(. % X\ *• • V ! T H E BUILDER’/ GUIDE, AND Gentleman and Trader’s Affiftant * 7 ORA Univerfal Magazine O F TABLES, Wherein is contained Greater Variety than in any other Book of its kind, with feveraj new and uleful Tables, never before publi/hed ; which renders it the mo ft general, complete* and univerfal Companion, for daily ufe, extant, and highly neceflary for all Gentlemen, Builders^ Surveyors of Buildings, Timber Meafurers, Carpenters, Bricklayers, &c. Alfo for Merchants, Shopkeepers, and all Tradefmen that deal either by Wholefale or Retale. CONTAINING Tables of Timber, Board, and plank Meafure, of fquare and cubical Meafure in general, either by the Foot, Yard or Rod. The Loads contained in any Num- ber of Feet, of either rough or fquar'd Timber, or of Plank of any Thicknefs« Of the Reduction of Brickwork, from I Foot to 4828 Feet, and to any Thick - nefs required : What Number of Bricks are required to build any Piece of Brick- work, from I to 14000 Feet, and at any Thicknefs. What Number of Bricks, Lumps, or Clinkers laid flat or edge- ways, or of paving Tiles or Pamants of any Size, will pave any Floor, of lefs than 630 Foot. What any Number of odd Feet in a fuperficial or folid Yard comes to, at any Price from 1 Farthing to 10/. per Yard. The Value of any Number of odd Feet of Tiling, Slating, Roofing, Flooring, &c. performed by the Square of 10 Foot fquared, at any Price from 3^ to 5 or iol. per Square. The Value of any Number of odd Feet of Brickwork, or others, performed by the Rod fquare, at any Price from 3*. to to/, per Rod* What any Number of Feet, Yards, Pounds, Ounces ,&c. comes to at any Price per Foot, &c. The Value of any odd Parts of a Hundred at the Rate of 112, or J20 to the Hundred, at any Price from zs. 6 d. to 8 /.. per Hundred. The Value of one Foot in Length of any fort of Timber when fquared and cut to any Scant- ling fit for Building, at any Price per Foot cubical. A Reduction of all the com- mon Tables of Coins, Weight and Meafare. And a Perpetual Almanack. The Whole illuftrated by a great Variety of Examples applicable to the various Branches of Trade in general, and after fo concife aMethod, that render it ufeful to all Artifts, and eafy to every Capacity.; By WILLIAM SALMON, junior. Carpenter, of Colchefter . LONDON: Printed for James Hodges, at the Looking-glafs > on London- jB ridge. MDGC XXXVI- IP rice bound 3$, Digitized by the Internet Archive in 2015 V https://archive.org/details/buildersguidegenOOsalm PREFACE MONG the Number of Trades of Tables extant, there are none that I know of, that hath any thing near the Variety contained in them, as this hath “ for there is no one Perfon in Trade, let their Calling or Imployrnent be what it will, but may here find a Table fuitable to his Bufinefs, which will be more or lels lerviceable to him. Therefore it is altogether needlefs to fay any thing more on the Ufefulnels of this Tradt, or the Motives which put me upon compiling it ; for its ferviceablenefi anduniverlal Ufe,to all Perfons in general, mifeftly appear at the firfl: In- will ma Ipedfion vi The P R E F A C E. All therefore that I {hall farther add in this Place, is to give my Reader a brief Account of the Subject Matter here- in contained • and from thence, together with the Perufal of the thing it felf, fhall leave him to determine of the Merit or Demerit thereof. The