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1.  Introduction

The discrete Fourier Transform (DFT) of a length-N
sequence x(n) can be computed from 

(1)

The FFT is an efficient method for computing the FFT. 
_________________________________________
*Corresponding author’s e-mail: abhossen@squ.edu.om

The spectrum of a real-valued signal obtained from apply-
ing; the FFT has a frequency  range from 0 to fs, / 2, with
a frequency resolution f = fs / N. While fs is the sampling
frequency and must satisfy the condition fs / 2 > fh (with
fh denoting the highest frequency in the signal), the fre-
quency resolution .f can be written as (Mitra 2006 and
Weeks 2007): 

(2)
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Higher resolution ( smaller f ) can be obtained in one
of two ways: 

Zooming the FFT spectrum is a method to increase the
resolution without decreasing the frequency limit or
increasing the transform size. However, only a small part
of the original range can be analyzed at a time (Markel,
1971; Sorensen et al. 1988; Rabiner et al. 1969; Shentov
et al. 1991; Thrane, 1980; Hossen and Heute, 1993;
Hossen and Heute, 2004; Harris 2004 and Keo and W-
Seng Gan, 2005). The two zoom-methods which are
already used in spectrum analyzers, need to use a longer
time signal in order to obtain higher-resolutions using N-
point FFT. These two methods are (Thrane 1980): 

1. Zoom-FFT method 1 by frequency shift and low-pass
filtration: This method is implemented normally in
most FFT analyzers. The higher resolution is obtained
by shifting (heterodyning) the frequency span of inter-
est to fall around zero frequency, followed by a low-
pass filter and down-sampling operation. The input-
data length must be multiplied by Z, if we want to
improve the resolution by a zoom-factor Z. Large
zoom-factors can be obtained using this method.
Another similar approach is given by (Liu and
Mintzer, 1978), in which no frequency shift is required
and band-pass filters are used instead of low-pass fil-
ters. 

2. Zoom-FFT method 2 by recording of a long time sig-
nal and transforming it by parts using a smaller trans-
form: The higher resolution is obtained here by record-
ing the necessary time signal (Z × N input samples)
and performing Z N-point FFTs on successive parts of
the input signal. This stage is followed by a phase
compensation stage before adding the partial-frequen-
cy spectra to compensate for the time shift between the
individual records. Another look at this stage shows
that this method is nothing else but a radix-Z FFT
stage with pruning at the output to calculate only N
output samples. Another interpretation of this method
is given as a partial-band FFT called transform-
decomposition method with a modification using a
technique similar to Goertzel's algorithm (Sorensen et
al. 1988 and Sorensen and Burrus 1993). 

The paper is organized as follows: The next section is
a review material on SB-FFT. In section 3, different par-
tial-band algorithms are discussed. Section 4 deals with
different modifications of SB-FFT for the purpose of res-
olution improvements. Section 5 introduces the newly
investigated version of SB-FFT combined with linear pre-
diction technique. Section 6 shows applications of differ-
ent approaches in radar signal processing for estimation of
the Doppler spectrum for vehicle-speed measurements.
Concluding remarks are given in section 7. 

2.  The SB-FFT

The SB-FFT, which is an approximate FFT used with
narrow-band signals, is one among other partial- band
DFT algorithms such as the chirp z-transform method and
the method of pruning and the transform decomposition
method, which can find a narrow part of a full spectrum
with high-resolution (same as the resolution obtained
using a full length FFT). All these methods can be inter-
preted as a zoom-FFT similar to the zoom-FFT method 1
to find the band of interest with a high resolution. 

In Fig. 1 a(n) and b(n) are the low-pass and high-pass
filtered versions of x(n) as it is clear from their z-trans-
forms A(z) and B(z): 

(3)

with g(n) and h(n) denoting their factor-2 down supplied
versions, respectively:

(4)

The full-band size-N DFT X(k) can  be obtained by
(Shentov et al. 1991 and Hossen and Heute, 2004):  

(5)

Eq. (5) is approximated for calculating only the low-
pass band corresponding to the upper-part of Fig. 1:  

(6)

The decomposition process in Fig. 1 can be repeated m
times to get M = 2m subbands, out of which only one band
is to be computed depending on information known or
derived adaptively about the input signal power distribu-
tion (Hossen and Heute, 1993).  In other words, the filter-
ing decomposition of Eq. (4) can be repeated to g(n) and
h(n) and the approximation done for the half-band case
can be applied to calculate one out of M-bands. If we have
no information about the input signal, a method of band-
selection which was introduced in (Hossen and Heute,

Figure 1.  Two-band subband decomposition
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1993) can be used. This method corresponds to finding
sgn(A) for a 2-band decomposition: 

(7) 

and according to the sign of A, we decide either to follow
the low-frequency part if A is positive, or the high-requen-
cy part if A is negative, while the other part is ignored. 

