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ABSTRACT: Although solar photovoltaic (PV) systems are environmentally friendly, policy makers and 

power system operators have concerns regarding the high penetration of these systems due to potential impacts 

of solar power intermittency on power systems. Understanding the nature of this intermittency is important to 

make informed decisions regarding solar power plants, size and location, transmission and distribution systems 

planning, as well as thermal generation units and electricity markets operations. This article presents a review of 

solar PV power characteristics and its impacts on power system operation.  

 
 

Keywords: Solar PV power; Intermittency; Power system operation; Reserve requirements. 

 

 

  نظرة عامة - الكهربائية على أنظمة الطاقة االطاقة الكهروضوئية وآثارهتذبذب 

 
 *م .ح. البادي

 

 

ومشغلي  قرارصناع اللدي مخاوف بعض ال ه توجد( صديقة للبيئة ، إلا أنPVضوئية )كهرولى الرغم من أن أنظمة الطاقة الشمسية الع :الملخص

ولذالك فانه الطاقة الكهربائية.  تشغيل نظمأنظمة الطاقة الشمسية الضوئية على عمليات انتاج  ذبذبأنظمة الطاقة الكهربائية بشأن الآثار المحتملة لت

تخطيط شبكات النقل ك كذل، و اتخاذ قرارات مستنيرة بشأن حجم محطات توليد الطاقة الشمسية وموقعها من أجل ذبذبلتامن المهم فهم طبيعة هذا 

لخصائص الطاقة الشمسية الكهروضوئية  عرض المقالةوعمليات أسواق الكهرباء. تقدم هذه  ةوالتوزيع ، فضلاً عن وحدات التوليد الحراري

 الطاقة الكهربائية. نظموتأثيراتها على تشغيل 
    

 
 .الأحتياطي الدوار ؛الأنتاج تذبذب ؛الطاقة الكهربائية نظمتشغيل  ؛ضوئيةكهروالطاقة الشمسية الالكلمات المفتاحية: 
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1. INTRODUCTION 
 

Solar photovoltaic (PV) systems experienced a 

tremendous increase in installed capacity in the past 

decade. According to the 2019 REN21 Renewables 

Global Status Report, the global solar PV installed 

capacity increased from 17 GW in 2008 to 505 GW 

in 2018 as shown in Fig. 1.  About 100 GW solar PV 

capacity was added in the year 2018. This rapid 

growth of solar PV system deployment is attributable 

to several factors such as PV technology 

improvements, cost reduction, as well as policies and 

regulations promoting the use of renewable energy 

resources (REN21 2019). 

     Solar PV power is environmentally friendly and 

can be used to extend fossil fuel reserves’ life. 

However, the implications of intermittent nature need 

to be examined. Intermittency of solar PV power 

affects the balance between supply and demand. 

When supply-demand balance is not maintained, 

power system frequency deviates from steady state 

values; consequently, system stability and reliability 

are jeopardized (Kundur, Paserba et al. 2004). 

Although it is technically possible to integrate a large 

amount of intermittent renewable-based facilities in 

power systems, higher penetration levels result in 

more challenges to power system stability and 

reliability. These challenges are quantified using 

intermittency integration costs (Albadi and El-

Saadany 2010). In general, the impacts of intermittent 

renewable-based generation facilities on power 

systems are due to two factors: variability and 

uncertainty (Ummels, Gibescu et al. 2007; Albadi 

and El-Saadany 2011). 

     Understanding solar power variability is necessary 

to make informed decisions regarding energy policy, 

solar energy conversion system design, transmission 

system planning, thermal generation units’ operation, 

and efficient electricity market operations (Sengupta, 

Xie et al. 2018). This paper presents a state-of-the-art 

review of solar PV power variability and its impacts 

of power systems. 

 

 
Figure 1. Global solar PV installed capacity. 

 

 

 

     This introduction is followed by presenting the 

characteristics of solar PV power output in section 2. 

Section 3 presents the impacts of PV power 

intermittency on power systems. Section 4 discusses 

the lessons learned from PV integration studies. The 

main conclusions are summarized in section 5. 

