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This paper studies several key metrics for COVID-19 using a pub-
lic surveillance system data set. It compares the difference be-
tween two case fatality rates: the naive case fatality rate, which
has been frequently mentioned in media outlets, and one which
is the sample estimate for the mortality rate. A logistic regres-
sion model is applied to modeling the daily mortality rate. The
conclusion is that time, gender, age and some of their interac-
tions, appear to have a significant impact on the mortality rate;
the daily mortality rate has been decreasing since the outbreak;
males older than 60 has been the most vulnerable group. The
receiver operating characteristics curve and the curve under the
area show that the proposed logistic model is capable of predict-
ing the outcome of a reported case with accuracy as high as 89%.
These findings are helpful in assessing the magnitude of the risk
posed by the COVID-19 virus to certain groups, predicting out-
come severity, and optimally allocating medical resources such
as intensive care units and ventilators.
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S ince the outbreak of the coronavirus (COVID-19) pandemic in
December 2019 in China, researchers all over the world have

been working on understanding the transmission mechanism (6, 7,
11, 29), estimating key metrics for assessing the magnitude of the
risk posed by this virus (2, 13, 24, 27), and obtaining information
for policy making (5, 8, 17, 26). Case fatality rate (CFR) is one of
the key indicators of the severity of an infectious disease. However,
it is challenging to obtain an accurate CFR, as both case and death
counts of an infectious disease are in general unknown.

The simplest approach uses the daily naive CFR, which is the
death count divided by the case count on day t. The daily naive
CFR, denoted by rt, is one of the statistics that numerous organiza-
tions and media have been updating based on the latest COVID-19
data. An advantage of rt, for example, is that it is computation-
ally straightforward, whereas the major disadvantage is that it is

not accurate as a measure of disease severity, and sometimes is even
misleading. As Ritchie and Roser (21) pointed out, it ignores deaths
in cases with time lags. Since the deaths in the numerator are not
a subset of the cases in the denominator, the naive CFR does not
accurately reflect the severity. Another daily CFR, denoted by πt,
is the ratio of the death count to the case count on day t. Both rt
and πt are relative frequencies of deaths and share the same denom-
inator or case count on day t, but they have different numerators —
the numerator of rt is the death count on the same day, while that
of nt is the death count among the cases in the denominator. The
deaths in the numerator of πt consist of a subset of the denominator,
although they can happen any time after the case onset dates. This
fundamental disparity which will be examined and elaborated, dis-
tinguishes pi t from rt as a better description of the disease severity
(22).

A daily mortality rate (MR), denoted by pt, is the probability of
death from a disease and is another measure of severity. However,
the true probability is not observable and usually estimated by the
CFR πt. The relationship between daily COVID-19 mortality rate
and several factors will be modeled using reported death and case
counts as well as other relevant information provided by the public
surveillance system of the State of Ohio. Shao et al. (23) considered
how much the mortality rate can be explained by gender and age us-
ing the same reported system, but it treated MR as constant over
time and did not take the change of MR into account. Several pub-
lic policy measures could have had some impact on the daily counts
since the outbreak of COVID-19. For example, how infectiousness
of COVID-19 has been changing due to interventions (15), such as
social distancing and curfew; it is possible that more and more eas-
ily accessible tests have led to large case counts recently; more and
more effective treatments could have been contributing to the reduc-
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tion of death counts (9). Thus, in the model development for daily
MR, time is considered as one of the covariates for the purpose of
identifying statistically significant factors based on statistical mod-
eling. In this paper, the model proposed will be utilized to predict
the likelihood of mortality for a reported case.

There are three goals of this paper: comparing the daily naive
CFR rt with CFR πt, identifying risk factors that impact daily
MR pt using statistical inference, and making a prediction about
the probability of mortality for a COVID-19 patient based on the
risk factors. All the data analysis is conducted using the State
of Ohio COVID-19 surveillance data, which includes information
about each reported patient, in particular, gender, age, onset date,
death date, and outcome. The paper is organized as follows: details
about the data and statistical descriptions of several major charac-
teristics are presented; rt and πt are examined and compared; the
statistical inference based on logistic regression is provided in the
findings about the relationship between rt and πt, statistical infer-
ence results about pt, and the application of the model in prediction

of death likelihood of a case based on age, gender, and time are
elaborated; finally in the paper concludes with a discussion.

