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ABSTRACT: The global demand for effective utilization of both humans and machinery is increasing due to 
wastage incurred during product manufacturing. Excessive waste generation has made entrepreneurs find it 
difficult to breakeven. The development of dynamic error-proof Overall Equipment Effectiveness (OEE) model 
for optimizing a complex production process is targeted at minimizing/eradicating operational wastes/losses. In 
this study, the error-proof sigma metric was integrated into the extended traditional OEE factors (availability, 
performance, quality) to include losses due to waste and man-machine relationships. Error-proof sigma statistics 
enabled continuous corrective measures on unsatisfactory or low-level OEE resulted from process output 
variations (quantity delivered or expected), which were mapped into sigma statistical standards (one- to six-
sigma).  Application of the model in a processing company showed that errors of the process were reduced by 
78% and 42% respectively for traditional OEE and the new Error-Proof OEE (OEE-EP).  The results revealed 
that the OEE-EP model is better than the other existing schemes in terms of losses elimination in the production 
process. 
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 تطویر نموذج تجنب الأخطاء الدینامیكیة المتعلقة بالفعالیة العامة للمعدات لتحسین عملیة الإنتاج

 
 دیروبا و م. إدریسأو.  ،كینوليأب.  ،ت. أوجینجبي ،لابيأ. أ ،ب. كریم

 
 

یتزاید الطلب العالمي على الاستخدام الفعال للقوى العاملة والآلات تجنباً للھدر الذي یحدث أثناء عملیة التصنیع حیث  :الملخص
تجنب الأخطاء الدینامیكیة یستھدف تطویر نموذج  .یصعب التولید المفرط للنفایات من عملیة تحقیق نتائج تصنیعیة مرضیة

المتعلقة بالفعالیة العامة للمعدات تحقیق الاستفادة المثلى من عملیة الإنتاج المعقدة عن طریق تقلیل النفایات و الخسائر التشغیلیة 
العامة للمعدات استخدم في ھذه الدراسة قیاس سیجما المقاوم للخطأ لاختبار العوامل المؤثرة في نظام الفعالیة  .إلى أدنى حد ممكن

(التوفر والأداء والجودة) لتضمین الخسائر الناجمة عن النفایات والعلاقة بین الإنسان والآلة. أتاحت إحصائیات سیجما المتعلقة 
بتجنب الأخطاء اتخاذ إجراءات تصحیحیة مستمرة على مستوى غیر مُرضٍ أو منخفض من نظام الفعالیة العامة للمعدات نتیجة 

سیجما).  6-1ي ناتج العملیة (الكمیة التي تم تسلیمھا أو المتوقعة)، والتي تم تعیینھا إلى معاییر إحصائیة للسیجما (للاختلافات ف
% على التوالي بالنسبة 42% و78أن أخطاء العملیة انخفضت بنسبة المعالجة وقد أظھر تطبیق النموذج في إحدى الشركات 

 .و النموذج الجدید لنظام تجنب الأخطاء الدینامیكیة المتعلقة بالفعالیة العامة للمعداتلنظام الفعالیة العامة للمعدات التقلیدي 
أفضل من المخططات الأخرى من حیث  وكشفت النتائج أن نموذج تجنب الأخطاء الدینامیكیة المتعلقة بالفعالیة العامة للمعدات

 .التخلص من الخسائر في عملیة الإنتاج
 

 .الإنتاجیة؛ تكامل العملیة الفعالیة العامة للمعدات؛ مقیاس سیجما؛امیكیة دین :المفتاحیة الكلمات
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NOMENCLATURE 
 
G  Quality products delivered per unit time 

(year) 
pG

  
Total quantity produced per unit time (year) 

wG  Actual waste generated (%) 
i  Counter for overall equipment effectiveness 

factor 
j  Counter for sigma value 
n   Traditional scheme ( n =3), new scheme ( n

=5) 
OEE  Overall Equipment Effectiveness 

cOEE  Effectiveness improvement factor (%) 
wP  Planned (expected) waste (%)  

1t   Actual production volume per unit time 
(year) 

2t  Planned production volume per unit time 
(year) 

0t  Actual system performance per unit time 
(year) 

nt  System performance expected per unit time 
(year) 

aT  Actual human productivity per unit time 
(year) 

sT  Expected human productivity per unit time 
(year) 

x   Time (year) 
iy  Equipment effectiveness factor at a given 

year, x 
'yi  Contribution of equip. effectiveness factors 

(%) 
β   Performance efficiency of equipment (%) 
σ  Improvement (error-proof) factor 
α  Availability efficiency of production equip. 

(%) 
μ  Quality rate (efficiency) of products (output) 

(%) 
ω    Waste generation rate (efficiency) of equip. 

(%) 
γ   Human/ergonomics-equipment efficiency 

(%) 
EP  Error-proof 
MSE  Mean Square Error 
 
1. INTRODUCTION 
 
Over the decades, manufacturing industries and 
organizations concentrated mostly on mass production 
of goods without paying attention to how best the 
Overall Equipment Effectiveness (OEE) measures can 
be integrated into the system to enhance productivity 
(Muchiri and Pintelon, 2008; Dilworth, 2013). In the 
recent past, there had been an attitudinal change of 

corporate managers towards integrating OEE 
measures into manufacturing systems (Dilworth, 
2013; Martand, 2014; Prinz, 2017). The High cost of 
operations maintenance was among the reasons 
responsible for the change (Gharbi and Kennen, 
2000). Maintenance in this context is defined as a 
combination of all technical and associated 
administrative activities required to keep equipment, 
installations, and other physical assets in good 
working condition or restore them to their original 
condition (Mwanza, 2017). Industrial managers 
realized that there is a possibility of achieving 
significant savings in operation costs under proper 
OEE practice (Godfrey, 2002; Bruce, 2006). OEE 
measured under resource availability (Kareem and 
Jewo, 2015) can play a vital role in the performance 
improvement of industrial operations (Kadiri, 2000; 
Butlewski et al., 2018). The productivity 
improvements achieved so far at the industrial 
operations level from the past studies have been 
significant (Munoz-Villamizar et al., 2018),  but 
insufficient because of emerging challenges of the 
working environment and waste generation that the 
organizations need to address. For the enhancement of 
sustainable productivity, factors of effectiveness 
measures (equipment availability, quality of products 
and plant performance, etc.) should be considered at 
the design stage of the production process. Overall 
equipment effectiveness can be sustainable under 
regular assessment of and improvement on those 
effectiveness factors (Joshi and Gupta, 1986). 
Industrial sectors, in compliance with the twenty-first-
century development goal, are now moving from the 
traditional method of measuring productivity to the 
modern method where conducive working 
environments and waste elimination strategies are 
being considered important to maximize profit. 
Wastes are products of material, man, machine, 
methods, among other production process factors 
(Ghazali et al. 2013). On this basis, Value Stream 
Mapping (VSM) of processes is very important to 
find out production processes that required 
improvement or motivation (Meyer and Stewart, 
2018). Therefore, the traditional OEE model needs to 
be improved upon by considering other emerging 
factors that influence productivity in modern 
industrial operations to survive the competition. Other 
challenges such as productivity monitoring, 
continuous improvement measures, customers’ 
satisfaction, and environmental dynamism faced by 
the production companies need to be addressed. 

