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Bifunctional inhibitors of urokinase and
metalloproteinase-9 for cancer treatment - in
silico evaluation.
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Matrix metalloproteinase-9 (MMP-9), and urokinase plasmino-
gen activator (uPA) overexpression or/and increased activity are
considered causative elements for cancer invasion and metas-
tasis. These enzymes are degrading the extracellular matrix
(ECM) providing space for cancer progression and cancer cell
mobility. Process of angiogenesis, in which microvascular en-
dothelial cells form blood vessels, requires local degradation of
the underlying basal lamina to invade into the stroma proximal
to cancer, and it strongly depends on the activity of MMP-9 and
uPA as well. Malignant tumor invasion, cancer metastasis and
angiogenesis have been documented as a fundamental factors
in the morbidity and mortality among cancer patients, thus their
inhibition can be exploited therapeutically. Numerous in vivo
and in vitro studies have demonstrated that inhibition of prote-
olytic activity can reduce cancer invasion, tumor size and limit
angiogenesis. Consequently human clinical studies were de-
signed inhibiting urokinase or MMPs, but these target-specific
inhibitors produce mixed results. One of the possible explana-
tions could be that cancers are overexpressing more than one
enzyme simultaneously; for instance urokinase and MMPs. Thus
upregulated net proteolytic activity should be normalized rather
than trying to inhibit single proteolytic enzyme. Therefore, start-
ing from specific inhibitors we have created - in silico - several
hybrid molecules that could inhibit both uPA and MMP-9. The
best hybrid (UI1xAGB) had theoretical affinities of Ki = 1.61−9

mol for MMP-9 and Ki = 1.36−9 mol for uPA. In the future each
individual hybrid would need to be successfully synthesized and
checked in the in vitro and in vivo analyses.
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MMatrix metalloproteinase-9 (MMP-9), and urokinase plas-
minogen activator (uPA) overexpression or/and increased ac-

tivity are considered causative elements for cancer invasion and
metastasis. These enzymes are degrading the extracellular matrix
(ECM) providing space for cancer progression and cancer cell mo-
bility (1, 2). Process of angiogenesis, in which microvascular en-
dothelial cells form blood vessels, depends on local degradation of
the underlying basal lamina to invade into the stroma proximal to
cancer, and it strongly depends on the activity of MMP-9 and uPA
as well (3-5). Since malignant tumor invasion, metastasis and can-
cer angiogenesis have been documented as fundamental factors in
the morbidity and mortality among cancer patients and their inhibi-
tion can be exploited therapeutically (5-7).

Urokinase is an activator of plasminogen that upon cleavage
is converted into plasmin, which can degrade a broad spectrum of
proteins. Urokinase is expressed in tissues, contrary to tissue plas-
minogen activator (tPA) which is present predominantly in the blood
(8, 9). Therefore targeting uPA only will preserve plasmin activity
necessary for dissolving fibrin blood clots and some other physio-

logical processes (10-13).

There are few possible approaches to inhibit urokinase. One
is use of plasminogen activator inhibitor-1 (PAI-1). PAI-1, also
known as endothelial plasminogen activator inhibitor or serpin E1,
is a protein that functions as the principal inhibitor of urokinase
and tissue plasminogen activator. Plasminogen activator inhibitor-1
exists as an active, nonactive-latent, and cleaved form. It converts
spontaneously from active form into latent form in physiological
conditions with half life time equal to t1/2=2 hours. Only active
PAI-1 is therapeutically relevant. Thus, to use PAI-1 in therapy
half-life must be extended (14-16). Several mutants of PAI-1 were
produced extending its activity up to more than 700 hours (17-19).
The other approach is to use antibodies against active site of uPA to
restrict plasmin driven proteolytic activity (20-23). Although small
molecule binding into specificity pocket or proximity of catalytic
triad might be the easiest to produce. Among the large number of
small molecular inhibitors amiloride was found to be uPA specific
(24-27). Moreover, optimization of amiloride’s structure to poten-
tiate inhibitory activity and loss of diuretic effects resulted in few
novel anticancer compounds (25, 26, 28). Several clinical studies
were conducted to evaluate inhibition of urokinase activity or ex-
pression on cancer cells (29-34). Also, limited number of studies
were monitoring prevention of cancer related angiogenesis. These
reports show potential benefit of anti urokinase therapy in cancer
patients and emphasize needs for additional trials (29-34).

Pro-MMP-9 is activated by protease cascade involving plasmin
and stromelysin 1 (MMP-3). Plasmin cleaves MMP-3 zymogen to
form active MMP-3 that cleaves the propeptide from the 92-kDa
pro-MMP-9, generating an 82-kDa enzymatically active enzyme
(35). The active MMP-9 domain contains two zinc and three cal-
cium ions necessary for its function. The catalytic zinc is coordi-
nated by only three histidines while the other metal co-factors (zinc
and the three calcium) have their coordination spheres fulfilled by
the components of surrounding protein structure (36).

