. ENCOYD /RON IVORKS ^.ScPRobertsSqCo. Ph/LAD£LPH/A, Pa. Wrought Iron AND IN RUCTION 1892 Franklin Institute Library PHILADELPHIA JLci 9 Accession^.^.2c^-k.. REFERENCE GIVEN BY Wpoiigbt Ipod and Steel IN CONSTRUCTION. CONVENIENT RULES, FORMULJi:, AND TABLES FOR THE STRENGTH OF AVROUGHT IRON AND STEEL SHAPES USED AS BEAMS, STRUTS, SHAFTS, ETC. MADE BY THE PENCOYD IRON WORKS. A. & P. ROBERTS & CO. IRON AND STEEL DEPARTMENT, MANUFACTURERS OF OPEN HEARTH STEEL AND WROUGHT IRON, .SHAFii:S, B^IiS. FORGINGS, SHAFTIN-G/MAM-MEEED. - AZLES AND STRa'^TVRA?. :^CArE£:iAL. , BRIDGE AND jCONSTRUCTlpN OEI^AH tVeM f, DESIGNERS AND MANUFACTURERS OF RAILROAD BRIDGES, VIADUCTS, TURN-TABLES, AND ALL CLASSES OF STRUCTURES OF IRON OR STEEL. EIGHTH EDITION. 1892. 261 OFFICE : SOUTH FOURTH STREET, PHILADELPHIA, PA. Copyright, 1892, A. Si P, ROBERTS &^ CO. PRESS OF Globe Printing House, philadelphia. THE GETH' CENYLK PREFACE TO EIGHTH EDITION. .^rxcE tlie first edition of " Wroiifjlit Iron and Steel in Con- struction" was issued in tlie year 18S4, such radical chane rolled of any thickness between minimum and maximum. AVeights corresponding to the principal intermediate thicknesses are given in tables on pages 10, 11, 12 and 18. The legs of angles increase slightly in length as the thickness increases, as described on page 18. This sometimes causes angles of heavy sections to vary from the calculated weights. Therefore orders should specify either the desired thickness or weight per foot, but not both. Tee sections cannot be altered from the standards as given in tables and lithographs. Bars and Miscellaneous Shapes can be rolled in either steel or iron. Sections which cannot be rolled of both iron and steel are so noted on the lithograph plates. The weights given for sections which can be rolled of either iron or steel, are for iron unless otherwise stated, and when these sec- tions are rolled in steel the weight will be about 2 per cent, heavier. (1) 2 SIZES AND WEIGHTS OF IRON BEAMS. PENCOYD IRON X BEAMS. art Number, { th in Inches. Web Thickness. Weight i^er m Pounds. Approximate Weight in Pounds per Foot for each Thickness of Web, in Inches. Increased Thickness in Inches for each Additional Pound i per Foot. \ 6 % % % 1 2 15 15 63.43 49.33 49.33 52.45 63.43 55.58 66.55 58.70 72.80 79.05 |.020 3 4 12 12 21 II 57.06 40.10 41.97 44.47 46.97 60.81 65.8 1 .025 5 5^ 6^ 101 10^ IS M \h 45.10 36.53 30.00 31.09 37.62 33.27 46.19 39.81 35.45 48.37 42.00 50.56 44.19 j- .029 7 8 10 10 37.50 30.46 31.50 33.58 37.50 35.46 39.58 41.66 45.83 |.030 9 10 9 9 30.93 23.93 23.93 25.83 31.87 27.73 33.74 29.63 35.61 |.033 11 12 8 8 41 27.53 20.80 21.21 22.85 28.36 24.49 30.03 26.13 31.70 1 .037 lo 14 n 1 7 7 99 9R 17.53 17.89 19.33 20.77 99 9R 22.21 9*5 R7 |.042 15 16 23 24 6 6 6 6 ft 1 2 18.83 13.66 39.30 30.90 14.28 19.46 15.54 20.73 16.80 22.01 18.06 23.28 30.90 24.55 32.15 25.83 39.30 33.40 41.80 35.90 44.30 |.050 17 5 ii 10.10 10.88 11.93 .060 19 20 4 4 _7_ t\ 8.33 6.13 8.75 7.33 9.59 8.13 10.42 11.26 |.075 21 22 3 3 A 6.86 5.26 7.17 6.16 7.80 6.76 8.43 9.06 j.ioo SIZES AND WKIOHTS OF STEEL BEAMS. PENCOYI) STEEL I BEAMS. 3 521 15 522 15 523 15 524 15 515 12 3 12 4 12 516 12 5 m 5U0^ 6 m 7 10 8 10 511 10 9 9 10 9 509 9 11 8 12 8 507 13 7 14 7 505 7 15 6 16 6 23 6 24 6 503 6 17 5 18 5 19 4 20 4 21 3 22 3 43.29 49.30 57.60 69.80 H 30.63 58.20 40.90 \:\ 40.60 i i i§ 46.00 i| 37.26 Ih 30.60 h 38.25 31.07, 23.21 P 31.551 iV 24.41i 20.30 ^i^ 28.08 j.f 21.22 U 17.27 Api>roxiin(i((' Weiff/if in Poumi.s per Foot J'oi curh Thirkiicss of Web, in, Inches. \ h % 1^ \ 43.8846.8649.84 51.20 55.00 57.60 60.77 63.95 70.30 71.38 77.70 84.02 31.89 34.42 36.95 62.281 I 42.8845.5448.19 I 41.9544.6547.351 ' I I47.lll49.35 51.58 38.3740.5942.8245.04 31.67 33.81 35.95i I 38.2540.3742.5046.75 32.09 34.13 36.17' 23.73 25.83 27.92 30.02 32.52 34.45 36.39 24.41 26.34 28.28 30.221 21.27 23.23 25.19, I 28.94 30.66' 21.64 23.3124.98 26.65 18.54 20.22 I 1 y^,. 22.70 '22.70 24.14 Jt5 17.8818.2519.7121.17 22.64 14.44 14.81 16.29 17.78| 19.21 19.85 21.15 22.45 23.75 25.05 26.35 y., 13.9314.5715.8517.1318.42 1 .020 1 .025 1 .028 1 .029 1 .033 \.037 042 40.08 31.52! 11.9312.58 13.8915.20 10.30' 11.10 12.17 9.2810.0611.1212.17 8.50 8.92I 9.7710.6311.48 6.25 7.47 7.00' 7.32 5.371 6.28 40.08,42.63,45.19 31.5232.79 34.07 36.62! 8.29| 7.96 8.60 6.90 9.24 -.049 .059 ,074 .098 DIMENSIONS OF PENCOYD BEAMS. PENCOYD I BEAMS. Minimum. Weight in Pounds per Foot. Iron. 63.43 49.33 57.06 40.10 30.03 45.10 36.53 30.00 37.50 30.46 30.93 23.93 27.53 20.80 22.26 17.53 39.30 30.90 18.83 13.66 10.10 8.33 6.13 6.86 5.26 Steel. 42.39 49.30 57.60 69.80 58.20 40.90 30.63 40.60 46.00 37.26 30.60 38.25 31.07 23.21 31.55 24.41 20.30 28.08 21.22 17.27 6.25 7.00 5.37 W. Ins. .56 .44 .41 .45 .50 .59 .65 .45 .35 .40 .47 .41 .35 .50 .35 .30 .41 .31 .28 .41 .30 .26 22.70 .44 17.88 i .24 14.44 .24 40.08 .63 31.52 .50 19.21 .28 13.93 .22 11.93 .22 10.30 ' .26 9.28 .20 8.50 .22 .16 .22 .16 F. Ins. 5f§ sf 51 5i 5i ^ ^ ^ f 4 3H 31 3i 5J 4J 3if 3P 3A 3 m c. E. Ins. Ins. 14- a 1 ^1 i 1 i 1 5 9 T% H \h i i li U H §J 1 i it i 1 if H a i 4i y i In 12 Ins. 2J if ii 241 ill 21 2tV 2i4 2if m 2ft 2ft 114 2ft 2ft 2ft Ig 2^ 2ft 24 m m m m 144 2 2 0. Ins. m 2j 2ft 2i Ins. I to f J to] I to ^ I to i i J toi ftoi ftoj ?to| Stof I tot toi to J ttoS ftof DIMENSIONS OF PENCOYD CHANNELS. '^^^Ib. PENCOYD CHANNELS. Minimum, Weight in W. F. C. F. B. 0. li. M. T. 1 § Lbs. per Foot. Ins. In 12 Iron. Steel. Ins. Ins Ins ns. Ins. ns. Ins. Ins. 15 30 47.03 48.00 t 8 1 i 21 i \l iij 15 53 35.33 36!00 31 1 1 2 2i i 'il ii; : 13 55 29.47 30.10 3 1 3 '8 2| i or 1 \l 101 12 31 29.70 OA on il 1 1 b 2iV '-'lb li 3 4 32 8 f f 12 54 a_ •32 Q O u If l| 3 3 4 9 12 427 20.90 21.30 9, ^2 q 3 h 8 T 1? 1 2 9 12 32 20!07 20!50 ^2 2S ^8 4 11 32 2-3% li i \i 10 34 20.47 20.90 21 ti 3 ii If If 3 n 10 35 16.07 16.40 J 8 i li 3 4 1 2 m 9 36 17.23 17.60 m 11 It) 111 11 3 4 1 2 6i 9 37 12.70 13.00 17 32 i If It^ 1 7i 8 418 13.50 13.80 i 2i la 32 m If 3 41 6A 8 419 11.00 ^2 2,% li 1 4 M 6, 7 40 13.70 14.00 if 2^2 11 1 6 2i If 5 7 417 9.00 M 2i 13 32 t li 5ii 7 41 8.23 8.40 m T% li i| 5A 6 42 10.73 11.00 h fi m li f 4;^ 6 44 7.70 7.90 i 1 1 2 M 41i 6 415 7.50 lis 1 1* i 4; \ 5 412 8.23 8.40 s 2A 1 li li f i\ 3i 5 413 6.10 lit ii 1, Ifa life li 1 2 1 4 3; \ 4 47 7.20 7.30 i HI li 1 4 2t% 1 t i 2i 4 48 5.50 5.60 m M i if 16 2' ii \ 411 5.17 n If IS if 1 4 2- ii 49 5.10 5.20 3^2 I4i y 1 4 1-1% If 1 li STANDARD SPACING of RIVETS THROUGH FL.ANGES OF Z Size of Z Bar. a. h. c. d. e. 6 inch 111/4 2 4I/4 5 10 61/2 1% 4 1^4 4 8% 51/2 1% 3 1% 3 " 7% 4% 1^2 21/2 l^/s BAR COLUMNS. -6- ALL, RIVETS 3-4 INCH. 6 SIZES AND WEIGHTS OF IRON CHANNELS. PENCOYD IRON CHANNELS. 1 th in Inches. Weh Thickness. it Weight per Foot. Approximate Weight in Pounds per Foot for each Thickness of Web, in Inches. ased Thickness nchesfor each itional Pound j per Foot. 1 \ % 1^ 16 % % 30 53 15 15 8 47.03 35.33 35.33 38.45 41.58 47.03 44.70 50.15 47.83 56.39 62.63 1 .020 55 13 8 29.47 29.47 32.18 34.90 37.61 40.33 .023 31 54 427 32 12 12 12 12 32 29.70 22.37 20.90 20.07 23.62 22.15 21.32 26.12 24.65 23.82 30.95 28.62 27.15 26.32 33.45 31.12 29.65 28.82 35.95 33.62 32.15 31.32 38.45 43.45 48.45 L025 331 33" lOi 101 16 23.63 17.57 17.57 19.76 23.63 25.82 1 .029 34 35 10 10 li JL 4 20.47 16.07 16.07 18.15 22.03 20.23 24.11 22.31 26.19 28.27 30.35 34.51 1 .030 36 37 9 9 13. 64 17.23 12.70 13.17 17.23 15.04 19.10 16.92 20.98 18.80 22.86 24.74 26.62 |.033 418 8 1 4 13.50 13.50 15.16 16.83 18.50 20.16 .038 40 41 7 7 if a 13.70 8.23 10.05 14.06 11.50 15.52 12.96 16.98 14.42 18.43 19.89 21.35 24.27 |.043 42 44 6 6 I 1^ 64 10.73 7.70 10.73 8.63 11.98 9.88 13.23 11.13 14.48 15.73 16.98 18.25 |.050 412 5 15 64 8.23 8.49 9.53 10.57 11.61 .060 47 48 4 4 1 4 A 7.20 5.50 7.20 6.33 8.03 7.16 8.86 9.69 10.52 |.075 49 3 5.10 5.41 6.03 .100 50 51 52 2i 2 1^ i 3^2 3.77 2.90 1.13 3.77 3.11 3.53 .130 .150 .169 SIZES AND WEIGHTS OF STEEL CHANNELS. PENCOYI> STEEL CHANNELS. 7 30 15 48.00 53 15 , ^ 36.00 Approximate Weight in Pounds per Foot for each Thickness of Web, in Inches. \ A % f (J \ 55 13 i I 30.10 31 12 i 30.30 54 12 ; ^ 22.80 427 32 33i 33" 34 35 36 37 418 419 40 41 417 12 12 21.30 20.501 48.00 51.1857.56 63.93 36.00 39.18 42.37 45.56 48.75 30.10 32.86 35.62 38.38 41.14 31.57 34.12 36.67 39.22 44.32 49.42 24.07 26.62 29.17 31.72 34.27 22.57 25.12 27.67 30.24 32.77 21.77 24.32 26.87 29.42 31.97 m 24.11 m ^ 17.921 10 ' H 20.90 17.9220.15 24.1126.34 10 I i 16.4016.4018.52 20.65 22.77 9 122.49 24.61 26.74 28.86 30.99 35.24 42 44 415 6 412 413 47 48 411 49 50 2i 51 2 52 1| ^5 17.60 17.60 19.51 21.42 23.33 25.24 27.15 if 13.00 13.47 15.38 17.29 19.20 J 'l3.80 13.80 15.50 17.20 18.90 20.60 14.00 14.37 15.85 17.34 18.83 20.32 21.80 24.78 8.4010.2611.7413.2314.721 9.00 10.11 11.59 13.08j I 11.00 11.00 12.27 13.55 14.82 16.10 17.37 18.65 7.90 8.8510.1211.40, 7.50 8.7710.0511.32 8.40 6.10 8.66; 9.7210.7811.84 7.20 8.30, 9.40 7.30 7.30 8.15, 9.00 5.60 6.45 7.30 5.20 6.25 7.10| 5.20 5.52 6.16! i 3.84 3.84 2.96 3.17 ^ I 1.151 9.8510.70 8 SIZES, AREAS AND WEIGHTS OP ZEE BARS. PENCOYD Z BARS. Section Number. inal Size in Inches. Actual Size in Inches for a Variation of ^ Inch. ^rea m Square Inches. Weight per Foot in Pounds. Increased Thickness in Inches for each A ddi- tional Pound per Foot. FVge. FVge. TMch- ness. Iron. Steel. Iron. Steel. 220 3 3 3 2f 2^ 3 3i 2f 2H 2* ^4 A 8 1.94 2.44 2.94 6.47 8.13 9.80 6.60 8.29 10.00 I .038 .037 221 3 3 3 2^4 3 3-3^ 3A^ '-'16 2U 2^§ ^32 16 M 1 2 3.28 3.51 3.75 10.93 11.70 12.50 11.15 11.93 12.75 I .040 .039 222 4 4 4 2? 3 4 4i 2J 211 3 f 8 2.32 2.91 3.50 7.73 9.70 11.67 7.88 9.89 11.90 I .032 .031 223 4 4 4 2|i 3JW '-'32 4 44r ^16 4^ 2M 3JW '-'32 3,% 2 ft 3.96 4.56 5.16 13.20 15.20 17^20 13.46 15.50 17^54 I .031 .030 224 4 4 4 3A f 4 5.53 6.75 18.43 22.50 18.80 22.95 1 .031 .030 225 5 5 c; 3A 5 3A '^16 t 16 3.36 4.05 4.75 11.20 13.50 15.83 11.42 13.77 16.15 [ .027 .026 226 5 5 5 3A 3^ 34i 5 5i 3A 3,% 3M i ft S 5.23 5.91 6.60 17.43 19.70 22.00 17,78 20.09 22.44 [ .027 .027 227 5 5 3i 3,% 5 3i 3A 1 6.96 7.64 23.20 25.46 23.66 25.97 1 .028 .027 228 6 6 6 3i 3^ 31 6 6i 3| 3^ 31 1 ft J 4.59 5.39 6.19 15.30 17.96 20.63 15.61 18.32 21.05 \ .023 .023 229 6 6 6 3i 6 6i 3^ 3A 3t ft f 6.68 7.46 8.25 22.27 24.87 27.50 22.71 25.36 28.05 [ .024 .023 230 6 6 6 3i 3^ 3| 6 6i 3J 3 ft 31 i 8.64 9.38 10.16 28.80 31.27 33.86 29.37 31.89 34.54 \ .025 .025 For rivet spacing, see page 5. SIZES AND WKIGHTS OF DECK BEAMS, ETC. PENCOYD IRON DECK BEAMS. V o 1 69 lU 62 10" 63 9 64 8 65 7 66 6 67 5 5i 5 4{ 3:! 3i 1^ 1 135.1 I i27.6 I |24.2 \h '20.6j \h 17.51 A il4.1: Approrimafp Weif/?itrn Pnui} STEEL ANGLES. SgUAKE KOOT ANGLES. Size in Inches. 1604 x4 161 3?. X 3M 162 3 kS" 163 2i X 2^ 164 2?. x2i 165 2\ X 2j 166 2 x2 1671^ xl ^ 168 IJ; xl?> 16911 xl] Approximate Weight in Pounds per Foot for Various Thicknesses in Inches. .125 .1875 , .25 4.9 4.5 4.1 3.6 '3.3 2 9 1.80 2.4 7.1 6.1 5.6 5.1 4.5 4.1 3.6 3.0 1.53 2.04 2.55 .3125.375 .4375 .50 .5625 .625 .6875 9.8 11.413.0 8.5 9.911.4 8.3 9.4 7.8! 8.9 7.1 7.2 6.71 6.1 5.4 4.9 4.4 1701 xl 0.82 1.16 1.53 8.2 14.6 16.2 .75 .875 1 1.00 ANGLE COVERS. Size in Inches. Approximate Weight in Pounds per Foot for Various Thicknesses in Inches. 180 3 X 3 181 2| X 2| 182 2^x21 183 2|x2| 184 2 X 2 .125 .1875 .25 .3125 -i 1 1% .375.4375 1 2 .50 .5625 .625 .6875 1 .75 i .875 1 1.00 4.8 5.9 7.1! 8.2 9.3 10.4 13.5 i 4.4 5.5 6.6 7.7 8.8 3.0 4.0 5.0 6.0 7.0 8.1 2.6 3.5 4.4 5.3i 2.4 3.2 4.0 4.8 SPECIAL ANGLES. I I Size j in I Inches. 158 21 X 2\ 21441 xi^ 199 4Ul 211 2| X ^ 172 2txii Approximate Weight in Pounds per Foot for Various Thickne.s.Kcs in Inches. i 3 8 A \ H I I 1 .125 .1875 .25 .3125 .375 .4375 .50 .5625 .625 .6875 .75 .875 1.00 4.2 5.3 6.4 3.6 4.9 8.6 2.7 6.3 14 PENCOYD TEES. PENCOYD TEES. EVEN TEES. UNEVEN TEES. For details, see lithographs— Plates Nos. 27, 28, 29. art iber. Size in Weight per Foot. Chart Size in Weight per Foot, Inches. Iron Inches. Iron Kjceet, 70 4 X 4 12.40 12.65 107 14.70 15.00 71 31 X 31 10.17 10.37 106 5 X 3?, 16.13 16.46 72 3x3 8.33 8.50 93 0 X ^ xX 3irx % X 1 3h X % X ^ 2.8 to 4.9 4.6 to 7.0 7.0 to 11.6 4.2 to 7.1 8.6 2.9 to 5.0 4.6 to 7.1 7.1 to 1 1.7 4.3 to 7.2 8.7 Half Ovals. 1 '4 X yz 1>« X ^ 1.6 1.4 1.6 1.4 190 191 Miner'.s Track Rail. Splice Bar. 8.3 1.7 8.7 13.7 13.3 8.6 1.7 8.9 14. 0 13.6 192 203 206 Slot Rails. 201 207 216 Splice Bars. 10.0 8.3 8.9 10.2 ""^ 8.6 9.1 1 1.9 to 13.6 1.2 to 1.4 6.4 6.3 8.9 8.2 to 10;6 34.1 to 39.9 200 195 208 Bridge Rail. Channel Rail. Clamp. IX x% 1 1.7to 13.3 1.2 to 1.4 6.3 6.2 8.7 8.0 to 10.3 33.4 to 39.9 172 213 212 215 217 209 210 260 218 Half Tee. Slot Rail Guard. Spoke Bar. Flitch Plate Heavy Rail. 2% X 1%X>^ 2X X 214 X % X % 6 X % to X 15>^ x%to>^ eff 4% X 5 X 4% X ^ to X 3Kg X 4 X 3Kr. X M U)A IVrt, X X lYz X >4 to % IXx l>«xifx ^'^ 48.9 16.9 to 23.7 7.0to 14. 0 9.6to 14.4 2.26 ~49^9 Floor Bars. Sash Bar. 7.1 to 14.3 9.8 to 14.7 2.3 16 SIZES OF PENCOYD BAKS. SIZES OF PENCOYD BAKS. IRON OK STEEL. FLATS. 1 X 1,^ X 1^/8 X \h X l\ X 1^ X 1% X m m 1% 1% m 2 2A 2\ 2& % % % I* % % ^4 X X X X X X X XH8 X xll/2 X % % inches. 2^/2 X ^4 inches to VVa ;: 2% X =V4 " 2V2 2% 1 2il xlA " 1 3 X i/4 " 2% 1 31/8 xl.^ " X \ " 3 1 3^/4 2% 1 3^/2 X \ " 2=V4 1 3% X % " 2V2 1 ' ' X i/4 " 3V2 ■■4 :: 4^4 Xl^2 " X 1/4 4% X \ 2V2 1.^ 5 X 1/4 " 3V2 l\ " 5^4 X % " 2V2 1^2 " 51/2 ^ :; 2H2 6 3 1^4 " 6I/2 X % " 2 1^2 " 7 X I/4 " 3 2 8 X \ " 2.V2 I^/b " 9 X I/4 " 2% 2 10 X \ 21/2 1% 12 X 1/4 " 2 ROUNDS. 1^, 1%, 1^, 11/4. lA 1^2. 2%. 2, 21/8, 2% 3, 31/H. 31/4. lA. 1%. 1%, 1% 21/2. 2%, 2%, 27/8 31/2. 3%, 3%, 37/8. 4. 41/8. 41/4, 41/2, 4%, 4:^4, 47/y, 5, 514, 5H2. 6, 6I/2, 7 inches. HALF ROUNDS. ^. V.l%. \l 1. 11/8, 114. 1%, 1^/2. 1%. B4. 2. 214. 21^42- 3, 3V2, 4 inches. SQUARES. RIVET SIZES. 30 31 3 3 3 7 38 3i^ 41 46 6T> f^¥) 6¥> 6 f ) 61) 6T) 4 7 4 9 5 3 A 4 5 5 5 7 « 1 2 fi 3 6 4J G f) GT> G4> (TTj 4, T6, 8, ItV, li, lA, 1? inches. FULL. 1 5 1 16; ^7 BAR IRON EXTRAS. 17 BAR IRON EXTRAS. EASTERN CLASSIFICATION. BASE SIZES. Rounds and Squares, J to 2 in. | Flat Iron, 1 to 4 in. x f to li Flat Iron, . . . 4i to 6 in. x | to 1 in. EXTRA SIZES Round and Square Iron. Extra per lb. in., 5 ct. ... .4" ... .2'^ T6 i and 5 u 8 2J- to 3 '' 1 1 a 1 6 6'i 4|- 6i 21- 3J 4 4} 5 5} 6 62- 7 .1 '' .1 .8 '' 1.0 1.5 " 2.0 2.5 Centering and Straight- ening, 1 ct. Flat Iron. Extra per lb. I X f in. to f in., . . .4 ct. 4 11 1 to 6 in. X J and 5 .2 2 U4 u xl| to 2 in., .2 ({ 2 " 4 '' x2i 3 11 •o u 4J-6 - xH a 2 u .2 a 4J^''6 '' x2J a 3 u .4 u 7x I- to 1 in.. .3 u 7 xH'^ '' 2 u .4 u 8 x i" '' 1 .4 a 8 xU'' " 2 u .6 u 9 X i'^ 1 a .6 9 xlj" " 2 u .8 10 X f'^ 1 u .8 u 10 xH" " 2 1.0 u 11 x I- 1 (( .9 11 xlj^' 2 a 1.1 a 12 X f^' 1 u .9 12 xlj'' 2 1.1 6 to 12 x } to A thick, .2 ct. extra above f ths. Cutting Ordinary Bars to Specified Lengths. Extra per lb. Flat bars, 10 to 30 ft. long 2 ct. Over 30 ft. long, .1 ct. for every 10 ft. or fraction thereof. Round and square bars to 4 in. diameter, and from 10 to 20 ft. long, 2 " Over 4 in. diameter, 3 " 18 SIZE, AREA AND WEIGHT OF ANGLES. PENCOYD ANGLES. IKON AND STEEL. Size, area and weight per foot of various thicknesses in pounds. Actual lengtlis of legs corresponding to given thicknesses. Size. x6 6 X 61^ X 6^ X 61 x64 6 x6 6Ax6A 6i x6i 6^^ X 61 x64 5 X 5 X X 5 1^ X ^ 5} x5i X I X 5fV X t 5i xS^' X i X I Xt^ X h Xt^6 X I ^¥ x^ X i X 1 54 X 51 X t 5 1% X 63% X ^ ^ 5| X 5| X Sfk X X 5i -"^ x51 _ „ X 5| X I 5^x5^x11 5| X 5f X 1 4 X 4 X 4 X 4^ X f 4i x4i Xj^ 4ifex4t^x 1 41 x41 x/^ 4i%x4i%x t 41 x4| xH 4A X 4i% X I 3i x3J xA S^xS^x I 31 x3| Xt\ SlJxSlix 1 3| x3i x^ 31tx3Ux I 3 x3 X 1 3^ X 3 X 3i X 31 X I Weight per Area. Foot. Iron. Steel. 4.36 1A QO Kin o.iU 1 / .UU C OA o.o4 1Q QR ly.oD 6.58 01 QQ 00 on OA ATI OA QQ 7.80 26.00 26.52 8.55 28.50 29.07 9.30 Qi nn Q1 RO 10.05 00. ou Q/1 TV 04.1/ 10.80 QR nn 00. UU QR 79 11.55 QQ cin 00. ou QQ 07 3.60 12.00 12.24 4.21 14.03 14.31 4.82 16.07 16.39 5.45 18.17 18.53 6.09 on Qn on 71 zu. / i 6.72 00 /in 00 QR 7.36 O/I c:q 0^ no 7.97 OR CLT ZD.O/ 07 in 8.58 OQ PjC\ OQ 1 7 9.20 30.67 31.28 9.83 32.77 ^33.43 2.40 Q nn o.UU Q 1 R 2,87 y.b/ Q 7R y. /D 3.34 11 I'R ±1.10 11 9fi 3.81 12.70 12.95 14.27 14.55 4.75 15.83 16.15 5.22 17.40 17.75 5.69 18.97 19.35 2.09 6.97 7.11 2.51 8.37 8.53 2.93 9.77 9.96 3.35 11.17 11.39 3.77 12.57 12.82 4.19 13.97 14.24 1.45 4.83 4.93 1.78 5.93 6.05 2.11 7.03 7.17 2.44 8.13 8.30 Size. 3} X 31 X 1 3t^x3t%X3% 3i X 3|- X I 2J X 2| X 1 211 X 213 X, 2| X 2f X I 2it X 21t X 3 x3 X J 21 x2i xA 2t\x2Ax 1 2f x2t xy\ 211 X 2U X I 2| x2| X3^ 21tx21ix 1 21 x2i x,3_. 2y^ X 2^% X 1 2| x2t xt\ 2 1^ X 2 X I 2 x2 X 1% 2,1, X 2 Jg X 1 2i x2i x^ 23;%x2f^x I If xli Xj\ 111 X 111 X 1 11 xli x^^ llf xllfx t 11 X H X 1 lAxl^Xi3« 1| X If X 1 llixlHx^ IJ X li X I 11 X 11 X 1 h% X ItV X iftf If X If X 1 I Xl X 1 h\ X 1^ X II X 11 X 1 Weight per Area. Foot. Iron. Steel. 2.77 9.23 9.42 Q 1 n O.iU 10.33 10.54 3.43 11.43 11.66 1.31 A on 1.64 5.47 5.58 1 Q7 i.y / 6.57 6.70 2.30 7.67 7.82 2.63 8.77 8.94 0.90 3.00 3.06 1.20 4.00 4.08 1.50 5.00 5.10 1.80 6.00 6.12 2.10 7.00 7.14 2.40 8.00 8.16 n 7Q u. /y 2.63 0 RQ 1 nc; i.UO 3.50 Q ^1 0.01 1 Q1 i.oi 4.37 4.46 1 c;q i.oy 5.30 5.41 0.72 2.40 2.45 0.95 3.17 Q OQ 1.19 3.97 4.05 1 At^ i.40 4.83 4.93 0.63 2.10 2.14 0.83 2.77 2.82 1.05 3.50 3.57 1.29 4.30 4.39 0.34 1.13 1.16 0.53 1.77 1.80 0.70 2.33 2.38 0.88 2.93 2.99 1.05 3.50 3.57 0.30 1.00 1.02 0.45 1.50 1.53 0.59 1.97 2.01 0.23 0.77 0.78 0.34 1.13 1.16 0.45 1.50 1.53 SIZE, AREA AND WEIGHT OF ANGI.ES. 19 PENCOYD ANGLES. IKON ANI> STEEL. t^ize, area and weight per foot of various thicknesses in pounds. Actual lengths of legs corresponding to given thicknesses. Size. 7 X 3^ X ^ 7^. X 3ft X h 1^ x3.ii X I 7Ax3Uxj.; 7 x3^ X ^ 11 x3 .| X ^ Ih X 3H X \l 1\ x3:i xl 6^ x4 X I 6f'r. x4iVx 1^ 6t x4i X i 6} 1 X 4 ft X ft 6 1 x4i X ^ 61,^ X 4ft X 11 6 ^ X 4 j| X ^ 6iex4ftxiii 7 x4i X 4 7ji5x4ftxje 7^ X ^ X 1 X X \ X ft X xH X i?. X 4 15 6 x4 6ft X 4ft 61 x4i 6ft X 4ft 6.1 x4.i 6ft X 4ft 6,^ x4!| 6ft X 4ft 61 x4i 6,i( X 4g X 1 6 X 31 X I 6ft X 3ft X ft 6i x3.| X ^ 6ft X 3H X ft 6.1 X 3^ X ^ 6ft X 31.^ X H 6,^ x3;^ X 6ft X 3ig X \l 1 ^^^^ 1 ' 1 Weiqht per ! Foot. 1 Iron. 1 Steel. O.OU 16.67 17.00 5.57 18.57 18.94 0.14 20.47 20.88 0. /i 22.37 22.81 1 oo /.Zo 24.27 24.75 /.oO 26.' 17 26.69 Q AO 28.07 28.63 8.99 29.97 30.57 , 9.56 31.87 32.50 o. lo 12.60 12.85 14.70 14.99 □.U4 16.80 17.14 , O.D / 18.90 19.28 D.oU 21.00 21.42 p. QQ , D.yo 23.10 23.56 /.Do 25.20 25.70 8 10 o.iy 27.30 27!85 Q QO 29.40 29.99 9.45 31.50 32.13 10.08 33.60 34.27 fin o.DU 12.00 12.24 4.ZZ 14.07 14.35 A CM 4.o4 16.13 16.46 0.4D 18.20 18.56 Oft 20.27 20.67 fi nr\ 0. /U 22.33 22.78 7.32 24.40 24.89 7.94 26.47 27.00 8!56 28.53 29.10 9.18 30.60 31.21 9.80 32.67 33.32 3.39 11.30 ' 11.53 3.99 13.30 13.57 4.59 15.30 15.61 5.19 17.30 17.65 5.79 19.30 19.69 6.39 21.30 21.73 6.99 23.30 23.57 7.59 25.30 25.81 Size. 6| x4 X ^ 6ft x4' " 6.5 x4< Area. Weight per Foot. Iron. Steel. 8.19 27.30 8.79 29.30 9.39 , 31.30 51 X 31 X 'I 5ft X 3ft X ft bk x3,^ X 5iJx3Uxft 5i x3| X ? 5 x4 5ft X 4ft 51 x4i^ 5Ax4ft 5^ x4,i X -Ax X X I Xf^fi X 1 ^xft L . ^ n x4,i 5i^ix4ft 5^ x4i 5 x3^ xft s X 3ft X I x3g xft G X 31 J X \ -4 x3| xft 5ft X 3|f X g 5^ x3«^ xU 5ft X Sit X I 5 x3 xft x3ft X I x3i xft 5ft X 3ft X 1 5i x3i xft " \ X 3ft X x3g Xj^ 5 ft X 3 ft X I 41 X 3 x^ 4ft X 3ft J - 4Hx3ftx , 4.^ x3i xft 41,^x3ft X ^ ^ x3| xii 4i§x3ftx i 3.23 3.76 4.29 4.82 5.35 3.23 3.76 4.29 4.82 5.35 5.88 6.41 2.56 8.53 3.04 10.13 3.52 11.73 4.00 , 13.33 4.48 I 14.93 4.96 16.53 5.44 18.13 5.92 , 19.73 10.77 12.53 14.30 16.07 17.83 10.77 12.53 14.30 16.07 17.83 19.60 21.36 2.40 2.85 3.30 3.75 4.20 4.65 5.10 5.55 2.27 2.70 3.13 3.56 3.99 4.42 4.85 5.28 8.00 9.50 11.00 12.50 14.00 15.50 17.00 18.50 7.57 9.00 10.43 11.87 13.30 14.73 16.17 17.60 27.85 29.89 31.93 10.98 12.78 14.59 16.39 18.19 10.98 12.78 14.59 16.39 18.19 19.99 21.79 8.70 10.34 11.97 13.60 15.23 16.86 18.50 20.13 8.16 9.69 11.22 12.75 14.28 15.81 17.34 18.87 7.72 9.18 10.64 12.10 13.57 15.03 16.49 17.95 20 SIZE, AREA AND WEIGHT OF ANGLES. PENCOYD ANGLES. IRON AND STEEI.. Size, cirea and weight per foot of various thicknesses in pounds. Actual lengths of legs corresponding to given thicknesses. Size, 4 X ^ X 44 X 4i^6X 4| X 4i^6X 31 x^ 3 ,^ X t 3f xi^ 3Ux : 3 | x^^ 3i4 X f 3^ xj^ 3iix I 4 x3 x^ A h X 3 X I 4^ x3i x^^ 4^3^ X 3,^ X 1 4i x31 xA 4^x3Ax^ 3| x3 x -1% 3^ X 3^ X § 3f x3^ x^^ 3U X 3 A X i 3| x3i x^ 3}|x3Ax S 3i X 2i X J 3^^ X X A 3-1 X 2f X I 3Hx2iix3^ 3i X 2| X i 3i x2 xJJ 31 X 2 X ^ 3i^ X 2A X 3% 3t X 21 X I ylrea. Weight per Foot. Iron 1 fitppi 2.27 l.bl 7.72 9 7n /u Q nn Q 1ft y.io Q 1 Q O.lo in P.A 0.00 1 1 «7 ±1.0/ 19 in Q QQ o.yy 10. oU 1 9 c;7 10.0/ zl AO lil 79 1 R n9 4.85 16.17 16.49 5.28 17.60 17.95 9 HQ fi Q7 7 11 / .11 9 c;i ft 97 0.0 # ft R9 O.Oo 9 QQ Q 77 Q Qfi y.yo 3.35 11.17 11.39 3.77 12.57 12.82 1 9 Q7 10. y/ 1/1 94. 1 OQ i.yo 49 D.OO 2.32 7.73 7.89 9 7n Q 1ft 3.09 10.30 10.51 3.48 11.60 11.83 3.86 12.87 13.12 1.45 4.83 4.93 1.78 5.93 6.05 2.11 7.03 7.17 2.44 8.13 8.30 2.77 9.23 9.42 1.21 4.03 4.11 1.31 4.37 4.45 1.64 5.47 5.58 1.97 6.57 6.70 Size. 3 X 21 X J 3Ax2ftx^ 3^ X 2f X ^ 3i^x2Hxi% 3i x2J X ' 3 x2 X 3J5x2Axf 3| x2^ X I 3 A X 2^ X 1^ 3i X 21 X 1 2i x2 2^ X 2 A X i 2t x2^ x,^ 2Hx2Ax I 2| x2i x,^ 2if X 2^ X 1 21 xli x,-g 2^xl^x \ 2-1 xlf x,% 2AxliJx I xli 2J(,xl^x 1 21 xl| x^ X li% X I Weight per Foot. Steel 1.01 A Q7 A At^ 4.40 1.d4 R Al f^ft O.Oo i.y/ 6.57 6.70 9 9n 7.67 7.82 2.63 Q 11 Q AA 0.44 1 9n A nn 4.UU A no 4.U0 1 c:n i.oU 5.00 5.10 1 on i.oU 6.00 6.12 2.10 7 nn /.UU 7 i>i 1.14 2.40 Q nn 0 1 ft o.lo n 7n u. /y 2.63 2.69 l.UO 3.50 3.57 1.31 4.37 4.45 1.59 5.30 5.41 1.86 6.20 6.32 2.12 7.07 7.21 0.67 2.23 2.28 0.89 2.97 3.03 1.11 3.70 3.74 1.34 4.47 4.56 0.57 1.90 1.94 0.78 2.60 2.65 0.98 3.27 3.33 1.17 3.90 3.98 Note. — In angles with uneven legs, the length of the long leg and the thickness of the short leg is a little less than that given in the tables. SQUARE AND ROUND BARS OF IRON AND STEEL. 21 SQUARE AND ROUXI> BARS OF IRON ANO STEEL. ^ ■ in 'W ) tiiiit^s the sertional area in square inchas equals the weight per 'or m n , y lineal foot in i)oun(ls, on the l)asis of iron weighing 'or bieei, .1.4 j ^^^^ ^^^^^^j ^^^^ pounds per euhie foot. Weight per Lineal Foot in Pounds, Area of Square in Square Inches. Area of Round in Square Inches. Circum- fcrcnvc of Round in Inches. Square. Round. 0 Iron. Steel. Iron. Steel. 0 n- .013 .062 .117 .208 .013 .053 .119 .212 .010 .041 .092 .164 .010 .042 .094 .167 .0039 .0166 .0352 .0626 .003 1 .0123 .0276 .0491 .1963 .3927 .5890 .7864 it .326 .469 .638 .833 .333 .478 .651 .860 .256 .368 .501 .654 .261 .375 .51 1 .667 .0977 .1406 .1914 .2500 .0767 .1 104 .1503 .1963 .9817 1.1781 1.3744 1.6708 1.055 1.302 1.676 1.875 1.076 1.328 1.608 1.913 .828 1.023 1.237 1.473 .845 1.043 1.269 1.602 .3164 .3906 .4727 .5625 .2485 .3068 .3712 .4418 1.7671 1.9635 2.1698 2.3562 1 2.201 2.552 2.930 3.333 2.245 2.603 2.989 3.400 1.728 2. 004 2. 301 2.618 1.763 2.044 2.347 2.670 .6602 .7666 .8789 1.0000 .5185 .6013 .6903 .7854 2.6625 2.7489 2.9452 3.1416 Me ya Vie 34 3.763 4.219 4. 701 5.208 3.838 4.303 4.795 6.312 2.956 3.313 3.692 4.091 3.014 3.379 3.766 4.173 1.1289 1.2666 1.4102 1.6626 .8866 .9940 1.1076 1.2272 3.3379 3.6343 3.7306 3.9270 /» ^2 6.742 6.302 6.888 7.600 5.857 6.428 7.026 7.650 4.610 4.950 6.410 5.890 4.600 6.049 6.618 6.008 1.7227 1.8906 2.0664 2.2600 1.3530 1.4849 1.6230 1.7671 4.1233 4.3197 4.6160 4.7124 8.138 8.802 9.492 10.21 8.301 8.978 9.682 10.41 6.392 6.913 7.466 8.018 6.620 7.051 7.604 8.178 2.4414 2.6406 2.8477 3.0626 1.9175 2. 0739 2.2366 2.4053 4.9087 6.1061 6.3014 6.4978 10.95 1 1.72 12.51 13.33 11.17 1 1.95 12.76 13. 60 8.601 9.204 9.828 10.47 8.773 9.388 10.03 10.68 3.2862 3.5166 3.7639 4.0000 2.5802 2.7612 2.9483 3.1416 6.6941 6.8906 6.0868 6.2832 14.18 15. 05 15.95 16.88 14.46 15.36 16.27 17.22 1 1.14 1 1.82 12.53 13.25 1 1.36 12.06 12.78 13.52 4.2639 4.6156 4.7862 6.0625 3.3410 3.6466 3.7583 3.9761 6.4796 6.6769 6.8722 7.0686 17.83 18. 80 19. 80 20. 83 18.19 19.18 20.20 21.25 14.00 14.77 15.55 16.36 14.28 15. 07 15.86 16.69 6.3477 6.6406 5.9414 6.2500 4.2000 4.4301 4.6664 4.9087 7.2649 7.4613 7.6576 7.8540 22 SQUARE AND ROUND BARS OF IRON AND STEEL. SQUARE AND ROUNl> BARS OF IRON AND STEEL.— Continued. i Weight per Lineal Foot in Pounds. Area of Square in Square Inches. A rea of Round in Square Inches. Circum- ference of Round in Inches. .-~ ^ «j o Square. Round. Iron. Steel. Iron. Steel. % 21.89 22.97 24. 08 25.21 22.33 23.43 24.56 25.71 17 18 18 19 19 04 91 80 17 18 19 20 63 40 29 20 6.6664 6.8906 7.2227 7.6625 5.1572 6.4119 5.6727 5.9396 8.0603 8.2467 8.4430 8.6394 13/ % 3 26.37 27.55 28.76 30.00 26. 90 28. lO 29.34 30.60 20 21 22 23 71 64 59 56 21 22 23 24 12 07 04 03 7.9102 8.2656 8.6289 9.0000 6.2126 6.4918 6.7771 7.0686 8.8357 9.0321 9.2284 9.4248 Me ?4 31.26 32.55 33.87 35.21 31.89 33. 20 34 55 35.91 24 25 26 27 55 57 60 65 25 26 27 28 04 08 13 20 9.3789 9.7666 10.160 10.663 7.3662 7.6699 7.9798 8.2958 9.621 1 9.8175 10.014 10.210 '& 36.58 37.97 39.39 40.83 37.31 38.73 40.18 41.65 28 29 30 32 73 82 94 07 29 30 31 32 OO 42 56 71 10.973 1 1.391 1 1.816 12.250 8.6179 8.9462 9.2806 9.621 1 10.407 10.603 10.799 10.996 % % 42.30 43. 8 O 45.33 46.88 43.15 44.68 46.24 47.82 33 34 35 36 23 40 60 82 33 35 36 37 89 09 31 66 12.691 13.141 13.598 14.063 9.9678 10.321 10.680 11.045 1 1.192 1 1.388 11.586 1 1.781 % % 4 48.45 50.05 51.68 53.33 49.42 51. 05 52.71 54. 40 38 39 40 41 05 31 59 89 38 40 41 42 81 lO 40 73 14.535 15.016 15.604 16.000 11.416 11.793 12.177 12.666 1 1.977 12.174 12.370 12.566 55. Ol 56.72 58.45 60.21 56.1 1 57.85 59.62 61.41 43 44 45 47 21 55 91 29 44 45 46 48 07 44 83 24 16.504 17.016 17.535 18.063 12.962 13.364 13.772 14.186 12.763 12.959 13.165 13.362 61.99 63. 80 65.64 67. 50 63.23 65. 08 66.95 68.85 48 50 51 53 69 1 1 55 Ol 49 51 52 54 66 1 1 68 07 18.598 19.141 19.691 20.250 14.607 16.033 16.466 15.904 13.648 13.744 13.941 14.137 •A 69.39 71. 30 73.24 75.21 70.78 72.73 74.70 76.71 54 56 57 59 50 00 52 04 56 57 68 60 69 12 67 22 20.816 21.391 21.973 22.663 16.349 16.800 17.267 17.721 14.334 14.530 14.726 14.923 Tr 5 77. 20 79.22 81.26 83.33 78.74 80.80 82.88 85. OO 60 62 63 65 63 22 82 45 61 63 66 66 84 46 09 76 23.160 23.766 24.379 26.000 18.190 18.665 19.147 19.636 15.119 16.316 16.612 15.708 Me Me 85.43 87.55 89. 70 91.88 87.14 89. 30 91.49 93.72 67 68 70 72 lO 76 45 16 68 70 71 73 44 14 86 60 25.629 26.266 26.910 27.563 20.129 20.629 21.135 21.648 15.904 16.101 16.297 16.493 SQUARE AND ROUND BARS OF IRON AND STEEL. 2'> SQUARE AND ROUND BARS OF IRON AND STEEL..— Continued. B "5 J irei^A/ jter Lineal Foot in Pounds. A rea of Square in Square Inches. Area of Round in Square Indies. Circum- ference of Round in Inches. Thick, or Dim in Inc Square. Hound. Iron. Steel. Iron. Steel. /% 6^ /z 94. 08 96.30 98.55 100.8 95.96 98.23 100.5 102.8 73.89 76.64 77.40 79.19 75.37 77.15 78.95 80.77 28.223 28.891 29.566 30.250 22. 166 22.691 23.221 23.758 16.690 16.886 17.082 17.279 Tie % 103. 1 105.5 107.8 1 10.2 105.2 107. 6 1 10.0 112.4 8 1.00 82.83 84.69 86.56 82.62 84.49 86.38 88.29 30.941 31.641 32.348 33.063 24.301 24.860 25.406 25.967 17.476 17.671 17.868 18.064 % % Tig 6 112.6 1 15.1 1 17.6 120.0 114.9 117.4 1 19.9 122.4 88.45 90. 36 92.29 94.25 90.22 92.17 94.14 96.14 33.785 34.516 35.254 36. 000 26.536 27.109 27.688 28.274 18.261 18.467 18.663 18.860 /16 122.5 125.1 127.6 130.2 125. 0 127.6 130.2 132.8 96.22 98.23 100.2 102.3 98.14 100.2 102.2 104.3 36.764 37.516 38.285 39.063 28.866 29.466 30.069 30.680 1 9.046 19.242 19.439 19.636 ^' {/ 132.8 135.5 138.1 140.8 135.5 138.2 140.9 143.6 104.3 106.4 108.5 1 10.6 106.4 108.5 1 10.7 1 12.8 39.848 40.641 41.441 42.260 31 .296 31.919 32.648 33.183 19.83 1 20.028 20. 224 20.420 9/ ^16 ^: 143.6 146.3 149.1 151.9 146.5 149.2 152.1 154.9 1 12.7 114.9 1 17.1 119.3 116.0 1 17.2 1 19.4 121.7 43.066 43.891 44.723 45.563 33.824 34.472 35.125 35.785 20. 617 20. 813 21.009 21.206 /» 7 154.7 167.6 160.4 163.3 157.8 160.7 163.6 166.6 121.5 123.7 126.0 128.3 123.9 126.2 128.5 128.6 46.4 10 47.266 48.129 49.000 36.450 37.122 37.800 38.486 2 1 .402 21.698 21.796 21.991 Me 166.3 169.2 172.2 175.2 166.6 172.6 175.6 178.7 130.6 132.9 135.2 137.6 130.9 136.6 137.9 140.4 49.879 50. 766 51.660 52.563 39. 176 39.871 40.574 41.282 22. 187 22.384 22.680 22.777 178.2 181.3 184.4 187.6 171.8 184.9 188.1 191.3 140.0 142.4 144.8 147.3 142.8 145.2 147.7 160.2 63.473 54.391 55.316 56.250 41 .997 42.718 43.445 44.179 22.973 23.169 23.366 23.562 190.6 193 8 197.0 200.2 194.4 197.7 201.0 204.2 149.7 152.2 154.7 157.2 162.7 166.2 158. 0 160.3 57.191 58.141 69.098 60.063 44.918 46.664 46.415 47.173 23.758 23.956 24.151 24.347 13/ 203.5 206.7 210.0 207. 6 210.8 214.2 159.8 162.4 164.9 163.0 165.6 168.2 61. 035 62.016 63.004 47.937 48.707 49.483 24.644 24.740 24.936 24 FLAT BARS OF IRON OR STEEL. FLAT BARS OF IRON OR STEEL.. AREA AND WEIGHTS PER LINEAL FOOT. Width in Inches. 1 Thick. Thick. iV^ Thick. Area in Square Inches. Pounds per Foot. Area, in Square Inches Pounds per Foot. Area in Square Inches. Pounds per Foot. Iron. Steel. Iron. Steel. Iron. Steel. 1 .063 .208 .213 .125 All .425 .188 .625 .638 1^8 .070 .233 .238 .141 .469 .478 .211 .703 .719 .U 10 .156 ^^91 .Ool .234 7ft1 . 10 J. 7Q7 1% .086 99.1 9Q9 .172 .0/0 .ij(y± .258 .859 .876 1^2 .094 .313 .320 .188 .625 .638 .281 .938 .957 1% .102 .339 .346 .203 .677 .691 .305 1.02 1.04 .oDO Q79 .219 79Q .328 1 HQ i.uy 1 11 .117 QQ1 .234 7ft1 7Q7 .352 1 17 1.1/ 1 1Q 2 .125 .417 .425 .250 .833 .850 .375 1.25 1.28 .133 .443 .452 .266 .886 .904 .398 1.33 1.36 2\ .I'll. .4Dy 4.7ft .281 .yoo .yo/ .422 1 41 1 44 2% .148 .ouo .297 .yyu 1 ni l.Ul .445 1 4ft L.rkO X.OL 2^/2 .156 .521 .531 .313 1.04 1.06 .469 1.56 1.59 2% .164 .547 .558 .328 1.09 1.11 .492 1.64 1.67 2% 1 79 .DIO .344 1 1 R 1.10 1 17 1.1 / .516 1 79 1 7R 1. /□ 2^/8 .180 .oyy ftl 1 .011 .359 1 9n 1 99 .539 1 ftn 1 ft4 3 .188 .625 .638 .375 1.25 1.28 .563 1.88 1.91 31/4 .203 .677 .691 .406 1.35 1.38 .609 2.03 2.07 3\ 01 Q HAA . /44 .438 1 Af\ 1.40 1 AQ i.4y .656 9 1Q 9 9 3% .234 "701 . /ol . /y/ .469 1 1.00 i.oy .703 9 '54 9 "^Q 4 .250 .833 .850 .500 1.67 1.70 .750 2.50 2.55 41/4 .266 .885 .903 .531 1.77 1.81 .797 2.66 2.71 41/2 0Q1 .938 .957 .563 1.88 1.92 .844 2.81 2.87 4% .297 .990 1.01 .594 1.98 2.02 .891 2.97 3.03 5 .313 1.04 1.06 .625 2.08 2.12 .938 3.13 3.19 51/4 .328 1.09 1.11 !656 2.19 2.23 .984 3.28 3.35 5% .344 1.15 1.17 .688 2.29 2.34 1.03 3.44 3.51 .359 1.20 1.22 .719 2.40 2.45 1.08 3.59 3.67 6 .375 1.25 1.28 .750 2.50 2.55 1.13 3.75 3.83 .406 1.35 1.38 .813 2.71 2.76 1.22 4.06 4.14 7 .438 1.46 1.49 .875 2.92 2.98 1.31 4.38 4.66 8 .500 1.67 1.70 1.00 3.33 3.40 1.50 5.00 5.10 9 .563 1.88 1.92 1.13 3.75 3.83 1.69 5.63 5.74 10 .625 2.08 2.12 1.25 4.17 4.25 1.88 6.25 6.38 11 .688 2.29 2.34 1.38 4.58 4.67 2.06 6.88 7.02 12 .750 2.50 2.55 1.50 5.00 5.10 2.25 7.50 7.65 FLAT BARS OF IRON OR STEEL. 25 FLAT BARS OF IKON OR STEEL.. AREA AND WEIGHTS PER LINEAL FOOT. Thick. Thick. Thick. A reel in Pounds per Area in Pounds per Area in Pounds per Foot. Foot. Foot. Square Square Square Inches. - Inches Inches. Iron. Steel. Iron. Steel. Iron. Steel. 1 .250 .833 — ■ .850 .313 1.04 1.06 .375 1.25 1.28 l\s .281 .938 .957 .352 1.17 1.19 .422 1.41 1.44 .313 1.04 1.06 .oyi 1.30 1.33 .469 1.56 1.59 .344 1.15 1.17 .430 1.43 1.46 .516 1.72 1.75 .375 1.25 1.28 .469 1.56 1.59 .563 1.88 1.92 .406 1.36 1.39 .508 1.69 1.72 .609 2.03 2.07 .438 1.46 1.49 .04/ 1.82 1.86 .656 2.19 2.23 .469 1.56 1.59 .586 1.95 1.99 .703 2.34 2.39 2 .500 1.67 1 70 .625 2.08 2.12 .750 2.50 2.55 .531 1.77 1.81 .664 2.21 2.25 .197 2.65 2.70 OX/. .563 1.88 1.92 . /UO 2.34 2.39 .844 2.81 2.87 .594 1.98 2.02 .742 2.47 2.52 .891 2.97 3.03 .625 2.08 2.12 .781 2.60 2.65 .938 3 13 3.19 2% .656 2.19 2.23 .820 2.73 2.78 .984 3.28 3.35 ^4 .688 2.29 2.34 Qc;q .ooy 2.86 2.92 1.03 3.44 3.51 .719 2.40 2.45 .898 3.00 3.06 1.08 3.60 3.67 3 .750 2.50 2.55 .938 3.13 3.19 1.13 3.75 3.83 .813 2.71 2.76 1.02 3.39 3.45 1.22 4.06 4!l5 .875 2.92 2.98 1 HQ i.uy 3.65 3.72 1.31 4.38 4.47 .938 3.13 3.19 1.17 3.91 3.99 1.41 4.69 4.78 4 1.00 3.33 3.40 1.25 4.17 4.25 1.50 5.00 5.10 4^4 1.06 3.54 3.61 1.33 4.43 4.52 1.59 5.31 5^42 4^2 1.13 3.75 3.83 1/11 1.41 4.69 4.78 1.69 5.63 5.74 1.19 3.96 4.04 1.48 4.95 5.05 1.78 5.94 6.06 5 1.25 4.17 4.25 1.56 5.21 5.31 1.88 6.25 6.38 5^4 1.31 4.38 4.46 1.64 5.47 5.58 1.97 6.56 6.69 1.38 4.58 4.67 1.72 5.73 5.84 2.06 6.88 7.02 1.44 4.79 4.89 1.80 5.99 6.11 2.16 7.19 7.34 6 1.50 5.00 5.10 1.88 6.25 6.38 2.25 7.50 7.65 1.63 5.42 5.53 2.03 6.77 6.90 2.44 8.13 8.29 7 1.75 5.83 5.95 2.19 7.29 7.44 2.63 8.75 8.93 8 2.00 6.67 6.80 2.50 8.33 8.50 3.00 10.00 10.2 9 2.25 7.50 7.65 2.81 9.38 9.56 3.38 11.25 11.48 10 2.50 8.33 8.50 3.13 10.42 10.64 3.75 12.50 12.75 11 2.75 9.17 9.35 3.44 11.46 11.70 4.13 13.75 14.03 12 3.00 10.00 10.2 3.75 12.50 12.75 4.50 15.00 , 15.30 26 FLAT BARS OF IRON OR STEEL. FLAT BARS OF IKOX OK STEEL. AREA AND WEIGHTS PER LINEAL FOOT. Width in Inches. tV'^ TMcl:. V TliicJ:. t'/' Thick. Ave (I in Square Inches. Pounds per Foot. Area in Square Inches Poifnds per Foot. A ren in- Square Inches. Pounds per Foot. Steel, ton. Steel. Ir n ) n. Steel. 1 .438 1.46 1.49 .500 1.67 1.70 .563 1.88 1.92 1^8 .481 1.64 1.67 .563 1.87 1.91 .618 2.06 2.10 1^4 .547 i.OD .625 2.08 2.12 .703 0 OA 0 on l'^8 .602 .688 0 on 0 OA .773 1^2 .656 2.19 2.23 .750 2.50 2.55 .844 2.81 2.87 1% .711 2.37 2.42 .813 2.71 2.76 .914 3.05 3.11 1% .766 Z.oo 2.60 .875 2.92 2.98 .984 0 OQ 0 oc; O.OO IVs .820 0 no .938 O.iii J.io 1.05 O.OU 0.0/ 2 .875 2.92 2.98 1.00 3.33 3.40 1.13 3.75 3.83 2^8 .930 3.10 3.16 1.06 3.54 3.61 1.20 4.00 4.08 2\ .984 3.28 3.35 1.13 3.75 3.83 1.27 A 00 A on 2% 1.04 o.4b 0.00 1.19 3.96 4.04 1.34 A Ad 4.4D 4.00 2H2 1.09 3.65 3.72 1.25 4.17 4.25 1.41 4.69 4.78 2% 1.15 3.83 3.91 1.31 4.38 4.47 1.48 4.92 5.02 1.20 4.Ui 4.09 1.38 4.58 4.67 1.55 o.io n; Oft 2% 1.26 4.20 4.28 1.44 4.79 4.89 1.62 O.OU 3 1.31 4.38 4.46 1.50 5.00 5.10 1.69 5.63 5.74 314 1.42 4.74 4.83 1.63 5.42 5.53 1.83 6.09 6.22 31^ 1.53 O.IU 5.20 1.75 5.83 5.95 1.97 D.OO D. /U 3\ 1.64 5.47 5.58 1.88 6.25 6.38 2.11 1 no /.Do T 1 '7 4 1.75 5.83 5.95 2.00 6.67 6.80 2.25 7.50 7.65 ^\ 1.86 6.20 6.32 2.13 7.08 7.22 2.39 7.97 8.13 4I0 1.97 6.56 6.70 2.25 7.50 7.65 2.53 8.44 8.61 2.08 6.93 7.07 2.38 7.92 8.08 2.67 8.91 9.09 5 2 19 7.29 7.44 2.50 8.33 8.50 2.81 9.38 9.57 5^4 2!30 7.66 7.81 2^63 8.75 8.93 2^95 9.84 10.04 5i:> 2.41 8.02 8.18 2.75 9.17 9.35 3.09 10.31 10.52 5^4 2.52 8.39 8.56 2.88 9.58 9.77 3.23 10.78 11.00 6 2.63 8.75 8.93 3.00 10.00 10.20 3.38 11.25 11.48 2.84 9.48 9.67 3.25 10.83 11.05 3.66 12.19 12.43 7 3.06 10.21 10.41 3.50 11.67 11.90 3.94 13.13 13.39 8 3.50 11.67 11.90 4.00 13.33 13.60 4.50 15.00 15.30 9 3.94 13.13 13.40 4.50 15.00 15.30 5.06 16.88 17.22 10 4.38 14.58 14.88 5.00 16.67 17.00 5.63 18.75 19.14 11 4.81 16.04 16.36 5.50 18.33 18.70 6.19 20.63 21.05 12 5.25 17.50 17.85 6.00 20.00 20.40 6.75 22.50 22.95 I FLAT BARS OF IRON OR STEEL. 27 FLAT BARS OF IKON OK STEEL. AREA AND WEIGHTS PER LINEAL FOOT. - Thick. Thick. f Thick. A vpci in Square Inches. 'Pounds per Foot. A rea in Square Inches Pounds per Foot. A rea in Square Inches. Pounds per Foot. 1 on. ee . 1 on. Steel ; 7. Steel. — 1 i .625 2.08 2 12 .688 2.29 2.34 .750 2.50 2.55 1 1 .687 2.34 2.39 .756 2.52 2.57 .825 2.81 2.86 .781 2.60 2.65 .859 2.86 2.92 .938 o.io o.iy l< .859 2.86 2.92 .945 3.15 3.21 1.03 0.44 O.Oi 11'. .938 3.13 3.19 1.03 3.44 3.51 1.13 3.75 3.83 1 r>/t i -8 1.02 3.39 3.46 1.12 3.73 3.80 1.22 4.06 4.14 I'U 1.09 3.65 3.72 1.20 4.01 4.09 1.31 4.38 4.47 1^8 1.17 3.91 3.99 1.29 4.30 4.39 1.41 4.69 A 1Q 4. 10 9 1.25 4.17 4.25 1.38 4.58 4.67 1.50 5.00 5.10 1.33 4.43 4.52 1.46 4.87 4.97 1.59 5.31 5.42 2'j 1.41 4.69 4.78 1.55 5.16 5.26 1.69 5.63 5.74 1.48 4.95 5.05 1.63 5.44 5.55 1.78 5.94 a rid 91/, 1.56 5.21 5.31 1.72 5.73 5.84 1.88 6.25 6.38 ^ H 1.64 5.47 5.58 1.80 6.01 6.13 1.97 6.56 6.69 1.72 5.73 5.84 1.89 6.30 6.43 2.06 6.88 7.02 2% 1.80 5.99 6.11 1.98 6.59 6.72 2.16 7.19 7.33 o o 1.88 6.25 6.38 2.06 6.88 7.02 2.25 7.50 7.65 6 /4 2.03 6.77 6.91 2.23 7.45 7.60 2.44 8.13 8.29 3V> 2.19 7.29 7.44 2.41 8.02 8.18 2.63 8.75 8.93 2.34 7.81 7.97 2.58 8.59 8.76 2.81 9.38 9.57 *i 2.50 8.33 8.50 2.75 9.17 9.35 3.00 10.00 10.20 /ii/i 2.66 8.85 9.03 2.92 9.74 9.93 3.19 10.63 10.84 4 k, 2.81 9.38 9.57 3.09 10.31 10.52 3.38 11.25 11.48 ^\ 2.97 9.90 10.10 3.27 10.89 11.11 3.56 11.88 12.12 c: u 3.13 10.42 10.63 3.44 11.46 11.69 3.75 12.50 12.75 f^l/i OV4 3^28 10.94 11.16 3^61 12.03 12.27 3^94 13.13 13.39 3.44 11.46 11.69 3.78 12.60 12.85 4.13 13.75 14.03 0*/4 3.59 11.98 12.22 3.95 13.18 13.44 4.31 14.38 14.67 6 3.75 12.50 12.75 4.13 13.75 14.03 4.50 15.00 15.30 4.06 13.54 13.81 4.47 14.90 15.20 4.88 16.25 16.58 7 " 4.38 14.58 14.87 4.81 16.04 16.36 5.25 17.50 17.85 8 5.00 16.67 17.00 5.50 18.33 18.70 6.00 20.00 20.40 9 5.63 18.75 19.13 6.19 20.63 21.04 6.75 22.50 22.95 10 6.25 20.83 21.25 6.88 22.92 23.38 7.50 25.00 25.50 11 6.88 22.92 23.38 7.56 25.21 25.71 8.25 27.50 28.05 12 7.50 25.00 25.50 8.25 27.50 28.05 9.00 30.00 1 30.60 28 FLAT BARS OF IRON OR STEEL. FLAT BARS OF IRON OR STEEL. AREA AND WEIGHTS PER LINEAL FOOT. Width ill Inches. 8 Thick. jY^ Thick. SQuave Inches, Pounds per Foot. j\ reel m Squfire Inches Pounds per Foot. Area in Square Inches. Pounds per Foot. Iron. Steel. Iron. Steel. Iron. ' Steel. 1 .813 2.71 2.76 .875 2.92 2.98 .938 3.13 3.19 .893 2.97 3.03 .962 3.28 3.35 1.03 3.44 3.51 1^4 1.02 3.39 3.45 1.09 3.65 3.72 1.17 3.91 3.99 1% 1.12 3.73 3.80 1.20 4.01 4.09 1.29 4.30 4.39 1^ 1.22 4.06 4.14 1.31 4.38 4.47 1.41 4.69 4.78 ^ 'S 1.32 4.40 4.49 1.42 4.74 4.83 1.52 5.08 5.18 1% 1.42 4.74 4.83 1.53 5.10 5.20 1.64 5.47 5.58 1% 1.52 5.08 5.18 1.64 5.47 5.58 1.76 5.86 5.98 2 1.63 5.42 5.53 1.75 5.83 5.95 1.88 6.25 6.38 Z /8 1.73 5.76 5.88 1.86 6.20 6.32 1.99 6.64 6.77 2\ 1.83 6.09 6.21 1.97 6.56 6.69 2.11 7.03 7.17 2% 1.93 6.43 6.56 2.08 6.93 7.07 2.23 7.42 7.57 2.03 6.77 6.91 2.19 7.29 7.44 2.34 7.81 7.97 ^ /8 2.13 7.11 7.25 2.30 7.66 7.81 2.46 8.20 8.36 2\ 2.23 7.45 7.60 2.41 8.02 8.18 2.58 8.59 8.77 2% 2.34 7.79 7.95 2.52 8.39 8.56 2.70 8.99 9.17 q o 2.44 8.13 8.29 2.63 8.75 8.93 2.81 9.38 9.57 l>I> COOOOOCJIO) infX) O CO lO 00 LO CD t> CO d CO CD CO ""CiH ^ 50.00 53.13 LOC^ OOOLOOO OCMiOOOO PP p P O- P p r-H p p p cDoi CM*LOc6T-i LOooT-H-^t^ LO lO CD CD CD t> t>t>00 00 00 | t-X O CM CO LO O (35 CO t> in CD 00 00 CO '"^ ^ 46.67 49.60 Oi— 1 COlOD^CT) O < — 1 CO lO CD pTji pprHp OCT>00t>p CMlO OOT-HTjHt^ CDCM"LO06r-i lOLO lOCDCDCD t>I>-t>I>00 r-H O r-l CO lO 05 CD (>i LO CD CO CO CO ^ 43.33 46.05 LOLO l>-00000 OOCMOOrf C-;'^ r-J p p p p t> "<;t^ T-J p 00 T-H CD Cjj CM l6 CD CO LO LO LO LO LO CD CD CD t> t> t> 30.00 32.50 37.50 40.00 42.50 45.00 47.50 50.00 52.50 55.00 57.50 60.00 62.50 65.00 67.50 70.00 O CX) 00 00 LO t> O CO t>^ 05 Cvd '"^ 03 oa CO CO 36.67 38.96 LO'"^ COCOCMi-l OC350000I>- pLO p1-l'«i^^- ppppT-j T-H CO LOOOCicM LOC^oJt-H'^ Tjl T^-^LOLO LOLOlOCDCD O CO t> LO P p T-H lO t> C^i T-H CM Oa CN3 CO 33.33 35.42 oco t-LOCOCM O00l>-iOC0 pp p[>;pp PPt-JPP t>c75 i-5col6i>^ cdcm-^cdco coco "^^ "Sji lOlOiOlOlO OOOLOCO LO CO eg »- o5 TJH CD OC 03 c OOOLOCO ot>Locoo l>p ppprH ppt>pp COlO t-^oirHCO lOCDOOCDCM coco coco'^'^ -^-^^ima r+M O t-- CO O !> p p 00 p p CO CD t-l CO LO CD 00 CM CM CM CV] CM CM OCD C0Ot>Tj1 OCDOOOD- pp pppp ppppp CD T-H CO LO CD 00 CD r-1 CO LO CD coco COCOCOCO «^ T^i -.^ OCDCMOO 00O5LOT-I D^COOO-!*! O CD CM 00 CO pp-'^i^p COI>-CMt> »-J p p LO O'>;fpp00 I>o6c5tH CO^CDC^ oicDCMCO LOCDC^Cjici tHtHCMCM CM CM cm cm CM 00 CO CO CO CO CO CO MfCC OLOOlO OLOOiO O LO O LO OLOOLOO pCMpt> p CM LO p CM p I> pCMpl>0 LOCDO^CO CDt-MCMOO lOCDD-^CO CD .-5 cm CO LO tHtH,-),-! cmcmcmcm cmcmcmcm cococococo 12.50 13.54 14.58 15.63 t>TH LO cr> p t> I> l> CO t> 00 C3) i-H 1-1 tH i-H 20.83 21.88 22.92 23.96 O 00 CO l> P P P 1-J 1-H l6 CD l> 00 C35 CM CM CM CM CM O CO t> o pppp CO O O CO P T-j p p t> O CO l> P p P T-J O CO [>■ O 00 ppppp OOrHCM OOrJ^LOLO CDt-OOCT) lO i-( I> CO i>od 00 oi O CO LO 00 p T-j t> P CM 00 00 'si^ LO LO CD CD [>- O CM CO lO ir^ooocM CD O LO 00 O CM CO LO t> O TJH 00 CM P tH p O 00 p CD LOiOiOCD CD t> 00 00 crj cji CD d d 1-5 T-^ •S9H0UJ OrHCMCO CO^iOCD pt^-OirH p p I> p CMCMCMOO COCOCOCO CM CO LO CD l> 00 CT) ' 1-J p p t> ^ ^ lO LO LO lO LO WEIGHT OF PLATE IRON. 31 I CD O O CO CO O CD 00 CJ5 O O i-H ot-coo c^coot> cqpt>cop CO O CD 00 CD l> CO 00 CD o ' .-1 .-1 t-t ,-, rl ,-1 ,-1 r-. ,-1 r-. T-l rH rH CVJ I S^^O(N uooqpcNi iot>p(N inoqpcNio I CDCOOCD CN30dlOi-i I^OOOCD Cvi 00 lO i-H t> I a>C3500 »-l.-l(MCO CO-^^^lOin CDCDt>00 00 ^ <5 CO CO 00 (N poo c8 S t> in CO cv] o rH t> CO Oj IT) in Lo CO CO ojcDo-^ oooot>-»-Hin D CD iri Q u - 00 00 CD c p p p p CD in CD in r-( tH 03 03 o o o o o 00 Tt^ o CO O3oococx)in 5 O CO O 5 rH CO in -"^i CD C in in cj ^ o c cope CM C Si 0 CV] CO in in ^ CO 03 01 in 00 »-< in in in CO poqpoj cqini>oqp '-HincD"^ odojcdcDin CD CD O O 0»-I»-I0305 I rH rH i-H rH tH iH tH SoaS?^ Scoot-in 00 Q in uD o CO CD p CO p CD CO CD 00 00 00 »— I CO in CD CD 00 o p 03 in T-H I> i> 00 03 in o in CO t> C) oi CO CO ^ '"^^ ) S o S S in p LD p in i> CD cvj in CO CD i> r> i> H CV] CO Ll "•i^ CO 00 CD oi in in in CD CO Ttl rtl u Q in Q in Q i75 1> o 03 in 00 Q CO t> oincorH oioi co-"^ D t>- O CO t>-OC0t>O D i-H O 00 CDinCOrHO in in CD o- CO CO CO l> C-OOOOO 050)00 00 03 p O u CD 1-5 1-5 oi oi 32 ROLLED SHEETS OF WROUGHT IRON AND STEEL. WEIGHT OF KOL.L.ED SHEETS OF WROUGHT IRON AND STEEL. CALCUI.ATIONS BASED ON SPECIFIC GRAVITY OF 7.70 FOR IRON AND 7.85 FOR STEEL. No. of Gauge. Birmingham Wire Gauge. American {B. < 45320 79230 In 2". 22.7 i 38/^ The blooms are worked at a single uniform heat, under heavy hammers, to the finished forging. Locomotive and passenger car-axles are furnished rough-turned throughout; those for freight service, with journals forged and rough- turned. The process of manufacture thus indicated produces axles of the highest standard of excellence. Wrought Iron and Steel. The tensile strength of wrought iron depends not only on its quality, but also, to some extent, on the condensation imparted by working ; consequently, small bars, as a rule, will be stronger per unit of sectional area than large bars. Good material of usual dimensions may be assumed to average 50,000 lbs. ultimate tensile strength, per square inch of section. The same conditions apply in structural steel, but this material will vary also according to grade or hard- ness. The steel used in structures will vary from 55,000 to 80,000 lbs. ultimate tensile strength; probably 65,000 lbs. per square inch of section represent the tensile strength of the steel most frequently used to resist tensile strains. ELASTIC LIMIT AND DUCTILITY. As iron or steel elongates or shortens under strain, the change of length is directly proportionate to the strain, and the material recovers its original length on removal of the strain, until the elastic limit is reached, when changes of length are no longer regular, and permanent set takes place, or the destruction of the material has begun. In good material the strain at elastic limit is very nearly six-tenths of the ultimate tenacity. This is the case for strains, either of tension or compression. Thus the strain at elastic limit in good wrought iron of small sections is about 30,000 lbs. per square inch, and for steel of 65,000 lbs. tensile strength it will be about 40,000 lbs. The ductihty, under tensile strains, is usually measured by the total elongation in a given length, or by the per- centage of reduction of the fractured area, or by both. Good wrought iron, when strained to rupture, should elongate about 18 per cent, on a measured length of twelve diameters, and the fractured area should be reduced about 25 per cent, of the original section. Steel of 65,000 lbs. tensile strength should similarly elongate about 22 per cent., and the fractured area should be reduced about 40 per cent, of the original section. (34) SPECIFIC GRAVITY. 85 ELASTICITY. The elasticity ia iiioasured by the chaiii^e of len«:th under strain below the ehistic limit of the material. The elasticity of iron and steel are i)ractieally uniform, that is, each material will exhibit a uniform change of length under uniform strains below the elastic limit; but, as the elastic limit of steel is higher than that of iron, the former will elongate or shorten to a greater extent than the latter be- fore its elasticity is injured. This property is expressed by a modulus, which for either material will average about 29,000,000 lbs. That is, if the change of length could be ex- tended sufficiently, it would require 29,000,000 lbs. per square inch of section to double the original length under tensile strain, or to shorten the length one-half under compression. EXPANSION BY HEAT. Soft steel or iron will expand about t^oVtto V^^^ of its length for each degree F. of elevation of temperature. For a variation in temperature of 100 degrees F., the change in length will be about one inch in 125 feet. SPECIFIC GRAVITY. The specific gravity of steel and iron varies according to the purity of the metal, and also to the degree of condensa- tion imparted by the rolling process. As a rule, the mild steel has a higher specific gravity than hard steel, and both are denser than iron. A number of tests we have made for specific gravity show rolled bars of mild steel to vary from 7.84 to 7.88, and hard steel from 7.81 to 7.85 specific gravity. Ordinary iron bars will vary from 7.6 to 7.8. In the form of beams and large rolled sections generally, the following figures may be accepted as a fair average : Material. Weight per Cubic Foot. Weight per Cubic Inch. Mild Steel, 489.0 lbs. .283 lb. Hard Steel, 486.6 " .2815 " Iron, 478.3 " .2768 " Or, for the same sectional areas, the excess in weight over 36 WROUGHT IRON AND STEEL. iron will be, for mild steel 2.24 per cent., and for hard steel 1.7 per cent. It is customary to assume the weight of rolled iron as 480 lbs. per cubic foot, and this is, probably, practically correct for the average material ; medium steel will average 2 per cent, heavier. On this basis we have weights in lbs. for Ij'oh and Steel. One cubic foot, 480 489.6 One cubic inch, 278 .284 One square inch one foot long, '6% 3.4 One square inch one yard long, 10 10.2 STRUCTURAL STEEL. As a general rule, the percentage of carbon in steel deter- mines its hardness and strength. The higher the carbon the harder the steel, the higher the tenacity and the lower the ductility will be. The following list exhibits the average physical pr jperties of good open-hearth steel : Percentage of Carbon. .10 .15 .20 .25 .30 .35 .40 Tensile Strength in Pounds per Square Inch. Ductility. Ultimate Tenacity. Elastic Limit. Stretch in 8 Inches. Reduction of Fractured Area. 57000 62000 67000 72000 77000 82000 87000 34000 37000 40000 mm 46000 49000 52 )00 28 per cent. 26 24 22 20 18 16 55 per cent. 50 " 4 ) " 40 35 30 25 The coefficient of elasticity is practically uniform for all grades, and, as previously stated, is the same as for iron, viz., 29,000,000 lbs. These figures form the average of a numerous series of tests from rolled bars, and can only serve as an approximation in single instances, when the variation from the average may be considerable. For convenient dis- tinguishing terms, it is customary to classify steel in three grades: ''mild or soft," "medium," and "hard;" and although the different grades blend into each other, so that no line of distinction exists, in a general sense the grades below .15 carbon may be considered as " soft " steel, from COMPARATIVE EFFICIENCIES OF STEEL AND IRON. 37 .15 to .30 carbon as medium," and above that hard " steel. Each grade has its own advantages for the particular purpose to which it is adapted. The soft steel is well adapted for boiler plate and similar uses, where its high ductility is advantageous. The medium grades are used for general structural purposes, while harder steel is useful in cases where good wearing surfaces are desired. Mild steel has superior welding property as compared to hard steel, and will endure higher heat without injury. Steel below .10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of .15 carbon will occasionally submit to the same treatment, but will usually bend around a curve whose radius is equal to the thickness of the specimen ; about 90 per cent, of specimens stand the latter bending test without fracture. As the steel becomes harder its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes .20, little over twenty-five per cent, of specimens will stand the last-described bending test. Steel having about .40 per cent, carbon will usually harden suf- ficiently to cut soft iron and maintain an edge. COMPARATIVE EFFICIENCIES OF STEEL AND IRON. For Beams.