
1. Introduction

Inverse problems often occur in many branches of engi-
neering and mathematics where the values of some phys-
ical model parameter(s) must be deduced from observed
data. System identification comes under the category of
inverse problems. It is the process of determining the
parameters of a system based on the observed input and
_______________________________________
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output (I/O) of  the  system.  In structural engineering, sys
tem identification is used to determine unknown parame-
ters such as mass, stiffness and damping properties of a
structure.  Structural identification methods can be classi-
fied under various categories, eg. frequency domain and
time domain, parametric and nonparametric methods.
Inverse problems can be solved using classical and non-
classical methods.
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1.1 Classical Methods
The least square method is perhaps the simplest classi-

cal methods for structural identification.  It estimates the
unknown parameters of structural system by minimizing
the sum of squared errors between the predicted outputs
and the measured outputs. Many other classical methods
such as maximum likelihood method, instrument variable
method and extended Kalman filter method have been
developed. Koh et al. (1991) used the Kalman filter
method for identification of stiffness and damping coeffi-
cients from measurement of dynamic responses in the
time domain. Detailed information about classical meth-
ods and non-linear identification are presented in the
review paper by (Gaetan et al. 2006). Some classical opti-
mization methods such as gradient methods (typically
variations of Cauchy, Newton and Levenburg-Marquardt
methods) need a good initial guess of the parameters to
converge fast and accurately.  Some studies have been
conducted to supply good initial values using non-tradi-
tional  methods such as GA which would sample the
search domain efficiently. Thus certain classical methods
such as Levensburg-Marquardt were hybridized with GA
to identify system parameters with less computational
time and improved accuracy (Kishore et al. 2007 and
Friswell et al. 1998).

1.2 Evolutionary   Algorithms  and  Behaviourally 
Inspired Algorithms

Evolutionary algorithms are robust optimization algo-
rithms based on the heuristic concept of natural selection
and genetic operations.  Optimization algorithms find the
minima or maxima of functions in a given function
domain. Over the past few decades the area of genetic
algorithm (GA) has been widely developed and applied
for structural identification. Unlike classical methods,
there is no requirement for calculation of gradients and
second derivatives which frequently lead to numerical
instability. GA applications in system identification such
the identification of elastic properties of composite plates
from dynamic test data is presented in (Jesiel et al. 1999;
Chakraborthy  and Mukhopadhyaya 2002). Recently
efforts have been made to alter the architecture of GA and
to incorporate local search algorithms to further improve
its performance, see for example see (Koh et al. 2003  and
Perry et al. 2004). 

Behaviorally inspired optimization algorithms have
been developed out of attempts to model the natural
behavior of  a flock of birds or a colony of ants. Social
insects have diverse foraging systems that reflect the enor-
mous range of ecological conditions in which they oper-
ate. Ant colony optimization (ACO) and Particle swarm
optimization (PSO) techniques are inspired by real ant
colonies and flock of birds respectively. 

2.   Ant Colony Optimization (ACO)

Ant colonies continually adjust foraging effort to
changing conditions. Individuals use local information in
foraging decisions and colonies can tune foraging effort to

the location, quality and abundance of food. ACO is a gen-
eral purpose Combinatorial Optimization (CO) technique.
CO optimization is one of the youngest and most active
areas of discrete mathematics. As the name suggest CO
deals with finding optimal combination of available prob-
lem components. Hence, it is required that the problem is
portioned into a finite set of components and CO algo-
rithm attempts to find the optimal combination. 

ACO, a meta-heuristic which is based on the Ant
System introduced in the early nineties by (Dorigo 1992
and Dorigo et al. 1996).  It has been used to solve a vari-
ety of combinatorial optimization problems, eg. the vehi-
cle routing problem by (Bullnheimer et al. 1999)  the trav-
eling salesman problem  by (Dorigo et al. 1997) and the
industrial layout problems studied by (Hami et al. 2007;
Corry and Kozan 2004 and Rajamani and Adil 1996).
Abbospour et al.  (2001) proposed the ACO-IM (Inverse
Modeling) method for estimating soil hydraulic parame-
ters. They compared results of ACO-IM with Levenberg-
Marquardt (LM) method and finally complimented ACO
and LM to obtain final solution which was better than pure
ACO itself. Some extensions and variants of ACO are pre-
sented in the review paper by (Blum 2005).