Overall equipment effectiveness measures can be 
extended to provide a basis for plant materials or 
overproduction wastes measurement and control. 
Overproduction is a condition where a company 
manufactures goods above the planned (expected) 
quantity. In a smart industrial environment, 
overproduction is a waste from the use of production 
resources such as material, manpower, and machines 
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(Muraa, 2016; Munoz-Villamizar et al., 2018). Poorly 
planned and worn-out equipment can lead to wastage 
in terms of worker’s time, material, and other 
components of the production line. Different 
techniques for eliminating wastes in production lines 
have been on the ground (Lennon, 2016). None of 
them have integrated the error-proof sigma metric tool 
into OEE, as done in this study, as a continuous 
improvement method of productivity monitoring, 
which targets customers’ satisfaction by minimizing 
process variation.  

This study aims to develop an Error-Proof OEE 
(OEE-EP) model that integrates sigma matric into the 
modified traditional OEE measures. In the past, OEE 
was measured based on only three principal factors- 
availability, performance, and quality efficiencies 
(AFSC, 2010; Alexanda, 2012; Adams, 2014). This 
study expands the scope of measuring OEE by 
including human/ergonomics and waste generation 
into the effectiveness measure. Besides, the static 
nature of traditional OEE measure was replaced by a 
tractable, dynamic OEE which utilized an error-proof 
sigma metric as a continuous improvement tool. The 
application of error-proof or process variation (sigma 
metric) tool has not been popular in manufacturing 
industries as an improvement tool until recent times. 
The use of the sigma metric in OEE as an error-proof 
parameter can be hardly found. Therefore, the 
integration of the error-proof parameters into the OEE 
measure has widened its scope for sustainable 
application in modern and complex industrial 
systems. The rest of the paper is presented as follows: 
related works are in section 2; modelling and 
integration of OEE factors are in section 3; results and 
discussion are in section 4; and conclusions are given 
in section 5. 
 
2. LITERATURE REVIEW  
     
Literature was reviewed in line with overall equipment 
effectiveness measure, sigma metric, and 
improvement tools, and areas of contribution to OEE 
research. 
 
2.1. Overall Equipment Effectiveness Measure 
Traditional OEE factors (availability, performance, 
and quality) performances were optimized using 
response surface methodology (Kunsch et al., 2012). 
The model introduced no new input to the traditional 
OEE factors. A multidimensional view of technology 
(AMT) in the OEE measure provided by Swamidassa 
and Kothab (1998) had a direct impact on the 
performance of large scale firms only. A good OEE 
measure should be versatile and applicable to small-, 
medium- and large- scale industrial systems. The lean 
bundle OEE approach proposed by Shah and Ward 
(Shah and Ward, 2003), considered plant size only 
while plant integration and aging were neglected. 
Waste generation and workspace (ergonomic) 
condition were neglected in many other studies 

related to traditional OEE measures (Wilson, 2010; 
Ljungberg,  1998; Madhavan et al., 2011; Nachiappan 
and Anantharaman, 2006; Muchiri and Pintelon, 
2008; Wang and Pan, 2011; Andersson and Bellgran, 
2015; Binti Aminuddin et al., 2016). 

The Overall Equipment Effectiveness of 
Manufacturing Line (OEEML) scheme was 
established by Braglia et al., (2009) in an attempt to 
overcome a limitation of individual equipment over 
jointly operated machines. The model, however, 
failed to explain to which extent the effectiveness was 
supportive to the in-process inventory of spares and 
workplace management. The application of the 
traditional OEE metric in a steel company by 
Almeanazel (2010) led to the realization of 99% in 
quality factor, 76% in availability factor, and 72% in 
plant performance without practical implementation. 
He suggested the application of lean tools such as 
Single Minutes Exchange of Dies (SMED), Computer 
Maintenance Management System (CMMS), and 
Integrated Production Planning (IPP) to the 
production system to validate the outcome. The 
relationship between OEE and Process Capability 
(PC) measures was established which showed that a 
cutoff point of 1.33 Capability Indices (CI) instead of 
popular 1.0 was possible (Garza-Reyes et al., 2010). 
Therefore, the OEE cutoff point can be shifted beyond 
1.0 when measured based on process capability. 
However, OEE greater than 1.0 can be defined as over 
capability utilisation in a lean manufacturing 
environment where wastages are not allowed. The 
efficacy of the OEE measure as a productivity tool 
was established by Hansen (2002). Productivity can 
only lead to profitability in an organization if 
workplace conditions and waste generation rates are 
considered during OEE evaluation. The challenge of 
variation of OEE across firms was addressed by 
creating a system of a dynamic process for OEE 
evaluation and control over time (Zuashkiani et al., 
2011). Traditional actions taken at fixing OEE 
challenges (reactive maintenance, poor morale) were 
not sustainable in the long run, due to the emergence 
of lower OEE. Under good management, risks and 
challenges of productivity (reactive maintenance, poor 
worker morale, and hazard control) are transferrable 
to relevant experts in the production cycle to sustain 
OEE. 
 
2.2. Sigma metric and improvement tools 
The improvements by reducing losses can be 
estimated (represented) in terms of sigma statistical 
control metric based on a normal distribution.  On this 
metric, six sigma (0.0000034) process variation can 
perform more efficiently than one (0.69), two (0.31), 
three (0.067), four (0.0062), or five (0.00023) sigma 
process variations because it provides the highest and 
practicable improvement probability (99.99966%) 
which is close to 100% (Marselli, 2004). The six-
sigma metric allows only 3.4 defects in one million 
products. Six-sigma tool was introduced into a lean 
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manufacturing strategy recently, and it was classified 
as blackbelt and greenbelt, based on productivity 
enhancement (Domingo and Aguado, 2015).  

Six-sigma focuses on reducing process variation and 
enhancing process control, while lean manufacturing 
seeks to eliminate or reduce wastes (non-value added 
activities) using teamwork, clean, organized, and 
well-marked workspaces (Michael, 2015). Lean and 
six-sigma have the same general purpose of providing 
the customer with the best possible quality, cost, 
delivery, and a newer attribute. Lean achieves its goal 
by using philosophical tools such as Kaizen, Just-in-
Time (JIT), workplace organization (5S) and visual 
controls, Single Minute Exchange of Dies (SMED), 
100% sampling (Jidoka),  while six-sigma is based on 
statistical analysis, design of experiment and 
hypothesis test. There is a need to economize and 
simplify the OEE improvement process by replacing 
the conglomerate of lean technologies with a singular 
sigma metric tool for process variation measure.   
 
2.3. Areas of contribution to OEE research 
Traditional or basic OEE model as an important 
metric in Total Productive Maintenance (TPM) has 
been successfully applied to packaging, chemical, 
automobile, production, foundry, and pulp product 
(rayon fiber) industries in the past (Michiri and 
Pintelon, 2008; Munteanu et al. 2010; Hossain and 
Sarker, 2016, Bhattacharjee et al. 2019; Sayuti et al., 
2019). The traditional OEE has given birth to new 
OEE models which are either static/deterministic or 
stochastic in nature. The new static/deterministic OEE 
measures include: Overall Asset Effectiveness (OAE), 
Overall Plant Effectiveness (OPE), Total Equipment 
Effectiveness Performance (TEEP), Production 
Equipment Effectiveness (PEE) and Overall Factory 
Effectiveness (OFE) applied in packaging and 
chemical processing (Muchiri and Pintelon, 2008); 
Doubly Weighted Grouping Efficiency (DWGE) 
applied in cellular manufacturing systems (Sarker, 
2001); Overall Line Effectiveness (OLE) for 
automobile industries (Nachiappan and 
Anantharaman, 2006); Overall Equipment 
Effectiveness of a Manufacturing Line (OEEML) for 
automobile firm (Braglia et al., 2009); Global 
Production Effectiveness (GPE) for global 
manufacturing system (Lanza et al., 2013); Overall 
Throughput Effectiveness (OTE) for wafer fab and 
glass firm (Muthiah et al., 2008); Overall Equipment 
Effectiveness Market-Based (OEEMB) for iron and 
steel industry (Anvari et al., 2010); Equipment 
Performance and Reliability (EPR) model for 
semiconductor production system (Samat et al., 
2012); Rank-Order Centroid (ROC) method in 
Overall Weighting Equipment Effectiveness (OWEE) 
for fiber cement roof production system (Wudhikarn, 
2010); Overall Equipment and Quality Cost Loss 
(OEQCL) for fiber cement manufacturing system 
(Wudhikarn, 2012); OEE and Productivity measure 
(OEEP) in automobile industry (Andersson and 