— As steel has a higher tenacity than iron, varying according to grade ; when used in beams, the «teel beam will sustain a greater load than the similar iron beam, without destructive stress ; but as the coefficient of elasticity of both metals is identical, the deflection of both beams will be alike under equal loads. These facts indicate that for beams in which the span is small, as compared to beam depth, and the deflection does not become excessive within the limits of permissible stress, then steel beams possess a decided advantage in strength over iron beams, in proportion to the respective tenacities of the metals. If, on the contrary, the span is great as compared to depth of beam, and the usefulness of the beam is determined by its deflection, the beam of steel will possess little, if any, advantage over that of iron. 38 WROUGHT IRON AND STEEL. STEEL SHAFTING. For resistance to shear or torsion, steel exceeds iron, in the ratio of the respective tenacities of the materials. There- fore when strength irrespective of stiffness is considered, use the formulae given on page 222, substituting the shearing re- sistance of steel for that given for iron, viz., about three- fourths of the tensile strength. Ordinarily the utility of shafting is determined by its stiffness under working loads, rather than by a high elastic limit, and as the coefficient of elasticity is uniform for steel and iron, it becomes necessary to use the same dimensions for steel shafts as for wrought iron. STEEL STRUTS AND COLUMNS. Experiments on direct compression prove that the elastic limits of steel, as of iron, under stresses of tension and com- pression, are about equal. Consequently for the shortest struts, where failure results from the effects of direct compression, the tensile resistances of steel and iron serve as a comparative measure of the strut resistance of the two materials. But as the strut is increased in length, and failure results from lateral flexure before the compressive limit of elasticity is attained, then the transverse elasticity of the material becomes a factor of increasing importance in determining the strut resistance. As in this respect steel possesses little advantage, if any, over iron, the tendency will be for struts of steel and iron as the length is increased to approximate toward equality of resistance. This equality with iron will occur first with the mildest steel, and latest with the hardest steel. The results of many experiments we have made seem to demonstrate that this equality of strut resistance is prac. tically attained between iron and mild steel, when the ratio of length to least radius of gyration of cross-section is about 200 to 1. In the case of the harder steels, practical equality of resistance with iron will occur at some higher but indefinite ratio of length to section. Tables for Pencoyd Beams of Iron or Steel. The following tables for beams give the greatest safe loads in net tons, evenly distributed, including the weight of the beam. The results are obtained by the methods described on pages 149tol()5, and correspond to extreme tibre stresses of 14,000 lbs. for iron, or 16,800 lbs. for steel, or approxi- mately about one-half the elastic limit of the materials, presuming that very soft steel may be used. LIMITS FOR THE SAFE LOAD. These loads are given as the greatest safe loads, and the beams are entirely reliable for them under ordinary con- ditions. As there is great diversity in published tables of safe loads for beams, everyone must judge for himself w^iat pro- portion of the elastic strength of the beam will best suit his purpose. The character of the load must be considered, and the mode of ai)plication of the same. If the load is suddenly applied, especially if accompanied by impact, the resulting dynamic stresses will not be expressed by formuke which are derived from static consideration alone. Freedom from vibration, or excessive deflection has usually to be provided for, or the beam may be of considerable length without lateral support. In many such cases it may be necessary to take smaller loads for bc^ams than those given in tables. In general, the following limitations of the tabulated safe loads will be proper for the specified conditions : Character of Service. Greatest Safe Loads. Quiescent load, subject to little vibration, as in ordinary floors, etc., especially where beams are short. As in tables. Fluctuating loads, causing vibration, espe- cially if the beams are long as com- pared to their depth. One-flfth {\) less than the table. (39) 40 WROUGHT IRON AND STEEL. Character of Service. Greatest Safe Loads. When loads are suddenly applied with some impact, or exposed to vibration from machinery or rapidly moving loads. One-third {\) less than the table. The beams, if of considerable length, are supposed to be braced horizontally, and it is safest to limit the application of the tabular loads to beams whose length between lateral supports does not exceed twenty times the flange width. Our experience has been that a beam without lateral sup- port is more stable than is commonly supposed. In an open-webbed beam, the top flange acts as a simple strut, and is liable to lateral flexure when the unsupported length is considerable. But in a solid beam the parts in tension sustain the parts in compression, and prevent the buckling which wOuld otherwise occur. Experiments have shown a reduction of about one-third of the normal modulus of rupture when the length of the beam becomes 80 times its flange width. But as the long beam may suffer if exposed to accidental cross strains, we recommend the greatest safe load to be reduced in such a ratio for long beams that when the length is seventy times the flange width the greatest safe loads will be reduced one- half. This will give safe loads, corresponding to given lengths, as follows : BEAMS WITHOUT LATERAL SUPPORT. Length of Beam. Proportion of Tabular Load Forming Greatest Safe Load. 20 times flange width. 40 50 60 70 Whole tabular load. 9 a a 1 0 8 u - u T(T 7 li a TO 6 a u 1 0 5 a 1 0 In the case of very short beams, unless the web is stiffened at the points of support, it will be necessary to DEFLECTION. 41 limit the safe load to that diMioted maxiniuni load in tons," col. XX, paL'es 150 to loT, for ivasons given on page 149. DEFLECTION. The tabular deflections are derivcul from the coefficients on pages 150 toh")?, as described on page 149. If the load on the beam is reduced below that of the tables, the deflection will be less than that given in the tables, in the direct ratio of the loads. The greatest safe load in the middle of the beam is exactly one-half (2) of the distributed load, and the deflection for the former will be eight-tenths of the deflection corre- sponding to the distributed load as given in the tables. If the load is placed out of centre on the beam, it will bear the same ratio to the load at the centre that the square of half the sixin bears to the j)roduct of the segments of the beam formed by the position of the load. Example. — A 15-inch No. 1 iron I beam, 16 feet between supports, will safely carry an evenly distributed load (by the tables) of 25.6 tons, and deflect under same .25 inches. The greatest safe load in the middle will be one-half the above, viz., 12.8 tons, and the resulting deflection j\ of the former, or .20 inches. If the weight is concentrated ?> feet out of centre, or 5 feet and 11 feet from the ends, then the square of half the S])an being 64, and the product of the segments being 55, the greatest safe load will be- "*^^^*^ = 14.9 tons. If a beam of above size and length is used without any lateral support, reduce the safe load in the ratio aforesaid. Thus the flange is 5S inches wide, and the length 33 times this ; therefore the greatest safe load will l)e a little less than of the results in the example. If beams are supported as described below, the greatest safe loads and corresponding deflections will bear the given ratios to the tabulated loads and deflections, for the same length and section of beams. 42 WROUGHT IRON AND STEEL. C!h(lTQ,Ct6T of BCCLTTI. Gvcdtcst Sofc Locid, Deflection. Fixed at one end, with the load concentrated at the other end. One-eighth (J) part of the tabular load. Three and one- fifth (3i) times the tabular de- flection. Fixed at one end, with the load uniformly dis- tributed. One-fourth {\) part of the tabular load. Two and two- fifths (2f) times the tabular de- flection. Rigidly fixed at both ends, with a load in the middle of beam. Same as the tabu- lar load. Four-tenths ( i%) of the tabular deflection. Eigidly fixed at both ends, with the load uni- formly distributed. One and one-half (IJ) times the tabular load. Three- tenths (A) of the tabular deflec- tion. Continuous beam loaded in middle. Same as the tabu- lar load. Four-tenths (x%) of the tabular deflection. Continuous beam load uniformly distributed. One and one-half (IJ) times the tabular load. Three- tenths (A) of the tabular deflec- tion. BEAMS WITH FIXED ENDS. By beams " rigidly fixed,'' as denoted in the previous table, we mean that the beam must be so securely fastened at both ends, by being built into solid masonry, or so firmly attached to an adjacent structure, that the connection would not be severed if the beam was exposed to its ultimate load. In this case the beam is of the same character as if con- tinuous over several supports, or as if consisting of two cantilevers, the space between whose ends was spanned by a separate beam. CONTINUOUS BEAMS. If a beam is continuous over several supports, and is equally loaded on each span, the greatest safe loads and the resulting deflections on any intermediate span will be as LIMIT FOR DKFLEC'TION. 4;] ^iven in the preceding table. But the end s])ans of hfuch a beam, being only senii-eontinuous, nuist be either of a shorter span than the intermediates, or, if of the same length, the load nnist be diminislu^l. LIMIT FOR DEFLECTION. It is considered good practice in the case of plastered ceilings, or in other circumstances where undue deflection may be prejudicial, to proportion beams so that their deflec- tion will not exceed 3^ of an inch per foot of span, or 3 part of the span. On each table the figures under the dark line (and in small type) denote cases where the deflection exceeds 3 part of the span. The spacing or distance transversely betw^een centres of floor beams is given in the tables as the " greatest " that should be used for the standard minimum section. If a thicker beam than the least section is used, an addition to the greatest spacing is given in the final column. This column is derived from the basis that the resistance of any rectangular section weighing 1 lb. per lineal foot is as follows the fibre stress for either metal, as in the tables, depth^ fQj. Iyou 1 the resistance for each unit of area ^ ^ , , \= equivalent to 1 lb. w^eight per lintal ^^^l^ for steel J foot. Example. — A 12^^ iron I beam. No. 4, is thickened to a weight of 50.1 lbs. per foot, and is used in a floor of 20 feet span, for a distributed load of 150 lbs. per square foot of floor. The addition in third column for each pound per foot is .14 ; .14 X 10 (increased weight) = 1.4 tons, making greatest safe load 12.04 tons. The deflection remains .49 in. as in table. The tabular spacing of 7.09 ft. may be increased by correction in final column : ^ ^ .^^^^ = .93 + 7.09 = 8.02 ft. lou between beam centres. If this beam is loaded in the centre the greatest safe load will be one-half the foregoing, or 0.02 tons, and the deflection under this load will be j\ lbs. of that for the greatest distributed load, or .39 in. If the load is reduced the deflection will be reduced in proportion. 44 ' SAFE LOADS OF IRON BEAMS. 15 ' IRON I LEAST SECTION. Flange width, 5.GG Web thickness, 56 Area in square Inches, . , . .19.03 Kesistance, 88.00 Founds per foot, 63.43 Greatest safe load in net tons ever For a load in middle of beam, a Deflection for centre load will BEAMS.— No. 1. GREATEST SECTION. Flange width, 5.98 Web thickness, 88 Area in square inches, .... 23.80 Resistance, 100.00 Pounds per foot, 79.33 distributed, including beam itself, w one-half of the tabular load. Y^o of the tabular deflection. Distance Between Supports in Feet, Greatest Safe Load in Net Tons for Least Section. S ^ ? sl Deflection in Inches. Greatest Distance Centres of Beams o Distributed Lo 100 150 Pounds 1 Pounds per Sq. | per Sq. Foot, j Foot. in Feet Between f Least Section for ads as Below. 200 250 Pounds ; Pounds per Sq. ' per Sq. Foot. \ Foot. 3^ ^ ^* S: ^ • ^ 5 in 10 39.78 .35 .08 79.56 53.04 39.78 31.82 70.00 11 37.33 .32 .11 67.87 45.25 33.93 27.15 57.85 12 34.22 .29 .14 57.03 38.02 28.52 22.81 48.61 13 31.59 .27 .16 48.60 32.40 24.30 19.44 41.42 14 29.33 .25 .19 41.90 27.93 20.95 16.76 35.71 15 27.37 .23 .22 36.49 24.33 18.25 14.60 31.11 16 25.66 .21 .25 32.08 21.38 16.04 12.83 27.34 17 24.15 .20 .28 28.41 18.94 14.21 11.36 24.22 18 22.81 .19 .31 25.34 16.90 12.67 10.14 21.61 19 21.61 .18 .35 22.75 15.16 11.37 9.10 19.39 20 20.53 .18 .39 20.53 13.69 10.27 8.21 17.50 21 19.55 .17 .43 18.62 12.41 9.31 7.45 15.87 22 18.66 .16 .47 16.96 11.31 8.48 6.79 14.46 23 17.85 .15 .51 15.52 10.35 I.IQ 6.21 13.23 24 17.11 .15 .56 14.26 9.51 7.13 5.70 12.15 25 16.42 .14 .60 13.14 8.76 6.57 5.25 11.20 26 15.79 .14 .65 12.15 8.10 6.07 4.86 10.36 27 15.21 .13 .70 11.27 7.51 5.63 4.51 9.60 28 14.66 .13 .75 10.47 6.98 5.24 4.19 8.93 29 14.16 .12 .81 9.77 6.51 4.88 3.91 8.32 30 13.69 .12 .87 9.13 6.08 4.56 3.65 7.78 31 13.25 .11 .93 8.55 5.70 4.27 3.42 7.28 32 12.83 .11 .99 8.02 5.35 4.01 3.21 6.84 33 12.44 .11 1.05 7.54 5.03 3.17 3.02 6.43 SAFE LOADS OF IRON BEAMS. 45 15 IKON I BEA3IS.— No. 2. LEAST SECTION. GREATEST SECTION. . . . 5.13 . . . .44 Area in square inches, . . . . 14.80 Area in square inches, . . Resist a lu e, . . . 70.90 . . . Ad.S'S Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be of the tabular deflection. 1 Distance Between ! Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound i per Foot Increase. \ Deflection in Inches. Greate. Centres o Dis 100 Pounds per Sq. Foot. 7 Distance f Bea ms o Tibuted L 150 Pounds per Sq. Foot. in Feet L f Least Se jad as Be 200 Pounds ])er Sq. Foot. between :iio7i for 250 Pounds per Sq. Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam, 10 26.03 .35 .08 52.06 34.71 26.03 20.82 70.00 11 26.03 .32 .11 47.33 31.55 23.66 18.93 57.85 12 26.03 .29 .14 43.38 28.92 21.69 17.35 48.61 13 25.47 .27 .16 39.18 26.12 19.59 15.67 41.42 14 23.65 .25 .19 33.79 22.52 16.89 13.51 35.71 15 22.08 .23 .22 29.44 19.63 14.72 11.78 31.11 16 20.70 .21 .25 25.88 17.25 12.94 10.35 27.34 17 19.48 .20 .28 22.92 15.28 11.46 9.17 24.22 18 18.40 .19 .31 iO.Do in 99 o.io 21.61 19 17.43 .18 .35 18.35 12.23 9.17 7.34 19.39 20 16.56 .18 .39 16.56 11.04 8.28 6.62 17.50 21 15.77 .17 .43 15.02 10.01 7.51 6.01 15.87 22 15.05 .16 .47 13.68 9.12 6.84 5.47 14.46 23 14.40 .15 .51 12.52 8.35 6.26 5.01 13.23 24 13.80 .15 .56 11.50 7.67 5.75 4.60 12.15 25 13.25 .14 .60 10.60 7.07 5.30 4.24 11.20 26 12.74 .14 .65 9.80 6.53 4.90 3.92 10.36 27 12.26 .13 .70 9.08 6.05 4,54 3.63 9.60 28 11.83 .13 .75 8.45 5.63 4.23 3.38 8.93 29 11.42 .12 .81 7.88 5.25 3.94 3.15 8.32 30 11.04 .12 .87 7.36 4.91 3.68 2.94 7.78 31 10.68 .11 .93 6.89 4.59 3.45 2.76 7.28 ■ 32 10.35 .11 .99 6.47 4.31 3.23 2.59 6.84 33 10.03 .11 1.05 6.08 4.05 3.04 2.43 6.43 46 SAFE LOADS OF IRON BEAMS. 12 IKON I t^EAMS.— No. 3. LEAST SECTION. Flange width, 5.5 Web thickness, 65 Area in square inches, .... 17.12 Resistance, 62.55 Pounds per foot, 57.06 GREATEST SECTION. Flange width, 5.65 "Web thickness, 80 Area in square inches, .... 18.92 Resistance, 66.15 Pounds per foot, 63.06 Greatest sale load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow ono-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between /Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greate. Centres Dis 100 Pounds per Sq. Foot. U Distance in Feet Between of Beams of Least Section for ribuied Loads as Below. 150 200 250 Pounds Pounds \ Pounds per Sq. per Sq. per Sq. Foot. Foot, i Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 10 29.19 .28 .12 58.38 38.92 29.19 23.35 56.00 11 26.54 .25 .15 48.25 32.17 24.13 19.30 46.28 12 24.33 .23 .17 27.03 20.28 16.22 38.89 13 22.45 .21 .20 34.54 23.03 17.27 13.82 33.14 14 20.85 .20 .24 29.79 19.86 14.89 11.91 28.57 15 19.46 .19 .27 25.95 17.30 12.97 10.38 24.89 16 18.24 .18 .31 22.80 15.20 11.40 9.12 21.88 17 17.17 .17 .35 20.20 13.47 10.10 8.08 - 19.38 18 16.22 .16 .39 18.02 12.01 9.01 7.21 17.28 19 15.36 .15 .44 16.17 10.78 8.08 6.47 15.51 20 14.60 .14 .49 14.60 9.73 7.30 5.84 14.00 21 13.90 .13 .53 13.24 8.83 6.62 5.30 12.70 22 13.27 .13 .59 12.06 8.04 6.03 4.83 11.57 23 12.69 .12 .64 11.03 7.36 5.52 4.41 10.59 24 ' 12.16 .12 .70 10.13 6.76 5.07 4.05 9.72 25 11.68 .11 .76 9.34 6.23 4.67 3.74 8.96 26 1 11.23 .11 .82 8.64 5.76 4.32 3.46 8.28 27 ' 10.81 .10 .88 8.01 5.34 4.01 3.20 7.68 28 29 30 31 32 33 10.43 10.07 9.73 9.42 9.12 8.85 .10 .10 .09 .09 .09 .08 .95 1.02 1.09 1.16 1.25 1.34 7.4.5 6.94 6.49 6.08 5.70 5.36 4.97 4.63 4.32 4.05 3.80 3.58 3.73 3.47 3.24 3.04 2.85 2.68 2.98 2.78 2.59 2.43 2.28 2.15 7.14 6.66 6.22 5.83 5.47 5.14 SAFE LOADS OF IRON BEAMS. 47 12 IKOX I I5I:AMS.— No. 4. LEAST SECTION. GREATEST SECTION. . . . 4.70 . . 5.02 Web thickness, .(•.8 Area in square inches, . . . 12.0;{ Area in square inches, . 14.76 . . . 40.10 Greatest safe load in net tons evenly distributed, including beam ilself. For a load in middle of beam, allow one-half of the tabular load. Dellection for centre load will be jq of the tabular deflection. Figures in small type denote cases where dedection is excessive. Distance Beticeen Supjmrts in Feet, Greatest Safe Load in Net Tons for Least Section. 1 Addition to Safe j 1 Jjoad for Each Pound j 1 per Foot Increase. I Deflection in Inches. Greater Centres o Dist 100 Pounds per Sq. Foot. t Distance f Beams o, ribvted Lc 150 Pounds per Sq. Foot. in Feet B f Least Se ads as Be 200 Pounds per Sq. Foot. etween ctionfor low. 250 Pounds 2>er Sq. Foot. — ( Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam . 10 21.28 .28 .12 42.56 28.37 21.28 17.02 56.00 11 19.35 .25 .15 35.18 23.45 17.59 14.07 46.28 12 17.73 .23 .17 29.55 19.70 14.78 11.82 38.89 13 16.37 .21 .20 25.18 16.79 12.59 10.07 33.14 14 15.20 .20 .24 21.71 14.48 10.86 8.69 28.57 15 14.19 .19 .27 18.92 12.61 9.46 7.57 24.89 16 13.30 .18 .31 16.62 11.08 8.31 6.65 21.88 17 12.52 .17 .35 14.73 9.82 7.36 5.89 19.38 18 11.82 .16 .39 13.13 8.76 6.57 5.25 17.28 19 11.20 .15 .44 11.79 7.86 5.89 4.72 15.51 20 10.64 .14 .49 10.64 7.09 5.32 4.26 14.00 21 10.13 13 .53 9.65 6.43 4.82 3.86 12.70 22 9.67 .13 .59 8.79 5.86 4.40 3.52 11.57 23 9.25 .12 .64 8.04 5.36 4.02 3.22 10.59 24 8.87 .12 .70 7.39 4.93 3.70 2.96 9.72 25 8.51 .11 .76 6.81 4.54 3.40 2.72 8.96 26 8.18 .11 .82 6.29 4.19 3.15 2.52 8.28 27 7.88 .10 .88 5.84 3.89 2.92 2.33 7.68 28 29 30 31 32 33 7.60 7..34 7.01> 6 86 6.65 6.45 .10 .10 .09 .09 .09 .08 .95 1.02 1.09 1.16 1.25 1.34 5.43 5.06 4.73 4.43 4.16 3.91 3.62 3.37 3.15 2.95 2.77 2.61 2.71 2.53 2.36 2.21 2.08 1.95 2.17 2.02 1.89 1.77 1.66 1.56 7.14 6.66 6.22 5.83 5.47 5.14 48 SAFE LOADS OF IRON BEAMS. 10^' IKON I BEAMS.— No. 5. LEAST SECTION. GREATEST SECTION. . . 5.25 . . . 5.50 . . .47 Web thiekuess, . . . . .72 . . . 13.53 Area in square inches, , . . . . 16.16 Resistance, . .46.21 . . . 50.80 Pounds per foot, .... . . . 53.86 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be yo of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe IjOad for Each Pound per Foot Increase. Deflection in Inches. Greates Centres o Dist 100 Pounds l)er Sq. Foot. t Distance in Feet 1 f Beams of Least Se ributed Loads as Be 150 200 Pounds \ Pounds per Sq. \ j)er Sq. Foot. 1 Foot. 3etween ction for low. 250 Pounds, per Sq. Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each 'Pound per Foot Increase of Beam. 1 r\ lU OA .14 43.14 Zl.O/ 17.26 11 19.60 .22 .17 35.64 23.76 17.82 14.25 40.50 12 17.97 .20 .20 29.95 19.97 14.98 11.98 34.03 13 16.59 .18 .24 25.52 17.02 12.76 10.21 28.99 14 15.40 .17 .27 22.00 14.67 11.00 8.80 25.00 15 14.38 .16 .31 19.17 12.78 9.59 7.67 21.78 16 13.48 .15 .36 16.85 11.23 8.43 6.74 19.14 17 12.69 .14 .40 14.93 9.95 7.46 5.97 16.95 18 11.98 .14 .45 13.31 8.87 6.66 5.32 15.12 19 11.35 .13 .51 11.95 7.96 5.97 4.78 13.57 20 10.78 .12 .56 10.78 7.19 5.39 4.31 12.25 21 10.27 .12 .62 9.78 6.52 4.89 3.91 11.11 22 9.80 .11 .68 8.91 5.94 4.45 3.56 10.12 23 9.38 .11 .74 8.16 5.44 4.08 3.26 9.26 24 25 26 27 28 29 30 31 32 33 8.99 8.63 8.29 7.99 7.70 7.44 7.19 6.96 6.74 6.54 .10 .10 .09 .09 .09 •08 .08 .08 .08 .07 .81 .88 .95 1.02 1.10 1.18 1.26 1.35 1.43 1.53 7.49 6.90 6.38 5.92 5.50 5.13 4.79 4.49 4.21 3 96 4.99 4.60 4.25 3.95 3.67 3.42 3.20 2.99 2.81 2.64 3.75 3.45 3.19 2.96 2.75 2.57 2.40 2.25 2.11 1.98 3.00 2.76 2 55 ,2..37 2.20 2.05 1.92 1.80 1.69 1.59 8.51 7.84 7.25 6.72 6.25 5.83 5.44 5.10 4.79 4.50 SAFE LOADS OF IRON BEAMS. 49 10^' IKON I BEAMS.— No. 5^. GREATKST SECTION. Flange width, 5.12 LEAST SECTION. Hangc width, 4.87 Web thickness, 41 Area in square inches 10.96 Resistance, 37.52 Pounds per foot, 36.53 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be of the tabular deflection. Figures in small type denote cases where deflection is excessive. Web thickness, 66 Area in square inches, 13.58 Resistance, 42.11 Pounds per foot, 45.26 24 25 26 27 28 29 Distance Between [ Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greatest Distanc Centres of Beam^ c Distributed Li 100 150 Pounds , Pounds per Sq. per Sq. Foot. Foot. s in Feet J / Least Se 200 Pounds per Sq. Foot. Between ction for low. 250 Pounds, per Sq. Foot. Divide by Loadper Sq. ' Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 10 17.51 .2A .14 35.02 23.35 17.51 14.01 49.00 11 15.92 .22 .17 28.95 19.30 14.47 11.58 40.50 12 14.59 .20 .20 24.32 16.21 12.16 9.73 34.03 13 13.47 .18 .24 20.72 13.82 10.36 8.29 28.99 14 12.51 .17 .27 17.87 11.91 8.94 7.15 25.00 15 11.67 .16 .31 15.56 10.37 7.78 6.22 21.78 16 10.94 .15 .36 13.68 9.12 6.84 5.47 19.14 17 10.30 .14 .40 12.12 8.08 6.06 4.85 16.95 18 9.73 .14 .45 10.81 7.21 5.41 4.32 15.12 19 9.22 .13 .51 9.71 6.47 4.85 3.88 13.57 20 8.75 .12 .56 8.75 5.83 4.38 3.50 12.25 21 8.34 .12 .62 7.94 5.30 3.97 3.18 11.11 22 7.96 .11 .68 7.24 4.82 3.62 2.89 10.12 23 7.61 .11 .74 6.62 4.41 3.31 2.65 9.26 7.30 7.00 6.73 6.48 6.25 6.04 .10 .10 .09 .09 .09 •08 .81 .95 1.02 1.10 1.18 6.08 5.60 5.18 4.80 4.46 4.17 4.06 3.73 3.45 3.20 2.98 2.78 3.04 2.80 2.59 2.40 2.23 2.08 2.43 2.24 2.07 1.92 1.79 1.67 30 31 32 33 5.84 5.65 5.47 5.31 .08 .08 .08 .07 1.26 1.35 1.43 1 1.53 i 3.89 3.65 3.42 3.22 2.60 2.43 2.28 2.15 1.95 1.82 1.71 1.61 1.56 1.46 1.37 1.29 SAFE LOADS OF IRON BEAMS. 10\' IRON I BEAMS.— No. 6. LEAST SECTION. GREATEST SECTION. . . 9.00 Area in square inches, , , . . . 10.89 . . 31.15 Resistance, . . . 34.46 Pounds per foot, .... . . .36.30 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessire. Greatest Distance in Feet Beticeen Betwee in Fee t Safe Lo ' Tons for Section. Addition to Saf Load for Each Po^ per Foot Increas •i Centres of Beams of Least Section for Distributed Loads as Below. Di.stanc Support Greatest in Net Least 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds, per Sq. Foot. Divide by Foot and respondii for Each root men OA .14 29.08 19.39 14.54 11.63 4Q on 11 13.21 .22 .17 OA 09 1 ni 1 9 ni Q R^ y.Di 40.50 12 12.11 .20 .20 9n 1 Q ZU.lo in HQ lu.uy ft 07 o.U / 34.03 13 11.18 .18 .24 1 1 on 1 1 47 cJ.DU D.OO 28.99 14 10.38 .17 .27 9.89 7 41 25.00 15 9.69 .16 .31 12.92 8^61 6.46 5.17 21.78 16 9.09 .15 .36 11.36 7.58 5.68 4.55 19.14 17 8.55 .14 .40 10.06 6.71 5.03 4.02 16.95 18 8.08 .14 .45 8.98 5.99 4.49 3.59 15.12 19 7.65 .13 .51 8.05 5.37 4.03 3.22 13.57 20 7.27 .12 .56 7.27 4.85 3.64 2.91 12.25 21 6.92 .12 .62 6.59 4.39 3.30 2.64 11.11 22 6.61 .11 .68 6.01 4.01 3.00 2.40 10.12 23 6.32 .11 .74 5.50 3.66 2.75 2.20 9.26 24 6.06 .10 .81 5.05 3.37 2.53 2.02 8.51 25 5.81 .10 .88 4.65 3.10 2.32 1.86 7.84 26 5.59 .09 .95 4.30 2.87 2.15 1.72 7.25 27 5.38 .09 1.02 3.99 2.66 1.99 1.59 6.72 28 5.19 .09 1.10 3.71 2.47 1.85 1.48 6.25 29 5.01 •08 1.18 3.46 2.30 1.73 1.38 5.83 30 4.85 .08 1.26 3.23 2.16 1.62 1.29 5.44 31 4.69 .08 1.35 i 3.03 .2.02 1.51 1.21 5.10 32 4.54 .08 1.43 2.84 1.89 1.42 1.14 4.79 33 4.40 .07 1.53 2.67 1.78 1.33 1.07 4.50 SAFE LOADS OF IRON BEAMS. 51 10 IKON I I5EAMS.— No. 7. LEAST SECTION. GREATEST SECTION. . . 4.88 . . . .50 . . . 11.25 Area in square iuches, , . . . 18.75 . . 81). 04 . . 45.83 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be yo ^^^^ tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Sujijtorts in Feet. ' Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greater Centres ( Dist 100 Pounds per Sq. Foot. t Distanc if Beams t rib u ted L 150 Pounds per Sq. Foot. e in Feet . if Least S( oads as Bi 200 Pounds per Sq. Foot. Betireen action for How. 250 Pound s per Sq. Foot. Divide by Loadper Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. in iXJ 16.27 32.54 21.69 16.27 13.02 11 14'.79 .21 .18 26.89 17.93 13.45 10.76 38.57 12 13.56 .19 .21 22.60 15.07 11.30 9.04 32.41 13 12.52 .18 .25 19.26 12.84 9.63 7.70 27.61 14 11.62 .17 .29 16.60 11.07 8.30 6.64 23.81 15 10.85 .16 .33 14.47 9.64 7.23 5.79 20.74 16 10.17 .15 .38 12.71 8.48 6.36 5.09 18.23 17 9.57 .14 .42 11.26 7.51 5.63 4.50 16.15 18 9.04 .13 .48 10.04 6.70 5.02 4.02 14.40 19 8.56 .12 .53 9.01 6.01 4.51 3.60 12.93 20 8.14 .12 .59 8.14 5.43 4.07 3.26 11.67 21 1.1b .11 .65 7.38 4.92 3.69 2.95 10.58 22 7.40 .11 .71 6.73 4.48 3.36 2.69 9.64 23 24 25 26 27 28 29 30 31 32 33 7.07 6.78 6.51 6.26 6.03 5.81 5.61 5.42 5.25 5.09 4.93 .10 .10 .09 .09 .09 .08 •08 .08 .08 .07 .07 .78 .84 .92 .99 1.07 1.15 1.23 1.32 1.41 1.50 1.60 6.15 5.65 5.21 4.82 4.47 4.15 3.87 3.61 3.39 3.18 2.99 4.10 3.77 3.47 3.21 2.98 2.77 2.58 2.41 2.26 2.12 1.99 3.07 2.83 2.60 2.41 2.23 2.08 1.93 1.81 1.69 1.59 1.49 2.46 2.26 2.08 1.93 1.79 1.66 1.55 1.45 1.35 1.27 1.19 8.82 8.10 7.47 6.90 6.40 5.95 5.55 5.19 4.86 4.53 4.29 52 SAFE LOADS OF IRON BEAMS. 10' IKON I BEAMS.— No. 8. LEAST SECTION. GREATEST SECTION. Flange width, 4.38 Flange width, 4.53 "Web thickness, 35 Web thickness, 50 Area in square inches 9.14 Area in square inches, . . . .10.64 Resistance, . 30.23 Resistance, 32.72 Pounds per foot, 30.46 Pounds per foot, 35.46 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be yo of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greate. Centres i Disi 100 Pounds per Sq. Foot. ^t Distanci yf Beams c rihuted L 150 Pounds per Sq. Foot. 3 in Feet . )/ Lea^t S oads as B 200 Pounds per Sq. Foot. Seticeen action for elow. 250 Pounds jjer Sq. Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. in 14.11 .23 .15 28.22 18.81 14.11 11.29 46.67 11 12!82 !21 !l8 23.31 15.54 11.65 9.32 38;57 12 11.76 .19 .21 19.60 13.07 9.80 7.84 32.41 13 10.85 .18 .25 16.69 11.13 8.35 6.68 27.61 14 10.08 .17 .29 14.40 9.60 7.20 5.76 23.81 15 9.40 .16 .33 12.53 8.36 6.27 5.01 20.74 16 8.82 .15 .38 11.03 7.35 5.51 4.41 18.23 17 8.30 .14 .42 9.76 6.51 4.88 3.91 16.15 18 7.84 .13 .48 8.71 5.81 4.36 3.48 14.40 19 7.42 .12 .53 7.81 5.21 3.91 3.12 12.93 20 7.05 .12 .59 7.05 4.70 3.53 2.82 11.67 21 6.72 .11 .65 6.40 4.27 3.20 2.56 10.58 22 6.41 .11 .71 5.83 3.88 2.91 2.33 9.64 23 24 25 26 27 28 29 30 31 32 33 6.13 5.87 5.64 5.43 5.22 5.01 4.86 4.70 4.55 4.41 4.27 .10 .10 .09 .09 .09 .08 .08 .08 .08 .07 .07 .78 .84 .92 .99 1.07 1.15 1.23 1.32 1.41 1.50 1.60 5.33 4.89 4.51 4.18 3.87 3.60 3.35 3.13 2.94 2.76 2.59 3.55 3.26 3.01 2.78 2.58 2.40 2.23 2.09 1.96 1.84 1.73 2.67 2.45 2.26 2.09 1.93 1.80 1.08 1.57 1.47 1.38 1.29 2.13 1.06 1.8) 1.67 1.55 1.44 1.34 1.25 1.17 1.10 1.04 8.82 8.10 7.47 6.90 6.40 5.95 5.55 5.19 4.86 4.56 4.29 SAFE LOADS OF IRON BEAMS. 53 9' IRON I BEAMS.— No. 9. I.EAST SECTION. Flange width, 4.75 Web thickness, 41 Area in square inches, 9.28 Resistance, 27.10 Pounds per foot, 30.93 GREATEST SECTION. Flange width, 4.94 Web thickness, 60 Area in square inches, .... 10,99 Eesistance, 29.66 Pounds per foot, 36.63 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Between in Feet. Greatest Safe Load in Net Tons for Least Section, Addition to Safe Load for Each Pound per Foot Increase. •2 Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Load as Below. Distance . Supports 100 Ponnds per Sq. Foot. 150 Pounds per Sg. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 8 9 10 11 15.81 14.05 12.65 11.50 .26 .23 .21 .19 .10 .13 .16 .20 39.53 31.22 25.30 20.91 26.35 20.81 16.87 13.94 19.76 15.61 12.65 10.45 15.81 12.49 10.12 8.36 12 13 14 15 10.54 9.73 9.03 8.43 .17 .16 .15 .14 .23 .28 .32 .37 17.57 14.97 12.90 11.24 11.71 9.88 8.60 7.49 8.78 7.48 6.45 5.62 7.03 5.99 5.16 4.50 16 17 18 19 7.90 7.44 7.03 6.66 .13 .12 .12 .11 .42 .47 .53 .59 9.88 8.75 7.81 7.01 6.58 5.84 5.21 4.67 4.94 4.38 3.91 3.51 3.95 3.50 3.12 2.80 20 6.32 .10 .65 6.32 4.21 3.16 2.53 21 22 23 6.02 5.75 5.50 .10 .09 .09 .72 .79 .86 5.73 5.23 4.78 3.82 3.48 3.19 2.87 2.61 2.39 2.29 2.09 1.91 24 25 26 27 5.27 5.06 4.86 4.68 .09 .08 .08 .08 .94 1.02 1.10 1.19 4.39 4.05 3.74 3.47 2.93 2.70 2.49 2.31 2.20 2.02 1.87 1.73 1.76 1.62 1.50 1.39 28 29 30 31 4.52 4.36 4.22 4.08 .07 .07 .07 .06 1.28 1.37 1.47 1.57 3.23 3.01 2.81 2.63 2.15 2.00 1.87 1.75 1.61 1.50 1.41 1.32 1.29 1.20 1.12 1.05 64 SAFE LOADS OF IRON BEAMS. 9' IKON I BEAMS.— No. 10. LEAST SECTION. Flange width, 4.25 Web thickness, 31 Area in square inches, .... 7.18 Resistance, 21.48 Pounds per foot, 23.93 GREATEST SECTION. Flange width, 4.44 Web thickness, 50 Area in square inches, .... 8.89 Resistance, 24.05 Pounds per foot, 29.63 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be j-q of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Found per Foot Increase. Deflection in Inches. GreatCt. Centres c Dist 103 Pounds per Sq. Foot. ^t Distance f Beams c ributed L( 150 Pounds per Sq. Foot. ? ijt Feet 2 f Least S(- lads as Bi 200 Pounds per Sq. Foot. ietween ction for 'low. 250 Pounds per Sq. Fool. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam . \ o o in .iU 31.25 20.83 15.63 12.50 OO.Do 9 11.14 .23 .13 24.76 16.50 12.38 9.90 51.86 10 10.02 .21 .16 20.04 13.36 10.02 8.02 42.00 11 9.11 .19 .20 16.56 11.04 8.28 6.63 34.71 12 8.35 .17 .23 13.92 9.28 6.96 5.57 29.17 13 7.71 .16 .28 11.86 7.91 5.93 4.74 24.85 14 7.16 .15 .32 10.23 6.82 5.11 4.09 21.43 15 6.68 .14 .37 8.91 5.94 4.45 3.56 18.67 16 6.27 .13 .42 7.84 5.23 3.92 3.14 16.41 17 5.90 .12 .47 6.94 4.63 3.47 2.78 14.53 18 5.57 .12 .53 6.19 4.13 3.09 2.48 12.96 19 5.28 .11 .59 5.56 3.71 2.78 2.22 11.63 20 5.01 .10 .65 5.01 3.34 2.51 2.00 10.50 21 22 23 24 25 26 27 28 29 30 31 4.77 4.56 4.36 4.18 4.01 3.86 3.71 3.58 3.46 3.34 3.23 .10 .09 .09 .09 .08 .08 .08 .07 .07 .07 .06 .72 .79 .86 .94 1.02 1.10 1.19 1.28 1.37 1.47 1.57 4.54 4.15 3.79 3.48 3.21 2.97 2.75 2.53 2.39 2.23 2.08 3.03 2.76 2.53 2.32 2.14 1.98 1.83 •1.70 1.59 1.48 1.39 2.27 2.07 1.89 1.74 1.60 1.48 1.37 1.28 1.19 1.11 1.04 1.82 1.66 1.52 1.39 1.28 1.19 1.10 1.02 0.95 0.89 0.83 9.52 8.68 7.94 7.29 6.72 6.21 5.76 5.36 4.99 4.67 4.37 SAFE LOADS OF IRON BEAMS. 55 8 IRON X BEAMS.— No. 11. LEAST SECTION. Flange width, 4.S:i \Ve») tbickuess, 41 Area in square inches, .... 8.2<» Resistance, 21.20 Pounds per foot, 27.53 GREATEST SECTION. Flange width, 4.57 Web thickness, . 60 Area in square inches, .... 9.78 Resistance, 23.2:^ Pounds per foot, 32.60 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be y^o the tabular deflection. Figures in small type denote cases where deflection is excessive c? 6 16.49 14.13 12.37 10.99 9.89 8.99 8.24 7.61 7.07 6.60 6.18 5.82 1^^ .31 .27 .23 .21 .19 .17 .16 .14 .13 .12 .12 .11 .07 .09 .12 .15 .18 .22 .26 .31 .36 .41 .47 .53 Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. 100 5.50 .10 .59 per Sq. Foot. 54.97 40.37 30.93 24.42 19.78 16.35 13.73 11.71 10.10 8.80 7.73 6.85 6.11 150 200 Pounds Pounds per Sq. per Sq. Foot. Foot. 36.64 26.91 20.62 16.28 13.19 10.90 9.16 7.81 6.73 5.87 5.15 4.56 4.07 27.48 20.18 15.46 12.21 9.89 8.17 6.87 5.85 5.05 4.40 3.86 3.42 3.06 253 Pounds per Sq. Foot. 21.99 16.15 12.37 9.77 7.91 6.54 5.49 4.68 4.04 3.52 3.09 2.74 2.44 5.21 4.95 4.71 4.50 4.30 4.12 3.96 3.80 3.66 3.53 3.41 .10 .09 .09 .08 .08 .08 .07 .07 .07 .07 .06 .60 .73 .81 .89 .97 1.06 1.15 1.24 1.34 1.44 1.54 5.48 4.95 4.49 4.09 3.74 3.43 3.17 2.92 2.71 2.52 2.35 3.66 3.30 I 2.99 I 2.73 i 2.49 2.29 2.11 1.95 1.81 1.68 1.57 2.74 2.48 2.24 2.05 1.87 1.72 1.58 1.46 1.36 1.26 1.18 2.19 1.98 1.79 1.64 1.50 1.37 1.27 1.17 1.08 1.01 0.94 ^ 5^ g «J ^ g 103.70 76.18 58.33 46.09 37.33 30.85 25.92 22.09 19.05 16.59 14.58 12.92 11.52 10.34 9.33 8.46 7.71 7.06 6.48 5.97 5.52 5.12 4.76 4.44 56 SAFE LOADS OF IRON BEAMS, 8' IRON I BEAMS.— No. 12. I.EAST SECTION. GREATEST SECTION. . . 4.00 Area in square inches, , . . , 6.24 Area in square inches, . . . 7.84 . . 16.71 Resistance, . . . 18.84 Pounds per foot, .... . . . 26.13 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet, j Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greates Centres c Dist 100 Pounds per Sq'. Foot. t Distanc f Beams c ributed Ia 150 Pounds per Sq. Foot. 3 in Feet J f Least St jads as Be 200 Pounds per Sq. Foot. Setiveen ction for low. 250 Pounds per Sq. Foot. Divide by Loadper Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 6 11.40 .31 .07 38.00 25.33 19.00 15.20 103.70 7 11.14 .27 .09 31.83 21.22 15.91 12.73 76.18 8 9.75 .23 .12 24.38 16.25 12.19 9.75 58.33 9 8.66 .21 .15 19.24 12.83 9.62 I.IQ 46.09 10 7.80 .19 .18 15.60 10.40 7.80 6.24 37.33 11 7.09 .17 .22 12.89 8.59 6.45 5.16 30.85 12 6.50 .16 .26 10.83 7.22 5.42 4.33 25.92 13 6.00 .14 .31 9.23 6.15 4.62 3.61 22.09 14 5.57 .13 .36 7.96 5.30 3.98 3.18 19.05 15 5.20 .12 .41 6.93 4.62 3.47 2.77 16.59 16 4.87 .12 .47 6.09 4.06 3.04 2.44 14.58 17 4.59 .11 .53 5.40 3.60 2.70 2.16 12.92 18 4.33 .10 .59 4.81 3.21 2.41 1.92 11.52 19 20 21 22 23 24 25 26 27 28 29 4.10 3.90 3.71 3.54 3.39 3.25 8.12 3.00 2.89 2.79 2.69 .10 .09 .09 .08 .08 .08 •07 .07 .07 .07 .06 .66 .73 .81 .89 .97 1.06 1.15 1.24 1.34 1.44 1.54 4.32 3.90 3.53 3.22 2.95 2.71 2.50 2.31 2.14 1.99 1.86 2.88 2.60 2.36 2.15 1.97 1.81 1.66 1.54 1.43 1.33 1.24 2.16 1.95 1.77 1.61 1.47 1.35 1.25 1.15 1.07 1.00 0.93 1.73 1.56 1.41 1.29 1.18 1.08 1.00 0.92 0.86 0.80 0.74 10.34 9.33 8.46 7.71 7.06 6.48 5.97 5.52 5.12 4.76 4.44 SAFE LOADS OF IRON BEAMS. 57 7 IKOX LEAST SECTION. 31 BKAMS.— No. 13. GREATEST SECTION. Flange width, ;i.87 Web thiekness, 50 Area in sciuare inches, 7.10 Ke.sistauce, 14.89 Poimds per foot , 28.07 Flange width, 3.81 Web thickness, 44 Area in square inches, 0.(58 Resistance, 14.40 Pounds per foot, 22.20 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Detlection for centre load will be i\i of the tabular defection. Figures in small type denote cases where detlection is excessive. Distance Between | Supports in Feet. \ Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greates Centres t Dist 100 Pounds per Sq. Foot. t Distanc f Beams c ributed L 150 Pounds per Sq. Foot. g in Feet Between f Least Section for mds as Below. 200 250 Pounds Pounds per Sq. 1 per Sq. Foot. Foot. Divide by LoadperSq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. g 11.20 27 .08 37.33 24.89 18 67 14.93 90.75 7 .23 !io 27.43 18.29 13171 lo!97 66'.67 8 8.40 .20 .13 21.00 14.00 10.50 8.40 51.05 9 7.47 . .18 .17 16.60 11.07 8.30 6.64 40.33 10 6.72 .16 .21 13.44 8.96 6.72 5.38 32.67 11 6.11 .15 .25 11.11 7.41 5.55 4.44 27.00 12 5.60 .14 .30 9.33 6.22 4.67 3.73 22.69 13 5.17 .13 .35 7.95 5.30 3.98 3.18 19.33 14 4.80 .12 .41 6.86 4.57 3.43 2.74 16.67 15 4.48 .11 .47 5.97 3.98 2.99 2.39 14.52 16 4.20 .10 .53 5.25 3.50 2.63 2.10 12.76 17 18 19 20 21 22 23 24 25 26 27 28 29 3.95 3.73 3.54 3..36 3.20 3.05 2.92 2.80 2.69 2.58 2.49 2.40 2..32 .10 .09 .09 .08 .08 .07 .07 .07 .07 .06 .06 .06 .06 .60 .68 .76 .84 .92 1.01 1.10 1.20 1.30 1.41 1.52 1.64 1.76 4.65 4.14 3.73 3.36 3.05 2.77 2.54 2.33 2.15 1.98 1.84 1.71 1.60 3.10 2.76 2.48 2.24 2.03 1.85 1.69 1.56 1.43 1.32 1.23 1.14 1.07 2.32 2.07 1.86 1.68 1.52 1.39 1.27 1.17 1.08 0.99 0.92 0.86 0.80 1.86 1.66 1.49 1.34 1.22 1.11 1.02 0.93 0.86 0.79 0.74 0.69 0.64 11.30 10.08 9.05 8.17 7.41 6.75 6.18 5.67 5.23 4.83 4.48 4.17 3.88 58 SAFE LOADS OF IRON BEAMS, 7'' IRON I BEAMS.— No. 14. LEAST SECTION. GREATEST SECTION. . . . .24 . , A I . . . 5.26 Area in square inches, . , . . 6.t;6 . . 14.37 99 91 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distatice Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greates Centres i Dist 100 Pounds per Sq. Foot. t Distance in Feet 1 f Beams of Least Se rihuted Loads as Be 150 200 Pounds Pounds per Sq. per Sq. Foot. , Foot. between ction for low. 250 Pounds per Sq Foot. Divide by Loadper Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 6 7.50 .27 .08 25.00 16.67 12.50 10.00 90.75 7 7.50 .23 .10 21.43 14.29 10.71 8.57 66.67 8 7.43 .20 .13 18.58 12.38 9.29 7.43 51.05 9 6.61 .18 .17 14.69 9.79 7.34 5.88 40.33 10 5.95 .16 .21 11.90 7.93 5.95 4.76 32.67 11 5.40 .15 .25 9.82 6.55 4.91 3.93 27.00 12 4.95 .14 .30 8.25 5.50 4.13 3.30 22.69 13 4.57 .13 .35 7.03 4.69 3.52 2.81 19.33 14 4.25 .12 .41 6.07 4.05 3.04 2.43 16.67 15 3.96 .11 .47 5.28 3.52 2.64 2.11 14.52 16 3.72 .10 .53 4.65 3.10 2.33 1.86 12.76 17 18 19 20 21 22 23 24 25 26 27 28 29 3.50 3.30 3.13 2.97 2.83 2.70 2.58 2.48 2.38 2.29 2.20 2.12 2.05 .10 .09 .09 .08 .08 .07 .07 .07 .07 .06 .06 .06 .06 .GO .68 .76 .84 .92 1.01 1.10 1.20 1.30 1.41 1.52 1.64 1.76 4.12 3.67 3.29 2.97 2.70 2.45 2.24 2.07 1.90 1.76 1.63 1.51 1.41 2.75 2.44 2.20 1.98 1.80 1.64 1.50 1.38 1.27 1.17 1.09 1.01 0.94 2.06 1.83 1.65 1.49 1.35 1.23 1.12 1.03 0.95 0.88 0.81 0.76 0.71 ^ 1.65 1.47 1.32 1.19 1.08 0.98 0.90 0.83 0.76 0.70 0.65 0.60 0.57 11.30 10.08 9.05 8.17 7.41 6.75 6.18 5.67 5.23 4.83 4.48 4.17 3.88 SAFE LOADS OF IRON BEAMS. 59 6' IRON I BEAMS.— No. 23. LEAST SECTION. Flange width, 5.25 Web thickness, 63 Area in sejuare inches, . . . .11.79 Resistance, 21.36 Pounds per loot, 39.30 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Detlection for centre load will be jo of the tabular deflection. Figures in small type denote cases where deflection is excessive. GREATEST SECTION. Flange width, . 5.50 Web thi(>kness, 88 Area in s(iuare inches, . . , .13.29 Resistance, 22.80 Pounds per foot, 44.30 g . ^ A- if — 6 7 8 9 10 11 12 13 — . — 16.61 14.24 12.46 11.08 9.97 9.06 8.31 7.67 1 • .23 .20 .18 .16 .14 .13 .12 .11 Deflection. in Inches. Greater Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 27.68 20.34 15.58 12^31 9.97 8.24 6.93 5.90 250 Pounds per Sq. Foot. 22.15 16.27 12.46 9.85 7.98 6.59 5.54 4.72 .09 .02 .16 .20 .24 .29 .35 .41 55.37 40.69 31.15 24.62 19.94 16.47 13.85 11.80 36.91 27.12 20.77 16.41 13.29 10.98 9.23 7.87 14 7.12 .10 .48 10.17 0.78 5.09 4.07 15 0.05 .09 .55 8.87 5.91 4.43 3.55 16 6.23 .09 .63 7.79 5.19 3.89 3.12 17 5.86 .08 .71 6.89 4.60 3.45 2.70 18 5.54 .08 .79 6.16 4.10 3.08 2.40 19 5.25 .07 .88 5.53 3.68 2.76 2.21 20 4.98 .07 .97 4.98 3.32 2.49 1.99 21 4.75 .07 1.07 4.52 3.02 2.26 1.81 22 4.53 .06 1.18 4.12 2.75 2.06 1.65 23 4.33 .06 1.29 3.77 2.51 1.88 1.51 24 4.15 .06 1.40 3.46 2.31 1.73 1.38 25 3.99 .06 1.52 3.19 2.13 1.60 1.28 26 3.83 .05 1.65 2.95 1.90 1.47 1.18 27 3.09 .05 1.78 2.73 1.82 1.37 1.09 28 3.56 .05 1.91 2.54 1.70 1.27 1.02 29 3.44 .05 2.06 2.37 1.58 1.19 0.95 60 SAFE LOADS OF IRON BEAMS, 6 IRON 31 BEA3IS.— Xo. 24. LEAST SECTION. GREATEST SECTION. . . 4.88 Flange width, . . 9.27 Area in square inches, . . . 10.77 Resistance, Pounds per foot, .... . . . 35.yo Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be y'o of the tabular deflection. Figures in small type denote cases where deflection is excessive. III Pi 13.62 11.67 10.21 9.08 .23 .20 .18 .16 .09 .12 .16 .20 Greatest Distance in Feet Between Centres of Beams of Least Section for li Distributed Loads as Below. r 100 Poitnds per Sg. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds pe r Sq Foot. 45.40 33.34 25.53 20.18 30.27 22.23 17.02 13.45 22.70 16.67 12.76 10.09 18.16 13.34 10.21 8.07 77.78 57.14 43.75 34.57 10 8.17 .14 .24 16.34 10.89 8.17 6.54 28.00 11 7.43 .13 .29 13.51 9.01 6.75 5.40 23.14 12 6.81 .12 .35 11.35 7.57 5.68 4.54 19.44 13 6.29 .11 .41 9.68 6.45 4.84 3.87 16.57 14 5.84 .10 .48 8.34 5.56 4.17 3.34 14.29 15 5.45 .09 .55 7.27 4.84 3.63 2.91 12.44 16 5.11 .08 .63 6.39 4.26 3.19 2.56 10.94 17 4.81 .08 .71 5.66 3.77 2.83 2.26 9.69 18 4.54 .08 .79 5.04 3.36 2.52 2.02 8.64 19 4.30 .07 .88 4.53 3.02 2.26 1.81 7.76 20 4.09 .07 .97 4.09 2.73 2.05 1.64 7.00 21 3.89 .07 1.07 3.70 2.47 1.85 1.48 6.35 22 3.71 .06 1.18 3.37 2.25 1.69 1.35 5.79 23 3.55 .06 1.29 3.09 2.06 1.54 1.23 5.29 24 3.40 .06 1.40 2.83 1.89 1.42 1.13 4.86 25 3.27 .06 1.52 2.62 1.74 1.31 1.05 4.48 26 3.14 .05 1.65 2.42 1.61 1.21 0.97 4.14 27 3.03 .05 1.78 2.24 1.50 1.12 0.90 3.84 28 2.92 .05 1 91 2.09 1.39 1.04 0.83 3.57 29 2.82 .05 2.06 1.94 1.30 0.97 0.78 3.33 SAFE LOADS OF IRON BEAMS. 61 6' IRON I BEAMS.— No. 15. LEAST SECTION. GREATEST SECTION. . . 3.84 . . .28 Area in square inches, . . . . 5.65 Area in square inches, . . . . 7.75 Greatest safe load in net tons evenly distributed, inckiding^beam itself. VoT a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Si ■2 1" 6 7 8 9 10 11 12 13 Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for luich Pound per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 8.88 7.61 6.66 5.92 5.33 4.84 4.44 4.10 .23 .20 .18 .16 .14 .13 .12 .11 .09 .12 .16 .20 .24 .29 .35 .41 29.60 21.74 16.65 13.16 lU.t)D 8.80 7.40 6.31 19.73 14.50 11.10 8.77 •7 11 5.87 4.93 4.21 14.80 10.87 8.33 6.58 0.66 4.40 3.70 3.15 11.84 8.70 6.66 5.26 4.26 3.52 2.96 2.52 14 3.80 .10 .48 5.48 3.62 2.71 2.17 15 3.55 .09 .55 4.73 3.16 2..37 1.89 16 3.33 .09 .63 4.16 2.78 2.08 1.67 17 3.13 .08 .71 3.68 2.45 1.84 1.47 18 2.96 .08 .79 3.29 2.19 1.64 1.32 19 2.80 .07 .88 2.95 1.96 1.47 1.18 20 2.66 .07 .97 2.66 1.77 1.33 1.06 21 2.54 .07 1.07 2.42 1.61 1.21 0.97 22 2.42 .06 1.18 2.20 1.47 1.10 -0.88 23 2.32 .06 1.29 2.02 1.34 1.01 0.81 24 2.22 .06 1.40 1.85 1.23 0.93 0.74 25 2.13 .06 1.52 1.70 1.14 0.85 0.68 26 2.05 .05 1.65 1.58 1.05 0.79 0.63 27 1.97 .05 1.78 1.46 0.97 0.73 0.58 28 1.90 .05 1.91 1.36 0.90 0.68 0.54 29 1.84 .05 2.06 1.27 0.85 0.63 0.51 "^i ^ ^ 1 77.78 57.14 43.75 34.57 28.00 23.14 19.44 16.57 14.29 12.44 10.94 9.69 8.64 7.76 7.00 6.35 5.79 5.29 4.86 4.48 4.14 3.84 3.57 3.33 62 SAFE LOADS OF IRON BEAMS. 6' IRON I BEAMS.— No. 16. LEAST SECTION. GREATEST SECTION. Flange width, . 3.69 Web thickness, 44 Area in square inches, .... 5.42 Resistance, 9.79 Pounds per foot, 18.06 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. . . . 3.47 . . . .22 . . . 4.10 . . . 8.47 Pounds per foot, .... . . . 13.66 5» ^ e a, 6 7 8 9 10 11 12 13 Greatest Safe Load in Net Tons for \ Least Section. Addition to Safe Load for Bach Pound per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Fool. 250 Pounds per Sq. Foot. 6.18 5.65 4.94 4.39 3.95 3.59 3.29 3.04 .23 .20 .18 .16 .14 .13 .12 .11 .09 .12 .16 .20 .24 .29 .35 .41 20.60 ID.lri Q 7fi 7.90 6.53 5.48 4.68 13.73 -LU. /O ft 9*^ O.CiO o.ou 5.27 4.35 3.66 3.12 10.30 O.U / fi 1ft A ftft 3.95 3.26 2.74 2.34 8.24 A OA 9 on 3.16 2.61 2.19 1.87 77.78 57.'l4 43.75 34.57 28.00 23.14 19.44 16.57 14 2.82 .10 .48 4.03 2.69 2.01 1.61 14.29 15 2.64 .09 .55 3.52 2.35 1.76 1.41 12.44 16 2.47 .09 .63 3.09 2.06 1.54 1.24 10.94 17 2.33 .08 .71 2.74 1.83 1.37 1.10 9.69 18 2.20 .08 .79 2.44 1.63 1.22 0.98 8.64 19 2.08 .07 .88 2.19 1.46 1.09 0.88 7.76 20 1.98 .07 .97 1.98 1.32 0.99 0.79 7.00 21 1.88 .07 1.07 1.79 1.19 0.90 0.72 6.35 22 1.80 .06 1.18 1.64 1.09 0.82 0.65 5.79 23 1.72 .06 1.29 1.50 1.00 0.75 - 0.60 5.29 24 1.65 .06 1.40 1.38 0.92 0.69 0.55 4.86 25 1.58 .06 1.52 1.26 0.84 0.63 0.51 4.48 26 1.52 .05 1.65 1.17 0.78 0.58 0.47 4.14 27 1.46 .05 1.78 1.08 0.72 0.54 0.43 3.84 28 1.41 .05 1.91 1.01 0.67 0.50 0.40 3.57 29 1.36 .05 2.06 0.94 0.63 0.47 0.38 3.33 SAFE LOADS OF IKON BEAMS. 63 5' IRON ni BEAMS.— No. 17. LE^VST SECTION. GREATEST SECTION. Flange width, 3.17 Area in square inches, . Resistance, . . 5.34 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Detlection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. 1 Greatest Distance in Feet Between O _ o "^-^ 2 Centres of Beams of Least Secti'on for <;> •< Distributed Loads as Below. id ^ "S 'fled Incf 100 150 200 250 •» <2 Et, Pounds Pounds Pounds Pounds per Sq. per Sq. per Sq. per Sq. Foot. Foot. Foot. Foot. 4 5.69 .29 .05 28.45 18.97 14.23 11.38 5 4.55 .23 .07 18.20 12.13 9.10 7.28 6 3.80 .19 !io 12.67 8.44 6.33 5.07 7 3.25 .17 .14 n on D.iy 4.d4 3.71 8 2.85 .15 .19 7.13 4.75 3.56 2.85 9 2.53 .13 .24 5.62 3.75 2.81 2.25 10 2.28 .12 .29 4.56 3.04 2.28 1.82 11 2.07 .11 .35 3.76 2.51 1.88 1.51 12 1.90 .10 .42 3.17 2.11 1.58 1.27 13 1.75 .09 .49 2.69 1.79 1.35 1.08 14 1.63 .08 .57 2.33 1.55 1.16 0.93 15 1.52 .08 .66 2.03 1.35 1.01 0.81 16 1.42 .07 .75 1.78 1.18 0.89 0.71 17 1.34 .07 .85 1.58 1.05 0.79 0.63 18 1.27 .06 .95 1.41 0.94 0.71 0.56 19 1.20 .03 1.06 1.26 0.84 0.63 0.51 20 1.14 .06 1.17 1.14 0.76 0.57 0.46 21 1.08 .06 1.29 1.03 0.69 0.51 0.41 22 1.03 .05 1.41 0.94 0.62 0.47 0.37 23 0.99 .05 1.55 0.86 0.57 0.43 0.34 24 0.95 .05 1.69 0.79 0.53 0.39 0.31 25 0.91 .05 1.83 0.73 0.49 0.36 0.29 26 0.87 .04 1.97 0.67 0.45 0.33 0,27 27 0.84 .04 2.12 0.62 0.41 0.31 0.25 64 SAFE LOADS OF IRON BEAMS. 