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1.  Introduction

Contact phenomena involving deformable bodies thrive
in industry and everyday life.  Many authors have consid-
ered the mechanical system vibration due to surface inter-
action and examine the surface theories with the presence
of friction (Brockley, et al. 1970; Soom and Kim, 1983;
Ibrahim, and Rivin, 1994;  Ibrahim, 1994;  Aronov et al.
______________________________________
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1984a; Aronov, et al. 1984b; Aronov, et al. 1984c; Tan and
Roger, 1998; Tworzydlo, et al. 1992; Tzou, et al. 1998).
In contrast to the earlier published research, the classical
notion of friction coefficient is entirely abandoned in this
work.  Instead, friction is obtained as a result of system's
dynamic response that includes time-dependent forces at
the contact.

Numerous works have been devoted to study the fric-
tion-induced vibration.  For ease of setup and interpreta-
tion an idealized physical system consisting of a mass
sliding on a moving belt has been considered very often
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(Panovko, et al. 1965; Nayfeh and Mook, 1979;
Mitropolskii and Nguyen, 1997; Popp, 1991; Tondl, 1991;
McMillan, 1997 and Thomsen and Fidlin, 2002), and it
will be in this present study.  The physical contact model
and governing equations with the inclusion of the vis-
coelastic properties are presented in this paper to study the
dynamic effects of the surface irregularities as a result of
mechanical interactions.

Several analytical or computational methods have been
applied to solve the dry friction problems to increase the
understanding of friction and vibration phenomenon in
mechanical systems.  Some of the elastic, elastic-plastic,
and plastic contact models are reformulated to estimate a
normal and tangential contact force, contact area and con-
tact stiffness.  The elastic and the elastic-plastic models
developed by Abdo and Farhang (2005) and by Abdo and
Shamseldin (2005)  in addition to the research results per-
tinent to the estimation of contact stiffness, Abdo (2006)
and  Abdo (2005)  are used in this study along with the
addition of the viscoelastic effects of contact.  In this
work, the viscoelastic properties are presented by combin-
ing loss modulus with Young's modulus to obtain a differ-
ential operator on the interference, reminiscent of the
Kelvin-Voigt model.  There is no assumption of
friction/velocity relation made in the formulation of the
governing differential equations.  The elastic and rate-
dependent contact force components between rough sur-
faces are presented to obtain the equations governing the
vibration response of mass-spring-damper system.

2.  The Dynamic Model
The basic assumptions of the elastic model along with

the shoulder-to-shoulder contact model (Abdo and
Farhang 2005), and Abdo 2005 and (Abdo and
Shamseldin, 2005)  are used in this study to account for
the elastic contribution of rough surfaces.  Elastic contact
model has viewed the surface irregularities as identical
asperities with spherical summits differing only in their

heights that can be measured from the mean plane separa-
tion of two rough surfaces.  The misaligned asperities per-
mit shoulder-to-shoulder contact.  When two solid bodies
are brought into contact, the real contact area will only be
a fraction of the apparent macroscopic contact area.  The
introduction of contact slope allowed the consideration of
normal and tangential components of the force. 

Referring to the free body diagram shown in Fig. (1),
the governing equation of the normal motion can be
expressed as

(1)

The governing equation of the tangential motion can be
expressed as 

(2)

no where Fna is the normal force applied to mass M. Fnc
is the normal contact force between the two contacting
rough surfaces.  It is the scalar sum of the resisting and
assisting viscoelastic contact components

(3)

     In this section, we are interested in developing a 
mathematical formulation relating the tribological 
events at microscopic and the macroscopic scales 
vibration response of a mass on a moving belt.  An 
example of the physical system is shown in Fig. 1 
which consists of a mass m on a belt that moves at 
constant speed, y .  The mass is a rigid body, at time t 
positioned at x(t) in a fixed frame of coordinates.  It is 
subjected to a normal applied static load Fna, linear 
spring-loading force Kx, plus damping force Cdx / dt.  
The h0 indicates the ini tial mean plane separation of the 
two contacting rough surfaces corresponding to the 
normal applied static load, Fna.  The model doesn’t 
assume a friction coefficient; therefore, friction is 
instead obtained as a result of system’s dynamic 
response that in cludes time-dependent forces at the 
contact.  The tangential -to-normal contact load ratio, 
the classical definition of the friction coefficient, is 
shown to depend on system response that in turn is 
dependent on both the structural and contact 
characteristics.  
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Figure 1.  Schematics of block on a moving platform 
and its free-body diagram ho
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     The terms neF− and neF+  denote, respectively, the 
resisting and assisting elastic normal contacts at the 
asperity interference slopes (Bengisu et al. 1997; 
Bengisu et al. 1999),  as shown in Fig. 2. It remains  a 
challenge to determine whether there is a net elastic 
influence on slidi ng surfaces.  As shown in Fig. 2 , when 
in static equilibrium, without the presence of an applied 
tangential     force,  the  contact   force  due  to  negative  



