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ABSTRACT 

A theoretical model of the transport of neutral molecules 
across the capillary wall has been developed. The model is 
applicable to single-injection experiments. The mutual coupling 
between the diffusion and convection of solute molecules in 
extracellular pores under the influence of restriction bas been 
considered as responsible for the capillary permeability. The 
extraction, which is experimentally measurable, and solute 
flows across the capillary membrane, have been calculated 
with the continuity equation in the steady state as  well as  in 
the case of relaxation phenomena in the membrane-concentra- 
tion profile due to non-steady-state properties. Explicit equa- 
tions of the steady-state extraction, suitable for experimental 
application, are presented, showing the effect of the convection 
in increasing the capillary permeability and thus in opposing 
the restriction caused by the solute-membrane interaction. 
Non-steady-state computations were performed on an analog 
computer and showed that back transport from the membrane 
compartment to the blood stream may be partly responsible 
for the regain of solute molecules which have earlier passed 
into the capillary wall. 

INTRODUCTION 

It has been suggested that the transport of lipid- 
insoluble molecules across the capillary wall occurs 
through discrete pores with dimensions comparable 
to those of small molecules (16, 19,20). The existence 
of both small and large pores has been discussed 
(12). The small pores, which are considered to pre- 
dominate, have in skeletal muscle, for instance, an 
estimated radius in the range of 3 to 4 nm. Other 
organs show slightly different values. On the basis 
of electron-microscopic evidence, it has been pro- 
posed that the intercellular junctions are the ana- 
tomical counterparts of the small pores (15). 

The transport mechanism in the capillary mem- 
brane for small molecules has been assumed to be 
diffusion, modified by a restriction factor due to the 
finite dimensions of the pores (19, 22). The contribu- 

i tion to the solute flux due to convection (i.e. solvent 

drag), in accordance with Starling’s hypothesis of 
transcapillary solvent circulation, has usually been 
treated as a small correction (12, 16). 

In experimental investigations of the capillary 
permeability, what is called the single-injection 
technique has been widely used (6, 7, 8). In this 
method, a bolus, containing an impermeable refer- 
ence substance and permeable test substances, is 
injected into an afferent artery, and the blood is 
sampled and analysed at the corresponding efferent 
vein. By comparing the venous concentrations of the 
test substances and the reference solute, the amounts 
of the test substances absorbed can be calculated as 
an indirect measure of the capillary permeability. 

The aim of the present investigation is to study a 
capillary-membrane model which takes into account 
the combined effect of convection and diffusion in 
restricted pores as transcapillary transport mechan- 
isms. The interaction of convection on the diffusion 
equation has been studied in several other theoretical 
and experimental situations (11, 13, 14, 17, 21, 23, 
24). The present membrane model has been adapt- 
ed to single-injection experiments by adding a single- 
channel model of the blood capillary system. Calcula- 
tions have been made for the steady-state case of the 
convection-diffusion equation. However, since the 
time-varying bolus concentration may induce a 
diffusional non-steady state, this situation is also 
treated and discussed. 

NOMENCLATURE 

For convenience, the various notations used through- 
out the paper are listed as follows. These symbols 
will also be defined in the text when they appear. 

AD true pore area (cm2) 
A, apparent pore area for a solute (cm2) 
a molecular radius (cm) 
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c = c(x,  t )  
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concentration of solute in the blood- 
tissue barrier as a function of x and t 
(mole/cm3) 
concentration at intersegmental mem- 
brane barrier n (mole/cm3) 
concentration gradient at intersegmental 
membrane barrier n (mole/cm4) 
plasma concentration of solute (mole/ 
cm3) 
maximum plasma solute concentration 
of the bolus (mole/cm3) 
tissue solute concentration (mole/cm3) 
diffusion coefficient (cm*/sec) 
thickness of blood-tissue barrier (cm) 
extraction 
total extraction 
solute flow as a function of x and t 
(mole/(cm2 sec)) 
solute flow at intersegmental membrane 
barrier n (mole/(cm2 sec)) 
restriction coefficient 
Avogadro's number (number/mole) 
index referring to the number of the 
intersegmental membrane barriers 
permeability of the capillary wall (cm/ 
sec) 
steady-state capillary permeability (cm/ 
sec) 
scale factor = k D / A x 2  
plasma-volume flow (cm3/sec) 
scale factor = kv /2Ax  
gas constant (dyne cm/(mole degree)) 
pore radius (cm) 
absolute temperature ( O K )  

