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In January COVID-19 was declared to be a global emergency and
everyday life was disrupted. Many questions about COVID-19
remain to be answered. This paper provides an examination of
the Ohio COVID- 19 data set. In particular, logistic regression is
applied to the analysis of age and gender characteristics on the
mortality of a patient. Based on the statistics and the p-values,
gender and age play an important role in the outcome of a patient
and the most vulnerable group is comprised of male patients who
are more than eighty years old. This paper is an attempt to help
in the formulation of public health policy towards confronting
COVID-19 and paves the way towards a more comprehensive
quantitative analysis as more data become available.
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S ince December 2019 starting in China, COVID- 19 has been
sweeping across the world bringing severe disruption to peo-

ple’s lives and the world economy. On January 31, the world
health organization declared COVID-19 to be a global emergency.
The principal means of transmission appears to be through the air
and it seems to be more infectious than the annual wave of in in-
fluenza. As of July 31, the Johns Hopkins Pandemic website con-
firms 17,767,622 worldwide and 682,931 deaths for a mortality rate
of 3.84%. In the United States 4,617,728 cases have been recorded
with 154,320 deaths and mortality rate of 3.34%.

Researchers all over the world have been working on many as-
pects of COVID-19. These research interests range from investigat-
ing the biological mechanism of the virus for the purpose of pre-
vention, treatment, and development of vaccine (4, 5, 6, 10, 16), to
predicting the number of cases so as to make hospital bed and ven-
tilator arrangements (2, 12, 13, 14, 15).

For example, as of July 31, the Centers for Disease Control
and Prevention (CDC) cites 32 groups that were making predictions
for the coming four weeks. Among these groups are some of the
most prestigious institutions in the world including Columbia Uni-

versity, Johns Hopkins University, the London School of Hygiene
and Tropical Medicine and MIT. Among these 32 groups 15 employ
SIRs methods (Susceptible, Infectious, Recovered) and variations
of it including SEIR to which is added Exposed, that is, for patients
who, although carry the disease, are asymptomatic. SIRs method
involve coupled systems of ordinary differential equations. Some
approaches involve difference equations or dynamical systems. Of
the 32 groups referred to by CDC, eight use mainly or purely statis-
tical methods including time series and three use machine learning
techniques. In (13), growth of the epidemic was modeled using
Verhulst’s growth differential equation, which is discussed in (2).
Its solutions involve logistic curves that are typically S-shaped and
serve as models that "flatten the curve".

However, if we consult Figure 1, we see that it is doubtful
whether in Ohio, the curve has indeed yet been flattened. The
method is combined with a non-linear least squares approach to esti-
mate parameters and the results applied to the growth of COVID-19
in a number of countries. A similar approach is applied to study
the development of the disease in China (12). The principal con-
cern here also involves a logistical model, but one that comes from
statistics, as we shall now explain.

In this paper we formulate a logistical model for the growth
of COVID-19 based upon data gathered from the state of Ohio
to identify risk factors. The Department of Health in Ohio, has
been updating data for the COVID- 19 cases in the State of Ohio
at the Coronavirus Dashboard (https://coronavirus.ohio.gov/wps/
portal/gov/covid-19/dashboards). It contains information about
cases and patients. It has been five months since the last death oc-
curred on March 1, 2020 in Ohio. By July 31, 2020, there have
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been 96,369 case counts and 3,665 death counts. In addition to the
columns of the data set which is given in Table 1, the Dashboard
provides a summary of the data, such as the county, case map and
cumulative case plots. However, the Dashboard does not include
any statistical analysis. One of the goals of the current work is
to provide more information by using statistical analysis. In par-
ticular, logistic regression is used to analyze the Ohio COVID-19
data according to age and gender and provide some insight into the

mortality of patients. Risk factors will be identified from the pub-
licly available data from the State of Ohio using statistical inference.
Also, we will summarize the information of the data set, such as the
mortality rate for each group of gender and age; and we will imple-
mented logistic regression to make statistical inference to identify
some risk factors.

