i cme pete, Pew Pork State College of Agriculture At Cornell University Bthaca, N. VB. Library Cornell University Library 21.F71 (Forestry; miscellaneous papers] Te wh 92 The Profession of Forestry The Profession of Forestry INCLUDING An Address BY MR. GIFFORD PINCHOT Chief of the Bureau of Forestry, U. S. Dept. of Agriculture. AND AN ARTICLE ON Study in Europe for American Forest Students « BY OVERTON W. PRICE, Supt. of Working Plans, Bureau of Forestry. Also a List of Reference Books on Forestry PUBLISHED BY THE AMERICAN FORESTRY ASSOCIATION, WASHINGTON, D. C. 190}. 446193 PREFACE, ‘¢ As yet forestry in America is young. In its progress toward maturity it must develop new methods to meet the unfamiliar conditions with which it has to deal. Rules and practices which were devised without reference to American forests cannot always be counted on to fit American needs. Perhaps nothing has done more to retard the progress of forestry in America than the disregard of its intimate and friendly relation to lumbering—a relation which was almost wholly overlooked for years after the advocates of forest protection first brought their cause to public attention. In the eyes of many of its early friends the lumberman was a vandal whose inordinate greed called for constant denunciation, while to the Jumberman the ideas of the forest reformer had no relation whatever to the affairs of practical life. Since that early day lumber- men and foresters have been drawing together, and much progress has been made toward the right opinion, which may be expressed by saying that lumberman and forester are as needful to each other as the axe and its helve. Without the axe the helve has little weight; without the helve the axe is lack- ing both in reach and in direction."—Gifford Pinchot: The Adirondack Spruce. Preface. THE PROFESSION OF FORESTRY, An address delivered before the students of Vale University. (Reprinted from the Yale Alumni Weekly by permission. Revised. ) BY GIFFORD PINCHOT, FORESTER OF THE U. S. DEPARTMENT OF AGRICULTURE. HE subject matter of the profession of Forestry is equally distinct from street tree-planting on the one side and landscape architecture on the other. It has to do with wooded regions, with the productiveness of forests, chiefly through conservative lumbering, and, in the treeless parts of the United States, with planting for economic reasons. Except for a com- paratively small area of desert land in the West, the whole land surtace of the United States is included in the possible field of work for the forester. How ex- tensive this field is will appear from the fact that the woodland in farms alone, in 1890, comprised more than 200,000,000 acres, or more than four times the area of the National forest reserves. THE OPENING. The first question asked by a man who has in mind forestry as his profession usually concerns the chance of finding work when his preparatory study is ended. The sources of demand for trained for- esters at the moment are comparatively few, but they are increasing with remark- able rapidity. The great lumbering con- cerns, such as the International Paper Company, which controls more than 1,- 000,000 acres of Spruce land, are rapidly getting to see that it is worth their while to employ trained foresters. One Yale man has been employed by the company just mentioned; another college graduate, not a Yale man, has charge for a com- pany of certain phases of its lumbering in Maine; and five lumber companies have already applied to the Bureau of Forestry for working plans for the management of their tracts. The demand from this source may be expected to increase very greatly within the next ten years, as the great holders of timber land come to realize more generally that conservative lumbering pays better than the destructive methods now employed. In a similar way mining companies will eventually find it to their interest to em- ploy foresters. The owners of game parks have already taken steps in this direction. Private owners of large areas such as Biltmore Forest in North Caro- lina, the property of George W. Vander- bilt, Ne-Ha-Sa-Ne Park in the Adiron- dacks, owned by W. Seward Webb, a Yale man, and the contiguous land held by the Hon. Wm. C. Whitney, another Yale man, are already under the manage- ment of trained men. The need of for- esters to care for the forest interests of the several States is already making itself felt. States such as New York, with its mil- lion and a quarter acres of forest reserves ; Pennsylvania, with its newly-created De- partment of Forestry and its growing State forest reserves; Michigan, with its Forest Commission and its State reserves which are being rapidly formed; North Caro- lina, with its Geological Survey thor- oughly interested in forest study; New Jersey and Maryland, of which the same is true; Maine, New Hampshire and several others, with their Forest Com- missions; Minnesota, with its Fire War- den law, its State Park and the beginning of a system of State forest reserves, and other States are rapidly creating a demand for foresters, and would be doing so still more rapidly if men were available to do the work. Finally, the National Government already employs a considerable number of men, and is rapidly extending the work which requires them. The General Land 6 THE PROFESSION Office, to which is intrusted the police and patrol of the National forest reserves, has this year an appropriation of $300,000 for the care and protection of about forty- seven million acres of forest reserves. At present there are no trained foresters among its officials, but in view of the vital importance of forest preservation, espe- cially in the West, and of the great and growing public interest in its extension, this system of appointment cannot be ex- pected to last. The Bureau of Forestry, which is charged with the general progress of forestry and the interests of private for- est lands, in the subdivision of the Gov- ernment’s forest work, is at this moment unable to find enough suitably trained men to supply its needs. It would be easily possible, it is true, to secure Ger- mans or other foreigners, but a consider- able experience has convinced me that, except in rare cases, such as that of the present forester to the Biltmore Estate, the attempt to use foreign-born men trained abroad is not likely to succeed. COMPENSATION. The second question asked by the prospective forester very often relates to the rate of pay. I cannot answer this question any more accurately than by saying that trained foresters now receive about the same rate of pay as instructors and professors at Yale. Those in the employ of the Bureau of Forestry receive from $720 to $2,500 a year. Scientific work under the Government is always underpaid, and it is most probable that those foresters who enter the service of lumber companies or other commercial or- ganizations will fare better. It is even possible that a few men may develop such skill that they will be called in consulta- tion over specially difficult problems. Such work will naturally pay well. As with teaching, so with forestry; by no means all the compensation comes in the form of dollars. While the life of the forester in the field is often rough, many times exceedingly hard, and always with- out most of the comforts of life, it is to those of us who have been following it OF FORESTRY. the most delightful of occupations. Briefly stated, it deals, on the scientific side, with the life-history of forests and forest trees, with their behavior in health and disease, their reaction under treatment, and their adaptation to and effect upon their surroundings. On the economic side, it has chiefly to do with reconciling the perpetuation of the forest with the production of timber. Measurements of the stand of timber per acre, and of the rate of growth of single trees and whole for- ests by counting rings, and subsequent calculations, often form a consideraable part of a forester’s work. There is often a great deal of office work. It is by no means the easy existence it has often been supposed to be by the many men who have taken up forestry, and then have dropped it. But it has a charm which lies perhaps first of all in the fact that in the United States it is almost an untried field. ORIGINAL WORK DEMANDED. Unless forestry as a profession has qualities to recommend it other than those I have already mentioned, it would scarcely be worthy of consideration be- fore many other lines of work. It has, however, two peculiarities in which it stands somewhat by itself. In the first place, because the field is practically untouched, a forester finds himself com- pelled to do original work at every turn. The pleasure of investigation of this kind is very real, and to those of us who are practicing forestry it is one of its two great attractions. The second lies in the fact that because forestry is almost unknown in the United States, in no profession is it easier for a man to make his life count. I need not dwell further on the vastness of the interests it touches nor the great utility of forestry to the nation, but I should like to emphasize this statement— in few other professions can a man lead so useful a life. WHAT THE PROFESSION DEMANDS. These are the things which forestry offers. Now as to what it demands. In the first place success in forestry, as in any other profession, must come largely from THE PROFESSION OF FORESTRY. 7 the possession of what we know so well as *¢ Yale spirit,” the habit of accomplish- ment and the willingness to do the work first and count the cost afterward. It is interesting to note here that a majority of the young Americans who have fitted themselves for technical forest work are Yale men. Whatever the connection or the special fitness may be which brings Yale men into this line of effort and achievement, I should like to see the re- cruits from Yale come in fast enough to maintain something like the old propor- tion. After the ‘* Yale spirit” comes sound- ness of body and hardiness, for foresters must often expect the roughest kind of life in the woods. The helpmeet of hardiness is a contented spirit. There is no more pernicious character than a grumbler in camp, and nothing will help so much to get field work done as the will- ingness to bear privation cheerfully. A man who takes up forestry will often find the field work exceedingly or even unexpectedly hard, for it combines severe mental work with severe bodily labor, under conditions which make each one peculiarly trying. Work in the woods differs profoundly from camp life as it is usually understood. Foresters get a cer- tain amount of hunting and fishing, and every forester will do his work better for a wholesome love of the rod and gun, but the line between work and play is still sharply drawn. I have been speaking of the funda- mental qualities which are more or less necessary to success in any vigorous out- door life. There are several additional capacities with which the forester should be well endowed. The first of these is the power of observation. It is often dif- ficult to say a préor¢ whether a man has it or not. In many cases it makes itself known as a love of hunting or fishing, or a general pleasure in all outdoors. To the forester it is one of the most essential qualities in his mental equipment. Fi- nally, perseverance, initiative, and self-re- liance are peculiarly necessary, because the forester is so often withdrawn from the inspection of his superiors and alto- gether dependent on his own steadfastness and devotion to keep him up to the high standard he should set himself for his work. In a new field of effort this is especially likely to be true. It is one of the distinguishing characteristics of the profession of forestry. PREPARATION. The preparation for forestry as a pro- fession should, as a rule, begin with a col- lege or university course, and, as a rule, should be continued after graduation for not less than two years. The first.step in the preparation for for- estry as a profession is for the possible for- ester to discover whether his conception of forestry is a right one. Todo so he must get into the field. The Bureau of Fores- try made some provision to meet this re- quirement when it established the grade of Student Assistant, with pay at the rate of $300 a year. Men who take this position are required to assist in the work of the Bureau with the same steadiness and de- votion to duty as in all its other members, and they are employed so far as possible in work of peculiar value to them and at the same time of use in the general pro-, gress. All their expenses are defrayed while in the field. In addition to the spe- cific advantage this grade offers in enab- ling a man to take part in actual forest work under a trained forester, and so to discover what the profession really means, it has a special usefulness in enabling men who cannot at first afford fuller prepara- tion to support themselves for a time while getting the first step in their forest educa- tion. It does not replace a forest school, nor is it the intention that it should. No future forester who can possibly afford to take a course, either at Cornell, under Dr. Fernow, at Biltmore, under Dr. Schenck, or at Yale, under Professor Graves should fail todo so. I repeat with all emphasis that work as a student assistant cannot take the place of study at a forest school. The number of positions as Student Assistant is decidedly limited, and gradu- ates or students of forest schools will al- ways be preferred for appointment. No one will be received as Student Assistant 8 STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. A who has not definitely made up his mind to take up forestry as a profession, although of course no pledge to that effect is re- quired. In my judgment the best course for the future forester to pursue, so far as his sys- tematic training is concerned, is first, a full course at a university during which he should acquire some knowledge of the auxiliary subjects necessary in for- estry; second, at a forest school, prefer- ably where practical work in the woods goes hand in hand with theoretical instruc- tion; and third, a year abroad. The latter is of the greatest value, because in this country forestry is too young to show the effect of silvicultural treatment on the various kinds of forests; yet it must be re- membered that much of. what is learned abroad must be unlearned later. This experience in a region where forestry is of old date is, in my judgment, a most essen- tial portion of a forester’s education. It goes without saying that vacations, as far as possible, should be spent in the woods. Forestry on its executive side is closer to lumbering than any other calling, and a good knowledge of the lumberman’s methods is an essential part'of a forester’s education. But it must not .be forgotten that it offers a field for pure research of the widest and most attractive character for those who are inclined and can afford to occupy it. It is so broad a subject that as yet we do not quite know what its de- velopment and its subdivisions are going to be. GirFrorpD PincuHotT. STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. By Overton W. Price. Superintendent of Working Plans, Bureau of Forestry. HE training necessary for an Amer- ican forester has not yet been fixed by hard and fast lines. The neces- sity, however, for a man to map out his course and to supply his deficiencies largely on his own responsibility has disappeared with the establishment of American forest schools. They have already done much to set a high standard for technical train- ing and thereby to hasten greatly the sound development of forestry in this country. With the creation of opportu- nities for systematic study at home, it is natural for the forest student to jump to the comfortable conclusion that study abroad is no longer essential. He soon becomes aware also of the familiar fact that European forest methods can rarely be applied without modification here, and this may seem to him to remove all prac- tical advantage from studying them on the ground. He sees, too, that there are now fewer trained men in this country to sup- ply the need for foresters than there are likely to be in the future, and he naturally wants to get his start with as little loss of time as possible. It 1s true that there-are few European forest methods which we can use entirely without modification. It is also true that European methods have been rich in sug- gestion in the application of practical for- estry to American forests. The American forest student who puts aside a chance to see forestry in Europe makes the same sort of mistake that a medical student would be guilty of, who ignored an oppor- tunity to walk the best hospitals. The work which falls toa forester here requires of him a more comprehensive grasp of his profession than is needed where forestry is already established upon a firm footing. In Europe, forest management, in order to be successful, has only to follow those methods which have been proved advis- able. In this country, the forester must depend for the most part upon his own ability to make the most of forest problems. And since he has but few patterns to fol- low at home, it would seem that the more STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. 9 he knows of the practice and development of forestry abroad, the better equipped will he be for his work. Three questions are likely to present themselves to the forest student who has decided to supplement in Europe the course of study which he has followed here: where to go, how long to stay, and the probable cost of the undertaking. Those who have been well grounded at a forest school and have seen something of American forests and American lumber- ing, can gain much from a year abroad. Those who wish to follow to the end a particular line of investigation may use two or three years to advantage, but for the usual purpose of the forest student, one year will suffice. The right man, equipped with a good knowledge of German and a carefully considered plan of campaign, can gain something from a six months’ stay. It requires, however, a thorough prepara- tory knowledge of European forest condi- tions, to lend practical benefit to a shorter trip. The disadvantage for the forest student of flying trips to Europe can scarcely be put too strongly. The forest student, with one year abroad at his disposal, will probably find it advisable to spend the first one or two months, according to his requirements, on one range under an English-speaking forest officer. This will enable him to brush up his German without loss of time, and steady work in the same place for a month or more will give him the insight into European forestry which he needs, much better than would the same period spent in a cursory inspection of several ranges. English-speaking forest officers are rare in Europe. The Uehlingen range in the Southern Black Forest, under the charge of Oberfdrster Jager, has been the start- ing point for several American students, and it would be difficult to find one more favorably situated or a forest officer with a happier faculty for making matters clear to the beginner. While at Uehlingen the student will have a chance to acquaint himself thoroughly with the Baden work- ing plan method, which, of the several in force in the German States, is the simplest, the broadest, and the least unsuited to American forest conditions. Uehlingen is within easy reach of several instructive ranges, among which are Waldshut, St. Blasien, and Wolfsboden. The Waldshut range in the foothills of the Schwarzwald, where the vineyards of the Rhine valley give way first to coppice woods and then to high forests of Beech and Oak, forms a strong contrast in type and management to Wolfsboden and St. Blasien, both moun- tain ranges stocked chiefly with Silver Fir and Spruce. His term at Uehlingen ended, the student will do well to see something of Swiss for- ests before he turns northward. The Sihl- wald, town forest of Zurich, deservedly famous for its Beech forests and the excel- lence of its management, is full of interest and of practical hints. There are records of its systematic management since 1417. It is the only range in Europe in which all its own forest produce is worked up. It has a sawmill, lathes for turning tool handles, a plant for impregnating paving blocks and telegraph poles, and machines for the shaping and bundling of fuel. No raw material is sold. The Sihlwald con- tains also a most ingenious and labor-saving system of timber slides, firewood slides, and forest railways. The town forest of Winterthur does not contain many features from the study of which Americans can gain direct practical benefit. It is instructive, however, in showing what exceedingly favorable local conditions can do in shaping the manage- ment of a forest. The well-stocked Win- terthur forests, which begin within a stone’s throw of the town, have produceda revenue | of $10 per acre per annum for the last thirty years. They are managed with almost the same care that we give to a garden, be- cause through their nearness to an excel- lent market the value of firewood and tim- ber exceeds enormously the cost of raising them. Whether the student sees something of forest management in the Swiss Alps, or in those of Bavaria or the Tyrol, will de- pend upon the best economy of his time. It is preferable that he should see it in Switzerland, where the preservation of the forests of the higher mountains is of vital 10 STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. importance. It was in Switzerland, that reckless lumbering of the mountain forests resulted in such serious damage from land- slides and avalanches to farms in the Alpine valleys, that an urgent and successful pub- lic appeal was made to the Government to take their management into its own hands. On his way northward from Switzer- land, the student will do well to see some ranges of the middle and northern Schwarz- wald. Of the former, Staufen is the best known. It is the largest range in Baden, and the management of its mountain for- ests is particularly instructive. Of the latter, the ranges of Baden-Baden, Wol- fach, and Herrenwies are representative. Wolfoch. an excellent example of the se- lection system, is full of suggestion for «American foresters. It is but a short distance into Bavaria from the northern Black Forest. Bavaria is rich in forests and presents a very wide range of local conditions. The Spessart is well known and teaches forcible lessons in silviculture and national economy. It has been thought best to describe this forest district at some length since no American student abroad will fail to see it, while its form of management may be of some in- terest to those who confine their studies to is country. The Spessart which is situated in the northwestern portion of Bavaria covers an area of about 115,000 acres. There are few forests of the same size, the whole- sale lumbering of which would realize so enormous a profit. The stand is chiefly Beech and Oak, many of the latter 400 years old. with a diameter of three feet or more and a clear length of sixty feet— certainly the finest Oak in Europe and sometimes equalled, but seldom excelled, by the White Oak of our Southern and Middle States. One can walk for hours in this district among Oaks worth from fifty to two hundred dollars a tree and the total value of this timber in the Spessart is estimated at nearly one million dollars. Bavaria is not a wealthy kingdom. Wars and enforced preparation for war, a generally unfruitful soil, the extravagances of the royal house, and, especially in the south, and idle and pleasure-loving pea- santry, have all led to poverty. Under the careful husbandry of the present ruler, Luitpold, Prince Regent, much has been done to improve matters and especially to remove the heavy load of debt laid upon the people by the vagaries of the unhappy King Ludwig II. However, Bavaria is not yet in such a position that the presence of an additional million of dollars in the treasury would be a matter of little im- portance. In view of this, her conser- vative management of the wealth of the Spessart is all the more praiseworthy. The villages in the valleys of the Spes- sart and upon the outskirts of the forest owe their existence to the wood-working industries, which are the natural conse- quence of the presence of so large a body of marketable timber. There are several saw mills where the Oak and Beech are cut up, but the chief industry is the manu- facture of oaken staves for wine casks, which find ready sale in the vallevs of the Main and the Rhine. Of the peasantry of the Spessart and its environments, very few are not connected in one way or an- other with the manufacture of lumber or staves or in getting out the raw material, while the great majority are directly de- pendent upon these sources of labor for their daily bread. If the Bavarian gov- ernment, therefore, were to,authorize the cutting of all marketable timber in this district, without regard to the maintenance of a sustained annual yield, a large num- ber of people would soon be thrown out of employment and great suffering would inevitably result. To realize fully how severe this suffering would be, would en- tail upon the reader some study of the Bavarian peasant and the economic and social conditions under which he lives. His tools, his mode of life and his educa- tion differ but little from those of his an- cestors, and his language is scarcely intel- ligible to his own countrymen of a better class. Tosuch a man, the power to grap- ple with new conditions, to seek a fresh home and other means of employment, is denied. And even were this not the case, Germany, where the supply of labor ex- ceeds the demand, in practically all the trades and especially in the case of com- STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. Il mon labor, offers a poor field to those in search of work. To lumber on the principle of a sus- tained annual yield, in other words to take out of a forest in one year the quantity of wood which has actually been produced in that year, is the basis of forest manage- ment in Germany, because it has there been found to yield better returns upon the capital invested in the forest than any other form of management. If the sanctioned annual yield, and no more, be harvested each year, the forest will, under proper care, continue to produce the sanctioned annual yield for ever, just as a good invest- ment continues to produce its annual in- terest. If the sanctioned annual yield be utilized with close regard to the silvicul- tural requirements of the forest, it will in- crease in proportion with the improvement in the condition of the forest as a whole. There are cases, however, among which is the Spessart, where the utilization of the sanctioned annual yield alone, may not prove immediately the best financial policy. This is sometimes the result of local eco- nomic conditions, but more often of the condition of the forest itself. The Spes- sart, from the standpoint of the forester, is not in good order. Its old Oaks and Beeches are still of high value, but many of them long ago passed their maturity. To leave them standing, is to incur loss from two sources: from the decay of the timber they contain; and because the space they occupy in the forest might be filled by sound healthy young trees, producing wood of good quality at a comparatively rapid rate. The best silvicultural meas- ure would be, to remove, as soon as pos- sible, all these Oaks and Beeches which have passed their maturity, without regard to the limit prescribed by the sanctioned annual yield. Then, after the forest has been put in good condition, by these ‘+ im- provement cuttings,” further utilization might be based upon its actual production, without danger of this production being in a measure offset by the presence, in the forest, of trees, which are not only growing exceedingly slowly, but many of which are losing rapidly in value through decay. However, in the Spessart, in order to con- tinue to provide the peasants of the neigh- borhood with material for their sawmills and for the manufacture of staves, it is necessary to cut upon exceedingly con- servative lines. The Oak of this region is divided into three well-defined classes, in point of age: Class I comprises Oak of about 400 years old. Class II, Oak 250 years old, and Class III, Oak 100 years old. In order, therefore, to maintain a sustained annual yield, Classes I and II, both of which are merchantable timber, must be removed slowly enough to allow Class III to be ready for the market by the time the removal of Classes I and II is effected. Since the Oak is the more desirable tree in the Spessart, producing timber of high value while the Beech asa species suit- able only for firewood is subordinate in importance, the first object of the manage- ment is the raising of merchantable Oak timber of as good a quality and in as short a time as possible. The Oak being a tree exceedingly intolerant of shade, has not the power of forming the dense ma- ture stands characteristic of trees strongly tolerant of shade, as for example the Adi- rondack Spruce. In the case of pure woods of Spruce, the struggle for existence is prolonged indefinitely and the stand re- mains dense to a great age, because each tree which helps to form it, possesses the in- herent power to endure excessive and long continued shade with but little detriment beyond decrease in its rate of growth. With the Spessart Oak, the case is different. The tree needs so much light, that it soon succumbs to suppression. The struggle for existence is consequently short, the stand thins out rapidly through the death of over-topped trees and becomes sparse and open at an early age. This may not seem to be a matter of much importance. It is, however, a source of so much difficulty, that it has rendered the raising of Oak timber in pure woods impossible in Ger- many. Not only does it prevent, by the formation of an insufficient, scanty stand, the full utilization of the space it occupies, but also results in the reproduction of short, branchy trunks and knotty defective timber. One of the most incontrovertible 12 STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. of silvicultural laws establishes the im- possibility of raising timber of good qual- ity in a wood which has been open from anearly age. For the production of long, cylindrical trunks free from branches, trees must have light from above, but as little side light as possible. Realizing that it would be impossible to grow Oak timber in pure Oak woods, the Bavarian foresters had to find some other means of growing it. They turned to nature, and they found that Oak does not occur pure in the Spessart, but scat- tered in small groups and single trees among the Beech. They saw that the Oaks growing in this way were tall and straight, clean boled and cylindrical, and finer upon the whole than any Oak they had seen elsewhere. They noticed also that the Oaks were everywhere older than the Beech, with their crowns well above the leaf cover of the latter and forming what is called a ‘‘two-storied forest,” the Oak above and the Beech below. : It was evident that ‘¢the Oak must have its head in the light and its feet in the shade,” and that growing singly and in groups in dense stands of Beech, with its crown well above the general canopy, en- joying the full influence of the sunshine with its trunk shaded by the Beech around it, conditions were suited to its develop- ment. In other words it was clear that the Beech served as a nurse for the Oak, forcing it to grow towards the light and admitting that light only from above, with tall cylindrical trees, excellently adapted to use as timber, as the result. Incident- ally also, Beech was seen to serve still an- other purpose, in shading the ground and covering it with its heavy leaf litter, thereby adding greatly to the moisture and fertility of the forest floor. To systematize a method of manageinent easy of applica- tion, embodying the good features of na- ture’s method without involving the same prodigal use of time, was the problem. If'no attempt had been made to perpetuate the two-storied forest of Beech and Oak, it might certainly have continued to occur naturally, asin the past. To trust entirely to chance, however, in the perpetuation of a valuable timber tree, would not have been good forestry in the case of a species handicapped by infrequent seed years, strong demands upon light and a rate of growth so much slower than that of the Beech as to render it constantly liable to be choked out by the latter. In order to counteract these difficulties, the following plan was adopted: Spots seldom more than a fraction of an acre in extent, suited especially to the Oak, were selected in mature Beech forest. These were cut clean of the Beech which covered them and sown broadcast with acorns. After four or five years when the young Oaks had obtained a start sufficient to enable them to hold their own against the faster growing Beech, the Beech wood surrounding the Oak groups was repro- duced by natural means; that is, successive cuttings were made in it, by which the light necessary to the germination and growth of Beech seedlings was admitted to the soil, and after these had become established in sufficient quantity, the old Beech wood was gradually removed, allow- ing a young wood of Beech to take its place. At the same time, many young Beech sprung up in the Oak groups as well as around them, and the final result was exactly what had been desired—a two- storied forest with the Oak above and the Beech below. This system has _ been adopted permanently and every year fresh blanks are cut in the Beech woods and sown with acorns, thereby insuring to Spessart peasants of future generations an ample supply of the same fine Oak timber that the present generation is enjoying. It may occur to the reader that although the conservative system of management adopted by the Bavarian government for the forests of the Spessart may contain some instructive features in view of the interests at stake, the silvicultural treat- ment of the Oak contains no hints of prac- tical value for the management of Amer- ican forests. It is true that so intricate a method involving large expense and much technical skill for its application, is justi- fied in the Spessart only because the value of land and timber render it profitable. It is also true that such conditions do not yet exist generally in America. But because STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. 