Inhibition of MMP-9 by small molecular chemicals lies on al-
teration of its activity or/and reduction of protein expression by act-
ing on DNA or RNA (37, 38). Like in the case of urokinase, MMP-9
can be inhibited by antibodies. For example GS-5745 antibody in-
hibits MMP-9 by binding to pro-MMP-9 preventing activation of
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this metalloproteinase, or binding allosterically to active MMP-9
reducing its activity (39-42). Several clinical studies have been con-
ducted in over 25 years (43-51). Overwhelming evidence from ani-
mal studies warranted these studies, but unfortunately were plagued
with side-effects of orally-dosed MMP-9 inhibitors. Fingleton (52)
stated that for chronic dosing, agents with MMP inhibitory efficacy
are needed that show minimal toxicity at low concentration.

Given the well-known function for urokinase and MMP-9 in
cancer cell invasion, metastasis and angiogenesis, a novel tactic
to cancer therapy could be invented by testing inhibition of these
proteases by one small molecular inhibitor. To inhibit both pro-
teins at the same time, we have constructed in silico a novel hybrid
compounds and evaluated their activity using Vina AutoDock pro-
gram (53). This approach was used previously by constructing hy-
brid protein consisting of the tissue inhibitor of metalloproteinases
(TIMP-1) linked to the ATF domain of u-PA (54, 55).

Materials and Methods

Chemicals. The following chemical structures were used in
molecular simulations:

1. Amiloride, AMR (Urokinase inhibitor); 3,5-diamino-6-chloro-
N-(diaminomethylidene)pyrazine-2-carboxamide.
2. Ab145190 (MMP-9 inhibitor); N-[(1,1’-Biphenyl)-4-ylsulfonyl]-
D-phenylalanine.
3. UI1 (Urokinase inhibitor); N-[4-(aminomethyl)phenyl]-6-
carbamimidoyl-4-(pyrimidin-2yl amino)naphthalene-2- carboxam-
ide.
4. 7IN (Urokinase inhibitor); rac-(1Z,2R)-2-(benzylsulfonylamino)-
3-hydroxy-N-[rac-(1S,2Z)-2-[(4-carbamimidoylphenyl) methylim-
ino] -2-hydroxy-1-(hydroxymethyl)ethyl]propanimidic acid.
5. UI1xAGB (hybrid inhibitor); N-[4-[[2-[N-[4-[(1-adamantylcarb
amoylamino)methyl] phenyl]carbamimidoyl] hydrazino] methyl]
phenyl]-6-carbamimidoyl-4-(pyrimidin-2-ylamino)naphthalene -2-
carboxamide.
6. UI1xAMR (hybrid inhibitor); N-[4-[[2-[6-amino-3-chloro-
5-[(diaminoamino)carbamoyl]pyrazin-2-yl] hydrazino] methyl ]
phenyl ]-6-carbamimidoyl-4-(pyrimidin-2-ylamino)naphthalene-2-
carboxamide.
7. 7INxAMR (hybrid inhibitor); 3-amino-5-[4-[[2-[[2-[(4-
carbamimidoyl phenyl ) methylamino]-1-(hydroxymethyl)-2-oxo-
ethyl] amino]-1-(hydroxymethyl)-2-oxo-ethyl]sulfamoylmethyl ]
anilino ]-6-chloro-N-(diaminomethylene)pyrazine-2-carboxamide.
8. Hybrid3 (hybrid inhibitor); [4-[4-[2,4,6-trioxo-5-(4-pyrimidin-2-
ylpiperazin-1-yl)hexahydropyrimidin-5-yl]phenoxy]phenyl]methyl
N-(7-carbamimidoyl-1-naphthyl)carbamate.
9. AGB (Urokinase inhibitor); N-(1-adamantyl)-N’-(4-guanidino
benzyl)urea
10. Pp3-3 [(2S)-3-[[(1S)-2-amino-1-(1H-indol-3-ylmethyl) - 2
- oxo - ethyl]amino ] - 3 -oxo - 2 - [(3-phenylisoxazol-5-
yl)methyl]propyl]-phenyl-phosphinic acid.
11. Pp3 3xAMR (hybrid inhibitor) [(2S)-3-[[(1S)-2-amino-1-(1H-
indol-3-ylmethyl)-2-oxo-ethyl]amino]-2-[[3-[4- [ [ 5- (carb amimi-
doyl carbamoyl)-3-chloro - pyrazin - 2 -yl] amino]phenyl ] isoxazol-
5-yl]methyl]-3-oxo-propyl]-phenyl-phosphinic acid.
12. Pp3 3xp4 4 (hybrid inhibitor) [(2S)-3-[[(1S)-2-amino-1-(1H-
indol-3-ylmethyl)-2-oxo-ethyl]amino]-2-[[3-[4-[(7-carbamimidoyl-
1-naphthyl)carbamoyloxymethyl]phenyl]isoxazol-5-yl] methyl] - 3
- oxo-propyl]-phenyl-phosphinic acid.