Bellgran, 2015); and OEE- Total Productive 
Maintenance (TPM) and Lean Manufacturing (LM) 
measures in manufacturing systems (Binti Aminuddin 
et al., 2016). The stochastic OEE models evolved 
include: Probability density function (Normal and 
Beta distributions) of OEE applied to waterproofing 
coatings firm (Zammori et al., 2010); and the 
simulation-based Taguchi method in weighted OEE 
for crimping manufacturing line (Yuniawan et al., 
2013). Automation of OEE measures has been carried 
out through: integration of a communication system 
and Manufacturing Execution System (MES) into the 
Automated Data Collection (ADC) system to enhance 
accurate data collection in the manufacturing line to 
enable accurate estimation of throughput, Unit Per 
Hour (UPH) machine rate for semiconductor 
assembly firm (Wang and Pan, 2011); and 
development of software package to identify losses 
associated with equipment effectiveness (Singh et al., 
2013). 

Apart from the established drawbacks from the 
stated studies which include equally weighted OEE 
parameters, subjective weights determination, 
unexplained lowest OEE–loss relationship, 
insufficient data to obtain the weights, weights 
probability approximation, inadequate general and 
quality cost accounting (Hossain and Sarker, 2016), 
and effectiveness limitation to machine/equipment 
rate only,  it is inferable from the past studies that the 
traditional and the evolved OEE models have been 
applied separately to either machine(s)/equipment, 
plant, production/manufacturing line, or cellular 
manufacturing system without considering 
productivity of production line in terms of supply 
output (delivery) and demand (expectation). Besides, 
the emerging models only built their measures around 
the basic OEE three factors-availability, performance 
and quality. The stated models cannot work in a fast-
moving product (beverage) production line where 
material needed in the production line is supplied as 
and when due in batches based on planned (expected) 
output delivery. Therefore, production waste can 
come from either surplus material supply or 
overproduction (higher product volume).  They failed 
to also consider issues of: dynamic nature of process 
variation in a single fast-moving product production 
line over the years that will enable the manager to 
plan ahead accurately to meet customers’ delivery as 
and when required. This will call for a new OEE 
model with the following peculiarities: the ability to 
moderate/control yearly OEE variations to enable 
attainment of improved and balanced effectiveness of 
a single fast-moving product production line; 
inclusion of waste (surplus in materials/ 
overproduction)  and human/ergonomic (production 
floor environment) factors which are critical to the 
production line; and integration of regression model 
and error-proof sigma metric parameters to serve as 
yearly predictive/dynamic OEE improvement tool for 
management to make the right choice of action. Once 
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the quality rate is measured based on percentage 
defective/rework items of output quantity, then it is 
sensible to consider waste rate as an independent OEE 
factor which is measurable using percentage leftover 
material (products) of the total input material (output 
product), excluding defective material (items). 

It is inferable from the literature that the past OEE 
models are deficient, and hence require improvement 
to enhance a robust effectiveness measure. New or 
emerging OEE models should take care of a dynamic 
industrial environment. Replacement of cumbersome 
and costly to implement improvement tools (Kaizen, 
JIT, SMED, VSM, 5S, Automated system, weighting 
system, Lean bundle, Lean blackbelt & green belt, 
etc.) with singular error-proof sigma metric will 
simplify its application in industries. In this study, the 
OEE model will be made robust to cope with modern 
production line realities of enhancing competitiveness 
by integrating workplace conditions and waste 
generation factors into it. OEE measure will be made 
dynamic through the introduction of a continuous 
improvement tool, error-proof sigma metric, and 
integration of time-dependent predictable OEE 
parameters. A simplified, tractable OEE error-proof 
(OEE-EP) model will be provided to serve as a good 
replacement to the cumbersome and costly 
implementable past models.  

 
3. INTEGRATION AND MODELLING 

OF OEE PARAMETERS 
 
The methodology employed entails integration of 
Overall Equipment Effectiveness (OEE) factors, 
formulation of the OEE model, and analysis of OEE 
model parameters. 
  
3.1. Integration of Overall Equipment 

Effectiveness Parameters 
For a robust OEE evaluation in a balanced production 
line system for a fast-moving product, a dynamic 
OEE error-proof model was developed through the 
integration of the traditional OEE factors (availability, 
performance, and quality measures) with other 
emerging critical-factors/parameters (workplace 
condition, waste generation, and error-proof sigma 
metric). Figure 1 shows the proposed relationship of 
the Overall Equipment Effectiveness-OEE factors; 
quality, performance, availability, waste generation, 
and human ergonomic/workplace condition 
(temperature). Human/ergonomic elements as related 
to work environments such as temperature, 
illumination, and workers' wellbeing, have effects on 
productivity, and its magnitude depends on the degree 
of deviation from the established standards. Wastes 
can also hinder smooth workflow by creating 
unnecessary shortage/surplus in outputs of material, 
machine, manpower, etc. through excessive inventory 
operation and customers’ satisfaction. The duo, 
ergonomic and waste, was very important OEE 

factors neglected many years past. The effective 
production process is attainable under the condition of 
excellent equipment availability, line performance, 
product quality, working environment, and waste 
reduction. This condition was hard to meet 
simultaneously in the manufacturing system. 

A sustainable (acceptable) industrial plant operation 
should have OEE greater than 0.5 (50%) (Ljungberg, 
1998). This shows that the OEE of 0.5 is the minimum 
effectiveness measure required of a manufacturing 
system to succeed. An OEE below 0.5 indicates 
danger or poor process performance, while an OEE≥1 
signifies a highly productive process. However, a 
world-class OEE for a production line should be more 
than 0.85 (Sayuti et al., 2019).  In a single product 
balanced production line, an OEE factor can be 
evaluated, in terms of productivity, based on a simple 
ratio of output delivered to the expected output. 
Variations that existed between the expected and 
delivered outputs are known as process errors. The 
multi-factor OEE measure led to the emergence of 
multiple errors due to its series relationship. Five-
factor OEE can be represented as a series control 
system with errors measured as a difference between 
input (expected) OEE and output (delivered) OEE 
(Fig. 2). 

The idea is to reduce the error (variation) to make the 
process effectively satisfactory. This needs to be done 
gradually on the production line. Every error reduction 
attained periodically is translatable to the OEE error-
proof sigma metric and evaluable using a productivity 
improvement index, which can be monitored by the 
management for decision making (interface). The 
integration of the error-proof (EP) sigma metric as an 
improvement tool (𝜎𝜎) in line with the OEE control 
system in Fig. 2 has resulted in continuous 
improvements (Eqns. (1)-(3)). 

 
 

 
 

Figure. 1. Overall Equipment Effectiveness factors 
integration. 