Recently ACO has been applied to structural optimiza-
tion and topology optimization. The goal of truss opti-
mization is to optimally utilize the geometry and material
of the proposed design elements to result in the lightest
structure satisfying all the design, manufacturing con-
straints and other physical constraints. Since ACO is a dis-
crete CO problem, several studies using it to optimize
steel trusses for minimum weight using discrete cross sec-
tional areas and other parameters were conducted, see
(Camp et al. 2004; Camp et al. 2005 and Serra et al.
2006). These studies mapped the length of the tour of the
ant to the weight of the truss and represented the volume
of the element as virtual paths in ACO model for truss
design. 

A biomechanical application of PSO  is presented by
(Jaco et al. 2005) where ankle joint model parameters
were identified and compared with gradient methods such
as sequential quadratic programming, quasi-Newton algo-
rithm and GA. The PSO algorithm was found insensitive
to design variable scaling and gradient methods are high-
ly sensitive. The parameters of Lorenz chaotic system are
estimated using PSO in reference (Qie et al. 2007).  It was
found that PSO converges to exact value with high popu-
lation size and more effective than GA.  A 10-dof structur-
al dynamic model was identified using frequency
response function by GA and PSO in  (Mouser and Dunn
2005), without using hybrids. PSO was found more likely
than GA to produce  better parametric  models. A PSO-GA
hybrid was used to successfully identify faults in the water
supply system in Japanese cities by (Furuta and Yasui
2005).  However only a single case is studied, and com-
parisons with pure GA and PSO are not shown for that
case study, but only for benchmark equations. Recently
PSO has been successfully applied in many research and
application areas such as pattern recognition (Peng-Yeng
et al. 2006), scheduling (Binghui et al. (2007)), layout
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optimization (Zhang et al. (2007), and the design opti-
mization of Unmanned Aerial Vehicle (UAV) with respect
to flight loads (Hu et al. 2004).

2.1 The ACO Algorithm
The inspiration for ACO is the foraging behavior of

ants, particularly how they find the shortest paths between
food sources and their nest. While searching for food, ants
initially explore the area surrounding their nest randomly.
When ants move they leave a chemical pheromone trail on
the ground. When choosing their way, ants tend to favor
paths marked by strong pheromone concentrations. As
soon as an ant finds a food source, it evaluates the quanti-
ty and the quality of the food and carries some of it back
to the nest. During the return trip, the quantity of
pheromone that an ant leaves on the ground may depend
on the quantity and quality of the food. The pheromone
trails will guide other ants to the food source. 

ACO model consists of graph G = (V, E) (Blum et al.
(2005)) where V consists of two nodes, namely vs (nest)
and vd (food source). E consists of two links e1 and e2
between vs and vd and corresponding length are l1 and l2
as shown in Fig. 1. 

Path e1 represents the short path between vs and vd , and
e2 represents the long path. Real ants deposit pheromone
on the paths on which they move. Thus, the chemical
pheromone trails are modeled as follows.

(1)

where  pi is the probability of an ant choosing the ith path,
τi is artificial pheromone value  for each of the two links
ei , i = 1, 2.  Obviously, if τ1 > τ2, the probability of choos-
ing e1 is higher, and vice versa. For returning from vd to vs
, an ant uses the same path as it chose to reach vd and it
changes the artificial pheromone value associated to the
used edge. After all the ants have returned to the nest, the
pheromone information is updated using Eq. (2) 

(2)

wher p ε  (0,1] is evaporation rate, Q is a constant, Lk is
length of the path traversed kth ant and na is number ants
in the colony.  The aim of pheromone update is to increase
the pheromone value associated with good or promising
paths. Pheromone evaporation is needed to avoid too rapid
convergence of the algorithm.

Implementing the discrete ACO algorithm for a contin-
uous problem requires substantial modifications.  The
physical problems need to be represented in a graphical
from as shown in Fig. 2 and Fig  3.  The elemental stiff-
ness value is divided in to 'np' different values randomly
with in the specified range.  Each of these values can be
represented as local path between the two levels and each
of which leads to global path as shown in Fig. 2b and 3b.
As mentioned earlier, ACO algorithm requires finite set of
components, i.e. resolution of the local paths, so each
stiffness value is divided in 'np' different paths (stiffness)
in the given range. ACO algorithm has to find shortest
path out of npnv (nv- number of parameters to be identi-
fied) available combinations. In real ant colony initially
ants take random paths and deposit pheromone. As the
iteration proceeds, all the ants in colony take the shortest
path and there by increasing the intensity of pheromone
trail on the shortest path. The main goal in structural iden-
tification is minimizing the objective function, which in
turn decides the amount of pheromone deposition.
Generally ACO minimizes the length of the Lk in Eq. 2,
traversed by kth ant. In structural identification, ACO min-
imizes the fitness value, ε Eq. 8, which is analogous to
length of the path Lk in Eq. 2 and the amount of
pheromone deposited depends on the value of ε.