firft Table is of Timber-Meafure, whereby the true Content of any Piece of Timber, or Stone, <&c. may be exactly found, the Girt or Side of the Square, as alfo the Length being known, from 6 Inches to 36 Inches, the fide of the Square, or l of the Girt • and from 1 Foot to 40 Foot in Length. Note , the Reafon that I began this Table with 6 Inches, was becaufe all Trees which do not hold that Girt, are not allowed the Name of Timber : fo like- tvife have I omitted letting down any more of the Content, than what amounts to Feet and Quarters of Feet, by reafon that no Perfon either buys or fells Tim- ber to fuch Exa6fnefs, as to account any thing for the odd Inches in the Content of a Tree ; neither do they in many Places allow the Quarters of Feet in theContent, The PREFACE, vii and therefore to have inferted the odd Inches in the Content, would have been needlels. Table II. is of Flat or Superficial Meafure, for the meafuring of Boards, Planks, ready caft up, from i Foot to 30 Foot long, and from 5 to 18 Inches broad ; and byAddition only, will ferve to any greater Length or Breadth. Table III. Ihews at once, how many Loads are contained in any Number of Feet, of either rough or fquared Timber, or of Plank of any Thicknefs, from 1 Inch to 4 Inches thick, of excellent Ule to Timber Merchants and Ship Builders. Table IV. fhews how many Inches are contained in any Number of Feet, Square or Cubical, from * of a Foot to 30 Foot ; likewile how many Feet are contained in any Number of Yards, Square or Cubical, under 30 Yards. Alio how many Feet are contained in 30 Rod long, or fquare, and the contrary. A Table very ufeful for all Meafurers, for the expeditious calling up the fuper- ficial viii The PREFACE. facial or folid Content of any thing to be mcafured. The V. Table is of Brick-work re- duced to the Statute Thicknefs, which &t once fhews how many Rods, Quarters of Rods, Feet, and Inches, are contained in any Number of Superficial Feet, from i Foot to 4828 Feet, and fo on, ad In- jinitum ; and from ’ a Brick thick to 5 or 10 Bricks thick. A Table which is high- ly ufeful and necefiary for all Perfons concerned in Building, as well Gentlemen as Artificers. Table VI. fhews how many Bricks are required to build any Peice of Brick- work that confifts of any Number of Su- perficial Feet, from 1 Foot to 14000 Feet, and at any Thicknefs from ' aBrick thick to 2 1 , and by Addition only,, to any Thicknefs required. This Table is like- wife of daily and excellent Ufe, to all Perfons concerned in Building in general. Table VII. fhews how many paving Tiles from 6 to 1 2 Inches fquare, or how many Bricks, Lumps, or Clinkers laid Flat or Edge-ways, will pave any Floor, whofe The PREFACE, ix whole luperficial Content doth not exceed 630 Feet. Table VIII. Ihews how many Plain or Pan-Tiles will cover any Number of Iquare or luperficial Feet, from 1 Foot to 4000 Feet, according to 5 feveral Gauges. Table IX. Ihews what any Number of odd Feet in a Superficial or Solid Yard comes unto, at any Price per Yard, from One Farthing to Ten Pounds, (5 yc. Very uleful for joiners and Painters in mealur* ing and valuing their Work. Table X. Ihews the Value of any Number of odd Feet of Tiling, Slating, Roofing, Flooring, ’C . performed by the Square of ten Foot lquared, viz. a Hundred Iquare Feet at any Price per Square, from Three Shillings to Ten Pounds