Conversion of two-dimensional to three-dimensional chemical
structure.

When PDB 3D structure of chemicals existed it was used for
molecular modeling and converted to PDBQT files through ADT.
In some cases the ligand files were not in the proper format (SDF
instead of PDB) or only a visual image of the structure was present.
Files that were present in SDF format were converted to PDB
using an online SMILES translator and structure file generator
(https://cactus.nci.nih.gov/translate/). For visual models only, the
inhibitors were built in 2D using Biovia draw (http://accelrys.com/).
The 2D structure was then translated to a SMILES string and text
was then translated by the online SMILES translator and structure
file generator to the 3D PDB file. The PDB files generated through
these alternative methods were then uploaded to ADT and converted
to PDBQT files.

Protein structure preparation and Autodock analysis.

The structures of uPA (1F5L) (56) and MMP-9 (1GKC) (57)
were downloaded as PDB files from RCSB Protein Data Bank. Each
enzyme was open individually as a text file and the codes for wa-
ter, bound ligands, and other compounds present in the file were
deleted. Prior to deletion of the code, the coordinates of an individ-
ual atom in the center of a ligand (present in the active site of each
enzyme) was recorded for later use. For urokinase the coordinates
used were: x=30.502, y=6.741, z=28.432. For MMP-9 the coordi-
nates used were: x=-0.135, y=22.280, z=13.282. The isolated en-
zymes were then uploaded to Autodock Tools (ADT). Using ADT,
the coordinates and dimensions for the active sites of each enzyme
were set. Urokinase active site size was set to 30 A on the x, y, and
z axes, while for MMP-9 active site was set to 40 A on the all axes
from the center defined by the above coordinates. Each enzyme was
then saved as a PDBQT file as required for analysis by Autodock
Vina.

Each PDBQT inhibitor file was analyzed using the Autodock
Vina program which calculates the inhibitors affinity (kcal/mol) for
a specified enzyme binding site. For each analysis Autodock Vina
generated an output file with 9 potential 3D configurations of a lig-
and in an enzyme active site. Inhibitors were fitted in each enzyme
and their respective output files were viewed in PyMol to ensure the
best configuration was represented. The computed highest affinity
as well as the observed best structure were considered as most prob-
able final structure and corresponding affinity was recorded for each
inhibitor.

Ki = exp (∆G / (R ∗ T ))

where:
Ki is the inhibitory constant.
T is temperature in Kelvin (calculations done at 298K).
R is universal gas constant.

Generation and evaluation of hybrid molecules.

The inhibitors with the highest affinities for each enzyme were
then used as templates for the production of a hybrid inhibitor (in
this case a hybrid inhibitor refers to one that inhibits both Uroki-
nase and MMP-9). The two inhibitors were bound through carbon-
carbon, carbon-oxygen, or nitrogen-carbon bonds. The location of
fusion of the two inhibitors aimed to leave the high affinity aspects
of each on opposing ends of the new structure in order to maximize
affinity for both urokinase and MMP-9 active sites. Structures were
converted into PDBQT files and analyzed by Autodock Vina as de-
scribed above.
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Results and Discussion

To validate the Vina Autodock docking protocol we redock the
ligands of urokinase (amiloride and p-aminobenzamidine) to crys-
tallographic protein structure after removing ligands. Ligands with
lowest free energy or highest calculated affinity were used for com-
parison. It is considered that a docking protocol should give RMSD
< 2.0 A of crystallographic structure and that cutoff is frequently
used as a criterion of the correct bound structure prediction (53). As
it can be seen in Fig. 1 amiloride binds closely to its structure deter-
mined by X-ray crystallography (56). P-aminobenzamidine showed
similarities to its crystal structure and RMSD where below 2 A for
these two controls as determined in this study and in our previous
work (data not shown) (25, 56, 58, 59).

 
Fig. 1. A: carton model of urokinase (1F5L), amino acids of cat-
alytic triad (His57, Asp 102 and Ser 195) are shown as sticks model
and colored: carbon in green, oxygen in red, nitrogen in blue. B:
surface of uPA is shown in semitransparent gray, amilorides po-
sition in specificity pocket are shown as stick model and colored:
amiloride from crystallographic structure in red, best model calcu-
lated by Vina Autodock colored as amino acids. Only hydrogens of
amiloride calculated by Vina Autodock are shown for clarity.