3.  Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population
based continuous optimization technique developed by
(Eberhart and Kennedy 1995), inspired by social behavior
of bird flocking or fish schooling. PSO shares some simi-
larities with evolutionary computation techniques such as
Genetic Algorithms (GA). The system is initialized with a
population of random solutions and searches for optima
by updating generations. However, unlike GA, PSO has
no evolution operators such as crossover and mutation. In
PSO, the potential solutions, called particles, move
through the problem space by following the current opti-
mum particles.  

The basic PSO algorithm consists of the velocity and
position equation of the kth generation:

(3)

(4)

i - particle number
k - iteration number
v - velocity of ith particle
x - position of the ith particle/ present solution
pi -  historically best position/solution found by ith particle
G -  historically  best    position/solution    found  by   all 

particles 
γ1,2 - random number in  the  interval  (0,1) applied to ith

particle

vs e1, l1 vd 

e2, l2 
Figure 1.  The ACO Model
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The frequently used PSO form includes an inertia term
and acceleration constants, hence the velocity equation of
PSO algorithm is modified as:

(5)  

ϕ    - inertia function
α1,2 - acceleration constants

The inertia function is commonly either taken as con-
stant or as a linearly decreasing function from 0.9 to 0.4.
The acceleration constants are most commonly set to both
equal to 2 as in (Shi and Eberhart 1998). The algorithm
starts with initializing the i  particles randomly with ini-
tial zero velocities. PSO then searches for optima by
updating the positions of particle through several genera-
tions. At every generation, the location of each particle is
updated based on  two "best" values defined as follows.
The first  is the historically best solution (fitness) achieved
so far by all particles and stored as gbest. Another "best"
value is the historically best value obtained so far by the
ith particle in the population and is called  pbest. The posi-
tion of each particle is updated by a quantity which
reflects the difference between gbest and pbest (equation
(4) and (5)) and eventually all the particles tend to con-
verge to the global best (gbest) position. The superiority of
PSO over other comparable heuristic algorithms such as
GA could be attributed to the explicit tracking  and updat-
ing of gbest and pbest over the generations.

4.  Genetic Algorithm (GA)

Genetic Algorithms are optimization algorithms based
on the mechanism of natural selection and survival of the
fittest. Over the past few decades GA has been widely
developed and applied for structural identification.  GA
combines the explorative ability of large search domains
as well as reasonable guided search to the global optima
(Michaelwicz 1994).  GA creates an initial random sample
within the specified domain of variables, called  'popula-
tion'. It then ranks them in the order of fitness and con-
ducts crossover operations from among a pool of  'parents'
through the Roulette wheel selection. Parents having high-
er fitness have a greater probability of being selected for
crossovers and their offsprings contribute to the next gen-
eration. These offspring have marginally better fitness
than the parents and over many generations they attain the
global maxima. GA can be programmed in the Binary or
Continuous versions. Here the Continuous (decimal num-
ber) version is used to avoid the computationally intensive
conversion from binary to decimal and vice-versa. It been
indicated in a few studies that continuous GA is superior
to binary GA in computational performance (see
(Michaelwicz 1994 and Haupt 1994) ).  It may be noted
that unlike PSO, GA does not explicitly keep track of the
globally best solution (gbest) and particle best (pbest)
solutions.

5.  Numerical Examples and Discussion 

For structural identification problems it is usually
assumed that the mass of the structure is known and the
identification is limited to structural stiffness and damping

k1 

knv 

m1 

mnv 

knv-1 

mnv-1 

Ants taking different paths  

Local paths  

Global paths  

Figure 2 (a) Multi-DOF physical mode (b) ACO-gra-
physical model

(a)                                             (b)

(a)

(b)

Figure 3 (a) Physical model of truss (b) ACO-model 
of the truss (for brevity only a few paths are
shown
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properties. It is assumed that the structure is excited by
known forces and that the responses of the structure in
terms of accelerations, are recorded at some given points.
The dynamic equation of a structural system can be writ-
ten as

(6)

where M, C and K are the mass matrix, damping matrix
and stiffness matrix, respectively, u is the displacement
vector and F is the force vector. Proportional damping is
adopted as follows

(7)

where α and β are two damping constants, which can be
related to the modal damping ratio. In the examples which
follow, experiments are simulated numerically using the
known parameters of the structure ie. the forward analysis
is carried out by numerically solving the dynamic equa-
tion using the  parameter values  (such as in Tables 1 and
4). The acceleration responses in the time domain are
obtained at desired places and they are treated as experi-
mentally obtained values. Noise may be added to them to
be more realistic. The difference between the estimated
acceleration response and measured acceleration response
is used to compute the fitness value (objective function)
as given by the Eq. (8) given below, which has to be min-
imized (see reference Koh et al. 1991).