per Square : And will likevvile lerve for the valuing of any Commodity bought and fold by the Hundred of five Score to the Hundred. Table XI. Ihews the Value of any Number of odd Feet of Brickwork, or others, performed by the Rod fqnare, at a anv x The PREFACE. any Price per Rod, from Three Shillings to Eight or Ten Pounds per Rod : A very ufeful and neceffary Table for all Buil- bers, Bricklayers, tjvpc. Table XII. is for the ready calling up of any Number of Farthings, Pence or Shillings, that any Number of Feet, Yards, Rods, &c. or of Ounces, Pounds, Hundreds, &c. comes unto at any Price per Foot, Yard, &c. from a Farthing to Sixteen Shillings ; and by Addition to any other Price per Foot, Table XIII. and XIV. fhews the Value of any Number of odd Parts of a Hundred of fuch Commodities as are fold at the Rate of 1 20, or 1 1 2, to the Hundred • and at any Price per Hundred, from Two Shillings and Six-pence, to Eight Pounds per Hundred, admitting the Commodity fold confifts of either Num- ber, Weight or Meafure. Table XV. Ihews what any Sum of Money expended in a Day, Week, or Month, will amount unto in a Year, &c. Table The PREFACE, xi Table XVI. XVII. XVIII. XIX. ftews the Value of one Foot in Length of Timber, or Stone, when fquar’d and cut to any Scantling or Size fit for Building, without meafuring the Solidity thereof ; and at any Price per Foot Cubical. Thefe Tables are highly neceflary and ufefui to all Perfons concerned in Building. All the other Tables from XX. to XXXIX. are of Coin, Weight and Meafure ; wherein, at one View, you have how many of the Idler JDenomina- tions are contained in the greater : To particularize on each of which, in fuch a manner as to fhew their Ule, would be running the Preface to too great a L/ength ; and therefore I fhall leave my Reader to make fuch Application of them, as his particular Bufinefs, or Need fhall require ; and beg lea ve to be ex- cufed, by giving a general Table of the Contents of the whole. To conclude, I have herein omited no one Table that I could think of, which would be of general Ufe in Trade • nor have I inferted any, but what are abfo- lutely neceflary * and therefore have a % fpared xii The PREFACE. fpared no Pains to make them corre6f ; for tho’ I could have tranfcribed fome of the Tables from other Authors, yet for fear of tranlcribing Errors, I choie rather to calculate them, that thereby I might the more confidently recommend them to the Publick, as genuine, and very ac- curate, and fuch as may fafely be relied on, both by Buyers and Sellers of all Trades and Denominations in general; and that they may prove as univerfally ufeful as intended, is the fincere Defire and hearty Wifh of Tours, &c, William Salmon , jun. THE CONTENTS Table Page A LMANACK of perpetual Ufe 40 151 J~\ Ale Me a fur e — 3 1 *44 Apothecaries Weight — * — - 22 138 Afhes the Laft « — — — - — ■ — - 15 0 Avoirdupois Weight 24 139 B. Board Meafure Brickwork Reduced the Value of any Number of odd Feet by the Rod Bricks , how many will build any Wall - — - how many will pave any Floor ■ how many to a Load • } Beer Meafure II 6 8 39 3 ° C. J 9 35 82 45 54 149 143 Cubical Meafure by the Foot or Yard 4 Commodities of any Sort .the Value of any ? Number thereof at any Price for one £ Cloth Meafure ■ 26 140 Corn Meafure — 32 145 3 ° 91 D. Dry Meafure - — — Dozens , what are fo fold