4' IRON I I.EAST SECTION. Flange width, 2.60 Web thickness, 22 Area in square inches, 2.50 Resistance, 3.30 Pounds per foot, 8.33 BEAMS.— No. 19. GREATEST SECTION. Flange width, 2.82 Web thickness, 44 Area in square inches, . . . . 3.38 Resistance, 3.89 Pounds per foot, 11.26 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Between in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. Distance . Supports 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 4 5 6 7 3.85 3.08 2.57 2.20 .23 .19 .16 .13 .06 .09 .13 .18 19.25 12.32 8.57 6.29 12.83 8.21 5.71 4.19 9.63 6.16 4.28 3.14 7.70 4.93 3.43 2.51 116.69 74.68 51.86 38. lO CO 00 1.93 1.71 .12 .lO .23 .30 4.83 3.80 3.22 2.53 2.41 1.90 1.93 1.52 29.17 23. 05 lO 11 1.54 1.40 .09 .08 .37'" .44 3.08 2.55 2.05 1.70 1.54 1.27 1.23 1.02 18.67 15.43 12 13 14 15 1.28 1.18 1.10 1.03 .08 .07 .07 .06 .53 .62 .72 .82 2.13 1.82 1.57 1.37 1.42 1.21 1.05 0.92 1.07 0.91 0.79 0.69 0.85 0.73 0.63 0.55 12.97 1 1.05 9.53 8.30 4 IKON I I.EAST SECTION. Flange width, 2.30 Web thickness, 16 Area in square inches, . . . . .1.84 Resistance, 2.51 Pounds per foot, 6.13 BEAMS.— No. 20. GREATEST SECTION. Flange width, 2.45 Web thickness, 31 Area in square inches, 2.44 Resistance, 2.91 Pounds per foot, 8.13 4 2.93 .23 .06 14.65 9.77 7.33 5.86 1 16.69 5 2.34 .19 .09 9.36 6.24 4.68 3.74 74.68 6 1.95 .16 .13 6.50 4.33 3.25 2.60 51.86 7 1.67 .13 .18 4.77 3.18 2.39 1.91 38.10 8 1.46 .12 .23 3.65 2.43 1.83 1.46 29.17 9 1.30 .lO .30 2.89 1.93 1.44 1.16 23. 05 lO 1.17 .09 2.34 1.56 l.lV 0.94 18.67 11 1.06 .08 .44 1.93 1.28 0.96 0.77 15.43 12 0.98 .08 .53 1.63 1.09 0.82 0.65 12.97 13 0.90 .07 .62 1.38 0.92 0.69 0.55 1 1.05 14 0.84 .07 .72 1.20 0.80 0.60 0.48 9.53 16 0.78 .06 .82 1.04 0.69 0.52 0.42 8.30 SAFE LOADS OF IKON BEAMS. 65 3' IRON I LEAST SECTION. Flange width, 2.40 Web thickness, 22 Areii in square inches, 2.0G Resistance, 1.99 Pounds i)er foot, G.86 BEAMS.— No. 21. GREATEST SECTION. Flange width, 2.62 Web thickness, 44 Area in s(iuare inches, 2.72 Resistance, 2.32 Pounds per foot, 9.06 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be y q of the tabular deflection. Figures in small type denote cases where deflection is excessive. Between in Feet. Greatest Safe Load in Net Tons for Jjeast Section. S . i i GreateM Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Jjoadper Sq. Foot and Add to Cor- responding Distance for J'ju'fi Pound per Foot Increase of Beam. c > Addition Load for K< per Foot 1 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. ~4~ 5 6 2.32 1.86 1.55 .18 .14 .12 .08 .12 .18 11.60 7.44 5.17 7.73 4.96 3,44 5.80 3.72 2.68 4.64 2.98 2.07 87.50 56. OO 38.89 7 1.33 .10 .24 3.80 2.53 1.90 1.52 28.57 8 9 10 1 1 1.16 1.03 0.93 0.84 .09 .08 .07 .06 .31 .39 .49 .59 2.90 2.29 1.86 1.53 1.93 1.53 1.24 1.02 1.45 1.14 0.93 0.76 1.16 0.92 0.74 0.61 21.88 17.28 14. OO 11.57 12 13 14 15 0.77 0.71 0.66 0.62 .06 .05 .05 .05 .71 .83 .96 1.10 1.28 1.09 0.94 0.83 0.86 0.73 0.63 0.55 0.64 0.55 0.47 0.41 0.51 0.44 9.38 0.33 9.72 8.28 7.14 6.22 S" IKON I BEAMS.— No. 22. LEAST SECTION. Flange width , 2.20 Web thickness, 16 Area in square inches, 1.58 Resistance, 1.61 Pounds per foot, 5.26 GREATEST SECTION. Flange width, 2.35 Web thicknevss, 31 Area in square inches, 2.03 Resistance, 1.83 Pounds per foot, 6.76 4 1.88 .18 .08 9.40 6.27 4.70 3.76 87. 50 5 1.50 .14 12 6.00 4.00 3.00 2.40 56. OO 6 1.25 .12 .18 4.17 2.78 2.08 1.67 38.89 7 1.07 .10 .24 3.06 2.04 1.53 1.22 28.57 8 0.94 .09 .31 2.35 1.57 1.18 0.94 21.88 9 0.83 .08 .39 1.84 1.23 0.92 0.74 17.28 lO 0.75 .07 .49 1.50 1.00 0.75 0.60 14. OO 1 1 0.68 .06 .59 1.24 0.82 0.62 0.49 1 1.57 12 0.63 .06 .71 1.05 0.70 0.53 0.42 9.72 13 0.58 .05 .83 0.89 0.59 0.45 0.36 8.28 14 0,54 .05 .96 0.77 0.51 0.39 0.31 7.14 15 0.50 .05 1.10 0.67 0.44 0.33 0.27 6.22 66 SAFE LOADS OF STEEL BEAMS. 15 STEEL I BEA3IS.— No. 521. LEAST SECTION. Flange width, 5.61 Web thickness, 41 Area in square inches, 12.47 Resistance, 59.13 Pounds per foot, 42.39 GREATEST SECTION, Flange width, . 5.80 Web thickness, 60 Area in square inches, .... 15.32 Resistance, 66.25 Pounds per foot, 52.08 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Ponnd per Foot Increase. Deflection in Inches. Greate Centres c Dis 100 Pounds per Sq. Foot. st Distance in Feet 1 f Beams of Least Se trihuted Loads as Be 150 200 Pounds ^ Pounds per Sq. ■ per Sq. Foot. \ Foot. between ction for low. 250 Pounds per Sq. Foot. >2 1.. g c ^ 10 26.84 .42 .10 54.65 36.43 27.32 21.86 81.00 11 26.84 .38 .13 49.68 33.12 24.84 19.87 66.94 12 26.84 .35 .16 4o.o4 30.36 22.78 18.22 56.25 13 25.48 .32 .19 26.12 19.60 lu.o / Al Q9 14 23.65 .30 .23 33.79 22.52 16.90 13.51 41.33 15 22.08 .28 .26 29.44 19.63 14.72 11.77 36.00 16 20.70 .25 .30 25.87 17.26 12.94 10.36 31.64 17 19.48 .24 .34 22.91 15.28 11.46 9.17 28.03 18 18.40 .23 .38 20.44 13.63 10.22 8.17 25.00 19 17.42 .22 .42 18.34 12.23 9.17 7.33 22.44 20 16.56 .22 .47 16.56 11.04 8.28 6.62 20.25 21 15.77 .20 .51 15.01 10.01 7.51 6.01 18.37 22 15.05 .19 .56 13.68 9.12 6.84 5.47 16.74 23 14.40 .18 .61 12.52 8.35 6.26 5.00 15.31 24 13.80 .18 .67 11.50 7.67 5.75 4.60 14.06 25 13.25 .16 .72 10.20 7.07 5.30 4.24 12.96 26 12.73 .16 .78 9.79 6.53 4.90 3.91 11.98 27 12.26 .16 .84 9.08 6.06 4.55 3.64 11.11 28 11.83 .16 .90 8.45 5.64 4.22 '3.38 10.33 29 30 31 32 33 11.42 11.04 10.68 10.34 10.03 .14 .14 .13 .13 .13 .97 1.04 1.11 1.18 1.26 7.88 7.36 6.89 6.47 6.08 5.26 4.91 4.60 4.31 4.06 3.94 3.68 3.44 3.23 3.04 3.16 2.94 2.76 2.59 2.44 9.63 9.00 8.43 7.91 7.44 SAFE LOADS OF STEEL BEAMS. 67 15 STEEL. X BEA]>IS.— No. 522. LEAST SECTION. Flange width, 5.8 Web thickness, 45 Area in square inches, 14.51 Resistance, 66.28 Pounds per foot, 49.32 GREATEST SECTION. Flange width, 5.95 Web thickness, 60 Area in square inches, .... 16.76 Resistance, 71.91 Pounds i)er foot, 56.98 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load Avill l>e jV of the tabular deflection. Figures in small type denote cases where deflection is excessive. V ^) II :^ ."^ "S? Addition to Safe Load for Lack Pound per Foot Increase. Be/lection in Inches. Greate Centres ( Pis 100 Pounds ^ Fool St Distanc jf Beams o tributed L 150 Pounds ^Foot. e in Feet 1 f Least Se oads as Bt 200 Pounds ^Foot. between ction for dow. 250 Pounds ^FooL Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 10 31.98 .42 .10 63.96 41.60 31.98 25.58 81.00 11 31.98 .38 .13 58.14 38.76 29.07 23.26 66.94 12 30.37 .35 .16 50.61 33.74 25.30 20.24 56.25 13 28.04 .32 .19 43.13 28.75 21.67 17.25 47.92 14 26.03 .30 .23 37.18 24.78 18.59 14.87 41.33 15 24.30 .28 .26 32.40 21.60 16.20 12.96 36.00 16 22.78 .25 .30 28.47 18.98 14.23 11.39 31.64 17 21.44 .24 .34 25.22 16.81 12.61 10.09 28.03 1 Q lo 20.25 .23 .38 1 nn lO.UU 1 1 Q nn y.uu 25.00 19 19!l8 .22 .42 20.18 13.45 10.09 8.07 22.24 20 18.22 .22 .47 18.22 12.14 9.11 7.29 20.25 21 17.36 .20 .51 16.53 11.02 8.26 6.61 18.37 22 16.56 .19 .56 15.05 10.03 7.52 6.02 16.74 23 15.85 .18 .61 13.78 9.18 6.89 5.51 15.31 24 15.18 .18 .67 12.65 8.43 6.32 5.06 14.06 25 14.58 .16 .72 11.64 7.76 5.82 4.65 12.96 26 14.02 .16 .78 10.78 7.18 5.39 4.31 11.98 27 13.50 .16 .84 10.00 6.66 5.00 4.00 11.11 28 13.01 .16 .90 9.25 6.16 4.63 3.80 10.33 29 30 31 32 33 12.57 12.15 11.75 11.39 11.04 .14 .14 .13 .13 .13 .97 1.04 1.11 1.18 1.26 8.66 8.10 7.58 7.12 6.60 5.77 6.40 5.05 4.74 4.45 4.33 4.05 3.79 3.56 3.34 3.46 3.24 3.03 2.84 2.67 9.63 9.00 8.43 7.91 7.44 68 SAFE LOADS OF STEEL BEAMS. 15" STEEL X BEAMS.— No. 523. LEAST SECTION. GREATEST SECTION. Flange width, . , 6.85 . . .75 Area in square inches, . . . . 16.95 Area in square inches, . . . . 20.70 . . 70.38 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be i% of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. , Addition to Safe '. Load for Each Pound i per Foot Increase. I Deflection in Inches. Greate Centres o Disi 100 Pounds per Sq. Foot. St Distance in Feet . f Beams of Least Sf ributed Loads as B 150 ' 200 Pounds Pounds per Sq. per Sq. Foot. Foot. Between ction for zlow. 250 2)er Sq. Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 10 38.67 .42 .10 77.34 51.56 38.67 30.94 81.00 11 38.67 .38 .13 70.30 46.86 35.15 28.12 66.94 12 35.67 .35 .16 59.45 39.63 29.73 23.78 56.25 13 32.15 .32 .19 49.46 32.97 24.73 19.78 47.92 14 30.57 .30 .23, 43.67 29.11 21.84 17.47 41.33 15 28.53 .28 .26 38.04 25.36 19.02 15.22 36.00 16 26.75 .25 .30 33.43 22.28 16.72 13.37 31.64 17 25.18 .24 .34 29.62 19.74 14.81 11.85 28.03 18 23.78 .23 .38 26.42 17.61 13.21 10.57 25.00 19 22.53 .22 .42 23!87 15.91 11.92 9!55 22.24 20 21.40 .22 .47 21.40 14.26 10.70 8.56 20.25 21 20.38 .20 .51 19.45 12.96 9.72 7.78 18.37 22 19.45 .19 .56 17.68 11.78 8.84 7.07 16.74 23 18.61 .18 .61 16.18 10.78 8.09 6.47 15.31 24 17.83 .18 .67 14.85 9.90 7.42 5.94 14.06 25 17.12 .16 .72 13.69 9.12 6.84 5.48 12.96 26 16.46 .16 .78 12.66 8.44 6.33 5.06 11.98 27 15.85 .16 .84 11.74 7.82 5.82 .4.70 11.11 28 15.28 .16 .90 10.91 7.27 5.43 4.36 10.33 29 30 31 32 33 14.76 14.26 13.80 13.37 12.97 .14 .14 .13 .13 .13 .97 1.04 1.11 1.18 1.26 10.17 9.51 8.90 8.65 7.86 6.78 6.34 5.93 5.76 5.24 5.08 4.75 4.45 4.32 3.93 4.07 3.80 3.56 3.46 3.14 9.63 9.00 8.43 7.91 7.44 SAFE LOADS OF STEEL BEAMS. G9 15" STEEL. I BEAMS.— No. 524. LEAST SECTION Flange width, Web thickness, Area in scjiiaie inches, . . Resistance, Pounds per foot, Greatest safe load in net tons evenly distributed, including l)eani itself. For a load in middle of beam, allow one-half of the tabular load. Detlection for centre load will be j^o the tabular deflection. Figures in small type denote cases where deflection is excessive. . 6.4 . .59 . 20.5t . 9:}.93 . 69.80 GREATEST SECTION. Flange width, 6.71 Web thickness, 90 Area in scjuare inches, .... 25.19 Resistance, lO-'i-Sf) Pounds })er foot, 85.64 Between \ in Feet. afe Load Tons Section. Addition to Safe Load for Each Potind per Foot Increase. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load j)er Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. II ^-^^^ IS < « 6 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. — 10 11 12 13 51.02 46.96 43.05 39.74 AO .4^ .38 .35 .32 .10 .13 .16 .19 102.04 85.38 71.75 61.13 68.02 56.92 47.83 40.75 51.08 42.69 35.87 30.56 40.82 34.15 28.7 24.45 Qi r\n 66.94 56.25 47.92 14 Irk 15 16 17 0/^ on 34.44 32.28 30.38 .30 .28 .25 .24 .23 .26 .30 .34 45.92 43.50 35.74 30.61 29.00 23.82 22.96 21.75 17.87 91 HQ 18.37 17.40 14.30 41.33 36.00 31.64 28.03 18 19 20 21 28.70 26.61 25.83 24.60 .23 .22 .22 .20 QQ . 21 40 00 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. •2 ^ Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Load as Below. ^ ss r 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 10 11 12 13 25.88 23.52 21.56 19.91 .29 .26 .24 .22 .17 .20 .24 .28 Ol. / 1 42.77 35.94 30.62 28.51 23.96 20.42 9*^ ftp 21.38 17.98 15.31 Of) 71 17.10 14.38 12.25 56.70 46.86 39.38 33.55 14 15 16 17 18.48 17.26 16.18 15.23 .20 .19 .18 .17 .32 .37 .42 .48 26.40 23.00 20.22 17.92 17.60 15.34 13.48 11.94 13.20 11.51 10.12 8.95 10.56 9.20 8.09 7.16 28.93 25.20 22.15 19.62 18 19 14.38 13.62 .16 .15 .54 *60 15.97 14.34 10.64 9.55 7.99 7.16 6.38 5.74 17.50 15!71 20 21 12.94 12.32 .14 .14 .67 .74 12.94 11.74 8.63 7.82 6.47 5.87 5.17 4.69 14.18 12.86 22 23 24 25 11.76 11.26 10.79 10.36 .13 .13 .12 .12 .81 .89 .97 1.05 10.69 9.79 8.99 8.28 7.13 6.53 5.99 5.52 5.34 4.90 4.50 4.14 4.27 3.91 3.60 3.31 11.72 10.72 9.84 9.07 26 27 28 29 9.95 9.59 9.24 8.93 .11 .11 .11 .10 1.14 1.22 1.32 1.42 7.66 7.10 6.60 6.16 5.10 4.74 4.40 4.10 3.83 3.55 3.30 3.08 3.06 - 2.84 2.64 2.46 8.39 7.78 7.23 6.74 30 31 32 33 8.63 8.35 8.09 7.85 .10 .09 .09 .08 1.52 1.62 1.72 1.83 5.75 5.39 5.05 4.75 3.84 3.59 3.37 3.17 2.88 2.70 2.53 2.38 2.30 2.16 2.03 1.91 6.30 5.90 5.54 5.21 SAFE LOAns OF STEEL BEAMS. 75 10^^2" STEELi X BEAMS.— No. 5^2. LEAST SECTION. GREATEST SECTION. Flange width, 487 Area in square inches, . . . . 10.96 87 2G . 4G.16 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half .of the tabular load. Detiection for centre load will be y'ly of the tabular deflection. Figures in small type denote cases where deflection is excessive. Dutance Between Support.s in Feet. Greatest Safe Load in Net Tons for Least Section. 1 . "11 l!^ — .29 .^D OA 99 .20 1Q 1ft 17 .1/ .10 .15 Deflection in \ Inches. Greatest Distance in Feet Between Centres of Btams of LeaM Section for Distributed Loads as Belou: 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Fool. in 11 12 13 14 15 16 17 18 19 91 ni 19.10 17.51 16.16 15.01 14.00 13.09 12.36 11.68 11.06 17 .20 .24 .28 .32 .37 .42 .48 .54 .60 42.02 34.74 29.18 24^81 21.44 18^67 16.42 14.54 12.97 11.65 28.02 23.16 19.45 16.58 14.29 12^44 10.94 9.70 8.65 7.76 21.01 17.36 14.59 12.43 10.73 9!34 8.21 7.27 6.49 5.82 16.81 13.90 11.68 9.95 ft f^ft O.iJO 7.46 6.56 5.82 5.18 4.66 20 10.50 .14 .67 10.50 7.00 5.26 4.20 21 10.01 .14 .74 9.53 6.36 4.76 3.82 22 9.55 .13 .81 8.69 5.78 4.34 3.47 23 9.13 .13 .89 7.94 5.29 3.97 3.18 24 8.76 .12 .97 7.30 4.87 3.65 2.92 25 8.40 .12 1.05 6.72 4.48 3.3G 2.69 26 8.08 .11 1.14 6.22 4.14 3.11 2.48 27 7.78 .11 1. 22 5.76 3.84 2.88 2.30 28 7.50 .11 1.32 5.35 3.58 2.68 2.15 29 7.25 .10 1.42 5.00 3.34 2.50 2.00 30 7.01 .10 1.52 4.67 3.12 2.34 1.87 31 6.78 .09 1.62 4.38 2.92 2.18 1.75 32 6.56 .09 1.72 4.10 2.74 2.05 1.64 33 6.37 .08 1.83 3.86 2.58 1.93 1.55 r*^ O S 76 SAFE LOADS OF STEEL BEAMS. 10^'' STEEL 31 BEAMS.— No, 6. LEAST SECTION. Flange width, 4.50 Web thickness, 35 Area in square inches, .... 9.00 Resistance, 31.15 Founds per foot, 30.60 GREATEST SECTION. Flange width, 4.68 Web thickness, 53 Area in square inches, .... 10.89 Resistance, 34.40 Pounds per foot, 37.03 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. 100 150 200 250 Pounds : Pounds Pounds Pounds per Sq. 1 per Sq. per Sq. per Sq. Foot. Foot. Foot. Foot. # i V 10 17.45 .29 .17 34.90 23.27 17.45 13.96 56.70 11 15.85 .26 .20 28.82 19.21 14.41 11.53 46.86 12 14.53 .24 .24 24.22 16.15 12.11 9.68 39.38 13 13.42 .22 .28 20.64 13.76 10.32 8.26 33.55 14 12.46 .20 .32 17.80 11.87 8.89 7.12 28.93 15 11.63 .19 .37 15.50 10.33 7.75 6.20 25.20 16 10.91 .18 .42 13.63 9.10 6.82 5.46 22.15 17 10.26 .17 .48 12.07 8.05 6.04 4.82 19.62 18 9.70 .16 .54 10.78 7.19 5.39 4.31 i /.OU 19 9.18 .15 .60 9.66 6.44 4.84 3.86 15.71 20 21 22 23 24 25 26 27 28 29 30 31 32 33 8.72 8.30 7.93 7.58 7.27 6.97 6.71 6.46 6.23 6.01 5.82 5.63 5.45 5.28 .14 .14 .13 .13 .12 .12 .11 .11 .11 .10 .10 .09 .09 .08 .07 .74 .81 .89 .97 1.05 1.14 1.22 1.32 1.42 1.52 1.62 1.72 1.83 8.72 7.91 7.21 6.60 6.06 5.58 5.16 4.79 4.45 4.15 3.88 3.64 3.41 3.20 5.82 5.27 4.81 4.39 4.04 3.72 3.44 3.19 2.96 2.76 2.59 2.42 2.27 2.14 4.37 3.96 3.60 3.30 3.04 2.78 2.58 2.39 2.22 2.08 1.94 1.81 1.70 1.60 3.49 3.17 2.88 2.64 2.42 2.23 2.06 1.91 1.78 1.66 1.55 1.45 1.37 1.28 14.18 12.86 11.72 10.72 9.84 9.07 8.39 7.78 7.23 6.74 6.30 5.90 5.54 5.21 SAFE LOADS OF STEEL BEAMS. 77 10" STEEL IE BEA3IS.— No, 7. LEAST SECTION. Flange width, 4.63 Wt'l. thickness, 50 Area in square inches, . . . .11.25 Resistance, 34.S7 I'ounds i>er foot, 38.25 GREATEST SECTION. Flange width, 4.88 Web thickness, 75 Are;\ in s(iuare inches, .... 13.75 Kesistance, 39.04 Pounds i)er foot, 40.75 Greiitest safe load in net tons evenly distributed, including beam itself. For a load in middle of l)eam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. 1 5^ Addition to S(tl> Load for Each PiHiml per Foot Incrmat. i ?£ =c ."^ i Greatest Distance in Feet Between Centres of Beams of Lea^t Section for Distributed Loads as Below. ^ ^ :q -i < $ ^ 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. ^-^ S •13 111 10 11 12 13 19.52 17.75 16.27 15.02 .28 .25 .23 .21 .18 .21 .25 .30 39.05 32.27 27.12 23.11 26.03 21.52 18.08 15.41 19.52 16.14 13.56 11.56 12.89 10.85 9.24 54.00 44.64 37.50 31.95 14 15 16 17 13.94 13.02 12.20 11.48 .20 .19 .18 .17 .35 .40 .45 .51 19.92 17.36 15.25 13.51 13.28 11.57 10.18 9.01 9.96 8.68 7.63 6.76 7.97 6.95 6.11 5.40 27.55 24.00 21.09 18.69 18 10.85 .16 .57 12.05 8.04 6.02 4.82 16.67 19 20 21 10.27 9.77 9.30 .15 .14 .13 .U4 .71 .78 10.81 9.77 8.86 7.21 6.52 5.90 5.41 4.88 4.43 4.32 3.91 3.54 14.96 13.50 12.25 22 23 24 25 8.88 8.48 8.14 7.81 .13 .12 .12 .11 .85 .93 1.01 1.10 8.08 7.38 6.78 6.25 5.38 4.92 4.52 4.16 4.03 3.68 3.49 3.12 3.23 2.95 2.71 2.50 11.16 10.21 9.37 8.64 26 27 28 29 7.51 7.24 6.97 6.73 .11 .11 .10 .10 1.19 1.28 1.38 1.48 5.78 5.46 4.98 4.64 3.75 3.58 3.32 3.10 2.89 2.68 2.50 2.32 2.32 2.15 1.99 1.86 7.99 7.41 6.89 6.42 30 31 32 33 6.50 6.30 6.11 5.92 .09 .09 .08 .08 1.58 1.69 1.80 1.92 4.33 4.07 3.82 3.59 2.89 2.71 2.54 2.39 2.17 2.03 1.91 1.79 1.74 1.62 1.52 1.43 6.00 5.62 5.27 4.96 78 SAFE LOADS OF STEEL BEAMS. 10 STEEL 31 BEA]>IS.— No. 8. LEAST SECTION. Flange width, 4.38 WeV) thickness, 35 Area in square inches, .... 9.14 Resistance, 30.23 Pounds per foot, 31.07 GREATEST SECTION. Flange width, 4.53 Web thickness, 50 Area in square inches, .... 10.64 Resistance, 32.72 Pounds per foot, 36.17 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow oue-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. 111 16.93 15.38 14.11 13.02 12.10 11.28 10.58 9.96 9.41 .28 .25 .23 .21 .20 .19 .18 .17 .16 .18 .21 .25 .30 .35 .40 .45 .51 .57 Greatest Distance in Feet Between Centres of Bexinis of Least Section for Distributed Loads as Below. 100 Pounds per Sq. Foot. 33.86 27.97 23.52 20.03 17.28 15.04 13.24 11.71 10.45 150 Pounds per Sq. Foot. I 22.57 18.65 15.68 13.36 11.52 10.03 8.82 7.81 6.97 200 Pounds per Sq. Foot. 16.93 13.98 11.76 10.02 8.64 7.52 6.61 5.86 5.23 250 Pounds per Sq. Foot. 13.55 11.18 9.41 8.02 6.91 6.01 5.29 4.69 4.18 8.90 8.46 8.06 7.69 7.36 7.04 6.77 6.52 6.26 6.05 5.83 5.64 5.46 5.29 5.12 .15 .14 .13 .13 .12 .12 .11 .11 .11 .10 .10 .09 .09 .08 .08 .64 .71 .85 .93 1.01 1.10 1.19 1.28 1.38 1.48 1.58 1.69 1.80 1.92 9.37 8.46 7.68 7.00 6.40 5.87 5.41 5.02 4.64 4.32 4.02 3.76 3.53 8.31 3.11 6.25 5.64 5.12 4.66 4.26 3.91 3.61 3.34 I 3.10 2.88 2.68 2.51 2.35 2.21 2.08 4.69 4.24 3.84 3.49 3.20 2.94 2.71 2.51 2.32 2.16 2.02 1.88 1.76 1.66 1.55 3.74 3.38 3.07 2.80 2.56 2.35 2.16 2.00 -1.86 1.73 1.61 1.50 1.40 1.32 1.25 SAFE LOADS OF STEEL BEAMS. 79 10 STEEL I BEAMS.— No. 511. LEAST SECTION. GREATEST SECTION. Flange width, . . 4.70 Area in square iuches, . Area in square inches, . . . 8.83 . . . 23.21 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Detlection for centre load will be j'o of the tabular deflection. Behveen in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to S Load for Each found per Foot Increase, i S CO Greatest DiMance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. it 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 10 11 12 13 12.59 11.44 10.49 9.68 .28 .25 .23 .21 .18 .21 .25 .30 25.18 20.80 17.48 14.89 16.79 15.26 11.66 9.93 12.59 10.40 8.74 7.45 10.07 8.32 6.99 5.96 54.00 44.64 37.50 31.95 14 15 16 17 8.99 8.39 7.87 7.41 .20 .19 .18 .17 .35 .40 .45 .51 12.84 11.19 9.84 8.72 8.56 7.46 6.56 5.81 6.42 5.60 4.92 4.36 5.14 4.47 3.94 3.49 27.55 24.00 21.09 18.69 18 6.99 .16 .57 1.11 5.18 3.88 3.11 16.67 19 20 21 6.63 6.29 5.99 .15 .14 .13 .64 .71 .78 6.98 6.29 5.70 4.65 4.19 3.80 3.49 3.15 2.85 2.79 2.52 2.28 14.96 13.50 12.25 22 23 24 25 5.72 5.47 5.25 5.04 .13 .12 .12 .11 .85 .93 1.01 1.10 5.20 4.76 4.38 4.00 3.47 3.17 2.92 2.69 2.60 2.:58 2.19 2.00 2.08 1.90 1.75 1.61 11.16 10.21 9.37 8.64 26 27 28 29 4.84 4.66 4.49 4.34 .11 .11 .10 .10 1.19 1.28 1.38 1.48 3.73 3.45 3.21 2.99 2.48 2.30 2.14 2.00 1.87 1.73 1.61 1.50 1.49 1.38 1.28 1.20 7.99 7.41 6.89 6.42 30 31 32 33 1 4.20 4.06 3.93 3.81 .09 .09 .08 .08 1.58 1.69 1.80 1.92 2.80 2.62 2.46 2.31 1.87 1.75 1.64 1.54 1.40 1.31 1.23 1.16 1.12 l.Oo .98 .92 6.00 5.62 5.27 4.96 80 SAFE LOADS OF STEEL BEAMS. 9 STEEL I BEA]>IS.— No. 9. LEAST SECTIO. Flange width, 4.75 Web thickness, 41 Area in square inches, 9.28 Resistance, 27.10 Pounds per foot, 31.55 GREATEST SECTION. Flange width, 4.94 Web thickness, 6 Area in square inches, .... 10.99 Resistance, 29.66 Pounds per foot, 37.36 Greatest safe load in net tons evenly distributed, including beiim itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Bekveen in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Jjoadf)!- I'Atch Pound per Foot Jucrease. o ^ Gi-eatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. ^ ^ ^ o» lll^l II 11 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per JSq. Foot. 250 Pounds per iSq. Foot. 8 9 10 11 18.97 16.86 15.18 13.80 .31 .28 .25 .23 .12 .15 .19 .23 47.44 37.46 30.36 25.09 31.62 24.97 20.24 16.73 23.71 18.73 15.18 12.54 18.97 14.99 12.14 10.03 75.94 60.00 48.60 40.17 12 14 15 12.65 11.68 10.84 10.12 .20 .19 .18 .17 .28 .33 .38 .44 21.08 1 7 Q^^ 1 / .yo 15.48 13.49 14.05 ii.yo 10.32 8.99 10.54 P QQ. o.yo 7.74 6.74 8.44 7 1 Q 6.19 5.40 33.75 28.76 24.80 21.67 16 17 9.48 8.93 .16 .15 .50 .56 11.86 10.50 7.90 7.01 5.93 5.26 4.74 4.20 18.98 16.82 18 19 8.44 7.99 .14 .13 .63 .70 9.3 8.41 6.25 5.60 4.69 4.21 3.74 3.36 15.00 13.46 20 21 22 23 7.58 7.22 6.90 6.60 .12 .12 .11 .11 .78 .86 .94 1.03 7.58 6.88 6.28 5.74 5.05 4.58 4.18 3.83 3.79 3.44 3.13 2.87 3.04 2.75 2.51 2.29 12.15 11.02 10.04 9.19 24 25 26 27 6.32 6.07 5.83 5.62 .11 .10 .10 .09 1.12 1.22 1.32 1.42 5.27 4.86 4.49 4.16 3.52 3.24 2.99 2.77 2.(>4 2.42 2.25 2.08 2^1 1.94 1.80 1.67 8.44 7.76 7.19 6.67 28 29 30 31 5.42 5.23 5.06 4.90 .09 .08 .08 .07 1.53 1.64 1.76 1.88 3.88 3.61 3.37 3.16 2.58 2.40 2.24 2.10 1.93 1.80 1.69 1.58 1.55 1.44 1.34 1.26 6.19 5.78 5.40 5.06 SAFE LOADS OF STEEL BEAMS. 81 9 STEEL ni BEAMS.— No. 10. LEAST SECTION. I-Man^o width, 4.25 thickiK'ss, 31 Au'a in S(}uaio inches, . . . . 7.18 Kosistance, 21.48 Pounds per lout, 24.41 GREATEST SECTION. Flange width, 4.14 Web thickness, 50 Area in siiuare inches, . . . . 8. 89 Kesistauce, 24.05 Pounds per foot 30.22 Greatest safe load in net tons evenly distributed, including beam itself. I\)r a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be j^o of the tabular deflection. Figures in small type denote cases where dellection is excessive. ,^ c . Addition to Safe Load for Each Pound per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. 100 Pounds per Sq. Foot. Pounds per Sq. Fool. zuu Pounds per Sq. Foot. 250 Pounds 2)er Sq. Foot. 8 9 10 11 12 13 14 15 16 17 14.73 13.37 12.02 10.93 10.02 9.25 8.59 8.02 7.52 7.08 .28 .25 .23 .20 .19 .18 .17 .16 .15 19 .15 .19 .23 .28 .33 .38 .44 .50 .56 37.50 29.71 24.05 19.87 16.70 14!23 12.28 10.69 9.41 8.33 25.00 19.80 16.03 13.25 11.14 9!49 8.18 7.13 6.28 5.56 18.76 14.86 12.02 9.94 8.35 7!l2 6.13 5.34 4.70 4.16 15.00 11.88 9.62 7.96 6.68 5.69 4.91 4.27 3.77 3.34 18 G.G8 .14 .63 7.43 4.96 3.71 2.98 19 6.34 .13 .70 6.67 4.45 3.34 2.66 20 6.01 .12 .78 6.01 4.01 3.01 2.40 21 5.72 .12 .86 5.45 3.64 2.72 2.18 22 5.47 .11 .94 4.98 3.31 2.48 1.99 23 5.23 .11 1.03 4.55 3.04 2.27 1.82 24 5.02 .11 1.12 4.18 2.78 2.09 1.67 25 4.81 .10 1.22 3.85 2.57 1.92 1.54 26 4.63 .10 1.32 3.56 2.38 1.78 1.43 27 4.45 .09 1.42 3.30 2.20 1.64 1.32 28 4.30 .09 1.53 3.07 2.04 1.54 1.22 29 4.15 .08 1.64 2.87 1.91 1.43 1.14 30 4.01 .08 1.76 2.68 1.78 1.33 1.07 ' 31 3.88 .07 1.88 2.50 1.67 1.25 1.00 82 SAFE LOADS OF STEEL BEAMS. 9 STEEL ni BEAMS.— No. 509. LEAST SECTION. 4.30 GREATEST SECTION. Flange width, 4. 46 Web thickness, 44 Area in square inches, .... 7,41 Resistance, 20.11 Pounds per foot, 25.19 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Betireen Supports in Feet. Greatest Safe Load in Net Tons for Least Section. - ^1 ^ Deflection in Inches. Greate^ Centres o Disi 100 Pounds per Sq. Foot. Distance in Feet Between f Beams of Least Section for ributed Loads as Below. 150 200 250 Pounds Pounds Pounds per Sq. per Sq. per Sq. Foot. Foot. Foot. 5- S crj s i ^ - ^ ^ 5 ^-2 ."2 ~ ■-'^ §S 1 i-^ ^ -^^ ?: ^ i: i 8 12.30 .31 .12 30.75 20.50 15.38 12.30 75.94 9 11.17 .28 .15 24.82 16.55 12.41 9.90 60.00 10 10.05 .25 .19 20.10 13.40 10.05 8.04 48.60 11 9.14 .23 .23 16.62 11.08 8.31 6.65 40.17 12 8.38 .20 .28 13.97 9.31 6.98 5.59 33.75 CO rH 1.73 .19 .33 11.89 7.93 5.95 4.76 28.76 14 7.18 .18 .38 10.26 6.84 5.13 4.10 24.80 15 6.70 .17 .44 8.93 5.96 4.47 3.57 21.67 16 6.28 .16 .50 7.85 5.23 3.93 3.14 1 Q QQ io.yo 17 5.91 .15 .56 6.95 4.64 3.48 2.78 16.82 18 19 20 21 22 23 24 25 26 27 28 29 30 31 5.59 5.29 5.03 4.79 4.57 4.37 4.19 4.02 3.87 3.72 3.59 3.47 3.35 3.24 .14 .13 .12 .12 .11 .11 .11 .10 .10 .09 .09 .08 .08 .07 .63 .70 .78 .86 .94 1.03 1.12 1.22 1.32 1.42 1.53 1.64 1.76 1.88 6.21 5.57 5.03 4.56 4.15 3.80 3.49 3.22 2.98 2.76 2.56 2.39 2.23 2,09 4.14 3.71 3.35 3.04 2.80 2.53 2.33 2.14 1.98 1.84 1.71 1.60 1.49 1.39 3.11 2.78 2.52 2.28 2.08 1.90 1.75 1.61 1.49 1.38 1.28 1.20 1.12 1.05 2.48 2.23 2.01 1.82 1.66 1.52 1.40 1.29 1.19 1.10 1.03 .96 .89 .84 15.00 13.46 12.15 11.02 10.04 9.19 8.44 7.76 7.19 6.67 6.19 5.78 5.40 5.06 SAFE LOADS OF STEEL BEAMS. 83 8' STEEL I LEAST SECTION. Flan;;o width, 4.38 W'vh thickutvss, 41 Area in scjuare iuchcjs, .... 8.2G Ki'.sistaiice, 21.2i) Poiiuds per loot, 28.08 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be x*o of the tabular deilection. Figures in small type denote cases where deflection is excessive. BEA]>IS No. 11. GREATEST SECTION. Flange width, 4.57 Web thickness, (Jo Area in scjuare inches, .... y.78 Resistance, 23.23 Pounds per foot, 33.25 ^•^ Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for lutch Pound per Foot Increase. o ^ Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide hi/ Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 6 7 8 9 19.79 16.96 14.84 13.19 .37 .32 .28 .25 .08 .11 .14 .18 65.96 48.44 37.12 29.30 43.97 32.29 24.74 19.54 32.98 24.22 18.55 14.65 26.39 19.38 14.84 11.72 1 on nn 87.16 67.50 53.33 10 11 12 13 11.87 10.79 9.89 9.15 .22 .20 .18 .17 .22 .26 .31 .37 23.74 19.62 16.48 14.05 15.83 13.08 10.99 9.37 11.87 9.*80 8.24 7.02 9.49 7'.85 6.59 5.62 43.20 35.70 30.00 25.56 14 15 8.48 7.92 .16 .15 .43 .49 12.12 10.56 8.08 7.04 6.06 5.28 4.85 4.22 22.04 19.20 16 17 7.42 6.98 .14 .13 .06 .64 9.28 8.22 6.18 5.47 4.63 4.10 3.71 3.29 16.88 14.95 18 19 20 21 6.60 6.25 5.94 5.65 .12 .12 .11 .11 .71 .79 .88 .97 7.33 6.58 5.94 5.39 4.88 4.39 3.96 3.59 3.67 3.29 2.98 2.69 2.93 2.63 2.38 2.15 13.33 11.97 10.80 9.80 22 23 24 25 5.40 5.16 4.94 4.75 .10 .10 .10 .09 1.07 1.16 1.27 1.38 4.91 4.49 4.12 3.80 3.28 2.99 2.75 2.53 2.46 2.24 2.06 1.90 1.97 1.80 1.64 1.52 8.93 8.17 7.50 6.91 26 27 28 29 4.56 4.39 4.24 4.09 1 .09 .08 .08 .07 1.49 1.61 1.73 1.85 3.50 3.25 3.02 2.82 2.34 2.17 2.02 1.88 1.75 1.63 1.51 1.41 1.40 1.30 1.21 1.13 6.39 5.93 5.51 5.14, 84 SAFE LOADS OF STEEL BEAMS. 8 STEEL. I BEAMS.— No. 12. LEAST SECTION. GREATEST SECTION. Flange width, . . 4.00 Flange width, . , 4.20 Web thickness, . . .30 Area in square inches, . . . 6.24 Area in square inches, . . . . 7.84 . . 18.84 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allojv one-half of the tabular load. Deflection for centre load will be i% of the tabular deflection. Figures in small type denote cases where deflection is excessive. ^; ^ 11 Greatest Safe Load in Net Tons for Least Section. Addition to Safe JjOad for luic/i Pound per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. *<.s sip S .P 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq, Foot. — 6 7 8 9 10 11 12 13 1 A 15 13.43 13.37 11.70 10.39 9.36 8.51 7.80 7.20 6.68 6.24 .37 .32 .28 .25 .22 .20 .18 .17 .16 .15 .08 .11 .14 .18 .22 .26 .31 .37 .43 .49 45.60 QQ on oo.ZU 9Q 9R 9Q HQ 18.72 15.47 13.00 11.08 9.55 8.32 30.40 1 Q ^ 12.48 10.31 8.66 7.38 6.36 5.54 22.80 I Q HQ Id. fi*^ I I 'vt ii.Oi 9.36 7.74 6.50 5.54 4.78 4.16 18.24 1 1 70 Q 9 A 7.49 6.19 5.20 4.33 3.82 3.32 120.00 87.16 67.50 53.33 43.20 35.70 30.00 25.56 22.04 19^20 16 5.84 .14 .56 7.31 4.87 3.65 2.93 16.88 17 5.51 .13 .64 6.48 4.32 3.24 2.59 14.95 18 5.20 .12 .71 5.77 3.85 2.89 2.30 13.33 19 4.92 .12 .79 5.18 3.46 2.59 2.08 11.97 20 4.68 .11 .88 4.68 8.12 2.34 1.87 10.80 21 4.45 .11 .97 4.24 2.83 2.12 1.69 9.80 22 4.25 .10 1.07 3.86 2.58 1.93 1.55 8.93 23 4.07 .10 1.16 3.54 2.36 1.76 1.42 8.17 24 3.90 .10 1.27 3.25 2.17 1.62 1.30 7.50 25 3.74 .09 1.38 3.00 1.99 1.50 1.20 6.91 26 3.60 .09 1.49 2.77 1.85 1.38 1.10 6.39 27 3.47 .09 1.61 2.57 1.72 1.28 1.03 5.93 28 3.35 .08 1.73 2.39 1.60 1.20 0.96 5.51 29 3.23 .07 1.85 2.23 1.49 1.12 0.89 5.14 LOADS OF STEEL BEAMS. 85 8 STEEL I BEAJ>IS.—No. 507. LEAST SECTION. GREATEST SECTIONo Flange width, . . 4.00 . . 4.14 . . .26 Web thickness, Area in square inches, . . . . .40 Area in s(jiiare inches, . . . . 5.08 . . G.20 Resistance, , . 15.(K> Pouuds per foot, .... . . 17.27 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflect ion for centre load will be of the tabular deflection. Figures in small type denote cases where deflection is excessive. ^> <;.> Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. •2 ^ Greatest Distance in Feet Between Centres of Beams of Jjcast Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per Foot Increase of Beam. Distance 100 Pounds per S(j. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. g 7 8 9 10.52 10!52 9.51 8.45 .32 .28 .25 .08 .11 .14 .18 35.07 30.06 23.78 18.78 23.38 20.00 15.85 12.52 17.53 15.03 11.89 9.39 14.03 12.00 9.51 7.51 1 on (\f\ l^U.UU 87.16 67.50 53.33 10 11 12 13 7.60 6.91 6.34 5.85 .22 .20 .18 .17 .22 .26 .31 .37 15.20 12!56 10.57 9.00 10.13 8!38 7.04 6.00 7.60 6^28 5.28 4.50 6.08 5!03 4.23 3.60 43.20 35.70 30.00 25.56 14 15 5.43 5.07 .16 .15 .43 .49 7.76 6.76 5.17 4.51 3.88 3.39 3.10 2.70 22.04 19.20 16 17 4.75 4.47 .14 .13 .56 .64 5.94 5.26 3.96 3.51 2.97 2.63 2.38 2.10 16.88 14.95 18 19 20 21 4.22 4.00 3.80 3.62 .12 .12 .11 .11 .71 .79 .88 .97 4.69 4.21 3.80 3.45 3.13 2.80 2.53 2.30 2.34 2.10 1.90 1.73 1.88 1.68 1.52 1.38 13.33 11.97 10.80 9.80 22 23 24 25 3.46 3.31 3.17 3.04 .10 .10 .10 .09 1.07 1.16 1.27 1.38 3.15 2.88 2.64 2.43 2.10 1.92 1.76 1.62 1.57 1.44 1.32 1.22 1.26 1.15 1.06 .97 8.93 8.17 7.50 6.91 26 27 28 29 2.92 2.82 2.72 2.62 .09 .08 .08 .07 1.49 1.61 1.73 1.85 2.25 2.09 1.94 1.80 1.50 1.39 1.30 1.20 1.12 1.05 .97 .90 .90 .84 .78 .72 6.39 5.93 5.51 5.14 86 SAFE LOADS OF STEEL BEAMS. 7' STEEL, I BEAMS.— No. 13. LEAST SECTION. GREATEST SECTION. . . 3.81 Flange width, . . 3.87 . . . .44 . . .50 Area in square inches, . . . . 6.68 Area in square inches, . . . . 14.40 . . . 22.70 Greatest safe load in ret tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. Distance Between Supports in Feet. Greatest Safe Load in Net Tons for Least Section. i Addition to Safe Load for Each Found per Foot Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distrihuted Loads as Below. 100 Pounds ^ FooL 150 Pounds ^FooL 200 Pounds Foot. 250 Pounds Foot. 6 7 8 9 10 11 12 13 13.44 11.52 10.08 8.96 8.06 7.33 6.72 6.20 .32 .28 .24 .22 .19 .18 .17 .16 .10 .12 .16 .20 .25 .30 .36 .42 AA on 32.92 25.20 19.92 16.13 13.33 11.20 9.54 oU.o/ 21.95 16.80 13.28 10.75 8.89 7.46 6.36 16.46 12.60 9.96 8.06 6.66 5.60 4.77 17 QO 13.16 10.08 7.97 6.56 5.33 4.48 3.82 14 5.76 .14 .49 8.23 5.48 4.12 3.29 15 5.38 .13 .56 7.16 4.78 3.58 2.87 16 5.04 .12 .64 6.30 4.20 3.15 2.52 17 4.74 .12 .72 5.58 3.72 2.79 2.23 18 4.48 .11 .81 4.97 3.31 2.48 1.99 19 4.25 .11 .91 4.48 2.98 2.24 1.79 20 4.03 .10 1.01 4.03 2.69 2.02 1.61 21 3.84 .10 1.10 3.66 2.44 1.83 1.46 22 3.66 .08 1.21 3.32 2.22 1.66 1.33 23 3.50 .08 1.32 3.05 2.03 1.52 ' 1.22 24 3.36 .08 1.44 2.80 1.87 1.40 1.12 25 3.23 .08 1.56 2.58 1.72 1.29 1.03 26 3.10 .07 1.69 2.38 1.58 1.19 0.95 27 2.99 .07 1.82 2.21 1.48 l.U 0.89 28 2.88 .07 1.96 2.05 1.37 1.03 0.83 29 2.78 .07 2.11 1.92 1.28 0.96 0.77 =56 ^-2 ^^1 SAFK LOADS OF STEEL BEAMS. 87 7 STEEL I BEA]>IS.— No. 14. LEAST SECTION. GREATEST SECTION. . . .'2\ . . .44 liesistauce, . . l'J.71 . . 22.64 Greatest safe load in net tons evenly tlistrilnited, inclu(lin<]: l)eain itself. For a load in middle of beam, allow one-half of the tal»iilar load. Dedection for centre load will he of the tabular detlection. Figures in small type denote cases where deflection is excessive. ft. -5 V Grcaff.st Safe Load in Net Tons for Least Section. i j Addition to Safe Load for ICacfi I'()und jx'r Foot Increase. 1 1 Greatest Distance in Feet I Centres of Beams of Least Se Distribnted Loads as Be 100 150 200 Pounds Pounds Pounds per Sq. per Sq. ! j)er Sq. Foot. Foot. Fool. 'etween ction for Imc. 250 Pounds j>er Sq. Foot. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Ponnd per Foot Increase of Beam. 6 8.84 .32 .10 30.00 20.00 15.00 12.00 105.00 7 8.84 .28 .12 25.72 17.15 12.86 10.28 77.14 8 8.84 .24 .16 22.30 14.86 11.15 8.92 59.06 9 7.93 .22 .20 17.63 11.75 8.81 7.06 46.67 10 7.14 .19 .25 14.28 9.52 7.14 5.71 37.80 11 6.48 .18 .30 11.78 7.86 5.89 4.72 31.24 12 5.94 .17 .36 9.90 6.60 4.95 3.96 26.25 13 5.48 .16 .42 8.44 5.63 4.20 3.37 22.37 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 5.10 4.75 4.46 4.20 .3.96 3.76 3.56 3.40 3.24 3.11) 2.98 2.86 2.75 2.64 2.51 2.46 .14 .13 .12 .12 .11 .11 .10 .10 .08 .08 .08 .08 .07 .07 .07 .07 .49 .56 .64 .72 .81 .91 1.01 1.10 1.21 1.32 1.44 1.56 1.69 1.82 1.96 2.11 7.28 6.34 5.58 4.94 4.40 3.95 3.56 3.24 2.94 2.69 2.48 2.28 2.11 1.96 1.81 1.69 4.86 4.22 3.72 3.30 2.93 2.64 2.38 2.16 1.97 1.80 1.66 1.52 1.40 1.30 1.21 1.13 3.64 3.17 2.79 2.47 2.20 1.98 1.79 1.62 1.47 1.34 1.24 L14 1.06 0.98 0.91 0.85 2.92 2.53 2.23 1.98 1.76 1.58 1.43 1.30 1.18 1.08 0.99 0.91 0.84 0.78 0.72 0.68 19.29 16.80 14.77 13.08 11.67 10.47 9.45 8.57 7.81 7.15 6.56 6.05 5.74 5.19 4.82 4.49 88 SAFE LOADS OF STEEL BEAMS. 7 STEEL I BEAMS.— No. 505. LEAST SECTION. Flange width, 3.75 Web thickness, 24 Area in square inches, .... 4.25 Resistance, 10.07 Pounds per foot, 14.44 GREATEST SECTION. Flange width, 3.89 Web thickness, 38 Area in square inches, .... 5,23 Resistance, 11.21 Pounds per foot, 17.78 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular deflection. Figures in small type denote cases where deflection is excessive. 8.84 8.06 7.05 6.27 5.64 5.13 4.70 4.34 4.03 3.76 3.52 3.32 3.13 2.97 2.82 2.69 2.56 2.45 2.35 2.26 2.17 2.09 2.01 1.94 .14 .13 .12 .12 .11 .11 .10 .10 .08 .07 .07 .07 .07 .10 .12 .16 .20 .25 .30 .36 .42 .49 .56 .64 .72 .81 .91 1.01 1.10 1.21 1.32 1.44 1.56 1.69 1.82 1.96 2.11 Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. ^^^^ 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 30.00 I 20.00 I 15.00 23.03 ■ 15.35 : 11.52 17.63 ! 11.75 8.82 13.93 9.29 6.97 11.28 9.33 7.83 6.68 5?76" 5.01 4.40 3.91 3.48 3.13 2.82 2.56 2.33 2.13 1.96 1.81 1.67 1.55 1.44 1.34 3.84 3.34 2.93 2.60 2.32 2.08 1.88 1.71 1.55 1.40 1.30 1.20 1.11 1.03 0.96 0.89 2.88 2.51 2.20 1.95 1.74 1.56 1.41 1.28 1.16 1.07 0.98 0.90 0.84 0.78 0.72 0.67 J5 v. S 5^ « 250 Pounds per Sq. Foot. 12.00 9.21 7.05 5.57 7.52 5.64 4.51 6.22 4.67 3.73 5.22 j 3.92 I 3.13 4.45 3.34 I 2.67 2.30 2.00 1.76 1.56 1.39 1.25 < 1.13 1.02 0.93 0.85 0.78 0.72 0.67 0.62 0.57 0.53 SAFE LOADS OF STEEL BEAMS. 89 O O 1. Hi Li T BEAMS.— No. 23. LEAST SECTION. GREATEST SECTION. 5 50 Area ill scjuare inches, . . . . . 11.71) Area in square inches, . . . . 18 29 , 22.8r> . 45.19 Greatest safe load in net tons evenly distrihuted, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Detiection for centre load will be jq of the tabular deflection. Figures in small type denote cases where detiection is excessive. Between | i?i Feet. Greatest Safe Load in Net Tons for Least Section. j Addition to Safe I Load for Each Pound i per Foot Increase. 8 ?S CO* Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per ^ Foot Increase of Beam. Distance Supports 100 Pomids per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Poiaids per Sq. Foot. 6 7 8 9 19.93 17.09 14.95 13.30 .28 .24 .21 .19 .11 .14 .19 .24 66.44 48!83 37.38 29.54 42.29 32.54 24.92 19.69 33.22 24!41 18.70 14.77 26.58 19^52 14.95 11.82 90.00 66.12 50.63 40.00 10 11 11.96 10.87 .17 .15 .29 !35 23.93 1 Q 7ft ly. /D 15.95 lO.iO 11.96 9.58 / .yi 32.40 26.78 12 13 9.97 9.20 .14 .13 .42 .49 10.02 14.10 11.08 9.44 8.32 7.08 0.05 5.66 22.50 19.17 14 15 16 17 8.54 7.88 7.48 7.03 .12 .11 .11 .10 .57 .06 .75 .85 12.20 10.04 . 9.35 8.27 8.14 7.09 0.23 5.52 6.11 5.32 4.67 4.14 4.88 4.26 3.74 3.31 16.53 14.40 12.66 11.21 18 19 20 21 6.G5 G.30 5.98 5.70 .10 .08 .08 .08 .95 1.05 1.10 1.28 7.39 0.04 5.98 5.42 4.92 4.42 3.98 3.02 3.70 3.31 2.99 2.71 2.95 2.65 2.13 2.17 10.00 8.97 8.10 7.35 22 23 24 25 5.44 5.20 4.98 4.79 .07 .07 .07 .07 1.41 1.54 1.08 1.82 4.94 4.52 4.15 3.83 3.30 3.01 2.77 2.50 2.47 2.20 2.08 1.92 1.98 1.81 1.66 1.54 6.69 6.11 5.63 5.18 26 27 28 29 4.60 4.43 4.27 4.13 .00 .06 .06 .00 1.98 2.14 2.30 2.47 3.54 3.28 3.05 2.84 2.35 2.18 2.04 1.90 1.70 1.04 1.52 1.43 1.42 1.31 1.22 1.14 4.79 4.44 4.13 3.85 90 SAFE LOADS OF STEEL BEAMS, 6 STEEL I BEAMS.— No. 24. LEAST SECTION. GREATEST SECTION. Flange widtli, . . 5.13 Welt tliiekncss, Ai ea in square inches, . . . . 9.27 Area in square inches, . , . . 10.77 Resistance, . . 17.51 Itesistauce, . . 19.01 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be 7^7 of the talnilar deflection. Figures in small type denote cases where deflection is excessive. II R s Greatest Safe Load in Net Tons for I^east Section. 1 Deffecfion in t Inches. \ Greatest Distance in Fert Brtireeu Centres of Beams of Least Section for Distributed Loads as Below. 10) ; 150 1 200 250 Pounds Pounds i Pounds \ Pounds per Sg. • per Sq. per Sq. 1 per Sg. Foot. Foot. Foot, i Foot. 1 ^ 0 ^ ^ S ^ i ^ *>, 6 16.34 .28 .11 54.48 36,32 27.24 21.79 90.00 7 14.00 ,24 ,14 40.01 26.68 20.00 16.01 66.12 8 12.25 .21 .19 30.64 20.42 15.31 12.25 50.63 9 10.90 ,19 ,24 24.22 16.14 12.11 9.68 40.00 10 9.80 ,17 ,29 19.61 13.07 9.80 7.85 32.40 11 8.92 ,15 ,35 16.21 10.81 8,10 6,48 26.78 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 8.17 7.55 7.01 G,54 G.13 5.77 5.45 5,1G 4.91 4.(;7 4,45 4.2G 4.08 3.92 0. 4 4 3.64 3.5) 3.38 .14 .13 10 .1- .11 .11 .10 .10 .08 .08 ,08 .07 .07 .07 .07 .06 .06 .06 .06 ,42 .49 ,57 .06 .75 .85 .95 1.05 1.16 1.28 1.41 1.54 1.08 1.82 1.98 2.14 2..30 2.47 i3.(;2 11.62 10.01 8.72 7.67 6.79 6.05 5.44 4.91 4.44 4.04 3.71 3.40 3.14 2.90 2,09 2.51 2,33 9.08 7.74 6.67 5.81 5.11 4.52 4,03 3.G2 3.28 2.96 2.70 2.47 2.27 2,09 1.93 1.89 1.67 1,56 0.82 5.81 5.00 4.36 3.83 3.40 3.02 2.71 2.43 2.22 2,03 1,85 1,70 1.57 1.45 1.34 1.25 1,16 5. 4 A 4.04 4.01 3.49 3.07 2,71 2 42 2.17 1,97 1.78 1.62 1.48 1.36 i.:6 1.16 1,03 1.00 0,94 22.50 19.17 16.53 14^40 12,66 11.21 10.00 8.97 8.10 7.35 6.69 6.11 5.63 5.18 4.79 4.44 4.13 3.85 SAFE LOADS OF STEEL BEAMS. 91 G' STEEL I BEAMS.— No. 15. LEAST SECTION. GREATEST SECTION. . . . .28 Area in s(iuare inchos, . . . . 7.75 . . . 11.41 Uesistanoe, . . . i:i.51 Greatest safe load in net tons evenly distributed, includincc beam itself. For a load in middle of beam, allow one-balf of the tabular load. Deflection for centre load will be of the tabular deflection. Figures in small type denote cases where deflection is excessive. Between in Feet. ' Greatest Safe Load ' in Net Tons for ' Least Section. . to Safe ich L'ound Increase. •1 ^ Greatest Distance in Feet Between Centres of Beams of Ljcast Section for Distribnted Ljoads as Below. le by Load per Sq. ■ and Add to Cor- onding Distance Each Pound per Increase of Beam. \ Idition for Ec ■ Foot . Deflect Lncl 100 Pounds 150 Pounds 200 Pounds 250 Pounds per Sq. Foot. per Sg. Foot. j)er S(j. Foot. L^oot. Divic Foot resp< for . Foot . g 10.61 OQ .Zo .11 35.52 23.68 17.76 14.21 90.00 7 9.13 OA 1 A .14 26!09 17^40 13^04 lo!44 66.12 8 7.99 .21 .19 19.98 13.32 10.00 7.99 50.63 9 7.10 .19 .24 15.79 10.52 7.90 6.31 40.00 10 6.40 .17 .29 12.79 8.53 6.40 5.11 32.40 11 5.81 .15 .35 ID. 00 •7 r\A 4.22 26.78 12 ").;};} .14 .42 8.88 5.02 4.44 3.55 22.50 13 4.92 .13 .49 7.57 5.05 3.78 3.02 19.17 14 4.50 .12 .57 6.52 4.34 3.25 2.60 16.53 15 4.2G .11 .66 5.68 3.79 2.84 2.27 14.40 16 4.00 .11 .75 4.99 3.34 2.50 2.00 12.66 17 3.76 .10 .85 4.42 2.94 2.21 1.76 11.21 18 3.55 .10 .95 3.95 2.63 1.97 1.58 10.00 19 3.36 .08 1.05 3.54 2.35 1.76 1.42 8.97 20 3.19 .08 1.16 3.19 2.12 1.60 1.27 8.10 21 3.05 .08 1.28 2.90 1.93 1.45 1.16 7.35 22 2.90 .07 1.41 2.64 1.76 1.32 1.06 6.69 23 2.78 .07 1.54 2.42 1.61 1.21 .97 6.11 24 2.66 .07 1.68 2.22 1.48 1.12 .89 5.63 25 2.56 .07 1.82 2.04 1.37 1.02 .82 5.18 26 2.46 .06 1.98 1.90 1.26 .95 .76 4.79 27 2.36 .06 2.14 1.75 1.16 .88 .70 4.44 28 2.28 .00 2 30 1.63 1.08 .82 .65 4.13 29 2.21 .06 2.47 1.52 1.02 .76 .61 3.85 92 SAFE LOADS OF STEEL BEAMS. T JL LEAST SECTION. Flange width, 847 410 Pounds per foot, . 13.93 BEAMS.-No. 16. GREATEST SECTION. Flange width, 3.69 Web thickness, 44 Area in square inches, .... 5.42 Resistance, y.7i) Pounds per foot, 18.42 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be x^o of the tabular deflection. Figures in small type denote cases where deflection is excessive. Between in Feet. Greatest Safe Load in Net Tons for Least Section. Addition to Safe Load for Each Pound per Foot Increase. •i s ^ Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Divide by Load per Sq. Foot and Add to Cor- responding Distance for Each Pound per j Distance Supports 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 6 7 8 9 7.28 6.78 5.93 5.27 .28 .24 .21 .19 .11 .14 .19 .24 24.72 19.37 14.82 11.71 16.48 12.91 9.88 7.80 12.36 9.68 7.42 5.86 9.89 7.75 5.93 4.68 on nn 66.12 50.63 40.00 10 11 4.74 4.31 .17 .15 :29 .35 9.48 7.84 6.32 5.22 4.74 3.91 3.79 a 13 32.40 26.78 12 13 3.95 3.G5 .14 .13 .42 .49 6.58 5.62 4.39 3.74 3.29 2.81 2.63 2.24 22.50 19.17 14 15 16 17 3.38 3.17 2.96 2.80 .12 .11 .11 .10 .57 .66 .75 .85 4.84 4.22 3.71 3.29 3.23 2.82 2.47 2.20 2.41 . 2.11 1.8.-) 1.04 1.93 1.09 1.49 1.32 16.53 14.40 12.66 11.21 18 19 20 21 2.64 2.50 2.38 2.26 .10 .08 .08 .08 .95 1.05 1.16 1.28 2.93 2.63 2.38 2.15 1.96 1.75 1.58 1.43 1.46 1.31 1.19 1.08 1.18 1.06 .95 .80 10.00 8.97 8.10 7.35 22 23 24 25 2.16 2.06 1.98 1.90 .07 .07 .07 .07 1.41 1.54 1.68 1.82 1.97 1.80 1.66 1.51 1.31 1.20 1.10 1.01 .98 .90 .83 .76 .78 .72 .66 .61 6.69 6.11 5.63 5.18 26 27 28 29 1.82 1.75 1.69 1.63 .06 .06 .06 .06 1.98 2.14 2.30 2.47 1.40 1.30 1.21 1.13 .94 .86 .80 .76 .70 .65 .60 .56 .56 .52 .48 .46 4.79 4.44 4.13 3.85 SAFE LOADS OF STEEL BEAMS. 93 6' STEEL. I BEAMS,— No. 503. LEAST SECTION. Flange width, 3.40 Web thickness, 22 Area in square inches, .... 3.51 Resistance, 7.05 Pounds per foot, 11.93 GREATEST SECTIl^N. Flange width, 3.56 Web thickness, 38 Area in square inches, .... 4.47 Resistance, 8.01 Pounds per foot, 15.20 Greatest safe load in net tons evenly distributed, including beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jq of the tabular defle.ction. Figures in small type denote cases where deflection is excessive. Between in Feet. afe Load 'onsfor ection. idition to Safe I for Each Pound Foot Increase. Ion in les. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. Distance Supports Greatest S in Net I Least S Deflects Inch 100 Pounds 150 Pounds 200 Pounds 250 Pounds ^ o Si, per Sq. Foot. per Sq. Foot. per Sq. Fool. per Sq. Fool. 6 6.58 .28 .11 21.93 14.62 10.97 s.n 7 5.64 .24 .14 lb. 11 1 n lA lU. 1^ o.Ud 6.45 8 4.94 .21 .19 12.35 1 Q 4.94 9 4.39 !l9 .24 y./o O.OU A QQ 4.00 o.yu 10 3.95 .17 .29 7.90 5.27 3.95 3.16 11 3.59 .15 .35 6.53 4.35 3.27 2.25 12 3.29 .14 .42 5.48 3.66 2.74 2.19 13 3.04 .13 .49 4.68 3.12 2.34 1.87 14 2.82 .12 .57 4.03 2.69 2.02 1.61 15 2.63 .11 .66 3.51 2.34 1.75 1.40 16 2.47 .11 .75 3.10 2.06 1.55 1.24 17 2.32 .10 .85 2.73 1.82 1.37 1.09 18 2.19 .10 .95 2.43 1,60 1.22 .97 19 2.08 .08 1.05 2.19 1.46 1.10 .88 20 1.97 .08 1.16 1.97 1.31 .99 .79 21 1.88 .08 1.28 1.79 1.19 .90 .72 22 1.79 .07 1.41 1.63 1.08 .82 .65 23 1.72 .07 1.54 1.50 1.00 .75 .60 24 1.65 .07 1.68 1.38 .92 .69 .55 25 1.58 .07 1.82 1.27 .84 .63 .51 26 1.52 .06 1.98 1.17 .78 .59 .47 27 1.46 .06 2.14 1.08 .72 .54 .43 28 1.41 .06 2.30 1.01 .67 .51 .40 29 1.36 .06 2.47 .94 .63 .47 .38 9^ a 1« 90.00 66.12 50.63 40.00 32.40 26.78 22.50 19.17 16.53 14.40 12.66 11.21 10.00 8.97 8.10 7.35 6.69 6.11 5.63 5.18 4.79 4.44 4.13 3.85 94 SAFE LOADS OF STEEL BEAMS. 5 STEEL X BEA31S.— No. 17. LEAST SECTION GREATEST SECTION. . ,26 8 03 . 4.88 Pounds per foot Greatest safe load in net tons evenly distributed, including; beam itself. For a load in middle of beam, allow one-half of the tabular load. Deflection for centre load will be jV of the tabular deflection. Figures in small type denote cases where deflection is excessive. 1 . /o Safe tch Pound Increase. Deflection in Inches. Greatest Distance in Feet Between Centres of Beams of Least Section for Distributed Loads as Below. f i i s 1 1 § 1 ^' 1 § 111 .■^ ^ 100 Pounds per Sq. Foot. 150 Pounds per Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq Foot. •r^ 9 Si. --^ 2 4 5 6 7 6.83 5.46 4.56 3.90 .35 .28 .23 .20 .06 .08 .12 .17 34.14 21.84 15.20 11.15 22.76 14.56 10.13 7.43 17.08 10.92 7.60 5.57 13.66 8.74 6.08 4.45 168.75 108.00 75.00 55.10 8 9 3.42 3.04 1 Q .io .16 .23 .29 o.OD 6.74 D. lU 4.50 A on 3.37 Q AO 2.70 42.19 33.33 10 11 2.74 2.18 .14 .13 .35 .42 5.47 4.53 3.65 3.01 2.74 2.26 2.18 1.81 27.00 22.31 12 13 14 15 2.28 2.10 1.96 1.82 .12 .11 .10 .09 .50 .59 .68 .79 3.80 3.23 2.80 2.44 2.53 2.15 1.86 1.62 1.90 1.62 1.39 1.21 1.52 1.30 1.12 0.97 18.75 15.98 13.77 12.00 16 17 18 19 1.70 l.Gl 1.52 1.44 .08 .08 .07 .07 .90 1.02 1.14 1.27 2.14 1.9J 1.69 1.51 1.42 1.23 1.13 1.01 1.07 0.95 0.85 0.76 0.85 0.76 0.67 0.61 10.55 9.34 8.33 7.48 20 21 22 23 1.37 1.30 1.24 1.19 .07 .07 .06 .06 1.40 1.55 1.69 1.86 1.37 1.24 1.13 1.03 0.91 0.83 0.74 0.68 0.68 0.61 0.56 0.52 0.55 0.49 0.44 0.41 6.75 6.12 5.58 5.10 24 25 26 27 1.14 1.09 1.04 1.01 .06 .06 .05 .05 2.03 2.20 2.36 2.51 .95 .83 .80 .74 0.64 0.59 0.54 0.49 0.47 0.43 0.40 0.37 0.37 0.35 0.32 0.30 4.69 4.32 3.99 3.70 SAFE LOADS OF STEEL BEAMS. 95 5" STEEL I BEAMS.— No. 18. LEAST SECTION. GREATEST SECTIC^N. Klaiigo width, . . 8.00 . . .20 Ari-a in i5(iuaic inches, . . . . 'J.78 Kesistance, . . 4.(53 . . /. Foot and Add to ( . res})Onding Distance for Each Pound per ! Foot Increase of Beam, Deflect Inch 100 Pounds per Sq. Foot. 150 Pounds 2Jer Sq. Foot. 200 Pounds per Sq. Foot. 250 Pounds per Sq. Foot. 4 5 2.78 2.23 .22 .17 .09 .14 13.92 8.93 9.28 6.95 6.96 4.46 5.57 3.58 101.25 64.80 f 1.86 1.60 .14 .12 .21 .29 6.20 4.56 4.13 3.04 3.10 2.28 2.48 1.82 45. OO 33. 15 8 9 lO 1 1 1.39 1.24 1.12 1.01 .11 .10 .08 .07 .37 .47 .59 .71 3.48 2.75 2.23 1.84 2.32 1.84 1.49 L22 1.74 1.37 1.12 .91 1.39 1.10 .89 .73 25.31 20.00 16. 20 13.39 12 13 14 15 .92 .85 .79 .74 .07 .06 .06 .06 .85 1.00 1.15 1.32 1.54 1.31 1.13 1.00 1.03 .88 .76 .66 .77 .66 .56 .49 .61 .53 .46 .40 1 1.25 9.59 8.27 7.20 3" STEEL I LEAST SECTION. Flange width, , 2.20 Web thickness, 10 Area in square inches, 1.58 Resistance, 1.61 Pounds per foot, 5.37 BEAMS.— No. 22. GREATEST SECTION. Flange width, 2.35 Web thicknass, . 31 Area in square inches, 2.03 Resistance, 1.83 Pounds per foot, 6.90 4 5 2.26 1 .80 .22 .17 .09 .14 1 1.28 7.20 7.52 4.80 6.64 3.60 4.51 2.88 101.25 64. 