B. Kareem, A.S. Alabi, T.I. Ogedengbe, B.O. Akinnuli, O.A. Aderoba, M.O. Idris 
  

64 

  

 
Figure. 2. System Control and Improvement Framework. 

x)σ-1(OEE=EPOEE                          (1) 
If, 

,1≥EPOEE Stop, improvement is satisfactory          (2) 
Otherwise,  

,1<EPOEE≤0 Continue                            (3) 
 
The improvement )EPOEE( will continue over time, 

x  (Eqns. (1) and (3)) in the presence of Error-proof 
)EP(  sigma metric, σ  until it attains a satisfactory 

value (Eqn.(2)). Power x  in Eqn. (1) can also be 
described as improvement (fading) time. System 
performance was evaluated based on, if; OEE  ≤ 0.5, 
then productivity is poor; but for OEE > 0.5 means 
productivity is good, while productivity is described 
as excellent if OEE ≥ 1.  

With reference to Fig. 2, The model relating the 
traditional OEE factors (availability, performance, and 
quality) was identified to fall into the family of control 
model on the basis at which a modified version was 
developed by integrating emerging OEE factors 
(waste and human) into it. The arrow shows a series 
relationship between the OEE factors indicating that a 
deficiency (error) realized in one factor has 
multiplying effects on the other OEE factors. This 
reflection is expressed in Eqns. (4) and (5). The 
interface served as an OEE outcome error review 
platform motivated by a sigma metric continuous 
improvement window that enabled the gradual 
reduction of process variation to a satisfactory level 
(Eqns. (1)-(3)). Error-proof (EP) is process variation 
measured at a given time over actual and expected 
outputs. The target of any production firm is to make 
process variation close to zero to sustain productivity. 
Error-proof (EP) criterion is a strategy of gradual 
elimination of process variation in a single product 
production line by the adoption of the sigma metric 
standards to enhance continuous improvement of the 
firm’s OEE towards the attainment of OEE-EP 

 
3.2. Overall Equipment Effectiveness Model 

Formulation 
Productivity as a measure of plant effectiveness 
relating the expected and delivered outputs can be 
analyzed based on the control diagram given in Fig. 2. 
Equation (4) in the earlier studies (Bruce, 2006;

 Dilworth, 2013) for measuring the traditional (old) 
Overall Equipment Effectiveness (OEE) was 
conformed to the established system. 

 
αβμ=OEE                                                    (4) 

 
where: 
α is the availability efficiency of a production 
equipment  
β  is the performance efficiency of the equipment  
μ is the quality rate (efficiency) of products (output) 

Equation (4), however, did not consider human 
ergonomic/workplace condition, γ and waste 
generation, ω  factors (shown in Figs 1 and 2), which 
are also important in determining the overall 
production line’s effectiveness. Hence, Eqn. (4) was 
enhanced to include ergonomic and waste (Eqn. (5)),  
 

αβμγω='OEE                                             (5) 
 

Equation (5) is a modification of the traditional OEE 
model (Bruce, 2006; Dilworth, 2013) in Eqn. (4). The 
relationship, as stated before, is a resemblance of the 
control system represented by Fig. 2. The productivity 
variations in individual or combined OEE factors (in 
series) are measurable as a ratio of output to input 
resources.  
Dynamic sub-models for evaluating productivity 
contributions 'iy over the year x of each of the OEE 

factors iy ( )ω.&γ,μ,β,α  were then formulated and 
evaluated as expressed in Eqns. (6) and (7), 
respectively. 
 

=)x('yi iy ( )ω.&γ,μ,β,α                              (6) 
If  

[ ,1≥'iy

,1<'iy≤0
                  (7) 

 
System availability, )α(yi  was determined as the 

ratio of actual (delivered) production volume per unit 
time, )x(t1  and the planned (expected) production 
volume per unit time, )x(t2 . 

 

stop improvement satisfactory 

continue improvement 
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)x(2t
)x(1t=)α(iy                                           (8) 

 
System Performance, )β(yi  was measured as the 

system performance delivered (in %) per unit time 
)x(t0  over the system performance expected (in %) 

per unit time, )x(tn as shown in (9). 
 

)x(nt

)x(0t
=)β(iy                                        (9) 

 

System Quality, )(µiy  was measured by the 
quality products delivered, that is, % difference 
between total quantity produced and total 
defective/rework items )(xG (in %) over the total 

quantity produced per unit time, )(xGp (in %).  
 

)x(pG
)x(G

=)μ(iy                      (10) 

 
System human factor/ ergonomics, )γ(yi   was 

estimated using the expression based on the actual 
(delivered) human working environment contribution 
to productivity, )x(Ts  over the expected contribution, 

).x(Ta  Eqn. (11) was evaluated based on the 
production environment (temperature) per unit time, 
this was found to affected workers’ productivity. The 
environmental (temperature) change, )x(Ta  was a 
planned (expected) production floor conditioning 
temperature per unit time while, )x(Ts  was the actual 
(delivered) workplace temperature.  

 

)x(sT
)x(aT

=)γ(iy                            (11) 

 
Ambient temperature was considered a major human 

element because it was found that the temperature of 
the working environment had a critical effect on the 
machine and the operator’s productivity. A balanced 
working temperature is needed to enhance 
simultaneous satisfactory performance in machinery 
and operator. Unstable environmental conditions and 
climate change will make this very difficult to 
achieve. Therefore, the temperature is a critical 
ergonomic factor to consider.  

System Waste )ω(yi  was measured based on system 
percentage waste reduction (% allowable 
material/product surplus) performance, as the ratio of 
the planned (expected) waste (in %), )x(Pw   and the 
actual waste generated (in %), )x(Gw  
 

)x(wG

)x(wP
=)ω(iy                            (12) 

 

For clarity, Eqns. (8), (10), and (12) may look 
similar, but they are not the same. Eqn. (8) is a 
measure based on planned (expected) production 
volume before the actual production took place. Eqn. 
(10) is a measure based on the actual (delivered) 
quantity of production output before deduction of bad 
quality or rework product, while Eqn. (12) is a 
measure based on planned (material/product) waste 
before production over the actual (material/product) 
waste generated in the production line excluding 
rejected/rework product. Therefore the measures are 
clearly different because waste was measured in 
relation to raw material surplus/overproduction, while 
quality was measured in relation to defective/rework 
product output. Measured effectiveness of individual 
factors iy ( )ω&γ,μ,β,α were substituted into Eqns. 
(4) and (5) to determine, annually, traditional OEE  
and new 'OEE , respectively. Evaluation of the 
outcomes was carried out by following the similar 
procedure stated before (Eqns. (1)-(3)). Unsatisfactory 
effectiveness was dynamically improved upon by 
utilizing error-proof sigma metric (𝜎𝜎) continuous 
improvement integrated into the 'OEE , that is 

)OEE( c  in Eqn. (14). This was evaluated over 

minimum acceptable effectiveness, .min
'

i )x(y  obtained 
from each factor, 

 

.min
*)x('iy (Eqn. (13)),  

 
x)jσ-1(.min)x('iy=.min

*)x('iy                              
(13) 

x)
j

-σ1(∏
n

i
.min(x)'

iy=cOEE                                       (14) 

time(fading)timprovemenisx,power
valuesigmaforcounter6,1=j

scheme,newor(old)ltraditionafor3or5=n   

 
It is inferable from Eqn. (14) that jσ = 0 signifies 

full improvement on the existing performance, while

jσ = 1 indicates no improvement at all. Therefore, the 
improvement factor on process variation (sigma error-
proof) achievable in the production system was ranged 
between 0 and 1. This can be reasonably fitted into the 
statistical standard variations, jσ  where 6-1=j . On 
this premise, only 0.067 and 0.0000034 errors 
(variations) were allowed under three-sigma )σ( 3  and 
six-sigma )σ( 6  metrics, respectively. Six-sigma can 
be a good replacement for a costly 100% inspection 
strategy (jidoka) (Marselli, 2004; Wilson, 2010). The 
highest possible improvement attainable, max

cOEE  in 
the process (Eqn. (14)) was selected as optimum 
value, *EPOEE  as depicted by Eqn. (15).  
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max
c*c* OEE=OEE=EPOEE               (15) 

 
The model as stated is a constrained linear/ 

nonlinear programming model that can be solved via 
an analytical approach, and regression analysis using 
excel tool.  
 