(8)

The parameters used in GA, PSO and ACO are given

in the Table 2. They were applied to all the numerical
examples. To compare  GA and PSO  they were given the
same population size (200) and  number of generations
(50).  These values are taken from Koh and Shankar
(2003) which dealt with identification of structural sys-
tems similar to this paper.  The crossover rate (40%) and
mutation rate (5%) for GA, and PSO inertia function value
(0.3) and acceleration constant (2) were selected from the
best parameters recommended from standard literature on
these algorithms (Michaelwicz 1994; Haupt 1994;  Shi
and Eberhart 1998).  Comparable ACO parameters were
however more difficult to establish since it is a discrete
approach whereas PSO and GA are continuous with their
resolution decided by the precision of the smallest deci-
mal number - which is by default set to double precision
in MATLAB.  It is impractical to obtain a comparable pre-
cision in ACO by discrete division of the search interval
(ie. number of paths). Thus the crucial ACO parameters
such as number of ants (400), number of paths (100) and
number of iterations (100) were chosen after several trials
as a compromise, which would converge in a reasonably
comparable time as GA, with mean errors which are
acceptable for system identification purposes. Each algo-
rithm has been run ten times separately to minimize the
objective function, ε, for both impulse and random excita-
tion with noise-free and noisy data and the final results
shown is the average.

5.1 Example 1: 10-DOF Lumped Mass System
In the numerical study, a 10-DOF lumped mass system

studied in (Koh et al. 2003) and shown in Fig. 2(a) is con-
sidered. The structural parameters are tabulated in the
Table 1. Impulse and random excitation is applied at the
5th level. The impulse was given as an initial velocity of
10 m/s to the first mass, the displacements and velocities
of all other DOF set to zero. The impulse excitation was
simulated by imposing equivalent initial velocity condi-
tions obtained from impulse momentum relation using the
method followed in  (Hanagud 1985).  The Gaussian ran-
dom force was applied as with a maximum amplitude of
10 N.  Accelerations at alternate levels, ie. levels 2, 4, 6,
8, 10 are assumed to be available for the purpose of struc-
tural identification.  Referring to Eq. 8,  here m=5, and n
the time steps are 500 in the range from 0 to 2 seconds.
Here the objective is to find out the unknown spring stiff-
nesses k1 to k10. In all the problems hereafter the search
limits for unknown parameters are taken as -50% (lower
limit) to +100% (upper limit) of the exact value. In GA
and PSO initial population/particles are generated within
this specified range. In ACO a matrix of size nv × np is
generated within the specified parameter range. ACO has
to choose best combination of paths which minimize the
objective function.

The results for this system are shown in the Fig. 4. GA
and PSO have identified the parameters  more accurately
as shown in Fig. 4 (a) and (b). The accuracy of identified
values by PSO is more than GA which can be noticed in
the almost constant plateau in Fig. 4 (b) as compared to

( ) ( ) ( ) ( )Mu t Cu t Ku t F t+ + =

C M Kα β= +

2

1 1

( , ) ( , )
Minimize: 