time (sec) 
half-width of the bolus concentration 

linear transendothelial flow velocity (cm/ 
sec) 
space dimension (cm) 
membrane-segment thickness (cm) 
viscosity (poise) 

(set) 

The normalized quantities used in this paper have 
not been included in the above list but are summa- 
rized in eq. (9). 

MODEL OF THE PLASMA-TISSUE BARRIER 

For the transport of neutral lipid-insoluble molecules 
through the endothelial wall, a pore model has been 
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Fig. 1. The convection-diffusion model of the blood-tissue 
barrier. The convection velocity u disturbs the concentration 
profile in the membrane of thickness d. The bolus concentra- 
tion caused by the bolus injection is co(f). The tissue concentra- 
tion cd is assumed to be zero. 

adopted. Inside the pores, the transport is one- 
dimensional, and the barrier extends from x = O  on 
the plasma side to x = d on the interstitial-tissue side 
of the pores (Fig. 1). A test solute is considered, 
which for simplicity has a transport rate across the 
blood-cell membranes which is much slower than 
both the transport rate across the capillary wall and 
the transit time of the solute through the capillary 
system (see the next section). The time-(t)-dependent 
plasma concentration of this solute is co(t),  and the 
membrane concentration is designated c(x,  t ) .  The 
corresponding tissue concentration cd is assumed to 
be zero, which means assuming a perfectly stirred 
extracellular space of infinite extension. The free 
diffusion coefficient of the solute is D and a constant 
convection (flow) velocity v is considered to be 
present within the pores. The solute flux J,(x, t )  in 
the pores is then: 

where k is the restriction coefficient attributed to the 
narrowness of the pores. Renkin (cf. 5 ,  22) assumed 
that the restriction was caused by a steric hindrance 
at the entrance of a pore and by frictional forces 
between the solute and the pore walls. He calcu- 
lated the restriction coefficient and interpreted it as 
the apparent pore area A, for the solute over the 
true pore area A,: 
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(2(1 - a/r)z - (1 - a/r )4)  { 1 - 2.104alr 
A kS-' = 

A, 
+ 2.09(a/r)3 - 0 . 9 5 ( a / ~ ) ~ }  (2) 

where a/r is the ratio of molecular radius to pore 
radius. When convection is considered, the frictional 
forces between the solute and the water must also 

taken into account. This was done by Forster 
(lo), who showed that the restriction influences the 
diffusional and convectional contributions (first and 
second terms in eq. (1)) in the same proportion. He 
found that k =D,,,/(D + DS,,) where D,., is the 
solute-diffusion coefficient against the membrane 
and D, as above, the value in free solution. 

When the transport flux is not in the steady state, 
the following differential equation, obtained from 
the continuity equation, describes the concentration 
within the pores: 

(3) 

Thus, in the non-steady state the concentration is 
calculated from eq. (3) and the solute flux is then 
obtained from eq. (1). 

Finally, it has been assumed that the solute flux 
does not influence the plasma concentration co(t) ,  
which means assuming that the amount of substance 
lost through the capillary walls is small, as com- 
pared with the amount of substance in the plasma, 
and also that the plasma compartment is well 
stirred. 