80 6 1.50 .14 .21 5.00 3.34 2.50 2.00 45. OO 7 1.28 .12 .29 3.67 2.45 1.84 1.46 33.15 8 1.13 .11 .37 2.82 1.88 1.42 1.13 25.31 9 1.00 .10 .47 2.21 1.48 1.10 .89 20.00 lO .90 .08 .59 1.80 1.20 .90 .72 16. 20 1 1 .82 .07 .71 1.49 .98 .74 .59 13.39 12 .76 .07 .8a 1.26 .84 .64 .50 11.25 13 .70 .06 1.00 1.07 .71 .54 .43 9.69 14 .65 .06 1.15 .92 .61 .47 .37 8.27 16 .60 .06 1.32 .80 .53 .40 .32 7.20 98 SAFE LOADS OF IRON CHANNELS. PENCOYD IKON CHANNELS. Greatest safe distributed load in net tons for least section. For increased sections use coefficient of fifth column. For centre loads take half of table. . S 8 Size in Inches. ■ight in 'sper Foot. Coefficient for Safe Load Distributed. to Coef- for Each ease of a I per Foot' \ Length of Span in Feet. SI 4 6 8 10 12 30 53 15 15 47.03 oO. oo 274.77 223.02 3.50 o.OU 27.48 .10 22. 30 .10 22.89 .14 18.58 .14 55 13 29.47 158.84 3.03 15.88 .11 13.23 .16 31 32 427 12 J. ^ 12 12 29.70 20.07 on on 143 37 98.05 105.53 2.80 2.80 Z.oU 14.32 .12 9.81 .12 10.55 .12 11.94 .17 8.17 .17 8.78 .17 34 35 10 10 20.47 1 A 07 lO.U / 84.23 r*f^ ACT' b7.y5 2.33 Z.oo 8.42 .15 6.80 .15 7.01 .21 5.66 .21 36 37 9 9 12.70 63.45 47.24 2.10 10.57 .06 7.87 .06 7.93 .10 5.91 .10 6.35 .16 4.72 .16 5.28 .23 3.94 .23 418 419 8 8 1 Q Pin 10.73 46.25 35.80 l.OI 1.87 7.70 .07 5.96 .07 5.78 .12 4.47 .12 4.63 .18 3.58 .18 3.85 .26 2.98 .26 40 41 7 7 13.70 8.23 39.66 25.11 1.63 1.63 6.61 .08 4.18 .08 4.95 .13 3.13 .13 3.97 .21 2.51 .21 3.30 .30 2.09 .30 42 44 6 6 10.73 7.70 27.63 19.26 1.40 1.40 6.90 .04 4,81 .04 4.60 .09 3.21 .09 3.45 .15 2.41 .15 2.76 .24 1.93 .24 2.30 .35 1.61 .35 412 5 8.23 17.54 1.16 4.38 .05 2.92 .11 2.19 .19 1.75 .29 1.46 .42 47 -48 4 4 7.20 5.50 11.84 9.31 0.93 0.93 2.96 .06 2.32 .06 1.97 .13 1.55 .13 1.48 .23 1.16 .23 1.18 .36 0.93 .36 0.98 .52 0.77 .52 49 3 5.10 6.35 0.70 1.68 .08 1.05 .17 0.80 .31 0.64 .49 0.53 1 " SAFE LOADS OF IRON CHANNELS. 99 PENCOYD IKON CHANNELS. rigures under loads in tine type denote corresponding deflections in inches. For balf the load in centre this deflection will be reduced oue-tifth. For spans iK'low black line the deflection is excessive. Lmgth of Span in Feet. n Inches. 14 16 18 20 22 24 26 28 30 19.62 .19 15.93 .19 17.17 .25 13.93 .25 16.27 .31 12.39 .31 13.74 .39 11.16 .39 12.49 .47 10.14 .47 11.44 .55 9.29 .55 10.67 .66 8.68 .66 9.81 .76 7.96 .76 9.16 .87 7.43 .87 15 15 1 1.34 .22 9.92 .29 8.82 .36 7.94 .45 7.22 .55 6.61 .65 6.11 .76 5.67 ,81 5.29 1.01 13 10.24 .24 7.00 .24 7.53 .24 8.96 .31 6.12 .31 6.59 .31 7.97 .39 5.45 .39 5.86 .39 7.17 .49 4.91 .49 6.27 .49 6.52 .59 4.46 .59 4.80 .59 5.97 .70 4.08 .70 4.39 .70 5.51 ,82 3.77 .82 4.06 .82 5,12 .95 3.50 .95 3.76 .95 4.78 1.10 3.27 1.10 3.52 1.10 12 12 12 6.01 .29 4.85 .29 5.26 .37 4.24 .37 4.68 .47 3.78 .47 4.21 .58 3.40 .58 3.83 .71 3.09 .71 3.50 .84 2.83 .84 3.24 .99 2.61 .99 3.00 1.14 2.42 1.14 2.80 1.31 2.26 1.31 10 10 4.53 .32 3.37 .32 3.96 .41 2.95 .41 3.53 .53 2.62 .53 3.17 .65 2.36 .65 2.88 .79 2.15 .79 2.64 ,94 1.97 ,94 2.44 1.10 1.82 1.10 2.26 1.27 1.68 1.27 2.12 1.47 1.57 1.47 9 9 3.30 .35 2.55 .35 2.89 .47 2.23 .47 2.57 .59 1.99 .59 2.31 .73 1.79 .73 2.10 .88 1.63 .88 1.93 1.05 1.49 1.05 1.78 1.23 1.37 1.23 1.65 1.42 1.27 1.42 1.54 1.63 1.19 1.63 8 8 2.83 .41 1.79 .41 2.47 .53 1.56 .53 2.21 .68 1.40 .68 1.98 .83 1.26 .83 1.80 1.00 1.14 1.00 1.65 1.20 1.04 1.20 1.53 1.42 0.97 1.42 1.41 1.63 0.89 1.63 1.32 1.87 0.83 1.87 7 7 1.97 .48 1.37 .48 1.72 .62 1.20 .62 1.54 .79 1.07 .79 1.38 .97 0.96 .97 1.26 1.19 0.88 1.19 1.15 1.40 0.80 1.40 1.06 1.65 0.74 1.65 0.98 1.90 0.68 1.90 0.92 2.19 0.64 2.19 6 6 1.25 .57 1.09 .74 0.97 .94 0.87 1.16 0.80 1.42 0.73 1.68 0.67 1.96 0.62 2,27 0.58 2.61 5 0.84 .71 0.66 .71 0.74 .93 0.58 .93 0.66 1.19 0.52 1.19 0.59 1.45 0.46 1.45 0.64 1.77 0.42 1.77 0.49 2.10 0.39 2.10 0.45 2.46 0.36 2.46 0.42 2.85 0.33 2.85 0.39 3.27 0.31 3.27 4 4 0.45 .96 0.40 1.26 0.35 1.57 0.32 1.97 0.29 2.36 0.26 2.76 0.24 3.24 0.22 3,70 0.21 4.36 3 100 SAFE LOADS OF STEEL CHANNELS. PEXCOYD STEEL CHAXXELS. Greatest safe distributed load in net tons for least section. For increased sections use coefficient of fifth column. For centre loads take half of table. 111 ^ 1 iil Length of Span in Feet. ^< 4 6 S 10 12 30 CO 53 15 15 48.00 OD.OO 329.72 2d / .62 3.50 3.50 32.97 .12 26.76 .12 27.47 .17 22. 30 .17 55 13 30.10 190.61 3.03 19. 06 16.88 .14 .19 31 32 427 12 12 12 30.30 20.50 zl.oO 172.04 117.66 126.64 2.80 2.80 2.80 17. 20 14.33 .15 .21 11.77 9.80 .15 .21 12.64 10.55 .15 .21 34 35 10 10 20.90 16.40 101.08 81.54 2.33 2.33 10.1 1 .17 8.15 .17 8.42 .25 6.80 .•25 36 37 9 9 17.60 13.00 76.14 56.69 2.10 2.10 12.69 .07 9.45 .07 9.52 .12 7.08 .12 7.61 .19 5.67 .19 6.34 .28 4.72 .28 418 419 8 8 13.80 11.00 55.50 42.96 1.87 1.87 9.25 .08 7.16 .08 6.93 .14 5.37 .14 5.55 4.62 .22; .32 4.30 3.58 .22; .32 40 41 417 / 7 14.00 8.40 9.00 47.59 30.13 30.41 1.63 1.63 1.03 7.93 .09 5.02 .09 5.06 .09 5.95 .16 3.76 .16 3.80 .16 4.76 .25 3.01 .25 3.04 .25 3.96 .36 2.51 .36 2.53 .36 42 44 41o 6 6 6 11.00 7.90 i.oQ 33.16 23.11 21.96 1.40 1.40 1.40 8.29 .a5 5.78 .0.5 5.49 .05 5.52 .10 3.85 .10 3.66 .10 4.15 .19 2.88 .19 2.74 .19 3.32 .29 2.31 .29 2.20 .29 2.76 .42 1.92 .42 1.83 .42 412 413 5 5 8.40 6.12 21.05 15.07 1.16 1.16 5.26 .06 3.76 .06 3.51 .13 2.51 .13 2.63 1 .87 1 2.1 1 .3.5 1.51 1 .35 1.75 .50 1.25 .50 47 48 411 4 4 4 7.30 5.60 5.16 14.11 11.17 10.36 0.93 0.93 0.93 3.53 .07 2.79 .07 2.59 .07 2.35 .16 1.80 .16 1.73 .16 1 .76 .28 1 .39 .28 1.29 .28 1.41 .44 1.12 .44 1.04 .44 1.17 .63 0.93 .63 0.86 .63 49 3 5.20 7.62 0.70 1.91 .09 1 1.27 0. 95 1 .21 .37 0.76 .58 0.64 .84 SAFE LOADS OF STEEL CHANNELS. 101 PENCOYD STEEL CHANNELS. Figures uiuler loads in fine tyi)e denote corresponding deflections in inches. For half the load in centre this detlection will be reduced oue-tifth. For si)ans l)elow black line the deflection is excessive. Length of Span in Feet. 2 14 16 18 20 22 24 26 28 r.o o 23.55 .23 19.1 1 .23 20.60 .30 16.72 .30 18.31 .38 14.86 .38 16.49 .47 13.38 .47 14.98 .57 12.15 .67 13.73 .67 11.15 .67 12.68 .79 10.21 .79 11. 78 .91 9.56 .91 10.99 1.05 8.92 1.05 15 15 13.62 .26 1 1.91 .35 10.58 .44 9.53 .54 8.66 .65 7.94 .78 7.33 .91 6.81 1.06 6.35 1.22 13 12.29 .29 8.40 .29 9.05 .29 10.75 .37 7.35 .37 7.91 .37, 9.55 .47 6.53 .47 7.03 .47 8.60 .58 5.88 .58 6.33 .58 7.82 .70 5.30 .70 5.75 .70 7.17 .84 4.90 .84 5.27 .84 6.61 .99 4.52 .99 4.87 .99 6.15 1.15 4.20 1.15 4.53 1.15 5.73 1.31 3.92 1.31 4.22 1.31 12 12 1 0 7.22 .34 5.82 .34 5.44 .38 4.05 .38 6.31 .45 5.09 .45 4.76 .50 3.54 .50 1 5.61 .57 4.53 .57 4.23 .63 3.15 .63 5.05 .70 4.08 .70 3 81 ".78 2.83 .78 4.59 .85 3.70 .85 3 46 .95 2.62 .95 4.21 1.01 3.40 1.01 3 17 i.l2 2.36 1.12 3.85 1.18 3.13 1.18 2.93 1.32 2.18 1.32 3.61 1.37 2.91 1.37 2.73 1.53 2.03 1.53 3.36 1.58 2.72 1.58 2.54 1.76 1.89 1.76 10 10 9 9 3 96 .43 3.06 .43 3.47 .56 2.68 .56 3.08 .71 2.38 .71 2.78 ' .88 2.15 .88 2.52 i.06 1.96 1.06 2 31 1.26 1.79 1.26 2.13 1.48 1 .65 1.48 1.98 1.72 1.53 1.72 1.85 1.96 1 .43 1.96 8 8 3.39 .49 2.15 .49 2.17 .49 2.97 .64 1 .88 .64 1.90 .64 2.64 .81 1.67 .81 1.69 .81 2.38 1.00 1.51 i.oo 1.52 1.00 2.16 1.21 1 .37 i.21 1.38 1.21 1.98 1.44 1 25 1.44 1.26 1.44 1.83 1.69 1.16 1.69 1.17 1.69 1.70 1.97 1.08 1.97 1.09 1.97 1.58 2.25 l.OO 2.25 l.Ol 2.25 7 7 7 2.36 .57 1.65 .57 1.56 .57 2.07 .75 1 .44 .75 1.37 .75 1.84 .95 1 .28 .95 1.22 .95 1.66 1.17 1.16 1.17 I.IO 1.17 1.51 1.42 1.05 1.42 l.OO 1.42 1.38 1.68 0.96 1.68 0.92 1.68 1.27 1.97- 0.89 1.97 0.84 1.97 1.18 2.28 0.82 2.28 0.78 2.28 1.11 2.63 0.77 2.63 0.73 2.63 G G n U 1.50 .68 1.07 .68 1.31 .89 0.94 .89 1.17 1.13 0.83 1.13 1.05 1.40 0.75 1.40 0.95 1.69 0.68 1.69 0.88 2.03 0.63 2.03 0.80 2.34 0.57 2.34 0.75 2.75 0.54 2.75 0.70 3.14 0.50 3.14 5 5 l.OO .86 0.80 .86 0.74 .86 0.88 1.13 0.70 1.13 0.65 1.13 0.78 1.41 0.62 1.41 0.57 1.41 0.71 1.76 0.56 1.76 0.52 1.76 0.64 2.12 0.51 2.12 0.47 2.12 1 0.59 1 2.52 0.46 ' 2.52 0.43 2.50 0.54 2.97 0.43 2.97 0.40 2.97 0.50 3.43 0.40 3.43 0.37 3.43 0.47 3.92 0.37 3.92 0.34 3.92 4 4 4 0.54 1.14 0.47 1.48 0.42 1.88 0.38 1 2.34 0.34 2.78 0.32 3.40 0.29 1 3.92 0.27 4.55 0.25 5.19 3 102 SAFE LOADS OF IRON AND STEEL BEAMS. PENCOYD IRON DECK BEAMS. Greatest safe distributed load in net tons for least section. For increased sections use coetfieient of tiftb column. For centre loads take half of table. 5- S 69 62 63 64 65 66 67 10 9 8 7 0 5 5^ g ^ s 35.14 27.56 24.20 20.56 17.53 14.06 11.30 155.83 112.70 87.91 07.27 49.39 34.14 2.66 2.33 2.10 1.87 1.63 1.40 22.47 1.67 Length of Span in Feet. 4 G 10 12 25.97 .01 19.48 .08 15.58 .13 12.90 .18 18.73 .05 14.09 .09 1 1.27 .15 9.39 .21 14.65 .06 10.98 .10 8.79 .16 7 33 .23 1 1.21 .07 8.41 .12 6.73 .18 5.01 .20 12.34 .03 3.23 .08 6.17 ,-.3 4.94 .21 4.12 8.54 .04 5.69 .09 4.27 .16 3.41 .24 2.851 5.62 .05 3.75 .10 2.81 .19 2.25 .29 1.87 .42 STEEL DECK BEAMS. 69 Hi 35.84 187.10 2.66 62 10 28.12 135.24 2.33 63 9 24.68 105.49 2.10 64 8 20.98 80.72 1.87 65 7 17.88 59.27 1.63 66 6 14.35 40.97 1.40 67 5 11.53 26.96 1.67 31.18 .04 23.39 .10 ^ ! 18.71 15.59 .15 .22 33.81 .03 22.54 .06 16.91 .11 13.52 .18 1 1.27 .25 26.37 .03 17.58 .07 13.19 .12 10.55 .19 8.79 .28 20.18 .03 13.45 .08 10.09 .14 8.07 .22 6.73 .32 14.82 .01 9.88 .09 74.08 .16 5.93 .25 4.94| 10.24 .05 6.83 .10 6.12 .19 4.10 .29 3.41 .43 6. 74 .oa 4.49 .13 3.37 .22 2.70 .35 2.25 .50 SAFE LOADS OF IRON AND STEEL BEAMS. 103 PENCOYD IRON DECK BEAMS. Figures under loads in fine type denote corresponding deflections in inches. For half the load in centre this'deflectiou will be reduced oue-tifth. For spans l>elow black line the deflection is excessive. Length of ^pan in Feet. n Inches. 14 IG 18 20 22 24 2G 28 30 1113 .25 9 74 .33 • 8 66 .41 7.79 .51 7.08 .62 6.49 .74 5.99 .86 5.57 1.00 5.19 ... Hi 8.05 .29 7.04 .37 6.26 .46 5.64 .59 5.12 .71 4.70 .84 4.33 .98 4.03 1.15 3.76 1.32 10 6.28 .33 5.49 .42 4.88 .53 4.40 .65 4.00 .79 3.66 .94 3.38 1.10 3. 14 1.27 2.93 1.46 9 4 81 M 4.20 .47 3.74 .59 3.63 .79 3.06 .88 2.80 1.05 2.59 1.24 2.40 1.43 2.24 1.64 8 3 53 3.09 .58 2.74 .68 2.47 .84 2.25 1.01 2.06 l.'?0 1.90 1.41 1.76 1.59 1.65 1.88 7 2.44 .48 2.13 .62 1.90 .79 1.71 .97 1.55 1.17 1.42 1.40 1.31 1.64 1.22 1.91 1.14 2.19 6 1.61 .57 1.40 .75 1.25 .95 1.18 1.02 1.41 0.94 1.69 0.86 1.97 0.80 2.29 0.75 2.64 5 STEEL DECK BEAMS. 13.36 .30 11 69 .39 10.40 .50 9.36 .61 8.50 .74 7.80 .88 7.20 1.04 6.68 1.20 6.24 1.38 111 9.66 .34 8 45 .45 7.51 6.76 .70 6.15 .85 5.64 1.01 5.20 1.19 4.83 1.38 4.51 1.58 10 7.53 .38 6 59 .50 5.86 .63 5.27 .78 4.80 .95 4.39 1.12 4.06 1.32 3.77 1.53 3.52 1.76 9 5.77 .43 5 05 .56 4.48 .71 4.04 .88 3.67 1.06 3.63 1.30 3.10 1.48 2.88 1.72 2.69 1.98 8 4.23 .49 3 70 .64 3.29 .81 2.96 1.00 2.69, 1.21 2.47 1.44 2.24 1.66 2.12 1.97 1.98 2.26 7 2.93 .57 2 56 .75 2.28 .83 2.05 1.17 1.86 1.41 1.71 1.68 1.58 1.98 1.46 2.28 1.37 2.63 6 1.93 .69 1 69 .90 1.50 1.U 1.35 1.41 1.23 1.70 1.12 2.02 1.03 2.36 0.96 2.74 0.90 3.16 5 104 SAFE LOADS OF IRON AND STEEL Z BARS. PENCOYD IRON Z BARS. Greatest safe load distributed in net tons lor least section. For increased sections use coetficieut of fifth column. For centre loads take half of table. nber of xiion. n Inches. light in sper Foot. Coefficient f or Safe Load Distributed. to Ooef- ! for Jiach t'iiKe, of a I piT Foot. Length of Span in Feet. Size i Pound S ^ t s 4 6 8 10 12 220 3 6.47 8.72 0.70 2.18 .08 1.45 .17 1.09 .31 .872 .49 .727 .70 221 3 10.93 13.06 0.70 3.26 .08 2.18 .17 1.63 .31 1.31 .49 1.09 .70 222 4 7.73 13.90 0.93 3.47 .06 2.32 .13 1.74 .23 1 .39 .37 1.16 .53 223 4 13.20 21.93 0.93 5.48 .06 3.65 .13 2.74 .23 2.19 .37 1.83 .53 224 4 18.43 28.28 0.93 7.07 .06 4.71 .13 3.53 .23 2.83 .37 2.36 .53 225 5 11.20 24.54 1.16 6.13 .05 4.09 .10 3.07 .19 2.45 .29 2.04 .42 226 5 17.43 35.51 1.16 8.88 .05 5.92 .10 4.44 .19 3.55 .29 2.96 .42 227 6 23.20 44.19 1.16 1 1.05 .05 7.36 .10 5.52 .19 4.42 .29 3.68 .42 228 6 15.30 39.38 1.40 9.84 .04 6.56 .09 4.92 .16 3.94 .24 3.28 229 6 22.27 53.90 1.40 13.47 .04 8.98 .09 6.74 .16 5.39 .24 4.49 .35 230 6 28.80 65.52 1.40 16.38 10.92 .04 .09 8.19 .16 6.55 .24 5.46 STEEL 2j bars. 220 3 6.60 10.46 0.70 2.61 .09 1.74 .21 1.31 .37 1.05 .59 .872 .84 221 3 11.15 15.67 0.70 3.92 .09 2.61 .21 1.96 .37 1.57 .59 1.30 .84 222 A 7.88 16.68 0.93 4.17 .07 2.78 .16 2.08 .28 1.67 .44 1.39 .63 223 4 13.46 26.32 0.93 6.58 .07 4.39 .16 3.29 .28 2.63 .44 2.20 .63 224 4 18.80 33.94 0.93 8.48 .07 5.66 .16 4.24 .28 3.39 .44 2.83 .63 225 5 11.42 29.45 1.16 7.36 .06 4.91 .13 3.68 .22 2.94 .35 2.45 .50 226 5 17.78 42.61 1.16 10.65 .06 7.10 .13 5.32 .22 4.26 .35 3.55 .50 227 5 23.66 53.02 1.10 13.25 .C6 8.84 .13 6.63 .22 5.30 .35 4.42 .50 228 6 15.61 47.26 1.40 1 1.81 .05 7.88 .10 5.91 .19 4.73 .29 3.94 .42 229 6 22.71 64.68 1.40 16.17 .05 10.78 .10 8.08 .19 6.47 .29 5.39 .42 230 6 29.37 78.62 l.iO 19.65 13.10 .05 .10 9.83 .19 7.86 .29 6.55 .42 SAFE LOADS OF IRON AND STEEL Z BARS. 105 PENCOYD IROX Z BARS. Figures under loads in line type denote corresponding? dellections in inches. For hall" the loail in centre this'dellection will be reduced one-tilth. For spans to the right of black line the deflection is excessive. Length of Span in Feet. Size in Inches. 14 16 18 20 22 24 2G 28 30 .Q22 545 484 436 396 363 .335 311 290 3 .95 1.24 1.57 1.94 2.36 2.81 3.29 3.81 4.37 .932 816 725 653 593 544 .502 466 436 3 .95 1 24 1.57 1.94 2.36 2.81 3.29 3.81 4.37 .992 869 772 695 631 579 .534 496 463 4 .72 .94 1.18 1.46 1.77 2.11 2.47 2.87 3.29 1.57 1 37 1 22 1 10 996 912 .843 783 731 4 .72 .94 1.18 1.46 1.77 2.11 2.47 2.87 3.29 2.02 1 77 1 57 1 41 1 28 1 18 1.09 1 01 942 4 .72 .94 1.18 1.46 1.77 2.11 2.47 2.87 3.29 1.75 1 53 1 36 1 23 1 11 1 02 .943 876 818 5 .57 .75 .95 1.17 1.41 1.68 1.98 2.30 2.63 2.54 2 22 1 97 1 77 1 61 1 48 1.36 1 27 1 18 5 .57 .75 .95 1.17 1.41 1.68 1.98 2.30 2.63 3.16 2 76 2 45 2 21 2 Ol 1 84 1.70 1 58 1 47 5 .57 .75 .95 1.17 1.41 1.68 1.98 2.30 2.63 2.81 2 46 2 19 1 97 1 79 1 64 1.51 1 41 1 31 6 .48 .62 .79 .98 1.18 1.40 1.64 1.91 2.19 3.85 3 37 2 99 2 70 2 45 2 24 2.07 1 92 1 80 G .48 .62 .79 .98 1.18 1.40 1.64 1.91 2.19 4.68 4 lO 3 64 3 28 2 98 73 2.52 2 .34 2 18 6 .48 .62 .79 .98 1.18 1.40 1.64 1.91 2.19 STEEL 2j bars. .747 .653 .581 .523 .475 435 .402 373 348 1.14 1.49 1.88 2.33 2.83 3.37 3.95 4.57 5.24 1.12 .978 .870 .783 .712 652 .602 559 518 1.14 1.49 1.88 2.33 2.83 3.37 3.95 4.57 5.24 1.19 1.04 .926 .834 .758 695 .641 595 566 .86 1.13 1.42 1.75 2.12 2.53 2.96 3.44 3.95 1,88 1.64 1.46 1.32 1.20 1 lO l.Ol 940 847 .86 1.13 1.42 1.75 2.12 2.53 2.96 3.44 3.95 2.42 2.12 1.88 1.70 1.54 1 41 1.31 1 21 1 13 .86 1.13 1.42 1.75 2.12 2.53 2.96 3.44 3.95 2.10 1.84 1.64 1.47 1.34 1 23 1.13 1 05 981 .68 .90 1.14 1.40 1.69 2.02 2.38 2.76 3.16 3.04 2.66 2.37 2.13 1.94 . 77 1.64 1 52 1 42 .68 .90 1.14 1.40 1.69 2.02 2.38 2.76 3.16 3.79 3.31 2.94 2.65 2.41 2 21 2.04 1 89 1 77 .68 .90 1.14 1.40 1.69 2.02 2.38 2.76 3.16 3.37 2.95 2.62 2.36 2.15 1 97 1.81 1 69 1 57 .58 .74 .95 1.18 1.42 1.68 1.97 2.29 2.63 4.62 4.04 3.59 3.23 2.94 2 69 2.49 2 31 2 16 .58 .74 .95 1.18 1.42 1.68 1.97 2.29 2.63 5.61 4.92 4.37 3.93 3.57 3 27 3.02 2 81 2 .62 .58 .74 .95 1.18 1.42 1.68 1.97 2.29 1 2.63 106 FLOOR BEAMS. FLOOR BEAMS OF IRON OR STEEL. The proper spacing of beams depends on the amount and character of load and the length of span. Permissible de^ flection as well as positive strength must be considered. II the load is motionless, and especially if the span is small in comparison with the depth of beam, it will be safe to proportion the beams for the "greatest safe loads," as in preceding tables. If, on the contrary, the floors are subject to vibration, or the action of moving loads, and especially if the span is great in proportion to depth of beam, it becomes neces- sary to consider the deflection, which may become so great as to be a source of injury to the structure. It is considered good practice to limit the deflection to 3V of an inch per foot of span, or the total deflection not to exceed part of the span. For I beams subjected to the loads given in the tables, this deflection usually occurs when the depth of the beam is about of the span for iron beams, or about 2V of the span for steel beams. The preceding tables indi- cate for each beam this limitation for deflection. Those in heavy type above the dark line deflect less, and those in fine type below the same line deflect more than of the span. If the spans are unusually long, it is best to re- duce the deflection below this limit, and then it is best to maintain the depth of the beam not less than 2V of the span. It has been demonstrated that the greatest mass of men that can be packed on any floor will not exceed in weight 80 lbs. per square foot. The weight of the iron beams will depend on the span, for which see a general rule farther on. If brick arches are laid between the beams, the weight of a 4^^ course of brick, including the concrete filling, will be about 70 lbs. per square foot. Within the limits of practicable spans for rolled I beams, it will be found that a floor is safe for a packed mass of men when the beams are not strained above the " greatest safe load of the tables, under the following rating : I beam joists with wooden floor = 100 lbs. per sq. foot. Wooden floor and plastered ceilings = 110 " brick arches and concrete filling = 150 " FLOOR BEAMS. 107 These fiixiires represent tlie total weight of tloor itself and the imposed load. Floors proportioned as follows for Oieptirof beaui hfins^ per sq. ft. of floor. Entinplr. — A floor of IG feet span bears 200 lbs. per sq. ft., required the weight of floor beams if 12^^ beams are used. 200 X 256 ^ 5 lbs. per sq. ft. I 200 X 250 ^ 4.8 lbs. })er sq. ft. 850 X 12 of iron beams. | looo X 12 of steel beams. To th(^ foregoing must be added the weight of the ends of the beams built into the supports, or a length at each end about the same as the depth of the beam. The following table gives the weights of steel and iron beams per square f(jot of floor, for a load of 100 lbs. per square foot, the beams, as in the preceding tables, subject to a stress of 14,000 lbs. per S(iuare inch for iron, or 10,800 lbs. for steel. For greater floor loads the weight of beams increases in direct proportion. Thus, for a floor to carry 200 lbs. per square foot, the weight of floor beams will be twice that of the table. Also, if the floor beams are proportioned for a lower fibre stress, the weight of beams wiW increase in inverse ratio. Thus, if the fibre strain allowed is 12,000 lbs. per square inch, the w^eight of beams will be increased as 12 to 14, or one-sixth heavier than the table. 108 FLOOR BEAMS. PENCOYO X BEAMS. LEAST WEIGHT OF FLOOR BEAMS IN POUNDS, For each square foot of floor, including ends at supports, based on a load of 100 pounds per square foot of floor. For heavier loads, the weights of beams are proportionately increased. Size of I Beam. 15 ins. 12 ins. lOJ ins. 10 ins. 9 ins. 8 ins. 7 ins. 6 ins. 5 ins. 4 ins. 3 ins. Mate- rial. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Iron. Steel. Clear Span of Beams in Feet. 10 12 16 1.11 1.33 1.75 0.94i 1.19: 1.49 1.14} 1.59! 2.14 0.97j 1.35' 2.00 1.22 1.72^ 2.28 1.04| 1.47j 1.90 1.3o! 1.83[ 2.45 1.09 1.59; 2.06 0.92 1.38| 1.96' 2.62 0.78| 1.17 1.65 2.22 18 20 1.02! 1.54 0.86 1.30 2.18 2.92 1.86| 2.47 2.23 1.90 2.74' 2.32 i 2.95 2.51 3.15 2.55 3.38 2.79 2.79 3.40 4.08 2.37 2.89; 3.47 3.42 2.90 4.15 3.55 5.04 4.33 3.691 4.53 3.14 5.43 3.85 4.62 3.95i 4.83 5.81 3.32 4.13 4.24 5.20| 6.25 5.34 3.58 4.38 3.76 3.19 1.15 1.75 2.4 7 3.32 4.25 0.96 1.46' 2.O7IT79 1.32! 2.0 2! 2.87 1.12' 1.71 2.42 1.58 2.40 1.291 1.99 1.84 2.44 2.08 2.84 2.41 3.78 3.21 3.41 2.83 4.05 3.43 5.40 4.58 3.86 3.2(] 4.59 3.86 5.45 4.64 7.31 6.23 3.61 5.00 4.22 5.10 4.93 4.74| 5.81 4.91 6.63 5.56 7.72 6.51 4.89 6.99 5.90 8.00 6.71 28 4.81 5.616.46 4.09! 4.76 5.53 5.92 6.91| 7.99 6.73 5.06 6.43 5.44 6 5.78 7.40 6.26 8.29 7.00 7.51 6.34 8.02 6.75 4.00 5.41 4.53 6.29 5.31 7.49 6.22 The figures above the dark line are for beams and corre- sponding spaces with deflec- tions less than part of the span. 8.67 7.37 FLOOR BEAMS. 109 FLOORING MATERIAL. For lire-proof floorin*;, the space between the floor beams may be spanned with brick arches, or with hollow l)rick made especially for the purpose, the latter being much lighter than ordinary brick. Arches 4 inches deep of solid brick weigh about 70 lbs. per square foot, including the concrete leveling material, and substantial floors are thus made up to 6 feet span of arch, or much greater span if the skew backs at the springing of the arch are made deeper, the rise of the arch being prefer- ably not less than j\ of the span. Hollow brick for floors are usually in depth about J of the span, and are used up to, and even exceeding, spans of 10 feet. The weight of the latter material will vary from 20 lbs. per square foot for 3 feet spans up to 60 lbs. per square foot for spans of 10 feet. Full particulars of this construction are given by the manufac- turers. For supporting brick floors the beams should be securely tied with rods to resist the lateral pressure. TIE RODS FOR BEAMS SUPPORTING BRICK ARCHES. The horizontal thrust of brick arches is as follows : 1 5 WS '^ - — — — = pressure in lbs. per lineal foot of arch. W= load in lbs. per square foot. S = span of arch in feet. R = rise in inches. Place the tie rods as low through the webs of the beams as possible, and spaced so that the pressure of arches as obtained above will not produce a greater stress than 15,000 lbs. per square inch of the least section of the bolt. Example. — The beams supporting an arched brick floor are 5 feet apart, and the rise of the arches is 6 inches. The total weight of floor and load equals 150 lbs. per square foot. Then 1-5 X 150 X 25 ^ ^ pressure per lineal foot of o arch. If 1-inch screw bolts are used, which have an effective section of j% square inches, then .6 X 15,000 = 9,000 lbs., which is the greatest load the bolt should be allowed to 110 FLOOR BEAMS. sustain, and =9.6 feet = greatest distance apart of the Vol .0 43olts ; or, in same manner, we would find 5.3 feet, if |-inch tie rods are used. Ordinarily it will be found necessary to limit the spacing of the tie rods to avoid excessive bending stress on the outer beams of the floor, or to prevent this bending stress being transferred to the Avails of the building. The ability of the outer beams to resist the horizontal bending action caused by the pressure of the arches is de- termined as follows : LATERAL STRENGTH OF BEAMS. The resistance to a force acting at right angles to the web, or in the direction of the flanges, is as follows, based on fibre stresses of 14,000 lbs. for continuous iron beams, or one- fifth more for continuous steel beams : W = l^O^^i^for iron I beams. W= ^^^for steel I beams. W= ^^foY iron channels. W = i^SOJ^ g^^^^ channels. W = 2550^ for iron angles. • W =3 2760 -4 for steel angles. JL/ W= safe load distributed in pounds, A = sectional area of beam in square inches, F = width of flange in inches, L = length between supports in feet. Knowing the pressure per lineal foot and requiring dis- tance L between tie bolts, the foregoing equations become L = in which tu = lateral pressure in pounds per \ to lineal foot. C= either of the coefficients in the previous equations. If the concrete between the beams, or the brick w^ork, was a free mass with no power to transfer the pressure over some extent, it would then be necessary not to exceed the length L as obtained above ; but as in practice this is not the case, the spacing L is not imperative, but is useful as a guide. BUCKLED PLATES. Ill BUCKLED PLATES. Bucklod i>lates are ut^uiilly made three feet square and from one-(iiiarter inch to one-half inch thick, of iron or soft steel. They can be made of any desired size or thickness, or extended length, having several buckles in a single i^late. They are usually riveted to the supi)orting beams, and the transverse joint sux)ported by a X or other suitable section, as indicated on the cut. Experiment shows considerable advantage by having the edges properly secured. Buckled plates, if used inverted— that is, with the buckle suspended— develop from three to four times as much strength as if used as shown in sketch. 112 BUCKLED PLATES. The strength of buckled plates may be given by the fol- lowing formula : ^' _ WOk hd — 0 ,175 gl'^ ~~ 6h + 15t B — total concentrated load in pounds. g = uniform load in pounds per square foot. h == depth of buckle in inches. I = length of buckle in inches. / = thickness in inches. Ic = permissible stress in pounds per square inch. If we assume g = 120 lbs. per square foot, and k = 6,000 lbs. per square inch, we get the following values for Z>, for various dimensions of plates : TOTAL CONCENTRATED LOAD IN POUNDS, ALLOWING FOR A DISTRIBUTED LOAD OF 120 POUNDS PER SQUARE FOOT. Size of Plate. 36 Inches Square. 42 Inches Square. 48 Inches Square. 54 Inches Square. 60 Inches Square. Thickness in Inches. 2 Inches Depth of Buckle. 1 ¥ 5 1 6 3 8 7 T6 1 2 4350 6500 9000 11700 14700 4200 6350 8800 11500 14400 4000 6100 8550 11200 14100 3800 5900 8300 10900 13800 3550 5600 8000 10600 13400 2^ Inches DejHh of Buckle. 1 ¥ 5 T6 3 8 7 1 6 1 2 4600 7000 9750 12750 16050 4500 6850 9550 12550 15850 4350 6650 9350 12350 15600 4200 6450 9100 12050 15300 4000 6250 8850 11750 15000 3 Inches Dejdh of Buckle. 1 5 T6 1 1 2 4850 7350 10250 13550 17100 4750 7250 10150 13350 16900 4600 7050 9950 13150 16700 4450 6900 9750 12950 16450 4300 6700 9500 12700 16150 * Winkler, " Querconstructionen," Vienna, 1884, BUCKLED PLATES. 113 The formula shows that the concentrated load and the total uniform load are independent of I. This, of course, is only correct as long as the buckled plate is not subject to local deformations, say within the limits given in the previous table. The total uniform load a buckled plate can carry, follows from the above formula as : P = -\kht. If we assume k = 0,000 lbs. per square inch, we get the following : TOTAL UNIFORMLY DISTRIBUTED LOAD ON ANY SIZE PLATE OF GIVEN THICKNESS AND DEPTH OF BUCKLE. Depth of Buckle. 2 Inches. 2^ Inches. 3 Inches. Thickness of Plate in Inches. Total Loads in Pounds. 1 3 s 1 12000 15000 18000 21000 24000 15000 18750 22500 26250 30000 18000 22500 27000 31500 36000 The loads in foregoing tables can be applied to plates of wrought iron or softest steel. WEIGHT OF IRON BUCKLED PLATES THREE FEET SQUARE. FOR STEEL ADD 2 PER CENT. Thickness of Plate in Inches. Weight of One Plate in Pounds. Size and Weight of T . Weight in Pounds per Square Foot of Floor. 6- 4x2 T = 20 lbs. 1 ¥ 90 4x2 T = 20 12 5 112 4x3 T = 25 15 3 136 4x3iT = 30 18 157 4x4 T = 35 " 22 1 1 180 4x4JT = 40 " 25 114 CORRUGATED FLOORING. Fencoyd Corrugafed Flooring. PENCOYl) CORRUGATED FLOORING. 115 PP^XCOYD COIIKUGATED FLOORING. Sections Nos. 2(>0, 210 aiul JdO are extensively used for floors of bridges and Iniildings. No. 210 is generally used in buildings ; Nos. 209 and 200 are used for briilge-floors. The following table gives the weights and strength for dillerent thicknesses of each section : WEIGHT AND STRENGTH OF CORRUGATED FLOORING. Section Number. Flange Thick- ness in Inches, Web Thickness in Inches. Weight ia Pounds 2>er Square Foot. Resistance per Foot of Width. Coefficient for Distrib- uied Load in Tons, per Foot of Width. Iron. Steel. Iron. Steel. 209 \ 24.8 11.6 46.4 209 1 tT 27.8 13.1 52.4 209 '8 30.7 14.6 58.4 209 \\ 33.6 16.'l 64.4 209 :} s 36.6 17.7 70.8 210 a 14.5 14.8 4.4 17.6 22.0 210 18.0 18.4 5.5 22.0 27.5 210 21.5 21.9 6.6 26.4 33.0 210 25.0 25.5 1.1 31.0 38.7 210 1 28.5 29.1 8.9 35.6 44.4 260 i 19.6 20.0 10.5 42.0 52.5 260 1 4 23.1 23.6 13.2 52.8 66.0 260 1 4 26.6 27.1 15.9 63.6 79.5 260 % \ 30.1 30.7 18.6 74.4 93.0 260 % 26.0 26.5 14.3 57.2 71.5 260 29.5 30.1 17.0 68.0 85.0 260 33.0 33.7 19.7 78.8 98.5 260 \ 36.5 37.2 22.4 89.6 112.0 260 "> 28.8 29.4 15.3 61.2 76.5 260 « 32.3 32.9 18.1 72.4 90.5 260 % 35.8 36.5 20.9 83.6 104.5 260 \ 39.3 40.1 23.7 94.8 118.5 The resistance and coefficients for distributed loads in tons are for each foot in width ; the latter for fibre stress of 12,000 pounds for iron, and 15,000 pounds for steel, per square inch. To find the load for any span, divide the coeflScient by the length of span in feet; the(iuoticnt is the distributed load in tons, which produces fibre stress on the mat erial, as aforesaid. The following tables give safe loads for varying thickness of each section, based on the fibre stresses aforesaid. 116 LOADS FOR CORRUGATED FLOORING. PENCOYD IRON CORRUGATED FLOORING. Loads in pounds per sq. ft. of floor for a fibre stress of 12,000 lbs. per sq. inch. The figures in small type under the load in pounds are the corresponding centre deflections in inches. Those to the right of the dark line are where the centre deflection exceeds part of the span. Section No. 210. 6 7 8 9 10 11 12 13 14 15 16 978 718 550 435 352 291 244 208 180 156 138 .12 .17 .22 .28 .34 .42 .50 .58 .68 .78 .88 1222 898 688 543 440 364 306 260 224 196 172 .12 .17 .22 .28 .34 .42 .50 .58 .68 .78 .88 1467 1078 825 652 528 436 367 312 269 235 206 .12 .17 .22 .28 .34 .42 .50 .58 .68 .78 ,88 1722 1265 969 765 620 512 431 367 316 276 242 .12 .17 .22 .28 .34 .42 .50 .58 .68 -.78 .88 1978 145^ 1113 879 712 688 494 421 363 316 278 .12 .17 .22 .28 .34 .42 .50 .58 .68 .78 .88 Section No. 209. 8 9 10 11 12 13 14 15 16 17 18 14501146 928 767 644 549 473 412 363 321 286 .15 .19 .23 .28 .33 .39 . .45 .52 .59 .66 .74 1638 129411048 866 728 620 535 470 409 363 323 .15 .19 .23 .28 .33 .39 .45 .52 .59 .66 .74 1826 1442 1168 965 811 691 596 619 456 404 360 .15 .19 .23 .28 .33 .39 .45 .52 .59 .66 .74 2013 1590 1288 1064 894 762 657 572 503 446 398 .15 .19 .23 .28 .33 .39 .45 .52 .59 .66 .74 2213 1748il416 1170 983 838 723 629 653 490 437 .15 .19 .23 .28 .33 .39 .45 .52 .59 .66 .74 SPAN IN FEET. Section No. 260. 1313 .13 1650 .13 10 1037 .17 1304 .16 19881157011272 .13; .16i .20 2325 1837, 1488 .12 .15 .19 840 .21 1056 20 1788 1412 .13 .17 2125 1679 .13 .17 2462 1946 .12| .16 2800 2212 .12; .15 1913 161 1 .121 .16 2263 1788 .12; .15 2613 2064 .12 .15 2963 2341 .12 .15 11 12 694 .26 873 .24 1051 .24 1230 .23 i 683 .31 733 .29 883 .28 1033 .27 13 497 .36 626 .34 753 .33 880 .32 1144 9461 794 677 .21 .251 .291 .34 1360;il24i 944! 806 .21 .25 .29 .33 1676 1302 1094 933 20 .24 .28 .32 1792 1481 1244 1060 18 .22 .261 .31 14 15 16 429 .42 539 .40 649 .38 769 .37, 684' .39 694' .38 804 .37 914 1224 1012 860l 724 .20 .24 .28! .33 1448 1 197 1006; 851 .19 ..23 .28 .33 1672 1382 1 16l| 989] .19| .23 .27 .32j 1896|l667il317;il22| .18i .22! .261 .31! 624 .38 734 .38; 853 .37 967 373 .48 1 469 .46 565 .44 661 .43 508 .45 604 .44 700 .42, 796: .«j 644i .441 644 .44 743 .43 843 .41 328 .54 413 .52 497 .50 681 .49 447| .5lL 631! .501 616 .48 700 .46 478 .50 666 .50 663 .49 741 .461 LOADS FOR CORRUGATED FLOORING. 117 PENCOYO STEEL CORRUGATED FLOORING Loads in pounds per Sij. ft. of Hoor for a fibre stress of 15,000 lbs. per sq. inch. The figures in small tyjto under the load in pounds are the correspond in«^ centre detlect ions in inches. Those to the right of the dark line are where the centre deflection exceeds part of the span. Section No. 210. Weight of Mate- rial per Sq. Foot. 14:8 18.4 21 9 25.5 29.1 SPAN IN FEET. 6 7 _8 _10 11 12 J 1:? 15 IC 1222 898 688 543' 440 364 306| 260 224' 196 172 .15 .21 .28 .35 .43: .52 .62 .73 .84 .97 1.10 1528 1 122 859 679 650 455 382 325 28 1 244 215 .15 .21 .28 .35 .43 .52 .621 .73 .84 .97 1.10 1833 1347 1031 815 660 545 458 39 I 337 293 258 .15 .21 .28 .35 .43 .52 .73 .84] .97 1.10 2150 1679 1209 956 774 640 5331 458 395I 344 302 .15 .21 .28 .35 .43 .52 .62 .73 .84 .97 1.10 2467 1812 1388 1096 888 734 617 525 453 395 347 .15 .21 .28 .35 .43 .52 .62! .73 .84 .97 1.10 Section No. 209. 8 9 10 11 J2_ 13 14 15 16 18 Section No. 200. 20.0 23.G 27.1 30.7 26.5 30.1 33.7 37.2 118 PENCOYD CORRUGATED FLOORING. PENCOYD CORRUGATED FLOORING. IRON OR STEEL. Loads in pounds per square foot which cause a deflection equal to of the span. Section No. 210. Weight of Material per SPAX IX FEET. ^Square Foot. Iron. Steel. 5 6 7 8 1 0 10 11 12 13 i 15 14.5 14.8 2460 1400 900 600 420 300 230 180 140 110 90 18.0 18.4 3000 1750 1100 740 520 380 290 220 170 140 110 21.5 21.9 3600 2120 1300 900 630 460 340 250 210 170 130 25.0 25!5 4200 2500 15701050 740 540 400 310 240 200 160 28.5 29.1 4800 2850 1800 1200 850 1 620 460 360 280 220 1 180 Section No. 209. SPAN IX FEET. 8 9 10 11 12 13 14 15 16 17 18 OA Q 2320 1630 1210 900 700 550 440 360 290 240 210 'yi Q 2620 1840 1370 1020 790 620 500 400 330 280 230 30.7 2920 2050 1530 1140 880 690 550 450 370 310 260 33.6 3220 2260 16901260 970 760 610 500 410 340 290 36.6 3540 2480 1850 1380 1060 840 670 550 450 370 320 Section Xo. 260. SPAX IX FEET. 8 9 10 11 12 13 14 15 IG 17 18 19.6 20.0 2420 1650 1200 880 680 540 430 350 290 240 200 23>.l 23.6 3050 2200 1580 1200 910 710 570 460 380 310 260 26.6 27.1 3670 2650 1910 1450 1140 890 720 580 470 390 330 30.1 30.7 4650 3310 2350 1760 1380 1040 860 690 570 480 400 26.0 26.5 3300 2240 16301250 990 780 630 500 420 350 290 29.5 30.1 3920 2670 1940 14801170 950 770 620 510 430 360 33.0 33.7 4920 3280 2330 1790 1410 1140 910 750 620 510 430 36.5 37.2 5600 3980 2330 2220 1720 1330 1070 870 730 610 510 28.8 29.4 3830 2550 1840 1390 1090 860 690 550 460 390 320 32.3 32.9 4530 3220 2290 1720 1290 1010 810 660 540 460 380 35.8 36.5 5230 3720 2640 1990 1550 1210 970 780 640 540 450 39.3 40.1 5930 4210 3160 2350 1820 1410 1130 930 770 640 530 BEAMS SUPPORTING BRICK WALLS. I I 1 1 1 ' 1 ■ 1. 1 1 1 1 1 1 1 ' 1 1 1 o © © © \ ^ I 1. BEAMS SUPPORTING BRICK WALLS. When the masonry alone, without any floor attachment, is supported, the load on the girder will vary according to sevei*al conditions. If the masonry is not thoroughly bonded throughout, or if great inflexibility is desired, it may be necessary to consider the whole mass of wall as sus- tained by the girder. If the wall has no openings, and the brick is laid with the usual bond, the material incumbent on the girder would be indicated by the dark line — height, one-fourth of the span. It is best to consider this as a triangle, whose height equals one- third of span, as in lower dotted line ; and as the w^eight of brick walls is nearly 10 lbs. per square foot for each inch of thickness, from these data we find the bending stress on the beam to be the same as that caused by a distributed load, in pounds e(iual to 25 X s(juare of span in feet X thickness of wall in inches. 9 And from the table of distributed loads suitable beams can be selected, with proper limitations, for deflection, if the spans are long, to avoid cracking of wall. If the wall has 120 BEAMS SUPPORTING BRICK WALLS. openings as illustrated, it is necessary to consider the mass of brickwork indicated by the upper course of dotted lines as supported by the beams, which can be selected accord- ingly. It is usually best to use two or more beams bolted to- gether, to give a better bearing or to insure lateral rigidity, and the following tables give suitable beams for solid brick walls properly bonded, selected to deflect less than j^^j of spans up to 10 feet, and 3^^^ of spans 15 to 20 feet. Partic- ulars for separators for these beams can be found on page 244. SPANS JN FEET. Thickness of I 8 or 9 Wall in Inches. Feet. 10 or 11 Feet, 12 or 13 Feet. 14 or 15 Feet. 16 or 17 Feet. 18 or 20 Feet. 9 1_4// No. 19 No. 17 2-6'' No. 16 2-7'' No. 14 2-7" No. 14 2-9" No. 10 13 1-5^^ No. 17 2-5^^ No. 17 2-6^^ No. 15 2-8^^ No. 14 2-8^^ No. 12 2-10" No. 8 18 2-5^^ No. 17 2-6^^ No. 16 2-7^^ No. 14 2-8^^ No. 12 2-8^^ No. 12 2-1 Oi^^ No. 6 22 2-5^^ No. 17 2-6^^ No. 16 2-8^^ No. 12 2-8^^ No. 12 2-9^^ No. 10 2-lOJ^^ No. 5i FORMULA. FOR IRON OR STEEL BEAMS. 121 APPROXIMATE FORMULiE FOR ROLLED BEAMS OF IRON OR STEEL. The following rules for the strength and stiffness of rolled beams of various sections are intended for convenient appli- cation in cases where strict accuracy is not required. The rules for rectangular and circular sections are correct, while those for the flanged sections are approximate and limited in their application to the standard shapes as given in our tables. They will be found to give results which have been proved by experiment to be sufficiently accurate for practical purposes. When the section of any beam is increased above the standard minimum dimensions, the flanges remaining unaltered, and the w^eb alone being thickened, the tendency w^ill be for the load as found by the rules to be in excess of the actual, but within the limits that it is possible to vary any section in the rolling, the rules will apply without any serious inaccuracy. The loads are the same as in the beam tables, producing fibre stresses of 14,000 lbs. on iron and 16,800 lbs. per square inch on steel, on the assumption that the steel re- ferred to has a tenacity 20 per cent, in excess of iron. These loads w^ill be approximately one-half of loads that would injure the elasticity of the material. The rules for deflection apply to any load below the elastic limit, or less than double the greatest safe load by the rules. If the beams are long without lateral support, reduce the loads for the ratios of w^idth to span, as described on page 40. Example. — A 12-inch No. 4 iron I beam, area 12.03 square inches, 10 feet span, by the tables, will support a distrib- uted load of 21.28 tons, and by the approximate rule 2970 X 1 2.03 X 12 o-n ii ^ = 42,8^0 lbs. The deflection by the rule will also be found nearly as in the tables. SAFE LOADS ON BEAMS. 123 L »9 •X3 loo 2) o> > i !1 II < II < 11 1 Load in Middle. " io =: CO ii <] !l <1 II O II < II — I- o O II ^ I SI 2 ^ CO o A [/ a — »► 124 FORMULA FOR IRON OR STEEL BEAMS. The preceding rules apply to beams supported at each end. For beams supported otherwise alter the coefficients of the table as described below, referring to the respective columns indicated by number. CHANGES OF COEFFICIENTS FOR SPECIAL FORMS OF BEAMS. Kind of Beam. Coefficient for Safe Load. Coefficient for Deflection. at the other. of the coeffi- cient of col. II or III. 0 n P - vf PPTi (yV) of the co- efficient of col. YI. Fixed at one end, load evenly distributed. One-fourth (4) of the coeffi- cient of col. IV or V. Five-forty- eighths (^V) of the coefficient of col. YII. Both ends rigidly fixed, or a continuous beam, with a load in middle. Twice the coeffi- cient of col. II or III. Four times the coefficient of col. VI. Both ends rigidly fixed, or a continuous beam with load evenly dis- tributed. One and one- half (H) times the coefficient ofcol.IVorV. Five times the coefficient of col. VII. It will be observed that these rules apply only to the in- termediate spans of continuous beams ; when continuity does not occur at the ends, the conditions are altered. If, however, the outer ends of a continuous beam overhang the end-supports from one-fifth to one-fourth of a span, and bear the same proportion of load as the parts between supports, then the outer spans may be of same length as the intermediate spans, subject to the same load, and the strength and stiffness are determined by the same rules; otherwise the outer spans ought to be only four-fifths of the FORMULiE FOR IRON OR STEEL BEAMS. 125 length of the intermediate spans when the load is dis- tributed, or three-fourths of the same when the load is con- centrated in the middle ; or, if the lengths of spans are all alike, the loads on outer spans ought to be reduced in the same proportion. The following table exhibits the relative proportion of strength and stiftiiess existing between various classes of beams when they have the same lengths and uniform cross- section ; the deflections being comparative figures for the same loads on any beam. Kind of Beam. Maximum Load as Dejiection as Fixed at one end — loaded at the other . 16 Fixed at one end — load evenly distributed h 6 Supported at both ends — load in middle . i 1 Supported at both ends — load evenly dis- 2 1 continuous beam — load in middle 2 i Continuous beam — load evenly distributed 3 The load and deflection of a beam supported at both ends and loaded in the middle have been taken as the units for comparison. Beams of uniform length and section will be equally strained when loaded in the ratio described in the first column, or if the beams are loaded equally, within their elastic limits, the respective deflections will be in the ratio described in second column. 126 WROUGHT IRON AND STEEL. BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION. W= Total load. JS = Modulus of elasticity. L = Length of beam. / = Moment of inertia. Form of Beam and Position of Load. Beam fixed at one end, loaded at the other : FIG. 1 ® Draw trianjile having A — WL. Vertical lines give bending momenta at corresponding points on the beam. Beam fixed at one end, load uni- formlv distributed : I FIG. 2 o o o o_p WL Maximum Bending Moment. Maximum Shearing Stress. at point of support = WL. at point of support WL ^ 2 Draw parabola having A — Ordinates give bending moments at j corresponding points on the beam. Beam supported at both ends, loaded in the middle : FIG. 3 at point of at end of support I beam -= W. at point of support = W. Draw triangle having A = Vertical lines give bending moments at corresponding points on the beam. at point of support 2 ' wroiKtHt iron and steel. 127 BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION. IF-- Total load. E L = Length of beam. / - Modulus of elasticity. - Moment of inertia. Form of Beam and Position of Load. Beam supported at both ends, load uniformly distributed : FIG .4 Maximum Bending Moment, 0,0 00000 — L — Draw parabola having A = WL Ordinates %\\^ bending moments at corresponding points on the beam. Beam supported at both ends, load concentrated at any point: 1 \^ FIG. 5 - d > -9 II 1:^ I c 'I 128 WROUGHT IRON AND STEEL. BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION. W= Total load. £ = Modulus of elasticity. L = Length of beam. /= Moment of inertia. Beam supported at both ends, with concentrated loads at various points: <-L © © ©-_-__-> Draw (by 5) the triangles having vertices at C, D and E, the verticals repre- senting bending moments for loads u'^, and w^^ respectively. Extend i^'C to P, GD to i?, and JIB to Sy making each long vertical equal to the sum of the bending moments corresponding to its position. That is, FP= FC-}- FI + FJ. GR -=GD+ GL^- GK. And HS = HE + HN + HM. Verticals drawn from any point on the polygon, APRSB to AB^ will represent the bending moments at the corresponding points on the beam. Beam rigidly secured at each end, and loaded in the middle. Or the inter- mediate spans of a continuous beam, equally loaded in the middle of each span : Points of contratlexure at a:, where Moment = O. Distance of x from either support = Equal moments at middle and ends = Deflection Draw a triangle having A = and at ends draw verticals BB\ each — -^^> join BB'. The vertical distances between BB^ and the sides of the 8 triangle represent the moments for corresponding points on the beam. WROUGHT IRON AND STEEL. 129 BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTIONS. ir Total load. L Length of boain. E — Modulus of elasticity. Moment of inertia. Beam rigidly secured at e.ich end, with load uniformly distributed. Or the intermediate si)aiis of a continuous beam bearing a uniformly di tributed load on each span. FIG. 8 Points of contraflexure at x, where moment = C). Distance of x from either support .21/,. Draw parabola having .1 ^ Draw verticals B'^ each equal to 1^' ■'^'^ ' vertical distances between BB' and the curve of the parabola represent the moments of corresponding points on the beam. Maximum moment at points of support • Moment at middle of beam WL 12 * WL 24 * Maxinmm deflection at middle of beam ^ mEi' 130 FORMULA FOR BEAM LOADS. BEAMS FOR SUPPORTING IRREGULAR LOADS. AVhen a beam has its load unequally distributed, the proper size of the beam can be determined by finding the maximum bending moment and proportioning the beam accordingly. Equilibrium is obtained when the bending moment is equal to the moment of resistance. That is, when the external force multiplied by the leverage with which it acts is equal to the strength of the material in the cross-section of the beam multiplied by the leverage with which it acts. The resistance of a beam is found by dividing the moment of inertia of the section by the distance from neutral axis to extreme fibres, and this value for any rolled section will be found in the tables, pages 150 to 170. This tabulated resist- ance, multiplied by the limiting fibre stress on the beam, is the measure of strength of the section. RULE FOR BEAMS BEARING IRREGULAR LOADS. Finding by the methods described on pages 126 to 129, the maximum bending moment on the beam, divide the bend- ing moment by the limiting fibre stress, and select from the tables, pages 150 to 170, a beam whose resistance is not less than this quotient. The greatest safe fibre stress in our tables is 14,000 lbs. for iron and 16,800 lbs. for steel. These stresses to be modified for various considerations, as de- scribed on pages 39 to 41. Example. — An I beam 8 feet long is to be fixed at one end and loaded at the other with 5,000 lbs. and carrying also an evenly distributed load of 8,000 lbs. What size of beam should be used so as not to be strained over 14,000 lbs. for iron or 16,800 lbs. for steel ? Moment for end load = 5,000 X 96 = 480,000 inch-lbs. distributed load =M2^_><:^ = 384,000 " Total = 864,000 Divide this bending moment by the fibre stresses afore- FORMULiK FOR BEAM LOADS. 131 said, and select from coliinin XII., page 121, beams whose re- sistances are nearest the quotients, as follows : 12-inch. No. 3. 57.1 lbs. per foot ) ^.^^ j^^^^ 41.6 " u u ( I for steel. or 15-inch. No. 521. 12-inch. No. 4. 51.0 or 15-inch. No. 521. 42 The 15-inch beams being both strongest and lightest. In some instances the maximum bending moment can bt most readily found by the use of diagrams, as described in the succeeding article. When this is done use any conve- nient scale, making all loads and all distances respectively of the same denominations. The maximum bending mo- ment can then be measured to scale. Example. — A beam 20 feet long between supports will carry three loads, which we will call A, B and C. A = 4,000 lbs. and is 4 feet from one end of the beam. C = 6,000 lbs. and is 3 feet from the other end of the beam. B = 5,000 lbs. and is 5 feet from Cand 8 feet from A. Required a suitable beam, not strained over 10,000 lbs. for iron or 12,000 lbs. for steel. Describe a diagram as in Fig. 6, page 128, when the follow- ing bending moments will be obtained. At point A. For load .1, 12,800 B, 8,000 C, 3,600 Total, 24,400 At point B. For load jB, 24,000 A, 10,800 C, 6,400 Total, 41,200 At point C. For load C, 15,300 B, 8,900 A, 2,400 Total, 26,600 The maximum moment at B = 41,200 foot-lbs. or 494,400 inch-lbs. Dividing by 10,000 and 12,000, select the followinc beams, whose resistances are nearest the quotients, column XII., page 121. 