3. Resolution   Improvements  Using  Partial-
Band Algorithms

Four different methods are investigated here. In all
these methods the number of input time samples is fixed
to N.  Complexity of those algorithms is explained in
terms of the number of complex multiplications. 

3.1. The Chirp Z-Transform
The chirp z-transform enables the evaluation of the z-

transform of N time samples at P equiangularly spaced
points on contours which spiral in or out (circles being a
special case) from an arbitrary starting point in the z-plane
(Liu and Mintzer, 1978).   The flexibility in the chirp z-
transform is that N needs not to be the same as P, and the
output-point spacing is arbitrary.  The chirp z-transform is
defined as:

(8)

while zk = Aw-k This provides an efficient algorithm for
calculating  X(zk) by implementing it as a discrete convo-
lution. In Eq. (8)  A = A0 exp (-j2 and  w = w0 exp  
(- j2 are both complex constants.  If w0 = 1, the spi-
ral is a circular arc, and if A0 = 1 this circular arc is the
unit circle, and if  0 = 1 the first point is the (1,0) point.
Choosing the z-plane contour on the unit circle and select-
ing an initial point of the band of interest, the spacing
between output points can be defined arbitrarily. 

3.2 FFT-Pruning
Pruning the decimation in time or decimation in fre-

quency (Mitra, 2006) FFT corresponds to eliminating
operations that do not contribute to the output. In (Juo and
W-Seng Gan, 2005) a pruning method is proposed which
involves frequency shifts to calculate any number of adja-
cent transform outputs. A method for partial spectrum
computation introduced by Wild (Lie and Mintzer 1978)
is similar to that used in (Sorensen and Burrus 1993).   The
number of complex multiplications in case of DIT output 

3.3 Transform-Decomposition

3.4  SB-FFT 

The same resolution is obtained in all four methods, if
the total input number and the calculated output number of
points are the same.  Figure 2 shows the application of all
four methods with N = 1024 in detecting two sinusoids (of
35 and 37 Hz) in wide-hand noise with SNR=-3dB; the
sampling rate in this case was fs = 1024 Hz. The resolu-
tion is found to be f= 1Hz.  The first Nc = 128 points are
calculated. The SNR that still allows for detecting the two
sinusoids, is found to be around SNR = -15dB.

4.  Modifications of  SB-FFT for  Purpose   of  
Resolution Improvements

4.1 SB-Filter with Chirp z-Transform 
A combination between the first and the fourth meth-

ods yields a new method, in which the resolution improve-
ment is increased: The small FFT in Fig. 1 can be substi-
tuted  with  a  chirp  z-transform.  The  first  point can be  
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A complexity comparison between this method and the
other four methods described in section 3 is shown in Fig.

3 in terms of the number of complex multiplications
required to compute P=32 point when the total input
points vary from 128 to 1024. Fig. 4.a shows the applica-
tion of this methods with N= 1024 in detecting two sinu-
soids (of 15 and 17 Hz) in wide-hand noise, the sampling
rate in this case was  fs = 1024 Hz. The resolution is found
to be f = 1Hz. The first Nc = 128 points are calculated.
For this example the required number of complex multi-
plication is 4963. This method can be improved regarding
resolution, if the spacing between the calculated points is 

Figure 2.  Sinusoids detection with different partial-band algorithms

Figure 3.  Complexity comparison between diffeerent partial band approaches
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4.2 SB-FFT with Zero-Padding 
Zero-padding the input-signal (though only in the sense

of a spectral interpolation) and then applying any partial-
band algorithm to find the transform of a selected band
can improve the resolution. 

For the corresponding longer DFT, however, not all the
output points need to be calculated, only P =2lf points
between, say, F1 and F2. A radix-2 FFT is used with both
pruning at the input because of the zeros and pruning at
the output because only a limited band is to be calculated
(Sreenivas 1980).  