Deals, how fold — 32 145 25 146 39 *49 Expence XIV The CONTENTS. E. Table Page Expencc Table, bv the Day . W teki Month > ir Tear I — j *5 * 2 7 F. Flooring , ^* 2 / Bricks , 6cc. W// T any Floor — — — ) - — Value of any Number of 7 odd Feet thereof by the Square £ F//® by the Hundred or Barrel . G. Gold , /fr Giafs , 67 ^ - — — the Cafe — — — - — //>39 H9 H. Ffoy, Heavenly Bodies , their Motion Honey Me a fur e — Hoops , how many to a Bundle 39 34 2 9 39 149 146 M3 ] 5° Iron j the Ton Iron -j lone, the Laft 39 39 149 M° L. Z^Tg* Hundreds , ?W 0 Tables thereof for- the valuing of fuch Commodities as { are fold at the Rate of 112 , or 1201 to the Hundred H 108 1 17 Lo/zg- The CONTENTS Long Meafure Land Meafure • — Lathes the Bundle Lead the Fodder Lime the Hundred — — — the Load Table Page - 2 7 141 - 39 *4$ H9 > H9 M. Money Table - — — - — — - 20 Meafuresmade ufe of in Land and Building 39 N. Nails how fold Oil Meafure OJmands the Lajl Lavements Paper a ■29 -39 p. Parchment Pitch the Lajl .} 37 Plank of any Thicknefs > the Load 39 • 3 R. Rods fquare , the Value of any Number y of odd Feet at any Price per Red 5 Roofng , The Value of any Number of 5 odd Feet by the Square — — $ S. Square Meajure \ ^ the Foot , I Slating, the Value of any Number of eddi Feet by the Square - — - $ Silver its Value • — *37 148 •39 *49 H3 150 54 147 ICO 1 1 82 10 74 4 3° 27 141 10 74 2 3 *39 Sait XVI The CONTENTS. T. Salt Meafure — Sea-Coal Meafure Sand the Load timber Meafure Filing , the Value of any Number of odd Feet by the Square « timber , rough or fquared y how many Feet to a Load Limber fquaredy the Value of one Foot in Length at any Scantling Lroy Weight — Lime its Motion Liles , to a Load Table Page .} 32 145 39 *49 how many will cover any Number of fquare Feet Far, the Lafi V. Vinegar Meafure 39 15° 29 142 W. Water Bufliel Weather Boarding , the Value of anyl odd Feet thereof by the Square $ Wine Meafure — - — Wool Weight — - — Wood, the Chord or Stack Wire, the Stone 145 10 74 29 142 2 5 140 3 3 H7 39 1 S° N. B. The Author furveys, draws Draughts or Defigns of Buildings for Gentlemen, and eftimates the fame ; or undertakes to build, or give Di- redions to Workmen in performing the executive Part, according to Art, agreeable to any Situa- tion, and the moft beautiful Proportions in Ar- chitedure. A Univerfal Magazine. of Tables. TABLE I. O F SOLID MEASURE. Which fhews by Xnfpe&ion the Content of any Piece of Tim- ber, Stone &c. The Girt, or Side of the Square, as alfo the Length , being known. From 6 to 36 Inches, the Side of the Square, or ~ of the Girt ; And from 1 Foot, to 40 Foot in Length. B z Of Solid Meafure. 1 6 1 6 il 6 11 6 4 7 ! 7 1 1 7 117 il CO oc if 0 1 O I O I 0 1 O I O I 0 1 0 1 O I 0 1 2 0 2 O 2 O 2 0 2 O 2 O 2 0 3 0 3 0 3 0 3 3 0 3 0 3 O 3 0 3 I O I O 1 0 1 1 1 1 1 1 4 1 0 I 0 I O 1 1 I I I I 1 2 1 2 1 3 * 3 5 1 1 I I I I 1 2 I 2 1 3 1 3 2 0 2 0 2 1 6 1 2 I 2 i 3 1 3 2 0 2 0 2 1 2 2 2 2 2 3 7 1 3 I 3 2 0 2 0 2 I 2 2 2 2 2 3 3 0 3 1 8 2 0 2 0 2 1 2 2 2 2 2 3 3 0 3 1 3 2 3 3 9 2 1 2 1 2 2 2 3 3 0 3 1 3 2 3 3 4 0 4 1 10 2 2 2 2 2 3 3 0 3 1 3 2 3 3 4 0 4 1 4 2 1 1 2 3 2 3 3 0 3 1 3 2 4 0 4 1 4 2 4 3 5 0 12 3 0 3 1 3 2 3 3 4 0 4 1 4 2 5 0 5 1 5 2 IS 3 1 3 2 3 3 4 ° 4 1 4 2 5 0 5 1 5 3 6 0 H 3 2 3 3 4 0 4 1 4 3 5 0 5 1 5 3 6 0 6 2' l 5 3 3 4 ° 4 1 4 2 5 0 S 1 5 3 6 1 6 2 7 0 16 4 ° 4 1 4 2 5 0 5 1 5 3 6 1 6 2 7 0 7 2 *7 