13 a system cannot be adopted as it stands, it does not follow that. some modification of it may not be employed where oppor- tunity arises. The Spessart does not illus- trate merely how Oak may be grown suc- cessfully in mixture with Beech. It teaches broad principles of sylviculture and proves the value of close observation. It was the study of these forests that induced Sir Dietrich Brandis, late Inspector General of Forests in India, to adopt in 1850-a similar system in Burma for the raising of Teak in mixture with Bamboo, the Teak forming the overwood and the Bam- boo the underwood; a system which has served as a source of large annual revenue tothe British crown. In our own northern woods we find the Hemlock and Pine as- sociated in the same way as are the Spes- sart Beech and Oak, and in various parts of the United States other species form analogous cases, where nature points the way towards the best means of growing the local timber tree. The student who has completed a visit to the Spessart will be within easy reach of the Steigerwald and the town forest of | Bamberg, the one well known for its mixed forests of Scotch Pine and Beech and the other for the management of pure Scotch Pine woods under an elaborate system of clean cutting and sowing. He should also see something of the ancient town forest of Nuremberg, which consists chiefly of woods of Scotch Pine on a soil that is little more than pure sand. The forest has an interesting history and is an instructive example of what skill and pér- severance can do in rearing woods in 0 poor a locality, where frequent insect ravages and long standing rights to‘'the collection of litter go to make matters harder for the forester. The Bayerischer Wald covers a moun- tain range in southwestern Bavaria, run- ning parallel with the Béhmer- Wald, a second range, the summit of which forms the dividing line between Bavaria and Bo- hemia. Here exist forest conditions mark- edly in contrast to those prevailing gener- ally in Germany. In this isolated and sparsely settled region where lack of facil- ities for the transport of timber and dis- tance from the market greatly lower stumpage values, the form of forest man- agement is peculiarly instructive for Americans. Gi va In Saxony, where the forests are chiefly pure Spruce and where natural reproduc- tion has been almost entirely. abandoned for clean cutting and planting, the Ameri- can student will see a form of ‘manage- ment impossible under our conditions. He will, however, have a chance to study the most striking example that Europe af- fords of the dangers and advantages of a purely financial forestry. In Saxony, the most remunerative- use of forests is the growing of Spruée for paper pulp. The diameter at which Spruce can be used there for this purpose and its rate of growth are such that it pays best to cut it when it is about sixty years old. At this age, however, European Spruce does not bear full crops of seed, and natural repro- duction under a rotation of sixty years is impossible. It is thus that the system of planting and sowing has come about, it having been found financially preferable to natural reproduction and a longer rotation. The-system is the most remunerative in Europe and there are Saxon forest ranges which yield a net revenue of twelve to fif- teen dollars per acre per annum. On the other hand, it gives rise to dangers, from insects and from wind which are suffici- ently serious to render its advisability an open question. The one is invited by the raising of pure evergreen woods of one species over large areas; the other by the clean cuttings, under which trees grown in closed woods become suddenly and fully exposed. The measures enforced to give the highest possible degree of safety against these dangers are largely peculiar to Saxony, particularly those which are taken as a safeguard against wind. The ranges are split up into a number of what are called cutting series, each series constituting an area which is treated sepa- rately. Since the heavy winds in Saxony are westerly, the object in the manage- ment of these cutting series is so to lumber them that the youngest woods occupy the west and the oldest the east side. With this in view, cuttings proceed always from 14 STUDY IN EUROPE FOR AMERICAN FOREST STUDENTS. east towards west, with the result that the closed forest is never suddenly exposed on the west side. A normal ‘ cutting series,” or in other words one in which there is a regular gradation of woods of different ages, presents a curious appearance and consists of a series of even aged blocks ar- ranged like the steps of a stairway, from the youngest plantation to the mature stand, and each protecting the other from the wind. This elaborate precautionary measure has one weak point. So long as the heavy winds are westerly, it affords an entirely adequate means of protection. Now and again, however, a strong wind comes from the east, when it is free to work great havoc on the unprotected ma- ture woods which bound the cutting series on that side. The Schwarzenberg forest district, hard against the Bavarian border, contains some representative forest ranges among which are the most remunerative in the king- dom. Having seen the systems applied to the mixed forests of the Schwarzwald and in the pure stands of Spruce in Saxony, the student will have had an opportunity to compare the two great types of forest man- agement in Europe. The painstaking, patient methods by which reproduction is obtained in the Schwarzwald and a high degree of safety attained is in strong con- trast to the Saxon system in which grave dangers are invited by direct violation of the silvicultural laws governing the natural development of a forest. It is a question whether the student will find in Prussia, except upon the Pine Bar- rens, many notable forms of forest man- agement which are not quite as forcibly illustrated in southern Germany. The Prussian working plan method is the most intricate of all and forest management generally in Prussia is more hampered by red tape than anywhere else in Europe. He should not fail, however, to visit the Salmuenster range in southwest Prussia, where Oak is reproduced naturally in in- structive contrast to the treatment of the same species in the Spessart. These are a few of the forest ranges which Americans have found instructive. To include them all would have been to make a catalogue of this paper. The list which has been given is suggestive only in its purpose. Before one has been long in Europe, he will be able to make his own plan of campaign far better than another can make it for him, The main point is to weigh that plan thoroughly, and above all, with a realization of the fact that European forestry, although simple in purpose, is intricate enough in its details to bewilder any one who approaches it in a desultory way. It is also well to remember at the very outset, that no man can master the details of European forest management ina year, and that the profit gained from the trip will de- pend largely upon the selection made of those features to be especially studied. The American forest student will find scientific research highly developed in European forestry and he can waste a good deal of his time over abstruse lines of investigation which not infrequently owe their origin solely to the yearning of a scientist to in- vestigate something. He should never lose sight of the fact that his main purpose in going to Europe is to see the effect of forestry upon the forest. The greatest practical benefit to him lies in the study of the woods themselves and of the working plans under which they are managed. The student who goes abroad for a year had no time for a European forest school. Should he spend an extra six months in a semester at one of the several forest schools in Germany, he will have an interesting experience. However, one goes abroad to get what he cannot get at home, and the establishment of forest schools in this country has done away entirely with the necessity for students to attend them in Europe. Before this was the case, the forest school at Munich was most often chosen by Americans. It has an eminent corps of instructors, and Professor Henrich Mayer, who handles silviculture and forest utilization, adds to his remarkable bril- liancy asa silviculturist an intimate knowl- edge of American forests and American conditions. Living is proverbially cheap in Europe, particularly in the villages and smaller BOOK LIST. 15 towns. In those cases where the student spends a month or more upon one range, it is customary for him to pay a fe: of twenty-five dollars per month to the forest officer. No fee is asked for short visits to forest ranges and the invariable courtesy of European forest officials makes these possible to anyone who bears the proper credentials. One thousand dollars is suffi- cient to pay all necessary expenses for a year in the woods of Europe, and permits of a fair amount of travelling. Less than that sum would curtail one’s movements ‘somewhat undesirably. BOOK LIST, All books mentioned in this list will be sent post paid by the publishers upon receipt of prices quoted. A Primer of Forestry, Part I. Guir- FORD Pincuor. Bulletin 24 of the Bu- reau of Forestry, U. S. Department of Agriculture. Part I. contains chapters on ‘““The Life of a Tree,” ‘*Trees in the Forest,” ‘* The Life of a Forest,” ‘+ Ene- mies of the Forest.” Schlich’s Manual of Forestry. Pub- lished in five volumes by Bradbury, Ag- new & Co., Bouverie Street, London. Vols. I. and II. are especially valuable to a beginner. This can be imported for a little over $12.00. Elements of Forestry. F.B. Houcu. R. Clark Co., Cincinatti. $1.50. One of the few American books on forestry. Good; though out of date in some re- spects. _ North American Forests and Forestry. “ Ernest BRuNCKEN. G.P. Putnam’s Sons, New York. $1.50. Expository in char- acter, and written for the general reader. The White Pine. and H. S. Graves. New York. $1.00. The Adirondack Spruce. GiFFoRD Pincuot. G. P. Putnam’s Sons, New York. $1.00. This, like the ‘* White Pine,” is a study of the habits and growth of an important lumber tree and of its rate of wood accretion per tree and per acre, with conclusions drawn from this study as to the financial possibility of practical forestry in dealing with the species. GiFFoRD PINCHOT The Century Co., Practical Forestry in the Adiron- dacks. H.S. Graves. Bulletin 26 of the Bureau of Forestry, U. S. Depart- In writing mention this pamphlet. ment of Agriculture. Sold for 15 cents by the Superintendent of Documents, Union Building, Washington, D. C. Working Plan for Township go. In preparation. Will appear during the sum- mer of rgor as Bulletin 30 of the Bureau of Forestry of U. S. Department of Agri- culture. A report making recommenda- tions of the forest management of the Township containing Racquette Lake in the Adirondacks. What is Forestry? B. E. Frernow, Bulletin 5; Bureau of Forestry, U. S. Department of Agriculture. Out of print but should be in public libraries. The Forest Nursery. G. B. Sup- wortH. Bulletin 29, Bureau of For- estry, U. S. Department of Agriculure. Chapters on,‘ Collecting Tree Seeds and Care before Planting,” ‘¢ Propagation of Trees from Seeds and Cuttings,” ‘* Win- tering and Planting Seedlings,” ‘Use of Wild Seedlings,” ‘+ List of Useful Tim- ber Trees to Plant.” Manual of Botany. Asa Gray. (6th edition.) American Book Co., New York. $1.60; Pocket edition $2.00. A key to the flora of the Northeastern States. How Plants Grow. Asa Gray. American Book Co., New York. 80 cents. An understanding of the way which a tree grows is of the first importance to a forester. Illustrated Flora of the Northern United States. 3 vols. N. L. Brirron and A. Brown. $9.00 per set. A 16 BOOK LIST. thorough and valuable guide to the flora of the Northern part of the Continent. Chas. Scribner’s Sons, New York. ~ Flora of the Southern States. A.W. CuapmMan. American Book Co., New York. $4.00. An excellent key to the Southern flora. Trees of the Northern United States. E. A. Apcar. American Book Co., New York. $1.00. rest, about 44 Ibs. of nitrogen; Silver fir forest, ee Bb) ES re Spruce forest, “ 33 6 « " Scotch pine forest, “ 30 “ “ a Thus, only the ammonium salts and the organic compounds of nitrogen formed in the process of decay are available for the roots as sources of nitrogen. The amount of nitrogen supplied to the soil through atmospheric precipitation, either in the form of nitrates or ammonia, is not sufficient to supply the needs of trees for nitrogen. There remains still another source, and this is the organic com- pounds of nitrogen formed in the process of decay of litter. In fact, Ebermayer has recorded strongly developed roots of spruces and firs on the Bavarian Alps that grew in pure humus one meter thick, from which he concludes that the dark forest humus furnishes all the nitrogen and other mineral nourishment required by trees. If, therefore, the source of nitrogen in forest soil is nitrog- enous compounds resulting from the decay of the litter, one would expect in a forest which is managed on a business basis (that is, in which trees are removed when ripe), a gradual decrease of the contents of nitrogen in the soil, as occurs on a larger scale in agri- culture. In agriculture, where the annual harvesting of crops de- prives the soil of almost all the nitrogen which is assimilated by the plants, and returns to the soil only a small part of it by the decay of the roots of the plants, and where the easily soluble nitrates are washed out by rains and carried away from the’ fields, or deposited in layers inaccessible to the roots, the exhaustion of nitrogen in the soil sets in soon, and the artificial introduction of nitrogen becomes a necessity. One of the most common ways of replenishing the nitrogen taken up by crops is manuring and the growing of leguminous plants which have the capacity of absorbing atmospheric nitrogen. These plants are plowed under during the period of blooming, and when they decompose they give their nitrogen to the soil. In the forest, it is true, a considerable part of the nitrogen is returned to the soil in the form of shed leaves, and only part of it, which is contained in the trunk of the tree, is removed. The washing out of nitrates from forest soil does not occur, because no nitrates are formed in it, and those which are brought in by atmospheric precipitation are de- composed under the influence of a special microorganism known as Bacillus dentrificans, which is formed in soils with acid reaction. But forest soil, though it loses less nitrogen than does arable land, nevertheless loses it; and more remarkable yet, forest soils not only do not become poorer in nitrogen, but, on the contrary, 439 POPULAR SCIENCE MONTHLY. become enriched with it, a fact readily demonstrated in poor soils planted to forests. How this loss is compensated by nature was not known until recently. The introduction of nitrogen into forest soils artificially is not practicable, and therefore the enrichment of the soil with nitrogen must go on under the influence of other causes. A cer- tain number of leguminous plants grow in forests, but these are by no means sufficient to compensate for the loss of nitrogen through the felling and removal of forest trees. In some arborescent spe- cies, as Alnus glutinosa, Robinia pseudacacia, and others, tubercles which stimulate assimilation of free nitrogen are found on the roots. It may happen that such species do not occur in the forest, or that the necessary bacteria do not develop in the soil, when the loss of nitrogen would not be replenished at all. This replenishing, how- ever, always occurs, and some sources must be found to account for it. Recently, E. Henry, professor in the forest academy at Nancy, France, discovered a new source of enrichment of the soil with nitro- gen, which is of great interest to foresters. Professor Henry has proved by experiments that the loss of nitrogen in forest soil is con- stantly repaired by means of absorption of atmospheric nitrogen by fresh forest litter. In November, 1894, Professor Henry collected leaves only recently dead and still hanging on oaks and hornbeams (Carpinus betulus). The amount of nitrogen in these leaves was determined in per cent. of the dry substance. In this way it was found that the leaves of oaks contained 1.108 per cent. of nitrogen, and the leaves of the hornbeams 0.74% per cent. The oak leaves were placed in two zinc boxes. The bottom of one of the boxes was covered with lime- stone, that of the other with sandstone not containing lime. Both boxes were covered with a netting of galvanized wire. The leaves were dried in the laboratory, and 48.16 grams of their dry substance were placed in the first box, and 53.54 grams in the second. The leaves of the hornbeams were distributed in the same way. All four boxes were exposed to air, with necessary precautions against enriching the leaves with nitrogenous compounds. In December, 1895, the following year, Professor Henry determined the contents of nitrogen in the leaves taken from two boxes, whereby it was found that the oak leaves taken from the box with the limestone bottom contained 1.923 per cent. of nitrogen, and the leaves of hornbeam taken from the box with the sand bottom, 2.246 per cent. After making the necessary allowance for loss in weight of oak and hornbeam leaves owing to decomposition, Professor Henry computed the increase of nitrogen in the oak leaves at 4 per cent., in the hornbeams at .78 NITROGEN IN FOREST SOIL. 440 per cent. Thus it was proved by him that fresh leaves fallen from trees absorb atmospheric nitrogen in the process of decomposition. The two other boxes remained exposed to the air for another year, and in May, 1896, fifty grams of fine forest soil were added to each box. On subjecting the leaves contained in them to a chemical analysis, Professor Henry found almost the same contents of nitrogen that had been found in the leaves of the first two boxes which were exposed to the air during only one year. From these results he concluded that the capacity of fallen leaves to absorb nitrogen from the air is retained only in leaves freshly fallen on old litter. The capacity of forest litter to absorb nitrogen develops probably under the influence of special microorganisms, active only at the beginning of the process of decomposition of fallen leaves; later, however, when the process of decomposition of leaves goes on under the influence of exclusively inorganic agents, no increase of nitrogen i? observed; on the contrary, a loss is shown. It is thus scientifically proved that forest litter is capable of enriching the soil with nitrogen, but only under the condition that the decomposition of freshly fallen leaves goes on. As to the assum- tion that bacteria are developed in freshly fallen leaves, which, like Ehizobium leguminosarum Frk., possess the capacity of absorbing atmospheric nitrogen, it can only be said that as yet no bacteria have been found in forest litter. : A practical deduction from Professor Henry’s scientific investi- gation is the advisability of planting cut-over areas as soon as possible, so that the young seedlings may find in the soil a quantity of nitrogen sufficient for their nourishment. The longer cut over areas remain unplanted, the less is success to be expected from planting, as the young trees develop poorly because of insufficient nourishment. Thus, the forest not only furnishes timber and other products, prevents snow- and land-slides, and regulates the flow of rivers, but enriches the soil with nitrogen, one of the most essential nutritive elements of plants, and in this way transforms poor soils, fit only for tree growth, into rich agricultural lands. A STUDY IN PLANT ADAPTATION. By Proressorn J. W. TOUMEY, YALE UNIVERSITY, [Reprinted from PoputaR ScizncE MONTHLY, October, 1902.] A STUDY IN PLANT ADAPTATION. By Proressor J. W. TOUMEY, YALE UNIVERSITY. Hoo one interested in plants knows that they are very depend- ent upon their surroundings. The atmosphere and soil con- ditions that suit one species are often totally unsuited to another. In the process of development the different species become structurally and physiologically modified with the change of environment ; they take on certain adaptions, where they succeed best, which particularly fit them to their surroundings. Every plant in order to grow must receive material from the outside and must get rid of waste matter. The plant does not differ in any essential respect from the animal in this regard. So also, the plant, in order to continue from generation to generation, must bear offspring and leave them in situations favorable to their growth. In all seed-plants the food materials are essentially the same. The ability of a plant, however, to avail itself of these materials depends very largely upon a close correlation between the structure and the physiological activities of the plant organs and its environment. Thus a plant like the apple will not succeed in a hot and arid climate, while, on the other hand, the date will not thrive beyond the limits of the desert. The sensitiveness of many plants to a slight change in soil or cli- mate and the necessity for a perfect adaptation to a particular environ- ment are illustrated in-the very restricted range of many of our native trees and shrubs. On the Pacific coast the Monterey cypress is only found growing naturally over a strip of territory, south of the Bay of Monterey, about t 484 POPULAR SCIENCE MONTHLY. two miles long and two or three hundred yards wide, and over a still smaller area a little farther south. The California fan-palm only oc- curs in a few canyons of two mountain ranges in the southern part of the state. The western hop hornbeam is only known to grow over a few square rods of territory in the Grand Canyon of the Colorado river in Northern Arizona. In eastern United States, Torreya only grows in a narrow strip on the eastern bank of the Appalachicola River in Florida; while the Florida yew, which grows in the same region, occu- ' pies a still less extended area. Tn such cases as these it is likely that the structural and physiologic- al adaptions of the different plant organs have not kept pace with the natural changes in environment. As a result, these trees are not only unable to extend their present range, but are poorly fitted to persist where they now grow and consequently are disappearing. These old types of trees have in the course of ages become inflexible and fixed and are no longer in perfect accord with their environment. More modern types, as illustrated in the various genera of Cactaceae, are more general- ized and very readily take on structural and physiological modifica- tions which fit them better to their present environment. It is inter- esting to note that many of the species which appear to be out of accord with their natural environment often do well under cultivation. The gardener’s care in subjecting them to different environmental condi- tions, particularly as regards food supply, seems to stimulate them and give them new vitality, thus causing them to succeed better than more modern types perfectly in accord with their natural environment. In the latter case overstimulation, induced by cultivation, may from the standpoint of vitality do more harm than good. The Monterey cypress, although now nearly extinct as a wild plant, is one of the most successful and easily cultivated trees of the Southwest. It appears to be far better in accord with the artificial environment in- duced by cultivation than it is with its natural environment. The Franklinia of our gardens, a small tree first collected by John Bartram in 1765 on the banks of the Altamaha River in Georgia, is successful in cultivation, although as a wild plant it passed out of existence during the past century. It is far more successful in cultivation than the Loblolly bay, an allied species of the same genus which is now growing wild from Virginia to Florida. The Ginkgo, an Asiatic tree of ancient origin, grows remarkably well in cultivation, although at the present time it is not known to grow as a wild plant any where. Modern plant types that have not yet reached the limits of their distribution and variation, as illustrated in many species of the Com- positae, Rosaceae and Cactaceae, are so nicely adjusted to their natural environment that cultivation often tends to diminish their vitality rather than improve it. A STUDY IN PLANT ADAPTATION. 485 It is not to be presumed that every variation in the structure of plant organs is a direct result of adaptations taken on by the plant to protect it from unfavorable factors in its environment. It is the natural, in- herent tendency of plants to vary, and when the variation chances to he in a direction that fits it better to its environment, the variation is apt to persist in future generations. There is no apparent reason, however, why in many instances structures may not be present in the plant that are in no sense of direct aid. We should not expect to refer every variation in plant structures to variation in environment. We should, however, expect those species to do best that in their natural Fig. 1. THE TUCSON PLAINS, SHOWING RANGE CATTLE IN THE DISTANCE 1 EEDING CPON THE FRULL OF THE CHULLA. tendencies to vary become so modified as to fit them most perfectly to their surroundings. Each plant organ must not only be adapted for the kind of work that it has to do, but is must be adapted for doing its best under the ex- ternal influences which enable it to persist in any given form. ‘The foli- age leaf bears a definite relation to light and moisture; the leaves of one plant, however, may have quite different requirements as to light and moisture than the leaves of another. Every traveler in our arid southwest has noticed that the leaves of the trees and shrubs are small and thick, or, in some instances, entirely absent as foliage. The reason for this is very clear. It arises from the necessity of the desert plant to expose a comparatively small surface to the intense sunlight and the desiccating action of the dry atmosphere. 486 POPULAR SCIENCE MONTHLY. The various species of cacti illustrate this necessary correlation be- tween plant structures and environment probably better than any other large group of plants. Opuntia, the most important genus, is abun- dantly represented in the flora of our arid southwest (Figs. 1 and 2) and reaches its maximum development on the Tucson plains in southern Arizona. No less than ninety-two species of Opuntia are growing wild in southwestern United States and northern Mexico, selecting for the most part situations that are so dry that few other plants persist where they thrive. In this article I desire in particular to call attention to the cholla (Opuntia fulgida Engelm.) a cactus which grows to the size of a small tree and which reaches its maximum development on the Tucson plains. ro - ie os ae Fig. 2. THE CHOLLA AND TUNA, GROWING TOGFTHER IN SOUTHERN ARIZONA. The cholla has probably not yet reached the limits of its variation and distribution, and is one of the most interesting and characteristic plants of the arid regions of the western continent. The organs of this plant are most wonderfully adapted for performing their various functions, to the best advantage of the plant, under what would be with most plants an extremely adverse environment. The cholla is one of the largest of the cacti having numerous branches. It grows best where fully exposed to the intense glare and heat of the desert sun and where the annual rainfall averages from four to twelve inches. It grows on the dryest upland, on open, porous, limy soil that for months at a time is as dry as powder. Where it grows best the summer temperature often reaches a maxi- mum of 115 degrees F. and the daily temperature for wecks at a time ex- A STUDY IN PLANT ADAPTATION. 487 ceeds 100 degrees F. during the hottest part of the day. Often for several consecutive months there is no precipitation whatever and much of the rain that does fall only penetrates the soil to the depth of a few inches. Not only is this cactus, as an individual plant, perfectly equipped by nature to withstand and thrive under this extremely hot and arid environment, but it is splendidly equipped for perpetuating itself by its successful distribution of offspring under conditions which enable them to succeed where on account of lack of moisture most plants would perish. The roots of the cholla do not penetrate to great depths in the soil as one would at first thought suspect them to do. For the most part they spread out a few inches under the surface. It would be useless for this plant to send its roots to great depth into the soil, because only in rare instances is there any available moisture there. As most rains only penetrate the soil to the depth of a few inches the most moisture is found in the surface soil. These surface roots of the cholla have a dif- ferent structure from that found in the deeper roots and in the roots of most plants. Their structure is splendidly adapted to enable them to take up water with great avidity when the soil is moist and to survive long periods of drought during which the surface soil is practically air dry. It would be of no special value to the cholla to absorb large quanti- ties of water when available, if there were no provision made by the plant for storing it, or if through transpiration it were readily given up to the surrounding atmosphere. This cactus is not only remarkably well equipped for storing water in large quantities, sufficient to carry it through months of continuous drought, but it is able to retain this water with wonderful tenacity, only giving it up to the hot and dry air a little each day and taking advantage of each rain to fill its storage tissue. The structure of the young branches and stems of the cholla par- ticularly adapts them for the storage of water in large quantities. At the height of the growing season or after a prolonged summer rain the stems of this cactus may contain as high as ninety-two per cent. of moisture. During a prolonged drought the percentage of moisture very perceptibly diminishes. The older stems and ‘branches which give strength and support to the tree contain a much larger proportion of woody tissue and consequently serve to a less degree for the storage of water. The ability of the plant to retain moisture results largely from the comparatively small surface exposed to the dry air and the remarkably thick epidermis and dense spine covering of the branches. The small 488 POPULAR SCIENCE MONTHLY. surface is chiefly a result of the elimination of the leaves as foliage and the contraction of the branches into thick, short stems as shown in Fig. 3. During the growing season the cholla exposes to the atmosphere less than one fiftieth of the surface which is exposed by the maple of equal weight here in the east. Aside from this remarkable di- minution of surface, the thick epi- dermis of the plant almost precludes transpiration at times when the water in the storage tissues begins to run low. The following illus- trates how well the plant is adapted for conserving the moisture pre- viously stored in its thick stems. I have cut a branch from the tree in the spring prior to the season of blooming, at a time when the stor- | age tissue was well filled with mocis- | ture. I have placed these branches “Frc. a THE Suort, ‘THICK, SuccuLENE in a perfectly dry room out of con- STEMS OF THE CHOLLA BEARING CLusters or tact with moisture. J have seen ee them continue in growth, and ultimately blossom. I have placed branches of the previous season’s growth in open boxes without soil and without access to moisture early in March, and in September have found the branches still succulent and in condition to root and grow when placed in the soil. Several years ago I removed a large specimen, having a trunk diameter of eleven inches and a height of ten to twelve feet, from the open mesa where it was growing to my garden. The tree was moved in late May when in full bloom. Although the month was hot and dry, the roots were closely pruned and the top left unpruned. The flowers did not wilt as a result of this severe treatment and a full crop of fruit ripened in the fall. This tree, which is illustrated in Fig. 4, suffered no apparent harm in its removal, although probably fifty to one hun- dred years old. As a summary it may well be said that the cholla is admirably adapted for absorbing water rapidly, storing large quantities of it, and even when exposed to a very dry atmosphere for a long time retaining it with wonderful tenacity. Provision is also made for undue loss of moisture at times of injury to the epidermis, and the consequent direct exposure of the storage tissue to the dry air. At such times a mucilagin- ous substance contained in the cells appears on the injured surface, quickly rendering it impervious to moisture. A STUDY IN PLANT ADAPTATION. 489 It is probable that the thick covering of spines is of some value to the plant in protecting it from the full force of the intensely bright sunlight and also of some value in checking transpiration. These ever present and formidable, barbed spines are well illustrated in Fig. 5. They serve their greatest usefulness to the cholla in preventing its destruction by animals and in the important part which they play in the dissemination of the species. All the younger branches of the cholla are soft and succulent and, were it not for their efficient armor Fic, 4. A LARGE CHOLLA MOVED FROM THE MESA TO THE GARDEN. of barbed spines, would be quickly destroyed by herbivorous animals. In acquiring a condensed and succulent plant body in order to fit itself to a desert environment the cholla would have courted its own ruin were it not that it acquired a full equipment of spines at the same time. From every standpoint it is, as an individual, admirably equipped for its desert home. It is, however, more than this; it is the best equipped of all desert plants for rapid and wide dissemination. It makes ample provision for its offspring. 490 LOPULAR SCIENCE MONTHLY. The seeds of the cholla, like those of several allied species, rarely if ever germinate on the open mesa. In eight years of observation in its center of distribution I never found a seedling of this plant growing wild. It spreads almost entirely by vegetal dissemination, i. ¢., by the ends of the branches becoming detached and transported often long distances from the mother plant. The cholla is perfectly adapted not only for the easy detachment of the ends of the branches, but for their wide dissemination as well. The fruit which hangs from the tree in long, pendulous clusters as illus- trated in Fig. 6 is within easy reach of cattle and other large animals. Fic. 5. WErRE It Nor FOR ITS FORMIDABLE ARMOR OF BARBED SPINES THE CHOLLA WOULD SOON BE DESTROYED BY ANIMALS. These clusters of succulent fruits are without spines and are for the most part sterile. The fruit from the standpoint of seed production is of very little service to the plant in aiding in its perpetuation and dissemination. Its chief service appears to be to entice animals to the plant that the fragile ends of the branches which become detached at the slightest disturbance may adhere to them and become scattered far and wide. In order that these fruits may best serve their purpose they are succulent, unarmed and as eagerly eaten by animals when green as when ripe. Moreover they often remain on the plant for two or more years if undisturbed. During periods of scanty forage in the region where the cholla grows it is not an uncommon sight to see the range cattle with their heads literally covered with these formidable cactus burs A STUDY IN PLANT ADAPTATION. 491 which became attached to them in their effort to get the fruit. The spine arrangement of these end branches or burs is such that when they finally become detached from the animals transporting them and fall to the ground, the lower end comes in contact with the soil. As the roots start from this end of the branch the necessity for this provision is very evident. It results from the spines being very short or wanting on the lower end of the short, thick branches. The special adaptation of the fruit to aid in vegetal dissemination is confined, so far as J am aware, to a few species of the Opuntia and reaches its highest development in the plant that I have described above. TEs eT 5 7 7 z Fic. 6. A GROUP OF CHOLLAS, SHOWING THE LARGE CLUSTERS OF PENDULOUS, SPINELESS FRUIT. PHOTOGRAPHED BY W. T. SWINGLE. The fruit of the cholla is probably changing from its original seed- bearing condition to a condition of sterility. The abundant clusters of fruit hang from the plant within easy reach of cattle and it is interest- ing to note that since the advent of stock into the arid southwest the cholla has become more widely distributed and more abundant than orem befane Th in ae wall nominned by nature to care for itself and per- w+ winds of the desert, as is the New England bursts into foliage under April showers. OBSERVATIONS DE METEOROLOGIE FORESTIERE FAITES A LA STATION DE RECHERCHES DE W’ECOLE NATIONALE DES EAUX ET FORETS (1867-1899) . PAR M. RAOUL DE DROUIN DE BOUVILLE GARDE GENERAL’ DES EAUX ET FORETS ’ (Extrait du Bulletin du Ministére de1’Agriculture. — 1901, n° 2) PARIS IMPRIMERIE NATIONALE MDCGCCI OBSERVATIONS DE METEOROLOGIE FORESTIERE FAITES A LA STATION DE RECHERCHES DE L’ECOLE NATIONALE DES EAUX ET FORETS (1867-1899), PAR M. RAOUL DE DROUIN DE BOUVILLE, GARDE GENERAL DES EAUX ET FORETS. SS Jv La question de |'influence des foréts sur les nappes souterraines et les sources, qui, depuis un certain nombre d’années, fait l’objet de nombreux travaux, a été mise a Yordre du jour, en France, dés 1865. A cette époque, le maréchal Vaillant, dans une lettre 4 M. Vallés, ingénieur en chef des ponts et chaussées, posait le probleme dans les termes suivants: « Les foréts sont-elles une cause permanente de sécheresse ou d’hu- midité? Favorisent-elles la naissance ou la pérennité des sources? Fournissent-elles a ces sources plus d'eau que n’en donnerait un terrain cultivé en céréales ou en état de prairie?..... Sont-elles une cause d’augmentation de la quantité d’eau de pluie qui sinfiltre dans la terre et qui est utilisée, soit directement pour les besoins de la végé- lation, soit pour la production et la conservation des sources?» La réponse & cet appel ne se fit pas attendre; l'année suivante, l’administration des Foréts faisait entreprendre, a 1'Kcole forestitre de Nancy, des recherches comparalives sur Valimentation des nappes aquiféres souterraines, en terrain boisé et en terrain non boisé. Cette alimentalion est due aux précipitations atmosphériques dont il est facile d'apprécier importance, mais une partie seulement des eaux pluviales parvient jus- qu’aux couches imperméables du sol. Pour évaluer 1a fraction qui approvisionne ainsi les sources, il fallait connaitre préalablement celle qui se perd par ruissellement, éva- poration, absorption par les racines des végétaux("), Le probléme était complexe; il l’était méme trop pour qu’on tentat, au début, de ~ laborder sous tous ses aspects. Le programme des recherches dressé par M. Mathieu, sous-directeur de 1’Ecole forestitre, ne comprit done que l'étude d’un petit nombre de questions : — influence de l’état boisé ou déboisé du sol sur 1a quantité d’eau qu'il re- coit de l’atmosphére, — proportion suivant laquelle le couvert des foréts intercepte la pluie et !empéche de parvenir au sol, — marche de l’évaporation d'une nappe d’eau sous bois ou hors bois"). Les observations ont été commencées en 1867. Elles ont fait objet, — en 1878 d'un 4 A V'époque ot ont élé commencées les observations, on n’avait pas pensé a relever, par des sondages, le niveau de Ja nappe souterraine, comme I'a fait M. Ototzky, en 1897, dans les steppes de Russie. ®) Accessoirement, et dans un. ordre d'idées différent, a été entreprise l'étude des différences pré- sentées par la température de I’air hors bois et sous bois. Il n’en sera pas question dans Je présent rapport, M. de Drouin de Bouville. 