(4)

2.1  Approximation of Elastic Contact Forces
The elastic normal contact force per unit area is the sum

of the resisting and assisting elastic normal contacts at the
asperity interference slopes

(5)

The analytical solution of the force in Eq. (5) may be
approximated as the product of the two terms as follows:

Fne = Dne fne (6)

where Dne and  fne, are a function of surface properties and
a function of dimensionless mean plan separation between
two rough surfaces, respectively.  Two integrations are
involved in the contact force calculations.  The function
Dne is defined in Abdo (2006)  as 

(7)

(8)

where h is the normalized mean plane separation.  The  fne
function consists of double integral function over r and s
domains.  The integration of the contact function occurs

contact slope will be equal to  that due to the positive 
slope; therefore, the net tangential force on a surface is 
zero.  In the presence of an applied tangential force, the 
equilibrium condition dictates that the net tangential 
force to be the equilibrating force.  Bengisu and Akay  
(Bengisu et al. 1997) for example assume that the net 
elastic tangential force, ie. those due to positive slopes 
minus those due to negative slopes, is negligible.  We 
have chosen instead to include the factor of the friction 
due to the positive or resisting  slopes.  In the presence 
of an applied tangential load that is within the bounds 
of the static friction force, the statistical summation of 
asperity contacts corresponding to positive slopes is no 
longer equal to that for contacts with negative slopes.  
According to (Bengisu and Akay 1997) the assisting 
and resisting contacts balance in the case of sliding, 
with the expected conclusion that friction force is a 
result of mainly adhesive forces.  It is expected that as 
tangential applied load is increased an d the tangential 
contact loads due to positive -slope contacts continue to 
rise while those due to negative -slope contacts 
decrease.  In the limiting case, or the so -called 
maximum static friction, it is postulated that the load is 
completely supported by p ositive-slope contacts.  The 
views forwarded by Bengisu and Akay and postulated 
herein perhaps represent two extremes of what may 
actually take place in a frictional contact.  In the former, 
the friction is assumed to be mainly due to the adhesive 
forces whereas in the latter the friction force is assumed 
to be borne solely by mechanical interaction of 
roughness.  In this way we can obtain a generic 
formulation that can be easily adapted to any 
assumption.  The scenario for contact of asperities 
when a maximum force occurs is shown in Fig. 3 . 
Likewise, nvF− and nvF+  are those fo rces due to viscous 
effects, ie. the rate dependent effect of interference at 
positive and negative asperity slopes.  The elastic and 
viscous terms ar e a consequence of  a  viscoelastic 
contact, but they are defined separately here for the 
purpose of implementing the approximate analytical 
description of each term derived later.   The tangential 
force, Ft, in Eq. (2) exerted through the frictional 
contact on mass  M.  It is the scalar sum of the elastic 
interactions of the collection through both resisting and 
assisting viscoelastic contact components . 

t te te tv tvF F F F F− + − += + + +

ne ne neF F F− += +
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negative interference slopes
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     â ,  ç , 'E , ó  are the normalized radius of 
curvature of asperity mean summit,  asperity density, 
composite modulus of the material and standard 
deviation of asperity height distribution, respectively.   
The integral part of the normal force per unit area is  
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over the range of asperity-offset misalignment, referred to
as r-integration.  This integration is to account for the total
expected interference.  The height sum of the rough sur-
face, s, is represented by a Gaussian probability density
function,  φ(s).  Hence, in relating micron-scale events to
the resulting macro-scale expectations, two integrations
must be performed: firstly, the integration over possible
asperity offset and secondly the statistical integration over
all possible asperity height sums, s-integration, by imple-
menting a Gaussian probability function.  The resulting
integral forms describing an elastic contact of rough sur-
faces are analytically non-integrable.  Hence, their solu-
tion must be obtained numerically.  This fact imposes seri-
ous limitations on their use in a dynamic analysis of a
mechanical system.  To circumvent this shortcoming, we
developed approximate analytical functions for viscoelas-
tic contact of rough surfaces.  Using an interactive search
involving dynamic plotting of the function, fne is approx-
imated using a considerably simpler function.  The result
is an approximate function that depends on two independ-
ent variables, β, h.  Using the dynamic plotting technique,
fne  can be approximated by a product of exponential func-
tion of  h and a polynomial function of  β.  The piecewise
analytical solution of fne is obtained at three different
intervals as shown in the following equations:

(9)

(10)

(11)

The analytical solution of elastic tangential contact per
unit area is developed.  The analytical approximation can
be described as the product of two functions: a function of
surface properties Dte and a function of normalized mean
plane separation, h, between two rough surfaces, fte,  as
follows:

Fte = Dte fte (12)

Note that the constants Dne and  Dte are identical.    fte
is expressed as

(13)

Using dynamic fitting technique, the piecewise analyt-
ical solution of the function  fte is approximated in closed-
equations for two intervals of h as 

(14)

(15)

2.2  Approximation of Viscoelastic Contact Forces   

Therefore, a modified form of Hertz contact results in
which the modulus operator is used instead of the usual
elastic modulus 

(16)

where  ω the interference between the two asperities and
is derived in (Abdo 2005;  and Abdo et al. 2005) as 

(17)

Substitution of modulus operator in the Hertz equation
of contact and subsequent expansion revealed two forces.
One is an elastic force having the form encountered previ-
ously, and a second is viscous force defined by

(18)

The viscoelastic properties are presented by combining
loss modulus with Young's modulus to obtain a differen-
tial operator on the interference, reminiscent of the
Kelvin-Voigt model.  To develop an expression for the
normal and tangential components of the viscous forces,
the formulations of low to moderate contact force between
interacting  asperities  developed in Abdo (2005)  and ver-
ified in Abdo (2006) are considered.  The interacting
asperities are not assumed to occur only at the asperity
peaks, thus allowing the possibility of oblique contacts
wherein  the  local  contact  surfaces  are   no longer par-
allel  to  the  mean  planes of the  mating surfaces.  The
normal  component  of  the  viscous  force can  be  writ-
ten so as to include the oblique contact 
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     The viscoelastic model is developed using the 
Kelvin-Voigt’s constitutive equation relating stress to 
strain.  In Kelvin -Voigt model, the composite modulus 
of the material ′E and the loss modulus Ev are used to 
introduce the viscoelastic modulus differential operator 
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(19)

(20)

Since the interference, ω, depends on the normalized
mean plane separation, h, and the tangential offset
between two asperities, r, its derivative with respect to
time may be written as

(21)

Utilizing Eq. (18) then

(22)

The total expected contact force per unit area intro-
duced in the (Greenwood and Trip 1971)  is employed to
develop the total expected viscous normal contact force
per unit area as follows 

(23)

Utilizing Eq. (19) through Eq. (22), then Eq. (23) may
be written as 

(24)

(25)

(26)

fnvh and fnvr are the analytical functions for the normal-
ized viscous normal force.  Using the dynamic plotting
technique, the piecewise analytical solutions for fnvh and
fnvr can be approximated by a product of exponential func-
tion of  h  and a polynomial function of  β as follows 

(27)

(28)

In a similar manner, the solution of viscous tangential
contact force is developed.  The viscoelastic tangential
force is 

(29)

The total expected viscous tangential contact force may
be written as 

(30)

Utilizing Eqs. (20) through (22) and Eq. (29), then Eq.
(30) may be written as 

(31)
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where αs  is the interference slope defined by two 
points of interactions with respect to the mean plane.  
To simplify Eq . (19), we co nsider first the derivation of 
the rate of change of the interference function, ω  
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 is the loss factor for the friction film or 

material and σ  is the standard deviation of the surface 
heights.  The solution for the viscous contact normal 
force consists of two parts, involving the rate change of 
the normalized mean plane separation, h  , and the rate 
of change of the normalized tangential misalignment, 
ie. the sliding speed, = −r x y . The total expected 
viscous contact nor mal force, due to the interaction on 
both shoulders, is  
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     As before, the solution for the viscous contact 
tangential force per unit area consists of two parts 
involving h  and r . Therefore, Eq . (31) may be written 
as 
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(32)

where Dtv is identical to Dnv.  ftvh and  ftvr are the analyt-
ical functions for the normalized viscous tangential force.
Using the dynamic plotting technique, the piecewise ana-
lytical solutions for ftvh and  ftvr can be approximated by a
product of exponential function of h and a polynomial
function of  β as follows  

(33)
and 

(34)

2.3  The Model Analysis and Simulation
According to the dynamic model described in Fig. (1),

the dimensionless mean plane separation between two
surfaces is 

(35)

(36)

(37)

Eqs. (37) and (38) govern the motion of mass M in the
normal and tangential directions.  The equations tie the
vibration behavior of the system to both structural and
contact properties of the friction interface.