3.3. Analysis of Model Parameters 
The production firm where data was collected was 
established in a popular city in Nigeria more than two 
decades ago. The company was into mass production 
of a single but highly patronized beverage product. 
The company is a flow process, balanced production 
line firm, producing a fast-moving product to ever-
increasing customers.  The data collected were 
primary, and were gotten from a production line of the 
company based on the available records and presented 
in tabular format after analysis on the yearly bases to 
align with the data need of the model. The name of the 
company was concealed to protect her confidentiality 
and integrity. There have been reported cases that 
emanated from data analysis of unstable line 
availability, system performance, product quality, 
material waste, and floor condition during the 
production process which have affected customers 
patronage due to loss of goodwill, which in turn 
served as a hindrance to stable and sustainable 
productivity of the firm. This has defeated the 
objective of adopting a balanced line production 
system to enable a continuous flow of product for 
satisfactory performance at meeting customers’ 
delivery. Based on the foregoing, there is the need to 
minimize process variation such that the production 
line is utilized effectively with the target of meeting 
customers’ demand (delivery) as preplanned with little 
or no surplus or shortage.  On this basis, there is the 
need to introduce error-proofing (EP) to the traditional 
and emerging OEE metrics as a solution to this 
challenge of productivity instability. 

A small data set on expectations and deliveries of 
OEE factors spanning eight (8) years was made 
available from the company for the analysis (Tables 1-
5). 

The performance factors iy ( )ω.&γ,μ,β,α  were 
estimated based on the expected and delivered 
production output parameters on a yearly basis ),x(t1

),x(t 2 ),x(t0 ),x(t n ),x(G ),x(Gp ),x(Ta ),x(Ts

),x(Pw ),x(G w  using Eqns. (8)-(12). For example, 
system availability, )α(yi was estimated from the 
yearly, x , expected production volume (in million), 

),x(2t  (10,011.00), and delivered production volume 

(in million), ),x(1t  (11,211.17) using Eqn. (8) as 
 

12.1=
00.011,10
17.211,11

=)α(iy           

  
The other performance ratios were obtained using a 

similar computation method, and the results are shown 
in the last columns of Tables 1-5. 

To prevent static performance measures and to allow 
data updating of OEE factors, a dynamic approach 
was proposed via the regression model by utilizing 
yearly expected (delivered) output as the dependent 
variable and the time (in the year, x) as the 
independent variable. In the analysis, different 
regression options (exponential, linear, logarithmic, 
polynomial and power, etc.) were analyzed using 
Excel-tool to find equations that best-fit the data based 
on the highest coefficient of determination 2R
criterion. 

Actual and predicted output outcomes were 
validated using the Mean Square Error (MSE) 
statistic. The error between the actual and predicted 
results should not exceed 10% (Peng and Huang, 
2012; Ryan et al., 2013, Hayes, 2018). The best 
polynomial regression equations )1≈R( 2

 obtained 
are presented as Eqns. (16-25). The yearly      
predicted results on OEE factors by substituting year 
(x =1, 2,…, 8) into Eqns. (16-25) are presented in 
Table 6. Predicted OEE for individual factor 
(availability as a sample) )P(i )α(y was measured using   
similar   approach   as   that   of   actual OEE measure, 

)A(i )α(y  (Table 7). The Mean Square Error MSE for 
availability as a sample is: 
 

∑
n

1=x=i n

2])P()α(iy)A()α(iy[
= 00055.0=MSE  

 
MSEs for other OEE factors were obtained using a 

similar method. Then, OEEs based on 3-factor (old 
method) and 5-factor were estimated using Eqns. (4 
and 5) and the results are shown in Table 7. 
The minimum (lowest) acceptable OEE outcomes,

.min
'

i )x(y  corresponding to year(s), min,*x  for 
individual factors (Table 7) were selected for 
continuous improvement analysis on yearly basis 
(Eqn. (13)). For actual (A) availability, 

97.0=)x(y .min
'

i with error-proof, 3-sigma metric, 
067.0=σ 3=j  at year, 1=x , the improvement on the 

minimum OEE, .min
*'

i )x(y  was computed by  
 
(Eqn. (13)), 90.0=)067.01(97.0=)x(y 1

.min
*'

i  
 

Other elements were computed by following the 
same process, and their corresponding improvements 
on 3-factor and 5-factor bases were estimated using
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Eqn. (14). For 3-factor, then,   
62.0≈)78.0)(89.0)(90.0(=OEEc  

The obtained results are presented in Table 8. The 
same procedure was used for analysis based on the 
error-proof, six-sigma metric, 0000034.0=σ 6=j

(Table 9). 
The best improvement strategy (Eqn. (15)) to apply 

was selected based on maximum improvement, 
*cOEE  achieved so far (Tables 8 and 9). 

 
4. RESULTS AND DISCUSSION 
 
Results are discussed based on; overview of the plant 
effectiveness trends establishment for OEE factors, 
OEE performance prediction and evaluation, 
equipment effectiveness evaluation, and equipment 
effectiveness improvement.  

4.1. Overview of the Plant Effectiveness   
Computation results (Eqns.  8-11,13) for the plant’s 
effectiveness (productivity) factors in terms of 
expected and delivered system availability,  system 
performance, system quality, ergonomic (temperature) 
and waste generation are presented in Tables 1-5. The 
analysis indicated that the plant was not working to 
expectation in terms of satisfying the expected 
deliveries. The plant was expected to satisfy the 
requirements of meeting customers’ demand 
(delivery) in terms of equipment availability, product 
quality, plant performance, working environment 
(temperature), and waste generation. The company 
was able to satisfy world-class productivity delivery 
requirements in a few years. Excellent (world-class) 
productivity (100%) was attained in equipment 
availability in the years 1, 2, 4, and 5; quality in the 
year 2; plant performance in the years 1 and 2; 
working condition (temperature) in the years 1, 2, 6, 7 
and 8; and material waste generation in the years 7 
and 8.  There was evidence of productivity overshot 
(greater than 100%) due to higher delivery (in 
quantity) than expected (years 1, 2, 4, and 5). 
Effective deliveries of process factors were below 
expectations in many years under review (Tables 1-5). 
The worst, system waste productivity of 0.32 was 
found in the second year of the plant’s operation. This 
result was odd and inconsistent with other outcomes, 
and hence not reliable. The plant probably required 
alignment or corrective maintenance during this 
period. The results generally showed the management 
the need to improve on and moderate some 
effectiveness factors to attain the goal of meeting 
satisfactory productivity (100%) every year. In this 
case,  the   establishment   of  regression  models  had  

Table 1. System Availability Data and Analysis. 

Year  (x) 

Expected 
Production 
Volume 
(million) t2(x) 

Production 
Volume    
Delivered 
(million) t1(x) 

Ratio 

yi(α) 

1 10,011.00 11,211.17 1.12 

2 13,541.26 13,541.26 1.0 

3 15,096.49 14,593.49 0.97 

4 14,281.36 16,290.13 1.14 

5 16,035.19 18,058.25 1.13 

6 18,996.82 18,499.26 0.97 

7 19,736.88 19,298.22 0.98 

8 20,808.32 20,341.56 0.98 

 
Table 2. System Performance Data and Analysis. 