1 —-t0( 2 )ea-- rapport de M. Mathieu, qui concerne les onze premieres années (); — en 1889 d'un compte rendu de M. Bartet, inspecteur adjoint deg foréls, relatif 4 la période 1878- 1888 ®), En 1899, il a paru inutile de continuer plus longtemps des recherches dont les ré- sultats ont toujours été concordants; elles ont été closes le 31 décembre. Le moment est venu de faire connaitre, d’abord, les relevés obtenus depuis 1889, puis, les conclusions qui se dégagent de l'ensemble des observations, conclusions qui sont d'ailleurs celles déja énoncées par M. Mathieu il y a vingt-deux ans et toujours confirmées depuis. Tel est Pobjet du présent travail, ob, conformément au plan adopté dans les mémoires précédents, chacun des trois sujets éludiés fera l'objet d’un chapitre distinct. I. — IneLuencE DE LETAT BOIS OU DEBOISE DU SOL SUR LA QUANTITE D EAU PLUVIALE. «Les précipitations atmosphériques sont-elles plus abondantes en forét, que si la région était livrée a la culture agricole? C’est 1a une question tres controversée et d'une solution trés diflicile, parce que le seul moyen rigoureus d’obtenir cette derniére serait de comparer une contrée a elle-méme.sous {état boisé d'abord, sous I’état déboisé en- suite, et que ce moyen est impraticable ©). «Dans ces conditions, il a semblé possible d’approcher de la vérité, en comparant entre elles deux localités, dont l'une serait boisée et l'autre déboisée, assez rapprochées pour que les différences de latitude et de longitude ne pussent en modifier le climat d'une maniére appréciable, assez semblables par le sol, le relief, l’altitude, pour que ces circonstances fussent négligeables dans l'appréciation des phénomenes météoro— logiques qui s’y produisent. I] était rationnel de penser que, si, dans ces localités exac- tement comparables 4 tous égards, sauf 4 un seul, on constatait des différences dans Ja quantité annuelle d'eau pluviale, elles devaient étre attribuées a l'état de la super- ficie, au boisement ou a la nudité du terrain.» La marche suivie par M. Mathieu se trouve, dans ces quelques lignes empruntées a son rapport de 1878, a la fois exposée et justifiée. Des emplacements convenables furent reconnus aux environs de Nancy; on installa les observations continuées de 1889 a 1899 n’ayant fait que confirmer, sans plus, ies résultats déja acquis et exposés dans les comptes rendus de M. Mathieu et de M, Bartet, ci-dessous cilds. On comprend que, vu la possibilité d’apprécier quotidiennement [influence d'un massif boisé sur la température de Yair, il ne soit pas ulile, pour arriver a formuler des conclusions, de prolonger les obser- valions pendant de longues années. Il en va autrement en matiére de pluviométrie, vu Pirrégularité des phénoménes étudiés. () Météorologie comparée, agricole et forestidre. — Rapport a M. le sous-seerélaire d’Etat, président du conseil d’administration des Foréts. Paris. Imprimerie nationale, 1878. (Avec atlas.) (2) Météorologie comparde, agricole et forestiére. — Compte rendu des observations concernant Jes an- nées 1878-1888. (Extrait dy Bulletin du Mimstére de Pagriculture). Paris. Imprimerie Nationale, 1890. ®) Ces observations ont pourlant pu étre faites dans les provinces centrales de I'Inde par Blanford. Un terrain d’environ 61000 milles anglais, déboisé en 1875, fut, dopuis, reboisd sur Jes cing sixiémes de son étondue. Dans 18 stations différentes, pendant que lo reboisement progressail, il y cut une augmen- lation de chute de pluie d’environ 19 p. 100. (M. Henny, Les foréts ot les eaux souterraincs dana Ls régions de plaine, p. 13. Nancy. Bergor-Levraull, 1898.) —-t»( 3 )ee3-—- dans chacun deux, en terrain découvert, un pluviométre de construction ordinaire, a bassin de réception circulaire de 50 centimétres de diamétre. La station forestitre fut établie aux Cing-Tranchées, au milieu d'un vaste plateau boisé, 1a Haye. que forment les assises calcaires de loolithe inférieure; elle est élevée de 380 metres au-dessus du niveau de la mer. A la méme altitude, vers le sommet d'une colline de formation géologique sem- blable, se trouve le village d’Amance, centre d'une région qui, sans étre dépourvue de foréts, peut étre considérée comme plus spécialement agricole; ce fut emplacement du second posle jusqu’en 1882. A cette époque, des nécessilés de service le firent transporter 4 1a Bouzule, pres Champenoux, dont Valtitude n’est que de 225 métres. Malgré cela, et aussi maleré le voisinage de cantons boiss, les observations failes ont prouvé que la nouvelle station, qui n’est située d'ailleurs qu’a 4 kilométres au sud-est de celle qu'elle a remplacde, était soumise au méme régime pluvial. Il parut utile, pour le contréle, d’établir un troisiéme poste, intermédiaire entre les deux précédents; il fut placé & Bellefontaine, sur la lisitre orientale du massif fores- tier de Haye, a laltitude d’environ 240 metres. Les trois stations des Cing-Tranchées, Bellefontaine et Amance sont disposées & peu pres sur une méme ligne, les deux derniéres se trouvent respectivement 4 6 et 17 ki- lométres au nord-est de la premiére; la Bouzule en est distante de 19 kilométres, dans la direction de l'Est-Nord-Est ), Les observations, commencées en 1867, ont été poursuivies jusqu’en 1899 inclusi- vement. Les relevés mensuels relatifs aux deux premiéres périodes de onze années, 1867- 1877 et 1878-1388, ont été déja publics; il semble inutile de les reproduire ici; rest» donc a faire connaitre ceux obtenus de 1889 4 1899. C’est l'objet des tableaux qui suivent et qui concernent séparément chacun des trois postes d’observation. Tapteau A. — Sration rorestibre pes Cinqg-TRaNncHkes. a INDICATION = 1889. | 1890. | 1891. | 1892. | 1993. | 1894. | 1895. | 1896. | 1897. | 1898. | 1899. ITOTAUX.) & DES MOIS, 5 = millim, | millim. | millim.|rillim. |millim. |millim.|millim.|millim.}millim.|millim.|millia.| millim. |millim. Janvier....] 20.0) 93.0] 24.5) 79.6] 58.7] 37.9/135.3] 24.8] 26.9] 18.4/136.1] 654.5] 50.5 Février ...} 104.7] 4.4] —7.4]105.8] 94.4) 58.0] 14.7) 13.7) 74.9] 86.9] 15.8] 580.7] 52.8 Mars..... 57.5] 33.0] 62.9} 50.3) 17.0] 40.6) 87.6/126.9/100.5} 59.3| 31.9) 667.7) 60.7 Avril......| 59.5] 58:3) 51.91 35.01 #7 | 40.3) 30.1] 47.6] 84.9! 56.0]129.9] 599.8! 53.9 Mai. .....]102.6]108.0] 90.8} 31.3] 31.9] 49.7] 71.5] 36 3] 24.9/119.5) go.g] 756.0; 68.7 Juin....../137.0| 38.0]170.1] 89.8} 48.5} 57.4) 93.6) 78.3!191.7| 5.9] 54.8) g4o.t} 86.3 Juillet....) 64.3) 110.9] 97.4]132.0] 94.3] 61.4) 81.3) 80.5] go.9] 68.7] 92.3] 974-0] 88.5 Aott...... A1.9) 135.1] 64.7] 68.4) 38.1) 89.4) 68.1) 98.9/145.3)100.9] 75.6] 848.4) 77.4 Septembre.| 76.6] 17.8] 54.6) 80.4) 55.5{126.4] 6.3/136.11 78:7| 9.2/109.0] 750.6] 68.9 Octobre...) 111.1) 80.4} 89.6/191-1/191.7] 69.0/107.8/188.9] 8.1] 56.0) 66.1] 1089.8] gg.1 Novembre..| 39.5|129.7| 85.9) 54.1} 81.6] 32.8/130.8] 26.6) a4.2] 57.0} 23.2) 684.8! 69.3 Décembre..{ 43.3] 5.0] 98.3] 70.6) 54.4) 58.0/143.0| 86.6] 56.0] 40.0} 79.8) 735.6] 66.9 Toravx. . | 857.3 | 813.6 |898.11988.4)695.4)713.2/970.1 875.2|835.6 731.8/905.4) g284.1/844.0 { Voir a Ia fin la carte des environs de Nancy donnant !emplacement des postes d’observation. 1. —+9( A )ser— Tasteau B. — Station ronestizne DE BeLLEFONTAINE. SES RN SS Ki ee 1889. | 1890. | 1894. | 1892. | 1893. | 1894. | 1895. ] 1896. | 1897. | 1898. | 1899. |TOTAUX) DES MOIS. ; ; a = millim. | mijlim. | millim.| millim. | millim.|millim.|millim.|millim.|millino.|millim.|millim.| oillim. |miltin Janvier....| 8.0] 74.4] 53.9] 62.0] 44.8] 39.1] g7.a) 15:5) 15.2/ 14.7/190.2) 517.9] 47.4 Féveier....| 86.0] 6.3] 5.0] 75.2] gg-4} 55.3) 15.4) 11.8] 65.8] 89.0] 25.0) 527-2) 47.981 Mars..... 59.4) 33.5] 58.5) 36.7) 19.6] 39.7] 87.5[114.5) 82.0) 44.0) 28.5] 589.9) 53.6 Avril...... 5a.1] 55.1] d4a.2} 24.6] « | 45.0] 34.1] 46.5) 74.3) 53.8)194.1) 551.8) 5o.a Mai. ..... 57.3| 82.0] 81.8] 27.2) 39.7} 45.3] 63.8) 18.3) 29.5)120.8] go.8) 649.5] 59.0 Juin...... 99-9] 41.9]108.7] 84.1| 63.2] 69.0} 86.4) 62.1/117.0] 65.7] 42.1) 840.1] 76.4 Juillet ....) 44.4) 95.6} 75.5]196.1} 91.3) 51.7] 67.0] 88.1] 73.8] 62.7| 92.6] 868.8) 79.0 Aott...... 4a.o]117.5| 62.8] 54.3) 40.3) 94.4) 64.5] 31.1)131.1] 75.6] 71.9) 765.5) 69.6 Septembre.| 92.5] 16.7] 50.3] 70.6} 54.4/109.3) 5.5j120.9) 78.7} 11.1/118.9] 721.9) 65.6) Octobre...| 85.2] 81.1 |..82.5/189.7/123-2| 62.9/106.9/177-4] 4.7) 57.4) 62.2] 1032.5] 93.9 Novembre..| 37.2] go.1] 82.1] 41.4) 76.g) 30.8/199.1) 16.8) 93.3) 56.4) 99.5] 599.6) 54.5 Décembre..} 34.0] 3.0] 93.4] 57.8] 53.7) 49-0]/141.2] 70.5] 60.0] 35.8] 78.0] 676.4} 61.5 Toranx. . | 691.0] 697-2 | 776.5/849.9|692-5/657.5|/890.9|773.5/795.4)680.0/876.7) 8341.11758.3 Tasreau GC. — Station acricore pe La Bouzore. n INDICATION z 1889. | 1890. | 1891. | 1892. | 1803. | 1894. | 1895, | 1896 | 1897. | 1898. | 1899. |TOTAUX.| & DES MOIS. = millim. | millim. | millim.|millim.|millim.|millim |millim.|millim.|millim. |millim./mallin.| millim. |millim. Janvier....} 14.0] 64.4] 29.0] 41.1} 33.1] 20.7] 49.5) 19.9] 6.1] 10.4)112.0] 386.9] 35.1 Février,...] 72.4) 9.3) 2.4) 55.4] 78.5) 43.5) 13.5) 5.3) 39.5) 997.1) 16.5) 351.6] 32.0 Mars..... 44.9] 25.0/ 53.9) 15.6} 10.0] 30.6] 49.5) 96.5) 30.1) 20.0] 19.1) 394.5] 35.9 Avril...... 53.3] Ad.g| 34.7) 19.1] “9 | 41.9} 26.3) 98.4) 61.6) 37.8/114.6) 460.9] 41.9 Mai...... 44.5] 72.2] 59.9) 16.6) 25.9] 55.4) 38.9) 2.4) 29.6) 88.1] 50.4) 483.9] 44.0 Juin...... 99-8] 99.1] 63.8) 79.4) 59.0) 39.9) 89.1) 54.5) 66.4] 34.1] 99.8] 616.2] 56.0 Juillet .... | 49.8) 91.6] 66.7) 58.4} 68.9) 51.0) 47.0) 86.5) 73.7] 58.3] 97.8] 749.2} 68.1 Aout......| 38.8/116.1] 69.9) 54.0| 24.9] 41.4) 64.7) 79.9]/129.6] 72.7} 86.4] 769.3] 69.9 Septembre.| 43.8) 4 53.7| 73.6) 25.4) 63.9} 8.2/103.9] 70.1] 19.6] 73.2] 52a7.7} 48.0 Octobre...| 74.3] 85.7} 100.0]167.5] 99.3) 71.9} 71.6/119.5] 9.11 43.9] 50.8] 899.7} 81.1 Novembre..| 23.2] 95.8] 79.5] 35.3] 61.1} 34.7] 98.6] 16.6} 14.3] 53.4) 18.4) 530.9] 48.2 Décembre..} 24.9) 2.3] 73.4) 26.1} 39.0) 39.5]194.2] 56,0) 40.2] 26.9) 71.5/ 516.6] 47.0 Toraux. .|589.0 | 629.2 | 672.2}635.1/505.4/539.5/674.1/661.5/570.3)484.1/733.3] 6679.7/607.9 Les résultats sont plus apparents, si on dispose 4 cété les uns des autres les totaux annuels des diverses stations. Le tableau suivant, ot ils sont ainsi rapportés, embrasse @ailleurs la période tout entitre des observations, ce qui permet de formuler les. conclusions générales qui s'en dégagent. Ce tableau donne les quantités absolues d'eau pluviale regues par chaque poste; en outre, pour rendre les comparaisons plus faciles, ona indiqué quelle serait, en ramenant a 100 millimetres la hauteur de l'eau recueil- lie annuellement au pluviométre des Cinq-Tranchées, I'épaisseur correspondante de Ja lame a Bellefontaine et 4 Amance-la-Bouzule. —+o( 5 )-ca-— Tasceau D. -— Quantités pEAU RECUES ANNUELLEMENT, EN TERRAIN DECOUVERT, DANS CHACUNE DES TROIS STATIONS”, a a QUANTITES ABSOLUES, QUANTITES RELATIVES. ANNBES. AMANCE, amancr, | OBSERVATIONS. LES CINQ- | BELLK- LES CINQ- | BELLE- TRANCHEES.| FONTAINE. oy TRANCHEES .| FONTAINE. el millim. millim. | willim. millim. millim. | millim. 1867s ocet seeds 925.0 879.0] 862.0] 100 95.0 93.2 1868......... 748.0 738.0] 631.0] 100 98.7 84.4 1869......... 774.0 721.0] 628.0] 100 93.2 81.1 ABT0 eases cores 576.0 593.0] 518.0 100 103.0 89.9 1871 osc ie aceae 744.0 708.0] 625.0 £00 gb.2 84.0 1872) sacnewae 3 903.0 877.8] 717-0 100 97-2 79-4 1873......... 793.9 740.9] 639.0 100 98.3 84.8 1874........ ; 695.5 618.9) 545.9 100 89.0 78-5 \ La station acacia wet 1B 3B is vase ees oa 954.4 894.2} 597.2 100 93.7 62.6 a Amance. 1876. cesses 822.0 847.4] 669.9] 100 103.1 81.5 1ST To eisaies g21.4 961.9] 746.9] 100 104.4 81.4 1878. ese ces 1052.7] 1026.7, 825.8 100 97-4 78.4 1879 sce eee e 998.2} 979-2| 726.9 100 98.1 72-9 1880.......5. 877-1] 870.7] 678.9] 100 99:3 77-4 1881... ..... 682.9) 736.8) 514.3; 100 108.0 79.3 1882 6s wove. 973.7| gha.g} 822.6] 100 96.8 84.5 1883......... 878.5 916.1} 680.9 100 104.3 77°5/ 1884......... 668.9] 626.6) 559.7) 100 93.7 83.7 1885......... 1009.2 814.7] 763.0 100 80.7 75.6 1886......... 930.7] 891.1] 738.0] 100 95-7 79.3 1887 esi cease 772-91 720.2} 577.0] 100 g3.1 74.7 1988). ise2 aie 1061.0] 849.2] 723.6} 100 80.0 68.9 1889......... 857.3] Gg1.0) 582.0 100 80.6 67.9 i 1890......... 813.6] 697.2] 629.2] 100 85.7 77:3 i wisieon iene VBE ees ce ee 898.1 776.9 672.2 100 86.5 74.8 4 La Bouzule. 1892......... 988.4} 849.9) 635.1 100 86.0 64.3 1893......... 695.4] 692.5} 5obd.4 100 99-6 74.0 1894 ss ewe cees 713.2} 6597.5) 432.5) 100 92.2 74.7 1895. ceases 970.1} 890.9] 674.1 100 g1.8 69.5 1896......... 875.2] 773.5) 661.5] 100 88.4 75.6 1897......... 835.6] 755.4) 5470.3] 100 88.5 | 68.1 1898......... 731.8] 680.0) 484.1 100 92-9 66.9 1899......... go5.4| 876.7] 7383.3] 100 96.8 81.0 Toravx...... 28006.1 | 26295.4) 21470.3 4 4” " Moyernes.... 848.7} 796.8] 650.6 100 93.9 76.7 {) Voir & Ja fin le tracé graphique représentatif de re tableau. —--tm( 6 )eea--— On voit que, sans aucune exception, pendant toute la durée des observations, la station agricole a regu sensiblement moins d’eau que les stations forestiéres. De plus, huit fois sur dix, la pluie a été plus abondante au poste des Cing-Tranchées, situé au centre du massif de Haye, qu’a celui de Bellefontaine, établi sur a hisiere. Ce résultat, déja signalé en 1878 et 1889, ne saurait, fait remarquer M. Mathieu, étre effet du hasard: c'est, au contraire, la conséquence d’une cause permanente, qui, dans les conditions ot l'on s'est placé, ne peut étre que I’état superficiel du sol, trés boisé dans deux stations et découvert dans la troisieme. Mais est-il permis de conclure des observations, d’une fagon générale, que les foréts ont pour effet d’accroitre la proportion des eaux météoriques qui tombent sur une contrée? Ici se présente une objection. C’est a Est du plateau de Haye que se trouve la région d’Amance-la-Bouzule; il est démontré qu'elle est moins arrosée que la forét; mais en serait-il de méme en cas de changement. dans la siluation respective des contrées étu- diées ? Pour répondre atone maniére précise, il faudrait pouvoir établir tout autour de la forét des stations agricoles. Ceci suppose un massif isolé au milieu d'une région dé- boisée, situation qui ne se rencontre pas aux environs de Nancy. Dans les conditions oi ont été faites les observations, il est donc naturel de se de- mander si les résultats obtenus ne sont pas dus uniquement 4 ce que Amance-la- Bouzule se trouve a Est du plateau de Haye. La chose serait d’autant plus vraisem- blable qu'il pleut surtout par les vents d’Ouest. Alors les différences constatées entre les deux postes liendraient seulement A Ja distance qui les sépare, ou A cette circon- stance que les nuages de pluie passent au-dessus du massif forestier avant de parvenir ala région non boisée. Ii est possible, cependant, bien que la station agricole soit unique, de mettre en évidence l'influence de la forét et de se rendre compte des conditions dans lesquelles elle s’exerce. On y arrivera, en comparant séparément, pour chacun des vents par les- quels se sont produites les précipitations atmosphériques, les quantités d’eau tombées aux Cing-Tranchées et 4 Amance-la-Bouzule Toutefois, il ne semble pas utile de pousser tres loin ce détail. Si les résultats ob- tenus sont dus & la situation relative des postes d’observations, des différences se fe- ront sentir, si on considére, d’une part, les cas ot les nuages pluvieux vont de la forét 4 la contrée dénudée; d’autre part, ceux od ils viennent de toutes autres direc- tions. Or le massif de Haye, qui se prolonge vers le Nord par celui de YAvant-Garde et les bois de Liverdun, est disposé de fagon 4 abriter en quelque sorte Amance-la-Bouzule contre les venls d'entre Nord-Ouest et Sud-Ouest. De 1a, 1a répartition faite dans le tableau ci-aprés. Faute de renseignements pour fa période antérieure 4 1889, on n'a pu y faire figurer que les relevés concernant les onze dernigres années : Tasnzau E. — Comparaison ENTRE LES QUANTITES DE PLUIE TOMBEES PAR LES VENTS DU SECTEUR OvEST ET CEUX DES AUTRES SECTEURS. VENTS YES beovaad , DU QUANTITES TOTALES po ee : = -0.- .N.E.-B.-E.N E.- DE PLUIE TOMBEE. S.0.-0.5.0.-0.-0.N. 0. etN.0. §.E.-S. §.._8.-§. 5.0. LES CINQ= L85 GING- LES CINQ- es ‘¢mancuées, La BOUZULE. iavaea den LA SOUZULE, peencn tea 1 LA, BOUZULE. ANNEES, ’ . Hautear | , 4 Hauteur . | Hauteur Epaisseut Epatsseur corres- Epaisseur | Mpaisseur | corres- Kpaisseur Epaisseur corres- de de pondant de de pondant de de pondant la Jame ja lame a ee Ja lame la fame a sage la lame la lame 7 ae oh desu d'eau {too millim. d'eau @eau |1oomillim.} d'eau @eau {100 millim. annuelle. | annuelle. a annuelle. | annuelle. Cae annuelle. | annuelle. ao millim. millim, millim. tillin. millim, | millim. millim. millim. millim. 1889....] 629.3] 395.4] 62.8 298.0| 186.6} 81.8 857.3] 58a.0] 67.9 1890....| 552.0] 436.1| 79.0 261.6] 193.1] 73.8 813.6] 629.0] 77.3 1891....] 621.5) 390.9) 62.9 276.6 | 281.3} 101.7 898.1] 679.9] 74.8 Y1892....]) 698.3, 441.5} 63.7 ag5.1| 193.6] 65.6 988.4] 635.1] 64.3 4893....] 373.9] 287.7] 77-4 392.9] 917.7] 67.6 695.4) 505.4] 74.0 1894....| 561.1] 393.9] 7o.1 152.1] 139.3] 91.6 713.0) 531.5) 74.9 1895....} 459.0] 333.4] 73.8 518.1] 340.7{ 65.8 gj7o-1| 674.1] 69.5 1896....] 501.0) 419.6} 83.7 374.1] 2hi.g}| 64.7 875.2] 661.5] 75.6 1897....] 554.9) 414.4) 7.9 280.7] 155.9] 55.7 835.6} 570.3] 68.1 | 4898....] 367.4) 278.0} 75.9 364.4) 206.5} 56.6 731.8) 484.1 | 66.2 1899....] 5a4.9]° 466.8] 88.9 380.51 266.5} 76.0 go5.4] 733.3| 81.0 Toraux...| 5830.7} 4257.0} 4 3453,4| ohe9.4 " g284.1 | 6679.7 a" \ | Movennss.| 530.1 387.0| 73.0 313.9] 220.9] 70-1 84h.o Go7.2 | 71.9 . s | Il résulte, de la concordance des chiffres précédents, que, dans toutes les circon- stances, il pleut plus abondamnieut aux Cing-Franchées qu’a Amance-la-Bouzule; de plus, le rapport entre les quantités d'eau recueillies est indépendant de la direction du vent. Il ne peut donc étre question d’expliquer le fait par la situation du second poste, plus dloigné que le premier du point de Thorizon d’ou arrivent ordinairement les fiuages de pluie. La forét a, par conséquent, une action réelle sur l’abondance des précipitations atmosphériques; elle a le pouvoir de condenser les vapeurs contenues dans Yair et d’augmenter sensiblement la quantité d’eau météorique tombant sur la région qu'elle oceupe. L'accroissement, par rapport 4 une contrée agricole voisine, est dailleurs le méme, quelle que soit la position relative de cette derniére. Liinfluence du massif boisé étant ainsi établie, il est intéressant de voir si elle ne s'exerce pas d'une facon différente quand les arbres sont couverts de leur feuitlage et Jorsqu’ils sont dénudés. Une comparaison entre les quantités de pluie tombées respec- tivement pendant ja saison de végétation, c’est-a-dire de mai a septembre, et pendant le reste de l'année, va permettre de sen rendre compte. 4 —+%( 8 )s¢3--- TABLEAU F, — CoMPARAISON ENTRE LES QUANTITES DE PLUIE TOMBEES PENDANT LA SAISON FROIDE ET LA SAISON CHAUDE. PERIODE DE VEGETATION. PERIODE DE REPOS. MAI-SEPTEMBRE. OCTOBRE-AVRIL. LES CINQ- LES CINQ- es AMANGE, La BOUZULE. - AMANCE, LA BOUZULE. TRANCHEES. TRANCHEBS, ANNEES. Hagieur Hauteur | OBSERVATIONS. Epaisseur Epaisseur corres~ Epaisseur Bpaisseu : corres- : de de pondant de de pondant 4 une chule & une chute Ja lame ja lame de Ja lame la Jame de deau deau 100 millim. dean dean 100 millim. recueiflie. | recueillie. oe recueillie. | recueillie. ee millim. millim, willim. millim. millim. millim. 1867......... 310.0; 297.0 | 73.2 615.0 635.0 | 103.3 1868....... ‘ts 192.0 190.0 | 99.0 556.0 4b1.0| 79.2 1869......... 368.0} 250.0 | 67.9 4o6.0 378-0] 93.1 1870......... 235.0 209.0 | 88.9 341.0 309.0] 90.6 LST siseee ais eg 378.0] 312.0 | 82.5 366.0 313.0] 85.5 DS These cca see 335.9] 261.8 | 77.9 567.1 455.2] 80.3 18734 ois ee ve - 3805] 322.5 | 84.8 373.0 316.5] 84.8 DOTA one emcees 302.0 275.4 | 91.2 393.5 270.5] 68.7 La station VB TD semnaetie s 591.3] 279.7 | 52.3 432.8 324.5 | 75.0 agricole VIB crass ss ~.] 8a7.4] 243.3 | 74.3 hgl.6| 426.6] 86.3 eek 2 Ainiaaes, 1877....... « 371.7; 279.8 | 75.3 549.4 467.1] 85.0 IST8 seis fas hahg 349.7 | 82.3 627.8 476.1} 75.8 1979 oy eae 491.5 4o6.2 | 82.6 506.7 320.7] 63.3 1880......... 315.7] 997.9 | 72.2 561.4 451.0] 80.3 1881. .ccse.es 318.3 213.6 | 67.4 364.6 300.7| 82.5 1882s icace dens 519.6] Aah.o | 81.6 ADA. 398.6} 87.8 | 1883......... 381.8] 345.5 | 89.0 hgo.4 335.4] 68.4 1884... acne 275.4 261.9 | 95.0 393.5 297-8) 75.7 1885......... 362.8 288.3 | 79.5 646.4 Aqh.g | 73.4 1886). esa ee ss 438.4} 354.5 | 80.9 4g2.3 383.5] 77.9 1887 se seaesces 393.1 289.1 | 71.8 379.8 2g4.g} 77.6 1888......... 547.9] 390.7 | 71.3 513.1 332.9] 64.9 ee hor.7| 296.7 | 65.6 435.6} 305.3] 7o.1 ey 1890......... hog.8 309.0 75.4 403.8 320.2 79.3 est & Ja Bouzule. TBO bee eie a nine o 477.0} 306.3 | 64.1 420.5 365.9 | 87.0 18926 sca 8 sah ho1.g 275.0 | 68.4 586.5 360.1] 61.4 LS 267.6 196.4 | 73.4 4o7.8 309.0] 7a. TS OA pak ence 377.3 350.9 | 66.3 335.9 282.3] 84.0 WSO 5 6 sears aces - 320.8 aho.g | 75.1 649.3 433.2] 66.7 1896......... 360.1] 326.5 | 90.7 515.1 335.0] 65.0 1890 ees eicwens 460.8] 369.4 | 80.9 374.8 200.9| 53:6 1898 6c oe sates 358.0] 265.8 | 74.9 373.8 918.3] 58.4 1899......... hoa.6 330.1 78.4 489.8 4o3.2} 83.5 Toraux...... 12476.7 | 9534.9 a 15530.4 | 11936.1 a Movennes.... 378.1 288.9 | 76.4 470.6 361.7] 76.9 REE REA NE RY PL —t+( 9 j-er— Contrairement a ce qui semblait se dégager des observations faites de 1878 a 1888, it n’y a done pas de différence appréciable dans I’action de la forét en hiver et en été; les moyennes se trouvent étre 4 tres peu prés les mémes pour chacune des saisons). Un dernier point reste a examiner. I] a été démontré que la direction du vent et la différence des saisons n’influaient pas sur le rapport entre les quantités de pluie respeclivement regues par la forét et 1a contrée agricole. Mais ce rapport n’est-il pas susceptible de variations avec l'abondance des précipitations atmosphériques? Ii suffit, pour s’en convaincre, de faire porter les moyennes, non sur Ja durée en- titre des observations, mais séparément, sur trois groupes comprenant chacun onze années, savoir : les moins pluvieuses, — celles qui l’ont été moyennement, — celles enfin od il a beaucoup plu. Tasteau G. — VaniaTIONS, SUIVANT L°LMPORTANCE DES CHUTES DE PLUIE, DU RAP- PORT ENTRE LES QUANTITES D’EAU RECUES PAR LES STATIONS AGRICOLES ET FORESTIERES. QUANTITES ABSOLUES. QUANTITES RELATIVES. ANNKES. AMANCE, Amance, | OBSERVATIONS. LES CINQ- | BELLE- LES CINQ- | 82LLE— A rrancuéss.| rosraine.| enancudes.|rowraise.| "| BOUZULE. BOUZULE. millim. nillim. millim. mil'im. milli. millim. 1888......... io61.0| 849.2] 723.6 100 80.0 68.9 1878 252000 9% 1053.7] 1026.7] 825.8 100 97-4 78.4 18853 cies sees 1009.2 | 814.7] 763.0 100 80.7 75.6 1899). ie aceite 998-2] 979.2] 726.9] 100 98.1 72.9 BOD eee cao seats 988.4) 849.9} 635.1 100 86.0 64.3 1882......... 973-7] g42.9} 822.6 100 96.8 84.5 ) Annéos trés pluvieuses. 1895.......-. 970-1 | 890.9] 674.1 100 91.8 69.5 1875.....--4 i gd4.1{ 894.2] 597.2 100 93-7 62.6 1886). 65 ne eas 930.7} 891.1] 738.0 100 95-7 79:3 1867. ses sere oe y25.0}| 879.0] 862.0 100 95.0 93.2 TST sence eussessry gait] gbs.g] 746.9 100) | 104.4 81.1 Neen 10784.3 | 9979-7 | 8115.2 u " ” Pariineinscx 980.4} go7.2] 737-7. 100 g2.0 | 7b.a ) Météorologie comparée, agricole et forestiére. — Comple rendu des observations concernant les onze années 1878-1888, par M. Bartet, p. 8. ) Le trés faible excés (0.05 p. 100), pendant I'hiver, est di probablement a Ja condensalion des va- peurs de brouillard, plas abondante en forét qu’en terrain découvert. M. de Drouin de Bouville. 2 —#3e( 10 Jees—— SEES QUANTITES ABSOLUES. QUANTITES RELATIVES. ANNNES, Les cinq- | netne- | AMANCE, | res cinq-| pente- | AMANCE, | OBSERVATIONS. LA TRANCHLES.| FONTAINE. ee TRANCHEES.| FONTAINE.| gouzoce. millim. millim, millim. millim. willim. millim. 1899. .....605 go5.4 876.7 | 733.3 100 96.8 81.0 | 1872 ws sase-ai 903.0 877-8| 717-0 100 97-2 79-4 BOW swisseaveete ae 898.1 776.5] 679.2 100 86.5 74.8 1883 %.026 20545 878.9 916.1} 680.9 100 104.3 79.5 1880........- 877-1 870.7| 678.9 100 99.3 77-4 | ans 1896......... 875.2 973.5] 661.5 100 88.4 75.6 oa | 1889......... 857.3 691.0] 582.0 100 80.6 67.9 1897.......-. 839.6 755.4| 570.3 100 88.5 68.1 T8716 se sarees ais 823.0 847.4) 665.9 100 103.1 81.5 1890......... 813.6 697-2] 629.2 100 85.7 97-3 1869......6.. . 774.0 721.0} 628.0 100 93.2 B11 ToTaux.....« 9439.8 | $803.3 | 7223.9 " " u Moyvenngs.... 858.9] 800.3] 656.7 100 93.3 76.5 LBS Ts asa owe 979.9 720.2) 577.0 100 93.1 74.9 1878. ....005- 793.5 qho.g| 639.0 100 98.3 84.8 1868....-...- 748.0 738.0| 631.0 100 98.7 84.1 VST scm na we qhh.o 708.0| 625.0 100 95.2 84.0 TSOS. cee xoeas 731.8 680.0] A&4.s 100 92-9 66.2 “| PEGA ices ste si 713.2 657.5 532.5 100 92.2 74.7 Années peu pluvicuses. 187A. ewe o ae 695.5 618.9] 545.9 100 89.0 78.5 1893......... 695.4 692.5] 405.4 100 99-6 7h.o 1881 o. gca tees 682.9 736.8] 514.3 100 108.0 75.3 1884......... 668.9 626.6) 559.7 100 93.7 83.7 TST. oetacaine sa 576.0 598.0] 518.0 100 103.0 89.9 Toraux...... (7782.4. | 7519.4) 6131.9 ” 4” " Moyennes....| 707-5 682.9] 557.4 100 96.5 78.8 : Un fait semble se dégager des chiffres fournis par le tableau qui précéde, c’est que dans les années séches, si les terrains boisés regoivent encore sensiblement plus d'eau que ceux qui ne le sont pas, la différence s’alténuc quelque peu. Des observations qui viennent d'étre étudiées et discutées, il est maintenant pos- sible de tirer une conclusion générale et définitive sur l'influence exercée par les foréts sur les chutes de pluie: elles ont pour effet d’en accroitre notablement limportance et sont par suite favorables, de ce chef, & lalimentation des nappes souterraines et des sources. Le rapport entre 1a quantité d’eau tombée sur un massif et celle recue par ua point quelconque de ja région agricole environnante est d’ailleurs une quantilé constante qui est la méme I’hiver et Pété; elle augmente et diminue seulement entre des limites rapprochées, avec labondance des précipitations atmosphériques. / Les résultats obtenus & I'icole forestitre concordent avec ceux de quelques obser- vateurs, tant francais qu'étrangers ), dont les travaux n’ont d’ailleurs pas élé pour- suivis pendant, aussi longtemps. Ces résultats n’en sont pas moins exposés Ala critique, vu Ja défectuosité d'une installation quin’a pu comprendre que deux slations altitude (©) MM. Fanteal, pris de Senlis; Ebermayer, en Bavidre. tee 11 jer égale, il est vrai, mais séparées par une dépression de 80 métres de profondeur (”), Recommencer les recherches serait donc encore utile, d’autant plus que, si l’action de la forét est connue, il reste 4 en faire une étude plus précise et détaillée; on peul chercher & savoir, par exemple, jusqu’d quelle distance de la lisiére elle se fait sentir et suivant quelles lois varie son intensité 4 lintérieur du massif. Une nouvelle série d’observations entreprises dans de bonnes conditions) et continuées pendant une vingtaine d’années serait donc fort & souhaiter, tant pour 1a confirmation de ce qui est connu que pour la découverte de ce qui ne l’esl. pas encore. , I]. — Quanrité EAU PLUVIALE INTERCEPTEE PAR LE COUVERT DES FORETS. Si toute l'eau précipitée de l'atmosphére arrive sans obstacle jusqu’a un terrain découvert, il n’en est pas de méme en forét, ot les cimes et branchages en arrétent une fraction qui s'évapore ensuite. Dans quelle proportion le couvert empéche-t-il la pluie de parvenir au sol? La question a de l'intérét en ce qui concerne l’alimentation des sources, d’olt les recherches entreprises 4 ce sujet et poursuivies simultanément aux Ging-Tranchées et 4 Bellefontaine. Les observations n’ont porté que sur des peu- plements d’arbres a feuilles caduques (chéne, charme et hétre), mais les installations ont été un peu différentes dans chacune des deux stations ; les résultals obtenus dans Pune et dans l'autre seront examinés séparément. A. —~ Station pes Cing-TRANCHEES. Pour comparer 1a quantité d’eau recue par le sol hors bois et sous bois, il suffit de disposer dans ces conditions deux pluviométres situés a faible distance. C'est ce qui a été fait, aux Cing-Tranchées : le premier étant placé au milieu d'une clairiére de quelques hectares, le second sous un perchis de hétres et charmes moyennement serré, dgé de 4o ans au début des recherches. Linstrument établi en terrain découvert ne présente aucune particularilé; il n’en est pas de méme. de l'autre. La quantité d'eau pluviale qu'il regoit peut en effet varier avec la position de l'instrument, suivant qu'elle correspond aux pleins ou aux Lroudes du feuillage. Pour éviter cette cause d’erreur, on a donné au récepteur de fortes di- » mensions: sa surface est égale 4 la projection de Ja cime d'un arbre du massif. la tive de l'un d’eux le traverse en son milieu et est entourée par une collerette; grace a cette disposition, on peut recueillir eau qui ruisselle le long du fit, soit a la suite d'une pluie prolongée ou d'un brouillard intense, soit apres un dégel produisant Ja fusion de la neige ou du givre fixé sur les branches. Commencées en 1867, les observations ont été poursuivies jusqu’en 1898, un accident arrivé 4 l'un des appareils ayant empéché de les continuer plus longtemps. Elles embrassent donc une période de 32 ans. Les rapports antérieurs ont fait connaitra les relevés mensuels fournis, jusqu'en 1889, par les deux plaviometres hors bois et sous bois. Quant 4 ceux ie années suivantes , ils sont consignés dans le tableau ci-apres : “ La vallée de la Meurthe. (2) Les forets isolées au milieu d’une plaine se préteraient a ces observations; celle d’Orléans se recom- manderait en particulier en raison de son importance el de sa situation. —-t9e( 12 )ees-— eo “Ww = 2 Ww aw 8 a | *slod snos “siod suon “SUNNTAON s-gogl | L-g4eg rye9 | rss9 3839 | 9" ¥99 0166 | L-gsotr y6aq | g¥H9 gLog 6-6LL orcyl L-19g ororg | g°y8g ge5¢ | 999 6-ory | Gey esgq | sse9 B-ogg | 679g L-gqq | ygrg “wu “wo wm & & 3 mn mn a B > oS e e wee *XOVLOL g'ggg} gree Gag | o-oy tyy jolg wy |e 0s gy [ob cog |Loor wry | £89 g'sy 6:6g L-s6 |q'6rr o-Ly | 0-9 osg | q'6g LsL | 6:99 Sgr | yet wu | ‘oor Seise 3 S a | & i=] a ° = a] @ rolg |9-cgg L-qy jorgg gilt |sys gy | 8 orog | Lgl Gost ie aye L-cL | 6:06 L-g5 | Lvrer Leet |oys rlg | 578 98 |G'ooT tog | G6-yL Leis | 6:96 ‘wor | ‘mur eo | = ° ° e 5 wn nm 3 G S$ 3 B | B “L681 0°669 } 6-¢Lg | y-Le6 | t-0L6 ge orgs | iter loveys y'6t |grgs |o'Gsr |g ogt g'Lor | 6-ggt | g-got | g:Lor 6°66 |rgerlay [eg yar |6-gs |o-Lg | t-g9 9G |S'°8 jys9 | EB Lgg jel |yc6 |g-e6 y'6s |egg |s'99 |r ele joly |g-6s | rog gLor|6-gsr| 1-96 | gle vor legen Joke [b-yt Gee Lees Pe ey! Least “anu | “Olu | “Wa | “TM n z 7) x e| ele ps a i BS Be o c=] So o ee ee “9681 “GOST ERAS ee RR a es geghjo eth 8°89 [os 665 |g-se gol |o-69 regs | ost 858 | 758 O'S | wrg org Jy bg syy | 4-6y roy | fey s-6y | groy FQ [0°89 goy |sle sont | ‘on eee ° ° a 2 wm mn oe 3 ° ° 2 | & “1681 “6ggs ua sav gg op 93p 11e19 ‘saWaEYD yo serpy op pUIdJ belo | 9-G69 bsg jyrg 256 [org olrt| Liter sle |o-sg 186 Se gob |g¥6 esy |o'37 61g | ore o'6r |orLt ggor | y76 Teg | L-gg “wo "wal wm [==] o oS a a nm wm BS o 2. (12 B | @ “e681 27998 | 7-996 | 6-116 | F963 o-Lg |goL | g-gor | 6-96 reg [rye |y°L£6 | egg 6-L6r} +164] ¢°96 | 96g 0°66 |y0g | ton J 9'NG slg |yg9 |¢6g | Ly9_ gett |orcer| g-6g | y°L6 e'7g [976g | L:ggt| solr Vere ete 0°09 g'06 065 Jorge |aryg | 61g 9g [gos | s0g | 6-69 L-Lov|ggor|6-tr | yl ogg [9°6L forty |grys “mul “Tul “amor "Ou wn a wn a & fag | cee [ee wn mn wn nm 3 = a os o o o o ee et “G68T “1681 “SIOd SNOS LA SIOD SUOH SAITTIANOAY ATVIANTd NVI SHLILNVOD “SUAHONV' [-ONIT) saq NOLLVLS — ‘H OVATE 7 6-Leg | grerg| g's6g| e-Leg gy jog jely | eer L-ygt|L-65r| yoy | og yrog [yog | 6-Lor| ttt tgt [gle [r-oL | gegh sLer| ger) obs | 6 ty g'gor|G-orr| tge | eryg gas jorge | rege | oLgr g cor a°gor yr bor g sor gg levee jee | o'6e B-1g Jorgg | grog |a-hg sy {yy fyort|Lyor ylorjo-g6 | t-gt | 00s ‘ww | ow | mw | ‘au wn = Q J s|8)/3| & z & os oS 2 2 2 iS ee | “0681 “6881 arqmaydag oroy 18°89 | g-6g Ig-Lerlg-gs lo-ey setere eee cgnoy B97 |9°S4 [Leng jorg6 Jyrge [yyy [ooo ++ yHINe sgot/L-gor| tgs |6-ry |o-LL |6-66 |-+-++-+--- urog Legg 19°19 | yrLg Jorsg Ison Jerlg [ove rey ggg [sty |groy [rreg |o-6g [srsg [eres spaay 987 SBS [7G lees [OBE [Teg [oor ees ste Lit Jorg: Jorg le-g Jorg lorgg |e - > “saaag orgs |Ligg |e-sg lpegh Jo-L forg +++ sgarauep mm |? oe] mm |- oo |e | oe elz/eisisls se B | @ Sie] & “SION | ee | Se “1681 “0681 “6881 (:669 1-699 t) “SIO€ SNOS LX SIOM SHOH SHYLANOIANTd SAT UVd SINUNOA STANSNAN SHAM TAY x “ANIVENOAT TI dd NOILVLG —— ‘W OVaTAY 7, —+9( 21 ea— A part quelques tres rares exceptions, pour tous les mois de l'année, Ja quantité d'eau recueillie hors bois est plus forte que celle recue par le sol forestier. On n’a pas constaté & Bellefontaine, comme aux Cing-Tranchées, des anomalies assez fréquentes et importantes; la cause cn est d’abord la consistance du massif, plus dense et plus dgé; puisda défectuositd de Vinstallation, la forme des pluviométres, leur situation () rendent peu précises les indications qu’ils fournissent.. Sous ces réserves, on trouvera ci-aprés les résultats d’ensemble pour toute la période des observalions, présentés dans la méme forme que ceux des Cing-Tranchées : ) Les hauteurs relevées au pluviométre sous bois sont plus ou moins fortes suivant l’emplacement qu'il occupe sous le massif. Divers déplacements de l’appareil en ont fourni la preuve. —t9-( 22 )ea-— Tasteau N. — Stariox ve Betveronraine. QUANTITES D°EAU TOMBEES RESPECTIVEMENT HORS BOIS ET SOUS BOIS PENDANT LA SAISON CHAUDE, LA SAISON FROIDE ET L*ANNEE ENTIERE |), MAI A OCTOBRE. NOVEMBRE A AVRIL. ANNEE ENTIERE, HORS BOIS, SOUS BOIS. HONS BOIS. SOUS BOIS. HONS BOIS. sous pols, a i eed a i eel a ANNEES. SPAISSEUR Spatsszon eae EPaisseUR | KPAISSEUR ae EPAISSEUR | EPAISSEUR Paes de de pondant de de -pondant de de pondant Ja lame lalame [A une chule] Ja lame Jalame /4 unechute} Ja lame { 1a lame [a une chute| d'eau d'eau “de d'eau d'eau de d'eau dau de recueillie. | recueillie. ee aye ; reeneillie, | recueillie. pear ‘| recucillie. | recueillie Tigie eo millim. willio. tmillin. millim. millim, millim, millio. willim, millim, 1867.... 348.0] 261.0] 75.0 531.0] 414.0] 78.0 879-0] 675.0] 76.8 1868.... 323.0] 298.0] 70.6 415.01 331.0) 79.8 738.0] 559.0) 75.7 1869.... 377-0] 293.0] 77-7 844.0] 276.0] 80.2 7a1.0| 569.0] 78.9 1870.... 377.0} 347.0) 92.0 216.0 188.0] 87.0 593.0} 535.0] go. 1871.... 4og.o] 369.0] go.a 299.0] 266.0] 89.3 708.0] 635.0} 89.7 1872.... 498.1! 358.0] 83.6 4hg.7| 405.0} go.0 877.8] 763.0) 86.9 1873.... 430.4| 339.0] 78.8 310.5] 2374.6) 88.4 740.9] 613.6] 82.8 1874.... 333.5] 266.41 79.9 285.4 253.6; 88.9 618.9} 520.0] 84.0 1875.... 545.8| 4ha.A} 80.6 348.4) 314.1] go.2 Sg4.0} 756.5] 84.6 1876.... Kika} 331.4) 80.0 433.2] 396.5] 91.5 847.4] 727.9] 85.9 1877.... 434.8} 356.1) 81.9 5a7.1 466.1; 88.4 gS1.9] 822.0; 85.5 1878.... 587.9] fg2.4) 83.9 43y.5| 378.4) 86.1 1026.7] 870.8) 84.8 1879....| 517.7| 439.1) 84.4 461.5] 4o2.6) 87.2 979-2] 839.7] 858 1880.... 479.7} 395.4] 83.6 398.0} 347.8] 87.4 870.7] 743.2] 85.4 ff 1881.... hog.4 347.9| 85.0 327.4 280.7] 85.7 736.8) 618.6) 85.3 1882.... 525.2 4hg.g| 85.47 419.9 363.1] 86.9 gha.g] 813.0] 86.9 1883.... 547.4 493.9] 90.3 369.0 335.2] 90.8 916.1] 829.1] 90.5 1884.... 285.7] 302.0] 70.7 3ho.g| 291.9} 85.4 626.6] 493.9} 78.7 1885.... 471.2| 4o3.0] 85.5 843.5) 313.7] 918 814.7] 716.7) 88.0 1886.... 4g7.8 hod5.o} 81.4 393.8 341.5) 86.7 8gt.1] -7A6.4} 83.8 1887.... 433.4) 380.1) 76.2 286.8] 253.31 87.6 720.2} 582.4} 80.9 1888.... 531.5) 4a1.4| 79.3 317.7 266.4] 83.9 849.2] 687.8] 81.0 1889... 4o1.3) 321.9) 76.4 269.7 g21.5) 89.4 691.0] 543.4] 78.6 | 1890.... 434.8 318.4] 735.9 269.4 216.3) 82.4 697.2) 534.9] 76.7 1891.. 461.6} 346.2} 75.0 314.9] 268.1} 85.1 776-5] 614.3) 79.1 1892.... 552.0 456.2} 82.6 297-9 251.5] 84.5 849.9] 707.9} 83.3 1893... 4od.1 299.0] 73.9 287.4 270.4) g4.1 699.5] 569.4) §a.9 1894... 405.6} 299.1] 73.7 251.9| 239.0] 94.9 657.5] 538.1] 81.8 1895... 393.4) 289.5) 73.6 497.5) 439.7] 88.4 890.9] 729.2) 81.8 1896.... 4g7.9| 3881.6) 76.6 275.61 959.4] 91.6 773-5] 634.0] 82.0 1897.... 434.8) 350.0] 80.5 320.6) 90.7} 90.7 795.4] 640.7] 84.8 1898.... 