MODEL OF THE BLOOD CAPILLARY 
SYSTEM 

In order to adapt the membrane model to single- 
injection experiments, a model of the blood capillary 
system is needed to describe the blood flow through 
the organ under investigation. The simplest model is 
to approximate the blood capillaries to a single 
channel (Fig. 2). At the arterial end of the channel, 
the solute flow from the plasma towards the tissue 
compartment is J,(O, t ) .  The water flow with velocity 
v is thought to be filtered out from the vascular bed 
at the arterial end and re-absorbed at the venous 
end, according to Starling's principle of paracapillary 
circulation. All events in the reabsorptive part, as 
solute reabsorption from the tissue to the blood or a 
possible loss of solute from the blood to the tissue 
are neglected. All the solute flow entering the tissue 

Blood ECS 

Arterial end 

(filtration channel) 

Venous end 

(solute reabsorption 
neglected) 

Elimination 

-Js(d,t) 

a 
Fig. 2. The four-compartment model of the solute transport 
from the plasma across the capillary wall to the extracellular 
space (ECS) and its elimination. The capillary system is 
modelled by a single channel with a circulating solvent flow 
u across the endothelial membrane (cf. Fig. 1).  See text for 
further explanation. 

compartment, JJd, r ) ,  can thus be thought of as 
being eliminated. The volume flow of lymph is 
usually very small, as compared with the total volume 
flow of plasma Q in the capillary system, which 
means that putting the plasma inflow at the arterial 
end equal to that at the venous end is a good approx- 
imation. If the arterial and venous solute concentra- 
tions are called co(t) and c,(T) respectively, then a 
material balance gives 

or 

Calculation of J,(O, t )  from eq. (l), using eq. (3) as 
described above, thus makes it possible to obtain 
the experimentally measurable quantity c,(t) from 
eq. ( 5 ) .  

EXTRACTION 

In single-injection techniques, the experimental result 
is often expressed as the extraction E(t ) ,  which is a 
measure of the loss of solute into the tissue, as com- 
pared with the amount of solute in the bolus (8). 

Upsala J Meci Sci 79 



10 B. ldberg and J.  V. Hagglund 

Using the result from eq. ( S ) ,  we obtain: 

(7) 

where P ( t )  is the membrane permeability. This 
means that in our model the extraction is propor- 
tional to the permeability of the capillary wall. 

In the experimental situation, the extraction is 
time-dependent, due to non-steady state phenomena, 
and different methods of dealing with this situation 
have been discussed, for instance, the method of 
calculating the “early extraction” E(0) (18). We have 
used a different approach by introducing the fotal 
extraction, defined as 

roc 

J o  

The total extraction Et means the total loss of solute 
from the plasma stream, divided by the amount of 
solute in the injected bolus. In the present model, Et 
will vary with the half-width tlrz of the arterial bolus 
concentration c,(t), as long as the transport equation 
(3) is in the non-steady state. In the steady state, the 
extraction is independent of time, and eq. (8) is re- 
duced to eq. (7). 

NORMALIZATIONS 

In order to give a comprehensive theoretical descrip- 
tion, the following normalizations are introduced: 

Normalization table 

X = x / d  
t = t - k .  Did2 
tlIz = t l l z . k . D / d 2  (see below) 

(see below) (9) 

and 

where 6,  is the maximum of c,(t). v denotes the 
convection velocity v divided by the diffusional 
velocity obtained with zero convection. Correspond- 
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ingly, Js(x, t) is the ratio of the solute flux and the 
maximum diffusional flux (without convection). E 
and E,, can be interpreted as the extraction’or total 
extraction divided by the extraction obtained from 
pure diffusion. The normalized extraction E is equal 
to the permeability P ( t )  normalized to the permea- 
bility with only diffusion. These relations are easily 
established if we consider that J,(O, t ) /co( t )  = kD/d in 
the case of pure diffusion and use eq. (7). 

STEADY-STATE APPROXIMATION 

The calculations are substantially simplified if the 
approximation to the steady-state transport equation 
is made, which means neglecting the time derivative 
in eq. (3) ( a / a t  =O). Since c,(t)  varies with time, 
c(x, t )  will vary with time also in the steady-state 
approximation, but the variation of co(t) in this 
approximation is much slower than the relaxation 
time of eq. (3). The validity of this steady-state 
approximation will be further discussed below. 