Table 1. Ohio COVID-19 Data Columns

Type Values

County factor with 88 levels Adams, Allen, etc
Sex factor with 3 levels female, male, unknown

Age, range factor with 9 levels 0 - 19, 20 - 29, 30 - 39, 40 - 49, 50 - 50
60 - 69, 70 - 79, 80+, Unknown

Onset date factor with 203 levels 1/10/2020, 1/11/2020 etc
Date of death factor with 139 levels 3/1/2020 etc

Admission date factor with 156 levels 1/14/2020, etc
Case count integer 0, 1, 2, . . .
Death count integer 0, 1, 2, . . .

Hospitalized, count integer 0, 1, 2, . . .

Materials and Methods

A data file was extracted including through July 31, 2020 from
the Ohio Coronavirus Dashboard. However, it is important to note
that the State of Ohio is constantly updating the data, including re-
vising previously posted totals. The numbers used in this study
is what were publicly available as of August 10. Age, Sex, Case
Count, Death Count are the variables which will be studied in this
paper and which will sometimes also be referred to age, gender,
case, mortality". The Coronavirus Dashboard provides very detailed
definitions of these variables. For example, a patient was counted
as a case if she/he was confirmed or met the CDC Expanded Case
Definition (Probable); a death was counted if it was considered to
be COVID-19 related. From Table 1, the factor gender has three
levels (female, male, unknown), and age has nine levels (0 - 19, 20
- 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69, 70 - 79, 80+, unknown).
The entire data set was summarized, including 784 cases with either
gender unknown or age unknown or both. From now on, we will
simply exclude these 0.81% of the cases with missing information,
and analyze the rest of the data.

Table 2 is the summary for the case counts of all of the age-by-
gender groups. For example, the high- est case counts are respec-
tively 10,763 for females and 8,776 for males in the age range of
20 - 29, whereas the lowest case count is 3,390 for females in the
age range of 70 - 79 and 2,259 for males in the age range of 80+. A
relative frequency (RF) for each age-by-gender group is calculated
by:

RF =
GroupCount

TotalCount
[1]

The Count in [1] above can be either a case count in Table 2 or
death count in Table 3. From figure 2, the case relative frequencies
are distributed fairly evenly between 0.0490 and 0.2174 for both
genders and eight age groups. However, the death counts in Table
3 show an obvious upward trend in age for both females and males.
The death count increases from 2 in the age range of 0 - 19 to 1,118
in the age range of 80+ for the female, and from 0 to 790 for the
male. If only age is taken into account, the relative frequencies and
cumulative relative frequencies (CRF) for the eight age levels in Ta-
ble 3 suggest that about 91% of all the deaths were of people 60
years old and older. The female death counts and male death counts
share the same rising pattern, namely, the percentage among all the
deaths increases as age becomes bigger. For example, more than
61% of all the female deaths and more than 42% of all the male
deaths were of patients 80 years old and older. There are big jumps
in the relative frequencies for females and males in the age range of
80+ in both genders, as one may see in figure 3. In particular, the
jump is almost 40% for females and accounts for nearly 62% of the
female deaths in the age range of 80+.

The mortality probabilities of all the age-by- gender groups are
our primary concern and will be estimated using a logistic regres-
sion model in the next section. A mortality rate (MR) is a relative
frequency which is defined as the ratio of death count to case count:

MR =
DeathCount

CaseCount
[2]

The mortality rates in Table 4 exhibit a pronounced upward
trend, as shown in figure 4(a). The risk or the death likelihood
becomes bigger for an older patient. The total of the two mortal-
ity rates of females and males in the same age range increases from
0:05% for the youngest age level, to 61:85% for the oldest age level.
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The total mortality rates of the female and the male gender levels are
broken down by age in figure 4(b), and the pink bars corresponding
to 80+ years old are obviously largest for both genders.