*

m n

mea est
i j

u i j u i j

m n
ε = =

−
=

∑ ∑

where ( , )meau i j and ( , )estu i j are, respectively the 
measured and estimated responses of ith measurement 
location at jth time step, m is the number of 
measurement location and n is the number of time 
steps.  The “measured” responses are obtained from 
numerical simulation. The “estimated” responses are 
obtained from the mathematical model  (Eq. 6 and 7) 
where the optimization variables are t he now unknown 
stiffness properties and damping ratio. The values of 
the  variables which minimize Eq.  8 give the required 
structural properties. To excite higher modes for better 
identification the input forces are impulse and random 
excitations (the latte r by means of Gaussian white 
noise). The  dynamic equations are solved using 
Newmark’s constant acceleration method. Two seconds 
of acceleration response is computed with constant time 
step of 0.004s in 500 steps. To investigate the effect of 
noisy data on  identification, the I/O time signals are 
artificially contaminated by zero -mean Gaussian white 
noise. The noise level is defined as the ratio of standard 
deviation of the noise to the root -mean- square value of 
the uncontaminated time history; here it is taken as 
10%.  
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GA (Fig 4(a)) for stiffness levels 6-10.  From Fig. 5 and 6
it is clear that GA and PSO performs better with presence
of noise for both types of excitations (impulse and ran-
dom). But ACO fails to identify the parameters with noisy
data. Table 3 gives maximum and average errors (aver-
aged over 10 runs) in identification of the stiffness param-
eters using impulse and random excitation. The maximum
errors observed for the noisy case are 15.9% for ACO,
9.12% for GA and 4.17% for PSO (using random excita-
tion). The mean errors are 12.34%, 3.47% and 2.88%
respectively (using random excitation). The Table shows
that using impulse excitation gives lesser errors than the
random type. In such as case PSO produces a maximum
error of only 3.02% with a mean error of 1.13%. Thus it is
clear from the Fig. 5, Fig. 6 and Table 3, that the PSO
gives superior results as compared to the other two algo-
rithms for both types of excitations and with noisy data

from the point of view of maximum and mean errors as
well as computational time which is similar for both load
cases.     

5.2 Example 2:  11- Member Planar Truss
In this example an 11-member planar truss is consid-

ered for identification of the axial rigidity (EA) of all the
11 (ie. number of variables, nv = 11) members.
Configuration and structural properties of the truss are
given in Fig. 3(a) and  Table 4, respectively. To implement
ACO, the physical truss has to be represented as a graph-
ical model with axial rigidity (stiffness) of each  member
discretized into 100 units ie. this would correspond to 100
paths per member.  Fig. 3(b) shows schematically this
division of each member into several paths.  For clarity
only 3 paths are shown per member.   

Stiffness (kN/m)  

Level 1-5  350 

Level 6-10 600 

Mass (kg) 

Level 1-5  500 

Level 6-10 300 

Damping 

Critical damping ratio for first 2 modes  5% 

Table 1.  Structural properties of lumped mass system

GA PSO ACO 
Population size  200 No. of particles  200 No. of ants  400 
No. of generations  50 No. of generations 50 No. of iterations  100 
Cross over rate  40% Inertia function  0.3 Evaporation rate  30% 
Mutation rate  5% Acceleration constants  2 No. of paths  100 

        Constant Q 1 

Table 2.  Parameters used in the algorithms

Impulse excitation  Random excitation  

Algorithms with out noise with 10% noise  With out noise  with 10% noise  

Average 
computational 

time (sec)  

  Max Mean Max Mean Max Mean Max Mean   

GA 3 1.77 4.7 1.90 5.4 2.26 9.12 3.47 95 

PSO 0.23 0.06 3.02 1.13 2.51 0.58 4.17 2.88 40 

ACO 4.55 1.45 15.15 7.68 4.39 2.09 15.91 12.34 140 

Table 3.  Absolute percentage error in identification of stiffness - lumped mass system

Axial rigidity (MN)  300 
Cross section area (m 2) 0.0015 
Density (kg/m 3) 7800 

Critical damping for first 2 modes  5% 
 

Table 4.  Structural properties of truss
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(a)                                                                                        (b)

(c)
Figure 4.  Identified values of the level stiffness v/s no. of runs with noise-free data for impulse excitation

(a) GA (b) PSO  (c) ACO

(a)                                                                                        (b)

(c)
Figure 5.  Identified  values  of  the  level  stiffness  v/s  no. of  runs with noise-free  data  for impulse excitation

(a) GA (b) PSO  (c) ACO
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The truss is excited with impulse and random input at
node 2 in Y-direction and acceleration responses (using
the same excitation and times as the previous case) are
assumed to be available at nodes 1, 2, 3, 4 and 5 in Y-
direction.  Acceleration responses are simulated using
properties given in Table 4, and 10% noise added to the
simulated responses. The truss is modeled using finite ele-
ment method. The same set of algorithm parameters
(Table 2) are used in this example also for minimizing the
objective function ε (Eq. 8). In all the algorithms finite
element model is updated till the error between simulated
acceleration responses and estimated by the algorithms is
minimized. 