Using the normalizations introduced in the pre- 
ceding section and assuming the steady-state con- 
dition, eqs. (I), (3) and (7) (or (8)) are transformed 
into 

a2c(x, t) ac(x, t) 
ax2 ax 

___ =”-- 
and 

Eqs. (10) and (12) are valid also in the non-steady 
state, but eq. (1 1) includes the steady-state approxima- 
tion. 

The boundary conditions of eq. (11) can be ex- 
pressed in normalized quantities, such as (cf. Fig. 1) 

c(0, t) =c,(t) and 
c(1, t) = o  

The differential equation (1 1) is easily solved, 
together with the boundary conditions (eq. (13)), and 
the expression c(x, t) is then used in eq. (lo), which, 
in combination with eq. (12), gives an expression of 
the extraction E. The details of this procedure are 
given in the Appendix and the result is (eq. (A7)): 

V 
E =  

l-exp(-v) 
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A graphical representation of eq. (14) (continuous 
curve) is given in Fig. 3. The inset diagram in Fig. 3 
shows the relation between v and the concentration 
profile within the plasma-tissue membrane, as cal- 
culated from eq. (A5) in the Appendix. The figure 
illustrates that, as expected, the convection increases 
the extraction. At high filtration rates, the convection 
term predominates over the diffusion and the extrac- 
tion approaches proportionality with v. 

In experimental work, using the single-injection 
technique, the ratio of the capillary-wall permea- 
bility and the free diffusion coefficient of the solute 
has been used to express the transport properties of 
the blood tissue barrier (2).  In the present model, 
the corresponding quantity can be given as the actual 
permeability P divided by the permeability of free 
diffusion (Did), a ratio which is proportional to the 
ratio of the extraction E( t )  and the free diffusion 
coefficient D. Then from eqs. (9) and (14): 

(15) 
V 

P . dID = E(t)  * d . Q/(D * AD) = k 
1 -exp ( -  v) 

This expression is illustrated in Fig. 4 (continuous 
curves) with k calculated from eq. (2).  Different 
solute molecules correspond to different values of 
the molecule-to-pore radius a/r, but also to differ- 

Norm. total extraction 

t 

5 /I / 

D 
0 1 2 3 4 5 6  

Norm. filtration velocity 
Fig. 3 .  The steady-state extraction E as a function of the 
covection velocity v (continuous curves). The inserted dia- 
gram shows the concentration profiles in the capillary mem- 
brane corresponding to different v-values. Note that v =  0 
correspond to pure diffusion and that for high values of 
v the extraction is proportional to v, indicating a negligible 
contribution by diffusion to the transcapillary transport. 

W / D  
I. 

Fig. 4. The ratio of steady-state capillary permeability P and 
the free diffusion permeability D/d as a function of the solute- 
to molecular-radius ratio for various values of the convection 
velocity v (-) and V (---). The ordinate is proportional 
to the extraction divided by the free diffusion coefficient. 
On the constant V curves, the convection velocity u is con- 
stant, while the molecular radius varies according to the 
abscissa. It will be seen that for a certain value of u different 
molecules correspond to different values of v and subsequently 
to different shapes of the capillary membrane-concentration 
profile (cf. the inset diagram in Fig. 3). 

ent v, since the free diffusion coefficient which varies 
with the molecular size, is included in the normaliza- 
tion (v = vd/D). 

If we introduce the Stoke-Einstein relation between 
the free diffusion coefficient and the molecular ra- 
dius (a), an experimentally more convenient expres- 
sion of the permeability is obtained: 

D = R T / ( 6 n . q - N . a )  (16) 

where R =the gas constant, T = the absolute tempera- 
ture, 7 = the viscosity and N = Avogadro’s number. 
Then, from eqs. (9), (15) and (16) we have 

V(a/r )  
1 - exp ( - Vajr) 