The dynamic model was developed based on several
assumptions to simplify the study.  The elastic normal and
tangential contact components are due to both positive
and negative interference slopes of an asperity as shown
in Fig. 2 and are added algebraically to provide their com-
bined effect.

There may or may not be a net resisting elastic tangen-
tial force when the two surfaces in relative sliding contact.
When this force exists, it is described as a fraction of the
maximum static friction force that is due to only positive
slopes.

The viscoelastic tangential forces are only produced by
the resisting contacts. 

3.  Results 

( )tv tv tvh tvrF D f h f r= +2
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 = −oh h h

where oh  is the initial mean plane separation of the 
contacting rough surfaces due to an applied normal 
force and ( )ˆh h σ  is the dimensionless displacement in 

the normal direction.  

 ( )na ne ne nv nvh nvrmh F D f D f h f r= − − +

 ( )te te tv tvh tvrmx kx cx  D f D f h f r=− − + + +

When h  is negative, all viscoelastic components 
exist and are additive for normal motion.   The 
responses of the dynamic model are studied at different 
belt speeds and a dimensionless average radius of a 
summit curvature, ,β  to investigate the roughness 
effect.  The equation of motion was solved using a 
Matlab Simulink program.  Unlike in other publications 
the friction force is accounted for as a result of 
interaction of the rough surfaces and response of the 
system.  Therefore, the tangential -to-normal contact 
ratio is a time -dependent variable based on structure 
and contact characteristics of the system.  Table 1 
summarizes the parameters used.  The simulations 
include moderate applied load condition corresponding 
to a high initial separation, h0 = 3.5.  The total range of 
dimensionless mean plane separation is from 0 to 4.5 
for contact force functions.  The  β  values considered 
in the simulatio n are 100 and 140 to ensure low 
plasticity index so that the asperity deformation will 
remain predominantly elastic.  For cases performed but 
in order to reduce the length of the article only the 
results of case 1 will be presented.  

( )mµσ  15 Kn (N/m) 3.5x 108 

( )2−mmη  400 C (N.s/m) 21166 

vη  0.001 
0h  3.5 

E′ (Gpa) 113.1 β  100 

M (Kg) 5 y (m/s) 0.015 

Case 1 Fna=0.002 Fc   

Table 1.  Parameters from a steel sample

     The analytical solutions of normal to tangential 
contact forces presented in this work are applicable to 
dimensionless mean plane separation, h = 0 to 4.6 and 
the dimensionless average radius of asperity summit 
curvature, β= 10 to 140.  T he approximate analytical 
solutions developed included the normal and tangential 
contact forces due to viscoelastic effects.  The purely 
elastic term or rate dependent term is presented as a 
product of two functions.  The first corresponds to a 
constant te rm for a given surface and the second 
depends on the separation of mean surfaces as well as 
tangential asperity offset. It suffices to evaluate the 
approximate equations with respect to these functions.  
Therefore the evaluations will only involve 

ne te nvh tvh nvrf , f , f , f , f  and tvrf , not the constant terms 
Dne, Dte, Dnv, and Dtv. The comparison between the 
original integral function of the elastic normal and 
tangential contact forces, nef , tef  as depicted in Eqs.  8 
and 13, respectively, and their piecewise analytical 
solutions ne nef , f1 2  and nef 3  and te tef , f1 2  and tef 3  
for the ranges of h = 0 to 1.5, h = 1.5 to 3.0 and h = 3.0 
to 4.5 at diff erent values of β  are  performed.  The 
comparisons  at  β =  10,  40,  75,  100,  125,  and  140  
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The results for case (1) are depicted in Fig. 7 through
Fig. 10.  Figure 7a shows the trajectory of tangential
motion, tangential speed versus tangential displacement of
the mass m.  The zoom-in view  (Fig. 7b) shows decreas-
ing spiral, which represents a mass response of decaying
oscillation corresponding to a stable behavior.  The trajec-
tories in Fig. 7 and the time history in Fig. 8 indicate an
initial decay followed by a growth in vibration up to a
level at which the vibration is sustained.