Year 
(x) 

Performance 
Expected (%)tn(x) 

Performance 
Delivered (%) to(x) 

Ratio 
yi(β) 

1 90.00 90.00 1.00 

2 91.00 91.00 1.00 

3 91.50 80.00 0.87 

4 91.50 79.00 0.86 

5 92.00 82.00 0.89 

6 92.00 77.00 0.84 

7 92.50 80.00 0.86 

8 92.50 82.00 0.89 
 
Table 3: System Quality Data and Analysis. 

Year 
(x) 

Quality Product 
Delivered 
(%)G(x)  

Quality 
Product 
Expected (%) 
Gp(x) 

Ratio 
yi(μ) 

1 75.00 77.00 0.97 
2 76.00 70.00 1.09 
3 77.00 79.00 0.98 
4 77.00 79.50 0.97 
5 78.00 81.00 0.96 
6 78.50 81.00 0.97 
7 79.00 81.20 0.97 
8 80.00 81.21 0.99 

 
Table 4. System Waste Data and Analysis. 

Year 
(x) 

Actual 
(delivered) 
manufacturing 
waste (%)Gw(x) 

Planned 
(expected) 
manufacturing 
waste (%) Pw(x) 

Ratio 
yi(ω) 

1 3.50 3.18 0.91 
2 3.10 1.00 0.32 
3 3.10 2.16 0.70 
4 2.50 1.86 0.74 
5 2.00 1.87 0.94 
6 2.00 1.86 0.93 
7 1.85 1.85 1.00 
8 1.85 1.85 1.00 
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Table 5. Production Floor Ergonomics Temperature Data.  
Year 
(x) 

Expected 
Production 
Floor 
Temperature(±
2°C) Ta(x) 

Delivered 
Production 
Floor 
Conditioning 
Temperature(±
2°C) Ts(x) 

Ratio 
yi(γ) 

1 22.00 22.00 1.00 
2 22.00 22.00 1.00 
3 23.00 28.50 0.77 
4 22.00 22.00 1.00 
5 22.00 22.20 0.99 
6 23.00 23.00 1.00 
7 22.00 22.00 1.00 
8 22.00 22.00 1.00 

 
motivated dynamism in evaluating plant effectiveness, 
while the introduction of error-proofing parameters 
had played a prominent role in providing continuous 
improvement by eliminating process variation.  

 
4.2. Trends Establishment for OEE Factors   
Regression analysis using Excel tool on the 
company’s production line data (Tables 1-5), yielded 
polynomial equations as the best models for the 
prediction of  the expected, t2(x) and delivered, t1(x) 
production volume data at a given time (x) as given in 
Eqns. (16) and (17), respectively; 
 
t2(x) = 2.4673x6 - 63.552x5 + 587.96x4 - 2231.9x3 +         
2195.6x2 + 5815.7x + 3668.3; R² = 0.99                       (16) 
 
t1(x) = -2.7512x6 + 82.94x5 - 975.96x4 + 5655.7x3- 16801x2 
+ 25373x - 2119.2; R² = 0.9992                        (17) 
 

,1≈R 2  is an indication that the models had predicted 
the production volume data accurately. The regression 
models obtained for the prediction of the expected and 
delivered: system performance (tn(x), t0(x)); system 
quality (Gp(x), G(x)); system waste (Pw(x), Gw(x)); and 
system ergonomic (temperature) (Ta(x), Ts(x)) are 
respectively given as follows:  
 
tn(x) = -0.0007x6 + 0.0184x5 - 0.1976x4 + 1.109x3 - 3.4913x2 
+ 6.1828x + 86.375; R² = 0.9865                  (18) 
 
t0(x) = -0.0521x6 + 1.4675x5 - 16.284x4 + 89.924x3 - 
255.37x2 + 339.91x - 69.625; R² = 0.9845                    (19) 
 
Gp(x) = 0.0031x6 - 0.0823x5 + 0.8438x4 - 4.2353x3 + 
10.682x2 - 11.654x + 79.437; R² = 0.9941          (20) 
 
G(x) = 0.0276x6 - 0.7996x5 + 9.2103x4 - 53.372x3 + 
161.19x2 - 231.88x + 192.6; R² = 0.9796          (21) 
 
Pw(x) = 0.0028x6 - 0.0779x5 + 0.8562x4 - 4.6474x3 + 12.86x2 
- 17.056x + 11.563; R² = 0.9998                        (22) 
 
Gw(x)) = 0.0058x6 - 0.1668x5 + 1.9113x4 - 11.011x3 + 
33.156x2 - 48.399x + 27.68; R² = 0.9774          (23) 

 
Ta(x) = 0.0125x6 - 0.3375x5 + 3.5625x4 - 18.563x3 + 
49.425x2 - 62.1x + 50; R² = 1                         (24) 
 
Ts(x) = 0.0302x6 - 0.7738x5 + 7.7099x4 - 37.775x3 + 
94.537x2 - 112.67x + 72.938; R² = 0.9846                  (25) 
 

High coefficients of determination ,1≈R 2  in all 
cases had indicated that the models were accurate in 
predicting the expected and delivered outputs.  
 
4.3. Performance Prediction and Evaluation  
The actual data and predicted results of the production 
process using regression models (16-25) for the 
expected and delivered outputs (production volume, 
product quality, plant performance, floor temperature, 
and manufacturing waste) are presented in Table 6. It 
can be clearly observed from the table that the 
predicted results and actual data were in close 
resemblance (Tables 1-5). This showed that the 
established regression models were adequate for 
expected and delivered performance prediction (Table 
6). A sudden rise in waste output prediction was 
noticed in the fifth year, but as a whole, the actual 
system effectiveness measures were not largely 
affected as shown in Table 7. Irregular (unstable) 
productivity outcome of the factors for the years under 
review signaled the need for the management to 
improve on the plant’s effectiveness. 

 
4.4. Evaluation of Equipment Effectiveness   
The results of the OEE prediction and evaluation of 
the production line are presented in Table 7. It was 
revealed from the results that the predicted OEEs 
values were very close to the actual values (Tables 1-
5). The highest Mean Square Error (MSE) of 0.0089 
was estimated between the outcomes of the actual and 
predicted parameters for all OEE factors (Table 7). 
This was eminently within the acceptable statistical 
error limit of 0 – 10%. Similarly, the 5-factor (new 
OEE) and the 3-factor (old OEE) prediction outcomes 
were very close to that of actual results. The 
maximum MSE of 0.0047 was computed between 
actual and predicted OEE results. The errors were far 
less than the 10% limit. Hence, the model can be 
effectively applied to the company’s production 
process to predict and evaluate her equipment 
effectiveness within an acceptable error margin. The 
least actual and predicted factor effectiveness (yi

’.min) 
were (0.97,0.95); (0.96,0.94); (0.84,0.78); (0.77,0.84); 
and (0.70,0.68), respectively for the years (3,6,7); 
(5,6); (6,7); (3,3); and (3,3). The waste effectiveness 
(0.32*, 0.33*) were neglected because of its wide gap 
to the next higher value (0.70, 0.68). The least actual 
and predicted OEE results for the old and the new 
models were (0.79, 0.68) and (0.45, 0.48). These 
results were obtained at years (3, 3) and (6,7), 
respectively (Table 7). The irregularity and low OEE 
outcomes had indicated the need for the company to 
improve the process to survive amid of present and 
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future competitors.  It was generally revealed that 
OEE from the old model were in most cases higher 
than those obtained from the new model. The 
implication of utilizing the old model in the firm was 
for the management to have the impression that the 
plant’s effectiveness was good whereas in real sense it 
was not from the new model’s results. This indicated 
that the company manager should be vigilant at 
finding other underline factors which might have 
critically influenced the OEE of the plant. Production 
floor conditions (temperature) and material waste 
were good examples of such factors identified in and 
integrated into this system. 