 

2. CHARACTERISTIC OF SOLAR PV 

OUTPUT 
 

     To highlight the variability aspect of solar PV 

power, Fig. 2 presents a typical clear sky solar PV 

system output based on ground measurements and 

recorded load data of the Main Interconnected System 

(MIS) of Oman on 1 January 2015 (Albadi 2017, 

OPWP 2019). As seen from this figure, even with a 

clear sky and its variation, there is a challenge to 

power system operator. As seen from Fig. 2, solar PV 

power output is not correlated with the load 

requirements. This mismatch poses a challenge to 

power system planner and operators. 

     Figure 3 presents the intermittency nature of solar 

PV power caused by passing clouds. The presented PV 

power data are based on recorded 1-minute solar 

irradiation data (OPWP 2019). 

  

 

 
 

Figure 2.  Manah site solar PV system output (clear sky) and 

recorded MIS system load data on 1 January 

2015.  

 

 

 
 
Figure 3. Manah site 1-minute PV power output data for 2 

days in 2015 (passing clouds). 
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     Variability is defined as the step changes from one 

averaging interval to the next one. There are two 

types of solar irradiance and PV plant output 

variabilities: deterministic and stochastic. The former 

variability is related to the position of the Sun 

whereas the latter is related to clouds. The output of 

different PV plants can be accurately calculated for a 

clear sky; therefore, the deterministic variability 

between different plants located in the same 

geographical area is highly correlated and its 

smoothing effect is very limited. However, stochastic 

variabilities caused by passing clouds on a single PV 

plant are severe and their implications on power 

system operation can be substantial. The magnitude 

of stochastic variabilities can be obtained from the 

difference between the PV system(s) output power 

during a sunny day and a cloudy day.  

 

2.1 Solar PV Variability Statistical Representation  
     Mathematically, variability is defined as the step 

changes from one averaging interval to the next one. 

To quantify the variability of an intermittent source 

of power, step changes of its average output is 

evaluated over different intervals (Hoff and Perez 

2012). For example, considering availability of 1-

minute data (   ), the 5-minute step changes (    
 ̅ ) 

are obtained by calculating the average output for 

every 5-munite interval (   
 ̅ ), and then evaluating 

the changes between the calculated 5-minute data 

(Hoff and Perez 2012). 

 

   
 ̅     

 

 
∑          

              (1) 

 

    
 ̅     

 ̅        
 ̅                 (2) 

 

     The standard deviation ( ) of step changes is used 

to quantify variability over relevant timeframe. For 

the example of 5-minute data, it is calculated using 

the following formula (Elsinga and van Sark 2015): 

 

 
    

 ̅  √       
 ̅               (3) 

 

where   is the variance. 

     Considering a normal distribution of variations, 

3  represent 99.7% confident interval that data (step 

changes) will be within. However, considering a flat 

tail distribution, the 99.7 confidence interval requires 

more than   .    

     The variability of the aggregate PV power that can 

be estimated is affected by correlation between 

different PV plants and between aggregate PV power 

and system load. To quantify the trends between time 

series measurements at two sites, correlation 

coefficient is used as an index. At value of 1.0, both 

sites have simultaneously the same trends. When the 

value is less than 0.25, the correlation is considered 

to be  weak (Brouwer, Van Den Broek et al. 2014). 

For weak and uncorrelated variabilities, the combined 

variability (   ) of two sites can be found using 

individual site variabilities (   and  ) as described by 

the following formula.   

 

    √    
      

                 (4) 

 

2.2   Variability Smoothing through Aggregation 
     Aggregating the output of different PV systems can 

reduce negative implications. The negative implication 

of intermittency is highly dependent on smoothing 

effect due to geographic diversity of these resources 

(Mills 2010). There are different levels of smoothing 

effect as discussed below: 

 

2.2.1 Smoothing effecting of aggregate solar irradiance data 

     Although clouds can cause substantial changes in 

solar irradiance in a single site as shown in Fig. 3, 

aggregating the output of several different solar 

irradiance meters reduces aggregated sites solar 

irradiance variability. This effect exists because clouds 

are diverse in nature as their sizes and shapes are 

changing and they do not cover different sites at the 

same time.  

     The authors in Jayaraman and Maskell (2012) used 

1-second data to study temporal and spatial 

variations of solar irradiance in Singapore. The study 

demonstrated that the global horizontal radiation 

variability is caused by direct beam radiation 

variabilities and that diffused radiation variability is 

very limited. The authors in Projects 2015 used 5 

second averaged irradiation data from 9 sites located 

within 0-15 km radius from central location. The 

authors concluded that combined irradiance is 

substantially less variable compared with a single site. 