393.3} 304.3) 77.4 286.7] 251.6) 87.8 680.0] 555.9) 81.8 1899.... 478.5 391.0] 81.9 398.9] 348.7] 87.6 876.7] 739.7| 83.4 Toraux. . | 14577.5| 11726.6 " 11717.g} 10207.8 Y 26295.4] 21934.4 a Movennes. hha.) 355.4} 80.5 355.1 309.3! 87.4 796.8] 664.5] 83.4 “) Voir a Ja fin Je tracé graphique. ——+0( 23 ees sonbiyqdes8 goed} a] Uy ef e AIOA (1) *(aagrjue aguue) xnVLOJ, +++ (puae—aou) xnVLoy, * (aaqoj90-teul) xAVLOJ, +++ +-aaqumas9q ++ 5s +-aquiasoyy ree +auqon99 tees sauquieydag teteees smoy verses gaqing teee sees curny Peete eee ee cee s cron teers tAy teens ee egunpe trees sana foots gataues ES Ee a Sep ES eS L-y99 | g96L 9°18 6-gtg | grgeh g'48 giseL | wscg 9°§8 yegg | orogl Lg g'6og | Face reg | gthle | gyre o-Lg Lysg | gle 6°98 grace | ogle 7°98 rece | Atyy ork ge | seuy 66g rg6g | 6-6Ly 61g g'9sg | osoy 6°98 Lrg rl 7°06 9°44 stg €798 gro arg 0°98 glg gol gg 3°85 tLg 56g 9°87 s'7g o-Lg 1°99 org o-Lg gt9 grok &°E8 gh €°88 L-og grgh 6-6 0°98 070g o-g6 976g L-yg wg 3°08 G94 9°69 o-gl BIG 9°69 G'eg G°gg 6-oL Lrg 36g eel 798 egg €°99 tyh gtg 9°69 e438 6-19 wel 0°98 W9Y Greg ggh reg 10g 6-cL 0°09 o°6L 0°sg enh 9°06 GLb 6G gol 6-6L 6-69 Lgl gl g'Lg ygl g'tg wll o-g6 Eg Leg 9°79 ggh T9y | «G°8G 6-9b yey | 06g Log ogy =| orlg g°6L thy = | 76g Ling ogy Ligg 6-6L oy 6'0G 7°88 GGG greg L173 6gy 6-ge¢ wlg | geg | Fog reg | sly | ores gs =| Greg | gba egg | gag | wlg 16g rqy 90g 18g Boy 6-Ly ¢4g g°ey BOG 26 gy 9°84 glg Bey g"by 366 9°87 by ag 9g Bey “$7 6-6y e6g “eayy ge sougprae | “any pput “uy i “aay Su torr | “wry “curr smear | “ype “slog SOT] “atjranoat “aT [lensed “stoq 310q aT [[aNIa.L “orpfranoat “sioq S10] sat] pansar “aTf[Iansal "slog s10 “alflonde. “OTE eNIaI “OIL [IF OOF nea,p nea,p *OUTPIIU OOF neap nea.p UIT OOF nea,p neva p “OOTP OOF nea,p nea p ap omley a 4 outer Uy op eOUey uy owey eX op awe eB] ome] Uy op auley Ut arLek] Ut ayngo aan & ap ap anqs aun B ap ap any wun & ap ap ayn aun gy ap ap juepuodsossos | auuadom. | ausatour | yuepuodsassos | auuodom | auuatour | quepuodsesios | eauafom nad qjuepuodsagioa Fy RX WAgLOAVo wngssl¥dg Ungssivda unaLave UnaSl¥de aqnassivda UogTLAVH unassivad wagsslyds UNaLARH Waassiyda wnassivda i a ee ee | + - a af “siuad snos “SIod SUOH "sIog snos “S100 SUOH *SI0d Snos “SIOM SYOH *s1oa snos “SIOd SUOH “668T-LOSE “6681-6881 “S88T-8L8T “LL8I-LOST “Ww SIOG SQOS LA SIOM SUOH SHYLANOTANId SAM SNAAOW SIANSNAN SIAMTAN “ONIVINOGATIAG ag NOILV.LG —-_ ‘oO AVATAY J, ‘SION —-+»( 24 )es-— On voit qu’a Bellefontaine I'action des cimes est plus sensible qu’aux Cing-Tran- chées; la pluie se trouve interceptée, année moyenne, dans la proportion de 16,6 p. 100 au lieu de 7,6 p. 100. Ceci tient sans doule A I'épaisseur plus grande du couvert, mais certainement aussi au défaut de précision des observations. Toutefois, en dépit de ces critiques, les résultats obtenus concordent avec ceux de la premiere station. : On remarque la méme diflérence dans |’arrosement du sol forestier suivant les sai- sons; il regoit en hiver 87,1 p. 100 de l'eau tombée de l’atmosphere et 80,5 p. 100 seulement pendant I’été. De méme, on constate que la fraction retenue par les branches, qui est assez faible et 4 peu prés constante de novembre A mars, augmente Iégérement en avril, puis trés notablement en mai. Au mois de juin a lieu une faible diminution, commencement d'une décroissance qui, interrompue en juillet-aodt par un relevement plus ou moins sensible, s'accentue jusqu’a la fin d’octobre. Z Sans qu'il y ait liew d’attribuer aux recherches poursuivies_4 Bellefontaine plus. “ Vimportance qu’elles n’en méritent, il faut pourtant reconnailre qu’elles n’ont pas été Tnutiles; on leur doit une confirmation, qui nest pas sans valeur, des observations faites aux Cing-Tranchées. Reste maintenant a tirer de toutes les données qui précédent les conclusions qu’elles comportent relativement 4 l’alimentation des sources. La question a résoudre est la suivante : le sol abrilé par la forét est-il mieux arrosé que celui de la région agricole ? Pour savoir & quoi s’en tenir, i] suffit de comparer les indications des pluviométres installés sous bois aux Cing-Tranchées et a Bellefontaine avec celles de Tinstru- ment établi 4 Amance-la-Bouzule. Le tableau qui suit donne 4 cette fin, et sépa- rément pour l’été, Thiver ect lannée entiére, les résultats des observations pour loute la période qu’elles embrassent. Tasteau P.— Comparaison ENTRE LES QUANTITES D'EAU PLUVIALE PARVENANT AU SOL DANS UNE REGION AGRICOLE D UNE PART ET, D AUTRE PART, EN FORET, A LABRI DU massiF), TAIT SRR ES MAI-OCTOBRE. NOVEMBRE-AVRIL. ANNEE ENTIERE. ee ree ANNGES. [LES ciNO-| BELLE- | amance- | LES GING-] BELLE-| ygancg-| LES CINO- | BELLE- | ayance- TRANCHERS| FONTAINE| 4 | TRANCHGES|FONTAINE] 1, | TRANCHSES| FONTAINE] — 54 (eee | Ge Journ. | (| 0% foocanne.) (ie | G8, | sours millim. millim. | millim. millira, | millim. | millim. millim. millim. millim. 1867.....| 340.0 | 261.0 | 315.0 | 528.0 | 414.0] 547.0 | 868.0 | 675.0 | 862.0 1868..... 290.0 | 228.0 | 978.0 | 413.0 } 331.0| 353.0 | 703.0 | 5hg.0 | 631.0 1869..... 395.0 | 293.0 | 303.0 | 334.0 | 976.0] 325.0] 729.0 | 569.0 | 628.0 1870..... 332.0 | 347.0 | 332.0 | 910.0 | 188.0] 186.0] 5he.o | 535.0 | 518.0 1871.0 6.. 389.0 | 369.0 | 365.0 272.0 | 266.0] 260.0] 661.0 | 35.0 | 625.0 1872 seco 390.1 | 358.0 | 347.1 ho3.9 | 405.0] 369.9 | 794.0 | 763.0 | 717.0 1873..... 403.9 339.0 391.3 270.2 | 274.6] 249.7 | 674.1 | 613.6 | 639.0 1874..... 341.7 | 266.4 | 308.9 | 319.0 | 253.6] 237.0 | 660.7 | 520.0 | 545.9 1875..... 578.0 | Aha | 351.4 329.7 | 314.1 | 246.1 | 907.7 | 756.5 597-2 . 1876..... 334.6 | 331.4 | 2967.6 hae.o | 396.5) 402.3 } 756.6 | 727.9 669.9 1877..... 353.1 | 356.1 | 399.9 418.0 | 466.1 | holy | 771.1 | S222 746.9 Voir a Ja fin le tracé graphique. —+»( 25 )es— SS II ET ES SN MAI-OCTOBRE. NOVEMBRE-AVRIL. ANNKEE ENTIERE. : : ne |r ANNGES. | EBS GINO-| BELLE- | ayancu- | LBS CINQ-| BELLE- | syance- | LES clNO-| BELLE- ) ayancE- TRANCHEES| FONTAINE| 5, |TRANCHEES|FONTAINE] 1, |TRANCHEES| FONTAINE] 4 fois), | bos). | Bovz0me: | fetes. | feiy, |rovzone) (ois | GE | nouzune. millim, nillim. millim, millim, | millim. | millim. millim, | millim. millim. Ii 1878..... 481.8} 4ga.4) 497.3] 401.7] 378.4] 348.5] 883.5) 870.8) 8325.8 1879..... 473.4) 437.1) 458.8} 407.9] 402.6) 268.1 881.3} 839.7] 726.9 1880..... 453.3] 395.4) 371.8) 399.2} 347.8) 307.1 845.5, 743.2] 678.9 1881..... 321.8} 347.9) 269.8} 312.3) 280.7] 344.5] 634.1} 628.6) 514.3 4882..... 487.1] 4hg.g) 490.3} 393.6] 363.1} 332.3] 880.7) 8138.0] 822.6 1883..... 469.5] 493.9} 4a8.g]) 353.1) 335.0] a5a.0] 822.6] 829.1 680.9 1884..... 287.3} 2902.0] 301.8| 350.6] 991.2} 258.5] 637.9] 493.2} 559.7 1885..... 534.0} 403.0] 417.0] 4a2.o} 313.7} 346.0] 956.2] 716.7] 763.0 1886..... 458.5) 405.0} 411.6} 498.7) 341.4] 326.4] 887.2] 746.4) 738.0 1887..... 4e1.0o] 380.1) 324.5) 306.7] 259.3] 259.5] 727.7] 582.4] 597.0 4888..... 595.1] 4a1.4) 470.5} 403.3) 266.4) 253.1 998.4] 687.8) 723.6 1889..... 4gg.8) 321.9) 331.0] 333.0] 9291.5) 931.0] 829.8) 543.4] 582.0 1890..... 467.1] 318.4) 394.7] 360.8) 916.3) 234.5] 847.9] 534.7) 629.2 1891..... 54o.1] 346.0} 406.3) 371.8] 268.1] 265.9] gt1.9] 614.3) 6472.9 1892..... 576.0} 456.2) 440.5 389.3} 251.7] 192.6 965.3] 707.9] 635.1 1893..... ‘| 333.1] 299.0] 295.7} 340.6) 270.4] 209.7] 673.7] 569.4) 505.4 1894..... 4h7.6} 299.1] 321.4 284.9] 939.0] 911.1 732.0) 538.1 532.5 1895..... 393.5] 989.5) 319.5) 543.9) 439.7) 461.6) 937.4) 729.2] 674.1 1896..... 4a7.9| 381.6} 445.8 271.1] 259.4) 2915.7 699.0} 634.0] 661.5 1897..... 372.1] 350.0) 378.5] 998.0] 990.7] 191.8] 670.1] 640.7] 570.3 1898..... 306.0] 304.3] 309.7] 259.6) 251.6] 174.4] 565.6) 555.9) 484.1 Toraux. ..| 13493.6) 11335.6] 11661.0| 11534.9] 9859.1] 9076.0] 25028.5| 91194.7| 20737.0 ‘Movennzs. . 4o1.7| 354.9) 364.4] 360.4) 308.1) 283.6] 782.1] 662.3; 648.0 L’examen des chiffres montre que le terrain de la forét de Haye, au centre du! massif, est toujours mieux arrosé que celui des plaines voisines. La différence est sur-| tout sensible Vhiver; elle s'atténue l’été par suite de la présence des feuilles. Année | moyenne on ne recueille 4 Amance-la-Bouzule que 82,9 p. 100 de la quantité d’eau |, pluviale recue sous bois aux Cing-Tranchées, 1a proportion étant de 86,4 p. 100 pour les mois de mai a octobre et de 78,7 p. 100 seulement pour ceux de septembre a avril. Si on fait la comparaison entre Jes relevés de 1a station agricole et ceux de Belle- |, fontaine, on obtient respectivement, au lieu des rapports précédents, ceux de 97,8 — 102,9 — 92,5 p. 100. Ces constatations concordent avec les précédentes, tout en étant moins nettes, ce qui est naturel, les observations ayant été faites non plus au milieu, mais sur la lisiére de la forét. Le terrain occupé par de grands massifs feuillus est donc mieux arrosé, en hiver surtout, que le sol nu des régions voisines non boisées; lalimentation des nappes sou- terraines n’est par conséquent nullement compromise, au contraire, par le couvert des foréts. Telle est 1a conclusion qui se dégage, avec évidence, de ces recherches pour- suivies pendant trente-trois années. II]. — Mancne ve L’EVAPORATION HORS BOIS ET SOUS BOIS. Une fois arrivée jusqu’au sol, l'eau pluviale ou bien s’infiltre dans ses profondeurs, on bien retourne dans atmosphere a l'état de vapeur. Si on arrive 4 déterminer la —+>( 26 )er~- fraction qui s’*évapore, on connaitra par 14 méme celle qui alimente les nappes souter- raines et les sources. De 14 les recherches entreprises a ce sujet. L'évaporation se produit d’ailleurs de deux maniéres : soit directement, soit par Vintermédiaire des plantes en verlu de leur transpiration. Comment connaitre la quantité d’eau absorbée par les racines d'un massif forestier? Le probléme est complexe et difficile, et, en dépit des travaux de von Hobnel, Th. Hartig, Risler et autres, est encore loin d’étre résolu aujourd’hui. C'est dire quien 1866 on ne tenla pas encore d’en aborder l'étude, et les observations com- mencées alors aux environs de Nancy n'ont visé que l’évaporation directe ou physique. «Réduite & ces termes, Ja question reste encore pleine de difficultés. Comment, en effet, déterminer la quantité d’eau que perdent 4 chaque instant, hors bois et sous bois, non pas des lots isolés de terre, mais des sols en place, tels qu’ils doivent étre étudiés? Cependant, comme il s’agit ici bien moins de déterminer une quantité absolue qu'une relation entre les volumes de I’eau évaporée 4 Yair libre et sous le couvert de fa forét, il a paru que des atmidométres enfoncds dans le sol, de mémes dimensions, exactement comparables enfin, donneraient une solution satisfaisante du probléme!.» Deux bassins d’évaporation furent donc installés, 4 Bellefontaine, 4 cdté des pluvio- métres destinés aux observations précédemment rapportées concernant la quantité d'eau pluviale interceptée par le couvert des arbres. L’un se trouvait done au milieu d'un terrain non boisé, l'autre sous un massif assez touffu de charmes, hétres et frénes, dgé de soixante ans au début des recherches. Ces bassins consistent en une caisse parfaitement étanche, en chéne garni de zinc, de forme carrée, mesurant 1 m. 50 de cété et 4o centimétres de profondeur. Elle est enfoncée dans le sol et reposé sur un massif de maconnerie. Pendant toute la durée des observations qui ont été poursuivies de 1867 a 1899, les atmidométres ont été remplis d'eau, le premicr de chaque mois, sur une profondeur de 30 centimetres. Les variations qui se produisaient dans le niveau du liquide, soit par évaporation, soit par la chute de la pluie, variations rendues sensibles par le déplacement d’un index le long d’une échelle graduée, ont fait lobjet de mesures quoti- diennes. Les pluviométres voisins des bassins permettaient en méme temps de con- naltre Pépaisseur de la tame d’cau recue de l’atmosphére®), Les relevés mensuels fournis respectivement par chacun des almidométres pendant les deux périodes 1867-1877 et 1878-1888 ont figuré dans les précédents comptes rendus. On exposera donc ici seulement ceux qui concernent les onze derniéres années. “) M. Mathieu. Rapport de 1848, page 18 ® On pourrait objecter, fait remarquer M. Mathieu, que !’épaisseur de la couche d'eau évaporée varie avec Pinstrument qu’on emploie. On ne saurait denc conclure des indications d’un atmidométre Tépais- senr de Ja Jame qui s’évapore & Ja surface d’un volume d'eau trés considérable (lac ou élang). Mais il ne s'agit pas ici de rechercher une valeur absolue, mais une relation entre l’évaporalion hors bois et I'éva~ poration sous bois. Pour y parvenir, il suffit que, sauf la différence qui résulte de I’état boisé ou dénudé du sol, toutes Jes autres circonslances soient égales et notamment que les deux bassins d’évaporation soient semblables entre eux et semblablement installés. Cette condition est complétement observée a Ja station de Bellefontaine. (Mathieu, loc. cit.) —+( 27 jees-— “sioq snos 6 mul g1Q Ja stoq ss0q aTelAnyd uva,p ¢ “PIIpIUNY,p gIN7US aye; JAVMMEZsUOD NuayUIEM ele sajuepuoge sainjd sap ‘stoq snos ayjnu gi & worjesode, *sagjad say aed sagigdae 279 70 suOTTeAIAsqo sat "hye pie -6g1-g6g1-a6gr-6gg1 soguue sop aiquivspp wp stout oy ynepuad ‘66gr 4a gGgr we sxem ap slow dy uepuad ‘sepuue soy sayncy ap aatiagy yo aalamel op syour say yuepuag — “saloy ‘wu gol ‘ue aed ‘auuatow ua gquroy jsa pt ‘ 66gr- gst aporgd BL Juepoag 82 F* 96gF a2qo}90 ths g'ytt |s-Boy | G-ogst | o-tgtg |6-garieegy re igs Jygs |o-gs oy {org tyy RLQ igre leete ya lees | g'6g [TOs 19°9 5-65 6g |ely JLL6 | rgrg [6g [ely yor |96g | Gert logo job [65g G-gt jé-gg {great |g-gl6 o-sg lgryge sor |eLl | ger +643 oor | 1°69 rer [ging | 664 |grorL |o-gt lg-eg os [9°6g | ye |eGgg jorys tee gy? jegs | yrogt | 6-gog “OO |e | swe | oo | |smu g = 2 2 i ee |e) eB Pele 8;/8/8 | 3/8]8 al e |F 1) & |— ee, ae | ey “SAXNTAOW ‘XOVLOL “6681 ‘(669 1-G6QQr) stom snOs Lo SIOM SUOM SYALIS NOILYUOMVATA SNISSVA SAT UVd SINUNOA STSASNAW SHATTDY 5g leogn | S08 [tec | Gg°Gg [L-gey | 6-Lrs|s-grg| tert) t-oge | gragt|s-gog | yGgr|6-cog | g-gttjo-Gyy | 6:6 |y Loy | ore rig-6yy | ++ +-xavZoy, rl ale eee rae ce leone ke Neccaceaigh ae. ig ley low lee lee dot lee lee leg foe lee Tete (ee fignm lege fee lave (tig led | arguing ot |ygt fery [Lse [oro tyros |g-or |svog fery [6-21 |g fu-Gr og L-6r legs iorse [yrs forse [leg je-os | +*++++ asqowg og [rye og |L-gy lors [6-65 |grgs loryd lors le-sg |grer lyray {are |ov6e Jes le-ys [org [L-yy foror [g-Ly | +++ -arquindag ee j9°69 [arse [egg | g6 |rgg jorst jgroL Jog |y'gy |t-gt ley |ovgt leg log [8°69 |e-g |grog [gcge |o-6L | ot+-- +> --Moy ge j4gl Jorg |9'96 [gg |r-6g [gcse [ovo jorsr [Lg |a-gr jg-og [oy [rGg jgry lage [Ly jg-og |yge jyoh for + ++ aainor ors [LL |qgl forgh jog |r-gh jorL |yrog |ery jorLg |gres [sro |6-Le lt-yg jorgt jL-gh ject [G-yg Jo-L |6-sL [-+r++ ++: -orne get lesy |oLe Iggy |orse fevsg ferge [etl |6-yt jgog bess [L-gg |g-Le js-gg [Let grog [yrds jo-sg [gt jong foots EW oor jerey [gt le-6g [ger ig-gg | 6-gs |rge |ygs jogg joey foyyt|gres jgrde Jags levy ergs |rgy [oye |g'6g | oss + +++ pay orLs jogs |a79 jorys |gryr |g-og « |g6s [Lon [ergs [96g [ozs [L-sy [gorse |g-os | yrs Igyg [gg [pgs | °° --- Soe saeyy ' he ; ‘ : 4° |peeaaey oe ‘ ia p .| ee aatauep "mo | ‘aime | Oro js mur | soled |* mo | suo + oro | Sco yoo | sor eo | so | ots | so | | st js | Sw |} o CSS | el el ele sts | Ss) s els sie] sls ies |e @ a | 2 a | @ zs | “ais a | & a | a | 2 a |B “a! 9 wm “SION a ae "8681 “LOSE “9681 "c68t “7681 ‘SSE ‘cost “16st “0681 “6881 “ANIVINOSATING 3a NOWLYLG — QO Ava1avy —+2-( 28 )-e+— Il est facile de constater que, conformément aux prévisions, l'évaporation a été beau- coup moins intense en forét qu’en terrain découvert. Le rapport entre les quantités d’eau perdues par chacun des bassins est d’ailleurs variable d’un mois a l'autre. Le tableau ci-aprés permettra de se rendre bien compte de la marche différente du phé- noméne hors bois et sous bois; il donne, en effet, d’abord pour trois périodes égales et successives de onze années, puis pour la durée tout entire des observations, les relevés mensuels moyens des deux atmidométres. —+e( 29 \eea-— conbrydes8 goes] 9] Uy ef B ATOA (1) - *sastogad yaat0s _ sauuafour sey anb snod stour sao quepuad sagja¥ say sed sondmousaqur yuaanos doy 919 yaya we JUO SMONeAIasgO sar] “aIquIaD9p ya JoLtagy ‘sarauef anod onbrput 4sa,a asgigo UNONY : sNoiLvAUasEQ - BEET ely L-99y Gert Bee Lroyt | gregy gre reyget S787 “canyon ‘slog snos ya slog si0q aguodeap nea.p Suldey sap SYOLAVA 687 agua Luoddvu a g°6 gts ony esl L-o6 L-tg LoL greg. a a a “ “GUTOR “mutT *sioq snos | ‘stoq sao a ene el eel apgtodvag » AVE ANVT YI Id ANNIAON UNILOVA “ony| [yea “slog snos 4a stoq suoq aguodeag Neva,p sewer sap SMOSLAVH S97 adja Luddd va a“ 0g g°Es why 9°69 Lg ell 9°79 g'6¢ 1°Qs& “" “ “a “ *OOTTTLOL “CONT TYOL *stoq snos *sloq 8104 a aguodeap OVa.d INVI VI ad JNNGAOW UNILAVA *6681-L981 a Let GEG Tey 36¢ 97°g bey Gog gst 16'r a " “ayy ya “stog, snos jo stoq s10y agrodeag nea,.p sovuey sop SUOSLAYA SIT aaqua LUOdd Vy a 4a eg~ | 68 6-3 los Lot ty ¢°69 L:06 6-18 web wht g'9t t6r ys 6 gos | 897 get Lge a“ a a “ roy] stunyyrat ‘slog snos | "stoq sioy ee apuoduag AVE ENVT V1 aa ANNAAOW UNGLAVA "6681-6881 eee eel “B881-8281 u“ “a a BG git 78 Gog orgt Sty Los tgh g'6r L-66 G°gt 0°98 6-y6 ory gle | ggg 6-gt ele 4 4 Eos ne Lie a a “vary AL] [FOr “oOryT ‘slog snos ya stoq si0y agaodeag nea,p sure] sop apaodeag SHASLAVE saT aaqua LWOdd va “slog snos | ‘stog sioy ee AVS. INVT V1 2d ANNGAOW YNALAVY ee _ “LL8T-LO8T “wD NOLLVUOdVAG.G SNISSVA SAC SNXIAON STANSNAN STAATAN “AUNIVINOATTITIC AG NOILVLIQ -— “Y OVaLIY J, ***xQVLOT, *aaqna29q * QA UIBAO NT ++ +a2qoyQ) * aaquiaydag sees Noy +++ goymp +s eume tees re “Tuy +) sueRy + roTdAg +s rorAgese —+0( 39 )14+— On voit que durant le semestre d’hiver, au moins pendant les mois de novembre, mars et avril, pour lesquels on posstde des données suffisantes, le bassin établi en terrain découvert a toujours perdu 4 peu prés deux fois autant d’eau que autre. L’abri d'un massif dépouillé de sa. verdure a done pour effet de diminuer de moitié l’intensité de Pévaporation. En été, 1a différence est bien plus sensible, 4 cause de 1a présence des feuilles: elle est d’ailleurs variable et d’autant plus forte que Ja température est plus élevée. Le rapport entre les relevés des atmidométres hors bois et sous bois est égal 4 3 en mai, A 5 en juin, juillet, aout, 4 4 en septembre et a 3 en octobre. Ces variations tiennent aux différences que présente, pendant la saison chaude, la marche de I’évaporation en plein champ et en forét. Dans le premier cas, le phénoméne dépend surtout de la radiation solaire; la quan- tilé d’eau qui retourne a l'atmosphére croit done rapidement jusqu'au mois le plus chaud et diminue ensuile régulierement. Sous le massif, au contraire, Vinfluence du couvert contraric celle de la chaleur, aussi Vintensité de I’évaporation dépend-elle de la résultante de ces actions opposées. Elle est plus faible en juin, oi Jes feuilles sont complétement développées, qu’en mai ou elles sortent du bourgeon; augmente ensuite en méme temps que la température jusqu’en juillet-aodt pour décroitre avec elle pendant Pautomne"), Quelle conclusion tirer maintenant de ces observations relalivement au résime des sources ? Il est malheureusement impossible d’en formuler aucune avec précision. On a bien démontré que les terres évaporent 4 peu prés autant qu'une nappe d'eau, quand elles sont saturées, mais ce cas est exceplionnel. L’intérét principal des recherches réside done dans ce qu’elles altestent la résistance qu’opposent au desséchement du , 801 les cimes feuillées des foréts. Il semble logique d’en déduire qu’elles favorisent, ‘par celle raison, Valimentation des sources; mais 1a chose n’est vraie — il imporle de bien le remarquer — que si on considére uniquement Vinfluence des massifs boisés sur évaporation physique, la seule dont on se soit occupé dans les observations. CONCLUSIONS GENERALES. Plusieurs faits intéressants se dégagent des recherches relatives a !'action des foréts sur le régime des sources, recherches entreprises, il y a trente-trois années, par M. Mathieu, sous-directeur de l'Ecole forestitre. Exposés pour la premiére fois par Jui- méme, en 1878, ils ont été confirmés depuis, tant par les observations ullérieures faites aux environs de Nancy que par celles effectuées sur d'autres points, en France ou 4 V'étranger ; ils sont aujourd'hui bien établis el universellement reconnus. Ces faits sont les suivants : OO a 1° La pluie est plus abondante dans une région boisée que dans une contrée agricole: | I convient d'ailleurs de noter, comme I'a fait remarquer M. Bartet dans son rapport de 1889 (p- 14), que, si telle est la loi générale qui découle des moyennes, il s'en faut de beaucoup que Jes choses se passent toujours ainsi dans la réalité. 11 n’y a pas d’année oit il n’y ait une ou plusieurs exceptions dues soit aux vicissitudes du climat, soil a la précocilé plus ou moins grande de la végélation. On sait daillenrs combien de causes influent sur Vintensilé de l'évaporation : surlace de la nappe d'eau; pression almosphérique, agitation de l'air, etc. —+o( 31 jea— 2° La quantité d’cau inlerceptée par les cimes des arbres A feuilles caduques est relativement faible“, le sol des foréts feuillues est donc aussi bien arrosé, sinon plus, que celui des champs voisins; 3° Par contre, le couvert d'un massif protége le terrain contre l'influence assé- chante des rayons solaircs. Il semble donc qu'il soit maintenant permis d'aflirmer que les nappes souterraines sont mieux alimentées en pays boisé. C’est 1a conclusion finale qu’on croyait pouvoir formuler il y a vingt ans : il sied aujourd’hui d’étre plus réservé. On a cru en effet, jusqu’a une époque récente, qu'il n’y avait pas lieu de tenir comple, dans I’éiude de !a question, de I’évaporation qui se produit par l'intermédiaire des végétaux. On admettait, en se basant sur des considéralious théoriques, que le pouvoir exhalant des foréts élait inférieur ou tout au plus égal A celui des cultures agricoles. Or le contraire parait prouvé par les travaux effectués depuis quelques années. Dans ces conditions, il est actuellement impossible de se prononcer, il faut attendre pour cela qu’on ait des données précises sur les quantités d’eau absorbées par les arbres), Les observations dont il vient d’étre rendu compte n’ont done pas permis de recon- naitre exaclement quelle était Yinfluence des foréts sur le régime des sources; elles nen ont pas moins leur importance ct leur intérét. Si un point reste douteux, plu- sieurs résultats sont acquis, et l’honneur en revient 4 M. Mathieu : le premier, il a abordé l'étude du probleme, et, quelle que soit la solution, on lui devra toujours la détermination de ses premiers éléments. “) Pour jes résineux, il résulte, d’observations failes aux environs de Senlis, qu'un massif de pins sylvestres retient plus de fa moitié de l’eau qui lui est versée. Bien que a différence entre les quantités de pluie tombant sur une forét et sur la région agricole voisine soit encore plus accenluée quand il s‘agit le peuplements résineux, Je sol se trouve, en définitive, moins bien abreuvé a l'abri de ces derniers. Observations météorologiques faites de 1874 4 1878, par M. Fautrat, sous-inspecteur des Foréts. Imprimerie nationale, 1878. ) D’observations récentes failes en Amérique, il résulterait que les quantités totales d’eau évaporée (directement et par Vintermédiaire des plantes) sont les mémes pour les terrains bois¢s et non boisés, toutes choses égales d’ailleurs. Voir The state Geologist of New Jersey et Revue des Eaux et Foréts (15 f2- vrier 1901, p. 105). Compensation faite de la plus grande Sbondance des pluies et de l’eau qui intersepte le couvert des arbres dans les régions boisées, les nappes Sguterraines du sol seraient donc en fin de compte pareillement alimentées quel que soit l’état superficiel. By forét, les sources auraient seulement un débit plus régulier. Cacrtaktous at oa tte ‘Wei Sorel Wd rd is Impaimente nAtionate. — Juillet 1901. TABLEAU R._ STATION DE BELLEFONTAINE MARCHE DE L’ EVAPORATION HORS Bats ET SOUS BOIS mn 100 BOs ees eet tale ie : sire f if \ Lo ‘ vo \\ 80 L Z \, = _ é \ # \ i . / \ F 0 y ‘ - ‘ # \ / ‘ i \ / \ 60 of oN / / / i Ys \ 1 50 f \ : \ : \ / -Légende i \ 40 t Hors bois A. ie Gi \ S \ / Sous bois —___ X i \ t 4 30 Z \ 4 i A \ \ AY \ J. au \ 20 NY A * Leen || x P| \ % XN % 10 = s 0 Mai Juin Juillet Aott- -Septembre Octobre Novembre Décembre Janvier Ferrier Mars Avril QBGL Z6BI 96ST SGBL FORT SSBL ZEB TSR OGRT GBBT ESET ZBST BRI SBST SRL eT ceel TSB OBVT GBT LET ZZSL OZR SZ HSL SIGL 2LVL, TMT OLAT GIT a98l ZBI saguuy 0 ; 00% aynznog-ep-aruewy sue TUNE sagypuedy bury “a apuabaT 007 00¢ 009 00z 008 ooo Ware “F1NZN0A-V-AONYWY, 0 13 SNIVLNOISTI9S JC ‘SASHONVYI-ONID S30 SNOLLVLS S30 INNOWHO SNVG 10S AV SUNNSAUVd JTVIANTd AVS.G VALILNYNS S31 SYLNS NOSIVYYdWOD “dd NAWATAVL BERL RBG GGL” F681 SHS FER Sb ZORT LeRL OG G8EL BET ZT RAT SeeT FOL ERT ZB IST OwAT GLAL SLI ILM SLB GLB ¥Zel SLeT ZBI USI OLB sel BIBL Z98L “saoTy 0 oot 002 “anznogepawewy aurequoyajagq 008 segypuer] bury apuebaT 004 00s 009 00z 008 006 O00T 31NZN08-V1-AINVWY ¥ L3 INIVLNOIST139 v “Q3RHONVAL-ONID Xv ‘LUSAMOITG NIWYYAL NO“ LNSWITISNNNY Sanday nva.a SALILNYND ~*G NvaTaVL S681 ZEST IGRL SEV PERL 6ST ZERT T6k1 OGST BBR] VBBl ZBL aC SRT FL CRIT ZR WR O8BT GILL SLT ZZ91 9281 SIRT F191 SL91 ZLeT TLET OLB GIR FORT LIST soy 0 o0T 002 stoq snog poe sooner stag Sa0Hy apuabaT 00% oos 009 008 006 000 wu 310g SNOS ia SI0@ SYOH SAYLINOIANTd -SI7 Wd LNANZALLIAdSaY SANdaa NVa.O SALILNYNO SSAHINVUL-ONID Sad NOLLWIST IT nvalaytL NOILVAMESEO,€ SALSOd SHC INSWAIVIUNE-1 INVNOIGNI AONVN ‘3C SNOWIANA IW0d Ad SVIODIN iS Ka 35 SYFILSAYOS JAISOTOWOSLIN 30 SNOILVAYISaO GGT BERT LEST 968) S6RT FERL S68T ZERT Teel OGRT G88T BRL LB8T 988T GBBT PRCT EBBl ZBEC IBRL ORT GIST SLL LIVI O81 SLB FLI EZR ZLBE IZ8T OLRL GORT 898T I9¥T Soouuy q Oot oz sTOq sO oo StOg SIOL] a0¢ apuabay OOF 00S 009 008 006 OOO ww S108 SMOG LA SIOM SYOH SIYLIWOIANTd S27 Wd LNAWBAILO3GS9u Sanday AVEC SALILNVAO ANIVINOJ3TI99 30 NOLLVIS—"N nVaTS¥L TABLEAU K _ STATION DES CINQ-TRANCHEES HAUTEUR DE LA LAME D’EAU MENSUELLE RECUEILLIE SOUS BOIS POUR UNE CHUTE DE 100™m HORS BOiS. mm 0 as : oe 400 Abrs bois! 90 #0 etl 70 : 60 ae 50 40 alk ae Légende a5 161-1872, Alea e ee! 1878 ~ 1888 1889-1898 20 4 1867 - 1898 10 0 Janvier Ferrier Mars Avil Mai Jun Juillet -Aoiit Septembre Octobre Novembre Décembre TABLEAU 0. STATION DE BELLEFONTAINE HAUTEUR DE LA LAME D’EAU MENSUELLE RECUEILLIE SOUS BOIS POUR UNE CHUTE DE 100 ™/sn HORS BOIS mm. 10 = TORSNDOISE S020 4858 ININD on ot ACLU se Att eh MS 90 80 70 60 7 6 50 = 40 Légende 80 1867-1877 1878-1888 = 1889-1899. 20 WBG7-1B99 ee eassseesen 0 a] 0 Janvier Février Mars = Avril §= Mai_-—S Juin = Juillet. = Aoait’ Septembre Octobre Novembre Décembre REPEUPLEMENT DES RIVIERES EN MEURTHE-ET-MOSELLE SYSTEMES ADOPTES. — RESULTATS OBTENUS PAR R. DE DROUIN DE BOUVILLE GARDE GENERAL ATTACHE a LA STATION D'EXPERIENCES ET RECHERCHES DE L’ECOLE NATIONALE DES EAUX ET FORETS EXTRAIT BULLETIN DES SEANCES SOCIETE DES SCIENCES DE NANCY REUNION BIOLOGIQUE DE NANCY | Le Repeuplement des riviéres en Meurthe-et-Moselle. Sys- témes adoptés. Résultats obtenus, par M. Raoul pe Drouin pE Bouviizz, garde général attaché a la Station d’expériences et -recherches de I’Ecole nationale des Eaux et Foréts?. Il y a une cinquantaine d’années, l’apétre de Ja pisciculture en France, le professeur Coste, annoncait qu’une époque viendrait ou Phomme sémerait le poisson dans Jes cours d’eau comme il jette le blé aux sillons. Cette prophétie s’est aujourd’hui réalisée. Depuis plusieurs années, en effet, on s’est préoccupé sérieuse- ment de porter reméde a la dépopulation des riviéres, de nom- breux essais ont été tentés pour leur rendre leur richesse d’antan. Le moment semble donc venu d’examiner les résultats obtenus pour en tirer quelques conclusions sur la valeur des procédés em- ployés. Le département de Meurthe-et-Moselle est un de ceux ot les tentatives de repeuplement ont eu le plus d’importance. L’opinion publique n’y est pas restée indifférente 4 la diminution constante du poisson, a la disparition presque complete de l’écrevisse. Aussi 1, Communication faite a la Société des sciences le 17 mai 1991. —_— 2— des subventions furent-elles accordées sans difficultés par le Con- seil général 4 l’administration des ponts et chaussées d’abord, et ensuite 4 celle des eaux et foréts, pour la remise en valeur des cours d'eau. De leur cété, les pécheurs 4 la ligne, réunis en sociétés, ont procédé avec persévérance a l’empoissonnement des lots de péche dont ils étaient adjudicataires. Les particuliers et les agents de l’Etat rivalisant ainsi de zéle pour l’aquiculture, des efforts sérieux ont été faits dont il paraitra sans doute intéressant de donner un compte rendu rapide, en fai- sant connaitre les succés qu’ils ont eus. Ce sera I’objet de Ja pré- sente communication. Les renseignements nécessaires ont été pris 4 bonne source : la plupart ont été fournis par une enquéte que M. Lamblé, conser- vateur des eaux et foréts, et M. Thoux, ingénieur en chef des ponts et chaussées, ont bien voulu, avec la plus grande amabilité, faire entreprendre par le personnel chargé de la surveillance dela péche. D’autres sont dus aux présidents des sociétés de pécheurs a la ligne, et notamment 4 MM. Florentin (de Toul), Rousselot (de Lunéville) et Chatton (de Baccarat). Les méthodes de repeuplement étant trés différentes suivant les espéces dont on a en vue la propagation, nous passerons suc- cessivement en revue les tentatives faites en ce qui concerne : les poissons migrateurs, la truite, les poissons d’été et l’écrevisse. Poissons migrateurs. Le saumon remontait autrefois la Moselle et venait frayer dans les petits ruisseaux des Vosges ; il y a une vingtaine d’années, il était devenu trés rare; on ne le rencontre plus aujourd’hui que tout 4 fait exceptionnellement. Les échelles 4 poissons ne font cependant pas défaut; depuis une vingtaine d’années, tous les barrages de quelque importance en sont munis, méme ceux des sections canalisées, qui n’en com- portent pourtant pas. Ces derniers sont en effet des barrages mo- biles dont les fermettes sont d’ordinaire couchées, ou tout au moins désaiguillées en partie, 4 ’époque des hautes eaux qui est celle de la remonte. Aucun résultat n’a été remarqué, bien qu’il n’y ait plus, depuis longtemps, aucun obstacle a la circulation des poissons migrateurs. nn L’insuccés s’explique toutefvis si on admet que le saumon re- tourne frayer aux lieux mémes oi il est né. Il conviendrait donc, pour que cette espéce fréquentat de nouveau les eaux lorraines, de faire des déversements d’alevins a la partie supérieure des riviéres. Ces sujets y reviendront déposer leurs ceufs, si tant est qu’en effectuant leurs migrations, ils échappent aux engins des- tructeurs de pécheurs de nationalités différentes, peu enckins a laisser un poisson aller se faire prendre chez le peuple voisin. Avant d’en finir avec le saumon, signalons un essai d’acclima- tation du saumon de Californie dans la Meurthe, qui a eu lieu, il y a quelques années, sans aucun succés d’ailleurs.. L’alose et la lamproie sont inconnues en Lorraine, il ne reste donc plus, en ce qui concerne les poissons migrateurs, qu’a parler de l’anguille. Cette espéce parait moyennement répandue dans les cours d’eau et, vu sa voracité, on pouvait se demander s’il y avait inté- rét a la propager. L’administration des ponts et chaussées l’a pensé et depuis 1895 a fait déverser dans la Moselle, auprés de Toul, environ 145,000 petites anguilles recueillies 4 ’'embou- chure de la Somme. Le résultat obtenu a été satisfaisant et il est juste de reconnaitre que ces anguilles ne paraissent pas avoir prospéré au détriment des autres espéces. Truite. La truite ne se rencontre guére, en Meurthe-et-Moselle, que dans la partie nord du département et dans les ruisseaux de la chaine séparant la vallée de la Vezouse de celle de la Plaine. Sa diminution dans ces cours d’eau, son absence dans d’autres ou elle semblerait devoir se plaire, excitaient des plaintes et re- grets chez les pécheurs. Notons en passant que ceux-ci étaient souvent responsables de la situation. Sur nombre de points en effet, on signale comme cause de ta diminution de la truite et aussi de la perche et du brochet, la péche a la ligne a Vaide de cuillers ou poissons d’étain, et surtout en employant comme amorce la larve de Péphémére (dite « petite héte ») dent les espé- ces voraces sont extraordinairement friandes. Quelle que fit la raison de la dépopulation, on s’inquiéta d’y porter reméde dés que le Conseil général eut décidé de consacrer sei annuellement une certaine somme au repeuplement des cours d’eau, c’est-a-dire A partir de 1894. Jusque-la quelques déverse- ments d’alevins avaient bien été effectués par certains particuliers, mais sans résultat senstble. Une difficulté se présente toutes les fois qu’il s’agit d’introduire la truite dans un cours d’eau. Si les sujets employés sont trop jeunes, ils sont délicats, incapables de trouver leur nourriture et de fuir leurs ennemis; s’ils sont dgés d’un an, le prix auquel les livrent les établissements de pisciculture rend le repeuplement trés cofiteux. Pour obtenir ces derniers au meilleur compte possible, le sys- téme adopté en 1894 par le service hydraulique, et suivi depuis par celui des eaux et foréts, a consisté 4 essayer l’élevage d’ale- vins dans de petits bassins établis 4 peu de frais sur des ruisseaux & eau vive et froide. Il suffit, pour avoir une installation con- venable, de régulariser le lit sur une certaine longueur, et de placer en travers du courant, 4 chaque extrémité, des chassis avec griltage. Lorsque les truitelles ont la taille voulue, on cesse de les tenir prisonniéres, elles descendent au fil de ’eau et ’'empoisson- nement a lieu dans d’excellentes conditions. Quatre réservoirs de 50 4 100 métres carrés de surface ont été ainsi aménagés dans Ie département: Je premier par l’adminis- tration des ponts et chaussées, au moulin de la Caulre, prés Briey; les trois autres par celle des eaux et foréts. Ces derniers sont situés respectivement: prés de Longuyon, sur le ruisseau de la Machine ; aux environs de Baccarat, sur celui de la Forge Evrard ; enfin 4 la Boudouze, dans le voisinage de Cirey. Depuis plusieurs années un certain nombre d’alevins de 1 4 3 mois, soit de truite des ruisseaux, soit de truite arc-en-ciel, fournis par les établissements de pisciculture de la région (Her- serange, prés Longwy ; Wasperviller, prés Sarrebourg), ont été élevés dans ces réservoirs. Le résultat n’a malheureusement pas répondu aux espérances. Presque toujours la mortalité a été trés considérable '. L’insuccés, si c’en est un, n’est d’ailleurs que relatif. Dans les établissements de pisciculture ou on opére sur une grande échelle, 3. On n’a guere obtenu de résullats satisfaisants qu’a Longuyon, et encore une seule année. L’eau du ruisseau de la Machine ayant été capteée, il a falluen 1899 abandonner Vinstallation. rn eee FS ee les bassins sont parfaitement entretenus et constamment sur- veillés, les alevins recoivent tous les soins voulus, cependant le déchet dans la production des sujets d’un an est trés considérable, de la leur prix ', Il semble bien difficile que des élevages restreints, faits dans des conditions moins favorables, puissent donner des résultats meilleurs et plus économiques. Les sujets obtenus ont donc été peu nombreux, et les empois- sonnements ont eu par suite trop peu d’importance pour étre d’une efficacité trés grande. Il a été possible cependant de faire quelques remarques en ce qui concerne la truite are-en-ciel. Cette espéce ne parait pas se plaire dans les eaux probablement trop froides des ruisseaux de la partie sud-est du département. Par contre, autant qu’il a été possible d’en juger, elle a passable- ment réussi dans les cours d’eau de |’arrondissement de Briey, mais sa voracité est telle, et elle mord si bien’é Phamegon, que la plupart des individus mis a l’eau ont été capturés presque aussitét par les pécheurs. Les essais de repeuplement dont il vient d’étre rendu compte n’ont pas été les seuls, d’autres ont été effectués par les soins de Yadministration des ponts et chaussées, chargée encore aujour- d’bui du service de la péche sur la Moselle canalisée. Elle posséde depuis 1895, a Valcourt, un petit laboratoire de pisciculture. Celui-ci, d’abord trés modeste et alimenté par une faible source, a été transféré en 1899 4 ’usine hydraulique qui sert 4 |’alimen- tation du canal de la Marne au Rhin. L’établissement a continué d’ailleurs a étre des plus simples: quelques auges en bois, une vingtaine de bacs a éclosion, constituent tout le matériel. Cette installation sommaire et peu coteuse a cependant suffi, depuis qu’elle existe, pour réussir dans des conditions extrémement sa- tisfaisantes I’élevage d’environ 100,000 alevins. Les sujets obtenus ont été pour la plupart déversés dans la Moselle aux environs de Toul. Dans les cing derniéres années, on y a déposé a peu prés 40,000 truites arc-en-ciel de 3 46 mois, 25,000 truites des lacs de 3 4 g mois, 14,000 truites des ruisseaux 1. Le propziétaire de I’établissement de pisciculture de Wasperviller estime que sur 1,000 truites d’un mois mises dans les bassins d’élevage, il n’en retrouve guere que 150 au bout d’une année. * a: hs de 3 mois et enfin 14,000 truites saumonées dgées d’un mois et demi. On n’a pas remarqué, jusqu’ici, que ces empoissonnements aient produit grand effet: cependant les pécheurs ont certaine- ment repris quelques-uns des individus éclos 4 Valcourt, mais combien peu relativement au nombre de ceux qui ont été mis & Peau. En résumé, it faut reeonnaitre que, malgré importance des ten- tatives, malgré le dévouement et le soin de ceux qui y ont pré- sidé, on n’est pas encore arrivé aujourd’hui 4 un succes définitif et durable‘. La réussite viendra-t-elle avec le temps? La chose est possible et souhaitable... Conviendrait-il de procéder autre- ment qu’on ne Fa fait jusqu’ici? Peut-étre... En particulier, et quoi qu’on en ait dit, n’obtiendrait-on pas de bons résultats avee de tout jeunes alevins, méme encore pourvus de leur vésicule ombilicale? Vu leur prix peu élevé, il serait possible de procéder a des déversements abondants et répétés ; on arriverait probable- ment ainsi, malgré Je déchet trés grand sur lequel il faut compter, a assurer le repeuplement. I] semble enfin que ces sujets, habitués de bonne heure aux eatx ot ils doivent vivre, s’y acclimateront mieux que s’ils y avaient été introduits 4 un Age plus avaneé. Quoi qu'il en soit, ce qui importe, c’est de ne pas se décourager, et tant que le procédé de repeuplement efficace ne sera pas trouvé de le chercher par tous les moyens. La présence actuelle de la truite sur nombre de points, les renseignements qu’on posséde sur son abondance autrefois, sont la pour prouver que le pro- bléme est susceptible de solution. Poissons ad’ été. Les poissons d’été, carpes, tanches, gardons, etc., sont ceux qui offrent le plus d’intérét pour les pécheurs a la ligne. Aussi depuis que ces derniers, réunis en sociétés, exploitent certains lots de péche sur les cours d’eau du domaine public, la question de la propagation de ces espéces a pris la téte de l’ordre du jour. 1. Il convient cependant de signaler deux ruisseaux, celui de Chatillon, prés Cirey, et celui de Champigneulles, pres Nancy, ot la truite existe aujourd’hui en assez grande quantité, grace aux déversements d’alevins effectués respectivement par deux proprié- taires particuliers, M. le baron de Klopstein et M. Hinzelin. Il est vrai de dire que les conditions ott ils les ont entrepris étaient particuligrement favorables. ~_— 7 Seo Ce n’est pas que rien n’edt été fait auparavant. Quelques parti- culiers avaient effectué des déversements de carpillons ou de jeunes tanches dans les riviéres, mais ces tentatives isolées, d’ail- leurs de peu d’importance et discontinues, ne pouvaient avoir, et n’ont eu aucun résultat. De son cété le service hydraulique du département s’était préoccupé des mesures 4 prendre pour remé- dier 4 la diminution croissante du poisson d’été. En 1894, un étang d’alevinage fut aménagé prés du bassin de Parroy; mais les conditions n’étaient pas favorables, on dut l’abandonner peu aprés. Aucun effort sérieux ou utile en vue du repeuplement n’avait donc eu lieu antérieurement 4 1896. C’est 4 partir de ce moment qu’intervinrent les sociétés de pécheurs 4 la ligne, devenues adju- dicataires de certaines parties du cours de la Moselle, de la Meur- the et de la Vezouse. Ces sociétés sont au nombre de quatre. La plus ancienne est celle de Nancy qui existe depuis 1892; trois autres furent fondées 4 Baccarat, Lunéville et Toul en 1895-1896. Elles procédérent immédiatement al’empoissonnement de leurs lots, effectué au début a l’aide de jeunes carpes, tanches et per- ches achetées lors de la péche des étangs de la région’. Les résultats furent suffisamment satisfaisants pour étre encou- ragés par l’Etat au moyen d’une subvention, et par le départe- ment qui, depuis 1898, a loué un étanq uniquement destiné a la production de sujets de repeuplement. Cet étang, d’une contenance de 5 hectares, est situé 4 La Ga- renne, prés Haudonville. Sa gestion est confiée au service des eaux et foréts. Les résultats ont été trés satisfaisants, puisqu’on y a péché en novembre 1899, 40,000 alevins de carpe, carassin, tanche et per- che, pesant ensemble 1,075 kilogr. et année suivante 24,600 su- jets, mais plus forts que les premiers, puisque leur poids total était de 1,230 kilogr. Pendant ce temps les sociétés de pécheurs, dort les adhérents et les ressources s’accroissaient, ne restaient pas inactives. Celle de Lunéville louait 4 Einville un bassin pour l’élevage du gardon, 1. Bossupré, La Garenne, La Reine, Brin, Spincourt (Meuse), Gondrexange (Lor- raine annexée), elc. == 8 celle de Toul aménageait deux carpiéres 4 Valcourt et Pierre-la- Treiche, enfin celle de Nancy se rendait locataire, 4 Spincourt dans la Meuse, d’un étang de ro hectares pour y produire, dans les mémes conditions qu’a La Garenne, des alevins de poissons d’été. Il a été fait par suite depuis cing ans de trés importants déver- sements dans les principales riviéres du département, savoir : Dans la Mosellet . . 