Figure 7 shows the typical percentage error in identifi-
cation of axial rigidity of the truss members for impulse
excitation with and without 10% noise.  From Fig. 7 it can
be noticed that the error in identification of all the mem-
bers is small in the case of PSO and GA. But ACO appears
to oscillate about zero with significant variation giving
maximum errors of about 20% - 30%. The maximum and
mean errors in identification by all algorithms for both
excitations are tabulated in Table 5. It is seen that when
noise is added to the responses the impulse excitation
gives better identification than random excitation. The
maximum and mean errors and computational time of
PSO is much better than the others in the presence of
noise.  The computational time is roughly same for both
load cases hence only a typical average value of time is
shown to compare between the various algorithms.

5.3 Example 3: Simply Supported Beam
In this example a simply supported beam, Fig. 8, with

linearly varying stiffness from support to the middle is
considered for element wise stiffness identification
(Modulus of Elasticity) in the time domain. Cross section
of the beam is square with an area of 9x10-4 m2 and den-
sity of 7800 kg/m3. The beam is modeled with 2 noded, 11
Euler beam elements with two degrees of freedom per
node, translation and rotation. 

The stiffness variation is 200 GPa at the support to 50
GPa at the center of the beam. Impulse excitation is
applied at node 3 in transverse direction and acceleration
responses are assumed to be available at nodes 1, 4, 7 and
10 for identification. In identification, modulus of elastic-
ity of all eleven elements are considered unknown and
damping ratio of 5% is assumed to be known. Here also
the finite element model is updated as mentioned in the
previous example to minimize the objective function
given in Eq. (8). Results are represented in Fig. 9 for
impulse excitation only. Again it is noted that the perform-
ance of PSO is better than other algorithms. This is seen
in the results where the mean error in identification is
5.8%, 3.1% and 15% for GA, PSO and ACO with noisy
data, respectively. In all the examples thus presented it is
found that ACO cannot identify the parameters with the
same degree of accuracy as PSO and GA. So in order to
combine the advantages of each of these algorithms, a
hybrid approach is next investigated.

(a)                                                                                            (b)

(c)
Figure 6.  Identified  values  of  the  level  stiffness v/s  no. of  runs  with  10%  noise data for random excitation

(a) GA (b) PSO  (c) ACO
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5.4 The Hybrid Approach 
The results of hybrid approach are tabulated in the

Tables 7 to 10.  Table 7a shows the identification results
with known damping for three cases A, B and C which
represent the lumped mass, truss and beam models. The
extensive data in Table 7a is summarized in Table 7b by
averaging  over the three cases. Table 7b data can be stud-
ied from the point of view of  a) average time of solution

: from this point of view  it is seen that GA+PSO hybrid
is clearly superior with only 39.7s, followed by pure PSO
with 66.7s, then ACO+PSO hybrid with 110s and pure GA
at 143s. The worst time performer is pure ACO which
takes 219s.  b) accuracy of solution: we examine the val-
ues for mean and maximum error in identification . Here
also  GA+PSO hybrid gives the smallest mean and maxi-
mum errors (0.72% and 2.47%) followed by pure PSO

(a)                                                                                       (b)
Figure 7.  Percentage  error in  identification   of  axial  rigidities  of  the  members  with   impulse   excivation 

(a) with out noise  (b) with 10% noise

Figure 8.  Simply supported beam

Table 5.  Absolute percentage error in identification of axial rigidity - truss

GA+PSO ACO+PSO ACO+GA 
Algorithm parameters  GA PSO ACO PSO ACO GA 
Population size  100 -- -- -- -- 50 
No. of generations  10 -- -- -- -- 50 
No. of particles  -- 50 -- 50 -- -- 
Iterations -- 50 -- 50 -- -- 
No. of ants  -- -- 200 -- 200 -- 
Iterations -- -- 50 -- 50 -- 

 

Table 6.  Algorithm parameters for hybrids
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(b) 

Figure 9.  Identified stiffness along the length of the beam for impulse excitation  
(a) without noise  (b) with 10% noise

Case 
Description PSO GA ACO GA+PSO ACO+PSO ACO+GA 

Case-A, max error  3.02 4.7 15.15 0.63 3.0 11.86 

Case-A, mean error 1.13 1.71 7.68 0.126 0.75 4.47 

Case-A, time in sec 36 90 137 26 77 89 

Case-B, max error .67 1.52 30.3 0.46 7.25 19.71 

Case-B, mean error .39 .7 12.26 0.25 4.65 7.0 

Case-B, time in sec 88 164 230 34 91 104 

Case-C, max error 7.45 12.66 46.06 6.31 10.09 40.13 

Case-C, mean error 2.7 5.8 12.5 1.78 3.45 11.35 

Case-C, time in sec 76 186 291 59 163 192 

 

Table 7a.  Percentage error of identified values of various cases with known damping and noise added.  (Case-A
is the lumped mass;  Case-B is the truss and Case-C is the beam)
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(1.4% and 3.71%) and then pure GA (2.73% and 6.29%).
The ACO+PSO hybrid has marginally less accuracy than
pure GA although speed wise it is better. The worst accu-
racy is shown by ACO. The discrete nature of ACO and its
lack of resolution compared to GA and PSO are obvious
handicaps. 