For example, the step changes of the measured 

irradiance at a single site exceeded 500 W/m
2
. 

However, when the measured irradiance at the nine 

sites were combined, step changes were below 140 

W/m
2
 and mostly below 100 W/m

2
.  In addition, the 

authors of Projects 2015 concluded that both 

geographical dispersion and number of sites 

contributes to reducing solar irradiance variability. 

However, spatial dispersion smoothing effect is less 

important than increasing the number of sites for the 

considered timeframe (5 seconds). 

     In Murata, Yamaguchi et al. (2009), the authors 

demonstrate that the measured solar irradiation in 

Japan is uncorrelated for 1-minute time-scale when the 

geographical distance between them is more than 50-

100km. For the 20-minute time-scale, the correlation 

coefficient quickly decreases to 0.1 as the distance 

increases (Murata, Yamaguchi et al. 2009). 

     Similarly, the authors in Mills (2010) used 1-min 

solar irradiance data of 23 sites in the Southern Great 

Plains in the USA to study aggregation effect. The 

study reported that single site 1-min to 180-min 

variability can exceed 60% of the clear sky insolation.  

Moreover, aggregating the solar irradiance of five sites 

close to each other show that 99.7% of the 15-min and 

shorter time scales variabilities did not exceed 25% of 
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the expected clear sky output. Additionally, the 

99.7% of the 15-min and shorter time scales 

variabilities did not exceed 10% of the clear sky 

output from 100 sites with 20 km spacing, as shown 

in Fig. 4 (Mills 2010). These conclusions are based 

on measurements of solar irradiance data; therefore, 

they are considered to be conservative compared to 

actual aggregated PV power output variability.  

     In Perez, Lauret et al. (2018), the authors studied 

the temporal and spatial variabilities of solar 

radiation in Kenya using hourly solar irradiation 

Meteosat satellite derived data of 0.05°×0.05° grids 

in longitudes and latitudes. The authors reported that 

GHI measurement in a location can be used to 

represent an area of 1,225 km
2 
in most areas of 

Kenya. Moreover, in the central and western 

highlands, the area is increased to 5,625 km
2
. The 

authors reported that DNI spatial variability is twice 

that of GHI. Regarding inter-annual variability. The 

authors concluded that obtaining a representative year 

of solar irradiation in Kenya, 5.5 and 7-year data are 

required for GHI and DNI respectively. 

     The authors in Luiz, Martins et al. (2018) used one-

year of 1-min resolution ground-based irradiance data 

measured at three sites to analyze the intra-day solar 

irradiance variability. The surface solar irradiance 

variability was evaluated using visible satellite images 

of cloud cover in different Brazilian climate zones. The 

study concluded that generally humid months have 

more variability than dry months. In addition, dry 

locations experience more short-timescales variability 

than more humid locations. 

     Willemsen (2016) studied temporal, spatial and the 

impacts of wind characteristics of short term solar 

intermittency using 5-seconds data from 200 PV 

systems in Utrecht, the Netherlands. To quantify PV 

power output variability, the author used clearness 

index and delta clearness index. Clearness index is 

defined as the ratio of the measured global horizontal 

irradiance to the modeled clear sky irradiance at a 

horizontal level at a given time. The study concluded 

that the variation of irradiance between sites becomes 

independent if the separation distance is 100 meter for 

5 seconds data.  

 
 

Figure 4. Correlation of stochastic solar irradiance variabilities (Mills 2010). 

 
 

Figure 5. Maximum 1-min variability of a 13.2-MW PV plant on a highly variable day (Mills 2010).
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2.2.2. Smoothing effect of within a single PV plant 

     In general, solar irradiance variabilities are more 

severe than power output variability (Projects 2015). 

This smoothing effect is a function of the plant size 

and the timeframe. In general, larger PV plants have 

better smoothing effect than smaller plants (Lew, 

Brinkman et al. 2013).  The authors in Mills (2010) 

conducted measurement analysis of a multi-kW PV 

plant and showed that the sub-minute power output 

variabilities are lower than the corresponding solar 

irradiance variabilities. For a multi-MW power plant, 

similar smoothing effect is observed in sub 10-minute 

power output variabilities. Figure 5 below presents a 

linear curve fitting for data presented in (Mills 2010). 