A new modification to the SB-FFT algorithm is found
to be possible, in which we pad the input signal with a
number of zeros and then apply the SB-FFT decomposi-
tion. Pruning can be applied in the Hadamard-part and at
the input of the small FFT because of the zeros and at the
output of the small FFT because not all the outputs are
required.  The number of complex multiplications is given
by:

(9)

Figure 4c shows the result of zero-padding 1024 input
points to 2048 points and then calculating only the first
1024 point using pruning at the input and at the output of
the FFT algorithm.   The resolution is found to be f =
0.5Hz.  The same two sinusoids in Fig. 3b are used.

4.3  SB-Zoom FFT 
1.  SB-FFT interpretation as zoom-FFT method 1: 
2.  Considering this approach, Fig.1 shows that the two-

band SB-FFT is a zoom-FFT (with factor 2) following
the idea of zoom-FFT method 1 for the low-frequen-
cy part Using the adaptive SB-FFT we can zoom any
band of interest, the zoom-factor equaling the number
of the decomposition bands.  The low-pass filters
inherent in the zoom-method are replaced by the sim-
ple first order low-pass or high-pass filters of the SB-
FFT method.  The choice of low-pass or high-pass is
done in each step with the help of the adaptive algo-
rithm. A modification of the SB-FFT is done here
such that in each stage of the decomposition and
according to the result of Eq. (7) we perform phase
compensation, if a high pass reduction stage must be
followed, and then a low-pass filter is used only. The
phase compensation done at each high-pass stage
makes the SB-zoom processor more complex. 

3.  Combination of SB-FFT and Zoom FFT method 2: 

A combination between the SB-FFT and Zoom method
2 yields a method used to analyze a part of the band of
interest in a narrow-band signal. This method can be
applied as follows: 

The SB-filters can also use the adaptive capability to
select the band to be transformed by parts. The result of
applying 4096 points with Zoom factor = 4 and SB-FFT
with 4 bands to detect the same two sinusoids in  Fig.4a  is
shown in Fig. 4d. The resolution in this example is f =
0.25Hz. The spectrum shows only the first quarter of the
low-low band. 

5. SB-Zoom FFT with Linear Prediction

Parametric spectral estimation is a three-step proce-
dure. The first step is to select a model. The second step is
to estimate the parameters of the assumed model using the
available data samples. The third step is to obtain the spec-
tral estimate by substituting the estimated model parame-
ters into the theoretical PSD implied by the model (Key
and Steven, 1988). 

A parametric technique is used to find the parameters
of a mathematical model describing the time signal for
high-resolution spectral estimation. Linear prediction
yields an Auto-Regressive (AR) process which models a
signal as the impulse response of all-pole filter. It assumes
that each output sample x(n) is a linear combination of the
past n outputs, and that the coefficients are constant from
sample to sample: 

(10)

where x(n) is the signal sequence to which the AR-model
of Pth order is to be found by, eg. Forward Linear
Prediction (FLP) depending on the past samples. The dif-
ference between the signal values and the estimated val-
ues is considered as an error of the FLP process:

(11)

If the output sample of the estimation process is found
using a linear combination of the next p outputs, the
process is called Backward Linear Prediction (BLP) and
results in the following error: 

(12)

If both forward and backward linear predictions are
combined to find the parameters of the model, the process
is called Forward-Backward Linear Prediction (FELP),
and the sum of squares of the errors given by  Eqs. (11, 12)
is tested for the minimum value to find the coefficients of
the model filter: 
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Figure 4.  Different modifications of SB-FFT for resolution improvements

Figure 5.  SB-FFT with different number of subbands combined with linear prediction
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(13)

In linear prediction, the autocorrelation method of
autoregressive (AR) modeling can be used to find the fil-
ter coefficients. This technique is called the maximum
entropy method (MEM) of spectral estimation (Marples
and Lawrence, 1987; Matlab Signal Processing Toolbox,
1996 and Kleinhempel et al. 1992).  After the coefficients
of the digital filter are found, the frequency response of
the filter (equivalent to the frequency spectrum of the time
series x) can also be found by classical spectrum-analysis
algorithms. The new zoom technique is obtained by
(Sreenivas and Rao, 1980): 

1. Subband decomposition of the input signal applying
the simple filters in Fig. 1. The  decomposition can be
repeated till finding the band of interest.