4 1 4 2 4 3 5 1 5 3 6 0 6 2 7 0 7 2 8 0 18 4 2 4 3 5 1 5 2 6 0 6 2 7 0 7 2 8 0 8 2 T 9 4 3 5 0 5 2 6 0 6 * 6 3 7 1 7 3 8 1 8 3 2 0 5 0 5 1 5 3 6 1 6 3 7 1 7 3 8 1 8 3 9 1 2 I 5 1 5 2 6 0 6 2 7 0 7 2 8 0 8 3 9 1 9 3 22 5 2 5 3 6 1 6 3 7 1 8 0 8 2 9 0 9 3 10 1 23 5 3 6 0 6 2 7 1 7 3 8 1 8 3 9 2 10 0 10 3 24 6 0 6 2 7 0 7 2 8 0 8 3 9 1 10 0 IO 2 11 1 2 5 6 1 6 3 7 1 7 3 8 2 9 0 9 3 IO I II 0 11 3 26 6 2 7 0 7 2 8 0 8 3 9 1 10 0 10 3 II 2 12 1 27 6 3 7 1 7 3 8 2 9 0 9 3 10 2 11 1 12 O 12 3 28 7 c > 7 2 8 0 8 3 9 2 io 0 10 3 11 2 12 I 13 0 29 7 1 7 3 8 2 9 0 9 3 io 2 Hi 12 0 12 3 13 2 3 c ; 7 2 : 8 0 8 3 9 1 10 0 10 3 11 2 12 % 13 I 14 0 3 i 7 3 8 1 9 0 9 3 Io 2 11 1 12 0 12 3 13 3 14 2 32 8 c ) 8 2 , 9 1 10 0 10 3 11 2 ; 12 2 13 1 14 c 1 5 0 33 8 1 : 8 3 9 2 10 I 11 c > 12 c .12 3 13 3 14 2 i 5 2 34 l 8 2 > 9 c > 9 3 10 3 n 2 i 12 I 13 1 14 0 1 5 ° 16 0 3 j ; 8 5 ; 9 1 10 1 : 1 1 c 9 < > 9 a ; 10 2 ■11 1 12 3 13 C > 14 c 15 c 16 c 1 17 0 3 * 7 9 ] [ 10 c > 10 3 i 11 2 > 12 2 >13 2 : 14 1 15 1 16 1 17 1 3 * 3 9 2 a 10 ] [ II c ) 12 c >12 3 i 13 3 1 H 3 15 3 16 3 17 3 3 < ? 9 : $ 10 2 1 11 1 : 12 ] : 13 ] ;i4 c ) 15 c > 16 i • 17 1 : 18 1 3 TO ( 3 10 5 5 11 2 L 12 2 i 13 5 - 14 2 i 15 2 : 16 2 * 17 3 5 18 3 Of Solid Meafure. f 8 1 IS 1 IQ 19 if 9 tI 9 41 10 [10 ijio 1 a i 1 0 1 I O 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 O 3 0 3 2 I 0 1 0 1 0 I 0 1 1 1 1 1 1 1 I I 2 1 2 3 I 2 1 2 1 2 I 3 1 3 1 3 2 0 2 0 2 1 2 1 4 2 0 2 0 2 1 2 1 2 2 2 2 2 3 2 3 3 0 3 0 5 2 2 2 2 2 3 2 3 3 0 3 1 3 1 3 2 3 3 4 0 6 3 0 3 0 3 1 3 2 3 3 3 3 4 0 4 1 4 2 4 3 0 7 3 2 3 2 3 3 4 0 4 1 4 2 4 3 5 0 5 1 5 2 . 8 4 0 4 I 4 2 4 2 5 0 5 1 5 2 5 3 6 0 6 1 9 4 2 4 3 5 0 5 1 5 2 5 3 6 1 6 2 6 3 7 0 IO 5 0 5 I * 2 5 3 6 1 6 2 6 3 7 1 7 2 8 0 ri 5 2 5 3 6 0 6 2 6 3 7 1 7 2 8 0 8 1 8 3 12 6 0 6 1 6 3 7 0 7 2 7 3 8 1 8 3 9 0 9 2 13 6 2 6 3 7 1 7 2 8 0 8 2 9 0 9 1 9 3 10 1 14 7 0 7 1 7 3 8 1 8 3 9 0 9 2 10 0 10 2 r 1 0 15 7 2 7 3 8 1 8 3 9 1 9 3 io 1 10 3 H 1 12 0 16 8 0 8 2 9 0 9 2 io 0 10 2 U 0 11 2 12 1 12 3 17 8 2 9 0 9 2 10 0 io 2 11 0 11 3 12 I 13 0 *3 2 18 9 0 9 2 10 0 10 2 II 1 1 1 -3 12 2 13 0 x 3 3 14 1 19 9 2 io 0 10 « 11 1 II 3 12 2 13 0 13 3 14 2 i 5 0 20 io 0 10 2 11 1 11 3 12 2 13 0 *3 3 14 2 *5 1 16 0 21 lo 2 11 0 1 1 3 12 1 13 0 *3 3 x 4 2 15 1 16 0 16 3 22 II 0 1 1 2 12 1 *3 0 *3 3 r 4 2 16 0 16 3 17 2 23 II 2 12 0 12 13 2 *4 1 *5 0 15 3 16 3 x 7 2 18 1 24 Iz 0 12 3 *3 2 14 1 *5 0 15 3 16 2 17 2 1 8 1 19 1 25 12 2 13 1 14 0 14 3 *5 2 16 2 1 7 1 18 0 *9 0 20 0 26 *3 0 13 3 . r 4 2 15 1 16 1 i 7 0 18 0 18 3 19 3 20 3 27 : 1 3 2 14 1 15 0 16 0 16 3 i 7 3 18 3 19 2 20 2 21 2 28 14 0 44 3 £ 5 3 16 2 *7 2 18 1 19 1 20 1 21 1 22 1 29 14 2 15 1 16 1 17 0 18 0 19 0 20 0 21 0 22 0 23 I | 3 ° 15 0 15 3 16 3 17 3 18 3 19 3 20 3 2 i 3 22 3 24 0 3 i 15 2 16 1 17 1 18 1 19 1 20 1 21 2 22 2 23 2 4 £! 1 32 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 1 24 2 25 2 33 16 2 i 7 2 18 2 19 2 20 2 21 3 22 3 24 0 2 5 1 26 I 34 17 0 18 0 19 0 20 0 21 1 22 1 23 24 2 j 1 26 0 27 I 35 17 2 18 2 *9 2 20 3 21 3 23 0 24 1 25 2, 26 3 28 O 36 18 0 !9 0 20 1 21 1 22 2 23 3 25 c 26 1 27 2 28 3 37 18 2 19 2 20 3 21 3 2 3 0 24 1 25 2 26 3 28 1 29 2 38 19 0 20 0 21 1 22 2 23 3 25 0 26 2 27 2 29 0 ;3° T 39 19 2 20 2 21 3 23 0 24 f 25 2 27 0 28 T 29 3 31 I t° 20 0 21 1 22 .2 23 _3. 25 0 2 6 1 at 3 2Q O 3 © 2 ■32 Oi 4 Of Solid Meafure. 1 n"i 1 1 if 1 1 j\t 1 i\ 12 I 12 41 1 1 2 i|l 2 3. 