 

2.2.3.  Smoothing effect of aggregate PV plants output 

The geographic diversity of PV plants decreases the 

probability of cloud fronts covering different PV 

plants at the same time. This smoothing effect has 

been observed (Wiemken, Beyer et al. 2001). 

Experience from PV plants performance in Germany 

showed that normalized 5-minute output variability at 

one site may exceed 50%, whereas the normalized 

variability from 100 PV sites was within 5% of 

installed capacity (Wiemken, Beyer et al. 2001). The 

power output variabilities of PV plants 20 km and 50 

km apart are considered uncorrelated for 15-min and 

30-minute or shorter time-scales, respectively. To 

obtain uncorrelated 60-min power output variability, 

sites should be at least 150 km apart (Mills 2010).  

     Elsinga and van Sark (2015) used the standard 

deviation of 25 PV systems power output 1-minute 

data to quantify variability in and around Utrecht, the 

Netherlands. The authors concluded that the power 

output of different PV systems becomes uncorrelated 

after a certain decorrelation length. For the full year 

data of the system understudy (100 km
2
), the 

decorrelation length was found to be 0.34, 2.6, and 

5.0 km, for 1, 5, and 15-minute timeframes, 

respectively.  

     If the outputs of an N-number of PV power plants 

are considered uncorrelated, the aggregated output 

variability is reduced by      .   

     It can be concluded that the correlation of output 

variabilities between different PV plants installed at 

different locations is a function of both a dispersion 

area and relevant time-scale. Less correlation is 

achieved over shorter time scales variability and 

broader geographical dispersion areas. Additionally, 

the speed of the clouds affects this correlation (Lave 

and Kleissl 2010; Hoff and Perez 2012). 
 

2.2.4    Smoothing effect of load and other energy resources 

variabilities 

     The study in (Projects 2015) considered the effect 

of 10 MW additional solar PV capacity on net load 

variability of a 55 MW islanded system having 4 

MW existing PV capacity. The authors concluded 

that the net load variability caused by additional 

10MW dispersed PV plants (9x1.1MW) was very 

similar to the original load variability. This result is 

attributed to the fact that aggregated load variabilities 

are not highly correlated to aggregated PV power 

variability. In addition, the authors in (Energy 2010; 

Halamay, Brekken et al. 2011)  concluded that 

aggregating different energy resources reduces the 

overall variability of the renewable-based power 

output.  

     In Koivisto, Das et al. (2019), the authors used 

time series simulation of wind and solar generation to 

analyze  the variability and uncertainty of intermittent 

renewable power. The study concluded that increasing 

intermittent renewable power capacity in future 

Nordic and Baltic countries is not expected to cause a 

significant increase in the hourly ramp rates of net 

load. The mean value of net load decreased for all 

studied scenarios. Moreover, the standard deviation of 

the net load is expected to have a slight and notable 

increase for in 2030 and 2050 scenarios, respectively. 

The authors concluded that with more geographical 

dispersion and mix of different renewable energy 

technologies, the standard deviation of the net load 

deceases significantly. 
 

3. IMPACTS OF SOLAR PV POWER 

INTERMITTENCY ON POWER SYS-

TEMS 
 

     In general, the intermittency of solar PV power can 

negatively affect power system operation in different 

aspects. These effects could be either local or system 

wide depending on installed PV capacity, load profile, 

flexibility of dispatchable generation units, and 

system network. 

 

3.1 Power Quality 
     Fluctuation solar irradiation a specific location 

results in fluctuating solar PV power output. This 

fluctuation, in turn, can cause power quality distortion 

such as flicker and overvoltage at that location or 

feeder (Trindade, Ferreira et al. 2017). Voltage 

variations caused by variable PV power could be slow 

(steady) variations during sunny days, in which the 

voltage at the point of common coupling increases 

with the power output. In addition, fast (transient) 

voltage variations occur on partly cloudy days as a 

result of passing clouds (Lew, Miller et al. 2010). This 

voltage variations could affect the tap changers and 

voltage regulators (Trindade, Ferreira et al. 2017). In 

addition, cloudy conditions can increase harmonic 

distortion levels caused by PV systems as reported in 

Varma, Rahman et al. (2016). The degree of power 

quality distortion caused by PV systems is a function 

of the characteristics of cloud transients, the size of 

PV system, the stiffness of the point of common 

coupling, and the inverter used.  