2. Calculating the a coefficients of the IIR filter from Eq.
(10) from the result of the previous step by selecting
an order p. 

3. Calculating the frequency spectrum using the resulted
a coefficients. 

In Fig. 5, the spectrum of two adjacent frequencies 20
Hz and 25 Hz is found for a sampling frequency of 1000
Hz and a linear prediction of order p = 10 by the follow-
ing different methods: 

1. Fullband case M = 1, direct linear prediction for a
total number of N = 256 points. 

2. Subband decomposition M = 2, followed by linear
prediction. 

3. Subband decomposition M = 4, followed by linear
prediction. 

4. Subband decomposition M = 8, followed by linear
prediction. 

6. Results of  Radar Signal  Processing Appli-
cations

A Doppler-radar sensor for measurements of the so-
called "True Speed Over Ground" (TSOG), based on mil-

limeter-wave frontends (61 GHz) and digital processing of
baseband signals, was presented in (Kleinhempel et al.
1992; Claeben 1991 and Besson and Castanie 1990).  .
The task of the digital processing is to determine the
Doppler frequency, which is proportional to TSOG. Two
millimeter-wave sensors are mounted at the bottom side of
the vehicle in a Janus configuration, see Fig. 6.  After
reflection on the roadway the signal reaching the sensor is
shifted by the Doppler frequency  fd;

(14)

with 
i    :   sensor number, 
v :   velocity of vehicle, 

i :   angle of inclination of each sensor, 
:  actual pitch angle, ie. angle between the road and 

the bottom of the car, 
c :  light-velocity, 
fo     :  transmitter-frequency. 

To determine v, the Doppler frequencies fd1 and fd2
should be firstly estimated and then the pitch angle can be
calculated; 

(15)

Now v can be found from:

(16)

The estimation of the Doppler frequencies fdi can be
simply done by using a Fast Fourier Transform (FFT)
algorithm and finding the position of the maximum of the
Doppler spectrum (Richards, 2005; Mahafza 2008;
Mahafza and Elsherbeni 2003 and Blanchet and Charbit,
2006).  The spectral analysis based on Fourier-transform
has two disadvantages: bad resolution with short signal
lengths and large variance of the estimated spectrum. 

1 2

Figure 6.  Janus configuration of the sensors for doppler radar experiment
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The rugged structure of the spectral maximum of the
Doppler radar depends on the condition of the roadway.
So applying the FFT directly results sometimes in non-
accurate estimation of the Doppler-frequency. A zoom·
FFT can help in gaining higher spectral resolution, since
the spectrum is evaluated in a narrow frequency band of
interest. Parametric techniques can be also used for high-
er spectral resolution. Different methods for simplifying
the digital signal processing part of the vehicle-speed
measuring system based on Doppler radar are to be dis-
cussed in this section. Some of these methods are direct
(only transform methods based on SB-FFT or its modifi-
cation) or indirect (combined parametric spectral analysis
with the subband technique). 

6.1 Direct Methods 
An FFT can be applied directly to the sections of the

input signal, and the Doppler frequency can be determined
at each time from the spectral maximum. The process is
repeated every 40..80 ms, and from the two frequencies
measured at both sensors, the velocity can be estimated
using Eq. (16). This may be compared with a highly accu-
rate reference velocity, measured with a so-called peiseler
whee (Claeben 1991).  The difference between the esti-
mated velocity and the reference is considered as an error.
The accuracies of applying the following direct methods
(in terms of the mean error me and the standard deviation
sd) to a Doppler signal results from a car driving on a dry
roadway with a speed of 20 km/ h are given in Table 1: 

1. CT-FFT (2048 points), 
2. adaptive SB-FFT, 
3. adaptive SB-filter + Chirp transform with spacing  /

N. 
The same resolution is obtained in all partial-band

algorithms described in section 3, if the total input  num-
ber and the calculated output number of points are the
same. This means that if we apply any one of   the partial
band algorithms described in section 3 will result in the
same accuracy of using the SB-FFT,  which is also similar
to apply full-band FFT as seen in Table 1.