P - d I D = k  

Eq. (17) is illustrated in Fig. 4 by dashed curves. 
In an experiment with constant convection velocity 
v but different probe molecules, the results will fall 
on one of these constant V curves. Such an experi- 
ment may thus give rise to (a) increasing, (b) approxi- 
mately constant or (c) decreasing values of Pd/D as 
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Fig. 5.  The plasma solute concentration co(t) caused by a 
single injection, the solute flow JJO, t) across the capillary 
wall and the integrated solute flow J'&J,(O, t) dt as functions of 
time t. The integrated solute flow represents the instantaneous 
absorption from the plasma. The curves were calculated by 
analog computation and are given for v =  1 and fortl/,=0.9, 
which means an almost steady-state condition. Note that the 
solute flux (curve (3)) at each time is almost proportional to 
the plasma concentration (cruve (1)) in this case. 

a function of ajr. In other words, the consequence of 
convection is to oppose the restriction, but finally 
with increasing molecular size the restriction will 
predominate and reduce the permeability towards 
zer 0. 

NON-STEADY-STATE CALCULATIONS 

When the time relaxation of the concentration profile 
within the capillary wall is appreciable, as compared 
with the time course of the bolus concentration co(t) ,  
the complete diffusion equation must be solved 
(eqs. (3) and (9)). 

This equation, together with the appropriate 
boundary conditions according to eq. (13), and eq. 
(lo), have been solved by means of analog computa- 
tions. The bolus concentration c,(t) was taken from 
a single-injection experiment as the venous con- 
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Fig. 6. The same as Fig. 5 but for t1/,=0.02, which means 
that the transport equation is in the non-steady srafe. In 
this case, there is a back transport from the capillary mem- 
brane to the plasma (curve (3)) during the descending part 
of the plasma solute concentration (curve ( I ) ) .  This is also 
reflected in the fact that the integrated solute flow is descend- 
ing at the same time. 

centration of an essentially non-permeable solute, 
namely, Evans blue bound to albumin (1). This curve 
corresponds to the so-called lagged normal density 
curve in indicator-dilution experiments (3). The 
bolus concentration was generated on a function 
generator, and the degree of non-steady state was 
simulated by varying the time width t t l z  at half the 
maximum value of the bolus concentration, i.e. at 

The method of the analog solution was to use a 
finite-difference approximation of the equations, as 
described in more detail in the Appendix. The analog 
computer used was a Donner 3000 and the results 
were recorded on a servo recorder three-channel 
Watanabe Multicorder, model H.S. 

Figs. 5 and 6 show the results for v = 1 and for 
two values of the half-width, t,,, =0.9 and t,,, =0.02 
respectively, corresponding to an almost steady-state 
condition (Fig. 5) and to the non-steady state (Fig. 
6). The solid curves are the bolus concentration 
co(t) and the solute flow J,(O, t) across the capillary 
wall, and the dashed curves are the integrated solute 

c,(t) = E,/2 (4). 
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flow at each instant, J;J,(O, t)dt .  For the steady- 
state case (Fig. 5), the solute flux is proportional to 
the bolus concentration and the extraction can easily 
be calculated from eq. (12). On the other hand, in 
the non-steady state, there is non-proportionality 
corresponding to a non-constant extraction during 
the passage of the bolus. Furthermore, at the latter 
part of the bolus the solute is transported back to 
the plasma from the accumulated solute in the 
plasma-tissue membrane. This phenomenon, which 
is associated with non-steady-state behaviour, will 
in the following text be called back transport, in 
contrast to the term re-absorption, which we shall 
connect with the transport of solute from the extra- 
cellular space back to the plasma compartment. As 
already mentioned, the re-absorption was neglected 
in the present model by assuming zero tissue con- 
centration. 

Finally, the total extraction was calculated for 
different values of t , , ,  and v, according to the equa- 
tion (see eqs. (8) and (9)) 

using the analog procedure already mentioned. The 
results are summarized in Fig. 7, and illustrate that 
high values of t , , ,  correspond to the steady-state 
approximation, eq. (14) and Fig. 3, and that smalI 
t , , ,  values imply the non-steady state. The transition 

Fig. 7. The total extraction Et as a 
function of tl;, for different values of 
the convection velocity v. The dots 
and crosses were obtained from analog 
computations, and the continuous 
lines from the steady-state approxima- 
tion (Eq. (14) and Fig. 3). Back trans- 
port (cf. Fig. 6 )  occurs approximately 
to the left of the oblique dashed line. 

region between the validity of the steady-state ap- 
proximation and the non-steady-state condition is 
roughly given by the oblique dashed line, to the left 
of which back transport is obtained. It will be seen 
that this transition occurs where t,12 is of the order 
of 1, which is also to be expected from the normalized 
diffusion equation (eq. (18)). 