15-inch iron beam. No. 521, 41 lbs. per foot, or 12-inch steel No. 515, 30 " " Note. — The tables of elements, except where otherwise specified, are calculated for dimensions in inches and w^eights in pounds, consequently in examples of above character it is necessary to obtain bending moments in inch-pounds. 132 FORMULA FOR BEAM LOADS. BEAMS SUBJECT TO BOTH BENDING AND COMPRESSION. When a l)eam is subjected to bending action and simulta- neously has to act as a strut by resisting compression, the stress of the fibres of the beam otherwise in tension will be relieved and those in compression correspondingly aug- mented. No general rules can be given for such conditions, as every particular case requires its own proper determination. The following methods, though not strictly correct, will give safe results for some simple forms of trussed girders, etc. WHEN THE BEAM IS SUBJECT TO COMPRESSION, BUT IS SO CON- FINED LATERALLY THAT IT CANNOT FAIL BY BENDING LIKE A STRUT. Rule. — Find by the methods previously described the sec- tion of beam required to resist bending, then allowing from 10,000 to 17,000 lbs. per square inch for the compression, according to the material or factor of safety used, add the two sectional areas together, which will give the section of beam required. Example. — A beam trussed 3 feet deep in the manner illustrated at Fig. 6, page 218, spans an opening of 30 feet, the beam having ample lateral support, and bearing a uni- form load of 500 lbs. per lineal foot. Required a suitable beam strained about 12,000 lbs. per inch. The trussed beam can be considered as composed of two beams reaching from the centre of truss to each support. Each beam 15 feet long, uniform load 7,500 lbs., and subject to a compression resulting from the trussing of 18,750 lbs. Bending moment = '^^^00 X 180 ^ dividing this by fibre o stress of 12,000 lbs. gives a quotient 14. The nearest resist- ance for an I beam, column XII., page 153, is 8 inches, 5.08 18 750 square inches area, adding for compression ^ Y)'qqq = l-^^ square inch, or a total area of 6.64 square inches for an 8-inch beam. FORMULi^: FOR BEAM LOADS. 133 WHEN THE BEAM IS SUBJECT TO COMPRESSION AND IS LIABLE TO FAIL LIKE A HORIZONTAL STRUT BV LATERAL FLEXURE. Rule. — Consider first the resistance as a stmt and then make the necessary increment of section to resist the bend- ini^ stress, remembering that if the addition is made to the tlanges then only flange stresses have to be considered, but if the increased area is obtained by thickening the web of I beam or channel section, then the additional area so ob- tained shonld be treated as a rectangular section whose thickness is the amount added to the web, and whose depth is the depth of the beam. Example. — A trussed girder of the form exhibited in Fig. S, page 218, is a box section made up of two channels sep- arated with flanges outward, and plated top and bottom. The whole girder is 30 feet long and is loaded 1,000 lbs. per lineal foot. The compression resulting from the trussing is 25,000 lbs. The structure has no lateral bracing. What will be safe proportions for it, the stresses not to exceed one-fifth of the ultimate, or 10,000 lbs. per inch ? It is evident that we have to consider it as a flat-ended strut 30 feet long, liable to fail horizontally, and also as a series of three beams each 10 feet long and loaded with 10,000 lbs. evenly distributed. Trying two light 5-inch channels, each 2.5 square inches section, separated 5 J inches so as to be covered by 9-inch plates, we have (omitting the plates in this calculation) the radius of gyration around vertical axis (see page 174) = 3.4 inches, L= 106, one-fifth of ultimate (by Table I, page 182) = 5,600 lbs. per square inch, or 5,600 X 5 = 28,000 lbs. safe resistance, ' I ^1 which is ample. Now proportioning the y- 4 plates to resist the bending strain, we have 1 20 V 1 0 000 maximum bending moments (see page 127), ' 8 = 150,000 inch-lbs. The plates act with a leverage equal to the depth of the 134 FORMUL.?: FOR BEAM LOADS. channel, viz., 5 inches ; ^ '30^.^00 _ 30^000 lbs. tension on top o or compression on bottom plate, which, allowing for 10,000 lbs. per square inch, and allowing for loss by rivets, will re- ■ [iiire a plate f inch thick. Taking the last example, if it was desired to form the sec- tion from a pair of channels latticed top and bottom with no cover plates, we would have to consider the section added to the channels (being on the web alone) as a simple rectangular section. By the formula on page 122, approxi- mate rules, we find that such a section only 5 inches deep would require a thickness of 3.8 inches, which is impracti- cable ; we have therefore to use deeper and heavier chan- nels. Trying 8-inch channels separated as before o^^ inches, with flanges outward, and having radius of gyration for the pair around vertical axis = 3.4,-= 106. Safe load — ^ /' o = 5,800 lbs. per square inch. As the compression is 25,000 lbs., there is required 4.3 square inches for this purpose. By formula IV, page 122, 1100_X^aj<_8 ^ ^^^^ from which is found the area required to resist bending = 12 square inches. 12 -f = 16.3 square inches for two channels, or the heaviest 8-inch channels 27 lbs. per foot would be required. By the same method we find 10-inch channels, 23 lbs. per foot, will answer the purpose, or our lightest 12-inch chan- nels, 20 lbs. per foot, will exactly meet the requirements and be the lightest channel that can be used in the manner •proposed for the purpose. In cases where the load is concentrated at the truss points, there being no bending stress, the resistance as a strut has only to be considered, and when braced laterally the strut length is reduced to the distances between bracing. F0RMUL.1<: FOR BEAM LOADS. 135 BEAMS OF ANGLE AND TEE SECTION. It is frequently convenient to use angle or tee sections for roof purlines and siiiiilur i)urposes. The length of si)an may be so great as compared to depth in these cases, that deflection instead of excessive fibre stress is the measure of utility. An even-lianged angle or tee will deflect slightly less than an equally loaded rectangular section of the same depth and sectional area ; but the extreme fibre stress of the former will be greater than in the rectangular section. Therefore, for long beams, where deflection reaches the permissible limit before fibre stress becomes excessive, the rule for beams of angle and tee section given on page 123 will safely apply. If, however, the fibre stress must be kept lower than this rule indicates, refer to the columns "resistance," pages 166 to 171, and apply ?.s described on page 130. Example. — A 4^^ X 4^^ iron tee, 3.72 square inches area, has a resistance of 1.97 (see col. VIII, page 170). Required its greatest safe load distributed over a beam of 10 feet span. By the method on page 127, bending moment = 5^^= 1.97 X 14,000 lbs., or iv = 1,750 lbs. nearly. By the rule on page 123, col. IV, the safe load would be 1540 X_3 72j< 4 ^ ^,290 lbs., and the deflection by col. VII, page 123, would be 5^3;^^^ = -37 inch, or only a little over of the span, while the extreme fibre stress at the outer edge of the stem would be about 17,000 lbs., or sufficiently below the elastic limit to justify its use for light purlines, etc. 136 RIVETED GIRDERS. RIVETED GIRDERS. O O Q ^ O For Table, SEE Page 139. r\ (J 9. For Tables. SEE Pages 140-141. — <;7 — ^ — ' o o o o o 9^ — c2k c:% ^ For Tables. SEE Pages 142 to 147. RIV^ETED GIRDERS. 137 RIVETED GIRDERS. The tables, pages to 147, represent a few of the sections of riveted girders most frequently used in structures. The single-webbed girders are the most economical in material, and most accessible for painting and inspection. But where great width and lateral stiffness are required, the double web or box girder is the best. If the length of the girder exceeds twenty times the width of the flange, the girder should either be given some lateral support, or else the sec- tion of the top tlange should be increased. It is usual to allow tlange strains of 12,000 lbs. per square inch for iron, or about 20 per cent, more for steel, in girders for buildings. The safe loads for the girders in the accompanying tables are calculated on this assumption for ii'on, the entire sec- tional area of the girder being considered. For steel having tensile strength of not less than 60,000 lbs. the tabulated coefficients may be increased 20 per cent. The web of the girder should be made of such thickness that the vertical shearing strain will not exceed three- fourths of the horizontal strains, or 9,000 lbs. per square inch of section in the case of iron girders for buildings. The shearing strain is greatest at the supports, and is found by dividing half the load on the girder by the web section. If the thickness of the web is less than of its depth, it should be stiffened to resist buckling, by the addition of vertical angle irons riveted to the web at intervals of not more than the depth of the girder. These stiffeners should always be used at the supports and at points where concen- trated loading occurs. The rivets should be from J to I inch in diameter, spaced not closer than three diameters, nor farther apart than six- teen times the thickness of plate connected. It is good practice to limit the least depth of the girder to 2^ of the span, on account of deflection. The follow ing tables are calculated by the moments of inertia of the girder sections, for a fibre strain of 12,000 lbs. per square inch, and for a uniformly distributed load. Coeflicient = — r — -^^f''^^.^-^^— ^ — — The numbers in the extreme depth ot girder 138 RIVETED GIRDERS. first columns of the tables correspond with those of the various sections of girders on the plates. The tables give coefficients of strength, also weights per lineal foot, including stiffeners for each section, excepting girders without cover plates in first table, where stifieners are omitted. TO FIND THE SAFE DISTRIBUTED LOAD FOR ANY GIRDER. Divide the coefficient of strength by the length of span in feet between centres of supports. The quotient will be the load in tons of 2,000 lbs. TO FIND THE COEFFICIENT OF STRENGTH NECESSARY TO CARRY A CERTAIN LOAD ON A GIVEN SPAN. Multiply the load in tons of 2,000 lbs. by the length of span in feet between centres of supports. If the load is concen- trated at the centre of the girder, it must not exceed one-half the w^eight of the permissible uniformly distributed load. If the load is concentrated at some point not in the middle of the girder, it may exceed in weight the permissible middle load, in the ratio of the square of half the span, to the product of the segments formed by the position of the load. EXAMPLES FOR APPLICATION OF TABLES. I. What is the carrying capacity of the single-web plate girder No. 16, with f-inch co^^er or flange plates, the girder being 20 feet long between centres of supports ? In the column of coefficients, and opposite the girder re- ferred to, find proper coefficient for strength, which in this -ase is 2,143. 2143 Answer. = 107.15 tons equally distributed, jr 53.57 tons in middle of girder. II. A box girder is required 24 feet long between sup- ports to carry a 20-inch brick wall weighing 66 tons. What is the requisite coefficient of strength ? Answer. 66 X 24 = 1584. Referring to the table of box girders 20 inches wide, we find that girder No. 15, 21 inches deep, with a f-inch cover plate, has a coefficient of strength of 1610, or a little in excess of that required. WROUGHT IRON RIVETED GIRDERS. 189 . STRENGTH AND WEIGHT i OF WROUGHT IKON RIVETED GIRDERS. To find the distributed safe load in net tons, divide the coetiicient in right-hand column by the length of span in feet. To find the coetficients of strength for a given load and span, muhiply the uniformly distributed load in tons by the span in feet between centres of supports. Weights do not include stiffeners. Depth. Web Thick- ness. a FhiiKjt' W id III. A. Size of A ngles. Resist- ance. Weight in Pounds per Lineal Foot. Coefficient 0/ Strength. 00 00 00 00 t i m 10 5 X 31 X 5 X 3| X 1 5 X 3^ X f^j 5 X 3^ X ^ 92.9 110.0 126.9 55.9 66.0 76.2 oD.o 371.5 440.0 507.6 0/4.0 20 20 20 1 A 1 i 10| 5 X 3| X f 5 X 3j X 0 X 0^ X ^ 126.8 146.4 iDO.o 68.5 79.1 oy. / 507.6 585.3 OOo.^ 22 22 22 1 i lOi 5 X 3| X f 5 X 3| X 0 X X ^ 144.1 166.5 1 QQ 1 ioo. / 71.0 82.0 no n 576.6 666.0 24 24 24 1 t Hi 5J X 3i X 1 51 X 3J X X X ^ 170.7 198.1 76.1 88.1 inn 0 682.7 792.3 yui. / 26 26 26 I i 111 lU 5J X 3| X f 54 X 3| X 5J X 31 X 1 189.7 220.4 250.9 78.6 91.1 103.5 758.8 881.4 1003.4 28 28 28 f 121 6 X 3i X f 6 X 3| X 6 X 3| X J 218.0 255.5 292.8 83.2 97.0 110.9 872.0 1022.0 1171.4 30 30 30 4 13| 13A 13i 6J X 4 X 1 6ix4x 6i X 4 X J 256.3 298.5 340.4 90.9 105.6 120.2 1025.1 1193.9 1361.5 32 32 32 13| 13A 13i 64 X 4 X ^ 6i X 4 X 1% 6|x4x J 279.2 325.1 370.6 93.4 108.5 123.5 1116.8 1300.4 1482.5 34 34 34 1 1 13| 13A 131 6| X 4 X f 6^r X 4 X ^ 64 X 4 X 1 302.5 352.3 401.8 95.9 111.4 126.9 1210.0 1409.2 1607.2 36 36 36 I i 133 13i 6| X 4 X 1 eS X 4 X f 6J X 4 X 1 326.3 380.1 433.5 98.4 114.3 130.2 1305.2 1520.4 1734.2 140 WROUGHT IRON RIVETED GIRDEflS. 'Sdl{OUJ ui ddpjLi^ fo iiiddd 00 00 00 i-Hi-li-t T^jT^TjH t>t>C^ OOO coco CO COCOCD rHrHi-t CM CVJ CM CM CM CM CM CM CO CO 00 CO CO CO CO CO CO 'Sdnouj ui S9jv]f£ j,daoQ JO HfpiAX CMCMCM CMCMCM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM 100^ imm/j .19(1 spunOfj ui fy^PAl COCDOO OOCOCD CMOLO 00 lO CO CO rH O- 00 rH rj^ t>CT)rH D-OCM OOrHOO OOrH'^CJ)CMLOOiCMiOOCOCO rHrHCM rH CM CM rH CM CM rH CM CM rH CM CM rH CM CM CMCMCM fo ^udioijgdoj CO t> t> 05 o ,-1 rH rH rH i-H CM CJ)O00 05C0O rHrHO rH CM CO rHT^Ht- OCOlO rHOCM i-IT^HrH COiOiO COOOrH CJ>CMLO CML005 CMCMCM CM CM CO CM CO CO CO 00 CO '/oo^ ]V9m^ udd CO CO 00 CO 00 o rH rH CM 00 CO CO rH rH CM CM OiO O O CM rH CM CM 00 lO-^ COCOtH r>C3500 t-H"^^ tr-OCO OOrHT^ OOl-HTji CX)CMLO 1-HCMCM rHCMCM rHCMCM t-lCMCM fo fU9IJlfi'90J CM CM rH t>-LOCM CO lO CO t> 05 CO 00 C-00 00 O CM rH CM CM rH 700^ ]D9Ul'J U9d COCOOO OOCOCD CMOlO 00 lO "^H COOOrH t> C7) 00 rH rti in t> 05 LOOOO COCTJrH CO CM I>OC0 t>O00 00 rH i-HrHi-H rHrHCM rHrHCM t-H rH CM rH CM CM rH CM CM rH CM CM •l{'}6u9,ljg fo JU9p2fi90J OOOO OiCOOi t>CMI> I>C^"«^< COCMC35 t> rH CM CO 00 Tt< COLOCM OCOCM lO'^^ OCMt> CO CM O CM CM lO CD CM O CM LO LO CO 00 l> C35 rH O CM CM LO 00 LO 00 rH t>- rH LO ')0n^ 2V9ii]'j jL9d spunOff ui ?yi5i9j^ COCOOO 00 CO CO CMOLO 00 LO "rtl COCOiH [>O500 »H tJI CO 00 "^t>05 LOOOO LOOOrH CO CM CO C^i CM t>- O CO 'yfdu9ujgf fo JU9]Dlfi'90Q "^OOO 00C0[>- OOlOCM rH 00 CM O O rH LO rH LO ""^ rH CD COTtHCM 00'<:t^O rHOrH LOt>-CMCDLOCOCOCOCOOOCMCJ> rHCO-^ C0LOt>- COOOO COOCOOCOCOOOCOCX)LOCDCM CO 'JOOjI ID9UI>J J,9d spunOfi Ui 7y6}dA{ COCOCO 00 CO CO CMOlO 00 LO COOOrH 1>CD00 rH Tt< rtj C0LOt>- COCOOO Ttlt>C35 '^t-OLOOOrHLOOOrHCOCDCM THrHrH rHrHrH r-i i—i r-i rHrHCMrHTHCMrHrHCMrHrHCM 'yi6u9d]g fo fU9pifi90J THt-cD tr-;^;* Oioxy) co o o o- oo o co cm OO CO "-^l SS:5tIr^ CO CM 0> t> CO i:^ CDCMt> rHI>-t>- '<;^ CDrHOl OCMOO CMCMLO T^HCOOO COCr>rH05rH'«:^^rH"^^:^COt^-0 'JOO^ JD9U]'J U9d spunOf£ UI }y/Si9A[ 2f5E2^ oqcoco cMom 0010"^ cooorH oojoo rn^st^'^ CM-^CO CMlOO COCOOO C0C0CDT}.O'<;J-OlO00rH 'yj6u9jfg fo fU9piO'90J 957 1146 1220 1146 1304 1477 1340 1532 1743 1766 2018 1744 2006 2301 1952 2253 2591 2165 2507 2890 lOOjJ 2V9Ul'J d9d spu7iOfj[ UI ?yiSpAi coco 0000 CMO OOlO coco 005 rH rH 00 CM LO CM lO COCO coco I> 'yf6u9U)g fo ^U9!Dig'90J 845 1046 1026 1186 1202 1396 1612 1570 1835 1761 2064 1956 2303 looj; pawiT^ d9d 9punO(£ m fy^PAi CO 00 CM 00 0 0 rH rH r-i i-{ i-i r-i CO I> iH CM CM CO rH rH - rH 'y0u9df^ fo tU9piff'90Q 752 906 1064 1397 1570 1748 'S9youj ui S9jv]j j,9aoj fo yipiAi CMCMCM CMCMCM CMCMCM CMCMCM CMCMCM CMCMCM CMCMCM 'S9119UJ u% ddpMJ^ fo y)d9(j 'uoitods fo ddqmn^ rHCMCO -^lOCO r-OOCD OrHCMOO'^lOCOt-COOiOrH CM C- WROUGHT IRON RIVETED GIRDERS. 141 STRENGTH AXI) WEIGHT OF WROUGHT IRON RIVETED GIRDERS. -A- > CC B To find the distributed safe load in net tons, divide the coetficient on opposite page corresponding to the number below by the length of span in feet. To find the coefficient of strength for a given load and span, multiply the uniformly distributed load in tons by the span in feet between centres of supports. See opposite page for coefficients. "Weights include stiffeners. Number Width of Depth of Thickness Size of of Cbver (A) Web (B) of Web (C) Corner Angles Section. in Inches. in Inches. i)i Inches. in Inches. 1 12 18 % 5 2 12 18 5 X 31/2 X 'H2 3 12 18 % 5 X 3^2 X % 4 12 21 % 5 X 3^2 X % 5 12 21 ^2 5 X 3\ X H2 6 12 21 ^1 5 X 31/2 X % 7 12 24 5 x3\x % 8 12 24 5 X 3H2 X 1/2 9 12 24 % 5 X 3^2 X % 10 12 27 5 X 31^2 X % 11 12 27 5 X 3V2 X 1/2 12 12 27 5 X 3H2 X % 13 12 30 > 5 X 3^ X % 14 12 30 5 X 3 V2 X 1/2 15 12 30 5 X 3^ X % 16 12 33 5 X 3\ X % 17 12 33 5 X 3^2 X H2 18 12 33 % 5 X 3^2 X % 19 12 36 % 5 X 31/2 X % 20 12 36 5 X 3V2 X H2 21 12 36 % 5 X 31y^ X % 142 WROUGHT IRON RIVETED GIRDERS. r-l CM CO Tjl LOCO t> 00 03 O tH CM CO LOCO t> 00 'Sdqouj Ul U9pM£) Jo yjd3(j CO 00 1— ItH tH O-C^ oo CO CO CO CO rH rH rHrH CM CM CM CO CM 03 OOCO COCO COCO CM CM CM CM '891(011 J Ul COCO coco coco coco coco COCO coco oo oo THICKNESS OF COVER PLATES IN INCHES. rH COrH rHCO O LO 05 !>■ 00 CD COO ^O O^ OiCO CM lO coco ""^^ "^00 lO CD COrH I> CM IT- O t> rH CM CM CM CM CM CM CM CM CM CM CM 00 CM CO CM CO CM CO fo }UdpiffdOJ 1841 1962 2192 2348 2552 2747 2922 3160 3304 3583 3694 4020 4088 4468 2640 2806 3064' 3272 I-H '/oo^ 2Ddm'j jLdd spunOfj tn /y^/aji CDOO OOO I>CM LOCO CO t> i-H I> CO t>- CM C7) OCO rH LO COCO CO [>- ^ CO LO CD COO LO 00 CO a» CM CM CM CM CM CM CM CM CM CM CM CM CM CO CM CM CM CM fo lUdlDlffdOQ 1701 1824 2029 2186 2366 2562 2712 2951 3068 3352 3435 3766 3807 4192 2435 2602 2830 3038 I-H 'JOOjJ ]D9Ul'J ddd SpilllOfJ Ul COLO LO t> ""^J^ CD COrH CM CO O-^ OO""^ COO LOOM CDCM OCO rH -"stH CM CD CO t> -^J^ CO CD CO l> "^t^ 00 rH CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM 'yj3u9Jjg fo iUdlOlffdOJ 1560 1684 1864 2024 2178 2377 2501 2742 2834 3120 3175 3511 3548 3916 2225 2398 2592 2804 spunoj Ul fyiSpj^i CO CM CM -'^l rH CD OOO CXi O t> rH LOrH O ""^ C^i CD 00 rH CDCM OOO rH rHCO CMC-- COOO CM lO CM CD rHCM rHCM CM CM CM CM CM CM CM CM CM CM CM CM CM CM 'yfdiodfg fo fUdlOl^dOJ 1420 1546 1701 1862 1995 2192 2284 2534 2600 2889 2918 3256 3268 3634 2020 2194 2360 2572 100^ imin'j ddd spimOfj 211 fy6i9[[ O CD CDrH OOCO t>LO CDt> Tfl 00 CM 00 CO t> CM CD t> 05 [>rH 00 CM CDOO O""^ rH lO CM CD OCO rH t^H rHrH rHCM rHCM i-H CM CM CM CM CM CM CM CM CM CM CM 'y}6udd}g fo lUdioiITdor^ 1280 1408 1538 1701 1836 2008 2081 2327 2366 2658 2650 3002 2988 3358 1815 1986 2126 2340 100^ IJjdm'j d9d {,'p U)lOf£ U l fiji^PAl 157 186 166 198 i 175 ! 210 184 222 193 234 201 245 209 255 187 221 196 233 •yjSuddfg fo lUdlDlffdOD 1141 1270 1375 1540 1618 1824 1871 2119 2133 2427 2405 2748 2708 3080 1610 1788 1892 2108 '}00jj ludui/i d- rH CD OrH 00 CM CDCM O CD CD t>- LOCO CD 05 I> O 00 CM COCO (Ji -rf^ t> O t> rH r-\T-\ j-ir-i rHrH rHCM rHCM rHCM rHCM rHCM rHCM •illOuddiS fo }U91Dlff90J 1002 1132 1212 1380 1432 1640 1662 1912 1901 2197 2148 2494 2428 2803 1406 1579 1690 1876 '}00^ indui'j ddd spunOfj Ul ty6i9^\{ 131 140 149 158 167 175 183 153 162 'i^fduddfg fo }U9l0lff90J 863 1050 1247 1453 1668 1942 2128 1206 1425 S3 'SdXlOUJ 111 ( CDCDCDCOCOCOCDCOCDCOCOCDCDCDOOOO III ddpMf) fo mdd(j COOO T-\i-\ rJH t>-t> OO COCO CD CD r-i rHrH CM CM CM CM CM CM COOO COCO COCO CM CM CM CM 'U0ip9g fo d9quin^\[ I rHCM OOtJH loco t>00 CDO rHCM COtJH loco OOO WROUGHT IRON RIVETED GIRDERS. 143 STRENGTH ANT> WEIGHT OF WllOUGHT IKON RIVETED GIRDERS. To find the distrilnitcd safe load in net tons, divi(ie the coefticicnt on opposite page correspondiug to the number below by the length of span in feet. To find the coethcient of strength for a given load and span, muli'ply the uniformly distributed load in tons by the span in feet between centres of supports. Sec opposite page for coefficients. •-A- r' D - J Number of Section. Width of Cover {A) in Inches. Depth of Web (B) in Inches. Thickness of Web (C) in Inches. Width of (D) in Inches. Size of Corner Angles in Inches. 1 16 18 % 8 3\ X 3\ X % 2 16 18 \ 8 31/2 X 31/2 X 3 16 21 % 8 31/2 X 3^2 X % 4 16 21 \ 8 31/2 X 3^2 X \ 5 16 24 8 3V2 X 3^2 X % 6 16 24 I 8 31/2 X 3^2 X ^2 7 16 27 8 3\ X 31/2 X % 8 16 27 8 3H2 X 31/2 X \ 9 16 30 8 3^2 X 3^2 X % 10 16 30 8 3^2 X 31/2 X 3/2 11 16 33 8 3\ x3\x % 12 16 33 8 3H2 X 31/2 X I/2 13 16 36 8 3^^2 X 3\ X % 14 16 36 8 3V2 X 31/2 X I/2 15 20 21 11 4 X 3\ X % 16 20 21 \ 11 4 X 31^ X 14 17 20 24 11 4 X 31/2 X % 18 ! • 1 20 24 1 1 11 4 X 3V2 X \ 144 WROUGHT IRON RIVETED GIRDERS. ^ 1 CT50rHCMCO"^LOCDt>-00050rHCN)00'^LOCO 'uoipdS' fo U9qia7is[ \ cqc^ c^o^ csic^ o^co coco co^ coco ut ddyjLif) fo iijdd(j t> 00 coco coco rt< l> t> 00 coco COCO 0303 coco coco coco 03 03 03 03 COCO COCO COCO 'sdipuj Ul S9jn2j J9iioQ JO ymAl ^8 spunoj Ul }i/l5pj[[ 00 00 0 T-f 0 CO 1—1 000 CI> rH 0003 003 COCO 0003 0 ""^^ 03 LO T-H CD 03 LD 03 [>- COCO 05 "^0 03 CO 03 CO COCO coco coco coco coco coco CO T-H fo }U9lDlff90J 3500 3748 3944 4240 4444 4742 4859 5257 3750 3836 4305 4416 4838 4979 5108 5559 6111 6309 THICKNESS OF COVER PLATES IN INCHES. rH •lOOT IhdUlT J9d \ '-li-l t>00 ^CO CDrJi OOO 05t-I 0003 t>03 COCO '^^^ ' • ^ ' 1 I>TH 0003 0COa>^OCOOLOT-IC0 03I> 03 00 spunOfi Ul fyoidii 0300 03co 0000 O3co coco coco coco coco coco fo judpiffdoj 3235 3486 3649 3947 4120 4421 4506 4906 3467 3555 3988 4100 4488 4628 5002 5172 5688 5885 tH 'joo^ pjdui'j dc>d spunoj Ul fi/SpAi ""^ OCD l> CD O) t> 000 OirH 0003 I>CV3 00 lO LO CD !>■ O 00 rH t> 03 00 1—1 COCO Oi O LO i-< CD 03 03 03 CO 03 CO 03 CO 03 CO Od 00 03 CO COCO COCO 'yjdu9.(jg^ fo ;imoiff90j 2970 3224 3355 3656 3797 4100 4156 4560 3188 3671 4136 4277 4596 4767 5270 5470 '%oo^ IDdui'j ddd spunOfi ui fyl5tdj{{ 00 00 '^O tH O COtH OOO CDrH 00O3 t> CV3 COCO CO t:^ lO CJ5 l> O CD rH CD 05 CD rH t>- 03 00 CO O) 03 03 03 03 O3C0 03 CO 03 03 03 CO 03 CO 03 CO 03 00 •yiduddfi^ fo judjoi^'doj 2706 2961 3062 3364 3474 3779 3800 4206 2904 2994 3355 3469 3785 3926 4228 4401 4834 5046 '}00^ IDdUl'J ddd spunOfj Ul 7y6id^\{ 1-lrH t> 00 CO CD OOO 05 rH 00 03 I> 03 coco 03 CD COO LOCO TJH 05 Tt D-- 0:> LOO CD rH t> 03 0303 0303 Cg03 0>3O3 03 03 03 03 03 CO O3C0 O3C0 •yjduQd^g fo judpiffdoj 2442 2700 2768 3074 3158 3459 3448 3857 2624 2714 3040 3154 3434 3576 3842 4016 4424 4627 ';oo^ imui'j ddd spunOfi Ul ty^id^l LOLO rH t> 00 t> OOO OOO OirH 00 C^3 1-03 COCO O^ 03 LO COCO CO !>■ 03 LO CO t> 00 00 05 LOO 03 03 03 03 03Cg 03 CV] 03 CN3 03 03 03 03 O] 03 03 CO 2179 2439 2476 2783 2830 3140 3096 3508 2344 2435 2721 2840 3082 3227 3456 3631 4004 4208 'fooj- jmui'j ddd spunoj Ul fyiStd^ii 188 228 ! 204 240 221 250 213 261 200 230 209 251 218 262 227 272 233 283 "yiduddif:^ fo }lUlDlffdOJ 1914 2179 2183 2493 2508 2820 2745 3159 2064 2156 2410 2527 2733 2878 3071 3247 3584 3790 "fooj; imui'j ddd spuiiOfj Ul fi/dpj^ tH rH 00 CO O 00 00 CD r-i r-\ i-i r-^ 'y^uddif^ fo fUdldlffdOJ 1653 1890 2185 2393 •sdy^ouj Ul OO OO OO OO ^ 'st< 03 CV3 03 CV3 O] C^l 03 03 03 03 03 CV3 03 03 03 03 03 03 Ul Xdiuiff fo njdd(j l>-t> OO COCO COCO OO COCO COCO 03 03 COCO COCO COCO 03 03 03 03 COCO COCO COCO 00 050 rH03 00"^ LOCO CM 03 CO COCO 00 00 COCO WROUGHT IRON RIVETED GIRDERS. 145 STRENGTH AND WEIGHT OF WROUGHT IRON RIVETED GIRDERS. To find the distributed safe load in net tons, divide the coefficient on opposite page corresponding to the number below by the length of span in feet. To find the coefficient of strength for a given load and span, multiply the uniformly distributed load in tons by the span in feet between centres of supports. See opposite page for coefficients. If •A'- 4 r D - J Number of Section. Width of Cover {A ) in Inches. Depth of Web (B) in Inches. Thickness of Web (C) in Inches. Width of in Inches. Size of Corner Angles in Inches. 19 20 20 20 27 27 11 11 4 X 31^ X % 4 X 31/2 X 1/2 21 22 20 20 30 30 11 11 4 X 3H2 X % 4 X 3^2 X ^2 23 24 20 20 33 33 11 11 4 X 31/2 X % 4 X 3^/2 X ^2 25 26 20 20 36 36 > 11 * 11 4 X 3^2 X % 4 X 3V2 X 27 28 24 24 24 24 > 13 13 5x4 X % 5x4 X 1/2 29 30 24 24 27 27 % 13 13 5x4 X % 5x4 X ^2 31 32 24 24 30 30 > 13 13 5x4 X % 5x4 X ^2 33 34 24 24 33 33 13 13 5x4 X % 5x4 X ^7^2 35 36 24 24 1 36 36 1 % : i 13 13 5x4 X % 5x4 X ^2 146 WROUGHT IRON RIVETED GIRDERS. 'U01109S fo .i9qiims^ | t^^^g og rH ^ | OO coco coco 0>CT> CM CV] CD CD CD CT) COCO coco coco coco Tj< coco coco cvj ca Sdyoui ux 1 OO OO OO OO OO CDCD CD CD 1 COCO coco coco coco coco coco coco CD CD CO CO THICKNESS OF COVER PLATES IN INCHES rH '100^ I'DdUl'J Md spunOfj ui mdidj^'^ CJ) CO CT) 00 -"^ CQ Cv] Tji O lO UO CD 00 coco (Ji"^ O LO T-l CD COD- LOO -"^^ CD O CO !>■ LO lO 'yjSiidd;^ fo fUdpifigoQ 5782 5881 fi382 6551 7191 7389 7689 7928 8357 8635 8273 8470 8861 8999 9627 9896 100^ jvduyj ddd spunOfj ui ?ydid^\[ •^00 -^00 C35CO t>- CD LO CTl COO t>-»-l I>CV3 COCO LO LO CO CO O 00 lO fo iudpiff?oj 5300 5439 5895 6065 6661 6860 7114 7353 7737 7634 8168 8408 8872 9151 1-1 spunoj- ui fy6id^\[ CDOO ;^00 '^00 03'^ O COOO "^05 LOO CDrH l>- CO COCO COCO 00 ''^ 00"^ CO LO lO 00 00 CD O LO CO ''^^ O CO 1— 1 CD ^ ^ fo }Udpif90J 4857 4998 5408 5579 6336 6538 6779 7117 7438 7002 7716 8121 8406 spunOff ui 7ySidj\i ■^00 CJ)00 CDOO l>- CD lO CD r-i lO 1-1 CD O] t> COCO CD COCO 00 00 COCO COCO COCO LO LO CO 00 CD >-l t> Ca 00 CO O 00 00 CO OO 'y^uddjg fo fudioifidoj 4415 4556 4922 5094 5601 5803 5963 6206 6681 6780 6358 6560 6783 7025 7662 'fOO^ 2D9Ul'J U9d spuhOff Ui tyffidAi CDCO CO CO CD OCI CO CV3 CO Tj< CO CO Tt^ o ^ TjH O LO rH CD CV3 C- 00 COCO COCO COCO LO lO CO CO CO 00 CD CO CO CO CO oco 'y0uddj^ fo ludwiffdoj 3974 4117 4436 4610 5072 5275 5389 5633 5879 5721 6091 6335 LO l> CO rH CD CD ,^ "100^ imuyj jidd spunoj ui ty6w^[{ ''^^ 00 CD t> CDOO t> CD LO CT) CD O CDrH I>CV3 00 00 I>- Ttt oaco ojoo coco oaco coco LO lO CV3 CD O 00 O LO 1-1 CD CM O CO CO CO CO CO^ •yfdudufg fo fUdlO'lffdOQ 3534 3678 3951. 4126 4543 4748 4815 5060 5260 5,546 5004 5288 5400 5646 b89U 6176 1 'fooj; poduyj xdd spunoj; ui iy6id^{{ CDCO t> CO "^00 Cv] O 00 00 CD too CDtH t> 03 CQ cq CO oa c<]co cvico (Nco LO LO CN] CD i> oa 00 CO oa CO CO CO D M 00 JD CO 'yiBudx}^ fo iUdioiffdO[) 3093 3238 3446 3643 4038 4222 4241 4448 4642 4929 4448 4709 4956 '%ooj ivdui'j Jdd spunOfi ui fy^PAi 'y}6u9djs' fo ^UdlOlffdOJ sdjDjj jLdocQ fo yjpiAi OO o CO CO CO S 8S CD CO CO CD CD CD CO CO CO 00 CO CO 'sdyouj OO coco coco CDCD oo -oo oo 1-103 • ^ ICOCO COr^i T^$-|— . Apply as described on page 138. This depth of girder ^ ^ ^ ^ coefficient gives flange strains of 12,000 lbs. per square inch. If either greater or less flange strains are desired, increase or decrease the coefficient proportionately. BY FLANGE STRAINS ALONE. If one-sixth of the web area is added to the area of each flange, and the sum considered as the efiective flanges, then the area of one efiective flange, multiplied by the distance between efiective flange centres, will be the moment of re- sistance of the girder section. Apply this rule as described on page 130, or distributed load in net tons = ^—Lfj JL d = distance in inches l)etween flange centres. / = effective area of each flange in square inches. s = flbre strain allowed in tons per square inch. L = span of girder in feet. Example. — Required distributed load for a 20-foot span girder 20 inches deep, flange area 10 square inches, web area 9 square inches — each effective flange = 11^^ square inches, distance between flange centres = 19 inches, allow- ing flange strain of 5 tons. ^ ^ 9q"^^" ^ ^ = 36.4 tons distributed load, or half this in centre of girder. ELEMENTS OF STRUCTURAL SHAPES. 149 ELEMENTS OF PENCOYD STRUCTURAL In the following tables various fundamental properties of rolled sections are given, whereby the strength or stiffness of each can be readily determined. The calculations are made accurately for the least and greatest thickness of each shape, but intermediate thick- nesses can be approximated by interpolation. ^Moments of Inertia for the sections are obtained as here- after described. is used for determining transverse strength in beams, etc., as described on page 130. Coefficient for Safe Load is the calculated load in net tons, on a beam one foot between supports, that produces fibre strains of 14,000 lbs. on iron or 16,800 lbs. per square inch on steel. A corresponding load for any beam is found by dividing this coefficient by the length of span in feet. Coefficients for Deflection are found by the formulae on page 126, based on a modulus of elasticity of 28,000,000 lbs. for steel or iron. They apply to beams one foot long, bearing one ton (2,000 lbs.). The deflection of any beam in inches is found by multiplying its coefficient by the load in tons and by the cube of the length in feet. Maximum Load in Tons indicates the greatest load in tons that a beam, however short, should carry, unless its web is reinforced, to prevent crippling. This load is obtained by the formula : SHAPES. Radits of Gyration equals \ j ^ \ area mining the resistance of struts or columns. Moment of Resistance equals .p— t. — is used for deter- Inertia distance from axis to extreme fibres w = xdt 3000/^ X d I 7 tons for iron, or 8 tons for steel. depth of beam. thickness of web. (/ -f secant 45° {P = 2d^). 150 ELEMENTS OF PENCOYB BEAMS. ELEMENTS OF PENCOYD BEAMS. 4 I. II. III. IV. y. VI. VII. VIIL IX. X. XI. 1 'Hon Number. Ize in Inches. A rea in Square Inches. Weight in Pounds per Foot. Moments of Inertia. Square of Radius of Gyration . Radius of Gyration. Iron. Steel. Axis A. B. . Axis CD, Axis A. B. Axis CD. Axis A. B. Axis ' C. D. 1 15 19. 03 63.43 660. 00 26.56 34.69 1.39 5.89 1.18 1 16 23.80 79.33 750.00 32.10 31.47 1.36 5.61 1 .16 2 15 14.80 49.33 532.20 16.64 36. 00 1.12 e.oo 1.06 2 15 18.59 61.96 602.60 19.60 32.38 1 .04 5.69 1.02 521 15 12.47 42.39 443.50 14.97 36 62 1.2 1 5.96 1.10 521 15 15.32 52.08 496. 90 16.97 1.10 ^ «^ 1 06 522 15 14.51 49.32 497. 11 19.67 1.36 1 10 522 15 16.76 66.98 639.29 21.03 1 1 ■ 3 1.25 523 15 16.95 - 67.63 683.78 26.91 34.44 Mo 6 87 1 26 523 15 20.70 70.38 664. 09 31.04 31.60 5.62 l!22 524 15 20.54 69.80 704.52 37.82 34. 30 1 .84 5.84 1.35 524 15 25.19 86.64 791.70 44.43 31.43 1.76 5.65 1.33 3 12 17.12 1 57.06 58. 20 375.30 22.77 21.90 1.32 4.68 1.15 3 12 18.92 63. 06 64.32 396. 90 24.93 20.98 1.32 4.58 1.16 4 12 12.03 40.10 40. 90 273. 60 12.00 22.76 1.00 4.77 1.00 4 12 14.76 49.20 50.18 306.70 14.02 20.70 0.94 4.56 0.97 515 12 9.01 30.63 207.90 8.90 23.04 0.98 4.80 0.99 515 12 1 1.24 38.21 233.80 10. 06 20.79 0.88 4.66 0.94 516 12 11.95 40.63 274.90 16.61 23.00 1.39 4.79 1.18 516 12 14.35 48.79 303.70 17.08 21.16 1.19 4.49 1.09 13.53 45.10 46.00 242. 60 18.70 17.89 1.39 4.23 1.18 5 I OH 16.16 53.86 64.94 266. 70 21.86 16.48 1.35 4.06 1.16 51^ lOK 10.96 36.63 37.26 197.00 12.33 17.98 1.12 4.24 1.06 5^ 13.58 45.26 46 16 221.10 14.69 16.24 1.06 4. 03 1.03 6 loy^ 9.00 30.00 30.60 163.66 8.26 18.14 0.92 4.26 0.96 6 ,103^10.89 36. 30 37.03 180.91 9.45 16.56 0.86 4.07 0.93 7'lO 11.25 37.60 38.25 174.36 10.53 15.62 0.92 3.94 0.96 7,10 13.75 46.83 46.75 196.18 12.65 14.21 0.92 3.77 0.96 810 9.14 30. 46 31.07 161.13 8.27 16.66 0.90 4.07 0.96 8 10 10.64 36.46 36.17 163.63 9.26 16.37 0.86 3.92 0.93 511 10 6.83 23.21 1 12.42 6.70 16.48 0.83 4.06 0.91 511 10 8.83 30.02 129.08 6.62 14.69 0.76 3.82 0.87 9! 9 9.28 30.93 31.66 121.94 9.68 13.10 1.02 3.62 1.01 9 9 10.99 36.63 37.36 133.48 10.94 12.11 1.00 3.48 1.00 10. 9 7.18 23.93 24.41 96.68 6.80 13.47 0.81 3.67 0.90 10 9 8.89 29.63 30.22 108.22 6.73 12.18 0.76 3.49 0.87 509 9 5.97 20.30 80.78 4.68 13.54 0.77 , 3.68 0.88 509 9 7.41 25.19 90. 50 6.29j 12.18 0.71 1 3.49 0.84 ELEMENTS OF PENCOYD BEAMS. 151 ELEMENTS OF PEXCOYD BEAJ>IS. n 71 ii Tu XII. XIII. XIV. XV. Coefficient in Net Tons for Greatest Safe Loud Distributed. 88.00 \ 00.00 70. 96 80.33 59.13 66.26 66.28 71.91 77.83 87.21 93.93 I05.56 62.55 66.15 45. 60 51.12 34.66 38.961 i5.81 «0.6l| 46.21 50. 80 37.52 42.1 1 31.15 34.46 34.87 39. 04 30. 23 32.72 22.481 26.81 27.10' 29.66 21.48 24. 06 17.95 20.11 0.75 410.61 " 466.36 " 331.14 " 374.87 Iron. Steel. XVI. > ^ .0000147 27.66 32.69 10 .0000132 46.96 65.35 10 .0000170 15.87 18. 70 10 .0000157 27.65 32.59 lO .0000229 12.06 14.2110 .0000199 27.65,32.59|10 000021 1^19. 55 23. 04 9 0000193 32-87 38.74, 9 0000266 12.50 14.73 9 0000238 25.90 30.53 9 0000318 10.44 12.301 9 0000284 21.67 26.541 9 152 ELEMENTS OF PENCOYD BEAMS. ELEMENTS OF PENCOYD BEAMS. I. II. III. IV. V. VI. VII. VIII. IX. X. XI. Number. i •i <» 1 Weight in Pounds per Foot. Moments of Inertia. Square of Radius of Gyration. Radius of Gyration. 1 •i Iron. Steel. Axis A. B. Axis CD. Axis A. B. Axis a D. Axis A.B. Axis C.I). 11 1 1 12 12 607 507 8 8 8 8 8 8 8.26 9.78 6.24 7.84 5.08 6.20 27.53 32. 60 20. 80 26.13 16.93 20.66 28. 08 33.25 21.22 26.65 17.27 21.07 84. 80 92.91 66.83 75.36 64.31 60.28 7.38 8.54 4.50 5.32 3.49 3.92 10.24 9.49 10.69 9.61 10.69 9.73 0.90 0.86 0.72 0.67 0.69 0.64 3.20 3.08 3.27 3.10 3.27 3.12 0.95 0.93 0.85 0.82 0.83 0.80 13 13 14 14 506 506 7 7 7 7 7 7 6.68 7.10 5.26 6.66 4.25 5!23 22.26 23.67 17.53 22. 20 14.16 17.43 22. 70 24.14 17.88 22.64 14.44 17.78 50.40 52.11 44.60 50.32 35.25 39.25 4.10 4.32 3.42 4.10 2.66 3.00 7.66 7.34 8.45 7.56 8.29 7.51 0.60 0.60 0.66 0.60 0.62 0.68 2.76 2.71 2.91 2.75 2.88 2.74 0.78 0.78 0.81 0.78 0.79 0.76 23 23 24 24 15 15 6 6 Q 6 6 6 11.79 13.29 9.27 lo!77 5.65 7.75 39.30 44.30 30.90 35. 90 18.83 25.83 40.08 45.19 31.52 36.62 19.21 26.35 64.07 68.67 52.53 57.03 34.24 40.54 17.95 20.95 11.59 13.68 4.30 5.78 5.43 5.15 5.66 5.29 6.05 5.24 1.51 1.59 1.25 1.28 0.76 0.74 2.33 2.27 2.38 2.30 2.46 2.29 1.23 1.26 1.12 1.13 0.87 0.86 16 16 503 503 6 6 6 6 4.10 5.42 3.51 4.47 13.66 18.06 11. 70 14.90 13.93 18.42 11.93 15.20 25.42 29.38 21.14 24.02 2.40 2.95 1.82 2.11 6.20 5.43 6.00 5.38 0.58 0.55 0.52 0.48 2.49 2.33 2.45 2.32 0.76 0.74 0.72 0.69 17 17 18 18 6 5 5 5 3.03 3.58 2.73 3.58 10.10 11.93 9.10 11.93 10. 30 12.17 9.28 12.17 12.20 13.34 1 1.58 13.34 1.20 1.37 1.13 1.37 4.00 3.72 4.45 3.72 0.40 0.38 0.41 0.38 2.00 1.93 2.1 1 1.93 0.63 0.62 0.64 0.62 19 19 20 20 4 4 4 4 2.50 3.38 1.84 2.44 8.33 1 1.26 6.13 8.13 8.50 11.48 6.25 8.29 6.60 7.77 5.02 5.82 0.84 1.11 0.49 0.60 2.62 2.31 2.72 2.37 0.34 0.32 0.27 0.25 1.62 1.52 1.65 1.54 0.58 0.57 0.52 0.50 21 21 22 22 3 3 3 3 2.06 2.72 1.58 2.03 6.86 9.06 5.26 6.76 7.00 9.24 5.37 6.90 2.99 3.48 2.41 2.75 0.62 0.85 0.40 0.50 1.44 1.28 1.51 1.35 0.30 0.31 0.25 0.25 1.20 1.13 1.23 1.16 0.55 0.56 0.50 0.50 ELEMENTS OF PENCOYD BEAMS. 153 ELEMENTS OF PENCOYD BEAMS. XIII. 0.40 0.36 0.25 3.30 0.20 3.89 XIV. XV. Coefficient in Net Tons for Greatest Safe Load Distributed. Iron, Steel. 98.93 1 18.72 108.41 130. 092 77.98 93.58 87.92 105.50 63.37 76. 04 70.28 84.34 67.20 69.49 69.45 67. 06 46.99 62.31 80.64 83.39 71.34 80.47 56.39 62.77 99.68 1 19.62 106. 681128. 02 81.71 98. 06 88.71 106.46 63.251 63.90 63. 05 75.66 39.53 45.69 32. 90 37.38 I 22.77 24.92 21.61 24.92 16.40 18.15 1 1.71 13.58 I 9.29' 10.83 7.61 8.54 47.44 54.83 39.48 44.87 27.32 29. 90 25.93 29. 90 18.48 21.78 14.05 16. 30 11.15 13.00 9.01 10. 26 XVI. 013 ^ 1.866 XVII. XVIII. Coefficient for Deflection . Distrib- uted. Centre. XIX. XX. Maximum Load in Net Tons. Iron. Steel. 0000186 .0000303I18.32 21.59 0000169 .0000277 30. 05 36.41 0000235 .0000386 11. 40 13.43 II. 0000208 .000034 1 0000290.0000473 0000260:. 0000426 000031 1I.OOOO6IO 0000301 .0000493 0000361.0000576 000031 1 .000061 1 0000446 .0000734 0000399.0000656 23.91 28.18 8.93il0.52i 17.68 20. 84 18.4421.73 21.66 26.53 7.60] 8.84 18.44 21.73 7.60| 8.84 16.19 17.90 0000245 .0000401 24.96 29.42 •0000228 .0000376 36.85 42.25 6 0000299 .0000489 19.16 22.58' 6 0000275 .0000451 30. 23 36.63 6 0000468 .0000751 i 9.00 10. 61 6 00003871.0000634 24.96 29.42 6 0000610 0000533 .0000741 .0000652 0001286^ 0001 176 0001364 .0001 176 i 0002375 00020 I 7 0003122 0002693 0005241^ 0004605 0006602 0005699 000101 1 0000876 00012 16 0001070 0002 107 000 1927 0002200 000 1927 6.18 16.44 6.18 13.69 7.28 6 19.38 6 7.281 6 16.13 6 7.30 8.60 1 1.54 13.60 4.94 6.82 1 1.64 13. 60 0003896 6. 05 0003308 1 1.68 0006120 3.16 0004417 7.81 5.95 13.76 3.72 9.20 0008598 4.11 4.84 0007386 8.96 10.56 OOIO66I! 2.72 3.20 00093461 6.131 7.22 154 ELEMENTS OF PENCOYD CHANNELS. ELE^rEXTS OF PENCOYD CHANIS^ELS. ■A .JZ. d IL IIL IV. 30 15 30 15 53 15 15 13 13 12 12 54 12 64 12 Weight in Founds per Foot. Iron. Steel. Yl. VII. ' VIII. ' IX. X. XI. 1 Moments of Inertia. Square of Radius of Gyration. Bad ins of Gyration. Axis ! A.B. Axis C. D. Axis ^Axis A.B. an. Axis \Axis A. B.C. I). \ n 14.11 47.03 48. OO 441.59 16.75 31.29 1.19 5.59 1.09 0.99 20.68 68.93 70.31 564.78 23.15 27.31 1.12 5.22 1.06 1.04 10.60 35.33 36. OO 358.43 13.1633.81 1.245.81 l.lli0.99 14.35 47.83 48. 80 428.74 16.64 29.89 1.16 5.47 1.08, 0. 95 8.84 29.47 30.10 221.25 10.51 25. 03 1.19 5. OO 1.09 0.96 12. 09 40.30 41. lO 267.02 13.30 22.09 1.104.70 1.05 0.92 i ' I 8.91 29. 70 30.30 184.59 6.11 20.72 0. 69 4.55 0.83 0.80 16.04 53.47 54.50 270.12 10.93 16.84 0.68 4.10 0.82 0.90 6.71 22.37 22.80 136.31 5.20 20. 3 1 0.77 4.5 1 0.88 0.77 10.08 33.60 34.30 176.81 7.02 17.54 0. 70 4. 19 0. 84 0.73 427 12 6.27 20 1 90 21.30 135 68 4 i 93 21 64 0,79 4.65 0 89 0.77 427 12 9.65 32 17 32.80 176 18 6 77 18 26 0.70 4.27 0 84 0.73 32 12 6.02 20 07 20.50|126 10 3 09 20 94 0.51 4.57 0 72 0.63 32 12 9. 40 31 33 31 .96 166 1 1 60 4 41 17 72 0.47 4.21 0 68 0.63 331.^ \o^i 7.09 23 63 24. 1 1 102 63 4 98 14 47 0.70 3.80 0 84 0.73 33I2 IOI2 7.75 25 83 26.30 108 66 5 38 14 02 0.69 3.74 0 83 0.73 33 10^ 5.27 17 57 17.92 77 40 3 90 14 68 0.74 3.83 0 86 0.69 33 loyz 5.93 19 77 20.20 83 43 4 29 14 07 0.72 3.75 0 85 0.68 34 10 6.14 20 47 20.90 90 24 3 76 14 1 1 70 0.61 3.83 0 78 0.73 34 10 10.36 34 53 35.20 125 40 5 96 12 10 0.57 3.48 0 76 0.76 35 10 4.82 16 07 16.40 72 79 2 49 15 10 0.52 3.89 0 72 0.66 35 10 6.72 22 40 22.85 88 42 3 30 13 16 0.49 3.63 0 1 ' 1 0.63 36 9 5.17 17 23 17.60 61 18 2 75 1 1 83 0.53 3.44 0 73 0.67 36 9 8.55 28 50 29.07 83 99 4 26 9 82 0.50 3.13 0 70 0.70 37 9 3.81 12 70 13.00 45 56 1 64 1 1 96 0.43 3.46 0 66 0.57 37 9 5.64 18 80 19.18 57 90 2 20 10 27 0.39 3.20 0 62 0.56 418 8 4. 05 13 50 13.80 39 65 2 10 9 79 0.52 3. 13L 0.68 418 8 6. 05 20 17 20. 60 50 31 2 97 8 32 0.49 2.88 0 70 0.66 419 8 3.22 10 73 1 1.00 30 69 1 27 9 53 0.39 3.09 O 63 0.55 419 8 4.47 14 90 15.20 ' 1 37 36 1 65 8 36 0.37 2.89 0 1 I 1 ex 0.53 ELEMENTS OF PENCOYD CHANNELS. 155 ELEMENTS OF PEXCOYD CHANNELS. A XIIL XIV. XV. XVI. XVII. XVIIL XIX. XX. XXI. II. Resistance. Axis A. B. \ to Previous C/o- • each Additional mid per Foot. Coefficient in Xet Tons for 1 Greatest Safe i Load Distributed. 1 Add to Previous Co- 1 ejf. for each Additional Pound per Foot. Coefficient for Deflection . Maximum Load in Net Tons. Iron. steel. Disfrih- 91 ted. Centre. Iron. steel. 55.88 0.75 274.77 329.72 3.50 ' . 1 .0000035 .0000058 40.0 1 47. 1 6 15 75. 30 351.40 421.68 .0000028 .0000046 9 1 .30 1 07.6 1 1 5 47.79 223. 02 267.62 .0000044 .0000072 19. 06 22 46 1 5 57. IG 266.78 320.14 .0000037 .0000060 47.42 55189 1 5 34. 04 0.65 158.84 190.61 3.03 .0000071 .OOOOl 16 1 8.95 22.33 13 4 1 OS 191. 70 230.04 .0000059 .0000096 44.14 52. 02 13 30.76 0.60 143.37 172. 04 2.80 .0000085 .0000139 2 1 .58 25.43 12 45. 02 2 10.09 252. 1 1 .0000058 .0000095 76.64 90.33 12 2*2.72 106.02 127.22 .OOOOl 15 .0000189 10.67 12 58 12 29.47 137.53 165. 04 .0000088 .OOOOl 45 1 36.26 42.74 12 22.61 0.60 105.53 126.64 2.80 .OOOOl 16 .0000189 10.67 12.58 12 29.36 137. Ol 164.41 .0000089 .0000146 36.26 42.74 12 21.02 98. 05 1 17.66 .0000124 .0000204 10.67 12.58 12 27.77 129.58 155. 50 1 .0000094 .OOOOl 55 36.26 42.74 12 19.55 0.52 91.23 109.47 2.43 .0000153 .0000250 23.29 27.43 \o% 20.70 96. 60 1 15.92 .0000144 .4000237 28.41 33.48 14.74 68.79 82.55 .0000202 .0000332 13. 05 15.37 ioy2 15.89 74.15 88.98 .0000188 .0000308 18.1 1 21.34 io>^ 18 05 0.50 84.23 101.08 2.33 .0000174 .0000285 14.17 16.70 10 25.08 1 17.04 140.45 .0000125 .0000205 46. 90 55.28 10 14.56 67.95 81.54 .00002 15 .0000353 8.47 9.98 lO 17 68 82.54 99. 05 .0000170 .0000291 22. 70 26.75 lO 13.59 0.45 63.45 76.14 2.10 1 .0000257 .0000420 12.67 14.93 9 18.66 87. 09 104.51 .0000187 .0000306 39. OO 45.97 9 10.12 47.24 56.69 .0000344 .0000564 7.45 8.78 9 12.87 60. 05 72. 06 .0000271 .0000444 21.62 25.48 9 9.91 0.40 46.25 55. 50 1.87 1 .0000395 .0000648 8.32 9.81 8. 12.58 58. 70 70.44 .0000312 .000051 1 23.93 28. 20 8 7.67 35. 80 42.96, .000051 1 .0000838I 6.47 7.63 8 9.34 43.58| 62. 30 1 .0000420 1 .0000688 16.1 1 18.99 8 156 ELEMENTS OF PENCOYD CHANNELS. ELEMENTS OF PENCOYD CHAXNEL.S. ' - I — V Section Number. ^ II. III. IV. V. VL VII. VIII. IX. X. XI. XII. Size in Inches. A rea in Square Inches. Weight in Pounds per Foot. Moments of Inertia. Square of Radius of Gyration. Radius of Gyration. Distance "rf" from Base to Neutral Axis. Iron. Steel. Axis A. B. Axis a D. Axis A. B. Axis a D. Axis A.B. Axis CD. 40 7 4.11 13.70 14. OO 29.74 1.73 7.24 0.42 2.69 0.66 0.65 40 7 7.29 24.30 24. 80 42.72 3.06 6.86 0.42 2.42 0.66 0.7^ 417 7 2.64 9.00 19. 03 0.92 7.2 1 0.35 2.68 0.59 0.51 417 7 4.11 14. OO 25.03 1.28 6.09 0.31 2.47 0.55 0.60 41 7 2.47 8.23 8.40 18.83 0.8 1 0.33 2.760.57 0.63 41 7 4.33 14.43 14.72 26.43 1.30 6!lO 0.30 2.47 0.56 0.51 42 6 3.22 10.73 1 l.OO 17.77 1.38 5.62 0.43 2.36 0.65 0.65 42 6 5.47 18.23 18. 60 24.52 2.30 4.48 0.42 2.12I0.66 0.63 44 6 2.31 7!70 7!90 12;38 0.58 6.36 0.25 2.31 0.50 0.48 44 6 3.35 11.17 11.39 15.47 0.82 4.62 0.25 2.16 0.60 0.47 415 6 2.21 7.50 11.77 0.67 5.33 0.30 2.31 0.55 0.49 415 6 3.41 11.60 18. 70 0.94 5.48 0.27 2.34 0.52 0.48 412 6 2.47 8.23 8.40 9.39 0.91 3.80 0.37 1.95 0.60 0.60 412 6 3.64 12.13 12.40 11.83 1.31 3.25 0.36 1.82 0.60 0.60 413 5 1.80 6.12 6.73 0.47 3.74 0.26 1.93 0.61 0.47 413 5 2.75 9.35 8.70 0.67 3.16 0.24 1.78 0.49 0.46 47 4 2.16 7.20 7.30 5.07 0.62 2.35 0.24 1.53 0.49 0.53 47 4 3.16 10.53 10.70 0.40 0.81 2.02 0.26 1.42 0.51 0.67 48 4 1.65 5.50 6.60 3.99 0.34 2.42 0.21 1.66 0.46 0.47 48 4 2.15 7.17 7.30 4.66 0.45 2.17 0.21 1.47 0.46 0.47 1:1 1 4 1.62 5.16 3.70 0.33 2.43 0.22 1.66 0.46 0.46 411 4 2.24 7.60 4.66 0.48 2.08 0.21 1.44 0.46 0.46 49 3 1.63 5.10 5.20 2.04 0.22 1.33 0.14 1.15 0.38 0.51 49 3 1.81 6.03 6.15 2.50 0.39 1.38 0.22 1.18 0.46 0 52 50 2^^ 1.13 3.77 3.84 0.80 0.19 0.71 0.17 0.84 0.41 0.47 61 2 0.87 2.90 2.96 0.48 0.08 0.55 0.09 0.74 0.30 0.37 61 2 1.06 3.53 3.60 0.54 O.l 1 0.51 O.IO 0.71 0.32 0.39 52 0.34 1.13 1.15 0.16 O.OO 0.44 0.67 0.18 ELEMENTS OF PENCOYD CHANNELS. 157 ELEMENTS OF PEXCOYD CHANISTELS. XIII. XIV. 1 ' XV. XVI. 1 1 xvn. .C S XVIH. XIX. XX. XXI. IL Resistance. ' Axis A.B. ^ -Is ^ ?^ ^ ^ 0)pfficient in Net Jons for Greatest Safe Load Distributed. Coefficient for Deflection. Maxivnnn Load in Set Tons. Size in Inches. \ Iron. steel. Distrib- uted. Centre. Iron. steel. 8.50 0.35 39.66 47.59 1.633 .0000527 .0000864 10.62 12 52 7 56.98 68.38 .0000367 .0000602 34.73 40 93 7 5.43 30.41 .0000824 .0001351 5.91 6.97 7 7.15 40.04 .0000626 .0001027 17.37 20 47 7 5.38 25.1 1 30.13 .0000832 .0001365 4.00 4.71 7 7.55 35.23 42.28 .0000593 .0000973 18.30 21.57 7 5.92 0.30 27.63 33.16 1.400 .0000882 .0001446 7.60 8.96 8.17 38.14 45.77 .0000639 .0001048 24.73 29.15 % 4.13 19.26 23. 1 1 u .COO 1 266 .0002076 6.40 6.35 6 5. 16 24.07 28.88 r. .0001013 .0001662 13.45 15.82 6 3.92 21.96 .0001332 .0002184 5.25 6.19 6 6.23 34 90 .0000838 .0001375 14.60 17.21 6 3.76 0.25 17.54 21.05 1.166 .0001669 .0002738 6.29 7.40 6 4.73 22.08 26. 50 .0001325 .0002 173 15.25 17.97 5 2.69 15. 07 .0002329 .0003820 4.55 5.36 5 3.48 19.49 .0001802 .0002955 1 1.92 i 14.02 5 2.53 0.20 1 1.'84 14.1 1 0.933 .0003092 .0005070 5.98 ► 7.05 4 3.20 14.93 17.92 .0002449 .0004017 13.43 15.83 4 1.99 9.31 11.17 .0003928 .0006443 4.03 4.75 4 2.33 10.87 13. 04 .0003364 .0005617 7.89 9.30 4 1.86 .( 10.36 .0004236 .0006948 3.79 4.47 4 2.33 it 13. 04 .0003364 .0005517 5.53 6.62 4 1.36 0.15 6.35 7.62 0.700 .0007684 .0012601 4.08 4.81 3 1.67 7.77 9.32 .0006270 .0010283 6.18 7.28 3 0.71 O.ll 3.31 3.97 0.522 .0019593 .0032133 2.56 3.02 0.48 O.IO 2.24 2.69 0.466 .0032654 .0053556 2.90 3.42 2 0.54 2.52 3.02 .0029025 .0047605 4.26 5.02 2 0.17 0.09 0.79 0.95 0.406 .0104493 .0171371 0.93 I.IO 158 ELEMENTS OF PENCOYD Z BARS. ELEMENTS OF PENCOYD BARS. Ction mber. Size in Inches. a in Inches. Weight per Foot in Pounds. Moments of Inertia. Resista7,ce. Iron. Steel. Axis A. B. Axis CD. Axis A. B. 1.8> jM.xis ]n.D. 220 220 2f x3 2| x3J x2^ X J x2| X t 1.94 2.94 6.47 9.80 6.60 10.00 2.81 4.34 2.61 4.22 1.04 1.65 22l'2^ix3 22L2i|x33^ X 22 J X X 2§| X J 3.28 3.75 10.93 12.50 11.15 12.75 4.20 4.89 4.24 5.04 7.80 ' 3.19 1.74 2.04 222 '2 J x4 222 p x4J x2| X i x3 X 1 2.32 3.50 7.73 11.67 7.88 11.90 5.95 .9.14 3.47 5.58 2.98 4.43 1.26 1.98 223 2fix4 223,3^ x4J X m X ^ 3.96 5.16 17.20 AO Ad 1o.4d 17.54 y.4o 12.40 D.uy 8.40 4.70 6.01 2.21 2.99 224 3^^x4 224^3,^x41 x3J^x i X 3 A X 1 5.53 6.75 18.43 22.50 18.80 22.95 12.11 14.97 8.73 11.24 6.06 7.26 3.17 4.00 225 3^x5 225 3^ X 5J X 3,3^ X 3% X 3^ X 3.36 4.75 11.20 15.83 11.42 16.15 13.14 18.76 5.81 8.67 5.26 7.32 1.92 2.80 226 3^^x5 226 3Hx5i X 3^ X J X 3H X 1 5.23 6.60 17.43 22.00 17.78 22.44 19.03 24.33 8.77 11.70 7.61 9.49 2.95 3.86 227'3i x5 227^3% X 5^ x3i xH x3^x 1 6.96 7.64 23.20 25.46 23.66 25.97 23.68 26.16 11.37 12.83 9.47 10.34 3.91 4.36 228 3J x6 228|3f x6J x3i X 1 X 3| X J 4.59 6.19 15.30 20.63 15.61 21.05 25.32 34.36 9.11 12.87 8.44 11.22 2.75 3.81 229 3^ x6 229 31 x6J i x3i x^ x3t xH 6.68 8.25 1 22.27 27.50 22.71 28.05 34.64 43.18 12.59 ' 16.34 11.55 14.10 3.91 4.98 230 3i x6 230 31 x6J x3i X 1 X 3f X f 8.64' 10.16 28.80 33.86 29.37 34.54 42.12 50.22 15.44 19.18 14.04 16.40 4.94 6.02 ELEMENTS OF PENCOYD Z BARS. 159 KLKMENTS OF PENCOYD 15ARS. Radii of Gyration. Ooejfficient in Net Tons for Greatest Safe Load Distributed. Axis ; Axis A. B. CD. Least Axi^ E. F. I 1.20 1.16 0.52 1.21 1.20 0.57 I 'I 1.13 1.14 0.54 1.14 1.16 0.57 1.60 1.22 0.63 1.61 j 1.26 , 0.65 1.54 ' 1.24 \ 0.64 1.55 1.28 0.65 I 1.48 1.25 0.75 1.49 1.29 0.66 1.98 1.33 0.72 1.99 1.35 0.74 1.91 , 1.30 0.73 1.92 I 1.33 I 0.75 I 1.84 ' 1.28 ' 0.73 1.85 : 1.30 0.74 2.35 2.36 2.28 1.41 1.44 0.83 0.84 1.37 I 0.^ 2.29 1.41 0.83 2.21 ! 1.34 2.22 I 1.37 0.80 0.82 Iron. 8.72 12.97 13.06 14.88 13.90 20.67 21.93 28.04 28.28 33.88 24.54 34.16 35.51 44.28 44.19 48.25 39.38 52.36 53.90 65.80 65.52 76.53 Steel. 10.46 15.56 15.67 17.86 16.68 24.80 26.32 33.65 33.94 40.66 29.45 40.99 42.61 53.14 53.02 57.90 47.26 62.83 64.68 78.96 78.62 91.84 Coefficient for De- flection About Axis A. B. Centre. Distrib- uted. .0009148 .0005578 .0003612.0003612 .0006121 .0003732 .00052571.0003205 .0004320.0002634 0002813.0001715 0002735' .0001667 0002073.0001264 .0002123.0001294 ,0001717.0001050 .0001956' .0001193 ,0001370 .0000836 .0001351 ,0001057 .0000824 .0000644 Maximum Load in Net Tons. Iron. 4.79 7.87 8.91 10.46 5.97 10.02 11.60 15.68 17.03 21.23 10.75 14.47 16.41 21.45 .0001086 .0000662 23.25 .0000983 0000599, 25.84 .0001015 .0000619 13.46 .0000748|. 