151,000 carpes, barbeaux et tanches. Dans la Meurthe2. . 83,000 carpes, carassins, tanches et gardons. Dans la Vezouse3 . 28,000 _ — Dans la Mortagne+. . 16,000 _ _ Dans le Madon‘+. . . 3,500 —_ _ Dans Je Sanon+. . . 4,000 — — Dans ’Euron4. . . 2,500 _ — Dans la Verdurette4. 5,000 — — Dans le Rupt-de-Mad4 — 2,000 — — Total. oi 295,000 2 Tous les renseignements regus sur ces repeuplements signalent unanimement leur parfaite réussite. Cependant sur la Vezouse et dans la Meurthe aux environs de Baccarat, les résultats n’ont pas été complétement satisfaisants. La cause en est attribuée a l’im- pureté de l’eau, souillée par des résidus d’usines, 4 la présence de loutres et enfin au braconnage. A cette exception prés, on remarque aujourd’hui, sur tous les points ot ont été faits des déversements, une augmentation no- table du poisson. Les carpes et les carassins, espéces rares ou 1. Les déversements ont été effectués par les soins de |’administration des ponts et chaussées, les frais étant partagés entre l’Etat, la Société des pécheurs & la ligne de Toul et quelques adjudicataires. Sur les 151,000 sujets 4 l’eau, 50,000 proviennent des carpiéres de Valcourt et Pierre-la-Treiche établies en 1899. Les barbeaux (15,000) ont été obtenus par féconda- tion artificielle. Get essai, tenté et réussi par M. Doudoux, conducteur subdivisionnaire des ponts et chaussées, n’a pu étre renouvelé depuis, par suite de difficultés ayant empéché la capture des reproducteurs. a. Une notable partie des alevins (26,000) vient de l’étang de La Garenn ; le réser- voir d’Einville a fourni 4,000 gardons. Les déversements ont été faits, moitié par les Scciétés de pécheurs A la ligne de Baccarat, Lunéville et Nancy, moitié par l’administration des eaux et foréts. 3. Les tentatives de repeuplement de la Vezouse sont ducs au service forestier, aux pécheurs de Lunéyville el & quelques adjudicataires. Les carpes, carassins ct tanches proviennent en majorité de I’étang de La Garenne, ct 2,000 gardons du rése: voir d’Einville. 4. Déversements effectués par l’administration des eaux et foréts, au moyen de suiets obtenus & I’étang de La Garenne, 3 inconnues autrefois dans les eaux lorraines ‘, s’y sont parfaitement acclimatés ; on en prend aujourd’hui de nombreux sujets de belles dimensions. Le gardon a prospéré également, et il y a tout lieu de penser qu’il en est de méme pour la tanche, bien qu’on soit moins fixé a ce sujet. Il est 4 remarquer que les empoissonnements ont eu surtout un effet local, c’est aux endroits mémes ou ils ont eu lieu qu’on constate une amélioration remarquable. Leur effet se fait géné- ralement encore quelque peu sentir en aval, pas du tout en amont. lly a la de quoi encourager pécheurs et adjudicataires, puisque c’est 4 celui qui a semé que revient la récolte. I] faut enfin noter que les espéces les plus employées pour le repeuplement, a savoir la carpe et le carassin, ne se reproduisent pas, ou du moins trés peu, dans les eaux trop froides des riviéres de Meurthe-et-Moselle. Il faut par suite répéter tous les ans, ou tout au moins fré- quemment les déversements d’alevins de ces espéces. Les eaux courantes comportent, en ce qui les concerne, une culture tout a fait analogue 4 celle des étangs. La propagation des poissons d’été peut donc se faire d’une ma- niére efficace et pratique. La méthode n’est d’ailleurs pas récente, mais il a fallu pour sa mise en pratique l’intervention des pécheurs qui trop longtemps sont restés indifférents ou ont tout attendu des pouvoirs publics. L’honneur des succés obtenus leur revient, mais il revient aussi surtout a ceux qui leur ont fait comprendre Yimportance qu’aurait une initiative de leur part, et la nécessité de s’unir pour aboutir. C’est en particulier 4 M. Bichat, doyen de la Faculté des sciences de Nancy et. conseiller général, qu’on doit étre reconnaissant de ce qui a été fait pour le repeuplement des cours d’eau en Meurthe-et-Moselle. Il y a longtemps -que M. Bichat s’est dévoué a celte cause, et il a tout lieu d’étre au- jourd’hui satisfait du résultat de ses persévérants efforts. Ecrevisses. La disparition de l’écrevisse en Lorraine est due a l’épidémie qui, il y a une vingtaine d’années, a sévi sur la plus grande partie de la France. Elle se déclara dans la région en 1876, et dés l’au- 1. La carpe a cependant toujours. été commune dans le Madon. tomne 1878 tous les cours d’eau, 4 quelques rares exceptions prés, étaient complétement dépeuplés. Les écrevisses étaient auparavant non seulement abondantes, mais de qualité renommée. Aussi, quand on fut certain que l’ex~ termination avait été radicale, et dés qu’on put espérer que la maladie avait cessé, on se préoccupa de faire des repeuplements. L’Etat y contribua tout d’abord, puis les frais furent uniquement supportés par le département. Les premiéres tentatives remontent 4 1880-1881, d’autres eurent lieu en 1887; enfin depuis 1892 des déversements ont eu lieu tous les ans, et ont été surtout importants a dater de 1898. Au total, il a été déposé depuis vingt ans, dans les cours d’eau de Meurthe-et-Moselle 75,000 écrevisses, dont 30,000 dans les riviéres navigables et flottables et 45,000 dans les autres. On a toujours employé des sujets adultes, de l’espéce a pattes rouges, ayant de 3 a 5 ans et de ro a 15 centimétres de longueur. Le nombre des femelles a généralement été double de celui des males. Toutes ces écrevisses, ou peu s’en faut, ont été achetées au commerce, et proviennent de Ja Pologne et de la Silésie. On a essayé, a plusieurs reprises, de se servir de celles de la région, mieux susceptibles, ce semble, de bien s’acclimater. Mais les pé- ches faites dans les rares cours d’eau ot la maladie n’a pas exercé ses ravages n’ont pas été fructueuses et on a dd y renoncer. Les déversements ont été effectués avec le plus grand soin, sur des fagots d’épines, dans les endroits ou se trouvent de grosses pierres, des racines, et, lorsque cela a été possible, sur les fonds calcaires et dans les parties réservées pour la reproduction. Les époques choisies ont été soit le printemps, soit |’automne. Quels sont actuellement les résultats obtenus ? Dans la Moselle. et dans la Meurthe, la réussite a été nulle; tout au plus a-t-on pu constater, par la reprise de quelques trés rares sujets, que I’épidémie avait pris fin. On a cessé d’ailleurs depuis 1887, de travailler au repeuplement des riviéres naviga- bles ou flottables, pour ne plus tenter que celui des petits cours d’eau, ou il y avait tout lieu d’espérer un meilleur succés. Celui-ci est malheureusement encore loin de répondre aux espérances. Sur certains points les écrevisses sont mortes en grand nombre, l’échec est avéré et sa cause connue :) fournilure défec- — If — tueuse, époque du déversement coincidant avec celle de la mue. Dans la plupart des cas, les sujets introduits ‘paraissent avoir ré- sisté, mais leur acclimatation n’a pas été compléte, puisque jus- qu’ici ils ne se sont pas reproduits. On a observé la présence de petites écrevisses, provenant cer- tainement de celles qui ont été déversées, dans trois riviéres seu- lement: la Verdurette, le Sanon et le Rupt-de-Mad. On ne peut d’ailleurs discerner les causes de ce résultat relativement satis- faisant ou plutdt celles de l’insuccés éprouvé sur les autres cours d’eau. L’insuccés des repeuplements récents est-il d’ailleurs absolu ? Il serait prématuré de l’affirmer, car vu la lenteur du développe- ment des crustacés, on ne pourra étre fixé définitivement a ce sujet que dans quelques années. Une chose malheureusement sire, c’est que les déversements antérieurs 4 1897, déversements effectués dans les mémes conditions que ceux qui ont eu lieu de- puis, n’ont amené aucun résultat. Il convient cependant de continuer les tentatives. D’abord les constatations faites dans la Verdurette, le Sanon et le Rupt-de- Mad sont encourageantes, puis il parait certain qu’il n’y a pas A compter sur la propagation naturelle de l’écrevisse. Depuis vingt ans sa péche est interdite en Meurthe-et-Moselle ; or, si elle s’est maintenue dans les cours d’eau ot l’épidémie n’a pas sévi, elle ne s’y est pas multipliée comme on aurait pu le croire, et en tous cas ne s'est pas répandue hors des limites ou elle s’est trouvée can- tonnée en 1878. Il importe donc d’intervenir et, faute d’autre procédé, de con- tinuer les déversements annuels entrepris dans les derniéres années jusqu’a ce qu’on puisse, mieux qu’aujourd’hui, se prononcer défi- nitivement sur leur utilité. Conclusions. Les conclusions qui se dégagent du compte rendu qui précéde ne paraissent pas trés encourageantes. Une seule tentative de repeuplement a réussi, celle qui concerne les poissons d’été, encore a-t-elle porté surtout sur la carpe, qui ne se reproduit guére dans les cours d’eau lorrains. L’empoissonnement, 1a ot il est actuellement satisfaisant, est donc loin d’étre assuré de fagon a se maintenir naturellement. —12— On ne doit cependant pas se laisser rebuter. L’aquiculture est a ses débuts, et qui dit débuts dit période d’essais souvent infruc- tueux. Les efforts trés importants qui ont été faits ont prouvé une sérieuse préoccupation de remédier a la dépopulation des riviéres ; ils n’ont pas été inutiles, puisqu’on leur doit d’étre fixé sur la va- leur de certains procédés. D’autres vont étre essayés maintenant, et dans de meilleures conditions, car la question n’intéresse plus seulement aujourd’hui les pécheurs, mais aussi les hommes de science. Nul doute qu’avec leur concours on n’arrive au succés, puisque aux tatonnements empiriques succédera l’emploi de mé- thodes rationnelles, basées sur la connaissance de jour en jour plus parfaite du monde mystérieux des eaux. Nancy, imprimerie Berger-Levrault et Cie, L’EXPLOITATION ET LA CULTURE DES EAUX DOUCES A L’EXPOSITION INTERNATIONALE DE PECHE ET PISCICULTURE DE SAINT-PETERSBOURG PAR R. de DROUIN de BOUVILLE Garde Général attaché a la Station d’Expériences et Recherches de’)’Ecole Nationale des Eaux et Foréts L’EXPLOITATION Er LA CULTURE DES EAUX DOUCES A L’EXPOSITION INTERNATIONALE DE PECHE ET PISCICULTURE DE SAINT-PETERSBOURG PAR R. de DROUIN de BOUVILLE Garde Général attaché 4 Ja Station d’Expériences et Recherches de I’Ecole Nationale des Eaux et Foréts L’EXPLOITATION ET LA CULTURE DES EAUX DOUCES AL’ EXPOSITION INTERNATIONALE DE PECHE ET PISCICULTUBE DE SAINT=PETERSBOURG L’Exposition Internationale de Péche et de Pisciculture, organisée & Saint-Pétersbourg, en février-mars 1902, sous le haut patronage de Son Altesse Impériale le Grand-Duc Serge Alexandrovitch, a trouvé un _cadre superbe dans le vaste manége Michel. Ce manége, situé dans la ‘partie centrale de la ville, non loin de la perspective Newski, qui en est Ja principale artére, est un bdtiment de dimensions imposantes n’abri- tant, outre quelques vestiaires et tribunes, qu’une salle unique, rec- tangulaire, de 170 métres de longueur sur 4o de largeur. L’emplace- ment est donc des mieux approprié aux exhibitionsdetout genre, aussile manége Michel est-il, 4 Saint-Pétersbourg, ce qu’était 4 Paris l’ancien Palais de l’Industrie. Un restaurant ayant été aménagé a l’une des extrémités de ce vaste hall, ’Exposition proprement dite n’y occupait, a lintérieur, qu'une surface de 5800 métres carrés, mais s’étendait aussi au dehors dans la cour précédant l’entrée. Au total,sa superticieétait d’environ 10000 métres carrés, on peut juger déja par 1a de son importance. La division générale était simple. Au milieu dela grande salle avait été réservé un espace libre d’une quinzaine de métres avec bassin cen- tral circulaire ; 4 droite et 4 gauche, trois allées paralléles divisaient le terrain en bandes rectangulaires longues de 50 4 60 métres, larges de 6 a 8, constituant l’emplacement réservé aux exposants. Les sections étrangéres occupaient les parties voisines du centre. A l’extérieur, étaient installés, de chaque cété du passage conduisant au manége, les bateaux, tentes et appareils de sauvetage. La décoration avait été |’objet d’une attention particuliére. Au dehors se dressaient des mats garnis d’étendards et trophées, reliés par des guir- landes de branches vertes. Dans le manége avaient été établies a chaque extrémité deux murailles de rochers, avec plantes, animaux, etc., dissimulant d’une part Jes aquariums, de l'autre l’entrée du restaurant. "Aux murs des écussons et des faisceaux de drapeaux. Dans les diffé- rentes sections, beaucoup de variété dans l’agencement et la disposition des produits exposés, et aussi dans l’ornementation, ce qui n’était pour- —,4— tant pas sans présenter de difficulté, les motifs décoratifs éetant presque tousempruntés aux engins ou aux produits de péche. Un superbe éclai- rage électrique du, ici 4 des foyers puissants, la 4 des lampes Edison multicolores, ne laissait aucun point dans l’ombre. Bref, l’aspect était gai, agréable, pittoresque et en un mot trés réussi. L’Exposition concernait ala fois la péche maritime et la péche flu- viale qui occupaient chacune, dans l'ensemble, une place 4 peu prés égale. La seconde seule nous intéresse ici, et nous examinerons succes- sivement les parties des différentes sections qui lui ont été consacrése. RuSSIE L’immense surface de |’Empire de Russie est arrosée par de grands fleuves et de nombreuses riviéres, les lacs sont abondants, surtout dans la partie septentrionale, et les étangs nombreux en Courlande et en Pologne. Aussi la section russe présentait-elle 4 la fois, en ce qui con- cerne les eaux douces, beaucoup d’importance et d’intérét. Pour passer en revue les plus notables des objets et travaux exposés, nous les ran- gerons sous les différents chefs suivants : Poissons —- Engins de ptche —- Produits de Ja péche — Pisciculture artificielle — Etangs — Re- cherches scientifiques. Poissons. — Les eaux douces de la Russie contiennent une centaine d’espéces différentes de poissons, dont les principales sont -énumérées ci-aprés. Esturgeon ordinaire. Acipenser sturio (L). " — sterlet. — ruthenus(L). _— huso. _— huso (L). — étoilé, — stellatus (Pall), — russe. _ Gildenstadtii (Br), — schypa, — schypa (Lov). Perche ordinaire. Perca fluviatilis (L). Sandre ordinaire. — duVolga, Lote commune. Pleuronecte chagriné. Carpe commune. Carassin commun, Barbeau commun. — A téte courte, — deGrimée, Tanche commune. Bréme commune. Lucioperca sandra. — _ volgensis (Pall). Lota vulgaris (Cuv), Pleuronectes cicatricosus (Pall) Cyprinus carpio (L). Carassius vulgaris (Nilss). Barbus fluviatilis (Flemm). — __ brachycephalus (Kessl). — tauricus (Kessel). Tinca vulgaris (Cuv). Abramis brama (L). Bréme singa. — saupe. — wimba. — deLeuckart. — bordeliére. Rotengle ordinaire. Gardon commun. _— de Fries. Ide jesse. Chevaine meunier. —_— vandoise. —_ de Danilewski. Chondrostome nase. Silure commun, Hareng de la Mer Moire. — délicat. Brochet commun. Ombre de Kramer. Saumon commun. — heusch. -— deriviére. — de la Caspienne. Truite ordinaire. Omble chevalier. Eperlan commun. Ombre commune. Sténode nelma, Corégone blanchatre. — de Merck. — omoul. — tougoun. — peled. — mouksoun — lavaret. — polkour, — nase. Anguille commune. Lamproie de riviére, — de Wagner. Abromis ballerus (L). —_ sapa (Pall). — wimba (L). — Leuckartii (Heck) . — bjérkna (Art), Scardinius erythrophtalmus (L), Lenciscus rutilus (L). — Friesii (Nordm), Idus malenotus (Heck). Squalius cephalus (L). — leuciscus (Heck). — Danilewskii (Kessl). Chondrostoma nasus (L). Silmus glanis (L). : Clupea pontica (Eichw). — delicatula (Fordm), Esox lucius (L).. Umbra Krameri (Mull). Salmo salar (L). — _ hucho (L). — fluviatilis (L). — caspius (Kessl). Trutta fario (L). Salvelinus umbla (Mor). Osmerus eperlanus (L). Thymallus vulgaris (Nilss), Stenodus nelma (Pall). Coregonus albula (L). — Merckii (Ginth). — omul (Pall). = tugun (Pall). = pelet (Lep). — muksun (Pall). — _lavaretus (L). _ polcur (Pall). _— nasus (Pall). Anguilla fluviatilis (Heck). Petromyzon fluviatilis (L). — Wagneri (Kessl). La plupart des poissons dont les noms viennent d’étre indiqués fi- guraient a l’Exposition, soit a l’état vivant, soit conservés de différentes maniéres. La truite, la carpe, la tanche, la bréme, le sterlet sont 4 peu prés les seules espéces qui fussent présentées en vie dans des aquariums (1). (1} Il y avait en outre une belle collection de poissons d’agrément, tels que Si. Ces aquariums étaient artistement aménagés dans une sorte de grotte artificielle, alimentés d’une eau trés claire et bien éclairés a l'aide de lampes électriques. Mais, en dépit des soins pris,les sujets qui y étaient ronfermés, peut-¢tre en trop grand nombre, souffraient visiblement de leur captivité; beaucoup étaient blessés ou envahis par la mousse. Ces -inconvénients sont d’ailleurs inévitables dans une installation provisoire comme celle d’une exposition, et tous ceux qui s’occupent d’aquariums savent quelles difficultés on éprouve, dans les meilleures conditions, a y acclimater et a y élever des poissons. Une installation curieuse était celle du bassin central, piéce d’eau circulaire de ro métres de diamétre, ornée d’un groupe en son milieu, et divisée par des grillages en cing secteurs. Dans les compartiments ainsi déterminés étaient renfermés séparément des spécimens des diffé- rents poissons alimentant le marché de Saint-Pétersbourg. Pour permet- tre de les bien voir, des guirlandes dé lampes Edison multicolores étaient disposées 4 fleur d’eau. L’effet était des plus agréables. Les collections de poissons soit empaillés, soit conservés dans des liquides antiseptiques étaient A * assez nombreuses, mais sans présenter d’autre intérét que celui de piéces d’étude scien- tifique; l’ceil du profane ne sy arrétait pas volontiers. Une seule faisait exception, celle du Comité pour |’assis- tance des Pomors du nord de la Russie. Chaque sujet est contenu dans un bac en verre ayant Ja forme d’un petit aquarium et contenant du formol. Le poisson, fixé sur une plaque de verre inclinée 4 45°, a lat- titude naturelle de la nage et parait absolument suspendu dans son élément. Ce dispositif satisfait & la fois, ce semble, aux exigences du savant qui peut, en retirant la plaque intérieure, étudier 4 son aise le poisson sans risquer de le détériorer, et au gotit du public assez réfrac- taire aux exhibitions de piéces ressemblant a des préparations anatomi- ques (1). télescopes, macropodes, combattants... mais sans intérétau point de vue de l’ex- ploitation des eaux douces dont il est ici question. ‘ (1) Outre les poissons, les eaux de la Russie fournissent encore des écrevisses, malheureusement décimédes depuis une dizaine d’années par une épidémie dont les ravages se sont accentuds tout récemment. On pourrait voir a l’Exposition, & cdté de superbes spécimens de ces crustacés, un certain nombre de préparations et cartes relatives aux maladies qui les affec- tent (peste, taches, etc.). ge Engins de péche. — I] ne semble pas qu'il y ait, en Russie, d’usines importantes d’instruments de péche, tout au moins n’y en avait-il guére qu’une dont les produits fussent mis en montre, celle de Jolnino, dans le gouvernement de Nijni Novgorod. Elle appartient 4 MM. Gou- riew et Sklialine, et occupe 2100 ouvriers ; on y fabrique des cordages et des filets. Ceci n’empéchait pas qu’iln’y eut de nombreux engins exposés, mais ils l’étaient surtout par les particuliers ou les corporations (Cosaques de l’Oural et de Kouban, commune du village Rybatskoé), propriétaires ou locataires de pécheries importantes. D'une maniére générale ils parais- seat étre fabriqués surtout par ceux qui les emploient et sont par suite quelquefois un peu grossiers. Les plus employés sont'les filets harra- ges, la senne, les nasses et verveux et enfin la foéne, cette derniére trés en usage pour la péche sous la glace. En ce qui concerne la péche a Ja ligne, le Musée Polytechnique de Moscou exposait une intéressante collection d’engins fabriqués par des paysans et amateurs en différents points du pays. Produits de lapéche.— Le poisson sert principalement 4 1’alimenta- tion et doit souvent, surtout en Russie, étre consommé fort loin du liew ou ila été péché. D’ou la nécessité de lui faire subir une préparation Je mettant a l’abri de Ja corruption. Il existe pour cela plusieurs pro- cédés qui sont — la congélation — le fumage — la salaison — et la stérilisation, Congélation. — Dans un pays comme la Russie, ou Ia glace natu- relle est généralement facile 4 obtenir en grandes quantités, le moyen le plus pratique et le moins codteux pour empécher I’alfération des substances alimentaires putrescible consiste 4 les soumettre A ]’action du froid.C’est ainsi qu’on procéde, en particulier, 4 l’égard du poisson. Congelé sur les lieux de péche, il est expédié ainsi dans les centres de consommation ou on le conserve dans des glaciéres jusqu’au mo- ment du besoin, On pouvait voir, dans la partie extérieure de l’Exposi- tion, de beaux spécimens d’esturgeon et de saumon ainsi préparés. Ce mode de conservation présente de grands avantages au point de vue de I’économie, mais il ne va pas sans un léger inconvénient, En l’absence de toute mesure préventive, le poisson peut, pendant le trans- port subirun réchauffement et par suite un commencement d’altération. Pour éviter ces accidents, un des exposants, M. Michel Podbereski, _ propose un récipient de son invention, A l’intérieur duquel la tempéra - ture se maintient contante sans étre influencée par celle de l’air am- biant. Ce récipient, qui a été soumis par le jury a une épreuve sérieuse, = § parait devoir rendre des services pour le transport du poisson gelé, et aussi des autres comestibles. II permettrait en particulier, entre la Russie et la France ou l’Angleterre, des échanges de produits qui ne peuvent jusqu’ici étre transportés a l'état frais. Fumage. — lly a un certain nombre d’espéces d’eau douce dont la chair est fumée a peu prés dans les méme conditions que celle du hareng; ce sont en particulier l’esturgeon, le sténode nelma, la bréme wimba, I’anguille, le saumon. Pour ce dernier, on pratique d’ordinaire le fumage a froid. Cette préparation facile ‘et peu dispendieuse est trés courante; tous les exposants de la section des produits de péche avaient en montre diverses sortes de poissons fumés. Salaison. — La salaison est en Russie le moyen le plus employé pour la conservation du poisson de tout genre. Prés des pécheries impor- tantesexistentdes batiments spéciaux pour cette opération, des plans, des modeéles en relief et des vues de quelques-unes figuraient 4 l’exposition. fl convient de citer 4 ce propos les deux panoramas représentant les ateliers de préparation du poisson appartenant respectivement a M. Bezzoubikow et 4 MM. Sapojnikow fréres, d’Astrakhan. Quant aux produits ainsi obtenus,ils étaient exhibés en grande quan- tité dans des tonneaux dont un disque en verre remplagait la bonde. Anguilles, brémes, carpes, brochets, perches, etc., y étaient empilés en couronne dans la saumure, et on pouvait admirer et leur taille, et leur parfaite conservation ; la préparation n’ayant altéré qu’a peine les cou- leurs et la forme des corps. Stérilisation. — Les conserves en boite sont surtout 'préparées avec du poisson de mer. Bien qu’on puisse traiter de la méme maniére plu- sieurs espéces d’eau douce, cette pratiquen’est pas trés répanduecen Russie. Cependant dans l'importante exposition de la maison A. K, Doubinine, d’Odessa, il se trouvait, entre autres, quelques spécimens de ‘conserves d’esturgeon et de pleuronecte. La chair du poisson n’est pas le seul produitqu’il fournissea l’alimen- tation, les ceufs de certaines espéces sont comestibles, et servent A la fabrication du caviar. On emploie d’ordinaire ceux de Vesturgeon, mais ceux d’autres poissons, de la sandre, par exemple, peuvent aussi con- venir. Ce produit, trés recherché, fait l’objet d’un commerce important, et occupait une place notable parmi ceux de la section russe. Mais, quelle que soit sa réputation trés légitime, on ne peut s'empécher de regretter Ja destruction de quantités énormes de frai 4 laquelle donne lieu sa pre- — a paration, et le dépeuplement des riviéres qui en est la conséquence. Il reste enfin 4 signaler, comme produits accessoires de la péche en Russie, la colle, l’huile et la farine de poisson, fabriquées dans des usi- nes annexes de pécheries importantes. Pisciculture artificielle. — Les procédés dela pisciculture sont loin d’étre inconnus en Russie, et c’est d’ailleurs 4 un Russe, Wrasski (r), qu’on doit la méthode presque universellement employée aujourd’hui pour la fécondation artificielle. Outre les plans, croquis et photographies d’un certain nombre d’éta- blissements, plusieurs installations pour T'incubation des ceufs de salmonide figuraient a l’exposition, et, l’époque le permettant, les appa- reils ont été ‘presque toujours présentés en fonctionnement, c’est-a-dire contenant des ceufs embryonnés et des alevins 4 divers états de dévelop- pement. Les plus importantes et les mieux aménagées de ces instal- lations étaient celles du Baron Staél de Holstein, 4 Novo-Anzen; de M. Kirsch, & Aalt-Salis; de la Section livonienne de la Société Impé- riale Russe de Péche et Pisciculture; et du Ministére de l’Agriculture et des Domaines (Etablissements de Nikolsk et Louga). Les auges en usage en Russie pour la truite et le saumon ne se dis- tinguent par aucune particularité, elles sont du type Coste ou Von den Borne (2). Les appareils pour l’incubation des ceufs de corégone présentent une certaine diversité bien qu’étant tous basés sur le méme principe; cété de celui de Zug proprement dit, on emploie des dispositifs dont le croquis est figuré ci-dessous, Etablissement de Louga. Etablissement d’Aalt-Salis, I] était naturel de tenter en Russie Ja propagation artificielle du plus intéressant peut-étre des poissons du pays, c’est-d-dire de l’esturgeon, dont il est fait une péche si active et en particulier au moment du frai 4. — Les appareils ayant servi aux recherches de Wrasski figuraient a l’exposi- tion de l’établissement de pisciculture de Nikolsk. 2.— A l’établissement de Louga, dirigé par M. Bippen, on pratique l’incubation des ceufs de saumon dans l’atmosphére humide. * —- 10 — pour la préparation du caviar. C’est ce qui a été fait par M. Borodine, spécialiste en chef de pisciculture au Ministére de l’Agriculture. Il a réussi la fécondation artificielle de Vesturgeon étoilé et de l’esturgeon _Tusse, et Vincubation des ceufs dans des boites flottantes de Seth-Green. “Les travaux publiés A ce sujet, ainsi que les appareils employés, des collections d’ceufs et d’alevins A différents états de développement, per- mettaient aux visiteurs de l’exposition de se rendre compte de la mar- che et des résultats de cette,trés intéressante expérience. Etangs. — L’élevage de la carpe en eaux closes a une certaine impor- tance dans les provinces occidentales de la Russie. Une exposition intéressante, 4 ce point de vue, était celle du Baron K. de Mandteuffel, de Katzdangen, Courlande. Un plan en relief renseignant d’abord sur l’aménagement et la disposition des étangs, de pose et d’accroissement, puis des aquariums contenant des sujets de differents Ages mettaient en évidence les résultats obtenus par la mé- thode d’élevage. Celle-ci consiste 4 assurer toujours au poisson une nourriture abondante en le faisant passer dans une série d’étangs mis en eau successivement au fur et 4 mesure de son développement. Les spé- cimens exhibés étaient des carpes ordinaires et des carpes amiroir de 1, 2, 3 et g ans pesant respectivement 500, rooo, 1750 et 7500 grammes. Il n’y avait pas de différence apparente entre les deux variétés, au point de vue de la croissanee. A cette question des étangs se rattache celle des ouvrages de retenue. Dans cet ordre d’idées une mention est due aux écluses automatiques Tekor Elkor, exposées en modéles réduits, 4 courant d’eau. Ces écluses, inventées par M. Skotnitzki et le Comte Ostrowski, sont des appareils destinés 4 maintenir constant, en toutes circonstances, le niveau d’un étang ou d'un bief de riviére. Elles tendent donc A éviter, en cas de crue méme subite, l’inondation des propriétés situées en amont du barrage, et & rendre impossible les abus souvent commis par les usiniers en laissant l’eau dépasser, dans les canaux d’amenée, la hauteur réglementaire, La vanne Elkor est une vanne 4 flotteur; suivant la position de ce dernier en aval ou en amont du piquet supportant l’axe du sytéme, la pelle s’ouvre en montant ou en descendant. Dans ce second cas,la vanne, moins haute, coulisse devant une partie fixe formant seuil; l’eau en excés s’écoule comme au-dessus d’un déversoir. De cette facgon il n’y a pas de poisson cntrainé, celui-ci se tenant presque toujours sur le fond. — II — Le type n° 1 convient donc pour les riviéres, le type n° 2 pourles étangs. Ce systéme présente Vavantage de s’ouvrir dés que le flotteur est sou- Rant P77 DELLA E ED Vanne Elkor n° 1. : Jevé, donc, en cas de crue subite, avant que le flot de cette crue n’attei- gne l’ouvrage de retenue; celui-ci n’a donc a supporter qu’un choc atté- nué. L’atténuation est encore plus sensible si la pelle est formée d’un cadre avec volet se rabattant vers l’aval. Ce volet est d’ordinaire fermé par un verrou, maisvienne une forte augmentation du niveau en amont, le flotteur agit, non seulement sur la vanne entiére, mais encore sur le verrou au moyen d’une chaine, le volet est chassé en avant et I’écoule- ment se fait sans obstacle. La vanne Tekor repose sur un autre principe. C’est une porte mobile autour d’un axe horizontal situé & une certaine hauteur au-dessus du seuil. Cettehauteur estcalculde de telle fagon que, pour un niveau donné en amont, les pressions sur les parties supérieure et inférieure s’équilibrent; si Peau vient 4 monter, l’équilibre étant détruit, la porte bascule, et l’eau s’é- chappe par enhaut et par en bas tant que le niveau fixé est dépassé. En cas de crue violente la vanne s’abat complétement. Vanne Tekor. Ce second type est applicable, a la dif- férence des deux autres,. aux riviéres flottables ou susceptibles de charrier des glacgons. Ce systéme de vannes automatiques, séduisant en théorie, est-il vrai- ment pratique ? C’est ce qu'on ne peut conclure du bon fonctionnement des modéles réduits exposés. Il faudrait pour cela étudier les quelques installations existant actuellement en Pologne. Mais comme sans doute les brevets pris dans les différents pays ne —i13— tarderont pas a étre exploités, il est probable qu’on pourra bientdt, en France méme, apprécier, la valeur réelle des écluses Tekor-Elkor. Recherches scientifiques. — Le courant d’idées qui, dans tous’ les pays, porte actuellement l’attention des savants vers l'étude des eaux s'est fait sentir en Russie comme ailleurs, et d’autant mieux que la péche fluviale et lacustre y a plus d’importance. On pouvait apprécier, a l’ex- position, par les ouvrages, plans, diagrammes, etc., mis sous les yeux du public, le nombre, la nature et ]’intérét des recherches entreprises. Ces recherches ont été effectuées par les soins de I’Etat ou sous les auspices de plusieurs Sociétés. Le premier posséde 4 Nikolsk, gouvernement de Novgorod, un labo- ratoire d’ichthyologie annexé 4 I’établissement de pisciculture et dépen- dant comme lui du ministére de 1l’Agriculture et des Domaines. Ce laboratoire est doté d’un beau matériel, 4 en juger par les microscopes, appareils de projection et photographie, instruments de sondage et de péche qui se trouvaient exposés. A cété, figuraient des collections bota- niques et zoologiques et les comptes-rendus des travaux. Ces derniers ont portt jusqu'ici surtout sur les lacs et consisté en analyses chimiques et biologiques de l’eau et du sol, études des organismes du plankton et sondages thermométriques. Ce sont des recherches analogues et concernant également les eaux lacustres qui ont été exécutées par les membres — de la Commission permanente pour l'étude des lacs de Russie — de l’expédition zoolo- gique du lac Baikal — de la Section d’ichthyologie de Moscou de la Société Impériale Russe d’acclimatation — de la Station hydrobiologique du lac Profond. Quant