After testing of 21 potential inhibitors eight hybrid inhibitors
were created from the best inhibitors and analyzed in silico. We

have found that all the hybrids created had higher affinities for
urokinase and MMP-9 than the control inhibitors (amiloride and
STN) as can be seen in Table 1. The calculated affinity for amiloride
bind to uPA was -7.8 kcal/mol while amiloride affinity bind to
MMP-9 was -5.3 kcal/mol. The best hybrid (UI1xAGB) had affini-
ties of -12.1 kcal/mol (or Ki = 1.61−9 mol) for MMP-9 and -12
kcal/mol ( (or Ki = 1.36−9 mol)) for urokinase (Fig. 2). Analyzing
the binding of each individual hybrid in the target enzymes through
PyMol demonstrates the potential efficacy of each hybrid. Each
hybrid binds to, or in close proximity to, the catalytic triad of the
urokinase active site, and the catalytic zinc and corresponding histi-
dine residues of the MMP-9 active site. Binding this way makes the
enzymes inaccessible to other potential ligands resulting in the ef-
fective inhibition of the catalytic and/or metastatic activity of these
enzymes.

Table 1. Calculated affinity for proteins inhibitors complexes shown
as kcal/mol or as Ki

Inhibitor MMP-9a MMP-9b uPAa uPAb

ab14519 -10.2 3.35−8 -6.5 2.42 −5

AGB -9.9 5.57−8 -8.2 9.81−7

Ul1 -9.6 9.24−8 -8.5 5.91−7

7lN -8.7 4.22−7 -7.5 3.19−6

AMRxab145190 -8.5 5.91−7 -9.5 1.08−8

2AMRxab145190 -8.9 4.22−7 -9.7 7.81−8

UI1xAGB -12.1 1.36−9 -12.0 1.61−9

UI1xAMR -10.1 3.97−8 -8.6 4.09−7

7INxAMR -10.3 2.83−8 -8.5 5.99−7

Pp3 3 -10.0 1.29−7 -9.4 8.28−7

Pp3 3xAMR -10.6 1.71−8 -10.8 1.22−8

Pp3 3xp4 4 -10.5 2.83−8 -9.7 7.81−8

affinity in a: kcal/mol, b: Ki mol.

During the process of binding and generation of 3D structures in
silico there is variance in the affinity scores as well as 3D structure
orientation. A test done multiple times will almost never generate
identical results. This variance can be attributed to the programs
attempt at an authentic binding simulation. When running a binding
analysis, the program attempts to imitate the random motion of a
ligand about the binding site coordinates that have been assigned.
By doing so, each test results in different affinities, but the differ-
ences are so small that they are negligible.

Moving forward, each individual hybrid would need to be suc-
cessfully synthesized for in vitro analysis in the lab. The newly
synthesized hybrids would be tested using ligand binding assays to
determine the degree of affinity, equilibrium constant, reliability and
validity of linked reactions, etc. Further tests would need to be run
to test the hybrids ability to effectively inhibit the target enzymes
function as well as other potential interactions with non-target en-
zymes. Trials with animals induced with metastatic tumors would
allow insight into the toxicity of the hybrid as well as its ability
to control metastasis. From there, the goal would be clinical trials
where it would hopefully be deemed safe and effective enough for
commercial use against cancer metastasis.

Numerous in vivo and in vitro studies have demonstrated that
inhibition of proteolytic activity can reduce cancer invasion, tumor
size and limit angiogenesis (59-63). Consequently human clini-
cal studies were designed inhibiting urokinase or MMPs, but these
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target specific inhibitors producing mixed results (64-67). One of
the possible explanations is that cancers are overexpressing at least
urokinase and MMPs simultaneously (5, 68-70). Thus upregulated
net proteolytic activity should be normalized rather that inhibiting
single proteolytic enzyme.

Conclusion

Therapy of the malignances preventing invasion, metastasis and
pathological angiogenesis should include downregulation of the va-
riety of proteolytic enzymes. Creating bifunctional inhibitors of
urokinase and metalloproteinase could provide an alternative to ex-
isting anticancer therapies.
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Fig 2. Best inhibitor of urokinase and MMP-9 (UI1xAGB). A: uroki-
nase surface amino acids of catalytic triad (His57, Asp 102 and Ser
195) are shown as sticks model and colored: carbon i green, oxygen
in red, nitrogen in blue, surface of uPA is shown in semitransparent
gray. B: the catalytic center of MMP-9 is composed of the active-
site zinc ion (shown as blue sphere), co-ordinated by three histidine
residues (401, 405 and 411) and the essential glutamic acid residue
(402) shown as a stick model colored: carbon - green, oxygen - red,
nitrogen - blue), surface of uPA is shown in semitransparent gray.
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