0000456 19.48 .0000742 .0000452 21.97 .0000595 .0000363 27.54 i I .0000610 .0000372; 30.21 .0000512 .0000312! 36.33 35.61 230 42.82 , 230 160 ELEMENTS OF Z BAR COLUMNS. ELEMENTS OF Z BAR COLUMNS. /= Mom. of Inertia. -fate to fat _ J._ B = Rad. of Gyration. The thickness of Web Plate and Z Bar is the same. Size of Z Bar in Inches. 31 x6 x3h x| 3| x6i x3| xi 3^ x6 x3^ x^ 3^^x6^x3ftxf 3| x6i x3f 3h x6 x3^ x| 3^x6A^x3?,xH 3t x6i x3g x^ 3^x5| xSi^xfs 3^x5 x3^x^ 339,x5^yx3f;x^ 3^k5i x3^ix| 3i"x5 x3rxH 3fgx5^x3^xj 21 x4 x2| xi 2i|x4J^x2Hxit 3 x4^ x3 x| 2|ix4 x2|^Xi^ ;» 3^x4^5x3^x1 3-33;x4i x3^x?^ 3^x4: xSJ^xf 3^ x4r^x3l xU 3^x^ x3Axj 2f x3 x2f xj 2i^x3J5x2iix^ 2| x3i x2| x| 2|ix3 x2^xf^ 211x3^x2^x1 1" Web Plate, ly^' Face to Face. Area of4:Z Axis XX. Axis YY. Bars and ] Plate 20.99 264 24.62 306 28.26 347 30.66 365, 34.22 403, 37.81440, 39.81 448, 43.21481, 46.77 514. .18 12.59 287, .41 12.45 346, .81 12.31409, .2411.91426, .0211.78 489, ,2511.64 555, ,2411.26 562, ,0611.13 628. ,7311.00 699. ,91 13.72 .95 14.09 .27 14.48 .30 13.90 .32 14.30 ,79 14.70 ,41 14.13 ,31 14.54 ,07 14.95 63^^^ Weh Plate. 6%"Face to Face. 15.47 169.65 10.97: 18.64 202.0410.84 21.84 233.93 10.71 24.17 249.97 10.34 27.30 279.93 10.25 30.46 308.80 10.14 32.31316.97 9.81 35.44 343.48 9.69 147.391 9.53 183.47 9.84 223.0010.21 234.39 9.70 273.72 10.03 315.55 10.36 320.08 9.91 362.93 10.24 6" Web Plate. Face to Face. 10.78 101.90 13.52 126.20 16.25 149.91 18.47 166.01 21.24 188.60 24.02 210.67 25.87 221.21 28.69 242.12 31.50 262.65 9.451 65.72 9.34! 85.86 9.23107.47 8.99 115.63 8.88 138.44 8.77 163.09 8.55 166.90 8.44 192.70 8.32 220.68 6.10 6.35 6.61 6.26 6.52 6.79 6.45 6.72 7.01 Web Plate. o%"Face to Face. 9.14 72.59j 7.94 31.74 3.47 11.48 90.17 7.85 42.14 3.67 13.82107.05 7.75 53.40 3.86 15.53115.58' 7.44 55.61 3.58 17.75130.45: 7.35: 67.20 3.79 Web Plate. l%"Face to Face. A rea 0/4Z Axis XX. Axis YY. Ba and 1 Plate B?. 21.17 299. 2A.M341. 28.51 392, 30.94 415, 34.53 458, 38.16 500, 40.19 511 43.61 549 47.20 587, 3414, 30 13, 86 13, 23 13 45 13, 93 13 ,45 12 ,08 12 ,80 12 14 287 98 346, 78409, ,42426, ,28 489 ,13455 ,73 562 ,59 628 ,45 699 91 13.60 .95 13.97 28 14.36 31 13.78 .33 14.17 ,80 14,57 .42 13.99 33 14.41 .10 14.81 ' Tre6 Plate, ly^' Face to Face. 15.63 193.91 18.83 231.00 22.06 267.61 24.42 287.67 27.58 321.22 30.78 354.42 32.65 364.83 35.81 395.52 12.41147.391 9.43 12.27183.47! 9.74 12.13 223.00 10.11 11.78 234.39 9.60 11.65 273.72 9.93 11.52 315.56 10.25 11.17 320.09 9.80 11.04,362.95 10.14 ^y^" Web Plate, ^y^' Face to Face. 10.91117.6210.78 13.67 145.72 10.66 16.44 173.18 10.53 18.68 192.14 10.29 21.49 218.39 10.16 24.30 244.05 10.04 26.18 256.76 9.83 29.03 281.15 9.69 31.88 305.12 9.57 65.72 6.02 85.86 6.28 107.47 6.54 115.64 6.19 138.45 163.10 166.91; 192.701 220.70 6.44 6.71 6.39 6.64 6.92 6^^ Web Plate. 6^ Face to Face. 9.16 31.74 3.43 9.05 42.15 3.62 8.93 53.41 3.81 8.61 55.61 3.53 8.51 67.20 3.73 9.26 84.82 11.64 105.31 14.01 125.14 15.75 135.63 18.00 153.14 ELEMENTS OF Z BAK COLUMNS. ELEMENTS OF Z l^^^i^ COLUMNS. ! 161 / = Mom. of Inertia. R = Rad. of Gyration. The thickness of Web Plate and Z Bar is the same. Size of Z Bar in incites. 3i x6 x3.^r x| 3,^ x6i x3^ x^^ 3i x6 x3i x^ 3;':;x6iigx3a^xt 3^ x6^ x3^ x\l 3\ x6 x3\ x| 3?,x6,i,x3;^,xi,^ 3|_x6jr_x3|_x4_ 3t^x5 xS^^x^ 3i x5,Vx31 x| 3t^x5J x3i^^Xi7g 3;^^x5 x3;^vx^ 3:>?x5/b^x33^x X 3^^x5i^ x3Ux^ 3i x5' x3i'xli 3^,x5 ,^x3^xj 2^ x4 3 x4i 2i^x4 3^x4,1, 3.'5x4i 3i\ix4 3s^ x4,i, 3Ax4i x2J xi x2l8xi^ x3 x,| x2Hxi^ x3,^x| x3,3,xtV x3^,xt x3i x(j x3tVxj 2^ x3 x2§ x^ 2ilx3Ax2iix^ 2? x3| x2| x^ 2;iU3 x2^ix^ 2Mx3Ax2i|x^ 8'^ Web Pi ate. Face to Face. '' '' Axis XX ofiZ Bars and 1 Plate 21.36 337 25.06 391 28.76 444. 31.22469, 34.84 518. 38.50 566. 40.56 579. 44.02 622. 47.64 666 Axis YY. R^. .17 15.78 287, .37 15.62 346 .57 15.46409, ,16 15.03426, ,19 14.88489, .43 14.72 555, .76 14.29 562. ,59 14.14 628. 83 14.00 699. .92 13.48 96 13.85 28 14.23 .32 13.65 .34 14.05 .82 14.44 ,44 13.87 ,36 14.27 ,13 14.67 7%" Web Plate. ' 15.78|220.13;13: 19.0l'262.32'l3, 22.28 303.96' 13, 24.67 327.5613, 27.86 365.8713, 31.09 403.9312, 33.00416.75 12, 36^19 452.01 12 7'' Web Plate. 11.03134.71 13.83 166.97 16.63 198.52 18.90 220.75 21.74 250.90 24.58 280.48 26.50 295.54 29.37 323.83 32.25 351.60 t%"Face to Face. r95 147.39~9.35 80183.47 9.65 64 223.00 10.01 28 234.40 9.50 13 273.73 9.83 :.99 315.57 10.15 63320.101 9.70 491362.96 10.03 7%'' Face to^ 12.211 65.721 12.07' 85.86 11.94 107.47 11.68115.64 11.54 138.45 11.41 163.10 11.15 166.92 11.03 192.73 10.90 220.72 Face. "5.96 6.21 6.46 6.12 6.37 6.64 6.30 6.56 6.84 Web Plate. 6%"Face to Face. 9.391 98.12 11.79121.99 14.20,144.98 15.96 157.65 18.25 178.09 10.45 10.35 10.21 9.88 9.761 67.21' 3.68 31.741 3.38 42.15' 3.58 53.41 3.76 55.62 3.49 Web Plate. ^%"Face to Face. Area of4.Z Bars and 1 Plate Axis XX. Axis YY. I. R\ I. R^. 25.28438.55 17.35 346.96 13.73 29.01498.3517.18 31.50 527.03 16, 35.15 582.2716, 409.29 14.11 38.84 636.74 40.94 653.06 44.43701.62 48.08 751.66 426, 489, 555, 562, 628, 33 13.53 .3513.92 83 14.31 46 13.74 3814.14 1.1514.54 %"JVeb Plate. 15.94 248.29| 19.20 296.02 22.50 343.21 24.92 370.53 28.14 414.08 31.40:457.31 33.34 472.79 36.56513.78 16, 15, 15. 15. 834^^ Fa ce to Fac e. 15.581147.39 15.42 183.48 15.25 223.01 14.87 234.40 14.72 273.74 14.56 315.58 14.18 320.121 9.60 14.05 362.981 9.93 9.25 9.56 9.91 9.41 9.73 10.05 7yj' Web Plate. 7%'^ace to Face. 11.16153.1713.721 65.721 5.89 13.98 189.95 13.59 85.86 16.81 225.94 13.44 107.47 19.12 251.40 13.15115.64 21.99 286.1013.01 138.46 24.86 319.96 12.87 163.11 26.81:337.59 12.59166.93 29.72 370.17 12.45 192.74| 6.14 6.39 6.05 6.30 6.56 6.23 6.49 32.63|402.09, 12.32 22 0.731 6.77 7'' Web Plate. 7%" Fa ce to F ace. 9.511112.6511.851 31.741 3.34 11.95 140.07 11.71' 42.151 3.53 14.39166.6011.58 53.411 3.71 16.18181.6711.23 55.62 3.44 18.50 205.32 ll.lO; 67.211 3.63 162 ELEMENTS OF PENCOYD DECK BEAMS. ELt:MENTS OF PENCOYD DECK BEAMS. n ^ _c J A L — Op_ Section Number. ^ II. III. IV. V. VI. VII. VIII. IX. X. XI. Size in Inches. .4 rea in Square Inches. Weight in Pounds per Foot. Moments of Inertia. Square of Radius of Gyration. Radius of Gyration. Iron. Steel. Axis A. B. Axis a I). Axis A. B. Axis a D. Axis A. B. Axis CD. 69 111/2 10.54 35.14 35.84 192.01 7.84 18.36 0.75 4.28 0.87 oy 111/ 13.41 44.70 45.59 223.63 8.06 16.78 0.60 4.10 0.78 62 10 8.27 27.56 28.12 120.75 6.31 14.74 0.77 3.84 0.88 62 10 11.39 37.96 38.73 146.75 7.69 12.98 0.68 3.60 0.82 63 9 7.26 24.20 24.68 84.77 4.92 11.82 0.69 3.44 0.83 63 9 9.51 31.70 32.33 99.95 5.69 10.60 0.60 3.26 0.78 64 8 6.17 20.56 20.98 57.66 3.63 9.44 0.59 3.07 0.77 64 8 8.42 28.06 28.63 69.66 4.41 8.33 0.53 2.89 0.73 65 7 5.26 17.53 17.88 37.05 2.59 7.11 0.50 2.67 0.71 65 7 7.22 24.06 24.55 45.46 3.23 6.34 0.45 2.52 0.67 66 6 4.22 14.06 14.35 21.95 1.64 5.25 0.39 2.29 0.63 66 6 5.72 19.06 19.45 26.61 2.04 4.69 0.36 2.16 0.60 67 5 3.39 11.30 11.53 12.04 0.98 3.57 0.29 1.89 0.54 67 5 4.64 15.46 15.78 14.64 1.268 3.17 0.27 1.78 0.52 ELEMENTS OF PENCOYD DECK BEAMS. 163 ELE31ENTS OF PENCOYD DECK BEAMS. XII. XIII. XIV. XV. XVI. XVII. XVIII. XIX. XX. XXI. II. Resistance. to Previous Co- | each Additional, undper Foot. Coefficient in Xet Ions for Greatest Safe Load Distributed. to Previotfs Co- • each Additional und per Foot. Coefficient for Deflection. Maximum Load in Net Tons. •^^ si i-2 Axisy^"^ A. B.\^kk Iron. Steel. Distrib- uted. Centime. Iron. Steel. 30.47 o/.yu 21.11 26.59 0.57 U.o / 0.50 0.50 155.83 181.50 112.70 136.96 187.10 217.80 135.24 164.35 2.66 2.66 2.33 2.33 .0000082 .0000071 .0000130 .0000107 .0000134 .0000115 .0000213 .0000175 29.75 52.19 17.81 42.18 35.06 61.51 20.99 49.71 5.20 5.60 4.28 4.48 - IIV2 III/2 10 10 16.95 20.36 12.81 16.09 0.45 0.45 0.40 0.40 87.91 103.65 67.27 81.27 105.49 124.38 80.72 97.52 2.10 2.10 1.87 1.87 .0000185 .0000157 .0000272 .0000225 .0000303 .0000257 .0000445 .0000369 17.07 34.59 14.14 31.55 20.12 40.77 16.66 37.18 4.00 4.09 3.50 3.68 9 9 8 8 9.50 11.73 6.55 8.19 0.35 0.35 0.30 0.30 49.39 60.61 34.14 41.39 59.27 72,73 40.97 49.67 1.63 1.63 1.40 1.40 .0000423 .0000345 .0000712 .0000589 .0000694 .0000565 .0000117 .0000966 13.16 28.304 10.54 21.96 15.51 33.36 12.42 25.88 3.09 3.21 2.65 2.75 7 7 6 6 4.33 5.42 0.25 0.25 22.47 27.33 26.96 32.80 1.67 1.67 .0001302 .0001071 .0002135 .0001756 9.34 18.68 11.01 22.02 2.22 2.30 5 5 i 164 ELEMENTS OF PENCOYD BULB ANGLES. ELEMENTS OF PENCOYD BULB ANGLES. A I. n. in. IV. V. VL VIL vin. X. XL XII. XIII. XIV. ion Number. | •i i Weight in Pounds per Foot. Moments of Inertia. Square of Radius of Gyration. Radius of Gyration. Iron\ Steel. Axis A. B. Axis CD. Axi.2 7, axis J // = 2V -^"^^ uneven angles. ±0 \fi —\~ if J d = ^^^J^^y^ljIzJil, For even and uneven *- — t-b-V angles. 174 MOMENTS OF INERTIA. a = or uneven angles. 2A ^ In uneven angles the distance from centre of gravity in direction of the long leg exceeds that in the direction of the short leg by half the difference in the length of the two legs. In angles and tees of equal legs and thickness d = \ ^6 + ^ ^ ^ nearly. Inertia op Compound Shapes. **The moment of inertia of any section about any axis is equ?l. to the /about a parallel axis passing through its cen- tre of gravity + the area of the section multiplied by the square of the distance between the axes." By use of this rule, the moments of inertia or radii of gyra- tion of any single sections being known, corresponding val- ues can readily be obtained for any combination of these sections. 1^ Example No. 1 . — A combination of two 9^^ channels of 5.17 square inches sec- tion, and two 12 X i plates as shown. F — Axis A B of Section. /for two channels, col. VI, page 154, = 122.360 /for two plates = 1?_><^ x 2 = .03125 1 6 (area of plates) X 4i 2 = 128.34375 J = 128.375 / for combined section = 250-735 which divided by area (16.34) gives 15.3448 = BP' or 3.917 radius of combined section. Axis C D. Find distance d = (.67) from col. XII, page 154, then ob- taining the distance (4.0763) between axes C D and EF. m-i MOMENTS OF INERTIA. 175 / for two I'hannt'ls around axis EF from col. \' 1 1, = 5.50 Area of channels X S(i. of vlist.= 10.34 X 4.0763=^ = 171.8115 / for two plates = = 72. / for combined section Kadi us of gyration = = 249.3115 (249^31 15 \ 1G:34 '' 3.906. By similar methods, inertia or radius of gyration for an; combination of shai)es can readily be obtained. t K-^ tr-^ ^ Kvampk No. 2.— A built-up 1: s 1 posed of: 4 angles 3^^ X 3^^ X V 2 plates S'' X Y\ I plate 15^^ X r^ beam " com- I Axis A B. /of two 8^^ X h plates = X 2 = + 8 (area) X IV (sq. of distance d) = .167 480.5 / of one 15^^ X 1 , 153 X t plate = — — = / of four 3 X 3 X i angles = 4 X 1.24 (see col. VII, page 166, = 4.96 4- 5.80 (area) X 6.66-2 (gq distance d^) = 257.262 480.667 105.469 262.222 Inertia of combined section around A B = 848.358 i 848JJ58 ^ '.425 Radius of gyration -19:425 = Radius of Gyration of Compound Shapes. In the case of a pair of any shape w^ithout a web the value of li can always be readily found without considering the moment of inertia. The radius of gyration for any section around an axis paral- lel to another axis passing through its centre of gravity is found as follows : 176 MOMENTS OF INERTIA. E ■67- Let r = radius of gyration around axis through centre of gravity. B = radius of gyration around another axis paral- lel to above, d = distance between axis. When r is small, it may be taken as equal to d without material error. Thus, in the case of a pair of channels lat- ticed together, or a similar construction. Example No. 1. — Two 9^^ channels of 5.17 square inches sec- tion placed 4.66^^ apart, required the radius ot gyration around axis CD for combined section- Find r on col. XI, page 154,=.73 and = .5329. Find distance from base of channel to neutral axis, col. XII, same page, = .67, this added to one half the distance between the two bars, 2.33^^ = 3^^ = d, and dP' = 9. Radius of gyration of the pair as placed = 1/9 + .5329 = 3.087. The value of R for the whole section in relation to the axis AB 'i^ the sajue as for the single channel, to be found in the tables. Example Xo, 2. — Four X 1^^ angles placed as r' PL shown, form a column of 10 inches square ; required the radius of gyra- tion. Find r on col. X, page 157,= .94, and - B- r2 = .8836. Find distance from side of angle to neutral axis, col. XV, same page, = .91. Subtract this from half the width of column = 5. — .91 =, 4.09 = d or dstance between two axes, d^ = 16.7281. Radius of gyration of four angles as placed = l/l6J281 -f .8836 = 4.20. When the angles are large as compared with the outer dimensions of the combined section, the radius of gyration can be taken without serious error from the table of radii of gyration for square columns, on page 207. MOMENT OF INERTIA OF RECTANGLES. 177 MOMENT OF INERTIA OF RECTANGLES. Width of Rectangle in Inches. 1 ? 16 8 1 5. R 6 4.50 5.63 6.75 7.88 9.00 10.13 11.25 7 7.15 8.93 10.72 12.51 14.29 16.08 17.86 8 10.67 13!33 16^00 18^67 2l!33 24!00 26^67 9 15.19 18.98 22.78 26.58 30.38 34.17 37.97 10 20.83 26.04 31.25 36.46 41.67 46.87 52.08 11 27.73 34.66 41.59 48.53 55.46 62.39 69.32 12 36.00 45.00 54.00 63.00 72.00 81.00 90.00 13 45^77 57!21 68!66 80!l0 91^54 102!98 114!43 14 57.17 71.46 85.75 100.04 114.33 128.63 142.92 15 70.31 87.89 105.47 123.05 140.63 158.20 175.78 16 85.33 106.67 128.00 149.33 170.67 192.00 213.33 17 102.35 127.94 153.53 179.12 204.71 230.30 255.89 18 121.'50 151 !88 182.25 212!63 243*00 273'.38 303!75 19 142.90 178.62 214.34 250.07 285.79 321.52 357.24 20 166.67 208.33 250.00 291.67 333.33 375.00 416.67 21 192.94 241.17 289.41 337.64 385.88 434.11 482.34 22 221.83 277.29 332.75 388.21 443.67 499.13 554.58 23 253'48 316!85 380^22 443^59 506!96 570^33 633*.70 24 288.00 360.00 432.00 504.00 576.00 648.00 720.00 25 325.52 406.90 488.28 569.66 651.04 732.42 813.80 26 366.17 457.71 549.25 640.79 732.33 823.88 915.42 27 410.06 512.58 615.09 717.61 820.13 922.64 1025.16 oo 457.33 0/1.0/ DOD.UU orvrv oo 914.67 1 1 /I o oo 29 508.10 635.13 762.16 889.18 1016.21 1143.23 1270.26 30 562.50 703.13 843.75 984.38 1125.00 1265.63 1406.25 31 620.65 775.81 930.97 1086.13 1241.30 1396.46 1551.62 32 682.67 853.33 1024.00 1194.67 1365.33 1536.00 1706.67 33 748.69 935.86 1123.03 1310.20 1497.38 1584.55 1871.72 34 818.83 1023.54 1228.25 1432.96 1637.67 1842.38 2047.08 35 893.23 1116.54 1339.84 1563.15 1786.46 2009.76 2233.07 36 972.00 1215.00 1458.00 1701.00 1944.00 2187.00 2430.00 37 1055.27 1319.09 1582.90 1846.72 2110.54 2374.35 2638.17 38 1143.17 1428.96 1714.75 2000.54 2286.33 2572.13 2857.92 39 1235.81 1544.77 1853.72 2162.67 2471.62 2780.58 3089.53 40 1333.33 1666.67 2000.00 2333.33 2666.67 3000.00 3333.33 178 ELEMENTS OF USUAL SECTIONS. ^1 St ~ «0 'to * + CI * 11 II ^1 • oh ^6 ELEMENTS OF USUAL SECTIONS. 179 180 IRON AND STEEL STRUTS. STRUTS OF IRON AND STEEL. In the following consideration of stmts of various sections the least radius of gyration of the cross-section, around an axis through the centre of gravity, is assumed as the effective radius of the strut. The tables on pages 182 to 187 are the classified averages of an extensive series of experiments on iron and steel struts. The tables for destructive pressures represent the ultimate load at the point of failure. The greatest safe loads are the aforesaid crippling loads, divided by the factors of safety hereafter described. As is well known, the method of securing the ends of the struts exercises an important influence on their resistance to bending, as the member is held more or less rigidly in the direct line of thrust. In the general tables, struts are classified in four divisions, viz.: Fixed Ended,'' Flat Ended,'' ''Hinged Ended," and Kound Ended." In the class of " fixed ends " the struts are supposed to be so rigidly attached at both ends to the contiguous parts of the structure that the attachment would not be severed if the member was subjected to the ultimate load. " Flat- ended" struts are supposed to have their ends flat and normal to the axis of length, but not rigidly attached to the adjoining parts. " Hinged ends " embrace the class which have both ends properly fitted with pins, or ball and socket joints, of substantial dimensions as compared with the section of the strut; the centres of these end joints being practically coincident with an axis passing through the centre of gravity of the section of the strut. ''Eound- ended " struts are those Avhich have only central points of contact, such as balls or pins resting on flat plates, but still the centres of the balls or pins coincident with the proper axis of the strut. If in hinged-ended struts the balls or pins are of com- paratively insignificant diameter, it will be safest in such cases to consider the struts as round -ended. If there should be any serious deviation of the centres of IRON AND STEEL STRUTS. 181 round or hinged ends from the proper axis of the strut, there will be a reduction of resistance that cannot be esti- mated without knowing the exact conditions. When the pins of hinged-end struts are of substantial diameter, well fitted, and exactly centered, experiment shows that the hinged-ended will be equally as strong as flat-ended struts. But a very slight inaccuracy of the center- ing rapidly reduces the resistance to lateral bending, and as it is almost impossible in practice to uniformly maintain the rigid accuracy required, it is considered best to allow for such inaccuracies to the extent given in the tables, which are the average of many experiments. It is considered good practice to increase the factors of safety as the length of the strut is increased, owdng to the greater inability of the long struts to resist cross strains, etc. For similar reasons w^e consider it advisable to increase the factor of safety for hinged and round ends in a greater ratio than for fixed or flat ends. Presuming that one-third of the ultimate load w^ould con- stitute the greatest safe load for the shortest struts, the following progressive factors of safety are adopted for the increasing lengths. 3.-f .01 - for flat and fixed ends. 7' 3 + .015^ for hinged and round ends. / = length of strut. r = least radius of gyration. From the above we derive the following factors of safety : r Fixed and Flat Ends. * Hinged and Round Ends. I r Fixed and Flat Ends. Hinged and Round Ends. r Fixed and Flat Ends. Hinged and Round Ends. 20 3.2 3.3 110 4.1 4.65 200 5.0 6.0 30 3.3 3.45 120 4.2 4.8 210 5.1 6.15 40 3.4 3.6 130 4.3 4.95 220 5.2 6.3 50 3.5 3.75 140 4.4 5.1 230 5.3 6.45 60 3.6 3.9 150 4.5 5.25 240 5.4 6.6 70 3.7 4.05 160 4.6 5.4 250 5.5 6.75 80 3.8 4.2 170 4.7 5.55 260 5.6 6.9 90 3.9 4.35 180 4.8 5.7 270 5.7 7.05 100 4.0 4.5 190 4.9 5.85 280 5.8 7.2 182 WiVOUGHT IRON STRbTS. WROUGHT IRON STRUTS. -Xo. 1. Destructive pressure iu pounds per square inch. Length. Lea^t BaJim of Gyration. • Fixed Ends. Flat Ends. Hinged Ends. Round Ends. 20 46000 46000 46000 44000 30 43000 43000 43000 40250 fiU 40000 40000 50 38000 38000 38000 33500 60 36000 36000 36000 30500 70 34000 34000 33750 27750 31500 9^000 90 31000 30900 29750 22750 100 30000 29800 28000 20500 110 29000 28050 26150 18500 ion 24300 130 26750 24900 22650 14650 140 25500 23500 21000 12800 150 24250 21750 18750 11150 IDU 90<100 16500 170 21500 18400 14650 8500 180 20000 16800 12800 7500 190 18750 15650 11800 6750 1 /OUU 14500 10800 ROOO 210 16250 13600 9800 5500 220 15000 12700 8800 5000 230 14000 11950 8150 4650 loUUU 1 1 9O0 250 12000 10500 7000 4050 260 11000 9800 6500 3800 270 10500 9150 6100 3500 1 nnnn iUUUU ftROO oouu u /uu 9900 290 9500 7850 5350 3000 300 9000 7200 5000 2800 310 8500 6600 4750 2650 320 8000 6000 4500 2500 330 7500 5550 4250 2300 340 7000 5100 4000 2100 350 6750 4700 3750 2000 360 6500 4300 3500 1900 370 6150 3900 3250 1800 380 5800 3500 3000 1700 390 5500 3250 2750 1600 400 5200 3000 2500 1500 IRON STRUTS. 183 IRON STRUTS.— No. 2. Greatest safe load in pounds per square inch of cross-section for vertical struts. Both ends are supposed to l)e secured as indicated at the bead of each column. If l)oth ends are not secured alike, take a mean proportional between the values given tor the classes to which each end belongs. If the strut is hingetl by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely titted, it is best in such cases to consider the strut as " round ended." Length. Ijeast Radhis t{f Gyration. Fixed Ends. Flat Ends. Hinged Ends. Round En 20 14380 14380 13940 13330 30 13030 13030 12460 11670 40 11760 11760 11110 10140 50 10860 10860 10130 8930 60 10000 10000 9230 7820 70 9190 9190 8330 6850 80 8420 8420 7500 5950 90 7950 7920 6840 5230 100 7500 7450 6220 4560 110 7070 6840 5620 3980 120 6670 6260 5060 3440 130 6220 5790 4580 2960 140 5800 5340 4120 2510 150 5390 4830 3570 2120 160 5000 4350 3060 1760 170 4570 3920 2640 ' 1530 180 4170 3500 2250 1310 190 3830 3190 2020 1150 200 3500 2900 1800 1000 210 3190 2670 1590 890 220 2880 2440 1400 790 230 2640 2250 1260 720 240 2410 2070 1140 650 230 2180 1910 1040 600 260 1960 1750 940 550 270 1840 1610 870 500 280 1720 1460 790 440 290 1610 1330 730 410 300 1500 1200 670 370 310 1390 1080 620 350 320 1290 970 580 320 330 1190 880 540 290 340 1090 800 490 260 350 1040 720 450 240 360 980 650 420 230 370 920 580 380 210 380 850 510 340 200 390 800 470 310 80 400 740 430 280 70 184 STEEL STRUTS. STEEL. STRUTS.— No. 3. Destructive pressure in pounds per square inch, for steel of medium grade, tensile strength, about 70,000 lbs. per square inch. For extreme soft steel, use table No. 1 for wrought iron. Length, Least Radms of Gh/ration. Fixed Ends. Flat Ends. Hinged Ends. Round Ends. 20 70000 70000 70000 66900 30 51000 51000 51000 47700 40 46000 46000 46000 41900 50 44000 44000 44000 38800 60 42000 42000 42000 35600 70 40000 40000 39700 32600 80 38000 38000 37400 29700 90 36100 36000 34700 26500 100 34200 34000 31900 23400 110 33100 32000 29800 21100 120 31900 30000 27700 18800 130 30100 28000 25500 16500 140 28200 26000 23200 14200 150 26800 24000 20700 12300 160 25300 22000 18100 10400 170 23400 20000 15900 9240 180 21400 18000 13700 8030 190 19400 16200 12200 6990 200 17900 14800 11000 6120 210 16200 13600 9800 5500 220 15000 12700 8800 5000 230 14000 11950 8100 4650 240 13000 11200 7500 4300 250 12000 10500 7000 4050 260 11000 9800 6500 3800 270 10500 9150 6100 3500 280 10000 8500 5700 3200 290 9500 7850 5330 3000 300 9000 7200 5000 2800 STEEL STRUTS. 185 STEEL STRUTS.— No. 4. Greatest safe load for steel of medium grade, tensile strength about 70,000 lbs. For extreme soft steel, use table No. 2 for wrought iron. The tiguras are the workiug loads in pounds per square inch for vertical struts. Both ends are supposed to be secured as indicated at the head of each column. If l>oth ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs. If the strut is hinged by any uncertain method so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely titted, it is best in such cases to consider the strut as " round ended." Least Radius uf Gyration. Fixed Ends. Flat Ends. Hinged Ends. Hound Ends. 20 21900 21900 21200 20300 30 15400 15400 14800 13800 40 13500 13500 12800 11600 50 12600 12600 11700 10300 60 11700 11700 10800 9130 70 10800 10800 9800 8050 80 10000 10000 8900 7070 90 9260 9230 7980 6090 100 8550 8500 7090 5200 110 8070 7800 6410 4540 120 7590 7140 5770 3920 130 7000 6510 5150 3330 140 6410 5910 4550 2780 150 5950 5330 3940 2340 lOU '± 1 oU 170 4980 4250 2860 1660 180 4460 3750 2400 1410 190 3960 3310 2080 1190 200 3580 2960 1830 1020 210 3180 2670 1590 890 220 2880 2440 1400 790 230 2640 2250 1250 720 240 2410 2070 1140 650 250 2180 1910 1040 600 260 1960 1750 940 550 270 1840 1610 860 500 280 1720 1460 790 440 290 1610 1330 720 410 300 1500 1200 670 370 186 STEEL STRUTS. STEEL STRUTS. -No. 5. Destructive pressure in pounds per square inch for hard steel, touAl strength about 100,000 lbs. For softer steel, see table No. 3. Length. Least Radius of Gyration. Fixed Ends. Flat Ends. Hinged Ends. Round Ends. lUUUUU lUUUUU lUUUUU yoDUU 30 74000 74000 74000 69300 40 62000 62000 62000 56600 50 60000 60000 60000 52900 uU OoUUU OoUUU OoUUU A.Q^ nn ^yiuu 70 55500 55500 55100 45300 80 53000 53000 52200 41400 90 49900 49700 47800 36600 100 4DoUU 4O0UU 4o/UU oZUUU 110 44700 43200 40400 28500 120 42600 40000 36900 25100 130 39400 36700 33500 21600 140 oOoUU ooDUU zyyuu 150 34200 30700 26500 15700 160 32200 28000 23100 13300 170 29800 25500 20300 11800 180 27400 ZoUUU 17500 lUoUU 190 25100 21000 15800 yuou 200 22900 19000 14100 7860 210 20300 17200 12400 6950 220 18300 15500 10700 6100 230 16900 14400 982a - 5600 240 15500 13400 8960 5140 250 14200 12400 8270 4780 260 12900 11500 7630 4460 270 12200 10600 7060 4050 280 11400 9700 6500 3650 290 10900 9000 6130 3440 300 10600 8500 5890 3300 STEEL STRUTS. 187 STEEL. STRUTS. -No. O. Greatest safe load for hard steel, tensile strength about 100,000 lbs. For soft steel, see table No. 4. The figures are the workin»r loads in pounds per s(juare inch for vertical struts. Both ends are supposed to be secured as indicated at the head of each ?olumn. If iKjth ends are not secured alike, take a mean i)roportional between the values given for the classes to which each end ])elongs. If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the i)ins may ])e relatively small and loosely titted, it is best in such cases to consider the strut as " round ended." Length. Least Radius uf Gyvdtioii . Fijnl Ends. F/af Ends. J/in fjfd Ends. Hound Ends. 20 31200 31200 30300 29000 oU 22400 22400 21400 20100 40 18200 18200 17200 15700 50 17100 17100 16000 14100 60 16100 16100 14900 12600 lU 15000 13600 1 1900 80 13900 13900 12400 9860 90 12800 12700 11000 8410 100 11700 11600 9710 7110 liU 10900 10500 8670 fil 90 120 10100 9520 7690 5230 130 9160 8530 6770 4360 140 8250 7610 5860 3570 150 7600 6820 5050 2990 160 7000 6090 4280 2460 170 6340 5420 3660 2130 180 5710 4790 3070 1810 190 5120 4280 2700 1550 200 4580 3800 2350 1310 210 3980 3370 2020 1130 220 3520 2980 1700 970 230 3190 2720 1500 870 240 2870 2480 1360 780 250 2580 2250 1220 710 260 2300 2050 1100 650 270 2240 1860 1000 570 280 1960 1670 900 510 290 1850 1520 830 470 300 1800 1420 780 440 188 ROLLED SHAPES AS STRUTS. ROLLED STRUCTURAL SHAPES AS STRUTS. The following tables of safe loads for rolled struts of iron or steel are derived from previous tables, Nos. 2 and 4, and from the columns given for flat-ended bearings. In all cases the strut is supposed to be vertical. In short struts this distinction is immaterial, but in long horizontal struts some allowance is necessary for the deflection due to weight. If the struts are rigidly connected at the ends to con- tiguous parts of a structure, the increase of resistance be- comes considerable in extremely long struts, and proper allowance can be made by using the columns for ''Fixed Ends'' in tables Nos. 2 and 4. On the contrary, if the end bearing of the strut is to be of uncertain character or fit; it will be best to reduce the safe load to that in the columns for "Round Ends," in the same tables. In these working tables the calculations are made to apply to the mean thick- nesses of each shape. Where more exact results are re- quired for thicknesses above or below the mean, the true radius of gyration of the section will be found on pages 150 to 170. But within the range of variation of thickness possible for any shape the tables may be accepted as prac- tically correct. For I beams tables TsTos. 7 to 8 apply to cases where the strut is braced in the direction of the flanges, so that failure could occur in the direction of the web only. For unbraced I struts use tables Nos. 9 and 10. Likewise for channel bars used as struts, and braced to resist failure in the directions of the flanges, use tables Nos. 19 to 20, same as for latticed channels. For a pair of latticed channels, which form a more perfect column than single rolled sections, the safe loads are given for various conditions of the end bearings, as described on pages 180 and 181. On the tables Nos. 19 to 20 the dis- tances D or d for flanges inward or outward, respectiv^ely, make the radii of gyration equal for either direction of axis, parallel to web or to the flanges. Under each length of struts in the table, I represents the greatest distance apart in feet that centres of lateral bracing ROLLED SHAPES AS STRUTS. 189 can be spaced, without allowing weakness in the individual channels. The distance / is obtained as shown in last ex- ample, that is, l)v niakinix ^ = \ . / = length between bracing. L = total length of strut. r = least radius of gyration for a single channel. R = least radius of gyration for the whole section. It is customary to make / much shorter than given in the tables, the figures given being useful as a guide. If a column is composed of four angles, forming the corners of a square, and properly latticed as described above, find the radius of gyration of the combined section, as described on page 176, and then the working resistance from tables Nos. 2 to 6, or the safe load can be ascertained approximately from tables Nos. 24-25 and page 212 for square columns. When a pair of angles are ti^d together forming a single strut take the greatest radius of gyration, around axis A B, in table No. VII, page 156, for a single angle as the least radius of gyration of the pair, and proceed as before described. 190 TABLE OF STRUTS. PENCOYO I BEA3I AS STRUTS.— No. 7. Greatest safe load in pounds per square inch of section. FOR IRON. Fvjr struts secured against failure in the direction of the flanges and liable to bend only in the direction of the web. SIZE OF BEAM IN INCHES, ivith Radius of Gyration for Mean Thickness of Each Size. 15 12 103^ 10 9 8 7 6 5 4 3 r:^5.81 r=4.66 r=4.15 r=3.9;J r = 3.57 r=3.17 r=2.79 r=2.39 r=:1.99 r=1.57 r=1.18 4 15000 15000 14930 14870 14810 14690 14560 14380 13840 12970 11670 6 14870 14690 1456014500 14380 13970 13570 13030 12270 11220 9920 8 14650 14300 1397013790 13460 13000 12470 11750 11020 9920 8350 10 14300 13610 1318012970 12570 12040 11490 10840 9980 8650 7350 12 13730 12920 124501219011730 11270 10720 9980 9010 7840 6170 14 13180 12270 1 1 117101152011130 10600 9980 9180 8200 7030 5220 16 12650 11650 1120010970 10540 9960 9290 8400 7620 6150 4230 18 12130 11190 10690,10440 9960 9340 8620 7900 6930 5450 3410 20 11640 10730 10190 9920 94SO 8750 8120 7430 6230 4700 2820 22 11270 10330 9710 9410 8890 8250 7700 6800 5670 4000 2370 24 10890 9850 9250 8870 8390 7880 7250 6240 5100 3390 2000 26 10540 9430 8790 8470 8050 7530 6730 5770 4500 2940 1690 28 10190 9030 8370 8150 7730 7080 6240 5310 3970 2580 1400 30 9840 8630 8080 7840 7400 6630 5840 4800 3470 2260 1140 32 9500 8300 7800 7550 6990 6200 5450 4320^ 3100 2000 34 9170 8040 7530 7220 6590 5850 5020 3890 2790 1750 36 8850 7790 7260 6850 6210 5510 4600 3470 2510 1530 38 8540 7550 6850 6490 5900 5150 4200 3170 2280 1320 TABLE OF STRUTS. 191 PENCOYD I BEAM AS STRUTS.— No. 8. Greatest safe load in pounds per square inch of section. FOK STKEL OF MEDIUM GRADE. For struts secured against failure in the direction of the flanges and liable to bend only in the direction of the web. SIZE OF BEAM IN INCHES, with Radius of Gyration for 3Iean Thickness of Each Size. •< 15 12 10 9 8 7 6 5 4 3 r = 5.81 r = 4.66 r=4.15 r=3.93 r=3.57 r = 3.17 r= 2.79 r= 2.39 r=1.9y r=].57 r^l.18 4 22740 22600 22500 1 22420 1 22330 22210 i 1 i 22070 21900 19240 i 1 15300 13410 6 22410 22190 22050 21980 21860 20210 181301538014240 12980 11610 8 22110 21510 19880 19040 17480 15360 14560 13490 12760 11600 9900 10 21440 18190 16110 15300 1472013910 13230 12510 11670 10240 8380 12 18780 15220 14520 14140 13450 13010 12450 11680 10610 9100 7010 14 16110 14260 13450 13250 1 1 1 12870 123301168010780 9690 8010 5780 16 14830 13390 12940 12700 122601165010900 9970 1 1 8760 7000 4630 18 14050 12930 12420 12150 116501098010200: 9200 7900 6050 3620 20 13380 12510 11890 11610 11050 10340 9530 8470 7100 5170 2860 22 13010 12000 11370 10930 10480 9750 8890 7770 6350 4350 2370 24 12640 11540 10860 10600 9950 9170 8270 7100 5630 3600 2000 26 12260 11070 10390 10050 9430 8620 7680. 6480 4960 3000 1690 28 11890 10630 9930 9580 8930 8080 7110, 5880j 4310 2580 1400 30 11520 10220 9480 9110 8440 7560 6570, 5290' 1 1 3710 2260 1140 32 10990 9810 9070 8650 7970 7070 6050 4750 3210 2000 34 10780 9420 8620 8230 7520 6590 5550 4210 2810 1750 36 10450 9030 8220 7800 7070 6130 1 5060 3720^ 2510 1530; 38 10120 8660 7810 7400 1 6650 1 5740 i 4600 3280 2280 1 1 1320 1 192 PENCOYD I BEAMS AS STRUTS. PENCOYD I BEA3IS AS STRUTS.— Xo- 9' Greatest safe load in pounds per square inch of section. FOR IKON. When the struts are unsupporteil, or free to bend in the direction of the flanges. /• = radius of gyration for the mean thicknesses of each shape. Size of Beam in Inches. LEXG TH IX FEET. 4 6 8 10 12 14 16 18 20 22 1 15 r 1.17 11670 9870 8320 7290 6110 5160 4170 3350 2780 2330 2 r 1.04 11210 9340 7810 6530 5410 4280 3360 2720 2230 1850 521 r 1.08 1 ^ '^.RO iloQU 9460 7980 6840 5640 4560 3590 2900 2400 2000 3 12 r 1.15 11600 9790 8250 7180 6010 5030 4050 3250 2700 2260 4 r .99 11000 8980 7590 6200 5060 3930 3070 2480 2030 1650 515 r .97 1 0Qi n 8860 7500 6080 4910 3790 2960 239C 1950 1570 5 10 1^' 1.17 11670 10870 8320 7290 6110 5160 4170 3350 2780 2330 51 2 ^' 1.05 11240 9310 7850 6590 5470 4350 3410 2750 2270 1880 6 r — .95 lUOlU 8750 7380 5960 4750 3630 2850 2300 1860 1490 7 10 r .96 10860 8800 7450 6020 4830 3710 2900 2340 1910 1530 8 r .94 10770 8690 7320 5900 4680 3550 2800 2250 1820 1450 oil r .89 10520 8370 6970 5570 4270 3230 2530 2020 1610 1240 9 r = 1.00 11040 9030 7630 6260 5130 4000 3130 253C 2070 1690 10 y .88 10470 8330 6900 5500 4190 3160 2480 1980 1570 1200 509 r = .86 10360 8230 6740 5360 4060 3030 2380 1890 14701110 11 r = .94 10770 8690 7320 5900 4680 3550 2800 2250 1820 1450 12 0 84 10250 8130 6590 5190 3860 2900 2270 1 7Qn 1380 507 ?' !82 10120 8030 6430 5010 3680 2790 2170 1700 1290 13 r 1 .78' 9870 78106110 4640 3350 2540 1970 1500 11001 14 7 y .80 10000 7920 6260 4830 3500 2670 2070 1610 1200 505 y .79 9990 7860 6190 4740 3430 2610 2020 1550 1150 23 y 1.25 11930 10200 8660 7630 6530 5590 4650 3800 3130 2640 24 y 1.12 11500 9560 8130 7010 5860 4830 3860 3100 2570 2140 15 6 y .86 10360 8230 6740 5360 4080 3030 2380 1890 1470 1110 16 y .75 9670 7630 5880 4350 3130 2360 1810 1350 503 y .70 9310 7280 5470 3860 2760 2070 1540 1090 17 5 y .62 8620 6480 4600 3080 2210 1600 1080 18 y .63 8720 6590 4720 3170 2270 1650 1140 i y .54 7980 5640 3590 2390 1650 1070 3 y .53 7890 5520 3460 2310 1490 PENCOYD I BIOAMS AS STRUTS. 193 PEXCOYD I BEAMS AS STRUTS.— No. 10. Greatest sale load iu pounds per square inch of section. FOR STEEL. OF 3IEDIUM GRADE. When the struts are unsupported, or free to bend in the direction of the flanges, r = least radius of gyration for mean thickness of each shape. LENGTH IN FEET. 4 I 6 I 8 ! 10 ! 12 I 14 I 16 I 18 I 20 I 22 Size, of Beam in Inchi'^. . 1 ,p = 1.17 13490 11560 9840 8320 6950 5700 4560 3540 2810 2330 2 j 5 /' — 1.04 12950 11870 9060 7450 6000 4700 3540 2730 2230 1850 521 r — 1.08 13100 11100 9320 7800 6310 5020 3860 2960 2400 2000 3 ,^ 1.15 13340 11460 9730 8190 6810 5560 4410 3400 2710 2260 4 12 0.99 12740 10580 8720 7030 5590 4270 3150 2480 20301650 515 r = 0.97 12650 10460 8580 6900 5420 4090 3040 2390 1950 1570 5 1.17 13490 11560 9840 8320 6950 5700 4560 3540 2810 2330 51 1 0 i ^' - 1 05 12980 10930 9120 7520 6080 4780 3620 2790 2270 1880 6" r 0.95 12550 10350 8430 6740 5240 3910 2900 2300 18601490 ^ 10 ' 511 9 10 509 11 12 507 13 14 505 23 24 15 16 503 17 18 8 ; 7 ; ^0.96 12600 10400 8500 6820 5330 4000 2960 2340 1910 1530 = 0.94 12510 12280 8350 6660 5160 3810 2830 2250 1820 1450 = 0.89 12240 9930 7950 6220 4690 3360 2530 2020 16191240 ^ 1.00 12780 10640 8790 7140 5670 4350 3240 2530 2070 1690 ^ 0.88 12190 9860 7870 6130 4590 3270 2480 1980 1570 1200 = 0.86 12070 9710 7690 59404430 3120 3380 189014701110 = 0.94 12510 10280 8350 6660 5160'3810 2830 2250 1820 1450 0.84 11960 9560 7520 5740 4180 2960 2270 1790 1380 = 0.82 11830 9400 7330 5540 3970 2820 21701700 1290 = 0.78 11560 9060 6950 5120 3540 2540 197015001100 -0.80 11700 9230 7140 5330 3750 2670 207016101200 = 0.79 11610 9150 7040 5230 3650 2610 202015501150 ■- 1.25 13800111910 10250 8790 7450 6240 51304110 3240 2640 1.12 13240 11320 9560 8000 6600 5330 4180 3210 2570 2140 = 0.86 12070 9710 7690 59404430 3120 2380189014701110 -0.75 11340 8790 66304780 3240 23601810 1350 = 0.70 10930 8280 60804180 2780 207015401090' = 0.62 10200 = 0.63 10310 7390 7520 5080 3180 2210 1600 1080 5200 3300 2270 16501140 = 0.54 9320 6310 3860 2390 1650 1070 = 0.53 9190 6160 3700 2310 1590 194 PENCOYD ANGLES AS STRUTS. PENCOYD ANGLES AS STRUTS — No. 11. Greatest safe load in pounds per square inch of section. FOR IRON. r — least radius of gyration for mean thickness of each size. Size of Angles in Inches. LENGTH IN FEET. 2 4 6 8 10 12 14 16 18 20 fi V fi O X D r=1.19 1 AOCif\ 14odU 11 /oU 9960 oooU /4UU DiSlU AO(\C\ o4oU oocn R Y O A. O r= .99 loolU IIUUU 8980 /oyu D^UU c;ncr» JdUdU onon oyoU ocyir\ OKJIKJ ^4oU on on 4x4 r=.79 12990 9940 7860 6190 4/4U OA QO ^OlU on on 1 c:c:n looU 1 1 t;n lloU o^2 X o /2 r= .69 12430 9230 7180 5380 3750 2700 2010 1480 3x3 /'=.59 11700 8350 6160 4230 2820 2000 1390 2% X 2\ r==.53 11290 7890 5520 3460 2310 1580 2% X 2^2 r=.49 10950 7540 4980 3010 1990 1280 2^ X 2^ r=.44 10470 6900 4190 2480 1570 2x2 r= .39 9870 6110 3350 1970 1100 1% X 1% r=.33 8980 5060 2480 1310 1^2 X 1^2 r=.29 8280 4110 1930 r=.26 7810 3350 1500 1x1 r=.21 6590 2270 PENCOYD ANGLES AS STRUTS. 195 PENCOYD ANGLES AS STRUTS.— No. 12. Cireatcst sale load in pounds per square inch of section, l OK STEEL. OF MEDIUM GRADE. r=z least radius of gyration for mean thickness of each size. Size of Angles in Inches. LENGTH IN FEET. 2 4 6 8 10 12 14 16 18 20 6x6 r=l,19 21830 13470 11650 / UiU 4710 3680 2910 5x5 r=.99 19170 12740 10580 /UoU joyu 3170 2480 2030 4x4 15370 11630 9150 u^oU oDJU 2020 1550 1150 O 1 ^ O 1 ^=.69" 14970 10840 8190 5970 4050 2710 2010 1480 3x3 r=.59 13440 9900 7010 4630 2860 2000 1390 r=.53 13030 9190 6160 3700 2310 1580 2^ X 2Hy ^=.49" 12690 8650 5510 oiUU lyyu 2Hi X 2\ 12190 7870 4590 2480 1570 2x2 r=.39 11560 6950 3540 1970 1100 1=^4 X 1% r=.33 10580 5590 2480 1310 r=.29 9790 4480 1930 r=.26 9060 3540 1500 1x1 ^-=.21 7520 2270 196 PENCOYD Z BARS AS STRUTS. PEXCOYD Z BARS AS STRUTS.— No. 13. Greatest safe load in pounds per square inch of section. FOR IRON. When struts are unsupported, or free to bend in the direction of the flan,ves. r = least radius of gyration for mean thickness of each size. Section. Size LENGTH IN FEET. yo. in Inches. 2 4 6 8 10 12 14 16 ]8 220 r=- .54 221 r=.55 2iix3Jgx2UxA 2Hx35Sx2UxM 11360 11430 7980 8060 5640 5740 3590 3730 2390 2480 1650 1720 1130 222 r= .64 223 r=.64 12070 12070 8800 8800 6690 6690 4830 4830 3260 3260 2340 2340 1710 1200 1710 1200 224 r= .65 225 r=.73 31x4t\jx31xU 3|x5tVx3|x I 12150 12670 8890 9530 6800 7510 4950 5720 3350 4160 2410 2980 1770 1260 2240 1700 1250 226 r= .74 227 33^ox53U3/oX§? 12720 12670 9610 9530 7580 7510 5800 5720 4250 4160 3050 2980 2300 1760 2240 1700 1300 1250 228 /- = .83 229 r= .81 3 1^6x6 1^x3 j^xf^ 3fGx6iVx3fVx -5 13170 13080 10180 80S0 6510 10060 7980 6340 5110 4920 3770 3590 2840 2730 2220 2120 1740 1650 230 r=.81 8tixx6^x3tkxH 13080 10060 7980 6340 4920 3590 2730 2120 1650 PENCOYD Z BARS AS STRUTS. 197 PENCOYD AS STRUTS.— No. 14. Greatest sale load in i)ounds per square inch of section. FOR STEEL OF MEDIUM GRADE. When struts are unsupported, or free to bend in the direction of tlie flanges. r = least radius of gyration for mean thickness of each size. Section. No. Size in Inches. LENGTH IN FEET. 6 8 10 12 14 16 18 220 2}Jx3iigx2}]lXi5. 13100 9320 6310 3860 23901650 '=-.54 221 2^x3^x21 Jx^l 13170 9440 64504020 248017201130 '=.55 "I I 222 2^ex4iiex2}gx-i55 1397010400 r=.64 i j 223 3:^i2x4^x3^i2X I 1397010400 r=.64 224 3|x4i\x3|x{i 1408010490 .65 225 3ix5ii3 x3|x i 1486011180 r=.13 226 : 3^^x5^x3^x^% 14940 11260 r=-74; i I 227 3Ax53^x3Ax§2 14860 11180 r=.73 ■ " ' i L 7630 5330 7630 7750 8600 5330 5470 6420 3420 2340 1710 1200 3420 23401710 3540 2410 1770 i I 4550 3050 2240 8700 6520 8600 6420 7430 1200 1260| 1700 1250 4660 3150 230017601300 455o'305oL240 1700 1250 56404080 2890 2220 1740 228 : 3i9cx6 icx3i%x^ 16110 11890 9480 - r = .83 229 . 3,^c^6,\x3^^^x 5 15660 11770 9320 7230 5440 3860 2740 2120 1650 r=.81 i 230 I 3Ax6|iffx3^xH 15660 11770 9320 7230 5440 3860 2740 2120 1650 r=.81 19S PENCOYD TEES AS STRUTS. PEXCOYD TEES AS STRUTS.— Xo. 15. Greatest safe load in pounds per square inch of section. FOR IKON. /• = least radius of gyration of each size. LEXG TH IX FEET. Inches. 2 4 6 8 10 12 14 16 18 20 4x4 ?■ = .85 13270 10340 8180 6670 5280 3940 2970 2330 1840 1430 3^.. X 3^.. .= .74- 12780 9610 75S0 5800 4260 3050 2300 1760 1300 930 3x3 ;-=.62 11920 8620 6480 4600 3030 2210 1590 1030 730 2\y X 2"L., 11290 7890 5520 3460 2310 1530 1140 2^4^214 r = .47 i0770 7320 4630 2300 1820 1120 670 2x2 = .43 10360 6740 4030 2370 1470 840 1-4x1^4 /■=.37 9610 5S00 3060 1760 930 Ik^xli. .-=.32- 8800 4830 2340 1200 540 1^:4x114 ?■ = .27 7980 3590 1650 670 1x1 r = .25 7810 3350 1500 580 PENCOYD TEES AS STRUTS. 199 PENCOYD TEES AS STRUTS.— No. 16. Greatest safe load in pounds i)er square inch of section. FOR STEEL. OF MEDIUM GRADE. r = least radius of gyration of each size. LENGTH IN FEET. Inches. 2 4 1_ 8 10 12 14 16 18 20 4x4 .85 16570 12020 9630 7600 6840 4280 3040 2330 1840 1430 3Hy X 3^> /'=.74'" 14940 11260 8700 6510 4660 3150 2300 1760 1300 930 3x3 r=.62 13740 10200 7390 5060 3180 2210 1590 1080 730 2i.>x2io r=.53*' 13030 9190 6160 3700 2310 1580 1140 2^4 X 21/4 r=.47 12510 8350 5160 2830 1820 1120 670 2x2 r=-- .43 12070 7690 4380 2370 1470 840 1% X 1^4 r=.37 11260 6520 3140 1760 930 X l^y ^'—.32" 10400 5330 2340 1200 540 r=.Zl 9320 3860 1650 670 1x1 r= .26 9060 3540 1500 580 200 PENCOYD CHANNELS AS STRUTS. PEXCOYI> CHANNELS AS STRUTS.— Xo. 17. Greatest safe load in pounds per square inch of section. FOR IRON. When struts are unsupported, or free to bend in the direction of the flanges. r — least radius of gyration for mean thickness of each shape. 8 t* •It Size of Channel LENGTH IN FEET. ll in Inches. 2 4 6 ! 8 10 12 14 16 18 20 30 53 15 ?■ = 1.08 = 1.10 14110 14110 11400 11400 9430 7970 9590 8070 6780 6900 5650 5740 4540 4690 3580 3710 2900 3020 2400 2490 55 13 7- = 1.07 14110 11310 9430 7920 6720 5560 4490 3540 2850 2360 31 32 427 12 r 7' r = 0.83 = 0.70 = 0.87 13170 12520 13300 10170 9270 10430 8070 6490 7270 5470 8270 6840 5080 3790 3880 2760 54304090 2850 2070 3100 2230 1550 2420 1750 1090 1940 1340 1520 34 35 10 r 7' = 0.77 = 0.71 12900 12520 9840 9350 7730 6030 7390 5560 4540 3280 3960 2830 2490 2120 1930 1610 1450 1150 36 37 9 = 0.72 = 0.64 12650 12010 9430 8800 7450 6670 5650 4830 4050 2900 3250 2350 2200 1690 1650 1200 1200 418 419 40 41 42 44 412 47 48 8: 7: = 0.71 ; 12520 9350 7390 5560 3960 2830 212016101150 6 = 0.62 = 0.65 = 0.56 r = 0.65 r = 0.50 5 r = 0.€0 4 = 0.50 11890 8650 6490 4590 3070 221015901080 12140 8880 6780 4930 3340 2400 1780 1260 11490 8120 5840 3880 2580 1800 1200 I Mil! I < 12140 8880 6780 4930 3340 2400 1780 1260 11040 7640 5140 3130 20701360 11760 8420 6260 4350 2900 2070 1460 11040 7640 5140 3130 2070 1360 = 0.46 ,10690 7210 4490 2690 1740 49 I 3 r = 0.42 10260j' 6610 3880 2270 1380 ! I ; I i I I PENCOYD CHANNELS AS STRUTS. 201 PENCOYD CHANNELS AS STRUTS.— No. 18. Greatest safe load in pounds per square iueh of section. FOR STEEL OF MEDIUM GRADE. When the struts are unsupported, or free to bend in the direction of the llanges. r = least radius of gyration for mean thickness of each shape. Section Number. Size of Channel in Inches. LENGTH IN FEET. 2 4 6 8 10 12 14 16 18 20 30 53 15 r = 1.08 r=1.10 20600 13140 13140 1 1070 iiu /u 11250 9310 9460 7730 7870 1 6330 5000 3850 6450 51604000 2960 3100 2490 55 13 r = 1.07 20600 13050 1 1070 9230 7670 6210 4940 3800 9Q00 31 32 427 12 = 0.83 ;' = 0.70 r = 0.87 16050 14640 16700 11880 10890 12150 9460 8290 Q770 1 ' 7400 5620 4100 2900 6090 4200 2790 2070 7800 6030 4460 3200 1 1 2230 1550 2420 1750 1090 1340 34 35 10 = 0.77 ;-==0.71 15210 14640 11520 10980 8940 8430 6820 5000 3400 62104300 2870 2490 2120 1930 1610 1450 1150 36 37 9 r = 0.72 r--0.64 14830 13880 11070 10400 8500 7600 6330 4410 2960 5330 3400 2380 2200 1690 1650 1200 1200 418 419 g r = 0.71 r = 0.62 14640 10980 13690 10240 8430 9400 6210 4300 2870 5050 3170 2210 1 ! 2120 1590 1610 1080 1150 40 41 417 7 r = 0.65 r = 0.56 r = 0.57 14070 10480 13230 9540 13320 9690 1 7730 6570 6760 5450 3530 2400 4200 2550 1800 4360 2650 1860 ! 1 1780 1200 1260 1260 42 44 415 6 r=-0.65 r = 0.50 r = 0.54 14070 10480 12780 8790 13140 9310 7730 5680 6330 3450 3530 2400 3240 2070 1360 3850 2400 1660 1780 1260 412 413 5 r = 0.60 r = 0.50 13500 10000 12780 8790 7140 5680 4780 2940 2070 3240 2070 1360 1460 47 48 411 4 r = 0.50 r==0.46 r = 0.46 12780 12420 12420 8790 8220 8220 5680 4940 4940 3240 2070 1360 2700 1740 2700 1740 49 3 r = 0.42 11970 7540 4200 1 2270 1380 I TABLE OF STRUTS. TABLE OF STRUTS.— No. 19. Latticed Channel Struts. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION FOR IRON. For a pair of braced channels, or for a single channel secured from flexure in the direction of flanges and liable to fail only in the direction of the web CD. r in the marginal columns gives the radius of gyration for axis A B, or for either axis of the combined pair of channels. See de- scription, page 188. Size of ^_ Channels. E,ids. Condi- LENGTH IN FEET. Hon of 10 12 14 16 18 20 22 15 ins. /• = 5.52 D = 12.8 d= 8.8 12 ins. r= 4.38 D = iLl d= 7.1 10 ins. r= 3.71 /)= 8.6 (/= 5.9 9 ins. 3.31 D= 7.7 d = 5.2 5 ins. /•= 3.0 l)= 7.1 J= 4.6 7 ins. r= 2.58 n= 6.2 d= 3.9 6 ins. r-- 2.26 D= 5.4 d^ 3.3 Fixed. Flat. Hinged, Round. Fixed. Flat. Hinged. Round. Fixed. Flat. Hinged. RouulL Fixed. Flat. Hinged. Round. Fixed, Flat. Hinged. Round. I Fixed. Flat. Hinged. Round. Fixed. Flat. Hingeil. Round. 