In case of the normal motion of the mass the structur-
al decay is absent consistent with the system's depiction in
Fig. 1 in which no structural stiffness or damping exists
for the vibration of mass M along the normal to the plat-
form.  As shown in  Fig. 9(a,b) the vibration is grown and
sustained at a value of 0.005 mm.  The friction coefficient
defined as the tangential to normal friction shown in Fig.
10 depicts a steady state value of 0.026 for case 1.

4.  Conclusions

This paper has addressed the dynamic effects of the sur-
face irregularities (roughness) as a result of mechanical
interactions.  We have exhibited the cross-influence of tri-
bological interactions that occur at the micron-scale and
the dynamics of a mechanical system involving macro-
scale events.  The utility of the contact theories in this
work was demonstrated through the dynamic analysis of a
simple mechanical system.  We have considered a
mechanical system comprising a spring-damper-mass and

a platform in relative tangential and normal movements
while maintaining frictional contact between mass and
platform rough surfaces.

The results pertaining to the prediction of contact forces
were used along with the addition of the viscoelastic
effects of contact.  The approximate analytical solutions
were obtained for normal and tangential contact compo-
nents in viscoelastic contact.  The term viscoelastic was
separated into components of elastic and rate-dependent
interactions.  It was shown that the formulation of contact
forces allow the inclusion of frictional contact without the
necessity of including the friction/velocity relation phe-
nomenologically.  No presumption of a friction coefficient
has been made.  The friction force is accounted for as a
result of interaction of the rough surfaces.  Rather the tan-
gential (friction) force has been a result of the considera-
tion of contact at the micron-scale level between two
asperities on the surfaces and the statistical summation of
this interaction to obtain the macrolevel expectation func-
tions.  This led to a set of nonlinear ordinary differential

show good agreements between the original and the 
approximation functions throughout the ranges of .β  
The relative percentage errors are between 9% and 
10%.  The  comparisons  of   the  original  and   viscous 
functions for the same values of β  are also performed.  
The estimation of viscous the functions shows a relative 
percentage error between the  original and the 
approximation functions is less than 20%.  This is 
below the inherent uncertainty involved in surface 
measurements that can climb to as much as 50%.  
Comparisons between the original integral function of 
the elastic normal contact force,  nef , as depicted in 
Eq. 8 and its piecewise analytical solutions, ne nef , f1 2  
and nef 3  for the ranges of h = 0 to 1.5, h = 1.5 to 3.0 
and h = 3.0 to 4.5, respectively, at β = 100 and 140 are 
shown in Fig. 4.  As seen in the figures, the 
comparisons show good agreement between the original 
and the approximate functions for β = 100 and 140.  
The relative percentage error between nef  and 

ne nef , f1 2  and nef 3  is 9% at β = 100 and 10% at 
β =140.  The comparison between the approximate 
functions tef  and its analytical solutions and tvhf  and 
its analytical solutions for the ranges of  h = 0 to 1.5,   
h = 1.5 to 3.0 and h = 3.0 to 4.5, respectively, at β = 
100 and 140 are shown in figures 5 and  6.  The relative 
percentage error between the original and the 
approximation functions for  both functions are 17% and 
19%, respectively.   
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Figure 4.  Elastic normal force at β = 100 & 140

 Elastic Tangential Force, fte, at Beta = 100 & 140
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 Viscoelastic tangential force, ftvh, with Beta = 100 & 140
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(a)                                                                                            (b)

Figure 7 (a, b). Trajectory of tangential motion and the zoom-in view, Case 1

(a)                                                                                            (b)

Figure 8 (a, b).  Tangential speed of the mass and the zoom-in view, Case 1

(a)                                                                                             ( b)

Figure 9 (a, b).  Normal speed of the mass and the zoom-in view, Case 1

Figure 10 (a, b).  Load ratio (friction function), Case 1
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equations that directly relate the vibration of the system to
the surface parameters, mechanical system parameters and
physical parameters.

The study has shown the following:
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• The tangential trajectories of the four cases showed 
initial decay dominated by structural damping 
followed by a growth in vibration up to a level at 
which vibration is sustained that is due to the 
interaction of surface asperities of the moving 
platform and those of the structure mass.  

• The vibration of the normal direction of the four 
cases grow to a level at which it is sustained that is 
due to frictional interaction between the platform 
surface roughness and that of mass M and the 
absence of the structural decay.  

• The low tangential to normal contact load ratio of 
the four cases is due in part to the relatively low 
surface roughness in the present study in order to 
ensure the predominance of elastic interaction at 
the contact.  
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