Next, the same structural cases are studied, but damp-
ing is considered as an additional unknown. Tables 8, 9
and 10 deal with these cases. In each table the  values of
all unknown parameters are presented in detail, in addition
to mean error, maximum error and time taken. The accu-
racy of identification of the unknown damping ratio by the
algorithms is also an important parameter considered here.  

In Table. 8 it is seen that the GA+PSO hybrid is the
fastest (ie. with least time of 23s) and next is PSO (34s)
followed closely by ACO+PSO (78s) and GA (80s) and
the worst is pure ACO(145s). The time trend is the same
as in Table. 7.  Damping parameter has been identified
most accurately by GA+PSO (-1.21% error) and pure PSO
(-1.05%)  followed by ACO+PSO and GA. Pure ACO
gives the worst value here(16%). Regarding the overall
accuracy (including damping as well as stiffness) it is seen
that GA+PSO has identified fairly accurately with a small
mean and maximum error of 1.47% and 4.67% followed

by ACO+PSO (1.7%, 4.89%) , PSO (1.85%, 7.2%) and
GA (2.01% and 5.41%). Thus there are some small devia-
tions in the trend of accuracy when compared to Table 7.

In Table. 9 it is also seen that GA+PSO is the fastest
(60s) followed by PSO (82s) then ACO+PSO (105s) and
GA (107s). Accuracy-wise the best performer is GA+PSO
hybrid (mean 0.44% and maximum error 1.05%) followed
by PSO(2.9%, 5.68%), then GA(3.9%, 6.62%). The accu-
racy of ACO+PSO in this case is quite insufficient com-
pared to GA(11.6%, 23.77%). As expected pure ACO per-
formed worst in time and accuracy factors.

In Table.10 the same general trends are observed with
respect to time .i.e., GA+PSO is the fastest (104s) fol-
lowed by PSO(138s) then ACO+PSO (175s) . The accura-
cy of GA+PSO is the best (mean error 2.3%, maximum
error 6.39%), then PSO(4.8%, 11.07%), followed by
ACO+PSO (7.6%,21.04%) and GA(11.6%, 28.35%). Pure
ACO performed worst in both time and accuracy factors.

Summary of observations: The general trend shown in
Tables 7 to 10 is as follows. From the point of view of
speed (minimum computation time) GA+PSO is the best,
followed by pure PSO, then ACO+PSO and pure GA. In
some cases GA is nearly comparable to ACO+PSO in
speed. Pure ACO is the worst performer. From the point of

Average 
over case A, B and 

C 

PSO GA ACO GA+PSO ACO+PSO ACO+GA 

Max error   3.71 6.29 30.5 2.47 6.78       23.9 
Mean error 1.4 2.73 10.8 0.72 2.95 7.6 
Time in sec      66.7 143   219.3      39.7      110.3     128.3 

Table 7b.  Average vbalues obtained from case A, B and C

Exact (kN/m) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

350 2.81 2.26 -5.65 0.20 0.87 -0.21 

350 1.54 1.10 -1.63 1.52 1.2 1.91 

350 0.32 0.49 4.70 0.23 0.59 5.18 

350 -2.99 -2.28 10.1 -2.81 -2.72 -3.71 

350 0.86 -0.41 -3.90 1.23 -0.55 -0.98 

600 -0.21 0.86 7.58 0.25 -1.62 3.27 

600 -1.46 -5.41 6.42 -0.53 -2.89 -0.86 

600 -0.45 1.48 -9.20 -0.81 -0.5 19.22 

600 7.21 -0.25 15.90 4.69 -0.57 14.71 

600 -1.41 3.47 19.7 -2.78 4.87 -10.11 

Damping 0.05 -1.05 4.05 16 -1.21 -2.46 5.4 

Abs. max. error 7.21 5.41 19.7 4.69 4.89 19.22 

Abs. mean error 1.85 2.01 9.14 1.47 1.7 5.96 
Computational time 
in seconds 34 80 145 23 78 90 