The OEEs from the old model seemed unrealistic 
because of its greediness in estimating the plant’s 
effectiveness as compared to the realistic new model 
which was more encompassing and robust in 
accommodating emerging critical factors that affect 
productivity. The new model OEE outcomes enabled 
the firm’s manager to know the true condition of the 
plant's effectiveness to take decisive action at 
improving the system to prepare it for present and 
future competitions. It was noticed that OEEs 
prediction or evaluation results from old and new 
methods were not stable through the years under 
review and were unlikely to be stable in the future. 
Therefore, the enhancement of improvement through 
the closing of process variation (gap) between 
expected and delivered effectiveness will go a long 
way to bring the plant’s performance stability and 
effectiveness in operations. 

 
4.5. Equipment Effectiveness Improvement    
The improvement results on plant’s effectiveness by 
minimizing process variations via application of 
statistical sigma metrics under 3-sigma (j=3) and 6-
sigma (j=6) using the OEE error-proofing (OEE-EP) 
model (Eqns. (13), (14) and (15)) are shown in Tables 
8 and 9, respectively for 3-factor and 5-factor OEE 
measures. In both cases, the improvement was noticed 
in varying proportions over the minimum (lowest) 
OEE measured for the single (isolated) and combined 
factors. The improvement results under the 3-sigma 
metric were not constant (Table 8) over the minimum 

benchmark (Table 7) for the years under review. 
Maximum improvements, actual (0.62, 0.29) and 
predicted (0.56, 0.28), were estimated (using Eqn. 
(15)) in the first year using 3-factor and 5-factor 
effectiveness measures, respectively, while the 
improvements were reducing (fading) steadily in the 
subsequent years (Table 8). The implication of these 
unstable improvements was to notify the firm’s 
manager of the need to put in place a sustainable plan 
towards meeting present and future delivery requests. 
The results (Table 8) further showed the greediness of 
3-factor, 3-sigma error-proofing in providing higher 
improvement outcomes than the 5-factor, 3-sigma 
model. The improvements for the 9th year showed a 
similar trend. It was further noticed that the 
improvements became smaller in future years for both 
scenarios. This indicated that the improvements will 
continue to reduce in future years, and then converge 
to a point. On this basis, the application of this model 
in measuring the plant’s effectiveness improvement 
was sustainable due to the integration of regression 
and error-proof windows that enabled data updating to 
enhance improvement. However, improvements 
measured based on error-proof, 6-sigma metric were 
better and more stable than 3-sigma metric across 
singular and combined OEE factors (Table 9). 

It was revealed from the table that 6-sigma error-
proofing produced stable, satisfactory, and sustainable 
OEE improvements of actual and predicted values 
(0.78, 0.70) and (0.42, 0.40) over the lowest 
acceptable OEE for the 3-factor and 5-factor models, 
respectively. The improvement excesses of the 3-
factor model were reflected in these results. Though 
the improvement attained using the 5-factor model 
was lesser than that of the 3-factor, but both were 
world-class compliant, sustainable, satisfactory, and 
significant to survive any emerging competitiveness. 
In comparison with past similar studies, attainment of 
42% improvement based on the 5-factor, 6-sigma 
model was considered better than 20% and 23% 
obtained using lean & green (Pampanelli et al., 2014) 
and lean bundle (Shah and Ward, 2003) models, 
respectively.  

 
 
 

Table 6. OEE Factors-Annual Outcome Predictions. 
OEE Factors Year(x) 1  2 3 4 5 6 7 8 
Availability Expected, t2(x) 9,974.58 13,758.50 14,594.79 14,765.67 16,075.86 18,443.86 20,269.77 20,579.62 
Availability Delivered, t1(x) 11,212.73 13,531.04 14,590.74 16,337.48 17,908.30 18,651.29 19,164.59 20,354.39 
Quality expected, Gp(x) 76.98 70.17 78.48 80.41 80.39 82.37 83.32 86.53 
Quality delivered, G(x) 74.99 76.04 76.87 77.11 77.43 77.47 76.03 73.42 
Performance expected, tn(x) 89.995 91.030 91.400 91.61 91.477 91.66 91.466 90.263 
Performance delivered, t0(x) 89.991 91.066 79.995 81.975 84.925 80.375 71.375 77.375 
Ergonomics Expected,  Ta(x) 21.997 21.996 22.987 21.968 21.938 22.892 21.829 21.744 
Ergonomics Delivered, Ts(x) 23.996 24.076 24.320 22.312 23.576 24.823 18.949 21.767 
Waste Expected, Pw(x) 3.18 1.03 2.10 2.12 2.15 3.14 4.75 8.26 
Waste  Delivered, Gw(x) 3.50 3.10 3.12 2.55 2.30 2.87 4.44 7.06 
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Table 7. Prediction and Evaluation of OEE for the Production Process. 

OEE measure, yi /year (x)  1 2 3 4 5 6 7 8 MSE.10-3 yi
’
.min. x*min 

Availability yi(α) Actual (A) 
                        Predicted (P) 

1.12 
1.12 

1.00 
0.98 

0.97 
0.99 

1.14 
1.11 

1.12 
1.11 

0.97 
1.01 

0.98 
0.95 

0.98 
0.99 

 
0.55 

0.97 
0.95 

3,6 
7 

Quality yi(μ)     Actual  
                         Predicted 

0.97 
0.97 

1.09 
1.08 

0.98 
0.98 

0.97 
0.96 

0.96 
0.96 

0.97 
0.94 

0.97 
0.91 

0.99 
0.95 

 
3.00 

0.96 
0.94 

5 
6 

Performance yi(β)  Actual  
                         Predicted 

1.00 
1.00 

1.00 
1.00 

0.87 
0.87 

0.86 
0.89 

0.89 
0.92 

0.84 
0.87 

0.86 
0.78 

0.89 
0.86 

 
1.25 

0.84 
0.78 

6 
7 

Human/Ergonomics, yi(γ) Actual  
                                     Predicted 

1.00 
0.91 

1.00 
0.91 

0.77 
0.84 

1.00 
0.99 

0.99 
0.93 

1.00 
0.92 

1.00 
1.15 

1.00 
1.00 

 
6.71 

0.77 
0.84 

3 
3 

Waste yi(ω ) Actual *unaccepted 
Predicted, Bold, mini. acceptable 

0.91 
0.91 

0.32* 
0.33* 

0.70 
0.68 

0.74 
0.83 

0.94 
0.94 

0.93 
1.09 

1.00 
1.09 

1.00 
1.17 

 
8.90 

0.70 
0.68 

3 
3 

5-factor OEE’-New-method  (A) 
                                              (P) 

0.98 
0.90 

0.34 
0.32 

0.45 
0.48 

0.70 
0.78 

0.89 
0.86 

0.74 
0.82 

0.82 
0.84 

0.86 
0.85 

 
2.73 

0.45 
0.48 

3 
3 

3-factor OEE- old method     (A) 
                                              (P) 

1.08 
1.08 

1.06 
1.06 

0.83 
0.84 

0.95 
0.95 

0.96 
0.98 

0.79 
0.82 

0.82 
0.68 

0.86 
0.73 

 
4.70 

0.79 
0.68 

6 
7 

 
Table 8. Improvement dynamism on the OEEs using three-sigma metrics.  