Results

In this section, COVID-19 data is analyzed using a logistic re-
gression model to provide comparisons between mortality probabil-
ities of the age-by- gender groups. The response variable y will be
1 if the patient is dead and 0 otherwise. The variable y is binary,
and the mortality probability π is defined as π = Prob(y = 1). We
are interested in whether π depends on either age or gender or both.
After deleting "unknown", there are eight levels for the factor age
and two levels for the factor gender. Thus, there are a total of 16
different groups, and each case is classified into one of these groups
based upon gender and age. We use πij (i = 0; 1; j = 0; . . . ; 7) to
denote the mortality probability of a patient whose gender is i in the
jth age group. In particular, we define i = 0 for the female level of
gender and i = 1 for the male level; j = 0 for the age level of 0 - 19,
j = 1 for the age level of 20 - 29, j = 2 for the age level of 30 - 39,
and so on.

The eight levels of age are coded by seven in- dicators (age2;
age3; . . . ; age8) with agei = 1 if the case was in the jth age level,
and the two levels of gender are coded as an indicator genderM
with genderM = 1 if the case is in the ith gender level. We do not
need any indicators corresponding to the reference category, which
is the 0 - 19 age level and female gender level, for reasons that will
become clear. Using an indicator for each level is called dummy
coding, which greatly simplify statistical inference and interpreta-
tions.

A logistic regression model, which is a type of generalized lin-
ear model, is commonly used to describe the relationship between a
binary response variable and independent variables. Some examples
of the vast applications of logistic regression models are, the extent
to which maternal drinking affects baby birth defects (7); how the
result of presidential elections is related to the gross domestic prod-
uct and other economic indicators (9). The books (8) and (1) are
very detailed references for both the theory and applications of gen-
eralized linear models. In the context of the Ohio COVID-19 data,
using dummy coding for the factors age and gender, the logistic re-
gression model is defined as follows:

logit(πij) = log(
πij

1− πij
) [3]

= β0 + β1genderM + β2age2 + ...+ β8age8 [4]

where β0; β1; β2; . . . ; β8; are unknown parameters and will be
estimated from the data. Unlike a linear regression model, a logistic
model describes the relationship between the odds π = /(1 - π) and
the independent variables (gender, age). Larger odds implies that it
is more likely for the event, which is death for the COVID-19 data,
to happen. According to the formulation of the model [2], every βk
(k = 1; . . ; 8) represents the difference of log odds of two groups.

For example, β1 is the log odds difference or log odds ratio,

logit(π1j)− logit(π0j)

between males and females in the same age range. It is straight-
forward that eβ i indicates the odds ratio of two groups. A more
detailed explanation of the implications of these parameters can

be found in Table 5. The "Interpretation" column of Table 5 is
the meaning or implication of the parameters from a mathemati-
cal derivation based on the setup of the model [2].

Dummy coding not only facilitates interpretation of the model
parameters, but simplistic statistical inference. In particular, the
mortality prob- ability difference of two age levels, boils down to
whether or not β j = 0, j = 2; . . . ; 8, whereas the gender effect
on the mortality probability is represented by 1. According to the p-
values in Table 5, the effects of age levels are significantly different,
except for the rst two age levels, 0 - 19 and 20 - 29 for which mor-
tality probabilities are not statistically significantly different. For a
xed age level, the difference of gender is also statistically significant.

In addition, the sign of the estimates for β 1; . . . ; β 8 implies
the relationship of the mortality probabilities. For example, based
on β 1 > 0, we have:

β1 = logit(π1j) - logit(π0j) > 0
Equivalently,

π1j

1− π1j

π0j

1− π0j

> 0 [5]

Then we can conclude that:

π 1j > π 0j

which implies a male patient is more likely to die than a female
patient. The estimates in Table 5 are not only positive, but are in-
creasing for older age levels. We conclude that the MR is bigger for
the male than the female, and the increase of MR becomes faster as
age increases. In particular, a male COVID-19 patient in his eighties
is 2927 times more likely to die than a female teenager patient. The
increasing likelihood of death for an older patient is also shown in
figure 5, where the estimated mortality probability in each category
is calculated from a logistic regression model parameter estimate as
follows:

πij =
exp(ω)

1 + exp(ω)
[6]

where:

ω = β0 + β1genderM + β2age2 + ...β8age8

The mortality probabilities for male and female patients are
about the same for the age ranges of 0 - 19 and 20 - 29, whereas the
mortality probability of a male senior patient become significantly
larger than a female senior patient. The Pearson’s chi-squared test
is often applied to a contingency table of two random variables to
examine whether they are independent. It is equivalent to the test
used in a logistic model for large sample sizes. In particular, it is
calculated for the outcome y of a case and age as well as the contin-
gency table of y and gender. Both p-values are much less than 0.05,
which confirms that dependence of mortality on age and gender is
statistically significant.