15000 14570 15000 14570 , 15000 14340 15000 14020 l.Ls 1.58 15000 14120 15000 14120 15000 13660 15000 13010 1.03 1.4G 15000 13590 15030 13590 15000 13090 15000 12360 1.19 1.59 14150 13160 14150 13160 13590 12620 13040 11830 1.23 1.61 13840 12770 13840 12770 13350 12190 12660 11360 1.32 1.76 13310 12110 13310 12110 12780 11480 ,12010 10560 ' 1.39 1.86 12780 11540 12780 11540 , 12200 10870 11380 9950 1.51 2.01 14150 13570 14150 13570 13690 13060 13040 12330 1.97 2.37 13390 12670 13390 12670 12870 12080 1211011240 1.83 2.19 12730 11910 12730 11910 12150 11270 11310 10320 1.99 2.39 12240 11440 12240 11440 11620 10760 10720 9710 2.0-5 2.46 11760 11040 11760 11040 11110 10320 10140 9170 2.20 2.64 11170 10360 11170 10360 10470 9600 9350 8280 2.35 2.79 10600 9700 10600 9700 9860 8890 8590 7460 2.52 3.02 12980 12430 12980 12430 12400 11820 11600 10950 2.76 3.15 11970 11410 11970 11410 11340 10730 10400 9680 2.5") 2.92 11290 10710 11290 10710 10600 9970 9510 8740 2.79 3.1;^ 10800 10170 10800 10170 10060 9410 8850 2.s7 10340 10340 9590 8260 3.08 9580 9580 8770 7320 3.25 8850 8850 7970 6460 3.44 8040 3.28 9670 9670 9190 7430 3.52 8850 8850 7960 6450 3.72 8190 8170 7170 5590 4.25 11870 11450 11050 11870 11450 11050 11230 10770 10340 10270 9720 9190 3.55 3.95 4.34 10920 10450 9980 10920 30450 9980 10190 9700 9210 9010 8400 7800 3.2> 3.65 4.01 10150 9620 9100 10150 9620 9100 9390 8810 8230 8020 7370 6750 ::..5.s 3.98 4.: 8 9570 8990 8440 9570 8990 8440 8760 8120 7520 7310 6620 5970 3.7U 4.11 4.52 9030 8420 8040 9030 8420 8020 8160 7500 6970 6670 5950 5370 3.96 4.40 4.81 8240 7810 7400 8230 7770 7310 7250 6650 6080 5680 5020 4420 4.18 4.65 5.11 7700 7230 6790 7660 7070 6440 6490 5850 5240 4860 4200 3610 4.54] 5.04 5.M TABLE OF STRUTS. 20:] TABLE OF STRUTS.— No. 19. Latticed Channel Struts. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION FOR IRON. The channels must he connected so nsto insure unity of action, and separated not less than the distances D or d respectively given in inches in the marginal column. Figures in smaller type under each length rei)resent the greatest distance apart in feet on each channel that centres of lateral bracing should be placed. LENGTH IN FEET. Condi- tion of Ends. Size of Channels. 24 26 28 ■ 30 32 ' 34 ! 36 ' 38 ' 40 10680 10300 9930 9570 9230 8890 8550 8290 8110 Fixed. 15 ins. 10680 10300 9930 9570 9230 8890 8550 8290 8070 i-lat. 5.52 9940 9540 9150 8760 8370 8000 7650 7320 7040 Hinged. I) - 12.8 8690 8200 7740 7310 6890 6490 6110 5760 5450 I'.ound. d = 8.8 ■1.7 1 9530 9090 5.5)! 8670 5.92 8320 8060 (). / 1 7810 7.1 1 7560 7.50 7320 7.90, 7090 Fixed. 12 ins. 9530 9090 8670 8320 8040 7770 7510 7200 6870 Mat. r = 4.38 8710 8230 77 70 7360 6990 6640 6300 5970 5650 Hinged. /> = 10.1 7230 6740 6240 5790 5400 5020 4650 4320 4000: Round. d = 7.1 4.-{S 4.71 5.84 6.21 ! 6.57 ().94 7.30 8300 8220 7920 7630 7350 7070 6810 6540 6250 Fixed. 10 in.s. 8600 8210 7890 7590 7230 6840 6460 6120 5820 Flat. r ~ 3.71 7700 7230 6800 6400 6010 5620 5260 4920 4610 Hinged. D = 8.6 6160 5650 5190 4760 4350 3980 3630 3300 2990 Pvouud. d = 5.9 4.7.S 5.isj 5.58 5.9S 6. as 6.78 7.18 7.58 7.98 8090 7760 7430 7120 6830 6520 6190 5890 5590 iMxed. 9 ins 8070 7720 7350 6920 6490 6110 5760 5440 5080 Mat. r = 3.31 7030 6580 6130 5690 5280 4900 4550 4220 3840 Hinged. 1.1 5140 4760 4470 4050 3650 3280 2930 2610 2310 Round. d = 5.2 4.9;; 5:m G.57I 6.98 7.;!9 7.81| 8 21 i 7680 7320 6990 6670 6310 5960 5630 5310 5000 Fixed. 8 ins 7630 7200 6720 6260 5880 5520 5150 4730 4350 Flat. r = 3.0 6460 5980 5500 5060 4670 4300 3900 3460 3060 Hinged. D = 7.1 4820 4320 3870 3440 3050 2690 2350 2040 1760 Round. d = 4.6 G.16 G.C.O 7.04 7.48 7.92 8.36 8.80 7000 6630 6210 5820 5400 5070 4680, 4300 3960 Fixed. 7 ins 6740 6210 5780 5360 4890 4440 4030 3630 3310 Flat. r 2. 58 5530 5010 4570 4140 3630 3150 2750 2370 2110 Hinged. D - 6.2 3890 3390 2950 2530 2160 1820 1590 1380 1200 Round. d ^ 3.9 5 57 r».04 (5.51 (j.97 7.44 7.91 8.87 8.8:i 9.30 6330 5880 5440 5050 4570 4150 3790 3440 Fixed. 6 ins 5910 5430 4900 4380 3920 3480 3160 2860 Flat. r 2.26 4700 4210 3640 3100 2640 2230 1990 1760 Hinged. D - 5.4 3080 2600 2170, 1780 1520; 1300 1130 980 Round. d = 3.3 6.05 6.55 7.06 7.56j 8.11 8.57| 9.08 9.58| 204 TABLE OF STRUTS. TABLE OF STRUTS.— No. 20. Latticed Channel Struts. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION. FOR STEEL of 3Iedium Grade. For a pair of braced channels, or for a single channel secured from flexure in the direction of flanges and liable to fail only in the direction of the web C D. r in the marginal columns gives the radius of gyration for axis A B, or for either axis of the combined pair of channels. See de- scription, page 188. LENGTH IX FEET. 6 8 10 12 14 16 18 20 22 15 ins. Fixed. 20000 20000 20000 18000 15320 14500 13670 r = 5.52 Flat. 20000 20000 20000 18000 15320 14500 13670 D = 12.8 Hinged. 20000 20000 20000 17360 14720 13860 12980 d = 8.8 Round. 20000 20000 19190 16400 13710 12760 11790 13190 12790 13190 12790 12420 11940 11150 10580 1.18 1.58 1.97 2.87 2.76 3.15 3.55 3.95 4.34 13 ins. Fixed. 20000 20000 17150 14860 13820 13150 12660 12170 11680 r = 4.38 Flat. 20000 20000 17150 14860 13820 13150 12660 12170 11680 i> = 10.1 Hinged. 20000 19980 16520 14240 13140 12380 11770 11270 10780 (/= 7.1 Round. 200001905015550 13180119701110010390 9750 9100 1.09 1.46 1.83 2.19 2.55 2.92 3.28 3.65 4.01 10 ins. Fixed. 20000 18130 14960 13720 13030 12440 11860 11280 10710 /• = 3.71 Flat. 20000 18130 14960 13720 13030 12440 11860 11280 10710 D= 8.6 Hinged. 20000 17480 14340 13040 12220 11540 10960 10340 9700 d = 5.9 Round. 20000 16530 13290 11860 10920 10100 9340 8630 7940 I 1.19 1.59 1.99 2.39 2.79 3.19 3.58 3.98 4.38 9 ins. Fixed. 20000 16050 14220 13180 12530 11880 11230 10600 10020 r = 3.31 Flat. 20000 16050 14220 13180 12530 11880 11230 10600 10020 I)= 7.7 Hinged. 20000 15440 13560 12410 11630 10980 10280 9570 8920 d= 5.2 Round. 19190 14450 1243011140 10210 9360 8560 7800 7100 I ' 1.23 1.64 2.05 2.46 2.87 3.28 3.70 4.11 4.5^ Sins. Fixed. 19300 15020 13500 12780 1206011340 10640 10000 9400 /•= 3.00!Flat. 19300 15020 13500 12780 1206011340 10640 10000 9380 D= 7.1 'Hinged. 18640 14200 128001192011160 10400 9620 8900 8160 d= 4.6 Round. 177001336011600 10560 9590 8690 7850 7070 6280 I ' 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 4.84 Tins. 'Fixed. 16760 14030 12910 1207011240 10440 9720 9040 8440 r= 2.58 Flat. 1676014030 12910 120701124010440 9710 9010 83.30 D= 6.2 Hinged. 16140 13360 12080 11170 10290 9400 8560 7710 6930 d = 3.9 'Round. 15160 12210 10750 9620 8580 7610 6700 5820 5040 I 1.39 1.86 2.35 2.79 3.25 3.72 4.18 4.65 5.11 6 ins. Fixed. 1503013280 123301136010450 9630 8870 8250 7740 r= 2.26 Flat. 1503013280 123301136010450 9620 8820 8070 7350 I)= 5.4 iHinged. 14420 12530 11430 10430 9410 8450 7490 6670 5970 3.3 Round. 1338011280 9940 8730 7620 6590 5600 4790 4110 1.51 2.011 2.5i 3.02i 3.44 4.25 4.54; 5 04 5.54 TABLE OF STRUTS. 205 TABLE OF STRUTS.— No. 20, Latticed channel Struts. GREATEST SAFE LOAD IN POUNDS PER SQUARE INCH OF SECTION. FOK STKtL of Mediuiu Oracle. The channels must be connected so as to insure unity of action and separated not less than the distance J) or d respec- tively given in the marginal columns. Figures in small type un(ler each length represent the greatest distance apart in feet on each channel that centres of lat- eral bracing should be placed. LENGTH IN FEET. 24 26 28 30 ' 32 34 I 36 38 12410 12010 12410 12010 1151011110 10050 9540 4.74 5.1H 11180 10700 11180 10700 10230 9690 8510 7930 4.:iS| 4.74 10190 9690 10190| 9680 9110i 8520 7300! 6660 4.7S 9480 9460 8250 6380 4. (>:^ 8830 8790 7440 5550 5. '-'.S 7990 7690 6300 4440 5.o7 7150 6670 5310 3480 6.05 5. IS 8960 8920 76001 5710 5.:i4 8350' 82201 68101 4930' 5.70! 7530; 7080 5710 3860 6.04 j 6520i 6030: 4670: 2890! 6.55 11620 11230 11620 11230 10720 10280 9040 8560 5.58 5.1>2 10260 9840 10260 9830 9190 8700 7390; 6860 5.11 5.47 9220 8760 9190: 8710 79301 7350 6040 5460 5.58: 5.98 1 8470 8130 8390 7890 6980 6490 5100 46201 5.75 6.16| 7970 7590 7660 7140 6280 5770 4410 3920 6.16 6.60 6980 6440 6480 5940 5130 4580 3310 2800 6.51 6.97 6020 5530 5410 4820 4020 3390 2400 1950 7.06 7.56, 10840 10840 9850 8100 6.82 9430 9410 8200 6320 5.84 8380 8250 6850 4960 6.88 7780 7400 6020 4160 6.57 7110 6630 5270 3440 7.04 6000 5400^ 4010 2390 7.44 4250 2860 1660 8.11 10480 10140 10480 10140 9440 9060 7660 7240 6.71 7.11 9040 8650 9000 8600| 7700 7210 5810 5320 6.21 6.57 8070 7760 7800 7370 6410 6000 4540 4140 6.78| 7.18 7400 6970 6930 6480 5570; 5120 3730 3300 6.98 7.89 6640' 6220 6150 5670 4790 4300 3000 2600 7.48: 7.92 5580 5110 4880 4380 3460 2980 2000 1720 7.91 i 8.87 4430 3910 3720| 3270 2380 2050 1390 1170 8.57, 9.081 9800 8660 6810 7.50 8350 8210 6810 4930! 6.94; 7410 6950 5590 3740 7.58 6540 60401 4680 2900 7.8l! 5860 5220 3820 2250 8.86 4630 3910 2550 1490 8.88 3510 2910 1790 990 9.58: 9490 Fixed. 9460 Flat. 8260 Hinged. 6390| Round. 7.90 8090 Fixed. 7830 Flat. 6440 Hinged. 4570| Round. 7.80 7040 Fixed. 6550 Flat. 5190 Hinged 3370| Round. 7.98 6180 Fixed. 5620 Flat. 4240 Hinged 2560 1 Round. 8.21 5500 Fixed. 4780 Flat. 3350 Hinged. 1920! Round. 8. 80 1 4160 Fixed. 3480 Flat. 2200 Hinged. 1270 Round. 9.80 Fixed. Flat. Hinged. Round. Size of Channels. 16 ins. r = 5.52 D 12.8 (Z= 8.8 12 ins. r 4.88 D KM 7.1 10 ins. r= 3.71 D = 8.6 d ^ 5.0 9 ins. r = D = d = 8 ins. r ^ I) = d 7 ins. r ^ I) d = 8.81 7.7 5.2 8.0 7.1 4.6 2.58 6.2 3.9 6 ins. 2.26 Z>- 5.4 d= 3.3 206 WROUGHT IRON AND STEEL PILLARS. COLUMNS OF ROUND AND SQUARE SECTION. Experiments on columns of this class are not very com- plete, especially as denoting the comparative values for the various end conditions. The following tables, Nos. 22 to 25, are derived partly from experiment on actual columns, ex- tended and completed by comparison with the experiments on rolled struts from which all our previous tables of strut resistances are derived. Tables Nos. 2 and 4 are taken as the basis for the working values. On account of the more perfect symmetr}^ of form possessed by round and square sections than the shapes for which these tables were especially calculated, the safe loads per square inch of section are increased ten (10) per cent, for round columns, and five (5) per cent, for square columns. That is, the factors of safety previously given remain the same, the ultimate strength is supposed to be 10 and 5 per cent, respectively greater than the rolled struts. The tables are calculated for certain thicknesses of iron varying from i inch for 2-inch diameter up to | inch for 12-inch diameter, as marked in the margins. At the same place E represents the radius of gyration for the diameter and thickness given. When the thickness varies but a little from that given, the strength per square inch of section can be accepted as practically unchanged. But when the varia- tion becomes of importance, the radius of gyration corre- sponding to the altered thickness will have to be obtained, and the strength of the column then ascertained from tables Nos. 2 and 4, as heretofore described. The following table gives the values of the radius of gyration for round and square columns from 2 to 12 inches diameter, and from yV of an inch to 1 inch thick. Example for Round Column : What is the greatest safe load for a flat-ended round column 6 inches outer diameter, J inch thick, 8.64 square inches area, and 18 feet long, r = 1.95 ' = 111 ? By table /' No. 2 the corresponding safe load = 6,780 lbs. + 10 per cent. = 7,460 lbs. per square inch of section, or 64,440 lbs. for the column. TABLE OF STRUTS. 207 No. 21. RADII OF GYKATIOX FOR KOUNI> COLUMNS. Thickness in Inches Varying by Tenths. .1 .2 .3 .4 .5 .6 .7 .9 1.0 Cbrresjwnding Rcuiius of Gyration in Inches. 2 .67 .64 .61 .58 .56 .54 .52 .51 .50 .50 3 1.03 .99 .96 .93 .90 .88 .85 .83 .81 .79 4 1.38 1.35 1.31 1.28 1.25 1.22 1.19 1.16 1.14 1.12 5 1.73 1.70 1.66 1.63 1.60 1.57 1.54 1.51 1.48 1.46 6 2.08 2.05 2.02 1.98 1.95 1.92 1.89 1.86 1.83 1.80 7 2.43 2.40 2.36 2.33 2.30 2.27 2.24 2.21 2.18 2.15 8 2.79 2.76 2.72 2.69 2.66 2.62 2.59 2.56 2.53 2.50 9 3.15 3.11 3.08 3.04 3.01 2.97 2.94 2.91 2.88 2.85 10 3.51 3.47 3.44 3.40 3.37 3.33 3.30 3.27 3.23 3.20 11 3.86 3.82 3.79 3.75 3.72 3.68 3.65 3.62 3.58 3.55 12 4.21 4.18 4.15 4.11 4.08 4.04 4.01 3.97 3.94 3.90 KADII OF GYRATION FOR SQUARE COLUMNS. A cross che.s. Thickness in Inches Vary ing by Tenths. §1 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 C Corresponding Radius of Gyration in Indies. 2 3 4 5 6 7 8 9 10 11 12 .78 1.18 1.59 2.00 2.41 2.82 3.23 3.63 4.04 4.45 4.86 .74 1.14 1.55 1.96 2.37 2.78 3.19 3.59 4.00 4.41 4.82 .71 1.11 1.51 1.92 2.33 2.74 3.15 3.55 3.96 4.37 4.78 .68 1.08 1.47 1.89 2.29 2.70 3.11 3.51 3.92 4.33 4.74 .65 1.04 1.44 1.85 2.25 2.66 3.07 3.48 3.88 4.29 4.70 .63 1.01 1.41 1.81 2.21 2.62 3.03 3.44 3.84 4.25 4.66 .61 .98 1.38 1.78 2.18 2.58 2.99 3.40 3.80 4.21 4.62 .59 .96 1.35 1.75 2.15 2.55 2.96 3.36 3.77 4.17 4.58 .58 .93 1.32 1.71 2.11 2.51 2.92 3.32 3.73 4.13 4.54 .58 .91 1.29 1.68 2.08 2.48 2.89 3.29 3.70 4.10 4.51 208 IRON COLU.MN:: IKON COLUMNS.— No. 22. ROUND Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION. By this table for the same ratios of ~ the safe loads are increased 10 per cent, over the results obtained for previous tables, as given in table No. 2. Condi- tion of Ends. LENGTH IN FEET. 10 12 14 16 18 Fixed. 16000 15800 15660 15220 14330 13350 12640 12040 11470 Flat. 16000 15800 15660 15220 14330 13350 12640 12040 11470 Hinged. 16000 15800 15660 14680 13700 12670 12000 11250 10840 liound. 16000 15800 15660 13940 12840 11660 10890 9950 9200 Fixed. 16000 15800 15660 14630 13490 12640 11940 11280 10640 Flat. 16000 15800 15660 14630 13490 12640 11940 11280 10640 Hinged. 16000 15800 15160 14030 12810 12000 11140 10450 9750 Kound. 16000 15400 14470 13200 11820 10890 9820 8960 8170 xed. 16000 15500 14770 13490 12440 11570 10730 Flat. 15800 15300 14770 13490 12440 11570 10730 Hinged. Iv5600 14800 14190 12810 11680 10740 9850 Round. ,1560014600133801182010480 9330, 8280, I'll i I I Fixed. 1540015220 13490 1214011000 9940 9050 Flat. 1540015220134901214011000 9940 9040 Hinged. 15200 14680 12810 11360 10150 8970 7960 Round. 14800139401182010080 8600, 7330. 6220' Fixed. 14900144701254011090 Hat. 14900 14470 12540 11090 Hinged. 14400 13870 11790 10250 Round. 144001302010620, 8720 9850 8840' 8150' 9850 8820 8060 8880 7660 6710 7230 5790 4880| 9940 9200 9940 9200 8970 8170 7330| 6460 I 8440! 7860 8400 7650 7110 6310 5310 4490 7460 6740 7260 6270 Fixed. 14600 1349011570 9940 8740 7860 7040 Flat. 14600 1349011570 9940 8710 7650, 6560 Hinged. 13800 12810 10740 8970 7520 6310 5240 Round. ,13200 11820, 9330, 7330 5750 4490 3460 5920 4130 6190 5640 4290 2580 I Fixeo. 1522012140 Flat. 1522012140 Hinged. 14680 11360 Round. ,13940 10080 i ' Fixed. 113490, 9850 Flat. 13490; 9850 Hinged. 12810 8880 Round. 11820, 7230 9940 8440' 7330 6190 5110 9940 8400 6880 5640 4400 8970' 7110 5560 4290 2990 7330 5310| 3780 2580 1720 7820 614o' 4510 3230 2290 7590 5580 3770 2720 2000 6240 4220 2420 1570, 1100 4430 2540 1390 890 600 4920 3150 5400 4680 3260 1880 4130 3300 3440 2780 2160 1600 1230 900 1760 1300 1400 990 790 400' 600 300 IRON COLUMNS. 209 IKON COLUMNS.— No. 22. Round Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION. Tlie calculations are based on the thicknesses and radii of gyration marked under the diameters on marginal columns. See description. LENGTH IN FEET, 20 22 24 26 I 28 30 32 34 10910 10370 10910 10370 10050 9460 8490 7850 10020 9430 10020 9430 9070 8430 7430 6740 8740 8290 8710 8250 7520 6900 5750 5090 7330 6740 6880 6270 5560 4920 3780 3150 6100 5440 5530 4730 4160 3310 2490 1900 4580 3880 3850 3210 2470 2000 1440 1100 2650 2100 2270 1850 1250 1000 700 580 36 Condv- Hon of Ends. Size of Outer Diameter. 1040 680 400 200 800| 470 300' 100 9850 9350 8990 8640 8340 8050 7770 Fixed. 12 ins. 9850 9350 8980 8610 8290 7930 7520 Flat. Diameter. 8880 8330 7880 7390 6970 6570 6180 Hinged, 1'' thick. 7230 6640 6030 5610 5150 4750 4370 Round. R — 3.94 8990 8620 8250 7910 7600 7280 6940 Fixed. 10 ins. 8980 8610 8190 7720 7260 6830 6460 Flat. Diameter. 7880 7390 6840 6380 5930 55] 0 5130 Hinged. \" thick. 6030 5610 5010 4560 4130 3730 3350 Round. R = 3.37 7860 7460 7040 6610 6190 5790 5400 Fixed. 8 ins. 7650 7070 6560 6110 5640 5140 4680 Flat. Diameter. 6310 5920 5240 4780 4290 3750 3260 Hinged. \" thick. 4490 3960 3460 3000 2580 2210 1880 Round. R = 2.66 6190 5660 5110 4580 4130 3700 3300 Fixed. 6 ins. 5640 4990 4400 3850 3440 3080 2780 Flat. Diameter. 4290 3580 2990 2470 2160 1880 1600 Hinged. I" thick. 2580 2090 1720 1440 1230 1040 900 Round. R = 2.00 4760 4210 3670 3160 2790 2400 2100 Fixed. 5 ins. 4020 3500 3050 2680 2380 2100 1870 Flat. Diameter. 2640 2220 1850 1540 1300 1100 1000 Hinged. 1" thick. 1520 1260 1030 860 750 600 580 Round. i2 = 1.64 3260 2770 2300 2000 1780 1560 1360 Fixed. 4 ins. 2750 2370 2000 1740 1470 1220 1010 Flat. Diameter. 1590 1300 1100 900 800 690 610 Hinged. \" thick. 900 740 600 500 450 380 330 Round. R = 1.33 1790 1500 1240 1070 910 770 Fixed. 3 ins. 1480 1150 910 710 530 440 Flat. Diameter. 800 670 560 460 350 280 Hinged. thick. 450 370 290 250 200 170 Round. R = 1.00 Fixed. 2 ins. Flat. Diameter. Hinged. thick. Round. R— .66 210 STEEL COLUMNS. STEEL. COLUMNS.— No. 33. ROUND SECTION. GREATEST SAFE LOADS IN POUNDS PER SQUARE I NCH OF SECTION FOR MEDIUM STEEL. By this table for the same ratios of — the safe loads are increased 10 per cent, over the results obtained for previous tables, as given in table No. 4. Size of Outer Diameter. 12 ins. Diameter. I" thick. R = 3.94 10 ins. Diameter. \" thick. i2 = 3.37 8 ins. Diameter. I" thick. R — 2.66 6 ins. Diameter. I" thick. R — 2.00 5 ins. Diameter. I" thick. R — 1.64 4 ins. Diameter. I" thick. R — 1.33 3 ins. Diameter. ^" thick. R — 1.00 2 ins. Diameter. I" thick. R= .66 Condi- tion of Ends. LENGTH IN FEET. 10 12 14 : 16 18 Fixed. 23000 23000 23000 21200 16900 15000 14600 13900 13400 Flat. 23000 23000 23000 21200 16900 15000 14600 13900 13400 Hinged. 23000 23000 23000 20500 16300 14300 13700 13000 12400 Round. 23000 23000 23000 19500 15200 13000 12300 11500 10700 Fixed. Flat. Hinged Round. Fixed. Flat. Hinged. Round. 23000 23000 23000 18400 15700 14600 13900 13100 12500 23000 23000 23000 18400 15700 14600 13900 13100 12500 23000 23000 22600 17700 15000 13700 12900 12200 11400 ,23000 23000 21600 16600 13700 12300 11300 10400 9700 23000 23000 21000 15700 14400 13300 12900 11900 11000 23000 23000 21000 15700 14400 13300 12900 11900 11000 23000 23000 18400 13600 12300 12300 11900 10800, 9800 23000 23000 17300 12500110001060010000 8900| 7800 I Fixed. 23000 21230 1580014100 1290011700 107001 9700 9000 Flat. 23000 21230 15800 14100 1290011700 10700 ; 9700i 8700 Hinged. 23000 20500 15000 13100 11900 10600 9400 8200 7200 Round. 23000 19500 13700 11600 10000 8600, 73001 6100; 5100 I I I Fixed. 23000 16900 14500 13100 11900 103001 9300 8500 7600 Flat. 23000 16900 14500 13100 11900 10300! 9200 8100 7000 Hinged. 21500 16300 13600 12100 10800 9000 7600 6000, 5500 Round. 20500 15200 12200 9400 8900 6900 5600 4500' 3500 Fixed. 23000 15700 135001170010200 9000 8000 6800 Flat. 23000 15700 135001170010200 8700 7400 6200 Hinged. 21000 15000 12500 10600 8800 7200 5900 4700 Round. 20500 12500 10300 8600 6700 5100 3900 2900 5900 5100 3577 2100 Fixed. j21200 14000 11700 9700 8300 6800 5600 4300 3300 Flat. '21200 1400011700 9700 7900 6200 4800 3600 2800 Hinged. 20500 11900 10600 8200 6300 4700 3300 2200 1600 Round. 1950011600 8600 6100 4300 2900 1900 1300 900 Fixed. 1570011600 8900 6800 4800 3200 2300 1800 1300 Flat. 1570011600 8700 6200 4000 2700 2000 1400 1000 Hinged. 15000 10500 7100 4700 2600 1600 1100 900 600 Round. 13700 850C 5100 2800 1600 900 600 400 300 STEEL COLUMNS. 211 STEEL COLUMNS.— No. 23. Round Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION FOR MEDIUM STEEL. The calculations are based on the thicknesses and radii of gyration marked under the diameters on marginal columns. See description. LENGTH IN FEET. 20 22 24 26 28 30 32 34 36 Condi- tion of Ends. 128001220011600110001060010100 9600 9200 8900 Fixed. 128001220011600110001060010100 9600 9000 8600 Flat. 11800 11100 9900 9200 10500 8500 9800 7800 9300 7200 8800 6600 8100 6000 11800 11000 11800 11000 10600 9800 8700 7800 10600 10200 10600 10200 9300 8800 6600 6700 9400 9300 7800 5700 9000 8800 6600 4700 8800 8500 7000 5000 10200 10200 8800 6700 9400 9400 7800 5700 9000 8700 7200 5100 8500 8100 6600 4100 8000 7400 5900 3600 7400 6800 5300 3400 6800 6200 4700 2900 8300 7900 6300 4300 7600 7000 5500 3500 6800 6200 4700 2900 6200 5500 3900 2300 5600 4800 3300 1900 4900 4100 2600 1600 4300 3600 2200 1300 6700 6100 4600 2800 6000 5200 3600 2100 5100 4300 2800 1700 4400 3600 2300 1300 3700 3100 1900 1100 3500 2700 1500 900 2800 2400 1300 800 4900 4100 2600 1600 4000 3300 2000 1100 3300 2800 1600 900 2800 2400 1300 800 2300 2000 1100 600 2000 1800 900 500 2700 2300 1300 700 2100 1900 1000 600 1800 1500 800 500 1500 1200 700 400 1100 700 400 200 800 500 300 100 5700 6100 Fixed. 5300 Flat. 2700 2100,Round. 900 Round. 700 600 Round. Fixed. Flat. Hinged. Round. Fixed. Flat. Hinged, Round. Fixed. Flat. Hinged. Round. Size of Outer Diameter. 13 ins. Diameter. I" thick. R — 3.94 10 ins. Diameter. thick. R =. 3.37 8 ins. Diameter. ^" thick. R = 2.66 6 ins. Diameter. I" thick. R =z 2.00 5 ins. Diameter. thick. R = 1.6i 4 ins. Diameter. I" thick. R = 1.33 3 ins. Diameter. ^V' thick. i2r= 1.03 2 ins. Diameter. I" thick. i2= .66 212 IRON COLUMNS. IRON COLLMXS.— Xo. 24. SQUARE Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION. By this table, for the same ratios of ~, the safe loads are increased 5 p€r cent, over the results obtained in table No. 2. Siz^ of Condi- tion of Ends. LEXGTH IX FEET. Column. 2 ! 4 6 8 10 12 14 16 18 2 ins. Diameter. I" thick. F.— .77 Fixed. Flat. Hinged. Round. 13540 10330 8160 6760 13540 10330 8120 6320 12940 9o00 6920 5060 12100 8010 5210 3360 5410 4770 3420 2000 4130 3440 2180 1250 3090 2600 1500 850 2300 2000 1100 600 1790 1500 800 450 3 ins. Fixed. Diameter. Flat. thick. Hinged. Jl=l.lD Round. 149501216010330 8690 14950 12160 10330 8680 1448011460 9500 7660 13810 10400 8010 6020 7690 7570 6280 4540 6760 6320 5060 3360 5830 5280 3980 2380 4920 4240 2900 1680 4080 3410 2160 1240 4 ins. Diameter. I" thick. i2 — 1.53 Fixed. Flat. Hinged. Round. 15270 13540 11690 10330 15270 13540 11690 10330 14620 12940 10940 9500 13800 12100 9750 8010 9010 9010 8050 6440 8150 8110 6920 5210 7420 7180 5900 4180 6720 6220 5010 3310 6040 5540 4260 2590 5 ins. Diameter. 1" thick. E — 1.89 Fixed. Flat. Hinged. Round. 15450 14390 12610 11310 10250 15450 14390 12610 11310 10250 14800 1386011950 10540 9410 142001312010960 9260 7910 9170 9170 8220 6630 8400 8370 7260 5460 7780 7700 6400 4660 7260 6930 5660 3950 6 ins. Fixed. 15640 14950 13540 1216011220 10330 9410 8690 8160 Diameter. Flat. 15640 14950 13540 1216011220 10330 9410 8680 8120 f thick. Hinged. 15100 14480 12940 11460 10450 9500 8480 7660 6920 i2 = 2.30 Round. 14700 13820 12100 10390 9150 8010 6910 6020 5210 8 ins. Fixed. 15990 1526014670 13540 12480116901095010250 9650 Diameter. Flat. 15990 15260 14670 13540 12480 11690 10950 10250 9650 ^" thick. Hinged. 15300 14800 17170 12940 11800 10940 10160 9410 8750 ^-3.07 Round. 15100 14200 13440 12100 10800 9750 8790 8010 7190 10 ins. Fixed. 16000 15260145701438013540 12750 120601140010860 Diameter. Flat. 16000 15260 14570 14380 13540 12750 12060 11400 10860 }i" thick. Hinged. 16000 15260 14170 13860 12940 12090 11360 10640 10070 i2r=3.S7 Round. 16000 15100 14170 13120 1210011130 10270 9380 8670 18 ins. Fixed. 16000 15600 15150 14950 14250 13420 12750 1214011690 Diameter. Flat. 16000 15600 15150 14950 14250 13420 12750 12140 11690 I" thick. Hinged. 16000 15300 14650 14480 13700 12800 12090 11460 10940 R-A.bb Round. 16000 15100 14250 13820 129501193011130 10400 9750 IRON COLUMNS. 213 IRON COLUMNS.— No. 24. SQUARE Section. GRCATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION. The calculations are based on the thicknesses and radii of gyration marked under the diameters in marginal columns. See previous description. LENGTH IN FEET. 20 22 24 26 1440 1120 1100 810 640 490 360 260 930 580 380 210; 760 430 270 170i 28 30 I 32 34 3380' 2770^ 2290' 1900^ 1660 14301 1210 1060 2800 2360 2000 1670 1370 1090 880 710 1690 1300 1090 900 750 630 550 450 900, 700 600, 500 400| 360! 290 240 5370' 46^0 4080 3540' 3020; 2650 2250, 1960 1770 Fixed. 4710 3980 3410 2940 2560' 2270 1980 1700 1500 Flat. 36 910 560 Condi- ^. , Hon of « V Ends. Oolurnn. Fixed. Flat. Hinged. Round. Fixed. Flat. 370 Hinged, 210 Round. 3370 26j0 2160 1800 1470 1260 1080 900 1950 1530 1200 1000 830 70o! 600 500 800 Hinged, 400 Round. 6670 6130 5580 5020 4500 4020 3570 31501 2790 Fixed. 6230 5650 49^0 4340 3800 3350 2900 2660 2370!Flat. 4960 4370 3630 2990 2480 2120 1800 1540 3460 2680 2140 1720 1440 1210 1000 870 1330iHinged. 760' Round. 7690 7210 6760 6310' 5830 5410 4920 45001 4080 Fixed. 7570 6880 6320 5840 5280 4770 4240 3800 3410' Flat. 6280 5610 5060 4570 3980, 3420 2900 2480 2160 Hinged. 4540 3900 3360i 2870^ 2380 2000| 1800 1440 1240 Round, 9010 8550 8160 7820 7470 7130| 676o! 639o' 6040 Fixed. 9010 8530 8120 7760 7250 6750 6320 5930 5540 Flat. 8050 7450 6920; 6470 5960' 5480 5060^ 4660 4260 Hinged. 6430 5690 5210, 4730; 4230 3780; 3360 2960, 2590 Round. 10330 9820 9320 8790 8490' 8200 7920 7640 7340 Fixed. 10330 9820 9320 8790 8470 8170 7870 7500 7060 Flat. 9500 8940 8400 7800 7390! 6980 6590 6220 5780 Hinged. 8010 7390. 6810 6170 5620 5280 4860 4480 4060 Round. I I : i 1 111301068010250 9730; 9320; 8920 8640 8350 8110 Fixed. 111301068010250 9730 9320| 8920 8630 8320 8060 Flat. 10350 9880 9410 8840 8400 7960 7600 7180 6860 Hinged. 9030 8440 7910 7300 6810, 6340, 5940 5490 5130 Round. I 1 I I i I 2 ins. Diameter. thick. B— .77 3 ins. Diameter, j^g" thick. Ii=z 1.15 4 ins. Diameter. thick. B — 1.53 5 ins. Diameter, i" thick. B = 1.89 6 ins. Diameter. 3" thick. B — 2.30 8 ins. Diameter. thick. B = 3.07 10 ins. Diameter. V thick. B — 3.87 12 ins. Diameter. \" thick. B — 4.55 214 STEEL COLUMNS. STEEL COLUMNS.— No. 25. SQUARE Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE I NCH OF SECTION FOR MEDIUM^STEEL. By this table, for the same ratios of the safe loads are increased 5 per cent, over the results obtained in table No. 4. Condi- tion of Ends. Fixed. Flat. Hinged Round. Fixed. Flat. Hinged. Round. Fixed. Flat. Hinged. Round. Fixed. Flat. Hinged. Round. Fixed. Mat. Hinged. Round. Fixed. Flat. Hinged. Round. LENGTH IN FEET. 10 12 14 16 16000 12100 9400' 7700 6000 4300 3100 2300 1600012100 9400 7200 5300 3600 2600 2000 1530011100 8000 5700 3800 2300 1500 1100 14300 9400 6000 3800 2200 1300 900; 600 18 1800 1500 800 500 22300140001210010300 8800 7700 6400! 5400! 4300 2230014000 1210010300 8600 7200 5800' 4600 3600 22300,1320011100 9100 7200 5700 4400 3000 2300 2130011900 9400 7100 5200 3700i 2600 1800 1300 23000 16000 13500 1200010500 9400; 8500 23000 16000 13500 1200010500 9400 8200 22700153001310011000 9300 8000 6700 217001430011800 9200' 7400 60001 4800 7700 7200 5700 3800 6700 6100 4700 2900 2300018900 14400 131001200010500 9800 9100 8300 2300018900 14400 131001200010500 9800 8800 7900 23000;i8200 13500 11900 11000 9300 8500 7300 6500 23000jl7200|12400 l0700 9200^ 7400^ 6500 5300 4400 23000*22300 16000 14000 13000 12000 11100 10300 9400 23000 22300 16000 14000 13000 12000 11100 10300 9400 23000:223001530013200121001100010000 9100 8000 23000 21300143001190010600 9200 8100 7100 6000 I i I ! I I 23000 23000 20900 16000 14400 13500 12800 12000 11300 23000 23000 20900 16000 14400 13500 12800 12000 11300 23000 22700 20200 15300 13700 12600 11800 11000 10200 23000:217001930014300 124001120010200 9200i 8300 Fixed. 23000 23000 23000 19600 16000 14800 13900 13200 12700 Flat. 23000 23000 23000 19600 16000 14800 13900 13200 12700 Hinged. 23000 23000 22300 18900 15300 13800 13100 12300 11700 Round. i23000 22100 21300 17900 13600 12300 11200 10800 10100 Fixed. 23000,23000 23000 22300 18900 1580o' 1480014000 13500 Flat. '23000 23000 23000 22300 18900 15800 14800 14000 13500 Hinged. 23000 22300 22300 21600 18200 15100 14100 13200 12600 Round. 123000 22300 21700 20600 17200 14000 12900 11900 11200 I I I i ) I I I STEEL COLUMNS. 215 STEEL COLUMNS.— No. 25. Square Section. GREATEST SAFE LOADS IN POUNDS PER SQUARE INCH OF SECTION FOR MEDIUM STEEL. The calculations are based on the thicknesses and radii of gyration marked under the diameters in marginal columns. See previous description. LENGTH IN FEET, 20 22 24 26 28 ' 30 32 34 3400 2800 2300 1900 1700 2800 2400 2000 1700 1400 1700 1300 1100 900 700 900 700 600 500 400 5900 5100 4200 3800 3000 2700 2300 2000 4900 4100 3500 3100 2600 2300 2000 1700 3500 2900 2200 1900 1500 1300 1100 900 2000 1700 1200 1100 800 700 600 500 36 Condi- tion of Ends. Fixed. Flat. Hinged. Round. Fixed. Flat. Hinged. Round. 1800 Fixed. 4 ins. 1500 Flat. Diameter. 800 Hinged. \" thick 400 Round. R = \m Size of Column. 2 ins. Diameter. 4" thick. 11= .77 3 ins. Diameter. i^g'Mhick. 72= 1.15 7500 6700 6200 5500 4800 4200 7000 6200 5500 4700 4000 3600 5600 4800 4000 3300 2600 2200 3700 2900 2400 1900 1500 1300 8800 8200 7700 7000 6400 5900 8600 7800 7200 6500 5800 5200 7200 6400 5700 5000 4400 3700 5200 4400 3800 3200 2600 2148 10700 10000 10700 10000 9500 8800 7600 6500 12100 11500 12100 11500 11200 10500 9800 8700 9400 8900 9400 8800 8000 7300 6000 5300, I I 11000 10400 11000 10400 9900 9200 8000 7300 8500 8300 6800 , 4800, 1 10000 10000 8300 6400 8100 7700 6300 4300 9500 9500 8100 6114 3600 3200 2900 2700 1800 1600 1000 900 5400 4800 4600 4100 3200 2700 1800 1600 7800 7200 7400 6600 5900 4200 4000 3300 I 9100 8700 9000 8500 7500 7400 5600 5000 2800 Fixed. 2500 Flat. 1500 Hinged. 800i Round. 5 ins. Diameter. I" thick. B = 1.89 4300 Fixed. 6 ins. 3600 Flat. Diameter. 2300 Hinged, thick. 1300|Round. H = 2.30 6900 Fixed. 8 ins. 6100 Flat. Diameter. 4700 Hinged. ^" thick. 2900,Round. H = 3.07 8400 Fixed. 10 ins. 8100 Flat. ; Diameter. 6600 Hinged. thick. 3400 Round. E — 3.87 1290012500 1200011400110001060010200 9700 9400 Fixed. 12 ins. 12900125001200011400110001060010200 9700 9300 Flat. Diameter. 12000115001100010400 9900 9400 9000 8400 7900 Hinged, i" thick. 10400 9800 9200 8600 7700 7500 7000 6400 5900 Round, i B = 4.55 216 TRUSSED GIRDERS. STRESSES IN SOME SIMPLE FORMS OF FRAMED STRUCTURES. Compression indicated by the sign — and by solid lines. Tension by the sign + and by dotted lines. When the prefix " stress'^ is used, the load borne by the member is indicated ; otherwise the length of the member is meant. Cranes. Supported at the points A and B, maximum longitudinal stresses, due to weight W, suspended at the end. These stresses are modified by the position of the hoisting chain. A C A 0 C D is the point where a line drawn from C at right angles to A B will intersect the latter. Stress AC= + 4^XW Stress ^ C= ^ X TT A B AB " ^ J5 = — 4^XT7inFig.2,or = + 4^ XTFin Fig. 3. When point A is supported by inclined back stays as shown in Fig. 1, and when the back stay is in the plane of A B and TF. Stress .4 ^=. + ^^XTFX^, and a resulting compression ensues on AB = TRUSSt:D GIRDERS. 217 Cranes. Stress CD = —^^XW \ FIG. 4 AD Ef— " A C= + i-^X W I AD ^ D = — stress 7) C. 3X Let 10 = the horizontal reaction at B stress B E= + X w <^ A E= + ^-f X (stress C D — w) A C AB ^Jand Rare points where . Hnes drawn from D intersect ^ at right angles A Cand A B. X, Y and Z are the angles formed by extending the braces C D and B 1) as indi- cated by dotted lines, iv = the horizontal reaction at B X W. Stress A C=+^X W. Stress CD = ^5 = + g|x.. B D = — A D = — stress C T) X .r? ^— ^ Sine X or = — stress B I) X Sine z B D Hi) X X w 218 TRUSSED GIRDERS. Trussed Girders. Weight in Middle. FIG. 6 Stress A C or 4 0 W D C=— W Weight out of Centre. ® FIG. 7 Stress.4C= + ^4$§^X]r Stress^ 5=-^J^.XTr Equal Loads W. W. FIG. 8 (w) (w) N B S N N N / / stress A ff or DE=+^X W Stress ^JT or CE = —W FIG. 9 ® ® Unequal Loads W and w. Stress as below on counter c 7 / to position of greatest load. FIG. 10 © ® ® TRUSSED GIRDERS. Stress Ji For J) JI = 219 B F CG = — 2 W G CO Stress A For IT E= + U W X ^' FGoY H a = + W X A^ FB A G FC or CH= + ^\ ~^ CO AG CG Roofs. w = load concentrated on each triangular apex. Strut Stre,'^sfs. 0 FIG. 11 Stress 1) F= — w " f:f= w CII X 7T CB Strefisrs on Ties. Stress F G = + ].}?/• x A F= + 2.] yr- X Ci<^ = + liu'X B n B C CG EC Rafter Stresses. Stress C E = — 2 w x CH C B CH C B 220 STRESSES IN FRAMED STRUCTURES. Roofs. w = load concentrated on each triangular apex. ® ^ FIG. 12 Strut Stresses. " . ® StYessHIorKL= — wX^ CB DB Stress KB Rafter Stresses. w_ CB -> 2 ^ CD f7 w (JB-\ ~y 2 ^ CDJ ri w ^ CB ^ CD-\ Stresses on Ties. stress G 7orOZ = + -I X g| x g| « n T I S v ^ D B ^ C B - E L = the sum of the stresses on F E and 7. " L B = the sum of the stresses on E L and 6* X. STRESSES IN FRAMED STRUCTURES. 221 Roofs. ?/' = load concentrated on each triangular apex. The rafters and horizontal tie being each uniformly sub- divided. Strut Stresses. ^ FIG. 13 Stress F II = — |-X ^ Vertical Ties, Stress EII= -\-~ . Stress D I= + w. Stress CB = + ^w. Rafter Stresses, Stress CI) = — 2 w X " DE — — 2^10 X E F = —'^ w X " FA= — SiivX Horizontal Tie. B C C A CB CA CB CA. CB CA CB Stress at ^ = 4- 2 w X (B I \ stress D B X jfjj j " HA==+ " IH+ ( « FHX—p'j 222 IRON AND STEEL SHAFTING. SHAFTING OF WROUGHT IRON OR STEEL. The resistance to shearing averages about j% of the tensile strength, i. e., about 40,000 lbs. for wrought iron, or 50,000 lbs. for soft steel, per square inch of section. The torsional resistance of any shaft can be determined when the shearing resistance is known ; thus T= .196 cPs for round shafts, (a) T= .28 (Ps for square shafts. (6) d = diameter of the shaft in inches. s = shearing strength in pounds per square inch. T = the torsional moment in inch-pounds ; that is, the force in pounds multiplied by the length in inches of the lever through which the force acts. Taking s at 40,000 and 50,000 lbs., respectively for iron and steel, and assuming that in machinery the working value should be between one-fourth and one-fifth of the ultimate strength — adopting the mean — makes the working resistance to shearing 9,000 lbs. per square inch for iron, and 11,200 lbs. per square inch for steel. Putting this in terms of the torsional moment and diameter, we derive from equations a and b 1760 for round iron shafts, (c) T = 2200 # for round steel shafts. (d) T = 2520 d^ for square iron shafts. (e) T = 3150 d^ for square steel shafts, (/•) d = i / for round iron shafts, \ 1760 (?) d = 3 /' T \ 99QQ 1'01-^iid steel shafts. ih) d = 3 ■ T ^/ for square iron shafts, \ 2520 (i) d:= 3 / T \ / square steel shafts, oloO {k) Example 1. — What should be the diameter of a round wrought-iron shaft to safely resist a force of 1,000 lbs. acting through a lever 30 inches long ? IRON AND STEEL SHAFTING. 223 '•^^^ ^/"^W"^ ~ "*^'^ inches in diameter. These forinubo apply to shafts subject to twisting strains alone. In practice, however, such cases seldom occur, as shafts are generally subjected to combined bending and twisting strains. As there are no experimental data for such a combination of forces, we have to rely on analysis, which gives the following : ri = M 4- v/ j/2 + ii) }[ = l)ending moments in inch-pounds. (See page 126.) T = twisting " ri = a ncin twisting moment which, substituted for T in equations g to wdll give the desired proportions fo^' the shaft. In revolving shafts the longitudinal stress resulting from the bending action is continually changing from tension to compression, and vice versa. It is therefore advisable, for reasons given on page 39, to increase the factor of safety as the bending stress increases comparatively to the torsional stress. The following changes in factors of safety are recom- mended : Ratio of Mto T. Factor of Safety. Divisor in Formulce. (g) for Iron. \ (h) for Steel. .STor less, 4J 1760 2200 3/=. or 5 1570 1960 5i 1430 1790 Jf = greater than T, (5 1310 1640 Example 2. — AVhat should be the diameter of the journals of a wrought-iron shaft of a steam engine, the piston being 224 IRON AND STEEL SHAFTING. 12 inches diameter, crank 12 inches long, and the leverage from centre of crank to journal in the direction of the shaft being 6 inches, steam pressure 80 lbs. per square inch, mak- ing pressure on crank = 9,050 lbs. ? T= 9,050 X 12 = 108,600 inch-lbs. J/= 9,050 X 6 = 54,300 (J) = b\:m + v/54,3002 + 108,6002 = 175,720 inch-lbs. Substituting the above in equation (^), with the factor of safety as explained above, d = ^'/^^^ = 4.82 inches diameter. \ 1,0/0 The following illustrates a case where the bending moment is greater than the twisting moment : £'.rr/m/7/6' 3.— A non-continuous shaft is so located that it must have its bearings 84 inches apart, and carry in the middle a 60-inch pulley driven by a 12-inch belt, the effec- tive weight at centre of shaft = 600 lbs., and the belt exer- cises a vertical pull of 1,000 lbs. What is the proper diameter of the shaft ? a-000 + 60Q)X84 ^ ^^^^ ^^^^^ ^^^^ T = 1,000 X 30 = 30,000 inch-lbs. (/) r= 33,600 -f V 33,600^ + 30,000-= 78,640 inch-lbs. As J/ is greater than T, use a factor of safety of 6, which becomes by equation (g) d=' i^Mi^ = 4.12 inches diameter. \ 1,310 If above shaft was continuous and uniformly loaded, the bending moment would be less. (See Table of Bending Moments, page 128.) IRON AND STEEL SHAFTING. 225 HORSE-POWER. If it is desired to tind the relations between horse-power and diameters of shafts, the elements of time and velocity have to be considered. Taking the horse-power HP at or in terms of the diameter by equation (c) we get for iron shafts The above will give the proper diameter of a shaft for transmitting any desired HP W'hen the shaft is subjected to twisting stress alone ; but since, as previously stated, such a case seldom occurs, we must combine the bending and twisting stresses, for which a general rule will be given at the close of the subject. As the deflection of steel and iron is practically alike under similar conditions of dimensions and loads, and as shafting is usually determined by its transverse stiffness rather than its ultimate strength, it follows that nearly the same dimensions should be used for steel that are found necessary for iron. For continuous line shafting used for transmitting power in shops, factories, etc., it is considered good practice to limit the deflection to a maximum of of an inch per foot of length. The weight of bare shafting in pounds = 2.6 M= W, or when as fully loaded with pulleys as is customary in practice, and allowing 40 lbs. per inch of width for the vertical pull of the belts, experience shows the load in pounds to be about \^ W, Taking the modulus of transverse elasticity at 26,000,000 lbs., we can derive from the authoritative formulae the following ; 396,000 inch-lbs. per minute, we have HP — where ]'= revolutions per minute. 6.28 X r X 396,000 ' DEFLECTION OF SHAFTING. 226 IRON AND STEEL SHAFTING. I = f 873rP for bare shafts, (/Z / = f VJbrp' for shafts carrying pulleys, etc., (r) which would be the maximura distance in feet between bearings for continuous shafting subjected to bending stress alone. If the length is fixed, and we desire the diameter of the shaft, we have, d = •^/§73 foi' bare shafting. {f^) rJ = "^YTo shafting carrying pulleys, etc. (0 To apply the above to revolving shafting subjected to both twisting and bending stress, it is necessary to combine equa- tions {}:>) and (r) with equation (o). But in shafting, with the same transmission of power, the torsional stress is inversely proportional to the velocity of rotation, while the bending stress will not be reduced in the same ratio. It is, therefore, impossible to write a formula covering the whole problem and suthciently simple for prac- tical application, but the following rules are correct within the range of velocities usual in practice. WORKING FORMULiE FOR CONTINUOUS SHAFTING. For the diameter {d) in inches, and the maximum length (/) in feet between bearings of steel or iron shafting so pro- portioned as to deflect not more than of an inch per foot of length, allowance being made for the weakening efl'ect of key seats. = — for bare shafts, (n) d = ^ ' ^ for shafts carrying pulleys, etc., ('•) / = f TWcF^ for bare shafts, (f) / = f noTf- for shafts carrying pulleys, etc., (^> ) IRON AND STEEL SHAFTING. 227 In the event of the whoU^ power b(Mniameter if Pin in Inches. Area of Moments in Inch-Pounds for Fibre Strains of Pin in Sq. Inches. 15,000 lbs. per Sq. Inch, 18,000 lbs. per Sq. Inch. 20,000 lbs. per Sq. Inch. 22,50a lbs. per Sq. Inch, 25,000 lbs. per Sq. Inch. 6 6^4 6% 28.274 29.465 30.680 31.919 oipinn oioiuu 338400 359500 381500 001 /UU 406100 431400 457800 4941 nn 451200 479400 508700 4771 nn 507600 539300 572300 R'^npnn 564000 599200 635900 6^, 6% 33.183 34.472 35.785 37.122 428200 452900 478500 ^toOoUU 513800 543500 574200 570900 603900 638000 finfifinn 642300 679400 717800 fi74nnn 0 / 1UUU 713700 754800 797500 7 1\ r% 38.485 39.871 41.282 42.718 c;n^i no 532700 561200 590700 DUOiUU 639200 673400 708900 710200 748200 787600 757700 799000 841800 886100 887800 935300 984500 ^'^^ 1% 44.179 45.664 47.173 48.707 652900 685500 719200 7/lc:cnn /4tOOUU 783400 822600 863000 828400 870500 914000 958900 Q'^ionn 979300 1028200 1078800 1 n'^'vinn 1088100 1142500 1198700 8 8^8 8% 50.265 51.849 53.456 55.088 / o^uuu 789900 826900 865100 947900 992300 1038100 1005300 1053200 1102500 1153400 1 1 "^1 nnn 1184800 1240300 1297600 1316500 1378200 1441800 8% 8=^4 87/8 56.745 58.426 60.132 61.862 944900 986500 1029400 1133800 1183800 1235300 1205800 1259800 1315400 1372500 1417300 1479800 1544100 1 '=;n7'^nn 1574800 1644200 1715700 9 91/4 9^/8 63.617 65.397 67.201 69.029 1118900 1165500 1213400 1 OQQonn 1342700 1398600 1456100 1431400 1491900 1554000 1617900 1 fii n^nn xxj L\JO\J\J 1678400 1748300 1820100 1 7ftQ9nn 1864800 1942500 2022300 9^2 9-^/8 9% ^% 70.882 72.760 74.662 76.590 1313100 1364900 1418100 iOiOiUU 1575700 1637900 1701700 1 Rft'^nn ix)0iAMETER. PIN. 2 3 2.00 2.26 2. 50 2.75 3.00 3. 3 26 3 2.030 2.280 2.530 3.030 280 O 630 O •^1 030 030 030 030 OSO 030 030 Screw. NUT. || _^ 1% 1% 2^6 2^6 1:1 3M 3^ 3X 3K 4^6 4M6 •2- WASHER. \ D. 3\ 4 43^ 43^ 4% 5 53^ 53^ 6 3.75 3.771 0.021 4.00 4.022 0.022 4.25 4.273 0.023 4.50 4.624 0.024 3 4.75 4.776 0.026 3 6.00 5.026 0.026 6.25 6.277 0.027 6. 50 6.528 0.028 6.75 5.779 0.029 6.00 6.030 0.030 43^ 2% 2% 3^6 SMe 3^6 3% 3% 4Mg 4M6 4M6 5 5 5X 5X 5% 63^ 63^ 7 7 7 5X 6% 6% 73-2 V3^ 83i 83i 83^ 63^ 63^ 73^ 73^ 7^ 8 S% 8 9 9 6.28 6.63 6.78 7. 03 7.28 7.53 7.78 8.03 8.28 8.63 8.78 0.030 0.030 0.030 0.030 0.030 0.030 0.030 63^ 0.030 0.030 0.030 0.030i73^ 0.030 2^ 2% 2% 2' 2% 2% 2% 2% 2% 2 7'3|2% 4% 4% 6% 6% 6% 7^6 7^ 7^ 83^ 9X 9}4 103^ 1014 1 1 1 1 8% 8% 93^ 93^ 10% 10% 1 1 1 1 11% 11% 12% 12% 10% 11>^ 113^ 11^ 123^ 12^ 133^ 13^ 14 Note. — To obtain grip G of pin, add extra for each bar packed together with the proper additional amount given above in the table. STANDARD COTTER PINS. 233 STANDAKO COTTKK PINS EROM r TO Sr I>IAMETEK. Length over oil M erf Adc'fo Diameter of Pin. Diameter of Pin Hole, j Play in Pin Hole. ; Diameter of Head \ H. 5 1 g. Length under Head equal to. Lemfth over all equal to. \ aSVcc of Cotter Diameter of Pin P. 1 1.00 1.03 0.03 \ G ^ % G-r % ixlj 1 1^4 1-25 1.28 0.03 G -r % G4- '^B 1x2 llo 1.50 1.53 0.03 G -r % G ^ 1 Ax2| 1^4 1.75 1.78 0.03 2 G -r \ G -f 1 i%^2i 1% 2 2.00 2.03 0.03 2-^8 % i^i G + % G ^ 11:4 |x3 2 2^4 2.25 2.28 0.03 2-^8 •''8 i^l G + % G 4- 11;4 ?x3i 2^4 2^^ 2.50 2.58 0.03 2'8 % G + i\ G + \H2 f.^ X 3| 2^2 2'^4 2.75 2.78 0.03 3^8 % G -f G +1^2 2=^4 3 3.00 3.03 0.03 \ G ^ 1% G - 1 ' 8 1x5 3 3^4 3.25 3.28 0.03 334 ^ |xA G + 1% G + 17 b ix5 3^4 3^0 3.50 3.53 0.03 4 G + 1% G +21/8 |x6 3^2 3^4 3.75 3.78 0.03 4I4 i G + 1% G 4- 2i7'8 ix6 , 3% 234 SHEARING AND BEARING VALUE OF RIVETS. If) Em o O S "A xii 0 i-H 11250 12000 9840 9190 10500 8530 9750 «W 6750 7880 |0006 6190 72201 8250 4690 5630 6560 7500 4220 5160 1 5910 6750 3000 o/oU o o o O lO o in (M o in CD o o o o LO i-l 00 00 CO O) oq 03 CO CO o o o ■ ■ o:) LO LO CM CO CO LO o o o 00 rH 00 CO 00 o o 00 in Cv] CO CO 8 o o O CO rH LO 00 o o o LO CO o CV3 CD O CKI CO ■^^o^. oooooo ^- ?^ CD 00 Tji LO rH rH ^ O CD rH 00 CD CD t> J^^-.^ rHrHOaCO'^ S ^ O CD CD , T— (GDOTt^OCO -r ,^- rHT-ICO'^CDt> ' LO o LO o in ' S t> O CM in !>• I r , CO LO CD t>- 00 ' rH 15000 cv 14060 11480 13130 10670 1 12190 8440 10310 1 11250 1 7720 iclcc 7030 9380 1 irt 5280 6330 1 8440 3750 1 4690 5630 6560 /OUU 00 O CM ">!;t^ CD eg tH t> LO CO ''^H LO CD 2110 o o o c r-t CM CM CV CO LO CM a CM CO > CD < in 1760 2340 2930 1 A^c\^\\ 4690! 00 CO 00 CM rH rH CM CM CO OS OS N © 03 N g a 55 o -< O o o o o o o CO !>• O rH rH O) 00 CO CO in 00 rH CM 00 in CO 00 00 CO -"^^ O CD CD rH »H LD rH C75 O ^ O 00 rH rH CO CD I> Ln o in o in i> o CM in o 00 in CD o CO 111 a; CD CD LO 1"^ in CD t> IlO CD 00 o o o o CX) CO - CD CD inlin CD,'^ o olo o CJ5 CDI"^ CM 00 "^lio CO ' olo o o I colin CO o • rHlt> 00 o I OOloO Tj^ LO ^^•oooooo 1 O CD I>- (M rH LO V-gl^OOOOOOCO^ C^'OCDCDrHi— (lO rHOiO-^OOD 5 rH T-H 00 CD O- eg S I CD O- 00 o 3S CM O O in ""^ O CO CM CM O o 8 o olo o I> CmIo 00 l>. t>|cD CD C35 i-hIoO LO _ O O LO 1-H CD in 00 o o cva ID t— I (M 00 CO O 8 ... CO 00 o CM loo '"^ ID O OOlO) O O O 00 O 00 cj) in CJ> O CV3 o o o o • ■ rH 00 ^ CO in cb CD 00 CX) O 8S 4^ -S'e o o olo o T-l 00 CD lTt< CV] (35 00 00 loo 00 CO Lnlco [> o o o|_ in 00 T-H |c35 L I 00 tH 05 |co I CO CO CO 00 03 -TtH T-H 03 CO LO I> 05 _ CO CD T-H T-H in rH 05 O -"^ O 00 ■ rH OO CD t> "5 1 -4?' -59 rH »^ liT- 236 PENCOYD RIVET PROPORTIONS. 0 ^1 -a LENGTHS OF RIVETS. 287 TABLE SHOWING LENGTH OF RIVET- SHANK REQUIRED TO FORM HEAD. PLAIN KIVETS. COUNTERSUNK KIVETS. Grip. Length. <— Grip. — >\ <— Length. — V Diameter in Inches. Length in Inches. Diameter in Inches. Length in Inches. 1^ 1^ IJi 2 2Vi 1% 2 2% 2\i 2 2>8 2^4 2% 24 24 2 21.4 2y^ 2% 2^ 2% 2% 2y, 2% 2^ 2% 2X 2% 24 2% 2% 3 2% 2X 2li 3 2% 3 3/^8 3>4 3 3>8^ 3>4 3?i 3H 34 3% 3>4^ 34 34 34 3V 3% 3^^ 3% 3)^ 3*^ ^74 3y2 S% 3^ 3^ 3% 3% 4 34 3ys 4 4X 3% 3^ 3% 4 3jg 4 4^8^ 4.^4 4 43^ 4% 4>8' 4?4 4% 4>^ 44 4% 44 4% 4M 4.5^ 4X 4% 4^ 4Ji 5 4^^ 4Ji 5 5>i 4J^ 5 6>8 &4 5 5>8 5^4 6^8 6>8^ 5% 5,^4 5% 54 5% 5% 54 54 54 6% 5^ 5^^ 6^ 6 5% 6 Q4 5J8 6 63« 6^4 6 Q% 6 '4 6^ 64 64 64 64 e^i 6% 6^ ex Q% ex 7 6y. ^4 7 ^4 5.7 10.9 13.4 22.2 38.0 2 2>8 2^ 24 24 24 24 24 3 33-0 3^4 34 34 34 34 3/g 4 4' a 44 44 44 44 5 54 54 1>8 1^-4 1% IH 14 14 1% 2 24 24 24 24 24 24 3 34 34 34 34 34 34 4 44 44 44 44 44 44 44 6 54 14 1^ 14 14 1% 14 14 13^ 14 1% 1% 1^ V4 1% 2 2 2 23i 2>8' 2>i 234 24 24 2^ 24 24 23^ 24 24 24 24 24 24 24 24 24 3 24 3 3 3>8" 33^ 34 34 334 34 34 34 34 34 34 34 34 34 34 34 34 34 34 4 34 4 44 44 4>8^ 434 44 434 4;^ 44 44 43^ 44 44 44 44 44 44 44 44 44 44 5 6 5 54 &4 5^4 6% &4 54 &4 &4 &4 1 6 64 634 For weight of rivets, see page 345. 238 DIMENSIONS OF STEEL EYE BARS. TABLE OF STANDARD STEEL EYE BARS. ^Radius of Cromn. dSue of Pin Hole. w. t. D. d. L. Width of Bar. J\finiinuin Thickness of Bar. Dia7ifieter of Head. Diameter of Largest Pin Hole. Additional Lenyth of Bar Beyond Centre of Eye Required to Form One Head. Inches. Inches. Inches. Inches. Inches. 3 3 % \ 7 8 3 3% 15 I71/2 4 4 ■ !