 

3.2 Power Flow and System Losses 
     The fluctuating output of solar PV systems changes 

the power flow; therefore, it affects system losses. 
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This effect is a function of the size and location of 

solar PV facilities. Even if PV systems are allocated 

optimally for certain load and solar conditions, 

fluctuating output of PV systems will change losses. 

(Albadi, Al-Hinai et al. 2013, Albadi, Al-Mashaikhi et 

al. 2015). In general, power system losses are 

expected to decrease when PV systems are distributed 

and located in load centers, and vice versa. 

 
3.3 Cycling and Ramping of Thermal 

Generation Units  
     High variability of PV power output could result in 

increased net load variability. This can increase 

cycling (turning ON/OFF) of thermal-based 

generation units (Albadi and El-Saadany 2011). 

Increased cycling results in increased wear-and-tear 

costs as well as increased emissions. The study in 

Lew, Brinkman et al. (2013) concluded that while the 

additional cycling costs caused by wind and solar 

power are minimal ($0.14–0.67 /MWh), the fuel cost 

reductions are substantial ($28–$29/MWh). In 

addition, the authors concluded that the increased 

cycling due to renewable energy caused a negligible 

impact on the CO2, NOX, and SO2 emissions 

reductions from renewable energy. Moreover, the 

increased ramping requirements of the net-load might 

result in dispatching generators that have high 

ramping capabilities regardless of marginal cost. This 

is of special importance when load ramping up/down 

requirements are opposite PV power variability. 
 

3.4 Operating Reserve 
     Operating reserve is required to balance short-term 

demand fluctuations. As the penetration of 

intermittent PV power in a power system increases, 

operators would require more operating reserves to 

maintain supply-demand balance (Halamay, Brekken 

et al. 2011, Dowell, Hawker et al. 2016). Additional 

uncertainty and variability caused by intermittent 

generation resources over time scales shorter than the 

starting time of fast-start generation units must be 

balanced using spinning reserve. However, adding 

more spinning reserve capacity results in more units 

operating at sub-optimal operating points with higher 

marginal costs (Ortega-Vazquez and Kirschen 2007).  

     Depending on study assumptions and system 

operator procedures, different integration studies 

address reserve requirements in presence of 

intermittent solar PV power differently (refer to Fig. 

6). Earlier studies considered a constant amount as a 

reserve requirement for the whole year based on load 

and/or intermittent   renewable power (Energy 2010, 

Halamay, Brekken et al. 2011). Recent studies 

considered variable hourly requirement to reflect 

expected load and intermittent power variability 

(Tabone, Goebel et al. 2016). 
     Two approaches are used to determine the reserve 

requirements: n-sigma and heuristics. In n-sigma 

approach, reserves are defined to be equal to a given 

number of forecasting error standard deviation 

(Halamay, Brekken et al. 2011). If the probability 

distribution function of the forecasting error is 

Gaussian, this method gives a confidence level for 

reserve requirements. For example, specifying the 

reserve to be 3-sigma (  ) implies a 99.73% 

confidence level. As extreme variabilities occur more 

than what Gaussian function predict, some studies use 

heuristics approaches to quantify reserve 

requirements. For examples, the authors in Lew, 

Brinkman et al. (2013) set regulating reserves to cover 

1% of the load and 95% confidence level of the 10-

minute load and renewable power forecast errors, 

respectively. Load following reserve is set to cover 

70% of the 60-minute renewable power forecast 

errors. In Tabone and Callaway (2015), Tabone, 

Goebel et al. (2016), Markov chain modeling is used 

to predict variability and uncertainty of PV systems 

for reserve requirement calculation.  

                          

 
 

Figure 6.  Reserve Requirements. 

 

4. LESSONS LEARNED FROM PV INTE-

GRATION STUDIES 
 

4.1 Extreme PV Power Variabilities Timings  
     Reserve is of special importance during extreme 

events that include the steepest net load ramps, the 

minimum net load, and the biggest forecast errors. As 

PV power variability is dominated by known 

deterministic (diurnal) changes, its reserve 

requirements should be based on stochastic (weather) 

component of solar variability (Ibanez, Brinkman et 

al. 2012). Extreme solar power variability is attributed 

to the known daily position of the sun in the sky (sun 

rise/set) not from fast-moving clouds. 