1 13 l ‘3 4 I 0 3 0 3 O 3 0 3 1 0 I 0 I 0 1 0 1 °| 1 0 2 1 2 1 3 1 3 1 3 2 0 2 O 2 0 2 1 2 * 2 1 3 2 2 2 2 2 3 2 2, 3 0 3 O 3 I 3 1 3 2 1 3 2 4 3 1 3 2 3 ^ 3 2 4 0 4 0 4 I 4 2 4 2 ! 4 3 5 4 0 4 1 4 2 A 4 3 5 0 5 0 5 1 5 2 5 3 6 0 6 5 0 5 1 5 2 5 3 6 0 6 I 6 2 6 3 7 0 7 1 7 5 3 6 0 6 1 6 2 7 0 7 I 7 2 7 3 8 0 8 2 8 6 2 7 0 7 1 7 2 8 0 8 I 8 2 9 0 9 1 9 3 9 7 2 7 3 8 1 8 2 9 0 9 I 9 3 10 0 10 2 10 3 io 8 1 8 3 9 0 9 2 10 0 1 0 I 10 3 11 1 11 2 12 0 U 9 0 9 2 10 0 10 0 1 1 0 11 I 1 1 3 12 1 12 3 13 1 12 xo 0 10 2 11 0 11 2 12 0 12 2 13 0 13 2 r 4 0 14 2 T 3 10 3 11 1 11 3 12 1 13 0 13 2 14 0 r 4 2 15 1 15 3 4 11 3 12 1 12 3 13 1 ‘4 0 14. 2 15 c 15 3 16 1 17 0 15 12 2 13 c 13 3 14 1 15 0 15 2 16 1 16 3 17 2 18 1 16 13 I 14 0 14 2 15 1 l6 0 16 2 i 7 1 18 0 18 3 19 2 17 *4 1 r 4 3 15 2 1 6 1 17 0 i 7 18 1 l 9 0 19 3 20 2 18 I 5 0 1 5 316 2 i 7 1 l8 0 18 3 19 2 2o 1 21 0 21 3 29 15 3 16 2 17 1 l8 0 19 0 19 3 20- 2 21 1 22 1 23 0 2 C 16 3 17 2 18 1 19 c 20 0 20 3 21 2 22 2 23 1 124 1 2 I 17 2 18 1 19 1 20 0 21 0 21 2 22 3 ?3 2 24 2 2 5 2 2; 18 1 19 1 20 c 21 0 22 c 22 3 23 3 24 3 25 3 26 3 23 19 1 20 0 ! 2 1 0 22 0 23 0 23 3 24 3 25 3 26 3 ! 128 0 24 20 0 21 0 22 c 2 3 0 24 0 2 5 0 26 0 27 0 28 0 29 1 25 21 0 21 3 22 3 2 3 3 2-5 0 26 c 27 c 28 0 29 1 30 1 2$ 21 3 22 3 23 3 24 3 26 0 2 7 c 28 0 29 1 30 2 31 27 22 2 23 2 ■ 24 3 25 3 27 0 28 0 29 1 30 1 31 2 3 2 3 2.8 23 2 ,24 2 25 2 26 3 28 0 29 c 30 1 31 2 32 3 34 0 29 24 1 25 1 26 2 27 3 29 0 3 o 0 3 i 1 32 34 0 35 1 3 ° 25 c (26 1 27 2 28 3 30 0 3 i I 32 2 33 3 35 0 36 2 3 1 26 c >27 c ) 28 >f 29 2 31 0 3 2 I 33 3 34 3 36 1 37 3 32 26 3 28 c >129 1 3 o 2 32 0 33 I 34 36 0 37 2 39 0 3 ? 27 2 ; 29 c > 3 ° 1 31 2 33 c 34 2 35 37 l 38 2 4 ° 0 34 28 2 -29 3 > 3 1 ° 3 2 2 34 c 35 x |3 6 3 38 1 39 3 41 1 35 29 1 30 3 132 c '33 2 35 c 36 I |37 3 39 2 4 i 0 | 4 2 2 3 6 ' 3 G I : 31 1 - 33 c 34 r 36 0 37 2 39 G t° 2 42 1 ;43 3 3 " 31 C >32 233 3 35 2 37 0 38 2 40 C 4 l 3 43 145 0 3 ^ : 3 i 3 1 3 3 i |34 3 36 1 38 0 39 24 I G j.2 3 44 2 46 1 35 > 32 3 i 34 i : 3 S 3 37 1 39 0 4 ° 2 42 I 44 0 45 3 47 2 4 C i 1 3 5 036 2 33 1 40 0 ! 4 i 2 A ‘ 2 ~ rr > l }45 0 46 348 3 Of Solid Meafure. 5 I 13 tU 3 li 14 j 14 U 14 2 1 4 !| i 5 1 15 i £5 t 15 I I I I I 1 1 I I 1 1 I 2 1 2 I 2 I 2 1 2 2 2 2 2 2 2 2 2 3 2 3 3 0 3 0 3 0 3 1 3 1 3 3 3 3 3 4 0 4 0 4 1 4 2 4 2 4 3 5 0 5 0 4 5 0 5 1 5 1 5 2 5 3 6 0 6 1 6 1 6 2 6 3 5 6 1 6 2 6 3 7 0 7 1 7 2 7 3 8 0 8 1 8 2 6 7 2 7 3 8 0 8 1 8 3 9 0 9 1 9 2 10 0 io 1 7 8 3 9 0 9 ^ 9 3 10 0 10 2 10 3 11 1 11 2 12 0 8 I© c so 2 10 3 11 1 II 2 12 0 12 2 12 3 13 i S 3 3 9 II 1 11 3 12 1 12 2 13 ° 13 2 14 0 14 2 i 5 0 15 2 IO 12 2 S 3 0 13 2 14 0 14 2 15 0 15 2 16 0 16 2 17 0 ii *3 3 14 1 H 3 152 l6 O 16 2 17 0 17 3 18 1 18 3 12 15 0 1 5 3 l6 I 16 3 17 2 18 0 18 3 19 1 20 0 20 2 13 16 1 17 0 17 2 18 X 18 3 19 2 20 1 20 3 21 2 22 1 H 17 2 18 1 19 O 19 2 20 I 21 0 21 3 22 2 23 1 24 0 1 5 18 3 19 2 2 O I 21 0 21 3 22 2 23 1 24 0 25 0 2 5 3 16 20 1 21 0 21 3 22 2 23 I 24 0 25 0 2 5 3 26 2 27 2 i? 21 2 22 1 23 0 23 3 24 3 2 5 2 26 2 27 1 28 1 29 1 x8 22 3 23 2 24 2 25 1 26 I 27 0 28 0 29 0 30 0 31 0 i 9 24 0 2 4 3 2 5 3 26 3 27 2 28 2 29 2 30 2 31 2 32 2 20 2 5 1 26 1 27 0 28 0 29 0 30 0 31 1 32 1 33 1 34 1 21 26 2 2 28 2 29 2 30 2 31 2 3 2 3 33 3 35 0 36 0 22 ^7 3 28 3 2 9 3 31 0 32 0 3-3 0 34 s 35 2 36 2 37 3 23 29 0 3o 0 31 0 32 1 33 2 34 2 35 3 3 7 0 38 X 39 2 24 31 1 31 2 32 2 33 3 35 0 36 1 37 2 38 3 40 0 4s 1 25 31 2 32 3 34 c 35 1 36 2 37 3 39 0 4 ° s 4 1 2 43 0 26 32 3 34 0 35 1 36 2 37 3 39 1 40 2 4 1 3 43 1 44 3 27 34 c '35 1 3 6 $ 38 0 39 1 4 ° 3 42 0 43 2 45 0 46 2 28 35 1 36 3 38 b 39 1 4 ° 3 42 1 43 3 45 0 46 2 48 c 29 36 2 : 38 0 39 1 4 ° 3 42 I 43 3 45 1 46 3 48 1 49 3 3 o 37 3 39 1 40 0 42 1 4-3 3 45 1 4 6 3 48 1 50 0 5 s 2 3 1 39 c >40 2 : 4 %.