Materials and Methods

Data

The raw daily data in the study period, March 10, 2020 to Jan-
uary 31, 2021 inclusive, were downloaded from the State of Ohio
COVID-19 dashboard (18). The rows of the raw data set are the
records of patients, and the final data set is obtained by deleting
all the rows that contain "unknown". Figure 1 shows that the case
count increased dramatically until November and then dropped off
in the last two months, while the death count did not change much
throughout. Table 1 lists the monthly summary for the daily counts.
The maximum case count suddenly jumped from 4,094 in October
to 13,523 in November.

Figure 1. Daily Death and Case Counts, March 10, 2020 - January 31, 2021
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Table 1. Summary of Daily Count Data by Month

Daily Max Daily Median Daily Mean Daily Min
Month

Case Death Case Death Case Death Case Death

March - 2020 383 39 280.5 18.0 256.0 18.9 81 4

April - 2020 2181 76 475.0 49.0 583.7 50.1 281 28

May - 2020 754 57 572.0 29.0 531.2 32.2 237 10

June - 2020 1437 29 622.5 15.0 694.8 16.0 249 7

July -2020 1877 55 1329.0 27.0 1324.4 27.0 820 12

August - 2020 1493 41 1034.0 23.0 1018.5 23.7 628 5

September - 2020 1501 48 1078.0 19.5 1025.0 21.9 621 7

October - 2020 4094 82 2286.0 44.0 2393.5 47.1 1089 15

November - 2020 13523 280 8064.0 144.0 8009.8 148.3 3729 66

December - 2020 11976 242 8028.0 136.0 8255.0 139.7 3057 62

January - 2021 11038 87 5539.0 28.0 5597.4 31.2 2370 8

A threshold of 21 days is chosen as the cutoff for survival for
two reasons: according to the State of Ohio dashboard, a positive
case is considered as "presumed recovered" after the symptom on-
set date larger than 21 days; according to Figure 2, all the monthly
medians of days for death are less than 21 days. In other words, if a
patient has not died of COVID-19 by February 21, 2021, he or she
is considered to have survived.

For each reported positive case whose onset date is in the study
period, define the dichotomous dependent variable y, which is the
outcome indicator, as either 1 if the patient has died of COVID-
19 by February 21, 2021 or 0 otherwise. Age is divided into two
groups: the older group (at least 60 years old) and the younger group
(from 0 to 59 years old).

Time t is introduced for the number of days between the begin-
ning of the study and the onset date on the record of a case. For
example, t = 1 for a case whose onset date was on March 10. The
final data set to be analyzed contains n = 898,228 rows, with each
row being the record of a positive case, and four columns being the

outcome indicator y and the covariates. The column information is
summarized in Table 2.

Table 2. Columns of Data Set

Column Type Values

Sex factor with 2 levels female, male

Age factor with 2 levels 0, 1

Time integer 1, 2, . . .

Outcome factor 0, 1
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Figure 2. Monthly Medians of Days for Deaths

Case Fatality Rates

Table 3 summarizes the total case count, death count and over-
all naive CFR of each gender-by-age category up to and including
January 31, 2021. The overall naive CFR is 0.0187, and these four
gender-by-age groups have very different CFR’s: the male older

group has the largest CFR, which is 0.0089 and the female younger
group has the smallest CFR, which is 0.0005. The odds ratio of
these two groups is as large as 17.951. This naive CFR uses a possi-
bly smaller numerator, as the outcomes of the most recent cases are
ignored. Moreover, these CFR’s are snapshots and do not take time
into account.
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Table 3. Case Fatality Rates (CFR=Death Count in Each Category/Total Case Count)

Gender Total
Age Female Male Case Death MR

Case Death MR Case Death MR

<60 364536 461 0.0005 315177 693 0.0008 679713 1154 0.0013

¥ 60 118749 7590 0.0085 99766 8037 0.0089 218515 15627 0.0174

Total 483285 8051 0.009 414943 8730 0.0097 898228 16781 0.0187

Given many factors could have impacted the counts, it is rea-
sonable to take t into consideration. The daily CFR’s rt and πt are
respectively calculated as follows:

 

𝑟𝑡 =
Death Count on Day t

Case Count on Day t
 

 