 

Table 8.  Percentage error in identified value of 10-DOF lumped mass system with unknown damping and noise
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view of accuracy, again GA+PSO is the best performer
followed by pure PSO. Then follows GA and ACO+PSO
-  their relative superiority in accuracy varies from case to
case. Even in these circumstances  pure GA would still be
preferred as it is simpler to program than the hybrid. The
ACO+GA hybrid and pure ACO was not found promising
in speed or accuracy. The observations from this compre-
hensive numerical study would be useful in future work,

such as damage detection of structural members using
these algorithms.

6.  Conclusions 

The paper studies the application of behaviorally
inspired algorithms and their hybrids for structural para-
metric identification in the time domain. The stiffness and

Exact (MN) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

300 -1.61 0.15 27.27 -0.4 17.27 18.67 
300 5.68 -5.59 45.11 -1.05 -15.28 -24.25 

300 3.43 4.92 -13.03 0.64 -17.75 -9.73 

300 0.09 3.65 -15.15 -0.44 -10.30 20.25 
300 2.73 -4.64 -1.52 0.4 -8.73 -16.38 

300 -2.7 6.62 -31.21 0.37 3.12 1.14 

300 5.37 -5.31 -11.52 -0.5 -2.27 5.03 
300 -5.07 -6.2 3.7 -0.32 20.35 -17.72 

300 -5.40 2.11 39.0 0.62 23.77 -6.41 

300 1.56 -1.99 -24.1 0.42 -16.9 17.35 
Damping 0.05 0.87 5.61 25.67 -0.12 3.54 7.35 

Abs. max. error 5.68 6.62 45.11 1.05 23.77 24.25 

Abs. mean error 2.9 3.9 19.7 0.44 11.6 12.0 
Computational time 
in seconds 82 107 166 60 105 137 

Table 9.  Percentage error in identified value of 11-member planar truss with unknown damping and noise

Exact (GPa) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

200.00 -3.33 11.14 -20.15 0.54 0.32 10.97 

170.00 -3.58 -2.22 -3.74 -2.96 -3.45 -26.92 

140.00 11.07 -5.21 -28.44 -0.43 0.32 -19.7 

110.00 4.67 -3.05 -26.45 -1.87 -1.43 -33.61 

80.00 6.30 -11.29 25.0 2.52 4.89 1.14 

50.00 6.77 7.94 14.55 1.36 9.24 23.72 

80.00 -6.25 6.71 25.76 -6.39 -9.98 -13.64 

110.00 -5.73 18.04 24.44 -0.81 -13.99 -30.03 

140.00 6.39 -17.03 -32.21 5.09 -5.84 -5.63 

170.00 -1.18 -28.35 -38.56 -1.13 -21.04 -17.65 

200.00 -2.23 27.03 17.28 4.46 19.66 35.70 

Damping 0.05 0.84 0.91 3.30 0.47 1.45 20.00 

Abs. max. error 11.07 28.35 38.56 6.39  21.04 35.70 
Abs. mean error 4.80 11.60 21.67 2.30 7.60 20.0 
Computational time in 
seconds 138 279 343 104 175 225 

Table 10.  Prcentage error in identified value of simply supported beam with unknown damping and noise
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damping parameters are predicted from the time domain
acceleration responses. Impulse and random excitations
cases are studied. Particle Swarm Optimization (continu-
ous), Genetic Algorithm (continuous) and classical Ant
Colony Optimization (discrete) are used here. Three dif-
ferent hybridizations of GA, PSO and ACO have been
investigated using three numerical models i.e., a lumped
mass model, a truss and a non-uniform beam. Comparing
the performance between pure GA and PSO it is found
that the latter consistently outperforms the former in com-
putational time and mean error, especially in the presence
of noise. The computational implementation of PSO is
also simpler than GA. Unlike GA, PSO keeps track of the
global best and particle best solution from iteration to iter-
ation which explains its superiority over GA and fast con-
vergence. Regarding the performance of hybrid algo-
rithms, the GA+PSO has shown its superiority over all the
other algorithms in both speed and accuracy. The next best
performer is pure PSO followed by pure GA.  The per-
formance of pure GA is however comparable to
ACO+PSO hybrid in a few cases. However pure GA
would be preferred as it is simpler to program than the
hybrid. Pure ACO performed worst in all cases as expect-
ed because of its discrete nature.  
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