° 43 2 4-5 1 46 3 48 1 49 0 5 1 2 53 i 32 40 2 142 c ’43 2 45 0 46 2 4%" 1 50 c ► 5 1 2 -53 1 55 0 <33 4 1 3 143 1 44 3 46 2 48 0 ' 4 m m 2 -53 1 55 0 56 3 34 43 e >44 2 46 1 47 3 4-9 2 5 1 3 • 53 °'54 3 56 2 58 2 35 44 1 45 3 47 2 - 49 , t 5 1 c > 5 2 3 ; 54 2 : 56 2 ^58 1 60 x 36 ! 45 5 H 7 1 49 c 1 5 ° 3 52 2 -54 ^ [ 56 1158 C ) 60 c • 62 0 3 7 f 4 6 : ^48 2 : 5 ° 1 52 c > 54 c >! 55 3 5 57 3*59 3 ; 61 2 63 2 3 g : 48 049 3 : 51 2 -53 2 -55 1 :!57 1 [ 59 i|6i ] [63 1 65 1 35 > 49 i|5 1 c >53 c > <4 3 56 3158 $ \ 60 3 62 s \ 6 $ c ' 67 0 >f$o 2I52 2 ’■ 54 s :|/5 1 58 1 : 6o ] [ 62 2*64 s 1 66 2 •168 3 col'4' 6 Of Solid Meafure. 1 16 1 16 1 3 16 \ l6 3 4 1 * 7 1 17 it 17 11 [£1 4 18 18 1 4 1 I 1 3 1 3 1 3 I 3 2 0 2 0 2 0 2 0 2 1 2 1 2 3 2 3 2 3 3 3 3 4 0 4 0 4 1 4 1 4 2 4 2 3 5 1 5 2 5 2 5 3 6 0 6 0 6 1 6 2 6 3 6 3 4 7 0 7 1 7 2 7 3 8 0 8 1 8 2 8 3 9 0 9 1 5 8 2 9 0 9 1 9 2 10 0 10 1 10 2 10 3 11 1 11 2 6 10 2 11 0 1 1 1 11 2 12 0 12 1 12 3 13 0 13 2 13 3 ! 7 12 1 12 3 13 0 *3 2 >4 0 14 1 H 3 i 5 1 15 3 16 0 8 14 0 I 4 2 i 5 0 15 2 16 0 16 2 i 7 0 i 7 2 18 0 18 2 9 16 0 16 2 17 0 17 2 L 8 0 18 2 19 0 19 2 20 1 20 3 IQ 17 3 18 1 1 8 3 19 1 20 0 20 2 21 1 21 3 22 2 23 0 I I 19 2 20 0 20 3 21 1 22 0 22 2 2*3 1 24 0 24 3 25 1 12 21 1 22- 0 22 2 23 1 24 0 24 3 25 2 26 1 27 0 2 7 3 13 23 0 23 3 24 2 25 1 26 0 26 3 27 2 28 1 29 1 30 0 14 24 3 25 2 26 1 27 1 28 0 28 3 29 3 30 2 3 i 2 32 1 15 26 2 £ 7 2 28 1 29 0 30 0 3 ° 3 3 i 3 32 3 33 3 34 2 l6 28 1 29 1 3 ° 1 3 J 0 32 0 33 0 34 0 35 0 36 0 37 0 I" 30 0 3 i 0 32 0 33 0 34 0 35 0 36 0 37 0 38 1 39 1 18 32 0 33 0 34 0 35 0 36 0 37 0 38 1 39 1 40 2 41 2 19 33 3 34 3 35 3 37 0 38 0 39 1 40 1 4 i 2 42 3 43 3 20 35 2 36 2 37 3 38 3 4 ° 0 4 1 1 42 2 43 3 45 0 46 1 21 37 1 38 2 39 2 4° 3 42 0 43 1 44 45 3 .47 1 48 2 (22 39 0 40 1 4 1 2 -S' 1 3 44 0 45 1 46 3 48 o r 49 2 5 o 3 (23 4 ° 3 42 c 43 1 14 3 46 0 47 2 48 3 50 *] ! 5 I 3 53 0 24 42 2 44 0 45 1 4.6 3 48 0 49 2 5 i 0 52 2: 54 0 55 2 25 44 1 45 3 47 1 48 2 5 ° 0 51 2 53 0 54 256 1 57 3 26 46 0 47 2 49 0 5 ° 2 52 0 53 2 55 1 5 ^ 3*53 2 60 0 27 48 0 49 2 5 i 0 52 2 54 0 55 3 57 1 59 0 00 3 62 1 28 49 3 5 1 1 52 3 J 4 2 5 ^ 0 57 3 59 2 61 1 6 3 0 64 3 I 20 5 i 2 53 0 54 3 56 2 58 0 59 3 61 2 63 1 6 5 i *7 1 67 0 7 3 ° 53 1 55 0 56 2 58 1 60 0 61 3 63 3 65 2 2 69 1 3 i 55 0 56 3 58 2 OO 1 62 0 64 0 65 3 67 6 9 3 7 i 2 32 56 3 58 2 60 2 62 1 64 0 66 0 68 0 70 0 7 i 0 74 0 33 58 2 60 2 62 1 64 1 66 0 68 0 70 0 72 0 74 1 76 1 34 60 1 62 1 64 0 66 0 68 0 70 1 72 1 74 1 76 2 78 2 35 62 0 64 0 66 0 68 0 70 0 72 1 74 1 76 2 78 3 80 3 36 64 0 66 0 68 c 70 0 '72 1 74 - 1 76 2 78 3 81 0 83 1 37 8 65 3 67 3 69 3 72 0 '74 1 76 1 78 2 80 3 83 T X 85 2 38 67 2 69 2 7 i 3 74 0 '7 6 1 78 2 80 3 83 0 85 2 87 3 39 69 1 7 i 2 73 /■> 75 3 78 1 80 2 82 3 85 1 87 3 90 0 4 C 1 71 0 73 1 75 2 77 3 80 1 82 2 85 0 87 2 90 0 92 2 Of Solid Meafure. 18 1 2 It 8 a ■5 19 19 ?| 19 *i }? 3. 