^ 91/2 18 201^ 5 I % \ % 11^2 I2I/2 13 m I91/2 231/4 261/2 6 6 % I31/2 141/2 5\ 23 261/4 7 7 7 \i \i 16 17 18 A 26% 301/4 36% 00 00 00 1 1 1 17 18 I8I/2 6% 7% 7% 26% 30 33% Note.— To all bars up to G inches wide and 1 inch thick and under, add inches extra for each eye to the length of the bar. To all bars up to 7 and 8 inches wide and Vy^ inches thick and under, add 1]/^ inches extra for each eye to the length of the bar. Note. — Pencoyd Standard Eye Bars are Hydraulic Forged, and are guaran- teed to develop the value of the bar, under conditions given in the above table, when tested to destruction. The maximum sizes of pin holes as given in the above table, allow an excess in sectional area of head on line SS over that of the body of the bar of 33 per cent, for diameters of pins, not larger than the width of the bar, and 36 per cent, for pins of larger diameter than width of bar ; the thickness of eye being the same as the thickness of the body of the bar. Note. — The steel manufactured by us for the use of eye bars is open-hearth steel, and will be furnished of such quality as to satisfy the demands of en- gineers. Note. — All eye bars are finished to length according to measurements to U. S. Standard as made by G. M. Eddy & Co. TENCOYD CLEVISES. 239 PENCOYD CLEVISKS. rROPORTIONED FOR STRAINS PER SQUARE INCH. Tension, 10,000 lbs. Bearing, 12,000 lbs. Bending, 15,000 lbs. SnEARiN 2 111^ 1 1^4 J- .'8 ^^4 2 ? 2 2 1^8 1% 2% 5 21/4 21/4 % 2^4 15 2 5 2\ 2^4 5^ 21/4 14 2 1% 2 2\ 5 2\ 2^4 % 2\ 14 3 1% 2 3 51^2 2\ 2^ \ 2\ 191^ 3 21,4 2\ 2^ 21^ If 2\ 19^ 3 1-^ 2% 2\ 2\ 2^ 2V2 20 4 l'^ 21/4 3^4 6 2\ 23/4 2\ 251/2 4 1% 2% 2% 6 2\ 2\ 1 2% 26 4 V\ 2i»2 2^ 6 2% 2\ 2% 26 5 1% ■2\ 3\ 3 3 3 28 5 2\ 31/4 3 3 3 29 5 1"8 2\ 3 6^ 3 3 V8 3 29 6 2\ 3% 7 31/4 3^4 31/4 37 6 2L'4 33/4 7 31/4 31/4 37 6 2 2'8 3 7 31/4 314 ^/8 3V4 37 7 2 Z"s 4 31^ 3i(, 1 31^2 43 7 3 31/2 3'5: 3'o ! 3^2 44 7 2'4 31/4 3 7^ 3^"; 31^2 45 Pencoyd clevises are proportioned for a range of three rods to each clevis. The sizes of pins driven are the maximum allowed according to size of rod and strength of clevis. Rods smaller than the minimum size given can still be used for each clevis and the size of pin can be correspondingly increased. 240 STANDARD SLEEVE NUTS. STAIS^DAKD SLEEVE NUTS. U. S. standard Thread. I- — Round Bars. Square Bars. Diam. Area. Side % 0.307 \ 0.442i % % 0.601 '0 1 0.785 1^8 0.994 1 l\ 1.227 1^8 1% 1.485 1^2 1.767 1% 1% 2.074 1\ 2.405 l\ 1% 2.761 1% 2 3.142 1\ 21/8 3.547 1% 2\ 3.976 2 2% 4.430 21/8 21/2 4.909 2% 5.412 21/4 2% 5.940 2% 2'7/8 6.492 21/2 3 7.069 31/8 7.670 2% 31/4 8.296 2% Size of Upset. U. 1, x4 0.563 1^8 X 4 0.766 11/4x4 1% X 4 1.000 II/2 X 4 1.266|l%x4V2 \l\ X 41/2 1.563 17/8x41/2 1.891 2 X 5 2^8x5 2.250 21/4 X 5 2.64112% X b\ 3.063 2^/2x51/2 2% X 51/2 3.516 2% X 6 4.000 27^8 X 6 4.516|3 X 6 31/9 X 6I/2 5.063,31/4 X 6I/2 |3% X 7 5.641 31/2 X 7 6.250j3% X 8 3% X 8 6.891 37/8 X 8 7.5634 X 8 1^4 1^/4 1^2 1^/2 1^/4 l\ 2 2 21/4 2\ 21/2 2^2 2% 2% 3 3 31/4 31/4 31/2 31/2 ^\ 3% 4 4 41/4 41/4 7 7 7^2 7^2 8I/2 8I/2 9 9 9^2 91/2 10 10 IOI/2 101/2 11 11 111/2 111/2 12 12 I2V2 I21/2 13 13 1% 1% 2 2 2% 2% 2\ 2\ 31/8 3^8 31/2 3^2 37/8 3^/8 41/4 41/4 4% 4% 5 5 5% 5% 5'5/4 5% 61/8 61/8 ^1 1^/8 2A 23/4 2% Q 3 '^16 3tV 3% 3% 4A 41/2 41/2 4tf 4H 5% 5% 5il 5{| 61/8 61/8 61i 6M 71/8 CJF3ETS ON SQUARE AND ROUND BARS. 241 ALLOWANCE FOR UPSETS ON SQUARE AND ROUND BARS. Bound Ears. « . 1 Areaii Inci SI Ins. Lbs. Ins.i l« \% •■^/r 0.307 1.023 41^36.8 =U 0.442 1.473 37/8^.4 ^'s'o.eOl' 2.004 5 148.3 1 0.785 2.618 4% 34.7 l^/R 0.994 3.313 3"8 30.3 1^4 1.227 4.091 3"8 23.5 1% 1.485, 4.950 31^ 17.4 11^1.767 5.890 4% 30.3 1% 2.074 6.913 4^4 27.8 1=^4 2.405 8.018 4 25.7 1"'8 2.761 9.204 4^8 23.9 2 3.142 10.47 1 37^ 18.3 21/8 3.54711.82 j3%17.1 21^4 3.576 13.25 4% 28.5 2^ 4.430 14.77 4=^8 22.6 21^2 4.909 16.36 4% 21.3 2% 5.412 18.04 41^420.3 2'^4 5.940 19.80 41^419.8 2' 3 :'^8 6.492 21.64 51*2 25.9 I 7.069 23.56 5I4 22.2 3i.q 7.670 25.57 51^8 21.3 3I4 8.296 27.65 47^8 20.7 Size of Upset. Ins. Ins. 4 §1 Ins. Sq.Ins. 1^8 4 1144 1%4 1^4 0.731 0.420 0.837 0.550 0.9400.694 1.0650.891 1.1601.057 1.284 1.295 1% 41/2 1.389 1.515 1%! 41^^21.4901.744 l'7/8l4i^ 1.615 2.049 2 5 1.712 2.302 2V8|5 1.8372.651 21/4I5 1.962 3.023 2^^4^151,12 2.087 3.410 21^ 51,^ 2.175 3.716 2% 51^ 2.300 4.155 2'\ 6 2.4254.619 27^8 6 2.550 5.107 3 6 2.629 5.430 31/8 61^ 2.754 5.957 31/4 6i<2 2.879 6.510 3% 7 3.004 7.088 '^^ ~ 3.100 7.548 3.225 8.170 3.317 8.641 3.442 9.305 3.567 9.9935 3^,7 3% 8 3=^/4 '8 37/98 4 8 51 Lbs. Ins. 2\ 4 51/4 71^ 51/2 81,^ 5 |10 5 111/2 41/2I3 41^15 4V2I8 4 20 4 24 4 28 4 30 31/234 31^2 38 81,^2 50 31^50 31/465 31/465 31/4 3\ 3 3 Square Bars. 3/4'0.563 7/80.766 1 ll.OOO 11/81.266 II/4I1.563 1%1.891 li;^'2.250 1% 2.641 1% 3.063 10.21 Lbs. Ins. 1.875 31/2 20.6 2.55214 -~ 16.3 29.5 4.219 41/2 19.7 3.333 4 5.208 41,42 31 6.302 41/8" .1 21.7 7.500 43/4 34 8.802 4% 29.6 41/4 21.3 17/8 3.516 11.72 2 ,4.000113.33 21/8 4.51615.05 21/4 5.063 16.88 2% 5.641 18.80 217^2 6.250|20.83 2% 6.89l'22.97 6%'35.0 2% 7.563,25.21 6 ,25.1 51/831.4 4^27.7 4% 20.2 I 51/8 28.6 61/430.7 242 PROPORTION OF SQUARE RODS AND P1N8. EYES FOR SQUARE OR ROUND BARS. 243 ^^(m« wojoo cbcbco ■^^^ "^lOio oioco (N OO^iO CDCDt* cocao -KNCO (N (N(NN (N(M(N CI (N 00 CO 00 00 ^ (NCO^ iCKDt- COOO -^(N(N C o^o^ y-id ««« (NCgcq (N(N(N 00 00 00 MOJO ^"«co CD ©r^'m ao^^ TH^Cq (N(N(M (Nx ^i?^"*^"* CD a a O'-'CQ 00 ^ cot-oo ©o-' ^rHrH cq (N (M « Cq (N (N(N(N ClOOOO © t-obcs o-icq oo^io cocot- cdoo ^ ^^,1 cq(MOj cq(M(M cq(MO] (Mcqco ^ ^^C0\^ x» © ?-coo) ©bi-H^ oicb^' lb©?- 00 0)0 ^ ^^r-i rH(Mcq (N(M(N (Ncqoq oqoioo \-« -f vx N \W =« ^ ~ » \« \rf\X\X ^1/5 ©icco ao^ oqcb^ lo©© P ro a rHrHrH rH (M Oq (N (N OJ (M (N CO a d ^cqcb -^lo© © b- oo rHrH^ ^ (M 05 (N (N (N (M (M (N cqcb> ib©i> ooaa o^csi m^ib ©i>oo rir^i-i ^,H^ (Mcqcq (Ncq(N (mcqcsi •H~ (NOOOO "'"fio© t-oba 6^0^ cb^io ©©V- ^ ^^rH ^r-tr-l r-l rH rH 0) (N (M CQ CQ (N (N (N (N b ''^cq m ^ib© j?-ooa- abi^' cq cbrh ib©?- ^ rHrHrH rH ^ rH rH (M CQ (M CN (N ao '-"cqco oo'i'ib ©i-cb ab^ cicb"* lo©© ^ rHrHrH rH ,1 rH rHrHrH rH Cg (N (M (N (N i 113 OQ A 0 107 8 1 1 1 2q « 1 1 CO 117 0 1 1 0 4 1 n 1 OR 1 3}^ 12 1 4 1 .0 1 1 onon S's 12 6 42 -O onR I 3}i 12 8 o« n 08 . 1 n4 Q ftR ^ 1 ion 1 fin 1 1 R^ a. 01 no 0 1^1 3h 13 2 o« « 0^0 2^ 1 1 on « 4 61.5 o« 7 1000 1 R« Q 1 ^n 0 0 1 R n 1 4 0 4« 0 "7 £^•2 1 o« 00 1Q noXa OQ Q 47 . 1 65.1 93.4 14 9 29 5 66.6 13 10 1 76 9 229 5 15.3 30^2 48!9 68.0 97!3 133!6 18o!3 234 9 15.7 30.9 49.8 69.2 99.5 136.2 183.8 239. 0 16.1 31.6 51.0 70.9 101.1 138.8 187.2 244. 0 4?^ 16.6 32.2 52. 1 72.5 103.4 141.3 191. 0 248.2 5 17.0 32.9 53.3 74.2 105.2 144. 0 194.5 252.1 17.6 33.9 55.6 77.2 109.8 150.0 201.3 260.9 18.2 35.1 56.8 80.3 114. 1 155.7 208.1 269.7 18.9 36.6 58. 0 83.2 1 18. 0 161.0 214.9 278.3 6 19.7 37.7 59.9 86.1 122.7 166.1 222.0 287. 1 7 22.3 42.8 67. 0 98.4 141.1 188. 0 250.0 319. 0 8 24.7 48. 0 76.1 1 12.2 157.9 213. 0 278.1 353.4 9 27.4 53.9 83.9 124. 0 172.5 234. 0 304.9 388.4 10 31.0 59.0 90. 8 135.9 188.1 254.3 332.1 42 1 .0 12 37.7 70. 9 108.4 160. 0 221.5 298.3 387.9 490.0 WEIGHT OF TWO (2) RIVET HEADS IN POUNDS. % " ^2 % % 1 1^ 114 Before driving. . .O30 .114 .218 .268 ,444 .76 1.14 1.64 After driving . . . .03 1 .080 .160 .260 .440 .64 .778 1.07 WEIGHT OF BODY PER INCH OF LENGTH IN POUNDS. % % \ % 1 1^ ' _1\ Before driving. . .03 1 .64 .085 .123 .167 .218 .276 .341 246 WEIGHT OF BOLTS. WEIGHT OF BOLTS PER HUXDRED. SQUARE HEADS AND NUTS. Dimensions in inches. Diameter. % % \ 1 1^/8 1% 1^ Length. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. Ihs. 3.9 9.7 20.4 37. 58. 4.2 10.5 21.3 37.9 60.5 2 4.6 11.3 22.4 39.9 63.2 97.7 145 2^4 5. 12.1 23.6 42. 66. 101.6 149 2^ 2% 5.4 12.9 25. 44.4 69. 105.6 153 5.8 13.7 26.4 46.2 72.1 109.7 158 3 6.2 14.5 27.8 48.3 75.2 113.8 163 200 289 350 480 3^^ 6.9 16.1 30.6 52.5 81.4 122. 174 213 305 370 500 4 7.6 17.7 33.4 56.7 87.6 130.2 185 226 322 390 520 41/2 8.3 19.2 36.2 60.9 93.8 138.4 196 240 339 410 545 5 9. 207 39. 65.1 100. 146.6 207 255 356 430 570 5^ 9.7 22.2 41.8 69.2 106.1 154.9 218 270 373 450 595 6 10.4 23.7 44.6 73.4 112.2 163.2 229 285 390 470 620 6^ 11.1 25.2 47.4 77.6 118.3 171.5 240 300 407 490 645 7 11.8 26.7 50.2 81.8 124.4 179.8 251 315 434 510 670 7^ 12.5 28.2 53.1 86. 130.5 187.1 262 330 451 530 695 8 13.2 29.7 56. 90. 136.6 195.4 273 345 468 550 725 9 33.1 61.5 98. 148.8 212. 295 375 505 590 775 10 36.5 67. 106.3 161. 229. 317 405 540 630 825 11 40.0 72.5 114.6 173.2 246. 339 435 575 670 875 12 43.5 78. 122.9 184.4 263. 361 465 610 710 925 13 83.5 131.2 196.6 280. 383 495 645 751 975 14 89. 139.5 208.8 297. 405 525 680 793 1025 15 94.5 148. 221. 314. 427 555 715 835 1075 16 100. 156.5 233.2 331. 449 585 750 877 1125 17 105.5 165. 245.4 348. 471 615 785 919 1175 18 111. 173.5 257.6 365. 493 645 1 820 961 1225 WEIGHT OF BOLTS. 247 WEIGHT OF BOLTS PER HUNDRED. HEXAGON HEADS AND NIJTS. Dimensions in inches. Diameter. \ % \ % lbs. % % 1 1^8 1^4 1% Length, lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lb.s. l,'js. 1^ 3.4 8.5 17.7 32.5 49.0 1% 3.7 9.3 18.6 33.4 51.5 2 4.1 10.1 19.7 35.4 54.2 86.6 128 2\ 4.5 10.9 20.9 37.5 57.0 90.6 132 2^ 4.9 11.7 22.3 39.9 60.0 94.6 136 2=34 5.3 12.5 23.7 41.7 63.1 98.7 141 3 5.7 13.3 25.1 43.8 66.2 102.8 144 174 255 310 430 31^2 6.1 14.1 26.6 45.7 69.4 107.0 151 187 271 330 450 4 6.8 15.7 29.4 49.9 75.6 115.2 162 200 288 350 470 4^ 7.5 17.0 32.2 56.1 81.8 123.4 173 214 305 370 495 5 8.2 18.7 35.0 58.3 88.0 131.6 184 229 322 390 520 8.9 20.2 37.8 62.4 94.1 139.9 195 244 339 410 545 6 9.6 21.7 40.6 66.6 100.2 148.2 206 259 356 430 570 10.3 23.2 43.4 70.8 106.3 156.5 217 274 373 450 595 7 11.0 24.7 46.2 75.0 112.4 164.8 228 289 400 470 620 11.7 26.2 49.1 79.2 118.5 172.1 239 304 417 490 645 8 12.4 27.7 52.0 83.2 124.6 180.3 250 319 424 510 670 9 29.7 54.8 87.0 130.8 189.0 262 336 465 530 700 10 33.1 60.3 95.0 143.0 206.0 284 366 500 570 750 11 36.6 65.8 103.6 155.2 223.0 306 396 535 610 800 12 40 1 71 111.9 9Ar\ n 0 /u oou 850 13 76.8 120^2 178.6 257.0 350 456 605 691 900 14 82.3 128.5 190.8 274.0 372 486 1 640 733 950 15 87.8 137.0 203.0 291.0 384 516 675 775 1000 16 93.3 145.5 215.2 308.0 416 546 1 1710 817 1050 17 98.8 154.0 227.4 325.0 438 576 745 859 1100 18 104.3 162.5 239.6 342.0 1 460 1 i 606 1 780 1 901 1 1 1150 1 248 V. S. STANDARD SCREW THREADS. U. S. STANDARD SCREW THREADS. m > or 1 111 i a. g e o ; ^ Cm s . s . so" Ins. Ins. Ins. Ins. I71S. Ins. Ins. Ins. Ins. 1 I 1 20 18 16 14 .185 .240 .294 .344 .0062 .0074 .0078 .0089 .049 .077 .110 .150 .027 .045 .068 .093 1 If a li f li 64 1 1 A 1 1% 1 J f i i 13 12 11 10 9 .400 .454 .507 .620 .731 .0096 .0104 .0113 .0125 .0138 .196 .249 .307 .442 .601 .126 .162 .202 .302 .420 li 4 u ^11 h\ If 1 U m m ifi li 111 2A J 9 ItJ 4 14 H n li li 8 7 7 6 .837 .940 1.065 1.160 .0156 .0178 .0178 .0208 .785 .994 1.227 1.485 .550 .694 .893 1.057 If 2A m 21 li 2A 2H 2i| 2i\ 2fi 3Ti^ 1 14 li If iS it i| IJ 6 5i 5 5 1.284 1.389 1.491 1.616 .0208 .0227 .0250 .0250 1.767 2.074 2.405 2.761 1.295 1.515 1.746 2.051 2| 2| 2H 2A 2i 2U 21 2i 2ii 3A 3ii 3|| ii 4^\ li If l| 11 !!l 2 2i 2i 2| ^ 4 4 1.712 1.962 2.176 2.426 .0277 .0277 .0312 .0312 3.142 3.976 4.909 5.940 2.302 3.023 3.719 4.620 3ife 3A 311 4A 3f 4A ^ m 4iJ 5M 6 2 2i 2i 2| IIJ 2A 2i% 214 3 3i 3l 3| 3} f 2.629 2.879 3.100 3.317 .0357 .0357 .0384 .0413 7.069 8.296 9.621 11.045 5.428 6.510 7.548 8.641 5 5| 5| 4ff 5A 5H 5| 6|i 6*? ?s 8i 3 31 3* 3i 211 3A "-'16 3A 314 4 4i 4| 4i 3 2i 2| 2f 3.567 3.798 4.028 4.256 .0413 .0435 .0454 .0476 12.566 14.186 15.904 17.721 9.963 11.329 12.753 14.226 64 64 H 6A 6A 61J m 84i 8fi 9| lOi 4 4i 4i 4| 31f 4A 414 5 5i 5J 5| 2i 2* 2| 2| 4.480 4.730 4.953 5.203 .0500 .0500 .0526 .0526 19.635 21.648 23.758 25.967 15.763 17.572 19.267 21.262 ? 8| 8| m m m 8ii 1011 nil 111 12f 5 5i 5i 5i 411 5A 5}4 6 2i 5.423 .0555 28.274 23.098 9i 9A 6 51f WEIGHTS AND CAPACITIES OP CRANE CHAINS. 249 CRANE CHAINS. 'I). B. or SPECIAL CRANE. CRANE. i t \l I \l I \i 1 ij f I I fi m m m m m 2y 3^ 33'. 3ii ■'■•3|fH 1 2 2\ 4i 5 5-^ 8 9 m 16 m 1| 2t>b 2i 2\ 2H 2| 3A 3} 3A 3| 3i 4J 5 ^1 1932 2898 4186 5796 7728 9660 11914 14490 17388 20286 22484 25872 29568 33264 37576 41888 1^ 3864 5796 8372 11592 15456 19320 23828 34776 40572 44968 51744 59136 66538 75152 83776 46200 92-iGa 50312^101624' 5574Sa 11496^ 69368 120 /3B 66528133056 L O 1288 1932 2790 3864 5182 6440 7942 9660 11592 13524 14989 17248 19712 22176 25050 27925 30?on 336^4 L65 40245 44352 1^ 1680 2520 3640 5040 6720 8400 10360 12600 15120 17640 20440 23520 26880 30240 34160 38080 45r92(f 3360 5040 7280 10080 13440 16800 20720 25200 30240 35280 40880 47040 53760 60480 68320 76160 ' ^4000 ' ^•a8io ■ 5068a;101cl60 " 54880109760 60480|a20960 b sis 1120 1680 2427 3360 4480 5600 6907 8400 10080 11760 13627 15680 17920 20160 22773 25387 :^8000 ?0613 33787 36587 40320 The distance rioir c?i:t?e of ^Ji^^ Imk to fif^.b^m of Lextli^ equal to length of link, 'i)ut :n pxaoiice" inch is allowed for weld. This i.^ mate, and where exactness is required, chain should be made so. For Chain Sheaves. — The diameter, if possible, should be not twenty times the diameter of chain used. Example — For 1-inch 20-inch sheaves. the inside ^ ajjproxi- less than chain use 250 DECIMAL EQUIVALENTS FOR VULGAR FRACTIONS. DECIMAL EQUIVALENTS FOR VULGAR FRACTIONS. The given decimals are the parts of inches corresponding to fraction of inches in first column ; also, the parts of feet for the fraction of inches in second column. 64 % .0052 .0104 .015625 \l 3^6 .2552 .2604 .265625 ii 6 Kg 6K6 .5062 .6104 .516626 9 Kg .7652 .7604 .766626 .0208 .0260 .03125 #5 3H 3% .2708 .2760 .28125 a 6M 6K6 6% .5208 .5260 .53125 ft 934 9K6 9% .7708 .7760 .78125 .0364 .0417 .046875 \l 3Ke 33^ 3^6 .2865 .2917 .296876 M 63^ SKe .6364 .541 1 .546875 ©Kg 9K6 .7866 .7917 .796876 A .0521 .0573 .0625 -h 3^ 3% 3% .3021 .3073 .3126 6% 6% .6621 .6573 .6626 QVs 9% 9X .8021 .8073 .8125 ^« /v, % .0677 .0729 .078125 l\ 3% 3% 3% .3177 .3229 .328125 u 6% 6>8 0 716 .6677 .6729 .678125 SI 9% 9ys 9% .8177 .8229 .828126 h .0833 .0885 .09375 \\ 4 .3333 .3385 .34376 41 7 ^Ke .5833 .6885 .69376 u 10 IOKg 10>i .8333 .8386 .84375 IKe 1 ^4 1^6 .0990 .1042 .109375 l\ 4^6 41^ 4^6 .3490 .3642 .369376 VKe 734 7K6 .5990 .6042 .609376 u lOKe 1034 lOKe .8490 .8542 .859375 i 1^ .1146 .1 198 .1250 1 4% 4^6 4>^ .3646 .3698 .3760 8 7% VKg .6146 .6198 .6260 10% IOKg 103^ .8646 .8698 .8750 1^ 1% .1302 .1354 .140625 «l 4^6 4% 4% .3802 .3864 .390626 n .6302 .6364 .640625 lOKe 10% .8802 .8864 .890625 If .1458 .1610 .15625 \\ 4% 4% 4;^ .3958 .4010 .40626 ii 7% .6453 .6610 .66625 E lox 10% .8958 .9010 .90625 n 2 .1615 .1667 .171876 11 4% 6 .41 14 .4167 .421876 II v% 8 SKe .6615 .6667 .671875 10% IIKg .9115 .9167 .921875 21/,^ 2 KG .1771 .1023 I .■'.8'V6 , - a- 5X 6/4 .4271 .4323 .4375,- a SKs 8/4 .6771 .6823 .6876 1 13'8 IIKg 11,^4 .9271 .9323 .9376 U 2% 2^6 .1927 .1979 .203125 fi .44'^ 7.' .44^/'9-' .463126 a BKe ,6927 ; v6979,' , (7Cei25 a 1 i^K. .9427' .'.947a ,.S 531^5 2%6 2;^ .2083 ' .2135 .21875 Si, 4583 .4636 ' .46876 ?f SH .7083 .7136 .7187.*> ; .3-1. 0? 113^ .9583 .9636 .96875 a 2% 2% 2% .2240 .2292 .234376 i\ 5% £>% 5% .47 '4b ' .4792 .484375 ii 64 ^6 8% ,^722 47.1239 47.5166 47.9093 48.3020 48.6947 49.0874 49.4801 49.8728 176.71 179.67 182.65 185.66 188.69 191.75 194.83 197.93 Diam. Circumf. Area Wiam. Circumf. Ins. ' Ins. Sq. Ins. Ins. Ins. 16 : 50.2655 50.6582 51.0509 % 51.4436 , ^2 51.8363' % 52.2290, 84 '52.6217' 53.0144 201.06 204.22 207.39 210.60 213.82 217.08 220.35 223.65 17 53.4071 ^8 ,53.7998; \ 54.1925 i % i 54.5852 i \2 54.9779 ■ % (55.3706 1 «4 65.7633' ^8 i 56.1560 226.98 230.33 233.71 237.10 240.53 243.98 247.45 250.95 18 1 56.5487 3/8 56.9414 ! 57.3341 % I 57.7268 \2 I 58.1195 % 58.5122 \ 58.9049 % 59.2976 254.47 258.02 261.59 265.18 268.80 272.45 276.12 279.81 19 59.6903 ^8 60.0830 I4 60.4757 % 60.8684 ^2 61.2611 % 61.6538 % 62.0465 % 62.4392 283.53 287.27 291.04 294.83 298.65 302.49 306.35 310.24 20 62.8319 ^8 63.2246 \ 63.6173 % 64.0100 \ 64.4026 % 64.7953 \ 66.1880 7/8 65.5807 314.16 318.10 322.06 326.05 330.06 334.10 338.16 342.25 21 65.9734 ^8 66.3661 I4 66.7588 % 67.1515 h> 67.5442 5/8 67.9369 ^4 68.3296 % 68.7223 346.36 350.50 354.66 358.84 363.05 367.28 371.54 375.83 22 I 23 69.1150 69.5077 69.9004 70.2931 70.6858 71.0785 71.4712 71.8639 72.2566 72.6493 73.0420 73.4347 73.8274 74.2201 74.6128 75.0055 24 ^8 % 75.3982 75.7909 76.1836 76.5763 76.9690 77.3617 77.7544 78.1471 78.5398 78.9325 79.3252 79.7179 80.1106 80.5033 80.8960 81.2887 26 81.6814 1^8 82.0741 \ 82.4668 % 82.8595 \ 83.2522 % 83.6449 3,4 I 84.0376 % 84.4303 27 i 84.8230 1'8 85.2157 I4 85.6084 % ' 86.0011 i.> 86.3938 % 86.7865 34 87.1792 % ! 87.5719 Area .Sq. Ins. 380.13 384.46 388.82 ^ 393.20 397.61 402.04 406.49 410.97 415.48 420.00 424.56 429.13 433.74 438.36 443.01 447.69 452.39 457.11 461.86 466.64 471.44 476.26 481.11 485.98 490.87 495.79 500.74 505.71 510.71 515.72 520.77 525.84 530.93 536.05 541.19 546.35 551.55 556.76 562.00 567.27 572.56 577.87 583.21 588.57 593.96 599.37 604.81 610.27 AREAS AND CIRCUMFERENCES OF CIRCLES. 253 AREAS AND CIRCUMF. OF CIRCLES. Diam. CircumfJ Area. Ins. I //Kv. Sq. Ins. 2S 87.9646 88.3573 88.7500 89.1427 89.5354 89.9281 90.3208 90.7135 615.75 621.26 626.80 632.36 637.94 643.55 649.18 654.84 29 ^4 91.1062 91.4989 91.8916 % ' 92.2843 92.6770 93.0697 93.4624 93.8551 660.52 666.23 671.96 677.71 683.49 689.30 695.13 700.98 30 ^4 94.2478 94.6405 95.0332 % i 95.4259 95.8186 % i 96.2113 " ' 96.6040 -^/ft 96.9967 706.86 712.76 718.69 724.64 730.62 736.62 742.64 748.69 Diam.\ Circitmf. Area. Ins. Ins. Sq. /ns. 34 ^R J2- 35 I'R i ^2 36 06.814 07.207 07.600 07.992 08.385 08.788 09.170 09.563 907.92 914.61 921.32 928.06 934.82 941.61 948.42 955.25 .09.956 10.348 10.741 11.134 11.527 11.919 962.11 969.00 975.91 982.84 989.80 996.78 12.312 1003.8 12.705 1010.8 13.097 13.490 13.883 14.275 14.668 15.061 15.454 15.846 1017.9 1025.0 1032.1 1039.2 1046.3 1053.5 1060.7 1068.0 Diam.t Circumf. Ins. I Ins. Area. Sq. Im. 40 41 % 42 25.664 26.056 26.449 26.842 27.235 27.627 28.020 28.413 28.805 29.198 29.591 29.993 .30.376 30.769 31.161 31.554 31.947 32.340 32.732 33.125 33.518 33.910 34.303 34.696 31 ^R 97.3894 97.7821 98.1748 98.5675 98.9602 99.3529 99.7456 100.138 i 754.77 760.87 766.99 773.14 779.31 785.51 791.73 797.98 37 16.239 16.632 17.024 17.417 17.810 18.202 18.596 18.988 1075.2 1082.5 1089.8 1097.1 1104.5 1111.8 1119.2 1126.7 32 100.531 100.924 101.316 101.709 102.102 102.494 102.887 103.280 804.25 810.54 816.86 823.21 829.58 835.97 842.39 848.83 38 33 l.'R i 1103.673 i 104.065 104.458 104.851 105.243 105.636 106.029 106.421 i 855.30 861.79 868.31 874.85 881.41 888.00 894.62 901.26 19.381 19.773 20.166 20.559 20.951 21.344 21.737 22.129 1134.1 1141.6 1149.1 1156.6 1164.2 1171.7 1179.3 1186.9 43 35.088 35.481 .35.874 36.267 .36.659 .37.052 37.445 37.837 44 % 38.230 38.623 39.015 39.408 39.801 .40.194 .40.586 .40.979 39 22.522 22.915 23.308 23.700 24.093 24.486 24.878 25.271 1194.6 1202.3 1210.0 1217.7 1225.4 1233.2 1241.0 1248.8 45 .41.372 .41.764 42.157 42.550 42.942 43.335 43.728 .44.121 254 AREAS AND CIRCUMFERENCES OF CIRCLES. AREAS ANiy CIRCXJMF. OF CIRCLES. Diam. Circumf. Aj-ea Diam. Circumf. Area Diam. Circumf. Area Ins. I71S. Sq. Ins. Ins. Ins. Sq. Ins. Ins. Ins. Sq. Ins. 46 144.513 1661.9 52 163.363 2123.7 58 182.212 2642.1 144.906 1670.9 163.756 2133.9 ^8 182.605 2653.5 145.299 1680.0 I4 164.148 2144.2 182.998 2664.9 145.691 1689.1 '8 164.541 2154.5 % 183.390 2676.4 \ 146.084 1698.2 ^2 164.934 2164.8 183.783 • 2687.8 % 146.477 1707.4 % 165.326 2175.1 % 184.176 2699.3 146.869 1716.5 li 165.719 2185.4 ^4 184.569 2710.9 ^9 147.262 1725.7 's 166.112 2195.8 '8 184.961 2722.4 47 147.655 1734.9 53 166.504 2206.2 59 185.354 2734.0 Is 148.048 1744.2 166.897 2216.6 ^s 185.747 2745.6 148.440 1753.5 \ 167.290 2227.0 I4 186.139 2757.2 148.833 1762.7 % 167.683 2237.5 8 186.532 2768.8 149.226 1772.1 168.075 2248.0 ^■2 186.925 2780.5 % 149.618 1781.4 % 168.468 2258.5 5 - 187.317 2792.2 '\ 150.011 1790.8 168.861 2269.1 'U 187.710 2803.9 150.404 1800.1 169.253 2279.6 188.103 2815.7 48 150.796 1809.6 54 169.646 2290.2 60 188.496 2827.4 ^8 151.189 1819.0 170.039 2300.8 ^8 188.888 2839.2 151.582 1828.5 I4 170.431 2311.5 ^4 189.281 2851.0 151.975 1837.9 .3 170.824 2322.1 ^^8 189.674 2862.9 \ 152.367 1847.5 1.2 171.217 2332.8 ^2 190.066 2874.8 152.760 1857.0 171.609 2343.5 % 190.459 2886.6 \ 153.153 1866.5 172.002 2354.3 =^4 190.852 2898.6 153.545 1876.1 172.395 2365.0 191.244 2910.5 49 153.938 1885.7 55 172.788 2375.8 61 191.637 2922.5 154.331 1895.4 173.180 2386.6 ^s 192.030 2934.5 154.723 1905.0 173.573 2397.5 I4 192.423 2946.5 % 155.116 1914.7 \ 173.966 2408.3 .3 ■H 192.815 2958.5 155.509 1924.4 174.358 2419.2 193.208 2970.6 % 155.902 1934.2 % 174.751 2430.1 % 193.601 2982.7 ^4 156.294 1943.9 175.144 2441.1 «4 193.993 2994.8 8 156.687 1953.7 '8 175.536 2452.0 8 194.386 3006.9 50 157.080 1963.5 56 175.929 2463.0 62 194.779 3019.1 157.472 1973.3 Is 176.322 2474.0 ^s 195.171 3031.3 157.865 1983.2 176.715 2485.0 \ 195.564 3043.5 % 158.258 1993.1 % 177.107 2496.1 '8 195.957 3055.7 158.650 2003.0 1^ 177.500 2507.2 ^2 196.350 3068.0 159.043 2012.9 "'8 177.893 2518.3 % 196.742 3080.3 159.436 2022.8 ;^4 178.285 2529.4 «4 197.135 3092.6 '^8 159.829 2032.8 178.678 2540.6 '^8 197.528 3104.9 51 160.221 2042.8 57 179.071 2551.8 63 197.920 3117.2 160.614 2052.8 ^8 179.463 2563.0 198.313 3129.6 161.007 2062.9 179.856 2574.2 I 198.706 3142.0 161.399 2073.0 1 180.249 2585.4 199.098 3154.5 161.792 2083.1 180.642 2596.7 199.491 3166.9 i 162.185 2093.2 •'8 181.034 2608.0 199.884 3179.4 162.577 2103.3 181.427 2619.4 200.277 3191.9 '8 162.970 2113.5 'a 181.820 2630.7 '8 200.669 3204.4 AREAS AND CIRCUMFERENCES OF CIRCLES. 255 AREAS AND CIKCUMF. OF CIRCLES. Diavi. Circumf. A rea Diam. Circumf. A rea Dnim. Vircuinj. A red Ins. '- Sq. Ins Jns. Sa-Jns. '64~ 201.062 3217.0 70 219.911 3848.5 76~~ 238.761 4536.5 201.455 3229.6 220.304 3862.2 \ 239.154 4551.4 4 201.847 3242.2 220.697 3876.0 239.546 4566.4 202.240 3254.8 221.090 3889.8 239.939 4581.3 202.633 3267.5 221.482 3903.6 240.332 4596.3 % 203.025 3280.1 221.875 3917.5 240.725 4611.4 203.418 3292.8 ti 222.268 3931.4 241.117 4626.4 203.811 3305.6 322.660 3945.3 241.510 4641.5 65 204.204 3318.3 71 223.053 3959.2 77 241.903 4656.6 204.596 3331.1 223.446 3973.1 ^/8 242.295 4671.8 204.989 3343.9 '4 223.838 3987.1 242.688 4686.9 205.382 3356.7 % 224.231 4001.1 243.081 4702.1 205.774 3369.6 224.624 4015.2 243.473 4717.3 :> 206.167 3382.4 '''8 225.017 4029.2 243.866 4732.5 206.560 3395.3 ::4 225.409 4043.3 244.259 4747.8 206.952 3408.2 225.802 4057.4 % 244.652 4763.1 66 207.345 3421.2 72 226.195 4071.5 78 245.044 4778.4 207.738 3434.3 226.587 4085.7 245.437 4793.7 208.131 3447.2 '4 226.980 4099.8 245.830 4809.0 208.523 3460.2 227.373 4114.0 246.222 4824.4 208.916 3473.2 227.765 4128.2 246.615 4839.8 % 209.309 3486.3 % 228.158 4142.5 % 247.008 4855.2 209.701 3499.4 % 228.551 4156.8 '% 247.400 4870.7 210.094 3512.5 228.944 4171.1 % 247.793 4886.2 67 210.487 3525.7 73 229.336 4185.4 79 248.186 4901.7 210.879 3538.8 ^/8 229.729 4199.7 248.579 4917.2 211.272 3552.0 ^4 230.122 4214.1 248.971 4932.7 211.665 3565.2 '^8 230.514 4228.5 249.364 4948.3 \ 212.058 3578.5 230.907 4242.9 \ 249.757 4963.9 212.450 3591.7 '*'8 231.300 4257.4 % 250.149 4979.5 212.843 3605.0 =^4 % 231.692 4271.8 '^4 250.542 4995.2 213.236 3618.3 232.085 4286.3 % 250.935 5010.9 68 213.628 3631.7 74 232.478 4300.8 80 251.327 5026.5 214.021 3645.0 ^'8 232.871 4315.4 251.720 5042.3 214.414 3658.4 233.263 4329.9 252.113 5058.0 214.806 3671.8 % 233.656 4344.5 % 252.506 5073.8 \ 215.199 3685.3 234.049 4359.2 252.898 5089.6 % 215.592 3698.7 % 234.441 4373.8 % 253.291 5105.4 215.984 3712.2 234.834 4388.5 '^4 % 253.684 5121.2 216.377 3725.7 235.227 4403.1 254.076 5137.1 69 216.770 3739.3 75 235.619 4417.9 81 254.469 5153.0 217.163 3752.8 236.012 4432.6 254.862 5168.9 217.555 3766.4 •i 236.405 4447.4 255.254 5184.9 217.948 3780.0 236.798 4462.2 255.647 5200.8 218.341 3793.7 \ 237.190 4477.0 256.040 5216.8 218.733 3807.3 237.583 4491.8 256.433 5232.8 219.126 3821.0 237.976 4506.7 256.825 5248.9 219.519 3834.7 I 238.368 4521.5 % 257.218 5264.9 256 AREAS AND CIKCUMFERENCES OF CIRCLES. AREAS ANI> CIRCUMF. OF CIRCLES. Diam Circumf. Area Diam Circumf. Area Diam Circumf. Area. Ins. Ins. Sq. Ins. Ins. Ins. Sq, Ins. Ins. Ins. Sq. Ins. 82 257.611 5281.0 88 276.460 6082.1 94 295.310 6939.8 -I 258.003 5297.1 ^8 276.853 6099.4 295.702 6958.2 \ 258.396 5313.3 \ 277.246 6116.7 296.095 6976.7 258.789 5329.4 277.638 6134.1 % 295.488 6995.3 259.181 5345.6 \ 278.031 6151.4 296.881 7013.8 259.574 5361.8 % 278.424 6168.8 % 297.273 7032.4 % 259.967 5378.1 278.816 6186.2 297.666 7051.0 260.359 5394.3 279.209 6203.7 298.059 7069.6 83 260.752 5410.6 89 279.602 6221.1 95 298.451 7088.2 ^/8 261.145 5426.9 279.994 6238.6 ^/8 298.844 7106.9 \ 261.538 5443.3 4 280.387 6256.1 ^4 299.237 7125.6 % 261.930 5459.6 % 280.780 6273.7 % 299.629 7144.3 262.323 5476.0 281.173 6291.2 300.022 7163.0 262.716 5492.4 % 281.565 6308.8 300.415 7181.8 \ 263.108 5508.8 \ 281.958 6326.4 300.807 7200.6 % 263.501 5525.3 282.351 6344.1 301.200 7219.4 84 263.894 5541.8 90 282.743 6361.7 96 301.593 7238.2 ^8 264.286 5558.3 ^8 283.136 6379.4 ^8 301.986 7257.1 ^! 264.679 5574.8 \ 283.529 6397.1 ^4 302.378 7276.0 % 265.072 5591.4 283.921 6414.9 % 302.771 7294.9 265.465 5607.9 \ 284.314 6432.6 ^2 303.164 7313.8 265.857 5624.5 % 284.707 6450.4 % 303.556 7332.8 266.250 5641.2 285.100 6468.2 303.949 7351.8 266.643 5657.8 285.492 6486.0 % 304.342 7370.8 85 267.035 5674.5 91 285.885 6503.9 97 304.734 7389.8 ^/8 267.428 5691.2 •t 286.278 6521.8 ^/8 305.127 7408.9 267.821 5707.9 286.670 6539.7 0^ 305.520 7428.0 % 268.213 5724.7 287.063 6557.6 305.913 7447.1 268.606 5741.5 287.456 6575.5 306.305 7466.2 268.999 5758.3 287.848 6593.5 306.698 7485.3 269.392 5775.1 288.241 6611.5 307.091 7504.5 % 269.784 5791.9 288.634 6629.6 % 307.483 7523.7 86 270.177 5808.8 92 289.027 6647.6 98 307.876 7543.0 ^8 270.570 5825.7 ^/8 289.419 6665.7 ^/8 308.269 7562.2 270.962 5842.6 289.812 6683.8 -I \ 308.661 7581.5 271.355 5859.6 290.205 6701.9 309.054 7600.8 271.748 5876.5 290.597 6720.1 309.447 7620.1 272.140 5893.5 % 290.990 6738.2 309.840 7639.5 272.533 5910.6 291.383 6756.4 310.232 7658.9 % 272.926 5927.6 291.775 6774.7 310.625 7678.3 9,1 070 01 Q fi7Q9 Q QQ 311.018 7fiQ7 7 ^'^^ 273.711 5961.8 292.561 6811.2 > 31l!410 7717.1 274.104 5978.9 292.954 6829.5 311.803 7736.6 274.497 5996.0 % 293.346 6847.8 312.196 7756.1 274.889 6013.2 ^'^ 293.739 6866.1 312.588 7775.6 275.282 6030.4 % 294.132 6884.5 312.981 7795.2 > 275.675 6047.6 > 294.524 6902.9 313.374 7814.8 % 276.067 6064.9 % 294.917 6921.3 % 313.767 7834.4 100 314.159 7854.0 PRODIK T OF FRACTIONS. tH 1.000 O) in 00 t> I> CO 00 05 Hoc .7656 .8203 .8750 eo| T-l/T-« .6601 .7109 .7617 .8125 .5625 .6094 .6563 .7031 .7500 :^ .4727 .5156 .5586 .6016 .6445 .6875* »o|oo CD CO Q CD 00 05 CNI CD CO Tfi CO t> c:5 CC I-H CO I-H i-H lO 00 CV] CO CO CO O CN3 LO CT) &3 g in in o CO in 00 o CO o i-H c Q CM Cv] CO CO CO ^ 00 CO Til 00 CD CO 00 o] in o I> 00 »-( CO CO Tjl Tjl cojoo in o CO 00 l> T-t Tji 00 r-i CO in i-H cva ca CNj s CO CO CO CO o 8 o o o CV3 CV] CO CO I-H in . CO CO o o o o 8 S 05 00 8 i>- CO in 00 03 in in CO o o o o in o in cvi in t> _ CD CJ 00 lO »-l o rH ,-1 eg CO o c3 S in o in 8 - in in 8 O S . , . t> CO 00 CD CO in t:- o rH 00 o INDEX. ALLOWANCE for upsets on round and square bars 241 for eye, square and round bars 24',\ ANGLES 10-13 BiTLH, weights and dimensions of 9 elements and properties of 164 dimensions and weiglits of 10-13 elements and properties of IGG-lGl) length of legs of, corresponding to given areas 18 as beams, approximate rule for 123-135 as struts 194 moments of inertia lOG radii of gyration 1G7 cover, dimensions and weights 12 square root, dimensions and weights 12 special, dimensions and weights 12 AREAS and circumferences of circles 251-25G ARCHES, tie rods for 109 AXLES 33 BAR, sizes, iron or steel IG BAR IRON EXTRAS, eastern classification 17 BAR IRON, weights and areas of round and square 21 BAR STEEL, " " " " " " 21 BEAMS. Bulb, or deck section 9 approximate rule for strength of 123-135 dimensions and weights 9 elements and properties of 1^12 moments of inertia 1G2 radii of gyration . ... 1G2 tables of safe loads and deflections 102 " and spacing, as floor beams 102 weights of 9 I Beam Sections. approximate rules for strength of 123-135 bending moments 126-129 cantilever 124-12G continuous 124-128 (i) ii INDEX. PAGE BEAMS— I Beam Sections. deflections of 41 dimensions and weights 4 elements and properties of 150-153 factors of safety 39 greatest safe loads 44-97 iron floor 106-108 lateral strength of 110 limits of deflection 43 " safe load 39 maximum load in tons 149-153 moments of inertia 15J-152 properties and elements of 150-153 proportions of 4 radii of gyration 150-152 safe load and deflections 44-97 spacing of .... , 44-97 subject to both bending and compression 132 supporting brick walls 119 " irregular loads 180 unsymmetrical sections 12:3-13.5 weights of 2 weight of floor per square foot 107-108 with fixed ends 42 without lateral supports 40 BEAMS AS STRUTS 190-193 BELTING 227 BEXDING moments for beams 12(>-129 BENDING, bearing and shearing values for iron and steel pins 230 BENDING and compression both, beams sul ject to 132 BENDING, resistance of iron and steel to 37 BOLTS AND NUTS, weight of 246 BPJCK ARCHES for floors 109 arches, tie rods for 109 walls, beams for supporting 119 BRIDGE RIVETS, shearing and bearing value of 231 weight of 245 BULB ANGLES, weight of iron and steel 9 BULB PLATES, weights of iron and steel ..." 9 BULB BEAMS (see Beams) 9 BUCKLED PLATES Ill greatest safe loads for 112 CANTILEVER BEAMS 124-126 CHANNELS, Iron or Steel. approximate rule for 123 as struts 200 INDEX. ili PAGE CHANNELS, Iron or Steel. dimensions aiul weights of 5 elements and properties of 154-156 moments of inertia 154-15«) proportions of 5 radii of gyration 154 15(') safe loads and deflections 98 struts 18S weights of G CI RCLES, areas and circumferences of 251-256 CLEVISES, dimensions of 2:^9 dimensions of square rods and pins for 243 COLUMNS, wrought iron 20G radii of gyration for round and square 207 Z bars 160 greatest safe loads for round, of iron and steel 208-211 " " square " " 212-215 COMPARATIVE efficiencies of iron and steel 37 COMPRESSION, wrought iron in 34 CONTINUOUS beams, iron and steel 42 shafting, working formulie for 226 CORRUGATED FLOORING • 114 weight and strength of 115 loads per square foot 116-118 COVER ANGLES, size and weights of 12 CRANE STRESSES 216 DECIMAL equivalents for vulgar fractions 250 DECIMALS, product of fractions expressed in 257 DECK BEAMS (see Beams) 9 DEFLECTION of beams, iron and steel 41 limits of, for beams 43 tables of, for I beams, of iron and steel 44-97 channel bars of iron and steel 98-101 ** deck beams of iron and steel 102 *' Z bars of iron and steel 10 i of shafting ; 225 tables of, for corrugated flooring sections 116-118 DESTRUCTIVE pressures for iron and steel struts, tables of ... . 182-186 DIMENSIONS of I beams 4 channels 5 pins and nuts 232 rivet shanks to form heads 237 eye bars 238 clevises 239 sleeve nuts 240 allowance for upsets as round and square bars 241 iv INDEX. PAGE DIMENSIONS, square rods and pins for clevises 242 separators 244 bolts 24C screw threads 248 working, for continuous shafting 228 DUCTILITY, iron and steel 34-3G Efficiencies, comparative, of iron and steel 37 ELASTICITY of wrought iron and steel . . 35 ELEMENTS of structural shapes 149 of I beams, iron and steel 150-153 " channels, iron and steel 154-157 " Z bars, iron and steel 158-161 *' angles, iron and steel 166-169 " tees, iron and steel . . 170 " deck beams, iron and steel . . 162 " bulb angles, iron and steel 164 EXPANSION, by heat, of iron and steel 35 EYE BARS, dimensions of 238 FACTORS of safety for beams 39 of safety for struts 181 shafting 223 FIXED-ENDED, steel or iron struts 180 FLAT BAR IRON, approximate rule for beams of 122 FLAT-ENDED steel or iron struts 180 FLATS, sizes of iron or steel rolled 16 FLEXURE (see Deflection) 41 FLOOR BEAMS lOG rule for weight of 107 spacing of ... . . . 43 lateral strength of iron and steel 110 weight per square foot, iron and steel I . . 108 FLOORING, trough-shaped sections for bridges and buildings ... .115 table of weight and strength, iron and steel . . . ... 115-118 " " causing deflection of of span 118 FORMULA, for unsymmetrical beams 123-135 approximate, for rolled beams 123-135 tables of, for beams of various sections 123-135 FRACTIONS of an inch expressed in decimals 250 product of " " 257 FLUCTUATING loads, limitations for safe loads 39 GIRDERS, riveted, iron or steel 137 coefficient of strength, rule for determining 138 rule to find safe loads 138 INDEX. V PACK GIRDERS, strength and weight for tables 189-147 stresses of 218 GYRATION, radii of 149 for I beams, iron and steel 150-152 " channels, iron and steel 154-15G " Z bars, iron and steel 159 " angles, iron and steel 167-169 " tees, iron and steel 170 " deck beams, iron and steel 162 " bulb angles, iron and steel 164 formulie for various sections 178 for round columns, iron and steel 207 square " " " 207 HALF-ROUND BAR IRON, sizes 16 HEADS of rivets, dimensions of shank required to form 237 HINGED-ENDED steel or iron struts 180 HORSE-POWER of shafting 225 I BEAMS (see Beams). INERTIA, moments of 172 for I beams, iron and steel 150-152 " angles, " " 166-168 *' channels, " " 154-156 " Zbars, " " 159 " tees, " " 171 " deck beams, " 162 " bulb angles, " " , 164 formulse for various sections 178 for combined sections 174-176 IRON BEAMS. deflection of 41 greatest safe loads and deflection for, of I beam sections , . , 44-65 " " " '* " " of channel bar " ... 98 " " " " " " of Z bar sections 104 " " " " " " of corrugated floor sections 116 IRON, comparative efficiencies of steel and iron 37 strength of wrought 31 ductility of 34-36 modulus of elasticity 35 resistance to compression 34-38 elasticity of rolled 35 resistance to shearing 222 " torsion 222 " bending 227 columns, round and square 206-215 shafting 222 struts 180 vi INDEX. ''AGE IKON, sizes of bar 16 weight per lineal foot of bar 21-29 weight per lineal foot of plate 30 weight of sheets of wrought 32 weights and areas of round and square bar 21-29 LATERAL STRENGTH OF FLOOR BEAMS 110 support, beams without 40 LATTICING for channel struts 189-202 LATTICED channel struts, safe loads, iron and steel 202-205 LOADS (see Safe Loads) 39 character of 40 MODULUS OF ELASTICITY of rolled iron and steel . . . ' 35 resistance for iron and steel 34 rupture for rolled iron and steel 34 NUTS and pins, sizes of 232 NUTS, sleeve, sizes of 240 PINS, shearing, bending and bearing values of iron and steel 230 PINS AND NUTS, table of dimensions 232 PRESSURES, destructive, for iron and steel struts, tables of . • . . 182-187 PROPERTIES and elements of I beams, iron and steel 149-153 of channels, iron and steel 154-157 " Z bars, iron and steel 158-161 " angles, iron and steel 166-169 and elements of tees, iron and steel 170 of deck beams, steel and iron 162 " bulb anglas, iron and steel 164 PROPORTIONS of I beams 4 of channels 5 " pins and nuts 232 " rivet shank to form head 237 " eye bars 238 clevises 239 " sleeve nuts 240 *' round and square bars to make upset 213 '* " " rods and pins for clevises 242 " separators . . 244 bolts 246 " screw threads 218 working, for continuous shafting 226-229 RADIUS of GYRATION, for round columns, iron and steel 2d7 I beams, iron and steel 150-153 INDEX. Vll PAGE KADI US of GYRATION, channel bars, iron and steel lo4-lo7 Z bars, iron and steel 158-101 tees, iron and steel 170 angles, iron and steel IGG-IOD deck beams, iron and steel 102 bulb angles 104 square columns, iron and steel 200-212 fonuuhe for various sections 178 RIVETED GIRDERS, iron or steel 137-147 coefficient of strength, rule for determining 137-148 rule to tind safe loads 138 strength and weight for, tables 139-147 stresses of 216-219 RIVETS, weights of bridge . 245 shearing and bearing value of 231 ROOF STRESSES 219-221 ROUND BAR IRON, sizes 16 * weights and area 21-23 approximate rule for beams of '. 123-135 ROUND COLUMNS, table of radii of gvration for 207 " '* greatest safe loads, iron and steel . , . 208-211 ROUND-ENDED steel or iron struts 180 RULE for weight of rolled iron 8"> for weight of iron in floor beams 107 " thrust of brick arches 109 " lateral strength of I beams, iron and steel 110 " '* *' channel bars, iron and steel 110 " beams, l)earing irregular loads 130 RULES, approximate, for moments of inertia 178 for radii of gyration 178 for shafting 222-224 SAFE LOADS, coetficient for 42-121 limits of, for beams 3D greatest for beams 39 ** " I beams, iron and steel ; 44-97 " " deck beams, iron and steel . . . • 102 " " channel bars, iron and steel 98-101 " '* corrugated flooring, iron and steel 110-118 " " iron struts, tables of 183 " steel " " " 185-187 for struts of I beams, tables of 190-193 ** channel bars, tables of 200-205 '* " angles, tables of 194 " tees, tables of 198 for square columns, iron, tables of 212 steel. " 214 Vlll INDEX. PAGE SAFE LOADS, for round columns, iron, tables of 20S for round columns, steel, tables of 210 SCREW THREADS, table of standard 248 SHAFTING, sizes rolled (see also Rounds) 16 rules for determining sizes and lengths 222-224 iron or steel 222 deflection of 225 horse-power of 221 working formulae for continuous 22:) " proportions " 228 SHAPES, miscellaneous, dimensions and weights 15 SHEARING strength of iron and steel 222 SHEARING, bending and bearing values of iron or steel pins 230 and bearing values of bridge rivets 234 SHANKS required to form head of rivets 237 SLEEVE-NUTS, sizes of 240 SPACING floor beams of I beam sections, iron and steel 44-97 deck beam sections, iron and steel 102 channel bars, iron and steel 98-101 Z bars, iron and steel 104 SPECIFIC GRAVITY, iron and steel 35 SQUARE bar iron and steel sizes 16 " weights and areas . , 21-23 SQUARE-ROOT ANGLES, weights of, iron and steel 12 STEEL. Elasticity of Rolled 35 Elastic Limit 34 modulus of elasticity 35 ductility 34-36 expansion by heat ^ 35 specific gravity 35 structural 36 physical properties of open hearth 36 comparative efficiencies of iron and 37 for beams 37 ^ for struts 38 for shafting 222 sizes of bar 16 weight and area of round and square bar 21-32 " of sheets of rolled 32 columns, round and square 206-214 shafting 222 weight per lineal foot of bar 21-29 struts 180-187 resistance to compression 34 strength of 34 tensile and compression tests 34-189 INDEX. , ix PAGE STEEL, resistance to shearing 222 " " torsion 222 ** " bending 37 strength of, in compression 34 *• " in torsion 3S " " transverse 37 STEEL BEAMS 3 deflection of 41 greatest safe loads tor and deflections of I beam sections . . 44-97 " " " " " channel bar sections 98-101 " " " " " Z bar sections 104 " " " *' " corrugated floor sections 11(5 STRENGTH OF WROUGHT IRON AND STEEL in compression ... 84 in tension 84 in shearing 88 STRESSES in framed structures 216 STRUCTURAL STEEL 3f3 STRUTS of rolled iron and steel 180 factors of safety for 181 tables of destructive pressures for, of iron and steel . . . 182-186 tables of greatest safe loads for, of iron or steel 183-187 " " " for I beam sections 190-198 " " "of channel sections 200-205 " " " " of angle sections 194 " " " "of tee sections 198 flat-ended, steel or iron 180 fixed-ended, steel or iron 180 hinged-ended, steel or iron 180 round-ended, steel or iron 180 SEPARATORS, table of standard 244 "TEES, dimensions and weights of 14 elements of even-legged 170 ** uneven-legged 171 as struts, tables of greatest safe loads 198 radii of gyration 179 moments of inertia 170 approximate rule for beams of 123-135 TENSION in wrought iron 34 in steel 34 of belting 227 TIE RODS for brick arches 109 TORSIONAL strength of iron and steel 222 THREADS, sizes of standard screw threads 248 ULTIMATE loads for iron and steel struts 182-1S8 X , INDEX. PAGE WEIGHTS of angles ..... 10-13 bar iron and steel 24-29 bars, round and square . 21-23^ I beams 2 bolts and nuts , 246 bridge rivets 245 bulb angles 9 bulb plates 9 channels & carbuilders' channels 15> deck beams 9^ flooring, corrugated 116 rivets, bridge 245 rivet heads 245- sheets, iron and steel 32 Z bars 8. Z BARS, dimensions aud weights elements and properties of 158^ as struts, tables of greatest safe loads 196 columns 160 Sections of Iron and Steel ROLLED AT Plates 1,2,3,7,8,9, 25 and 26 are i size Plate 35 is i size All others are 3^ size. For Sections rolled of either Iron or Steel the weights given are for Iron. If rolled of Steel the weights are two ])er cent greater than for Iron. For shapes rolled of Steel only the weights are for Steel. Notice. Several sections marked' Steel or Iron" may be rolled in either metal subject to special arrangement. ALL WEIGHTS ARE GIVEN IN POUNDS PER FOOT LEASTSIZE OF EACH SECTION GIVEN JULIUS BIEN * CO. LITH N:/. Plate Xo.l STEEL All weiglits given in pounds per foot Plate No. 2 S T K K I . All wt'io'lu^ in pouncis per Ibol Plate No.3. STEEL All Aveiglits givexL in poiands pei^ ibot. Plate No. 4. STEEL All \v(M<^hls given in pounds per foot. Plate Xo. 3. STEEL All A\'eights given in pounds per foot No 503. WT.II.9T0J5.2 LBS. < 1.59 id No.507. WT. r7 .3 TO 2 1. 07 LBS. No. 18. WT. S.3 TO !2.2 LBS ^ - 1.4 > No. 505. WT. 14 .4 TO 17.8 LBS. Plate "No. 6 s T p: I. AllM-ei^lits ^iven in pounds per foot 2.4" i K 2.2'- 4 Plate No. 7. IRON All weights given in pounds per foot. -2 35/64-'- ■ No.1. WT. 63,4- TO 79,0 LBS. -.56" Platte No.8. IRON OR STEKJ. Aflw-ei^its given in lbs. per ft for Iron. For Steel add2per cent . Plate Ko.9. IROiS" OK STEEL ^Avei^its ^en in lbs per ft .fbriroTuFor Steel adrl2 per cent . Plate No. 10 IRON OH STP:p:I. All vveishts given in Lbs.per ft. for Iron.tbr Sxeel add 2 per cent H 2V64 Plate :No. 11 IR OX OR STEEL All weights siveninLhs.per fl.forlron.For Steel add2per cent 43 4" No. 9 WT. 30.9 TO 3e 6 LBS. .41 .31 = N0.IO Wr. 23.9 TO 29 6 Plate No.12 1 R ON OH STEEL All weishis eiven in I..l3s .per f t . for L'on . l^br Steel add 2 per cent [1 43 8 - Plate No. 13 IROX OR STEEL AllAv^eiglits ^iven inLbvS.per f t .for Iron. For Steel add 2 per cent 'f 3 iS/'32^ i 5 V4 ' i No.i5 ; \WT 18 8 TO 2 5 8 la: LBS. .,.28' No. 24 WT. 30.9 TO 35.9 LBSv- 1 - Plate No ] 4. I RON OR STK K L All weights onxm iiilbs.jXM- l l Ibrlron.ForStoel add 2 per cent. No. 21 WT. 6. 9 TO 9 1 LBS . 1.09"- No. 22 WT 5 3 TO 6 8 LBS ' 1 .02" • J ^ - 2 2" - Plate Tsro.15. STEEL All -sveioMs oiven in pounds per foot. No. 411 WT. 5. 2 TO 7. ( LBS. *^ -13 - 4? No.413 WT 6.1 TO 9.4 LBS No. 415 WT. 7. 5 TO 113 LBS. No. 417 WT. 9. O TO 13.1 UBS. *! (No. 419 WT. 11. 0 TO 15.3 LBS. Plate No. 16. in OX i)U STKKl. .\Il^v«•l«iIlts •'ft > ^ WT. 2.9 T0 3 S~lBS^ • IVs _} No. 50* i**^ WT. 3.e LBS j < 1^ No. 49 WT5 I TO 6 0 LBS Plate ^ o. 23. IRON OR STEEL | AHwedghts given inlbs.per f t forlronroi^ Steel add2per cent. j Plate Xo. 25. IROX on STEF.!. weights giN'en in Ibs.per ft. for Iron Eor Steel add2per ceixt t7Z No. 252. WT 19.1 TO 23 8 LBS. 3 No. 251 WT.22.0 TO 25.7 LBS. No. 250. WT.25.IT0 30.7LeS. Plate No.L'ti. IKON OK S TKK L ^Ulwoi^hls given in lbs. por 11. lor Iron J'^or Stool add 2por cent. No. 255 WT.9.4-T0 11.4- LBS. N0.25A- WT. 12.4- TO 16 5 LBS. ^ ^ 32 No 253. WT. 15.6 TO 19. 8 LBS. No. 68 .WT 20.7 TO 24-. 9 LBS 10 ' Plate No.27 IROX OR STEEL ^lAv^eights givenin Ibs per ft.fot^lron.l'br Steel addZ per cent No. 70 WT.12.4- LBS. "RSI No. 85 WT. 10.98 LBS No. 71 WT. 10.1 LBS. No. 72 ! WT. 8.3 LBS. u No. 82 WT. 6.4- LBS. No. 83 vjr.y.tj LBS . 52 0.-84- r.+.e LBS. No.73 WT.6 5 LBS. 13.' : ^ ^32 No.74 WT.5.7 LBS. No.76 WT.3.9 LBS. No. 78 WT. 2 r; .+ LBS. ij No. 81 ; [J WT.I.O LBS. No. 77 WT.3.+ LBS. Plate No.2a. IB OX OR STF.K T. All \vrjtfli<.- ill lbs. per ft . foilrof i. For Steel add.2perceTit . No. 107 WT 14- 7 LBS No. 90 WT.1+.8 LBS Plate Xo.2a nr{o:s" OR STEEi. AUweiorits oiv-en in_Ibs.per ft. for Ii'olu For Steel add.2per cent. No. 97 WT. 9.4 LBS. No. 98 1 WT.7,.9 LBS.i - No. 117 V^T.5.0 LB5.. No.105 WT.7. I LBS. No.118 WT. 5 92 LBS. No. 104- WT.6 5 LBS. WT.3.5 LBS . \ \] WT 1.6 LBS. No. 100 WT.3.0 i-55. ^is^ No.108 LBS. No. 101 WT.2.9 LBS. No.rn WT. 6.9 LBS. No.99 WT. 3.7 LBS. No.114 J WT 13 LBS. No. 115 J WT. 1.1 LBS. . J No.112 WT2.1 LBS. 32] No 102 .0 W-.2 3 LBo. O.103 WT. 2.0 LBS. Plate ^o.Sl. Plate Ko.33. IRON OK STEEL All M-eishts iWen in Lbs. per ft . for tron.For Steel add 2 per cent PlciteNo.34 r H O N O R S T VZ E 1 . All weiehls ^iv en in Lbs. per I't .tor Iron. For Sleel add 2 per cent Plate Xo.35. IRON OR STEEL jMI weights giveuin Ibs.perft.for Iix)ii. ForSteel add 2percent 3^8 7 — ? T 3V: v3V 3% ^8 No 230 No.229 fNo.228 WT. 28.6 TO 33.9 LBS. WT. 22 .3 TO 27.5 LBS. WT. 15.3 TO 20.6 LBS U -3^/16 - 3H 3^> if J ^ < 3^16 3>h& I No.227 No.226 No. 225 WT. 23.2 TO 25.5 LBS. WT . 17 4- TO 22.0 LBS. WT |i.2 TO 15.8 LBS. -3Vlb -3^32-- <- 2ys' No. 224 WT . 18 .4 TO 22 .5 LBS. No.223 No. 222 WT.13.2 TO 17.2 LBS. WT. 7.7. TO II 7 LSS. 4'i <^ No. 221 WT. !0.9 TO 12 .5 LBS- No.220 WT 6.5 TO 9.8 LBS. Plate No. 36 IRON OR STEEL All weights siven in Lbs. per ft. for Iron. For Steel add 2 pei- cent WT. T. 7 LBS V No 213 WT. 8.7 LBS No. 194 WT. 1.6 LBS./ . No.193 ^ \ WT. 1.4- LBS. 1V8" j ; No. 195 i ri^-J] ;WT.I.2 TO ..♦\^-^T-^ I LBS. i No. 196 r- ; VVT. 2.8 TO 4.9 ^ LBS. ; No. 197 r '< WT ♦.S TO 7.0 7" LBS. ! No. 198 ! IwT. 7.0 TO 11.5 ^ I LBS. to I 5 '- — • No. 212 WT. 8.0 TO 10.3 LBS. K -^'- No.216'1 WT.8.9. LBS. 3 »9 32- ^ . ^r^c No. 204 WT 4..2 TO 7. 1 LBS. 3 ' 2 " r-i" No.205 WT 8.5 LBS. ^2 Plate :N'o.37. IKON OR STEEL All weights given in I.bs.per ft. for Iron. For Steel add 2 per cent 5 "— Plate No. 38 Troii^^h Sliaped Sections for Corrugated Flooring I H O X OK STEEL. All weights given in T.bs.per ft. for Iron. For Steel add 2 per cent. ._.8^ • 8- ^ WT PER SQ. FOOT 24-. 8 TO 36.6 LBS. No. 2 60 WT PER FT 9.6 TO 14.4. UBS. WT.PER SQ FOOT 19.6 TO 39. 3 LBS- PlateNo.39 Staiidai'd t VamirLj:> of* Pencoyd Beams 2^ii_gTes 6 X 4 x 3^6 " 3 " long 2 AixoLes 6 x 4 'x 'Ae," 3 " lon^> 2 Arig J es 6 x 4 x IWti ' 4 ^ long 2 Ajigles 6"x 4"< Vie " 5 V^" lon^' AH Koles ^Vie'All rivet.s V^" Plate No.40 I I I i I Stan daixi Framing of P one oydB earns j 2 Alleles 6 "x 4'x "^ le G^ j'lono All holes '^Vi6*All rivets Plate No. 41. StaiidaTcl Framing of Pericoyd Beams 2 Angles 6 "x 4^" x V2" U " loii^ 2 Angles 6 "x 4^"x V2" 3' lon^ All lioles 13/16 ' All riv^ets ^a" Plate No. 42. Rivet Spacing' in Peiicoyd Angles Spacing Toi-KlaTi^es Spacing for}3Taccs 8f ^1 If TTTT Ir , 2 2 • L.(— ^ 3: h Ml J f I; 2" 2^;? -zrtrzzn 2 " 2 V-4- • -r 11 i'i J 1: 0 ' 2 " I 2 1 ! ; 1 H - . 2V2- *- or - ■ z-y* I r M 4' 5^ Plate ]Sro.43. METHOD OF INCREASING SECTIONAL AREAS. Cross hatched port ions repi'csent the minirmjm sections and ihe blank portions the added areas. All weights given in pounds per foot I I I