Discussion

In conclusion, one sees that there is a greater risk of mortality as
age increases, with the greatest risk being in those over 80 years of
age. There is also growing evidence to suggest that while equal
numbers of men and women develop COVID-19, when looking
across age groups, males are more likely to die with the exception of
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the age group of 80+ where there are significantly more female than
male deaths occurred. What is not accounted for in this analysis, is
the difference in the numbers of females living to this age compared
to males (7.87 vs 5.06 million) (Available at https://www.statista.
com/statistics/241488/population-of-the-us-by-sex-and-age/). The
results of this Ohio study are in accordance with observations from
the national COVID-19 data that has been reported by age and
gender (Available at https://www.statista.com/statistics/1127560/
covid-19-incidence-rate-us-by-age-and-gender/).

The gender differences in COVID-19 deaths may also be linked
to the higher percentage of pre-existing health conditions in males.
In one study of 99 COVID-19 patients in China, the majority of
these individuals were males and pre-existing health conditions such
as COPD, diabetes, and heart disease (4). Moreover, there is also a
gender difference in health risk behaviors such as males being more
likely to use alcohol and tobacco. Finally, there are also underlying
biological difference between men and women that make COVID-
19 outcomes worse in men. Women in general have stronger im-
mune systems than men and are better able to fend off infections.
One study also found that estrogen was protective in female mice
infected with a similar strain of the virus during the 2003 SARS
outbreak (3). During that epidemic, men also had a much higher

case fatality rate.

The results of this study are useful in predicting patient out-
comes and helping to shape patient care policies or even the use of
experimental therapies. The data that was analyzed for this work
also could be combined with racial and ethnic data or even so-
cioeconomic status for further examination. For example, in one
study (11), whites were at a higher risk of COVID-19 due to the
higher numbers of this population living to old age when compared
to blacks. Moreover, in households where at least one worker was
unable to work remotely, the risk of illness was increased. The op-
tion of working remotely is often linked to many white-collar jobs
rather than those employed in lower paying and blue-collar jobs.

This study has several limitations that may restrict its applica-
bility in other contexts. First, the data that was analyzed was a \snap-
shot" in time and not of a longer longitudinal nature. Second, there
was no way to determine if those in certain age groups who died
were in hard hit longterm care facilities, nursing homes, or correc-
tional facilities. Third, due to the nature of the COVID-19 virus,
the mortality rate may be under reported as many cases may not be
confirmed at post-mortem. Lastly, there was no way to assess the
extent of comorbidities such as hypertension or obesity that would
increase the risk of death or act as a confounding variable.

Table 2. Summary of Case Counts

Gender
Age Female Male TC RF CRF

Count RF CRF Count RF CRF Count

80+ 4159 0.0840 0.0840 2259 0.0490 0.0490 71 6489 0.0673 0.0673
70-79 3390 0.0685 0.1525 3207 0.0696 0.1186 50 6647 0.0690 0.1363
60-69 5056 0.1021 0.2546 5549 0.1204 0.2390 73 10678 0.1108 0.2471
50-59 6890 0.1392 0.3938 7284 0.1581 0.3971 110 14284 0.1482 0.3953
40-49 6890 0.1392 0.5330 6964 0.1511 0.5482 106 13960 0.1449 0.5402
30-39 8008 0.1618 0.6948 7886 0.1711 0.7194 114 16008 0.1661 0.7063
20-29 10763 0.2174 0.9122 8776 0.1904 0.9098 148 19687 0.2043 0.9106
0-19 4328 0.0874 0.9996 4132 0.0897 0.9995 73 8533 0.0885 0.9991

U 21 0.0004 1.0000 23 0.0005 1.0000 39 83 0.0009 1.0000
TC 49505 46080 784
RF 0.5137 0.4782 0.0081 Case Total = 96369

CRF 0.5137 0.9919 1.0000

U: Unknown; TC: Total Count; RF: Relative Frequency (RF = Cell Case Count / Total Marginal Case Count);
CRF: Cumulative Relative Frequency (CRF = Total RF’s).