aux riviéres, les travaux les plus importants sont ceux de la Station biologique du Volga de la Société des naturalistes de Saratow, qui exposait des collections de poissons, d’orgauismes leur servant de nourriture, et d’animaux qui au contraire leur sont nuisibles. Il faut aussi mentionner les cartes dressées par les soins de la Société impériale Russe de Pisciculture et de Péche, et relatives, l’unea la propagation dela peste de l’écrevisse, l’autre 4 la distribution géographique des différentes espéces de poissons, A propos de cette derniére Sociéte, il convient de rappeler que c'est a elle qu’est due l’organisation de l'Exposition Internationale, et que revient par conséquent l’honneur de son succés en général, et en parti- - culier celui de la section russe. ae | FINLANDE Le Grand-Duché de Finlande est la région de l’Europe la plus riche en eaux intérieures puisque celles-ci y couvrent 11 o/o de la super- ficie totale du pays. Les poissons qui les fréquentent sont principale- ment — dans les lacs : le corégone blanchatre,l’éperlan, Je lavaret, et le saumon lacustre (Salmo eriox. L) — dans les riviéres : le saumon ordinaire, la truite de ruisseau, l’ombre commun et la lamproie fluvia- tile. L’écrevisse est abondante dans le centre et Je sud du pays. Les engins employés pour la péche sont surtout des filets du genre senne, dont quelques spécimens figuraient a l’exposition. Sur les cours d’vau sont aussi installées des pécheries, dites « pator » consistant en barrages de formes différentes conduisant le poisson A des nasses ou il reste prisonnier, ou 4 une sorte d’enclos ou il se rassemble et est capturé au filet. Ces pécheries sont surtout aménagées pour prendre le saumon. Le poisson est généralement salé fortement, quelquefois fumé (la- varet, éperlan, anguille et sanmon). Le grillage et le marinage de la lamproie de riviére sont l’objet d’une industrie assez importante dans la partie occidentale de la province. La grande surface occupée par les lacs a naturellement amené a chercher les moyens de leur faire produire,en ce qui concerne la péche, tout le rendement dont ils sont susceptibles. Une station d’essais a été créée dans ce but, a I’Institut Forestier d’Evois, en 1892, avec un budget annuel de 1700 francs. L’exposition de cette Station était certainement, en ce qui concerne les eaux douces, la plus remarquable de la section finlandaise. Elle fai- sait connaitre d’abord par des cartes et plans l’établissement et son domaine, puis les travaux accomplis et les résultats obtenus jusqu’A ce jour, et ces résultats, exposés dans une brochure de M. le Professeur Bernhard Ericsson, présentent beaucoup d’intérét. Pour favoriser la reproduction naturelle, des frayéres artificielles ont été établies en grand nombre. Pour les poissons d’été on a planté dans des criques tranquilles et ensoleillées, des pieux disposés en cercle entre lesquels ont été disposés des genévriers et petits sapins, de la maniére indiquée par la figure ci-aprés. Pour le lavaret, la frayére est faite de pierres et de gravier. Enfin, en certains endroits fréquentés par la bréme au moment de la ponte, des signaux ont été disposés pour empécher Sth Enfin deux ou trois cartes ichthyographiques, et d’assez nombreuses publications, parmi lesquelles il faut citer les études de M. le Dr Wei- gelt sur la pollution des riviéres et leur dépeuplement, complétaient Ja partie de l’exposition allemande concernant la Péche fluviale. Cette partie n’avait donc pas, A beaucoup prés, l’importance qu’elle aurait di avoir et ne permettait de se rendre compte qu’imparfaitement des efforts et travaux sérieux entrepris en Allemagne pour l’exploitation rationnelle, la mise en valeur et l’étude des eaux douces. Pour cette section, comme pour une ou deux autres, |’Exposition de Vienne, qui devait s’ouvrir six mois plus tard, a fait tort a celle de Saint-Pétersbourg. JAPON L’emplacement de la section japonaise était un carré d'une dizaine de métresde cété, au milieu duquel se dressait un kiosque élégant orné de drapeaux et éclairé de lampes électriques blanches et rouges. L’ensemble avait beaucoup de cachet, la décoration était heureuse et l’aménagement trés soigné. L’Empire du Japon étant composé d'fles, la péche maritime y occupe naturellement une place trés prépondérante; mais la péche fluviale ne semble pas négligée, 4 en juger tout au moins par les superbes engins figurant a l’exposition. Une partie de ces engins étaient des filets de formes diverses, d’une exécution parfaite, fabriqués au moyen d’un fil a la fois trés mince et trés résistant ; des substances tannantes et colorantes leur donnent de la durée et les rendent presque invisibles pour le poisson. Mais les cannes a péche surtout méritaient ’attention ; légéres,solides et élastiques,par- faitement équilibrées, elles réunissaient toutes les qualités requises. Il y en avait de plusieurs types, dont l’un, particulisrement remarquable, composé de piéces rentrant les unes dans les autres, et paraissaient faites d’une sorte de bambou ou roseau. A cété d’elles se voyaient des lignes, hamegons, poissons d’étain, mouches artificielles, etc., d’une exécution non moins irréprochable. Tous ces engins, sortis pour la plupart d’ate- liers de Tokio, soutenaient dignement Ja réputation de l'industrie japo- naise, si consciencieuse et si soigneuse des détails. La pisciculture artificielle est pratiquée auJapon, la propagation du saumony a été essayée par ses procédés. Des comptes rendus publiés 4 ce sujet par |’'Institut impérial de péche de Tokio figuraient 4 l’exposi- tion, ainsi que des photographies de l’établissement de Chitose. am ae Il était enfin impossible de visiter la section sans s’arréter a feuilleter un superbe album d’aquarelles. Les différents poissons de la faune du pays y étaient représentés, dans les attitudes naturelles de la vie, avec une précision de dessin et une fidélité de couleur admirables. C’étaient ala fois des figures pour ouvrages de science et de véritables ceuvres dart. Avec de pareils éléments et il n’en manquait pas. de semblables dans la partie consacrée a la péche maritime la section japonaise devait avoir et aeu du succés. N’attirait-elle pas tous les visiteurs, les amateurs, par Vintérét réel qu’elle présentait, et les simples curieux par le cachet artistique de son installation ? ROUMANIE Il n’y avait presque rien, la section roumaine, en dehors de |’exposi- tion de la Direction des péches de Bucarest qui renseignait d’ailleurs fort bien sur les ressources présentées par les eaux courantes de la région du Bas-Danube, la maniére dont elles sont exploitées, et le parti qu’on en tire. Les poissons qui peuplent ces eaux étaient mis sous les yeux du public soit conservés dans du formol, soit empaillés pour ceux de grande taille, comme l’esturgeon et le silure. Différents modéles en relief de sections de ruisseaux et bords de riviéres, avec galets, sable, plantes terrestres ou aquatiques, et glace figurant le niveau de |’eau, faisaient en outre connaitre les animaux ichthyophages du pays et notamment les oiseaux. Les engins de capture da poisson sont des filets et des pécheries. Les premiers, et particuliérement des sennes, étaient disposés en draperies le long des murs et servaient ainsi a la décoration. Quant aux pécheriés, qui consistent en barrages de types divers, mais ayant ce caractére commun d’avoir des issues aboutissant 4 des pidges elles étaient repré- sentées par une série de superbes photographies. Les produits de la péche, dont les spécimens étaient assez nombreux, sont 4 peu prés les mémes qu’en Russie, ils consistent en poisson salé et fumé, caviar et colle d’esturgeon. L’exposition roumaine avait été organisée avec soin, et, bien que d’étendue restreinte, donnait pourtant une idée complete de état de l’in- dustrie de la péche dans un pays ou elle a une notable importance. ——- 17 SIAM La participation du Ministére des Affaires Intérieures du Royaume de Siam 4 l’Exposition de péche avait valu a celle-ci une section trés cu- rieuse, qui occupait, vis-a-vis de celle du Japon, une surface presque double. Le clou de cette section était, 4 l’intéricur d’une sorte de pagode, un petit panorama fort bien rendu, représentant un village de pécheurs avec huttes baties sur de hauts pilotis, barques 4 la chaine et filets au séchage. Le public s’y portait en foule, et c’était justice, mais les cing grandes vitrines qui l'entouraient méritaient mieux qu’un coup d’ail. Elles renfermaient, en effet, une curieuse collection de modéles réduits de barques et instruments de péche. Ces derniers consistent en nasses, filets, gords, etc., dont Je type a bien quelques rapports avec celui des engins employés en Europe, mais dont la forme est toujours spéciale, souvent étrange. Les dispositifs compliqués adoptés par les pécheurs siamois ont-ils une raison d’éire dans le pays? Peut-étre... En tous cas on ne pouvait s’empécher d’admirer Vingéniosité et la fantaisie qui ont pré- sidé 4 leur invention, et aussi le talent des ouvriers qui les ont repro- duits avec un admirable souci du détail. De toutes les sections étrangéres, celle du Royaume de Siam était sans contredit la plus originale. FRANCE La surface de l’exposition frangaise atteignait presque 300 métres car- rés, c'est dire son importance, due a la participation de deux ministéres, ceux de l’Agriculture et de la Marine, de plusieurs sociétés et de nom- breux particuliers. Son intérét n’était pas moindre, grace d’abord 4 son aménagement bien compris, 4 son élégante décoration, grace surtout & la variété des objets et produits qui y figuraient. Comment la variété aurait-elle d’aillears fait défaut, quand la France est baignée par des mers et arrosée par des fleuves d’allures si différentes ? Rien n’avait été négligé pour donner une idée de la fagon dont sont exploitées et mises en valeur les eaux frangaises ; il en était particulié- rement ainsi en ce qui concerne la péche fluviale. Les poissons deslacs et riviéres étaient représentés par la collection de sujets naturalisés de l’Ecole Forestiére des Barres. Dans le méme ordre d'idées la Société Centrale d’Aquiculture et de Péche avait fait exécuter = 18 — toute une série d’aquarelles, reproductions a la fois fidéles et artistiques de toutes les espéces les plus importantes. Pour les engins de péche, ils étaient presque tous décrits, et la plupart figurés dans un ouvrage donnantles résultats d’une enquéte ouverte sur ce sujet par M. Daubrée, Directeur général des Eaux et Foréts.Le public pouvait en consulter des exemplaires mis a sa disposition, et, en outre, examiner les collections de l’Ecole Nationale Forestiére de Nancy, con- sistant en grandes photographies et plans en relief représentant divers types de pécheries, et en petits modéles, avec figurines, renseignant sur la forme et le mode d’emploi de l’araignée, du baro, du carrelet, de l’épervier, de la senne, du tramail, de la trouble et des -verveux. Plusieurs fabricants avaient aussi exposé et envoyé a Saint-Péters- bourg, qui des filets, qui des articles de péche a la ligne. Ces derniers surtout attiraient l’attention, et cependant, il faut bien l’avouer, ils n’ont pas eu tout le succés auquel on aurait pu s’attendre dans une exposition 4 laquelle ne prenaient pas part les maisons anglaises. Les industriels frangais avaient-ils craint de faire voyager au loin leurs piéces les plus soignées ? Celles-ci avaient-elles subi des détériorations en cours de route ? En tous cas le jury a eu 4 constater quelques légéres défectuosi- tés, et c’est ainsi que les récompenses accordées par lui n’ont pas été ce qu elles auraient pu étre. ) La place occupée pour la pisciculture était peut-étre un peu restreinte. Cependant un plan relief, fort bien exécuté, figurait l'ensemble de l’im- portant élablissement crééa Bessemont (Aisne) par M.de Marcillac; des croquis et photographies en faisaient connattre le détail. La station aqui- cole du Nid du Verdier, dirigée par M. Raveret Wattel, était repré- sentée par un plan. Des vues de quelques autres établissements accom- pagnaient l’exposition d’auges 4 incubation, bacs flottants et appareils pour transport d’alevins dela maison Dagry, de Paris. Les différents types d’ouvrages destinés 4 permettre aux poissons migrateurs la remonte des barrages, savoir — rigole inclinée — escalier — échelles des systémes Mac Donald, Brackett et Caméré — se trou- vaient réunis sur un méme modéle, a circulation d’ean, permettant d’ap- précier leur mode de fonctionnement.. La culture des étangs, nombreux pourtant en France, est loin d’étre pratiquée d’une maniére aussi rationnelle et intensive que dans plusieurs pays voisins, cependant leur aménagement présente souvent des parti-. cularités intéressantes. On pouvait s’en rendre compte grace a deux plans relief représentant — ]’un une pécherie a gradins, avec guideaux, ou s’effectue une sorte de triage automatique du poisson qui y est =e entrainé par le courant —l’autreun étang dela Dombes (Ain) au moment de l’assec, avec son systéme de biefs et faux biefs, poéle, riviére de cein- ture, thous, embies et ébiesde différents types. Enfin, en ce qui concerne les études et recherches scientifiques, i] convient de signaler, outre les publications, la belle collection de piéces ichthyologiques de la maison Deyrolle,de Paris, et le sondeur E. Belloc, a fil d’acier, quia deja rendu bien des services pour Jes recherches lacustres. A cété de la partie concernant la’ péche fluviale, celle relative a la péche maritime ne présentait ni une moindre importance, ni un moin- dre intérét, l'ensemble était 4 la fois agréable et instructif. Le public est venu nombreux, il est permis d’espérer qu’il a apprécié le coté attrayant comme le cété sérieux et emporté, de sa visite 4 la section francaise, une impression favorable et un bon souvenir. AUTRES NATIONS Outre Jes sections dont il a été question dans ce qui précéde, il en était d’autres, celles du Danemark, de l’Egypte, de la Principauté de Monaco, de la Norvége, de la Perse et de la Suéde, qui ne présentaient rien d’intéressant au point de vue de la péche fluviale. De plus, quelques nationaux autrichiens,belges, espagnols, indiens et. italiens avaient participé a l’exposition. On peut meationner parmi les objets, produits et travaux envoyés par ces derniers,les poissons natura- lisés de MM. Lenoir et Forster,de Vienne; les trés belles collections de la Société de péche et pisciculture de Cracovie, faisantconnaftre la faune aquatique de la Galicie, les engins et bateaux qui y sont employés et les appareils d’incubation en usage; enfin les soies pour lignes de M. Am- brosano, a Procida. L’examen détaillé de diverses sections de l’Exposition internationale de Saint-Pétersbourg montre qu’elle présentait plus d’un élément de succés et ce dernier a répondu a l’attente et aux efforts déployés. Jusqu’au dernier jour la foule est venue, nombreuse, animer le vaste manége Michel.Sila voguen’a pas été passagére,c’est que le public, sensible sans doute a l’attrait du décor, a pris un réel intérét au spectacle mis Sous ses yeux. L’Exposition, eneffet, a été non seulement brillante, mais instructive ; en la parcourant on pouvait acquérir des notions sur la si- tuation et les progrés récents de l'industrie des péches dans les différents — 20 pays, et il y avait la matiére 4 fructueuses comparaisons. Ce but élevé et pratique a été pleinement atteint, grace aux heureuses dispositions adoptées par les organisateurs pour la division, l’aménagement et le classement. M. le Docteur Grimm et ses collaborateurs du Comité gé- rant,qui n’ont ménagé ni leur temps ni leur peine, ont su joindre lutile et l’agréable ; quoi d’étonnant 4 ce que leur ceuvre ait mérité tous les suffrages ? Extrait de la Revur pes Eaux zt Forérs, des 15 Avril, qe" et 15 Mai 1903. Poitiers. — Imp. Bais et Roy Extrait du Bulletin mensuel des séances de la Société des Sciences de Nancy. L’Epicéa du Charmois, par M. pe Drouin ve Bovvitte, Garde gé- néral attaché & la Station d’expériences et recherches de l’Ecole nationale des eaux et foréts. Le chéteau du Charmois est situé dans le voisinage immédiat de Nancy, sur le territoire de la commune de Vandceuvre, ow il occupe le sommet d’une ondulation séparant les vallons des ruis- seaux de Saurupt et de la Madelaine. I] est entouré d’un pare d’une contenance d’a peu prés quatre hectares, planté d’arbres d’ornement dont les plus vieux paraissent dgés d’une soixantaine d’années. Parmi ces derniers se trouvent plusieurs épicéas (Picea excelsa Link) dont un, relativement isolé au milieu d’une petite pelouse, attire attention dés le premier coup d’ceil(*). C’est une masse imposante de verdure, particulitrement dense vers sa moitié inférieure (Voir Pl. I). Vient-on 4 s’approcher, on distingue tout autour de l’arbre principal, haut de 20 4 22 métres, un certain nombre d’autres tiges de 4 4 10 métres d’élévation, et auxquelles est dé le facies particulier de cet épicéa (Voir Pl. II et III). Bien qu’émergeant verticalement du feuillage de ce dernier, les tiges en question paraissent au premier abord en étre parfaitement distinctes. Il faut pénétrer sous l’arbre lui-méme pour se rendre compte, non sans quelque étonnement, qu’on se trouve en présence de marcottes. Parmi les branches basses ayant pris contact avec le sol, huit se sont enracinées plus ou moins fortement. De 1a la formation d’une dizaine de tiges secondaires vigoureuses, franche- ment dressées, 2 rameaux disposés en verticilles, se comportant (1) Deux autres épicéas, semblant dater de la méme époque que celui faisant Vobjet de cette étude, paraissent mériter une mention. Leur port est tres spécial, les branches basses se redressent verticalement en constituant, chez l'un d’eux surtout, de véritables fleches; les autres branches sont normales. Ces arbres sont situés pres du chateau et ont respectivement 2™,20 ef 2™,90 de circonférence 4 hauteur d’homme. —_—_— 2— absolument comme des individus isolés, mais restés en relation avec le tronc parent (Voir Pl. IV). Le marcottage artificiel de l’épicéa, bien que peu pratiqué, est cependant chose possible(*), mais le marcottage naturel est trés rare (7), Pourtant les circonstances paraissent souvent le favoriser. Combien n’existe-t-il pas, dans les parcs surtout, d’épicéas ayant développé des branches basses vigoureuses qui trainent sur le sol ou sont méme plus ou moins enterrées dans l’humus? Com- ment, dans ces conditions, ne se produit-il qu’exceptionnellement des racines adventives (3)? La chose est singuliére, en tous cas la rareté du phénoméne rend intéressants les quelques arbres chez lesquels on le constate, c’est pourquoi celui du Charmois, ot la faculté d’enracinement des branches est trés caractérisée, parait mériter une courte étude. Le premier examen révéle |’existence de marcottes, reste 4 con- naitre, d’une fagon précise, leur disposition par rapport au tronc, les points d’insertion des branches enracinées, les emplacements des tiges secondaires, enfin les dimensions respectives des unes et des autres. Dans ce but a été dressé le plan reproduit ci-aprés que complétent les chiffres des mesures effectuées, consignés dans le tableau suivant. (1) Voir Carntkne, Traité général des coniferes. Paris, 1867. (2) Le seul épicéa analogue 4 celui du Charmois, signalé jusqu’ici en France, est celui du parc de Barville (Eure); il avait, en 1890, 29™,50 de hauteur, 3™,60 de cir- conférence A 1 métre du sol et présentait dix-huit branches enracinées dont une donnant naissance a trois fleches. La plus grosse des tiges sccondaires, distante de 5™,50 du tronc principal, avait alors 1™,35 de tour 4 hautcur de poitrine. (Henry-Queviniy, « Cu- riosités végétales de Barville pres Thiberville », dans l’Annuaire normand. Caen et Rouen, 1884. — H. Gapeau ve Kerviute, Les Vieux arbres de la Normandie, fasci- cule I. Paris, Bailligre, 1891.) ~ Dune fagon générale, le marcoltage naturel est rare chez les résineux; on I’a cons- taté cependant aussi chez le Picea nigra Doumetii, du parc de Baleine (Allier) [Charles Batter, De laction du froid sur les végétaux ; Paris, J. Tremblay, 1882, p. 299] et chez un Thuya gigantea du domaine d'Harcourt (R. Hicker et L. Panpt, Feuille des jeunes naturalistes, 1°* octobre 1902). (3) Il semblerait, d’apres une observation faite par M. le Garde général Guinier, que la facullé d’émettre des racines adventives soit plus développée sur le tronc que sur les rameaux. Un épicéa de Ja forét de la Grande Chartreuse, canton de Malissart, situé sur les bords d’un torrent, se trouva lors d’une lave enlisé jusqu’A une hauteur de 2 me- tres par la boue. Plusieurs années plus tard une crue d’eau claire dégageait le pied de Parbre. On constatait alors que celui-ci possédait sur le tronc un enracinement situé & peu prés a la hauteur ow s’élevaient les terres charriées, enracinement qui s’était formé apres leur depét; sur les branches qui avaient été partiellement enterrées on ne remar- quait pas trace de racines adventives. Une remarque analogue a été faite en Suisse par M. F. Fankhauser (Journal fores- lier suisse, numéro de décembre 1900). Echelle de = 10 N. B. — Les parties ombrées sont celles enracinées. N og‘ 6o'o oz‘o y1‘0 gz‘o oy'y g6‘o 6 ‘ oz‘ t W b goto gto z1‘o gz‘o oly og‘o 8 “9]tUI9A]Xa WOS B JAUIE}}9U JURSSeIpad T ol‘ es sur aguioeiua Uo eqouRlg (¢) Oy o'r « « « 61‘0 oo! s og‘ I L “sq yueursoy atediourad oyouesq eT ap H o0'Y 61‘o og‘o zr‘o 61‘o oo'e og'r 9 0G'ms B YSA OH Op JuaUTAUTORIUA,] (Y) i ‘ é t - i (¥3) oof or‘o oz‘o or‘o « oz'g site é *puooas af squde ¢ ( ¢ 6 ¢ ‘ og'mo ap affao ‘zaymaad af yUeAR agaNs @®a gr'6 ovo ogo $0 ceo ob‘¢ ~om jsa gi‘mO op et or aq oc‘'g og‘o og‘o z1‘o ( ‘ -S900NS SJUSTIOULOeIUa XNOp & 0Z'"0O og '% oO sy I pes (e ad oo'¢ 10 yzto aio 9 SE y “| yURUNIOY opedroutid ¢ ‘ ¢ ‘ : ‘ C aqoueiq e[ ep Os‘wl Be 4a OUON Np 2 oot ag ° yy'o e1°o 0z‘o ory g6‘o ¢ (Of'my B IS9 _C ap JUamauouIa,T (z) q oz‘ h Leto gh‘o z1‘o gi‘o 06‘¢” gz‘t z ‘ayjouuoreq wa astepuoves ary, (1) @y oo'e gz‘o ggio 1250. gz‘o of‘¢ og‘o I ‘saajgur ‘aaj *aa}QU *9r}9Ur “-gajaur *saaqQur ‘sangu = : ‘Jos np sue vue ae “OU0J} aT “SOAT}BOIPUT snssap-ne | @UleTue | -anjoRIUa - | -onon zoey qutod my os : : sqady queay ang "MAYLAVE og al 8 ne 4 uonzesuyp “SOUSWAN SUULLYT SONaWI ouor} np. : : "SNOILVAUTSAO ayeyuoztiol SOOM “SHONTUAINODUID ps AY. pai ARBEIT. ‘SHYIVAGNOOUS SHOIL SSUHONVUG ‘oL‘me : 108 np snssop-ne o¢‘mt ¥ aouatgZUODIIT) — *oG‘atz o[e}0} anoyney : epedroursd obry, OAVATaAV.L —jA— L’examen des données qui précédent démontre l’existence, chez larbre étudié, d’une faculté de marcottage trés développée. II présente en effet actuellement huit branches enracinées(*), ap- partenant a six verticilles différents du tronc (?); et le nombre en serait probablement plus grand si l’extrémité de plusieurs rameaux trainant sur le sol n’avait été coupée en fauchant l’herbe de la pe- louse environnante.De plus trois de ces branches ont formé cha- cune deux tiges secondaires. Chez la premiére (4), aprés son enracinement, un rameau latéral (devenu par suite une branche de la fléche E) s’est enraciné son tour, donnant naissance a la tige D qu’on peut, par suite, qualifier de tertiaire. La branche 5 produit la tige F, tandis qu’un rameau, qui se détache d’elle avant son point de contact avec le sol, forme la fléche G. Enfin, sur la branche 8, il n’y a qu’un enracinement, mais son extrémité n’est pas seule A s’étre redressée, un rameau latéral en a fait autant ; il ya ainsi deux tiges secondaires L et M possédant une souche commune. Si on ajoute a ce qui précéde que le sol est argileux, assez compact, et normalement sec a l’abri de l’épicéa, il faut recon- naitre a celui-ci une faculté d’enracinement des branches tout a fait particuliére. Cette faculté constitue bien une qualité propre, intrinséque de larbre du Charmois, les circonstances extérieures ne paraissent en effet V’influencer en rien. On vient de voir que le terrain était peu favorable au développement des racines adventives, le rdle de Vinsolation parait nul, tout au moins l’orientation des branches est-elle indifférente (3). Sien effet la plupart de celles qui sont mar- cottées se trouvent a l’ouest d’une ligne nord-sud passant par le tronc principal, il en est une (g) qui se dirige franchement vers Pest. De plus, comme il a été déja dit, on peut constater dans le secteur sud-est que lextrémité d’un certain nombre de branches (1) Une neuvigme (7) donne une tige secondaire (K) sans étre encore enracinéc. Parmi les branches insérées sur le tronec entre Je sol et 1™,50 de hauteur qui subsis- tent encore aujourd’hui, il n’y en a que deux qui ne soient pas marcottées, (2) Les verticilles sont compris entre 0™,35 et 1™,50 de hauleur au-dessus du sol, trois d’entre eux présentent deux branches marcottées, les trois autres n’en ont qu’une. (3) Il est probable en effet que la situation isolée de I’épicéa n’est pas sans influence; en massif, le méme arbre ne se serait peut étre’ pas marcotleé. des basses a été coupée, ce quia empéché la formation de tiges secon- daires. La production de ces derniéres n’est enfin pas la consé- quence d’un état méme passager de langueur ou de dépérissement du tronc principal, contre lequel une réaction aurait eu lieu chez les branches convenablement situées pour s’alimenter directement au sol. Sur toute sa hauteur l’épicéa étudié a une superbe végéta- tion et les tiges secondaires datent d’époques différentes. C’est donc 4 l’examen de I’arbre lui-méme qu’il faut demander la raison de cette propriété qu’il posséde d’émettre des racines adventives sur presque tous les points oi ses branches, voire ses rameaux, sont en contact avec le sol. Pour cela il convient de se rendre compte de la fagon dont se produit cet enracinement qui peut étre, soit antérieur, soit postérieur a la formation des tiges se- condaires. L’observation d’une branche tratnante, non encore enracinée (7) mais a fléche déja nettement formée (K), conduit 4 penser que le redressement des extrémités des branches et rameaux a toujours précédé leur ancrage au sol au moyen de racines. Cette opinion est confirmée par l’examen de la forme méme des branches, qui, au moins dans la partie basse du tronc, s’inclinent d’abord vers le sol a partir de leur point d’insertion, puis se relévent plus ou moins franchement; plusieurs se terminent ainsi par une partie presque verticale garnie de verticilles complets et bien feuillés. Il semble dés lors que les choses se soient passées de la fagon suivante. Tous les bourgeons latéraux de l’extrémité d’un rameau venant a bien, alors que normalement un certain nombre avortent, il faut A ce rameau plus de nourriture qu’a un autre, et d’autant plus qu’il s’est développé de verticilles. Il arrive donc un mo- ment ou le tronc ne suffit plus 4 alimenter la branche qui, alors, ou se dénude, ou, si la chose est possible, c’est-a-dire s’il y a contact avec le sol, émet des racines adventives(*). Une fois l’en- racinement constitué, non seulement la tige secondaire ainsi constituée peut végéter convenablement, mais elle se développe vigoureusement. Dans le cas particulier de l’épicéa du Charmois la faculté de (1) Ce contact s’établit d’ailleurs plus facilement chez les branches 4 rameaux en ver- ticille que chez les autres, 4 cause du poids plus fort qui les entraine vers la terre. C’est ainsi que sur l’arbre du Charmois des branches insérées 4 1™,25 et 1™,50 au-dessus du sol se sont marcottées. a marcottage parait donc une conséquence du port de l’arbre, sans qu'il soit toutefois possible de dire qu’elle en dépend exclusive- ment. La courbure des branches, leur redressement et la présence de verticilles 4 leur extrémité se ren- contrent chez beaucoup d’épicéas sans qu'il en résulte de marcottes. Ces conditions, qui ne sont pas suf- fisantes;, sont-elles au moins néces- saires ? Elles ne sont pas en tous cas indispensables pour |’émission de ra- cines adventives, d’aprés une cons- tatation faite par M. le Professeur Fliche, aux environs de Sens, sur une i branche trainante, étalée sur le sol, jf a rameaux disposés dans un méme plan (*). [Voir la figure.] Mais aucun j redressement de l’extrémité ne sem- ble devoir étre la conséquence de Venracinement, tout au moins aucune tendance a la formation d’une fléche i ne se manifeste encore. I] est donc ! douteux qu’on soit en présence d’une Beanohe diiptcés marcotte proprement dite, et jusqu’a avec facings adventivess preuve du contraire on peut admettre Prana apsstomrantD que la faculté de reproduction par cette voie est réservée aux épicéas dont les branches basses, aprés s’étre plus ou moins inclinées vers la terre, se relévent pres- que verticalement. Cette conclusion n’a guére toutefois que la valeur d’une hypothése, puisqu’elle ne résulte que d’observations faites sur un seul sujet. La conséquence du marcottage est la formation de tiges secon- daires; toutes celles de Varbre du Charmois sont encore en relation avec le tronc parent, mais il semble que cette relation pourrait, chez les plus Agées, étre supprimée sans inconvénient, (1) Cette branche provient d'un arbre du bois de Champétu, vanton des Terres-Blanches, Agé de 40 A 45 ans, ayant une hauteur de 7 4 8 metres et une circonférence 4 hauteur d’homme de 0,35; il présentait encore deux autres branches basses enracinées. De nombreux épicéas voisins ont des rameaux trainants semblables et 4 demi enterrés, mais ne présentent pas de racines adventives. =. car si la branche continue a vivre entre ses points d’insertion et d’enracinement, elle ne sé déyeloppe pour ainsi dire plus. I] suffit pour s’en rendre compte de comparer les grosseurs des branches marcottées et non marcottées, les premiéres sont beaucoup plus faibles. Il n’y a d’autre part aucun rapport entre le diamétre de celles-ci et les dimensions des tiges secondaires auxquelles elles ont donné naissance, et dont l’importance varie avec celle de leur enracinement. Ces tiges s’individualisent de plus en plus et fini- ront par se comporter exactement comme des sujets distincts du tronc principal. Ces jeunes épicéas qui entourent l’ancien se créeront-ils 4 leur tour une ceinture de marcottes? La chose est possible, puisque dans la reproduction par voie asexuée toutes les propriétés et particularités se transmettent d’ordinaire sans altération, et qu’au- cun obstacle ne s’oppose a !’extension de l’arbre sur la pelouse qui Venvironne. Son évolution sera intéressante 4 suivre, et les don- nées de la présente notice, sorte de procés-verbal de l’état actuel, pourront servir plus tard 4 des comparaisons instructives. Quoi quil advienne d’ailleurs, l’épicéa du Charmois constitue déja maintenant, non seulement l’ornement d’un parc, mais une curio- sité végétale qui mérite d’étre connue et signalée. Nancy, imprimerie Berger-Levrault et Cie. Vue d’ensemble prise du coté Ouest Tiges secondaires C a G (Vue prise au Sud) Jeune tige secondaire (N) (Vue prise au Sud) Ph iV; E Tige fy Branche 5 a2) z B Marcottes ue prise a Vintérieur de l’arbre) = a BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERIGA VOL. 13, PP. 233-252 pis. 40-43 — i GEOLOGICAL SECTION OF THE ROCKY MOUNTAINS IN: NORTHERN ALASKA BY F. C. SCHRADER ROCHESTER PUBLISHED BY THE SOCIETY Jury, 1902 (,08 02 "LV1) LSVOO OLLONV AHL OL (.99 “LV1) YBAIYy (9N9d0j]STO[q) BIJAP PUB S}VY YslBpy "L!¢ qNOQB’ UONBIOSZEKO [BO1419A MNANAOM WOUNS VASV1V NYSHLYON NI ENIVLNNOW AX00"U SHL JO NOILOSS JAONVSSIVNNOOSY WoOID01039 (S1v1}1a,[,) 89L195 BI [TA[OD C = [PA9/ 225 | yO [—~ wo Do N 3 —— eN st am ON 3 2 3 w 4 ® °. (avluosad 5 (uvimoaeqg) -aad) (uvfuosaq) (snoaoBjaig teddy) (snos0vqyeI1g 1aM0'T) UOTFVUIO, SaTIes UTOlBVULIOs Sollas YNYSNUBN Solas YNA00IVUY euingsiy Jeanjg euangsi'y 4 YIILD Mo///f A A SOL YNUOOLYE (sno1ajruoqae, 1a.Mo]) sollas JOY (snovovyoig A[qeqoig) Solias WeUlsieg (uvtiniig teddy) WOTIVWUALOJ IILVYG (uvLiniig s}qvqoig) SaL19S U9s}0], a, SES NSA! (sno090Bje1Q 1aMor'y) solias ynynsoy Ob “Id ‘FO6L ‘EL “1OA “WY "90S "1039 "11N98 BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 13, PP. 238-252, PLS. 40-43 JULY 29, 1902 GEOLOGICAL SECTION OF THE ROCKY MOUNTAINS IN NORTHERN ALASKA * BY F. C. SCHRADER (Presented before the Society January 2, 1902) CONTENTS i Page Geography and topography... ...... cc cece eee cee ce cece teeter eee e ene nes 234 TM PONeYaliis osc i nie eanread de Rie MESES ARENT S Be Fee eee FES dee area, 2O4 Koy nikal provitiCes : secu soak face sued SEP esac ae eeeee eee tas tau 234 Motintalli provVineGssccs, seats en adenakw si iabd hans Raeea ge creas SS 235 Colville or Arctic Slope province ....... 0.6. eee cece eee eee ee tetas 236 Geological section; 24 4:5. suierces cv igadageuendaae teres Veiga dowel e ee eaae he ae 237 PaleOzOiGS ess s5h a eebeweany ss 4sa dhyekalaies deans ge eennee Oi Ay GEM aes pmesS 238 Skajit formation (Upper Silurian) ..... ...-....-- riyaeic- day ake Seie were giwtes 238 , Character and OCCUrTENCE.... 6.2 cee nee rete nett ent e ene 238 Structure ..............000e- danni Ree RT Gos GR RMON LEE ESSE Za eS 239 AGO. crneeiasnisee: since ood ede eteese ae tse setae Bee 239 Totsen series (Silurian).... 2.0... ccc cee cee ee cece eee teen ba eeee 239 Character and OCCUIYENCE..... 00. c cece eee et teeter cere eens 239 Strtietlive: syucesiecscaeicte ctihwete vee yaardemeh clare thos emeiied 240 APG. tc auikindadttsda g ODRMREE ET ER Pee IRR! Bae geese Uae eemots 240 Stuver series (pre- -Devantan’ ae ee ee 240 Character and occurrence.......0. cece cece ete nee ene teen te ees 240 GEriGtTeisdccmacececaaws Heel WhinebemsihlGs wekgmeeaete Gasset 240 AGO cr ddinke eaeeg gee Cee ochn san menienNeanaeh Cie al caneeues 241 Lisburne formation (Devonian)....... ...eeeeeee Ba a hentai dae meunaende 241 Character and occurrence..........- Hance cance enste Gamaen aek ae asian 241 SUMOUIPE ccao ad csee Se Weve See ee ee hb ee Sea E es Dien eg ae 241 Noe sca dating naavientanaeauee sab Giada asbedilacs oie enn ay eomemaaeet 241 Fickett series (Lower Carboniferous)..... 666. 06 veer eee e ee cee eee ee 242 Character and OCCUITENCE.... 0. . cee eect eee eee e ete eens feet eees 242 Structtre i. ssc cnceanecccaea ry eee es Rudid Plaheaa te HK AGEs ONas SarteRa NS 242 ABO cece ee cece een nen nnn enn EET tenet tt ete ece 243 Correlation of Paleozoics .. 0.2... seer cece ee cette nent e een nees ve cae 248 Mesozoies:. ..cvvccvec cect cd Heawow reek seer seo NG EEE Ce eee da eener eves 244 Corwin series (Jura-Cretaceous) . 01... see e sect cere ese terete rnc ee enes 244 Character and occurrence .......-.e cee ee nee ee er eetne eens teneee D44, Structure... cee cet ence eee eee n eee ee eee eee tenet ete Fees 244 AGC cece reece ee etree Fenner ene ete EE Fe teens 244 * Published by permission of the Director of the U.S. Geological Survey. XXXV—Bors. Gron. Soc, Am., Vor. 13, 1901 (233) 2384 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Page Anaktoovuk series (Lower Cretaceous).........0065 cece cece reece ee neee 245 Character and occurrence......----+seee eee cece teen eee teenies 245 Structures: <2 ste-we accent heed oie idee gland Satan Oe teak Bee 245 AGCiaws ck pene eeqeerags kets, ELL stayin teareri CAs, “Oe Raie eamina dans eae at 245 Koyukuk series (Lower Cretaceous)....-- 2-062. .: eee e cere ere eee een e nee 246 Character and occurrence....... 6. cee eee cee eee eee een cee eeeee 246 StRIGEOTS oo 5065. ceaescds BRE Ce Eae ds eeNEeeE thee es Season nae 246 HiBe cau (tipid debadata maces set aeA ce Aaee ee SON aancnate cae a 246 Bergman series (Cretaceous?)... 1-206. cee eee eee e eee ene eens 246 Character and OCCUrrENCE... 1.1 kee ccc ee eee etree eee einen 246 Stractulie osiwat osteoma eaten ope oekds wa eee eee 247 ARE bc Gide cree ba eee ewe Gene ee ete eee tenes Ene wnene ene es 247 Nanushuk series (Upper Cretaceous) ......--.0e cece eee terete eee seve BAZ Character and OCCUITENCE.. 1... cece ee eee eee er eet eects 247 ABCbisisae ened ade ae nee oe EVES TE ES DEE Lowe (aa ey dea DY bs 248 Upper Cretaceous on the Koynkuk............. es oL oe Ns RAR RESET SE Tt 248 Tertiary—Colville series..........200 0s eee ee eee eee josde Spee sa teedeye tes 248 PlGIStOCEHG weiss Gee dedie ade ase Aedaguedaltenssidlote ale seh d8easeme ase 249 The deposits ...... 0... cece eee ee reece eee eens Rien thas Raia doa ano ZAD GOODICSANGB: +0452 nes davks ousesenee rey Getasesseeeew nese een eb te 249 Glacial material. .... .. oa pid eles, See Gaeivie gh, SALMA ele aleleeaieiin nade es 250 Ground ice, marsh, muck, mud flats, etcetera...........0..04- ded Unend aber 251 GEOGRAPHY AND TopoGRAPHY IN GENERAL The section lies in the hitherto unexplored part of northern Alaska. It extends from the 66th parallel north latitude roughly along the 152d meridian by way of the Koyukuk, John, Anaktoovuk, and Colville rivers, a distance of nearly 400 miles, to the Arctic coast.