DISCUSSION 

The validity of the model 
The models of the capillary permeability and the 
blood-capillary spatial distribution are, of course, 
somewhat oversimplified, as compared with the 
actual biological situation. At the membrane level, 
for instance, the possibility of unstirred layers in the 
plasma as well as in the extracellular space (9) have 
not been included. The assumption of zero tissue 
concentration, c, =0,  means neglecting the effect of 
gradients in the tissue space and disregarding the re- 
absorption back to the blood capillary from the 
tissue and the exchange between capillaries. The 
validity of the approximation of zero extracellular 
concentration is thought to be better at the beginning 
of the venous outflow curves, and also better for 
larger molecules, which pass through the capillary 
wall at a relatively slow rate. 

Furthermore, the distribution of the pore geo- 
metry, as concerns radius, length and tortuousness, 
has not been treated, nor has the distribution of the 
convection velocity. The pore radius and convec- 
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tion velocity should therefore be regarded as average 
values of a more complicated situation. 

The shape of co(t) at the pores is supposed to be 
fairly well described by the lagged normal density 
curve (3), but in a biological capillary net there is 
certainly a distribution of transit times (4) which 
complicates the absorption from the blood and the 
exchange properties between the capillaries. 

Experimental applicability of the model 
The main features of the present model are the 
assumption of a significant convectional flow across 
the endothelial wall and the introduction of the 
concept of the non-steady state, with relaxation of 
the membrane-concentration profile during the pas- 
sage of the bolus in single-injection experiments. 
These features may be subject to experimental tests, 
using the model. 

In the diffusional non-steady state, it has been 
shown that during the latter part of the venous out- 
flow curves there is a back transport from the 
membrane compartment to the plasma compartment 
(Fig. 6). This back transport may in many experi- 
mental situations be difficult to distinguish from the 
re-absorption from the extracellular space back to 
the plasma, a phenomenon which was neglected in 
the present model. As mentioned above, the non- 
steady state is roughly obtained when tl,, < 1 and the 
steady state when t,,, > 1 (Fig. 7). Considering that 
tli2 = t l l z  kD/d2 (eq. (9)), it will be seen that the 
steady state is likely to occur for small molecules 
with a high restriction factor k (eq. (2)) and a high 
value of the free-diffusion coefficient D (eq. (16)). 
Another important consequence is that the non- 
steady state seemingly occur for large molecules 
with sufficiently small D and k values. Thus, the 
experimental situation may roughly be covered by 
the following three categories: (a) small molecules 
probably means a fast steady-state transport with 
relatively early re-absorption, (b) medium molecules 
mean the steady state with re-absorption appearing 
later, and (c) large molecules imply the non-steady 
state and negligible re-absorption. One method of 
investigating these possibilities would be to use 
different test molecules. It has been shown that for 
glucose and raffinose, the extraction is constant, with 
respect to time, over the main part of the venous- 
outflow curves, which means that these molecules fit 
well in the second category above (1). 

The possibility of the non-steady state may be 
further illustrated by the following numerical ex- 
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ample. Assuming tllz = 1 sec, k = 0.1 (a/r = 0.5) and 
D = cm2/sec and using the relation t l l z  kD/d2 < 1, 
we find that d > 3  pm is a condition for the non- 
steady state. It may be mentioned that Pappenheimer 
considered the microscopic thickness of the capillary 
wall to be between 0.1 and 1 pm (19). As mentioned 
above, however, the membrane thickness d may be 
increased by the presence of unstirred layers at the 
blood capillary wall and in the extracellular space. 