Shao et al. UTJMS 2020 Vol. 8 9



Table 3. Summary of Case Counts

Gender
Age Female Male TC RF CRF

Count RF CRF Count RF CRF

80+ 1118 0.6160 0.6160 790 0.4270 0.4270 1908 0.5206 0.5206
70-79 406 0.2237 0.8397 494 0.2670 0.6940 900 0.2456 0.7662
60-69 173 0.0953 0.9350 343 0.1854 0.8794 516 0.1408 0.9070
50-59 77 0.0424 0.9774 154 0.0833 0.9627 231 0.0630 0.9700
40-49 19 0.0105 0.9879 46 0.0249 0.9876 65 0.0178 0.9878
30-39 11 0.0061 0.9940 18 0.0097 0.9973 29 0.0079 0.9957
20-29 9 0.0050 0.9990 5 0.0027 1.000 14 0.0038 0.9995
0-19 2 0.0010 1.0000 0 0.0000 1.0000 2 0.0005 1.0000
TC 1815 1850
RF 0.4952 0.5048 Death Total = 3665

CRF 0.4952 1.0000

TC: Total Count; RF: Relative Frequency (RF = Cell Case Count / Total Marginal Case Count);
CRF: Cumulative Relative Frequency (CRF = Total RF’s).

Table 4. Summary of Mortality Rates

Gender Total

Age Female Male Case Death MR

Case Death MR Case Death MR

80+ 4159 1118 0.2688 2259 790 0.3497 6418 1908 0.2973
70-79 3390 406 0.1198 3207 494 0.1540 6597 900 0.1364
60-69 5056 173 0.0342 5549 343 0.0618 10605 516 0.0487
50-59 6890 77 0.0112 7284 154 0.0211 14174 231 0.0163
40-49 6890 19 0.0028 6964 46 0.0066 13854 65 0.0047
30-39 8008 11 0.0014 7886 18 0.0023 15894 29 0.0018
20-29 10763 9 0.0008 8776 5 0.0006 19539 14 0.0007
0-19 4328 2 0.0005 4132 0 0.0000 8460 2 0.0002

Total 49484 1815 0.0367 46057 1850 0.0402 95541 3665 0.0387

Mortality Rate (MR) = Death Count / Case Count.
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Table 5. Logistic Model Parameters and Estimates

Model Parameter Interpretation Estimate p-value

β0 log{π00/(1-π00)} -8:577 0.000
β1 log[{π1j /(1-π1j)}/{π0j /(1-π0j)}] 0.421 0.000
β2 log[{π2j /(1-π2j)}/{π0j /(1-π0j)}] 1.126 0.136
β3 log[{π3j /(1-π3j)}/{π0j /(1-π0j)}] 2.042 0.005
β4 log[{π4j /(1-π4j)}/{π0j /(1-π0j)}] 2.987 0.000
β5 log[{π5j /(1-π5j)}/{π0j /(1-π0j)}] 4.240 0.000
β6 log[{π6j /(1-π6j)}/{π0j /(1-π0j)}] 5.364 0.000
β7 log[{π7j /(1-π7j)}/{π0j /(1-π0j)}] 6.511 0.000
β8 log[{π8j /(1-π8j)}/{π0j /(1-π0j)}] 7.561 0.000

 

Fig. 1. Cumulative counts and daily counts
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Fig. 2. Case relative frequency in each age by gender group

 

Fig. 3. Death relative frequency of each age by gender Group group
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Fig. 4. Mortality rate of each age by gender group Group group

 

Fig. 5. Estimated mortality probabilities
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Conclusion

In conclusion, one sees that there is a greater risk of mortal-
ity as age increases, with the greatest risk being in those over 80
years of age. There is also growing evidence to suggest that while
equal numbers of men and women develop COVID-19, when look-
ing across age groups, males are more likely to die with the ex-
ception of the age group of 80+ where there are significantly more
female than male deaths occurred.
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