Improvement dynamism OEE-EP 
(OEEc)  at σj=3 = 0.067 measured at 
yi

’
min./year (x) (Eqn. (14)), yi

’*(x)min 

 1 2 3 4 5 6 7 8 9 

Availability (α)                Actual (A) 
                                        Predicted (P) 

 0.90 
0.87 

0.84 
0.98 

0.79 
0.77 

0.73 
0.72 

0.68 
0.67 

0.64 
0.63 

0.59 
0.59 

0.56 
0.55 

0.52 
0.51 

Quality (μ)                       Actual  
                                         Predicted 

 0.89 
0.88 

0.84 
0.82 

0.78 
0.76 

0.73 
0.71 

0.68 
0.67 

0.63 
0.62 

0.59 
0.58 

0.55 
0.54 

0.51 
0.50 

Performance (β)               Actual  
                                         Predicted 

 0.78 
0.73 

0.73 
0.68 

0.68 
0.63 

0.64 
0.59 

0.59 
0.55 

0.55 
0.52 

0.52 
0.48 

0.48 
0.45 

0.45 
0.42 

Human/Ergonomics, (γ)   Actual  
                                         Predicted 

 0.72 
0.78 

0.67 
0.73 

0.63 
0.68 

0.58 
0.64 

0.54 
0.59 

0.51 
0.55 

0.47 
0.52 

0.44 
0.48 

0.41 
0.45 

Waste (ω )                        Actual  
                                         Predicted 

 0.65 
0.63 

0.61 
0.59 

0.57 
0.55 

0.53 
0.52 

0.49 
0.48 

0.46 
0.45 

0.43 
0.42 

0.40 
0.39 

0.38 
0.36 

Max. improvement over  3-factor, 3-
sigma: OEEc* (OEE-EP*) (Eqn. (15)) 

(A) 
(P) 

0.62 
0.56 

0.52 
0.46 

0.42 
0.37 

0.34 
0.30 

0.27 
0.25 

0.22 
0.20 

0.18 
0.16 

0.15 
0.13 

0.12 
0.11 

Max. improvement over 5-factor, 3-
sigma: OEEc* (OEE-EP*) (Eqn. (15)) 

(A) 
(P) 

0.29 
0.28 

0.21 
0.20 

0.15 
0.14 

0.10 
0.10 

0.07 
0.07 

0.06 
0.06 

0.04 
0.04 

0.03 
0.03 

0.02 
0.02 

 
Table 9. Improvement dynamism on the OEEs using six-sigma metrics. 
Improvement dynamism OEE-EP (OEEc)  
at σj=6 = 0.0000034 measured at  (yi)min. 
/year (x) (Eqn. (14)), yi

’*(x)min. 

 1 2 3 4 5 6 7 8 9 

Availability (α) Actual (A) 
                     Predicted (P) 

 0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

0.97 
0.95 

Quality (μ)     Actual  
                      Predicted 

 0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

0.96 
0.94 

Performance (β)  Actual  
                           Predicted 

 0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

0.84 
0.78 

Human/Ergonomics, (γ) Actual  
                                      Predicted 

 0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

0.77 
0.84 

Waste (ω ) Actual  
                 Predicted 

 0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

0.70 
0.68 

Max. improvement over  3-factor, 6-
sigma: OEEc* (OEE-EP*) (Eqn. (15)) 

(A) 
(P) 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

0.78 
0.70 

Max. improvement over 5-factor, 6-
sigma: OEEc* (OEE-EP*) (Eqn. (15)) 

(A) 
(P) 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

0.42 
0.40 

 
 
 

The 3-factor based performance (65%) attained by 
Hedman et al. (2016) using automatic measurement 
approach can only compete with the 62% improve-

ement of this new 3-factor, 3-sigma error-proof model 
(Table 8), but far below 78% attainable from the 3-
factor, 6-sigma error-proof model (Table 9). 
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5. CONCLUSION 
 
The OEE model has been effectively formulated to 
plan production, labor utilization, maintenance, and 
working environment as reflected in the attainment of 
waste reduction, availability, quality, and performance 
improvements. The integration of human/ergonomic 
workplace environment (temperature) and system 
waste generation factors into the OEE measures has 
broken new ground in the field of overall equipment 
effectiveness research. Attainment of dynamism in the 
system effectiveness measures through the 
incorporation of best regression models and 
integration of encompassing error-proof, sigma metric 
parameter has made the system unique in terms of 
providing sustainable performance as compared to 
other popular techniques.  

The six-sigma has performed well in system error-
proofing and at the same time providing better 
productivity improvement platforms for the fast-
moving goods production process. The models were 
applied successfully to measure critical equipment 
effectiveness factors which are availability, 
performance, quality, workplace condition 
(temperature), and material waste of a production 
plant. On this basis, challenges that hindered the 
effective operation of the plant were mitigated and 
improved system was sustained.  

Results obtained using different scenarios of the 
model application to a production line showed a low 
performance which was improved upon using a better 
improvement program, the new OEE-EP model. The 
application of the OEE-EP model has made a 
landmark achievement by providing the highest level 
of improvements (0.42, 0.78), which are far better 
than those obtainable from past studies (0.20, 0.23). 
This landmark achievement can be attributed to 
excellent accuracy provided by error-proof, six-sigma 
metric in minimizing process variation. Specific 
conclusions drawn from this study are enumerated as 
follows: 
i. Unstable overall equipment effectiveness 

measures were obtained for the company in the 
years under review. This revealed the need for the 
company to be evaluating her productivity/overall 
equipment effectiveness annually for early 
correction of any ailing process factor before it 
gets out of control to stabilize the changing firm’s 
productivity over time. 

ii. The continuous improvement of the production 
process has been achieved for the company using 
overall equipment effectiveness error-proof 
strategy without an increase in input resources. 
This outcome has shown the management of the 
company the undesirability of increasing input 
resources before getting the productivity of the 
production process improved. Proper choice of 
resources management strategy can sustain and 
improve productivity. This has been shown by the 
outcome of this study. 

 

iii. There is a wide gap between traditional 3-factor 
OEE and new scheme 5-factor OEE results. 
Therefore, in the presence of uncertainty, it is 
advisable that the company base its productivity 
measure on 5-factor which is more robust.  

iv. The integration of error-proof sigma metric as a 
means of continuous improvement in the 
production process of the company has resulted in 
sustainable and stable productivity improvement. 
This lean metric has performed better than other 
improvement metrics such as lean bundle, lean 
green, and automation. 

v. The data set available for productivity/OEE 
prediction was small. This can affect prediction 
accuracy. To improve prediction accuracy, it is 
advisable that the company has a good record of 
annual OEE data for timely data updates. 

Further study is required in real-time 
implementation of the process through the application 
of computer programs to handle large data, to serve as 
a source of artificial intelligence at enhancing robust 
decision making in the future as regards the 
performance of the OEE-EP model. In such a study 
the null hypothesis shall be; the new OEE-EP model 
is robust enough to withstand emerging (future) 
wastes and environmental challenges, while the 
alternative hypothesis shall be the model cannot 
withstand future challenges. 

Proper identification of processes that required 
improvement, choice of appropriate improvement 
methods (tools) required and adequate representation 
of the process outcomes for good decision making are 
other areas of further research. The implementation of 
this scheme will require good experience and deep 
knowledge of processes identification and analysis 
with criticality and necessity consideration. 
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