Max-Min Ant System (MMAS),
respectively. For the hydraulic analysis, here,
the ACOA-based models were interfaced with
EPANET as simulator. Three benchmark test
examples were solved using proposed methods
and the results were presented and compared.
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While two proposed methods showed good
performance in solving the problems under
consideration, the ACOA2 was observed to
produce better results for WDS design
optimization problem and to be less sensitive to
the randomly generated initial guess required to
start the solution process represented by the
scaled standard deviation of the solutions
produced in ten different runs. In other words,
the results showed the superiority of the
ACOA2 over other the ACOA1 in which the
trade-off between the two contradictory search
characteristic of exploration and exploitation
was managed better using MMAS which is in
conjunction with the ACOA2. It was also shown
that the ACOA2 consistently gave better quality
solutions than existing traditional and heuristic
search methods with less computational effort
due to the unique presented feature of this
proposed formulation.
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