* Geographically the region traversed by the section comprises three distinct provinces, that of the Koyukuk or southern, the mountain or middle, and the Arctic slope or northern. KOYUKUK PROVINCE This province, extending from the 66th parallel more than 100 miles northeastward to the southern base of the mountains, lies mainly in the northwestern part of the large Koyukuk bagin.t The province in gen- * For a fuller account of this region the reader is referred to the Preliminary Report on a Re- connaissance in Northern Alaskaalong the 152d Meridian to the Arctic Coast, soon to be published by the U. 8. Geological Survey. + For a more complete description of the Koyukuk basin the reader is referred to ‘‘ Preliminary report on a reconnaissance along the Chandlar and Koyukuk rivers, in Alaska, in 1899." Twenty- first Ann, Rep. U.8. Geol. Survey, part 2, p. 467. See also ‘‘ Bulletin of the American Geographical Society,” vol. 34, No. 1, February, 1902: “‘ Recent work of the U.S, Geological Survey in Alaska," pl ZONVY LLOOIGNA JO 3SV9 GNV NVALVId HNAOOLAVNY 4O 3903 lp “1d ‘LO6L ‘EL “1OA “WV “OOS “1039 *11Nd KOYUKUK AND MOUNTAIN PROVINCES 235 eral consists of a rolling country composed essentially of Mesozoic rocks whose low, rounded hills and ridges vary from 1,000 to 3,000 feet in ele- vation. It is supposed to represent the Koyukuk portion of the Yukon plateau, but which here is not distinctly marked. The drainage, which is separated from that of the Arctic slope by the Endicott mountains, is southwestward. The master stream is the Koyukuk, which flows into the Yukon, while the large tributaries are South Fork, John, Alatna, and Alashuk rivers. The lower part of all these tributaries, as well as the Koyukuk, meanders in wide valley flats, bordered by the rolling country which has been noted. The Koyukuk river is navigable by steamboats to Bettles, near the 67th parallel, a distance of about 530 miles above its confluence with the Yukon. MOUNTAIN PROVINCE The middle or mountain province is the most striking. It consists of a rugged range of mountains composed of Paleozoic rocks extending east and west across the field between latitudes 67° 10’ and 68° 25’. These mountains, for which the name Endicott is locally proposed, here have a minimum width of 80 miles and an average elevation of 6,000 feet. Orographically the range is regarded as the northwestward con- tinuation of the Rocky Mountain system of the United States and British Columbia, which here trends nearly east and west entirely across northern Alaska, forming the great Transalaskan watershed between the Yukon on the south and the drainages of the Arctic ocean on the north. In their northward and finally westward course they form a promi- nent feature of the concentric geography of Alaska, and embrace in the concavity which they present on the south the great basin of the Yukon and its well known but not always distinct feature; the Yukon plateau. West of the 153d meridian, in the region of the head of the Colville and the Noatak rivers, the mountains decrease in elevation and seem to divide or fork, forming two ranges. The northern range, continuing westward, terminates in the low mountains and abrupt sea cliffs of cape Lisburne at Bering sea, while the southern forms the divide between the Noatak and the Kobuk rivers. On the southern side the rise from the rolling Koyukuk country is by means of foothills, but rapid. On the north the mountains bréak off somewhat abruptly, much as they do along the edge of the Great plains in the western United States, as shown in plate 41. Pronounced fault- ing and uplift are evidenced by marked deformation of the strata and the presence of fault scarps, sometimes recognizable for miles. Where they were crossed the mountains locally present a crescentic or concave front to the northward, which is followed by low concentric ridges in the plateau beyond, though these grow weaker and die out farther northward. 936 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Where best observed during the past season, principally on the John and Anaktoovuk rivers, a view across the top of the range presents the general appearance of a deeply dissected plateau or baselevel plain, which has probably been uplifted from near sealevel, and whose former surface is denoted by the expanse of closely crowded peaks, which in general rise to an elevation of 6,000 feet, forming an even sky line, as shown in plate 42. The floors of the mountain valleys lie,at about 2,000 feet, and the open pass near the northern edge of the range between the John and the Anaktoovuk rivers lies at an elevation of scarcely 2,500 feet. For this dissected plateau feature at the top of the range the name Endicott plateau is proposed. It.seems not improbable that, as our knowledge of the physical geog- raphy of Alaska becomes more complete, it may be found that the Endicott plateau, having probably a considerable extension to the east- ward, may be correlated with similar features, namely, the Chugatch plateau, representing the westward continuation of the Saint Elias range in southern Alaska, whose dissected surface also lies at an elevation of about 6,000 feet.* The drainage of this portion of the range is principally southward into the Koyukuk. The master stream is the John river, rising near the northern edge of the range. The main drainage ways are therefore of a transverse character, extending across the strike and trend of the rocks as well as across the trend of the range, while the tributaries of these larger streanis, being nearly always controlled by structure, flow in general along the strike to enter the master streams, producing a rectangular system of drainage. John River valley may be characterized in general as open, though certain sections are canyonous, because of the character and structure of the rocks. Benching or remnants of old val- ley floors occur at heights respectively of 1,700, 600, and 100 feet above the present stream, and seem to mark stages of comparative rest in the progress of orographic uplift of the land mass from a former lower level. Northward sloping benches at the head of John river denote that a large area of the drainage at the head of this stream, now flowing southward into the Koyukuk, formerly drained northward and entered the Arctic ocean through the Anaktoovuk and the Colville instead of Bering sea through the Koyukuk and the Yukon, as at present. COLVILLE OR ARCTIC SLOPE PROVINCE This northern geographic province extends from the northern base of the mountains, in latitude 68° 25’, northward to the Arctic coast, a dis- *The geology and mineral resources of a portion of the Copper River district, Alaska. U.S. Geological Survey, Washington, 1901, BULL. GEOL. SOC. AM. VOL. 13, 1901, Pl. 42 ENDICOTT PLATEAU AND ENDICOTT MOUNTAINS CARVED FROM IT COLVILLE OR ARCTIC SLOPE PROVINCE 237 tance of 160 miles. It consists primarily of two distinct features, a very gently rolling plains country, for which is proposed the name Anaktoovuk plateau, and a nearly flat tundra country or coastal plain. The inland edge of the Anaktoovuk plateau, which is composed of Cretaceous rocks, has an elevation of 2,500 feet, and with gentle slope extends northward for a distance of 80 miles to latitude 69° 25’, where, at an elevation of 800 feet, it is succeded by the nearly flat Tertiary coastal plain, which, with very gentle slope, extends 80 miles farther northward to the Arctic coast. The drainage of this province is almost directly northward into the Arctic ocean. The master stream is the Colville, whose headwaters, so far as known,seem to make a somewhat wide detour to the westward before flowing directly to the sea. The next larger stream is the Anak- toovuk, which, rising in the mountains just east of the head of John river, flows northward through the southern part of the province and into the Colville. The most prominent features of the plateau are a few low, transverse ridges, extending across it from east to west, feebly imitat- ing the front of the mountain range and the shallow valleys that carry off the drainage. ? The coastal plain, which is underlain by Tertiary beds, has a breadth of about 80 miles. It descends with very gentle slope from an elevation of 800 feet in the interior to near sealevel at the coast. In its inland portion, the Colville river has sunk its bed to a depth of 200 feet below the surface of the plain, but the interstream areas are flat, with the sur- face, which appears to be fresh-constructional in form, dotted here and there by extremely shallow ponds and lakelets, which in most instances are without outlet and present no suggestion of progress toward the de- velopment of any system of drainage. GEOLOGICAL SECTION The horizontal scale of the section (plate 40) is 10 miles perinch. In order to show the structure in the Tertiary coastal plain and represent the flats and delta near sealevel at the north, it has been given a vertical ex- aggeration of 5:1. As the section is confined to the line of traverse, in order to represent more accurately the relations of the rocks as actually observed, it deviates somewhat from a straight line in its extent across the field from A to J. Owing to this restriction to the line of traverse in the valleys where the relief has been relatively reduced by erosion, especially in the mountainous portions, the profile rarely rises to the normal height of the top of the Endicott plateau; consequently this plateau feature of the range is not represented by the profile of the sec- tion. Atthe northern base of the mountains, where the profile descend- ing from the mountains, passes from the upturned Devonian on to Plies- 238 =F. GC. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA tocene till, which is soon found resting on Lower Cretaceous, a belt of several miles has been left blank. It is thought possible that Carbonif- erous and Lower Mesozoic strata may occur in this region between the Devonian and the Lower Cretaceous. The rocks encountered comprise representatives of most of the geo- logic formations from Silurian to Recent. In point of distribution, as shown in the section, they consist primarily of a belt of Paleozoics 80 to 100 or more miles in width, constituting the Endicott mountains, against whose slopes, unconformably on either side, rest the edges of the plateaus or uplands, composed of Mesozoics, which in turn are succeeded by Ter- tiary. Beginning with the oldest, these several formations or rock series will be briefly noted. As the field is new, the names here employed to designate the various formations or series are proposed provisionally. To afford a more comprehensive view of the relations of the several series and avoid repetition in referring to them individually, it may be well to note at the outset some features of structure which are common to nearly all the Paleozoic series and apply to the range as a whole, namely, that the series all strike or trend approximately east and west, parallel with the trend of the range. They are nearly all traversed by the dominant jointing or major structure of the range, cutting the rocks in a northeast and southwest direction, with dip nearly vertical or steeply northwest, at an angle of 75 to 80 degrees. This dip may be considered normal, since the uplilt of the land mass of the range to the east exceeds that on the west. The series also nearly always exhibit one or more sets of secondary jointing or minor structure, trending in a general northwest or southeast direction, approximately at right angles to the major structure. The above statements of structure pertaining to the Paleozoics in the range apply also in a limited way to the adja- cent Mesozoics on either side. We may also note that, with the exception of the greenstone schists occurring in the Totsen series. the Paleozoics of the range, as well as the younger formations of the Arctic slope, are all sedimentary and, so far as observed, free from igneous intrusions of any kind. The Endicott range consists of two somewhat distinct geologic axes, of which the southern seems to be composed of the oldest rocks, namely, the Skajit formation, and the Totsen series, of which the former is the most prominent. PaLrozorcs SKAJIT FORMATION (UPPER SILURIAN) Character and oecurrence.—The rocks of, the Skajit formation consist of heavy-bedded limestone and mica-schist. The limestone is highly al- SKAJIT FORMATION AND TOTSEN SERIES 239 tered, being finely crystalline, schistose, and often micaceous. Some layers, becoming more and more foliated, grade into mica-schist. The series occurs in the southern part of the Endicott mountains, where its breadth or exposure in a north and south direction is 15 or 20 miles. Here it rises toa height of more than 5,500 feet, forms some of the highest and most rugged topography of the southern axis, and seems to have a thickness of at least 4,000 feet. Structure.—So far as known, the formation has a general east and wegt strike, parallel with the trend of the mountains. The middle portion is synclinal, while the northern and southern edges are anticlinal. The formation is unconformable with the Fickett series of the north and ap- parently so with the Totsen series on the south. both of which it seems to underlie. In general the dips are gentle, but in some localities fault- ing and folding has been intense. The rocks are cut by the major and minor jointings of the range, with the joint planes sometimes locally fol- lowed by veins of calcite and quartz, containing occasionally a little galena or pyrites of iron and copper. Age.—Though the limestone, as noted, is much altered by metamor- phism, it contains imperfect faunal remains, one of which has been identified by Mr Charles Schuchert as probably Meristina or Meristella, referring the formation provisionally to upper Silurian and placing it among the oldest known fossil-bearing rocks of northern Alaska and the northern part of North America. TOTSEN SERIES (SILURIAN) Character and occurrence.—This series of rocks,-including a strip of greenstone schist, occupies an east and west belt 12 miles in width. It occurs to the south of the Skajit formation, which it seems to uncon- formably overlie, while it unconformably underlies the Bergman series on the south. The rocks consist mainly of mica-schist and some quartz mica-schist, in both of which the essential minerals are biotite and quartz. Locally the rock becomes graphitic and in cases carries considerable quartz in small veins and lenticular bodies, some of which may be the source of the placer gold colors found in the gravels. The series is essen- tially of sedimentary origin, but the period of sedimentation seems to have been accompanied by igneous effusives or flows of basaltic character, which were later sheared and schisted with the sedimentary beds, giving rise to greenstone schist, of which the most prominent belt, having a width of several miles, occurs in the southern part of the field. Though on account of deformation and folding there is probably some duplica- tion in the Totsen series, its total thickness, by conservative estimate, is probably 6,000 or 7,000 feet. 240 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Structure.—The Totsen series, like the other rocks composing the range, trends approximately east and west, and though asa whole the series has been intensely folded, the dip in general is monoclinal, being south- ward at an angle of 60 degrees. The major and minor jointings of the range are pronounced. Cleavage was noted at several localities. Age.—Though the Skajit formation and the Totsen series have un- doubtedly been folded and crushed together, judging from the apparent higher degree of metamorphism in the Totsen series we should infer that it may prove to be the older, notwithstanding, it seems to overlie the southern edge of the Skajit formation. It is provisionally referred to the Upper Silurian with the Skajit series. STUVER SERIES (PRE-DEVONIAN) Character and occurrence.—The Stuver series is the oldest group of rocks exposed in the northern axis of the Endicott range, of which they form the core. This is on the east and west line of the most pronounced and geologically most recent crustal disturbance. The uplift, which seems to have been going on since middle or late Paleozoic time, has taken the form of a broad anticline whose longer limb extends to the southward, while the shorter forms in part the north front of the range. Elevation was accompanied by faulting; the movement or thrust came from the south, and along the axis of the anticline has produced an over thrust fold or fan structure. On the north, faulting has resulted in the break- ing of the strata and the formation of a fault scarp in the north limb of the anticline, between the north edge of the Stuver series and the Lis- burne formation. This was farther accompanied and followed by fault- ing and erosion, which broke up the immediate region into several great fault blocks, and finally brought the Stuver series into view along the bight of the fold. From the north edge of the range pronounced faulting extends southward into the range for a distance of 15 or 20 miles. The Stuver series consists primarily of hard flinty conglomerate and quartzite, with some slate and shale. Structure—The exposure is limited to a narrow belt about 5 miles in width, trending northward for an unknown distance from the Anak- toovuk valley between the faulted and eroded edges of the Lisburne formation on either side. On the south, by uplift and faulting, it has probably been brought into contact with the lower Carboniferous of the Fickett series. Both here and at the north edge of the series, the fault- ing, as shown in the section, seems to be normal, but in the Stuver series the major jointing trends about east and west and the minor nearly north and south. The series is cut by a well marked cleavage, dipping northwest at an angle of 45 degrees. The undisturbed relation of the Stuver series to the Lisburne formation is apparently conformable. If any unconformity exists, it must be very slight, STUVER SERIES AND LISBURNE FORMATION 241 No estimate can be formed of the thickness of the Stuver series, as its lower limits are unknown. The exposed portion amounts to approx- imately 2,000 feet. Age.—From its position below the the Lisburne series, which is con- sidered to extend to below the middle Devonian,.the Stuver series can certainly not be younger than lower Devonian, and is regarded probably pre-Devonian, to which it is provisionally referred. LISBURNE FORMATION (DEVONIAN) Character and occurrence—The Lisburne formation consists of medium- bedded limestones, with some shale. It occurs next above the Stuver series, and. like the latter, has been greatly disturbed by crustal move- ments. It forms a belt 15 or more miles in width, extending east and west across the valley of the Anaktoovuk. On the southwest it is soon delimited by the fault scarp of Contact creek, and farther westward by the Carboniferous of the Fickett series, with which its relations are not definitely known. To the eastward of the Anaktoovuk the belt seems to widen. The series is probably in contact with the Carboniferous on the south, while in descending the slope of the mountains on the north it disappears beneath the mantle of glacial till, where, judging from topography, it is probably soon met and overlain by the Mesozoic or ‘Lower Cretaceous. From what has been observed in the region of the Anaktoovuk, the thickness of the formation is probably a little over 8,000 feet. Structure.—The entire area of the Lisburne formation here considered is more or less deeply involved in the system of faulted and disturbed blocks referred to under the Stuver series. At the north base of the mountains west of the Anaktoovuk, the formation disappears beneath the covering of glacial drift with a dip of 60 degrees to the north, while east of the Anaktoovuk, a couple of miles distant, it similarly disap- pears, but with a dip to the south at an angle of 75 degrees against the fault scarp of the Stuver series, as shown in the section, plate 40. Age.—On the basis of Devonian fossils found in surface fragments near the top of the mountains formed by the Lisburne formation, the latter is provisionally referred to the Devonian. The Upper Devonian fossils thus collected by the writer have been identified by Mr Schuchert as follows: Zaphrentis. Rhombopora. Aulocophyllum. Eridotrypa near or identical with E. Diphyphyllum. barrandei (Nicholson). Fenestella. Productella two species. Unitrypa Spirifer disjunctus. Hemitrypa. Platyostomu, XXXVI—Rur. Gron. Soc, Am, Vor, 13, 1901 242 ¥F. C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Fossils were also found in place, but these are too highly altered and crushed for identification. FICKETT SERIES (LOWER CARBONIFEROUS) Character and occurrence.—The Fickett series comprises rocks of very diverse character, ranging from chloritic schists or phyllites on the south, through limestone, slate and sandstone, quartzite, and grit, to hard con- glomerate on the north. As shown in the section, figure 1, the series, roughly speaking, lies essentially in the broad trough between the two axes of the range already described. This trough was probably occu- pied by a shallow arm of the sea in late Paleozoic time, when the axis on the north and the south stood above sealevel, and from which sediments of the Fickett series have probably been in part derived. The series has a width or north and south extent of about 50 miles. On the south its edges rest unconformably on the Skajit formation of the southern axis, as shown in the geological section, while on the north, owing to the faulting, as noted at the head of the John and Anaktoovuk Tivers, its relations to the older rocks of the northern axis are not defi- nitely revealed. It seems, however, to meet the Stuver series and Lis- burne formation by fault contact, as has been indicated in the section. To the north of this contact, so far as observed in the region of the Anaktoovuk, all trace of this series in place, though it must have been of considerable thickness, seems to have been removed by deformation and erosion. To the westward, however, beyond the limits of the fault- block system of the Devonian, at about 20 miles from the Anaktoovuk, the Fickett series, as already noted, seems to overlie the Lisburne for- mation and possibly extends beneath the Mesozoic at the north base of the range, Structure.—The Fickett series, like the other Paleozoics of the range, has been subjected to faulting and folding incident to the mountain- building forces. The folding in some localities has been intense, as is shown by closely appressed anticlinal folds, and puckering in the schist. The structure, however, broadly speaking, is essentially monoclinal, with strike and trend east and west and the dip south at an angle of about 45 degrees, pointing strongly to a later and also to a greater ele- vation along the northern axis than along the southern. The major structure of the range is exhibited throughout the region covered by the Fickett series. ‘There are many faults whose planes are usually slicken- sided and dip 70 to 80 degrees northwest. ‘The minor jointing is also present. The schists, and notably the phyllites, often exhibit excellent cleavage, with medium north to northwest dips. FICKETT SERIES 248 Age.—On the basis of Lower Carboniferous fossils found in the stream gravels, and the lithologic resemblance of the fossil-bearing gravels to the rocks contained in the series, and the relation of the series to the limestone formation, which seems to be Devonian and to underlie it, the Fickett series is provisionally assigned to Lower Carboniferous; but as the fossils are believed to occur near the base of the series, it probably contains also rocks younger than the Lower Carboniferous. The following are the principal forms collected by the writer and identified by Mr Schuchert: Lithostrotion. Pinnatopora. Cystodictya nearest to C. lineata. Productus scabriculus Martin. Streblotrypa near nicklesi Vine. Productus semireticulatus Martin. Rhombopora. Spirifer striatus Martin. Fenestella. Spirifer near S. neglectus Hall. Fenesteila near F. cestricensis Ulrich Spiriferina cristata Schlotheim Mr Schuchert states that— “The above localities represent one formation, in the upper portion of the Lower Carboniferous. This fauna, however, is unlike that of the Mississippi val- ley, in that if does not have such characterizing fossils as the screw-like bryozoan Archimedes and the blastoid genus Pentremites. “he only other Alaskan region with which this Arctic Lower Carboniferous fauna can be compared is that found on Kuiu island, in southeastern Alaska.” CORRELATION OF PALEOZOIC As lack of space forbids the correlation of each individual formation or series, especially of those of the Paleozoics, with similar formations of the same age in other parts of Alaska or the Arctic regions, it may here be briefly stated that the present season’s work, together with the evi- dence previously collected to the eastward and that to the westfvard in the Cape Lisburne region, seems to indicate beyond question the exten- sion of a well developed belt of Paleozoic formations across northern Alaska, along the Rocky mountains, from the 35th meridian near the Mackenzie to the 66th meridian at cape Lisburne, a distance of nearly 1,000 miles. In the Cape Lisburne region, as noted, these rocks, having a known width of 75 or more miles, terminate in abrupt sea cliffs. The thickness of the section here is not known, but it must be considerable, from which it seems safe to infer that as a submarine geologic axis the Paleozoics probably extend far seaward, and, as this part of the ocean is known in the main to be shallow, it is not unlikely that the same Paleo- zoic axis may continue across and reappear to the westward on the Siberian coast. It may be noted, however, that on the portions of this 244 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA foreign coast visited by Doctor Dall he reports the rock to be essentially crystalline or igneous. Mrsozorcs CORWIN SERIES (JURA-CRETACEOUS)* Character and occurrence.—The Corwin series is not represented in the section, nor is it known to extend go.far eastward as the Anaktoovuk. It was encountered several hundred miles northwest of this on the coast near Wainright inlet, whence it extends southwestward a dis- tance of 180 miles to near cape Lisburne, where it plays a very impor- tant part in the geological section of that locality, and since the topog- raphy and the open, uniform character of the intervening country sug- gests a probable great extension of the series to the eastward, and its geological horizon is known on fossil evidence to be above the Fickett and below the Anaktoovuk, to be next described, it seems not unlikely that the Corwin series occupying this horizon may extend far inland along the north slope of the range to near, if not beyond, the meridian of the section. The series consists of medium to heavy bedded impure gray and brown sandstone and arkose, with shale, shaly slate, and coal. The coal includes the Wainright, Beaufort, ‘hetis, and Corwin coals, to which the names Cape Lisburne coals and Cape Beaufort Coal Measures have also been collectively applied, and which are likely to prove of economic value. While the northwestern edge of the series forms the coast line, the southern edge seems to rest unconformably on the Paleo- zoics on the south. Structure—The beds lie nearly horizontal or dip southwest at an angle of 80 to 40 degrees, are slightly folded and faulted, and are traversed by two set# of jointings, one approximately parallel with the strike and the other approximately at right angles to it, agreeing in a general way with the major and minor structures in the inland portion of the range, as has been noted. Age.—Fossil plants found in the Cape Beaufort region, and more par- ticularly in the shale near the Thetis mine, at cape Sabine, by Mr Dumars and Mr Woolfe and others, have been identified by Professor Fontaine and Doctor Ward as not older than the Oolitic nor younger than the Lower Cretaceous, but as probably on a line between the two.t On this evidence, together with forms collected by the writer from * It is possiblo that the rocks at cape Beaufort may on further research prove to be older than Jura-Cretaceous, but for the present it seems best to include them in the Corwin scries, +A full description of these collections will appear in Doctor Ward’s second paper on the Older Mesozoic floras to be published by the U, 8, Geological Survey. CORWIN AND ANAKTOOVUK SERIES 245 near Wainright inlet, the Beaufort series is provisionally assigned to the Jura-Cretaceous. : The forms from near Wainright inlet are as follows: Nageiopsis longifolia Font. Older Potomac of Virginia (Lower Cretaceous). Podozamites distantinervis Font. Older Potoniac of Virginia (Lower Cretaceous)- Baiera gracilis (Bean) Bunbury. Oolitic of Yorkshire, England (Jurassic). ANAKTOOVUK SERIES (LOWER CRETACEOUS) Character and occurrence—The Anaktoovuk series, named from the river on which it occurs, forms the southern or principal part of the gently rolling Anaktoovuk plateau along the north side of the Endicott range, which it meets at an elevation of about 2,500 feet, as shown in plate 41. Here its inland edge seems to rest unconformably on the Devonian limestone of the Lisburne formation, from whence the series extends northward a distance of about 60 miles, where it unconformably meets and underlies the Nanushuk series. Eastward the Anaktoovuk series is probably soon limited by the front of the Paleozoic range, while to the westward and northward it probably embraces and constitutes the so-called Meade River mountains, and, continuing northwestward, may extend to the Arctic coast. The series consists essentially of heavy- bedded impure, dark-gray, or dirty-greenish, fine or medium grained sandstone. An inspection of their mineral constituents shows that the sediments are obviously derived from the Paleozoic rocks of the range, and especially from the Stuver series. Structure.—The strike or trend of the Anaktoovuk series is approxi- mately east and west, with the prevailing dip generally north, so that, broadly considered, the structure is in the main monoclinal. Follow- ing deposition, the beds were gradually uplifted and thrown into gentle anticlinal and synclinal folds, probably in sympathy with the later of the mountain-building forces that were exerted in the range to the south. Two systems of jointing frequently traverse the rocks. Of these, what seems to be the dominant or major system trends northwest and southeast, with dip steeply southward at an angle of 80 degrees, while the secondary or minor traverses the rocks at nearly right angles to the major, with dip 80 degrees southeast, both systems agreeing in general trend with those of the Paleozoics in the range to the south. Age.—The series is determined on fossil evidence to be Lower Creta- ceous, constituting the typical Aucella beds of Alaska. Remains were collected at 8 miles north of the foot of the mountains and successively at other points in crossing the series. Of these forms, the principal or most characteristic, as determined by Doctor Stanton, are Aucella crassocollis 246 ¥. C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Keyserling, or a closely related form and undoubtedly of Lower Cre- taceous age. The series is to be correlated with the Koyukuk series, to be next described, though the lithologic difference between the two series is somewhat marked. KOYUKUK SERIES (LOWER CRETACEOUS) Character and occurrence.—The Koyukuk series constitutes the southern 45 miles of the section lying principally between the 66th parallel and the Arctic circle, on the Koyukuk river. The series, however, is known to extend much farther southwestward, and may with further discovery prove to have a very wide extent over the Koyukuk basin. The rocks of the series consist of impure pink and reddish limestone, dark shale, slate, and some sandstone or arkose, all more or less associated with or intruded by igneous rocks, denoting volcanic activity during and subse- quent to Lower Cretaceous time. The series is represented as limited on the northeast by the Bergman series, which in a general way it seems to underlie, but may later be found to be closely connected with it in point of geologic ‘age. Owing to the various breaks in the sequence of outcrops, and the changed attitude of the rocks, no estimate of the thick- ness of the Koyukuk series can be given as yet. It may be noted. how- ever, that at the point where the fossils were collected, near the southern end of the section, the limestone alone exhibits a thickness of about 800 feet. : Structure—The series has been variously disturbed by folding and some faulting, but the prevailing dip seems to be northward, roughly speaking, at an angle of 40 degrees. A profuse jointing trends nearly north 25 degrees west and dips steeply northeast, while a well marked cleavage dips 75 degrees southeast. Age.—The age of the Koyukuk series is supposed to be the same as that of the Anaktoovuk series, Lower Cretaceous. This assignment. is based on the evidence of fossils collected in the impure Hmestone near the southern end of the section, and which were found to be undoubtedly of Lower Cretaceous age by the presence of Aucella crassicollis Keyserling, thus correlating the Koyukuk series with the Anaktoovuk series, both containing Aucella beds typical of Lower Cretaceous in Alaska. BERGMAN SERIES (CRETACEO vf ) t Character and occurrence.—The series consists of a comparatively uni- form group of rocks, covering a large area in the Koyukuk basin and forming in large part the rolling Koyukuk upland already noted. It succeeds the Koyukuk series on the north, and has a north and south BERGMAN AND NANUSHUK SERIES 247 extent of about 60 or 70 miles. On the north it rests unconformably on the schists of the Totsen series at the base of the mountains, while on the south it is apparently infolded with the Koyukuk series, which it is supposed to closely succeed in geologic age. The series consists essen- tially of thin-bedded or medium-bedded impure gray or brownish sand- stones and dark slates, with some dark shale and occasional conglom- erates ; but along the north it is bordered by a belt of conglomerate from several to 10 miles in width, which apparently represents the basal member of the series. The series is undoubtedly of sedimentary origin, but the sediments have been largely derived from igneous rocks, as shown by the generally feldspathic constituents of the sandstone and by the presence of basaltic or diabasic and granitic pebbles in the con- glomerate on the Alatna river and at Lookout mountain. The sup- posed basal conglomerate on the north is, however, composed essentially of limestone and mica-schist materials derived from the Skajit formation and the Totsen series. An accurate estimate of the thickness of the series cannot be given. From a general impression, however, it seems safe to indicate that it will probably amount to 2,000 feet. Structure—The series has been considerably folded and somewhat faulted, but to a much less degree than the Koyukuk series. A pro- nounced jointing trends northwest and southeast and dips 80 degrees northeast. A minor jointing trends north and south and dips east at an angle of 80 degrees. On the north, where the series apparently rests against the Totsen series, the dip is about 45 degrees south. Age.—No fossils beyond undeterminable lignitic plant remains have thus far been found in the Bergman series. From its apparent close relations, however, to the Koyukuk series it seems that the Bergman series is probably Cretaceous. Lithologically it bears a strong resem- blance to the Anaktoovuk series to the north of the range. NANUSHUK SERIES (UPPER CRETACEOUS) Character and occurrence—On the north, the Nanushuk series succeeds and seems to unconformably overlie the Anaktoovuk series, while north- ward it disappears beneath the Tertiary rocks of the coastal plain, with which its relations are also apparently unconformable. Its width in a north and south direction is about 30 miles, while its east and west dis- tribution is probably somewhat similar to that of the Anaktoovuk series. The rocks are mainly thin bedded gray and brown sandstone, generally fine grained and sometimes friable, slate-colored arenaceous and impure fossiliferous limestone, dark shale or mud rock, soft uncleaved slate, fine grained gray quartzite, drab-colored chert, and bituminous coal. 248 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA Where best observed on the Anaktoovuk, the beds strike nearly east and west and dip south at an angle of 80 degrees, but the prevailing dip of the series, however, is probably north. The series has been somewhat folded and slightly faulted, and it is cut by a pronounced system of joint- ing or sheeting along planes approximately horizontal. Age.