The constancy of the extraction over a major part 
of the venous concentration curve may be considered 
as a pre-requisite for the use of the steady-state 
equations. For this case, the convection velocity v 
can be estimated from Fig. 4, using several probe 
molecules with constant or maybe also different 
values of u. 

Appendix 

Steady-state solution 
The steady-state approximation is described by eqs. 
(lo)-( 13):  

Boundary conditions 

c(0, t) =co(t) and 

e(1, t) = o  

(Al) = (1  1) 

(A2) = (1 3) 

JS(x, t) = - &(x, t)/ax + V ' C  (A3) = (10) 

The solute concentration inside the plasma-tissue 
membrane is obtained by solving the differential 
equation (Al), together with the boundary condi- 
tions (eq. (A2)), which gives 

( -45)  

Now combining eqs. (A5) and (A3) gives the 
solute flux 

which is independent of x. 



Convection-diffusion model of capillary permeability 15 

I 
2 

C 
t 

.\ 

cg= 0 

0 A X  Z A X  3 A X  L A X  S A X  d 
n ; O $ l  2 3 L 5 6 

Fig. 8. The convection-diffusion model of the solute transport 
across the capillary wall, as approximated for analog computa- 
tion (cf. Fig. 1 ) .  The plasma-tissue barrier is divided into 6 
segments, each Ax wide. The finite-difference method means 
straight-line approximation of the concentrations within the 
segments. 

Finally, the extraction is obtained from eqs. (A6) 
and (A4): 

V E= 
1 -exp(-v) 

(A7) = (14) 

Non-steady-state computations 
The non-steady-state solutions were obtained by 
means of analog computations. The non-normalized 
equations were used for this case. Normlized equa- 
tions can be solved with equal ease but need the 
introduction of time-scaling, which is implicit in the 
non-normalized solution. The solute concentration 
c = c(x, t )  and solute flux J, = J,(x, t )  within the 

I I 1  

plasma-tissue membrane are given by the following 
equations: 

Boundary conditions 

c(0, t )  = c,(t) and 

c(d, t )  = 0 (A9) =(13) 

ac 
Js(O, t ) =  - k * D ax - + k * U *  c (A10)=(1) 

To solve these equations on an analog computer, 
a conventional finite-difference approximation meth- 
od was adopted. The plasma-tissue barrier was di- 
vided into six segments of thickness Ax, as shown 
in Fig. 8. The first- and second-order derivatives with 
respect to x of the concentration c, at intersegmental 
barriers of number n can be expressed as 

(&/ax), = ( c , + ~  - cn-,)/2Ax for n = 1,2, ... 5 (A1 1) 

(ac/ax),-l/z =(c, -cJAx for n = 1, 2, ... 6 (A12) 

(azc/ax2), = (c,+~ - 2c, + c,-1)/Ax2 for 

n = 1 ,  2, ... 5 (A1 3) 

The insertion of eqs. (All)-(A13) in eqs. (A8)- 
(A10) and approximating Js(O, t )  by the solute flow 
(Js)1/2 at n = 1/2 yields 

Fig. 9. Analog-computer diagram for the 
model in Fig. 8, derived from eqs. (A14)- 
(A18). The function generator was used to 

c5 simulate the plasma solute concentration 
c&). The parametersp and q (eq. (A 16)) were 
adjusted on precision potentiometers. 
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Boundary conditions 

co =c,(r> and 
cs = o  (‘415) 

where the following parameters were introduced: 

p=k.DlAx2  

and 

The relations between the normalized values of the 
convection velocity and of the half-bolus time width, 
on the one hand, and of the parameters p and q, on 
the other hand, are given by 

v = 12q/p (‘419) 

and 

Eqs. (A14)-(A18) are suitable for analog program- 
ming, and the analog-computer diagram of these 
equations which was used is shown in Fig. 9. For 
the calculations, the following initial conditions were 
applied to the computer: 

c,=O at t < O  for n=O, I ,  ... 5 (‘421) 

The degree of the non-steady state was varied by 
changing the parameterp (eq. (A20)), and the convec- 
tion velocity was then chosen by the parameter q, 
according to eq. (A19). 
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