π𝑡 =
𝐷𝑒𝑎𝑡ℎ 𝐶𝑜𝑢𝑛𝑡 𝑎𝑚𝑜𝑛𝑔 𝐶𝑎𝑠𝑒 𝐶𝑜𝑢𝑛𝑡 𝑜𝑛 𝐷𝑎𝑦 𝑡

𝐶𝑎𝑠𝑒 𝐶𝑜𝑢𝑛𝑡 𝑜𝑛 𝐷𝑎𝑦 𝑡
 

Logistic Regression for Mortality Rate

Define pt = P (yt = 1) which is the probability of death of a
reported case or reported case mortality rate at time t. Hereafter pt

and pt (x) will be used interchangeably with the latter emphasizing
covariates x. The daily cases are separated into four groups accord-
ing to age and gender. The reference group includes all the cases
who are younger females or females younger than 60, and three
dummy variables are introduced for the other groups: x1 = 1 for a
female case whose age is older than 60 and 0 otherwise; x2 = 1 for a
male case whose age is younger than 60 and 0 otherwise; x3 = 1 for
a male case whose age is older than 60 and 0 otherwise. Logistic
regression, which is typically implemented to model the relation-
ship between a dichotomous dependent variable and covariates, is
applied to y, age, gender and time. Interested readers can refer to
(1) and (16) for comprehensive discussions about the theory and ap-
plications of logistic regression.

The full model that includes the covariates and all the interac-
tions between time, age, gender is considered. Data analysis for
logistic regression is carried out using the package glm in R (19)
which is a free software environment for statistical computing and
graphics. According to the Akaike information criterion, the follow-

ing model is a good compromise between simplicity and adequacy:

 

log
𝑝𝑡 𝑥 

1 − 𝑝𝑡 𝑥 
= β0 +  β𝑖

3

𝑖=1

𝑥𝑖 + β4𝑡 + β5𝑥1𝑡 + β6𝑥3𝑡,   [1]  

where x = (x1, x2, x3, t). It is obvious that for the female
younger positive cases which constitutes the reference group, model
[1] becomes:

 

log
𝑝𝑡 𝑥 

1 − 𝑝𝑡 𝑥 
= β0 + β4𝑡.                 [2] 

It is straightforward to obtain the models for the other age-by-
gender groups. For example, for the older female group, model [1]
is rewritten as:

 

𝑙𝑜𝑔
𝑝𝑡 𝑥 

1 − 𝑝𝑡 𝑥 
= β0 + β1 +  β4 + β5 𝑡.             [3] 

From [2] and [3], β1 + β5t indicates the log odds ratio of older
and younger groups of female cases. Similarly, it can be concluded
that β3 + β6t is the log odds ratio between older and younger groups
of male cases.

Results

The mathematical difference between rt and πt is the numera-
tor. Unless a death from COVID-19 in the numerator of rt happens
on the same day when it is reported as a case, it is not among the
case counts in the denominator. Thus, it is obvious that rt mis-
matches these counts, which introduces bias, and on the other hand,
πt pairs the deaths with the cases and is a more reliable indicator for
the severity or the death likelihood of a COVID-19 patient. Figure 3
illustrates the difference between relative frequencies of rt and πt.
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Figure 3. Case Fatality Rates rt and π t

The distinction was more manifest in the first 100 days, and πt

reached a peak sooner than rt. Not only is there a time lag between
rt and πt, but they display different patterns. In particular, the surge
of rt in December did not occur in πt. The peak of πt implies that

the early cases were more likely to result in death.

Table 4 is the information for the estimates pβ = (pβ0 ...., pβ6) of
the parameters in model [1].
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Table 4. Generalized Linear Model Coefficient Estimates

β pβ Standard Error 95% Confident Interval p - value

β0 -4.288 0.098 (-4.480,-4.097) <0.001

β1 3.530 0.106 (3.323,3.737) <0.001

β2 0.523 0.060 (0.405,0.641) <0.001

β3 3.633 0.105 (3.427,3.840) <0.001

β4 -0.008 0.000 (-0.009,-0.007) <0.001

β5 0.002 0.000 (0.001,0.002) <0.001

β6 0.002 0.000 (0.001,0.003) <0.001

There are several interesting observations from Table 4: first,
a negative pβ4 entails that the death probabilities of two younger
groups of both genders are decreasing functions of time t; secondly,
pβ4 + pβ5 = pβ4 + pβ6 = - 0.006 suggests that the death probabilities
of the older groups of both genders are also decreasing functions of
time t, but that the change is slower than that of the younger groups;
the MR of the male older group is the largest and that of the fe-
male younger group is the smallest; for females, log odds ratio of
MR between older and younger is 3.530 + 0.002t, and for the males
the log odds ratio of MR between older and younger is 3.110 +
0.002t, which implies that the differences become larger and larger;
the odds ratio between the largest MR of the male older group and
the smallest MR of the female younger group is an increasing func-
tion of t, which is exp(3.633 + 0.002t), and changes, for example,
from 37.902 at t = 1 to 68.924 at t = 300. The model [1] is applied
to predict the mortality risk of a case based on age and gender at
time t. A large value of ppt (x) is associated with greater risk. From
model [1], it is straightforward to show that the estimate ppt (x) can
be calculated by:

 

𝑝𝑡  𝑥 =
exp 𝑤𝑡 𝑥  

1 + exp 𝑤𝑡 𝑥  
,                                  [4] 

where:

 

𝑤𝑡 𝑥 = β0 + β𝑖
 

3

𝑖=1

𝑥𝑖 + β4 𝑡 + β5 𝑥1𝑡 + β6 𝑥3𝑡 

with pβ being the estimates in Table 4. The observed daily CRF
πt and predicted values ppt in Figure 4 match each other well, and
the male older group has been having the greatest risk since the out-
break.
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Figure 4. Case Fatality Rates π t and Model Predicted Mortality Rates pp t

A receiver operating characteristics (ROC) curve measures the
accuracy of prediction. The higher a ROC curve is above the refer-
ence line y = x, the larger power it has. In other words, the closer
to (0,1) the middle of the curve is, the more accurate the prediction

using the model is.
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Figure 5. Case Fatality Rates π t and Model Predicted Mortality Rates pp t

Figure 5 is the receiver operating characteristics curve based on
equation [4]. As early as 1966, Green and Swets (10) systematically
introduced ROC curves and their applications. Figure 5 shows the
prediction power of model [1]: it is within a 95% confidence inter-
val and is high above the reference line y = x.

Another measure of prediction power is given by the areas un-
der the curve (AUC). The AUC of model [1] is 89% close to one
which is the largest possible value of AUC, and the 95% confidence
interval is (88.67%,89.34%). Thus, both the ROC curve and the
AUC indicate that the logistic regression model [1] is a powerful
tool for prediction.

Discussion

The case fatality rate is one of the metrics that assess the sever-
ity of an infectious disease. The daily naive CFR rt is constantly
updated despite the fact that it is biased. According to the com-
parison based on the State of Ohio COVID-19 surveillance data,
although rt and πt are different at the beginning of the COVID-19
outbreak, they share a common declining overall trend, and indicate
the same most and least vulnerable groups. Therefore, rt is infor-

mative despite its biasedness.

In the study, age, gender and time appear to be statistically sig-
nificant in determining the likelihood of death for a case. In par-
ticular, the group of males older than 60 has been most vulnerable,
which confirms a CDC recommendation. Moreover, the model that
includes time, age, and gender provides a relatively high prediction
accuracy as measured by the ROC curve and AUC. These findings
are helpful in predicting outcome severity of certain groups and op-
timally allocating medical resources such as ICU’s and ventilators.

This study has several limitations. First, our study relies on the
Ohio surveillance data, and thus ignores unreported counts, such as
asymptomatic patients. Secondly, outbreaks in clusters could have
exaggerated the contagiousness. For example, many reported cases
in nursing homes, could have resulted in an inflated total of reported
case and death counts, given deaths in nursing homes in Ohio were
about 32% of the total deaths by January 28, 2021 (25). Some re-
search has been conducted for the purpose of estimating the society
CFR. For example, Reich et al. (20) estimated death counts using
log linear models by taking an incomplete reporting system into
account; the work of Bendavid et al. (3) and Havers et al. (12)
attempted to estimate society CFR in particular for COVID-19, by
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sampling the population in certain geographical regions. Thirdly,
although the logistic model [1] can explain the data reasonably well
and shows strong power for prediction, pre-existing health condi-
tions or comorbidities may be linked to the mortality rate and could
improve model performance if such information was included. For
example, Xu et al. (28) and Li et al. (14) studied how comorbid-
ity contributed to the severity of COVID-19 patients’ outcomes in
China. Lastly, the prediction power could be enhanced if the record
of some typical symptoms of each patient were accessible (4).

Conclusion

The proposed analysis procedure can be applied to similar
COVID-19 data. For example, the national counterpart of rt in Fig-
ure 6 exhibits the same changing pattern as that of the State of Ohio
in Figure 3, and it is reasonable to conjecture that the proposed lo-
gistic regression is useful to modeling the national counterpart of πt

and pt, which could be a future research project if such information
was available.

Figure 6: Case Fatality Rates rt of the United States, March 10, 2020 - January 31, 2021
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