—On fossil evidence, the series is assigned to the Upper Cretaceous by Doctor Stanton, who has identified the following forms : Inoceramus, a large species. Tellina, two species. Astarte, numerous. Siliqua. Nucula, numerous specimens. Modiola. Avicula. Scaphites. Pectiunculus, several specimens. Hammonia. Thracia. UPPER CRETACEOUS ON THE KOYUKUK To the south of the Endicott range and south of the limits of the section in the Koyukuk region, Upper Cretaceous has also been found. Of the collection made here by the writer, Doctor Stanton reports the following forms and refers the beds to about the same horizon as the early Chico: Ostrea. Lucina. Anomya. Trigonia cf. T. leena Gabb. Mytilus. Corbula. : Pectunculus cf. P. veatchit Gabb. Actxonella ef. A. ovifornis Gabb. Opir ? TERTIARY—COLVILLE SERIES This series of Tertiary terranes succeeds the Upper Cretaceous or Nanushuk series on the north, forming a flat tundra country or coastal plane. It extends from some distance above the mouth of the Anak- toovuk 100 miles northeastward to the Arctic coast. The inland edge of’ the coastal plain has an elevation of about 800 feet, from which, with very gradual slope, the surface descends approximately to sealevel at the coast. The series consists principally of heavy bedded, partially con- solidated silts or mud rock, with intercalated harder layers of soft sand- stone, limestone, shale, lignite, and unconsolidated silts (see plate 48). The sediments are conspicuously derived from the preceding Cretaceous formations and the Paleozoics of the Endicott range. So far as observed during the past season, the series is separable into two parts—Oligocene and Pliocene. The portion assigned to the Oligocene is best exposed along the Colville in the region of the mouth of the Anaktoovuk. Here VOL. 13, 1901, PL. 43 BULL. GEOL. SOC. AM. COLVILLE RIVER AND BLUFFS COLVILLE SERIES 249 . it constitutes the lower three-fourths, or 150 feet, of the section exposed, and includes ‘all the above noted rocks, excepting the unconsolidated silts. These latter are free from lignitic remains, and on the basis of their invertebrate fossils are assigned to the Pliocene. Accordingly the Pliocene, so far as observed, gonsists of nearly horizontal stratified beds of mostly tine gray slate,and ash-colored calcareous silts, containing faunal remains. By conservative estimate the thickness of the Colville series is probably 500 or 600 feet, and, judging from topography, it prob- ably has a very great extent in an east and west direction, possibly reach- ing the coast in the region south of point Barrow. Though the series, as shown in plate 48, has been slightly faulted, ° folded, and crowded from the inland direction, it is on the whole but little disturbed. The beds lie nearly horizontal or dip gently north or northwestward at a low angle of 4 or 5 degrees, as shown in plate 43. The lower part of the series is supposed to be Oligocene on the ground of the presence of the lignite beds and vegetable remains it contains and its resemblance to known similar beds occurring elsewhere in Alaska, and also on the ground of its relation to the Pliocene silts which it im- mediately underlies. Lignitic shale examined by Doctor Dall is sup- posed to contain the form of Sequoia lungsdorfi Heer. The upper part of the series is assigned to the Pliocene on the basis of its fos8il forms, which have been reported by Doctor Dall as follows : Chrysodomus, 2 species. Macoma incongrua von Martens. Amauropsis. Astarte semisulcata Leach (possibly Tachyrhynchus polaris Beck. Quaternary intrusion). Macoma frigida Hanley. Saxicava arctica L. PLEISTOCENE THE DEPOSITS Besides the present stream gravels, the most important Pleistocene deposits traversed by the section, but not represented on it by reason of the small scale, are the Goobic sands, glacial deposits, ground ice, and muck. GOOBIC SANDS This formation is a surficial deposit of brownish sand or loam about 10 or 15 feet in thickness, which, like a continuous mantle, overlies the beds of the Colville series unconformably, as shown in plate 43 at the top of the bluff just above the light-colored triangular exposures of Pliocene. It seems to be distinct from the Colville series and to be persistent over XXXVII—Burn. Gron. Soc. Am., Vor. 13, 1901 250 F.C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA a wide area of country. It not only forms the surficial terrane of the coastal plain along the Colville, but seems to be persistent along the coast from the mouth of the Colville westward, while its inland margin seems to overlap onto the Upper Cretaceous of the Nanushuk series. In char- acter, the material composing the deposit is fine-grained and, on the whole, uniform or homogeneous. Its description as fine sand, with an admixture of considerable silts or earthy material, perhaps best conveys an idea of the texture of the deposit. In some localities it seems to be more distinctly sandy toward the base and earthy toward the top, where it sometimes grades into from one to several feet of dark-brown or black humus or muck, clothed at the surface with moss and a little grass. The deposit is ordinarily free from gravel, but in several instances peb- bles ranging from mere grains to as large as one-fourth of an inch in diameter were found. These consist essentially of dark flint and may be characterized as subangular. They are sometimes roughened or grooved, as if wind-worn. They occur very scatteringly indeed. It should be noted, however, that in some instances a very fine gravel or grit occasionally intervenes between the base of the deposit and the underlying Tertiary beds. The deposit, as a rule, is structureless or devoid of stratification. In only a féw instances were indications of stratification observed, and this, though it was faint and indefinite, seemed to dip at a considerable angle and was accompanied by indistinct crossbedding. Weathered faces of the deposit frequently present the appearance of unpronounced stratifi- cation ; but on careful removal or cutting away of this weathered part, in search of more conclusive evidence, the material is found to be struc- tureless. Owing to its surficial and widespread occurrence, the homo- geneity of its materials and its structureless character, and the difficulty of explaining its origin, for want of a better term in field-work the de- posit was called loess. After further consideration, however, it is feared that the retention of the term would be undesirable, for which reason the deposit is here given the name of Goobic sands. To account for the origin of the Goobic sands, the following causes have suggested themselves, namely, glacial, fluviatile, delta, eolian, marine or beach, none of which alone seems to afford a satisfactory ex- planation. It is probable, however, that the fluviatile delta theory, in conjunction with shallow coastal conditions and intense Arctic freezing, may prove the most tenable. GLACIAL MATERIAL ; . bor tinea da While there is no evidence ofAtealp+recional glaciation in northern Alaska, it is now known that ice action has been far more extensive than PLEISTOCENE DEPOSITS 251 has been generally supposed by geologists who have drawn their deduc- tions concerning this remote region from observations made on a trip down the Yukon or along the western coast. The Endicott mountains, as illustrated in the topography shown in plate 42, do not seem, so far as observed, to. have been overridden by an ice-sheet, but in the valleys nearly everywhere there is such evidence of ice drainage as strise, ter- minal moraines, and deposits of till. The breeding ground for these glaciers was in the Endicott range, with the zone of maximum accumu- lation probably somewhat north of its median line. Here the mountains were doubtless largely overlain by an ice cap or névé, but the ice move- ment was confined essentially to the drainageways leading off to the north and to the south. But on the north slope of the range the ice seems to have moved off, at least locally, in a continuous sheet or small regional glacier, with its front reaching north beyond Willow creek, some 35 or 40 miles beyond the base of the mountains. This is evidenced by the more or less continuous till sheet overspreading the entire region and by deposits of drift and erratics on the highest portion of the Cre- taceous plateau. In the valleys this sheet or ground moraine attains a thickness of about 150 feet. From the edge of the ice-sheet ice drainage in the form of valley glaciers continued about 40 miles farther north- ward, to near the mouth of the Anaktoovuk, but none crossed the Col- ville, whose drainageway does not seem to have been interrupted since the Tertiary. Aw. On the south_#f the Koyukuk basin similar, but not so pronounced, evidence extends to beyond the Arctic circle, a distance of 50 or more miles southward from thé base of the range. Here, however, the gla- cial phenomena, so far as observed, are more of the valley glacier type, but the deposits are undoubtedly till and contain striated pebbles of distinctly glacial type. Along the route of traverse, omitting the mound- like remnant, about 3800 feet in diameter and 60 feet in height, near the middle of the range in John River valley, the glacial ice has disappeared from the country. GROUND ICE, MARSH, MUCK, MUD FLATS, ETCETERA The northern 30 miles of the section, pet the point where the Tertiary bluffs of the Colville series leave the river, lie in marsh flats whose inland half is continuous with the ground abandoned by the Col- ville river in its lateral migration or drifting of 30 or more miles west- ward and its simultaneous down-cutting into the Tertiary terranes, while the coastal half lies in the Colville delta, both of which features, however, slope down to low marshes, and finally expansive tidal mud 252 =F. C. SCHRADER—GEOLOGICAL SECTION IN NORTHERN ALASKA flats and bars at the coast. Inland, these abandoned flats are probably underlain, in part at least, by the lower beds of the Colville series; but where their edges form the banks of the river at 10 to 20 miles from the coast they seem to be composed of dark muck and ground ice for a depth of 10 or 15 feet below the surface. DEEP SEA EXPLORATIONS BY C. H. TOWNSEND DIRECTOR OF NEW YORK AQUARIUM Printed by permission from THE NEW INTERNATIONAL ENCYCLOPAEDIA PuBLISHED BY Dopp, Mrap anp Co. Coprricat, 1902, sy Dopp, Mreap anp Co. DEEP-SEA EXPLORATION 1. U.S.S, ALBATROSS dredging, 8. SURFACE NETTING. 2. THE OREDGE AND ITS RIGGING. 4. TANGLES, 5. INTERMEDIATE SELF-CLOSING TOW-NET. DEED. deeds being required only to convey the class of interests known as incorporeal, such as ease- ments, profits, future interests in land, and the like. : But deeds have now, under the technical description of grants, almost entirely superseded other modes of conveyance of interests in land. Only estates for years or tenancies at will are still capable of arising by parol or by writing not under seal, and in England even leaseholds, for three years and upward, can be created or transferred only by deed. In Great Britain and most of the United States, the general use of deeds for purposes of conveyance is a matter of regulation by statute. In form, however, the deed remains substan- tially the same as at common law. The writing must still be on paper or parchment, though it may to-day be done by the typewriting machine or the printing-press. The old requirement of a seal is also generally adhered to, though in a few of the Western States it has been abolished, and in most others a scroll, or similar mark made with the pen, may be substituted for the more usual wafer or sealing-wax. But, whatever its form, the important thing is not the adhesion to the paper of something called a seal, but the sealing of the instrument by the party to be bound by it. It must be ‘his own act and seal.’ At the present time, also, it is generally con- sidered that the instrument must contain the name of the maker in his own handwriting, al- though prior to the Statute of Frauds, in 1648, signing was not necessary to the validity of deeds, and it is not clear that the statute con- templated any addition to the formalities with which they were already surrounded. Delivery is properly accomplished by the obli- gated party handing over the sealed writing in person to the party to be benefited thereby. Either party may, however, be represented by an agent, and a delivery to an unauthorized third person is good if subsequently ratified by the benefited party. Indeed, it has been held that any unequivocal act on the part of the obligated party, showing an intention to vest the posses- sion of the document in the benefited party, is sufficient to constitute a delivery, even without a manual transfer of possession to any one—as where the former, at or after the time of sealing, utters the words, ‘I deliver this as my act and deed,’ or where he incloses the sealed writing in an envelope, addressed to the benefited party, though retaining it in his own possession. There is some cogflict of authority, however, as to whether a delivery of the latter sort, or to a third person, which, in fact, never comes to the , knowledge of the party intended to be benefit will be sustained by the courts. be a conditional delivery, which is m: third person, as an ‘escrow,’ or mey@ writing, to be delivered over to the benefited party on the performance of some act or the happening of some event. An escrow does not take effect as a deed until the delivery over, when it takes effect, by relation back, as of the time of its first de- livery. See Escrow, and the titles of the vari- cus kinds of deeds. as Covenant; Grant; Liase AND RELEASE. Consult: Coke on Littleton; Blackstone, Commentaries on the Laws of Eng- land; Kent, Commentaries on American Law; Pollock and Maitland, History of English Law (2d ed., London and Boston, 1899) ; Holmes, 740 DEEP-SEA EXPLORATION. The Common Law (Boston, 1881); and the au- thorities referred to under REAL Property. DEEMS, Cuartes Force (1820-93). An American clergyman. Te was born in Baltimore, graduated at Dickinson College in 1839, and was for some time agent in North Carolina for the American Bible Society. He was professor of logic and rhetoric in the University of North Carolina from 1842 to 1845, and held the chair of natural sciences in Randolph Macon College (Ashland, Va.) from 1845 to 1846. He then became a Methodist preacher at New Berne, and for five years was principal of the Greensboro Female College. In 1865 he went to New York, where he helped found the Church of the Stranger (unde- nominational), of which he became pastor. In 1881 he founded the American Institute of Chris- tian Philosophy. Among his many publications are: Life of Dr. Adam Clarke (1840) ; The Home Altar (1850); Annals of Southern Methodism (1856) ; Life of Jesus (1872); A Scotch Verdict in Evolution (1886); The Light of the Nations (1886) ; The Gospel of Common Sense as Con- tained in the Canonical Epistle of James (1889) ; Chips and Chunks for Every Fireside; and Wit, Wisdom, and Pathos (1890); The Gospel of Spiritual Insight, and Studies in the Gospel of John (1891). Consult his Autobiography (New York, 1897). DEEM’STER, Dempster, or Doomster (AS. dom, doom, judgment, as in Domesday Book; hence doomster or deemster, a judge). The name of an officer formerly attached to the High Court of Justiciary in Scotland, who pronounced the doom or sentence of condemned persons. The office was held along with that of executioner. At the conclusion of a trial, this dread official was produced in open court, in presence of the wretched criminal, as is graphically described by Scott in his tale of Old Mortality. See notes to that work, and also notes to Heart of Mid- Lothian. The office of deemster has been long abolished. In the Isle of Man and Jersey deem- sters are judges, the office as well as the title be- ing of great antiquity and dignity. The highest judicial authority in the Isle of Man is divided between two deemsters, one for the northern and the other for the southern half of the island. DEEP RIVER. A river rising in Guilford County, N. C. (Map: North Carolina, C 2). It flows southeast and then east, and, joining the Haw River (q.v.) in Chatham County, forms the Cape Fear River (q.v.). About 120 miles long, the stream drains an area of 1350 square miles. Extensive coal and copper deposits are found in its valley. It furnishes extensive water-power -at Lockville, and is navigable to Carbonton. DEEP-SEA EXPLORATION. The depths of the sea have been explored with precision only during comparatively recent years. Deep-sea investigations began in the necessity for accurate soundings for submarine cables, and this is still the main reason for sounding, but much more has been accomplished in this field by dredging for purely scientific purposes. The most important part of our knowledge of deep-sea conditions has been gained since 1870. The Challenger expedition sent out by the British Government from 1873 to 1876 (see CHALLEN- GER) engaged in pelagic investigations for nearly four years, sounding and dredging in the oceanie basins at more than 350 different places. This cr DEEP-SEA EXPLORATION. 7 vessel was well equipped, and carried a scientific staff under the direction of Sir Wyville Thomson. A great amount of deep-sea work was accom- plished, and the large series of Reports form the most important contribution ever made to the lit- erature of this subject. Other extensive deep-sea investigations have been conducted at various times by most of the European governments, while vessels of the United States Coast Survey, or of the Fish Commission, have been engaged in them more or less regularly since 1870. The Prince of Monaco has made very important con- tributions to this department of knowledge, as he has for many years employed his yachts almost entirely in deep-sea work, and has devoted much time to the improvement of the appliances for investigation. The methods employed by the earlier investiga- tors for measuring the depths were slow and un- certain, for their soundings were made with hemp rope, which was greatly drifted by currents and gave inaccurate depths. The soundings and dredgings conducted on the Challenger were so made, and often under great difficulties. At the present time such investigations are made by means of wire, the first successful employment of which was by Sir William Thomson in 1872. Wire sinks rapidly, presents the least frictional surface, and is but little affected by currents; and the machinery is now so perfect that sound- ings may be made with accuracy in the greatest depths. The improved methods show that the early soundings by the Herald, Congress, and other vessels with rope, supposed to have reached over 7000 fathoms, were erroneous, and that there are probably no such depths in the ocean. The greatest depth known was discovered by the United States cable-survey ship Nero in 1900, near the island of Guam, where a sounding was made of 5269 fathoms, or nearly six statute miles, a depth sufficient to submerge the highest moun- tains. It is probable that future soundings will reveal slightly greater depths. For four years prior to the voyage of the Nero the deepest water known was north of New Zealand, where the British ship Penguin sounded in 5155 fathoms. Off the coast of Japan, in 1874, the United States ship Tuscarora found a depth of 4655 fathoms; and in 1900 the United States Fish. Commission steamship Albatross made a sounding in the western Pacific of 4813 fathoms. Many great depths have been discovered in the Atlantic, the deepest (4561 fathoms) off Porto Rico, by the United States Coast Survey steamer Blake. More than forty ‘deeps,’ or depressions ranging from 3000 to 5200 fathoms, are now known, some of them mere holes, others of vast extent. The deeps are well distributed over the seas, but none have been found north of the fifty-fifth degree of latitude. The average depth of the sea is probably not less than 2200 fathoms. Meruop or Sounpine. In the operation of sounding several instruments are sent down with the wire. A thermometer takes the temperature at the bottom; a closing cylinder brings up a specimen of the bottom water for analysis, and the sounding cylinder at the end of the line brings up a specimen of the bottom mud or ooze, for examination as to the character of the bot- tom. These instruments are all self-acting at the bottom and are not affected in rising to the surface. To the sounding cylinder is attached the sinker 41 DEEP-SEA EXPLORATION. —a 60-pound iron shot—which detaches itself on striking the bottom. An indicator attached to the reel on deck shows the number of fathoms of wire that have run out. After sounding the wire is reeled in by steam. It takes about one hour to make a sounding three miles deep and get the instruments back on board. Deep-Sea Drepeine. The methods employed on board the United States Fish Commission steamship Albatross, doubtless the best-equipped deep-sea dredger in existence, may be taken as illustrative. The Albatross has brought together larger deep-sea collections than have been made on any other vessel. She has made nearly 6000 hydrographic soundings, and nearly 2000 hauls of the dredge or beam trawl. The investigations of this vessel cover areas extending from the Banks of Newfoundland along both coasts of North and South America to Bering Sea, and also limited areas in the tropical Pacific, and in the regions between Japan and Kamchatka. Her work has carried dredging into deeper waters than ever before, animal life having been obtained near the Tonga Islands at a depth of 4173 fath- oms, while the dredge on one occasion in Bering Sea brought up from a depth of 1771 fathoms more than 800 deep-sea fishes at a single haul. The creatures of the deep sea are brought up by means of a dredge or beam trawl towed by a wire rope, operated by a powerful engine on deck. The first operation in dredging is to ascertain the depth by sounding, after which the trawl is put overboard and allowed to sink to the bottom as the dredge rope is let out. The dredge, or beam trawl, is simply an iron frame to which is at- tached a strong bag-shaped net about 20 feet long. The mouth of the dredge, as formed by the iron frame, is about eleven feet wide and two feet high. Dragged along the bottom, it quickly fills with animals. Sometimes it settles into mud or ooze and is very hard to lift. The dredge rope is connected with a large spring, or accu- mulator, attached to the foremast, which often shows the dredge to be pulling thousands of pounds. Before the dredge reaches the surface, most of the cozy mud washes away, so that the dredge haul is usually light enough to be hoisted from the water and landed on deck with safety. Sometimes it is filled with fishes; sometimes with sea-urchins, starfishes, crinoids or corals: sometimes with squids and devil-fish. It often brings up a varied collection, in which many classes of marine animals are represented. The time required by the Albatross in gmaking her deepest dredge haul—that from 4175 fathoms— was ten hours, the engine reeling in the great weight of line very slowly. In depths of 1000 to 1500 fathoms hauls can be made in three or four hours, according to conditions. In addition to the dredge, another collecting machine, very useful on rough bottom, is the ‘tangle.’ This consists of bunches of shredded rope attached to iron bars, and when dragged over the bottom it frequently brings up sea- urchins, starfish, and crinoids in abundance. A deep-sea fish-trap has been devised by the Prince of Monaco, in which fishes have been taken as deep as two miles. The Albatross, in 1897, suc- ceeded in setting ordinary gill-nets a mile deep, and catching Macrurus and other deep-water fishes. Decp-water exploration by means of gill- nets, traps, and trawl lines promises to yield interesting results, DEEP-SEA EXPLORATION. Deep-Sea Lire. The surface of the sea nearly everywhere bears an abundance of minute animal and plant life. In this surface life, or ‘plankton,’ as it is called collectively, many groups of inver- tebrates are represented. The phosphorescence often seen upon the surface of the sea is due en- tirely to their presence. These almost micro- scopic creatures are constantly dying and falling to the bottom. They constitute the principal food of the smaller animals dwelling there, and their remains form a large part of the deep-sea oozes. The most important forms among them, considered with reference to abysmal deposits, are the Globigerinide and the radiolarians, which are enormously abundant. The marine deposits on the ocean floor are gen- erally referred to three groups: Those of the con- tinental slopes are called Terrigenous Deposits, derived from the land through the wearing ac- tion of rivers, tides, and currents. These coast- wise deposits are the blue, green, coral, or vol- canic muds, and are characteristic of the adja- cent land slopes from which they are derived. Farther off shore, generally about 200 miles, oc- eur the Pelagic Deposits, made up of dead ma- rine organisms from the surface—the minute sur- face life already referred to. Here we find oozes, such as diatom, radiolarian, or globigerina oozes which depend respectively upon the character of the surface life prevailing above them. Beyond these, in the deeper parts of the ocean, are the Red Clay Deposits, which cover about half the ocean floor. This region is not affected by matter from the land, and receives little pelagic matter from the surface. It lies so deep that the shells of surface organisms falling down are removed through the solvent action of the deep water. The red clay is believed to have formed very slowly, not more than a few feet of matter hav- ing accumulated since the Tertiary period. INTERMEDIATE DEPTHS. The question as to the existence of life at intermediate depths has been given general reconsideration since the perfecting of closing tow-nets for the exploration of such depths. The experience gained with the various intermediate nets used on board the Albatross has shown no mingling of surface and bottom forms. The latter occur, of course, at all depths along the Continental slopes. See DrsrTRrBvu- TION OF ANIMALS. From the evidence now at hand with respect to light in the sea, it seems certain that the sun- light does not extend below a couple of hundred fathoms, and even there becomes very dim. Be- low this the vast body of the ocean is absolutely dark, being illuminated only where phosphores- cent creatures may shed a certain amount of steady or intermittent radiance (see below). Conprtions aND Lire at Great Deprus. It is always cold at the bottom of the sea, the influence of the warm surface waters not extending below a few hundred feet. In the great depths the temperature is always close to the freezing-point. In warm equatorial seas, where the depths ex- ceed 400 fathoms the difference between surface and bottom temperatures usually ranges from 40° to 49° F. It has been found that from 100 fathoms down, or throughout the waters beyond the influence of the sun, temperatures remain practically constant. At the surface of the sea the lines of equal temperatures are parallel with the equator, although subject to deflections by currents, while at the bottom they follow the 742 DEEP-SEA EXPLORATION. general trend of the continents. The cold water of the depths comes from regions far to the north and south of the tropics, the coldness being due to the water in polar or subpolar regions sinking and gradually spreading itself over the ocean floor. If for any reason the cold polar waters should cease to flow downward toward the deep tropical basins, the deep-sea water would rise in temperature, and deep-sea life would perish from lack of the air which the polar currents absorb at the surface and carry down with them. So far as is known, the bottom currents are extremely slow, and, as the water is not affected by storms, it is likely that the lower part of the deep sea is a place of calm repose. There is a tremendous pressure of water in the depths; so great, in fact, that it will crush all ob- jects that are not constructed to resist it. All deep-sea instruments are made to withstand a pressure increasing about a ton to the square inch with each 1000 fathoms of depth. At the greatest depth known there would, therefore, bea pressure of nearly six tons to each square inch of surface. The tissues of deep-sea animals are so permeated by fluids, however, that a balance is maintained, and at the bottom they may be as firm as animals of the shallow waters. Most of these creatures are so soft that when withdrawn from the pressure which keeps them in a firm condition at the bottom and brought to the sur- face, they must be treated carefully to prevent their going to pieces. The bones of abysmal fishes are especially cartilaginous. When deep- sea creatures are dragged to the surface from deep water they are always dead, and doubtless die during an early stage of their upward jour- ney. PHOSPHORESCENCE AND Coror. It has been men- tioned that no light reaches the abyssal regions, which are absolutely dark so far as sunlight is concerned; hence plant life is unknown there, and all the animals of the depths are carnivorous. Deep-sea dredging, however, has brought up so many phosphorescent animals that there can be little doubt of considerable phosphorescent light in the depths. The amount of such light given _off at the surface is no measure of that produced under normal conditions at the bottom. Phos- phorescent organs take many forms in the depths, and occur in both fishes and invertebrates. The colors of deep-sea animals are usually as brilliant as those of animals living under the influence of light, although not so varied. The reds, yellows, purples, and greens predominate, and the colors, when they occur at all, are apt to be in solid masses, in striking contrast, or the whole animal is of a uniform brilliant coloration. There is a conspicuous absence of blue. The fishes, as a rule, are dark-colored, but many of the crustaceans, holothurians, and starfish are brilliant. EXPLANATION OF PLATE. 1. Method and theory of deep-sea dredging, as practiced on the U.S. 8. Albatross. 2. The deep-sea dredge and its _ derrick. 3. Gathering the surface life, by hand nets, and by a towing net rigged to the port boom. 4. The tangles, showing its rigging. 5. The Townsend intermediate net, open and closed. Having been sunk to the depth desired, it is towed for a time and then a sliding weight is allowed to run down the line; striking the ring which holds upright the iron arm hooked to the tow-rope, it dislodges the ring and releases the arm, which falls, permitting a weight be- neath it to slide down and pinch together the folding rim of the netting bag, which may then be drawn up without loss of contents. DEEP-SEA EXPLORATION. Some of the deep-sea animals are blind. Those that have eyes probably capture their prey by the phosphorescent light shed from their own bodies and the bodies of the vast number of other creatures that are constantly flashing their faint lamps over the ocean floor. Fishes of the greatest depths have the smallest eyes, while those of mod- erate depths have very large eyes, as, for in- stance, those of the Macrurus type. Many of them have highly developed organs of touch. Some of the fishes have enormous jaws, much larger proportionately than are found among shallow-water forms. Their teeth also are more formidable. See Macrurus and Plate of CopFisH AND ALLIES. Sizz. All the animals that have so far been brought up from deep water have been taken in dredges of moderate size, so small, in fact, that they are only capable of taking small animals, the largest specimens of fishes seldom exceeding four or five feet in length. It is quite possible that by using larger dredges larger animals could be taken. ConcLusion and BisiiocrapHy. It will be seen from the foregoing that the fauna of the depths lives under such extraordinary conditions as temperature close to the freezing-point, pres- sure amounting to a ton to the square inch for each 1000 fathoms of depth, and darkness except for light due to phosphorescence. Consult: Thomson, Depths of the Sea (London, 1873); Wild, Thalassa (London, 1874); Re- ports and Narratives of the Challenger Expedi- tion (see CHALLENGER ExpepITIOoN) ; A. Agassiz, Three Cruises of the ‘Blake’ (Boston, 1888) ; an- nual Reports, Bulletins, ete., of the United States Fish Commission (Washington, 1872 onward) ; Bulletins and Memoirs of the Museum of Com- parative Zodlogy (Cambridge, 1875 onward) ; Tanner, Deep-Sea Hxploration (Washington, 1897) ; Townsend, Records and Bibliography of the ‘Albatross’ (Washington, 1901). DEEP-SEA FLOUNDER. A name given lo- cally in the North Atlantic States to both the plaice and the pole-flounder (qq.v.). DEEP-WATER SCUL/PIN. See Sea-Raven, DEEP-WATER TROUT. See SQueTeacuE. DEEP-WATER WHITING. See Wauittne. ~ co ties acne wild beast, animal, Ger- Thier, a oth. dius, wild beast; cf. AS. déor, bold, OHG. tiorlih, wild). The popular name for even-toed, hoofed mammals of the fam- ily Cervide and subfamily Cervine. The musk (q.v.), usually called musk-deer, forms a dis- tinct subfamily, which is sometimes accorded full family rank. More than fifty species of deer are known, occurring in all parts of the world except Australia and southern Africa. South- eastern Asia especially abounds with them, some of the largest as well as many of the smallest residing there. Only two species of deer dwell in the whole continent of Africa, and both of these are near relatives of European species and occur only in the northern parts of the continent. In North America there are perhaps eight or ten species of deer, while Central and South America possess u much larger number. Deer are characterized by the absence of a gall- bladder and the possession of upper canines, lat- eral digits on both fore and hind feet, « remark- able suborbital sinus or tear-pit below each eye, 743 _ ealled a ‘hart.’ DEER. and antlers. Antlers are the most noticeable of these characters, though they are usually present only in the male. The female reindeer has ant- lers and individual females of other species some- times have small ones. Antlers (q.v.) are out- growths of bone, which are covered with a thin, highly vascular hairy skin during their growth, but when this is completed the blood-supply is cut off, and the skin, or ‘velvet,’ as it is called, dries up and is peeled off, leaving the bone bare. Antlers are renewed annually, the fully formed pair becoming detached from the ‘pedicels’ on which they were developed, and a new pair aris- ing at the same place. Antlers are usually shed soon after the close of the breeding season. An antler may be straight and unbranched, but usually there are branches, called tines or snags. The number of these increases with age, so that the most handsomely developed antlers are found only on fully matured males. The antler and its branches are generally more or less cylindrical or terete, but in some cases they are very much expanded and flattened, and the antler is then called ‘palmated.’ . Deer are animals of very graceful form, com- bining compactness and strength with slenderness of limb and fleetness. They have for many cen- turies been renowned as objects of the chase, and the flesh of many species is highly esteemed for food, under the name ‘venison.’ The best-known species, which may serve as an example of the group, is the European red deer (Cervus elaphus), the adult male of which is the ‘stag,’ and the female is the ‘hind.’ The former is some- times nearly seven feet long and over four feet in height, but the hind is much smaller. The body is covered by a double coat of fine wool and longer, coarse hairs, the latter longest on throat and chest. The wool is brownish-gray, and as it is longest and most abundant in winter, the sum- mer coat is brighter-colored and smoother. The young are spotted with white. The antlers are at first unbranched and only show the number of tines characteristic of the adult in the fifth year, and it is not until then that the young male is dignified with the name stag. An old stag is The hinds and young stags are usually found together in large herds, but the older stags occur in smaller groups, while harts are generally found alone. The feeding time is during the evening and at night. The food varies with the season; in winter it is chiefly lichens, moss, bark, and buds, while in summer leaves and herbs form most of the diet. Stags are said to eat only fungi during the breeding season. The red deer occurs in all parts of Europe and in northern and western Asia, It is exterminated as a wild animal in populous districts, but is preserved as an object of the chase, or as a semi- domesticated pet, in all parts of western Europe, though not so common in Great Britain as the fallow deer. It is exceptionally swift of foot and an excellent swimmer, and all of the senses are marvelously acute. The hinds and fawns are gentle and can be tamed as pets, but the stags are untrustworthy and become quite dangerous during the breeding season. The American deer (Cariacus or Odocoileus Virginianus) is considerably smaller than the stag, but resembles it in many of its habits, It is found throughout the eastern United States, ranging northward into southern Canada, west to the Missouri, and south to Florida and Texas. \\ \ SS SS ~