  

4.2 PV Geographical Dispersion  
     The authors of Tabone, Goebel et al. (2016) 

demonstrated that locations of utility-scale PV 

systems play an important role on regulation and load 

following reserve requirement in California’s power 

system considering additional 12GW PV capacity. 

When the PV capacity is geographically dispersed, 

additional reserve requirements are less than 0.05% 

Reserve 
Requirements  

amount 

constant 

variable 

approaches 

n-sigma 

heuristics 
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and 1.2% of installed PV capacity, for regulation and 

load following, respectively. These requirements 

increase to 0.2% and 5.6% for the centralized 

scenarios. In Tabone, Goebel et al. (2016), load 

following reserve is defined as the difference between 

hourly and 5-min schedules, whereas regulation 

reserve is the difference between actual net-load and 

the 5-minute schedule. 

 
4.3 PV Power Impacts on System Stability 
     It is unlikely that PV power will change 

contingency reserves (Brouwer, Van Den Broek et al. 

2014). This conclusion stands because the loss of 

supply resulted from a single contingency at the 

largest infeed will likely continue to be larger than 

that resulted from a contingency at single PV plant. 

The authors in Miller, Shao et al. (2014) studied 

transient stability and frequency response of the 

Western Interconnection with high wind and solar 

penetration. The authors concluded that the Western 

Interconnection can meet transient stability and 

frequency regulation objectives with high levels of 

wind and solar generation.  

     However, in the context of small and islanded 

grids, high PV power penetration level can change the 

required contingency reserves. For example, if the 

solar PV power becomes low due to a passing could, 

the frequency of the system will drop below frequency 

ride-through limit of PV inverters and they might 

disconnect simultaneously. This simultaneous loss of 

inverters can create a large loss of generation. 

 

4.4 Factors Affecting Intermittency Costs 
     To quantify the impact large solar PV power in a 

specific system, the following aspects need to be 

considered. 

 

➢ Characteristics of solar PV power output: PV 

power output is a function of both solar 

irradiation characteristics and geographical 

dispersion of PV production facilities. 

➢ System load and PV power output profiles: 

Highly correlated load and PV power profiles 

results in lower integration costs. Storage and 

demand response options can reduce net load 

variability. 

➢ Conventional generation units and 

transmission system characteristics: Flexible 

generation units such as natural gas-based 

power plants can accommodate increased net 

load variability better than other large units 

such as coal-fired or nuclear plants. 

➢ Electricity market design: The market design 

influences the reserve required to 

accommodate variable PV power. For 

example, forecasting errors and reserve 

requirements are lower when generation 

scheduling is done more frequently.  
 

5.  CONCLUSION 
 

The wide-scale integration of solar PV power might 

bring concerns regarding PV output variability and its 

challenges to power system operation. Although the 

solar irradiation measured at a specific site experience 

drastic change during cloudy days, a smoothing effect 

exists with aggregated measured data from multiple 

sites. In addition, because solar irradiation data at a 

specific site is based on one point of very small area, 

the output of a PV plant that covers hundreds of 

meters at that site is less variable than the measured 

solar irradiation. Moreover, field experiment shows 

that the output variability of aggregated PV plants 

output is much smaller than that of a single PV plant. 

Fortunately, extreme aggregate solar power variability 

is attributed to the known daily position of the sun in 

the sky not from fast-moving clouds. To quantify the 

system-wide impacts of PV power, reserve 

requirements to address intermittency are to be 

quantified. Studies show that geographical dispersion 

of PV power facilities is important to reduce reserve 

requirements. In addition, extreme solar power 

variability of geographically distributed PV power is 

attributed to the known daily position of the sun in the 

sky not from fast-moving clouds. The intermittency 

integration costs of PV power can be determined by 

calculating the difference between overall electricity 

cost with and without PV power. This integration cost 

is system specific and is affected by several factors 

such as the characteristics of solar PV power output, 

correlation between load and PV power output 

profiles, characteristics existing generation units’ and 

transmission system, as well as the design of 

electricity market.  
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