6.2  Indirect Methods using Parametric Techniques
The Doppler signal from on-board radar, used to esti-

mate the speed of a train (Besson, O and Castanie, F,
1990) may be simply represented by a sine-wave ampli-
tude modulated by a random lowpass process: 

(17) 

where is a random variable uniformly distributed from
[0 to 2 ] and y(n) can be modeled by an (AR) process.

The parametric techniques for spectral estimation consist
of the following steps; 

1. Choosing a suitable time model to approximate the
data under consideration 

2. Estimating the parameters of the model (coefficients
of the prediction error filter) 

3. Finding the transfer function of the prediction error
filter 

4. Finding the frequencies of the sine components from
the positions of the zeros of the transfer function
found above. 

Then the Doppler frequency fd can be found from the
mean value of the estimated AR- frequencies. The expect-
ed Doppler frequencies are between 0 and about 20 kHz,
corresponding to vehicle speeds up to 250 km/h and incli-
nation angles i of approximately 45 degree. More accu-
rate estimations can be done with the combination of a
pre-processor zoom and conventional AR-model spectral
estimators (Hossen and Heute, 1994).   In (Hossen and
Heute, 1994)  the determination of fd  is done using, eg.
the FBLP technique. Figure 7 shows such a block for the
pre-processor zoom for estimating  fd from the radar time-
signal. Three different model orders p are used. For the
initialization process, p = 20 is applied, for the demodulat-
ed signal's path p = 2, for the undemodulated-signal's path
p = 3. The decision whether demodulation is required or
not, is obtained by comparing fd with a reference value fr. 

The results obtained for this pre-processor zoom
method and its following modifications using the subband
approach are given in Table 2, for the same example of a
car driving on a dry roadway with a speed of 20 km/h. 

1. First modification: Only the initialization process is
replaced by an adaptive SB-FFT with M = 8, and then
fd is found from the spectral maximum. 

2. Second modification: The pre-processor is replaced
by SB-filters, since the SB-FFT can be interpreted as
a zoom-FFT (Claeben 1991). Then, to determine fd,
the AR-model is used with p = 2 always. Both half-
band (M = 2) and quarter-band (M = 4) SB-filters are
investigated, 

3. Third modification: After the pre-processor zoom, we
perform SB-filters with M = 2 or M = 4, and then the
AR-model is applied to find the FFT with fewer
points.

Table 1.  Accuracy of direct methods in km/h

Table 2.  Accuracy of indirect methods in km/h
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The results in Table 2 for the three different modifica-
tions are good approximations to the results of the method
explained of a pre-processor zoom though with some larg-
er errors. Since the width of the spectral peak depends on
the speed of the car, for higher speed it will be broader.
Also if the roadway is wet, then the amplitude of the
reflected signal is low and the signal-to-noise ratio is also
low. The "channel test" of the following section is able to
decrease this sensitivity.

6.3 Indirect Method with Channel Test 

(18)

7.  Concluding Remarks

Several different approaches for improving the spectral
resolution are investigated. All partial-band algorithms are
interpreted as zoom-FFTs. The approximated SB-FFT is
shown to be of less complexity than all the other methods.
A new approach is suggested, in which the SB-FFT is
combined with the chirp z-transform. This new approach
is shown to have a better resolution than other methods.
The SB-FFT method is made more efficient by applying
pruning both at the input and the output after zero-padding
the input signal to obtain a higher resolution. Also the

Figure 7.  Doppler-frequency estimation using a pre-processor zoom



10

The Journal of Engineering Research  Vol. 8  No. 1  (2011)  1-11

transform decomposition method is applied with the SB-
FFT to find a part of the interesting band with a high res-
olution. 

The evaluation of Doppler-radar signals in a real-time
application for the purpose of vehicle-speed measure-
ments is approximated in this work by using the SB-FFT
instead of the CT-FFT. The SB-FFT is applied directly to
find the speed of the vehicle by analyzing a Doppler spec-
trum of two millimeter-wave sensors mounted at the bot-
tom side of the vehicle. The combination of both SB-fil-
ters and chirp z-transform is also used for better resolu-
tion. The subband approach is also combined with linear
prediction methods to find the Doppler frequencies more
accurately. A novel idea of channel test is added to insure
that the accuracy of the measurement system is kept high
while the complexity of the technique is reduced using SB
techniques instead of full-band techniques.
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