4 20 1 20 fi 20 I 2 1 2 I 2 2 2 2 2 2 2 2 2 3 2 3 2 2 4 3 4 3 5 0 5 O 5 1 5 1 5 2 5 2 5 3 7 0 7 1 7 2 7 2 7 3 8 0 8 1 8 2 8 4 9 2 9 3 10 O 10 I 10 2 10 2 1 1 0 11 1 11 5 1 1 3 12 0 12 2 12 3 13 0 13 2 13 3 14 0 14 6 h 1 14 2 15 0 15 1 i 5 3 16 s 16 2 17 0 17 7 16 2 17 0 17 2 18 0 18 1 18 3 19 1 19 3 20 8 19 0 19 2 20 0 20 2 21 0 21 2 22 0 22 3 2 3 9 21 1 21 3 22 2 2 3 0 23 3 24 1 25 0 ^5 2 26 10 23 3 24 1 2 5 c 2 5 2 26 1 27 0 27 3 28 1 29 11 26 0 26 3 27 2 28 1 29 0 29 3 3 ° 2 3 1 1 32 12 28 2 29 3 3 o 0 30 3 3 i 2 32 2 33 1 34 0 35 *3 30 3 3 * 2 32 2 33 1 34 1 35 0 36 0 37 0 3 7 H 33 1 34 0 35 0 36 0 36 3 37 3 38 3 39 3 40 15 35 2 36 2 37 2 38 2 39 2 40 2 41 2 42 2 43 16 38 0 39 0 40 0 41 0 42 1 43 1 44 1 45 2 46 17 40 1 41 2 42 2 43 2 44 3 46 0 47 0 48 1 49 j 8 4 2 3 43 3 45 0 46 1 47 2 48 3 50 0 5 1 1 52 19 45 0 46 1 47 2 48 3 5 o 0 51 i 52 3 ! 54 0 55 20 47 2 48 3 50 O 5 i 1 52 3 54 0 55 2 1 56 s 58 21 49 3 5 i 1 5 2 2 54 0 55 1 56 3 58 I 59 3 61 22 52 1 53 2 55 O 56 2 58 0 59 2 61 o ! 62 2 64 23 54 2 56 c 57 2 59 0 60 2 6z 1 63 3 65 1 67 24 57 0 5 S 2 60 0 61 3 63 1 65 c 66 2 i 68 1 70 25 59 1 6i 0 62 2 64 1 66 0 67 2 69 I 71 0 72 26 61 3 63 i 65 O 66 3 68 2 70 1 72 0 74 0 75 27 64 0 65 r» 67 2 69 i' 7 i 1 73 0 75 0 76 3 78 28 66 2 68 1 70 O 72 0 73 3 75 3 77 3 : 79 2 81 29 68 3 70 3 72 2 74 2 76 2 78 2 80 2 ! 82 2 84 3 o 7 i 1 73 0 75 O ■ 77 0 79 0 81 1 83 I 85 1 87 3 i 73 2 75 2 77 2 79 3 81 3 83 3 86 0 88 1 90 32 76 c 78 c 80 0 82 1 84 2 86 2 88 3 91 0 93 33 78 1 80 2 82 2 84 3 87 0 89 1 91 2 93 3 96 34 80 3 83 c 85 0 87 1 89 3 92 0 94 1 96 3 99 35 ^3 0 35 . I 87 2 90 0 92 1 94 3 97 0 99 2 102 36 85 2 87 3 90 I 92 2 95 0 97 2 100 0 102 2 105 37 87 2 90 1 92 3 95 0 97 2 100 0 102 3 IO5 1 107 38 90 1 92 3 95 1 97 3 100 1 102 3 105: 2 108 0 IIO 39 92 2 95 0 97 3 100 1 102 3 105 2 108 1 I I I 0 1 13 4 c 95 c 97 2 100 1 102 3 105 2j 108 1 in 0 i£L 3 116 20 2 5 8 1 1 14 17 20 23 26 29 32 35 38 41 44 47 50 53 3 56 3 59 3 62 3 65 3 o] 68 3 °i 71 3 3 | 74 31 3 77 2 31 80 2] 83 2 86 2) 89 4 92 2 r i| 95 2 I 98 2 0 1 01 2 O I04 2 I07 2 IIO 2 1 1 3 2 3I1 16 2 2| 1 19 2 VO VO VO tx. VO VO VO VO VO OO VS VO VO VO unw.4^w 8 Of Solid Meafure. i 21 (21 i |2£ i | 2 L 1 1 22 j 22 si 22 i 22 i 1 23 . 1 123 1 3 < 3 3 < > 3 < ^ 3 1 3 : i 3 i 3 J 2. 3 : 2 3 J 2 ' 2 6 c 5 6 6 6 2 6 : * 6 : 5 7 c > 7 < ^ 7 : r 9 c > 9 1 9 ^ * 9 10 ] [ 10 ] [ 10 : l IO ; 5 11 < D Il[ 1 . 12 i 12 2 12 3 *3 < ) 13 ] t *3 : 5 14 c ) 14 ] : 14 : 2 1 <\ $ 15 3 15 2 16 c 1 6 i 1 6 s ! 17 c > 172 * 17 2 i 18 j [ 1 i I t 18 1 18 3 19 1 *9 * 20 c > 20 2 : 21 c ) 21 2 : 22 c > 221: 7 21 1 21 3 22 1 22 3 23 2 : 24 c > 24 1 > 25 C > 25 ^ l 2 ( 5 1 8 24 2 2 5 0 25 2 26 1 26 3 27 2 ; 28 c ) 28 3 29 1 3 C 9 27 2 28 0 28 3 29 2 3 ° 1 3 o 3 31 2 32 1 33 c 5 3 3 ! io 30 2 31 1 32 0 32 3 33 2 34 1 35 0 35 3 36 2 : 3 7 1 1 33 2 34 1 35 1 36 0 36 3 37 3 38 2 39 2 40 1 4 i| 12 36 3 37 2 38 2 39 1 40 1 41 1 42 0 43 0 44 0 45 *3 39 3 4 ° 3 41’ 2 42 2 43 2 44 2 45 2 46 2 47 3 48! r 4 42 3 43 3 44 3 45 3 47 c 48 0 49 0 5 o 1 5 i 1 5 21 l 5 45 3 47 0 48 0 49 1 5 o 1 5 i 2 5 2 2 53 3 55 0 56 1 6 49 0 50 0 Si 1 52 2 53 3 55 0 56 1 57 2 j8 3 60; x 7 52 0 53 1 54 2 55 3 57 0 58 0 59 3 61 0 62 I 6 3 18 55 ° 56 1 57 3 59 0 60 2 61 3 63 1 64 2 66 0 6 7 ; l 9 58 0 59 2 60 3 62 1 63 3 65 1 66 3 68 1 69 3 71 20 61 1 62 2 64 0 65 2 67 0 68 3 70 1 7 i 3 73 1 75 ; 21 64 1 65 3 67 1 68 3 70 2 72 0 73 3 75 1 77 0 78 i 22 67 1 68 3 70 2 72 1 73 3 75 2 77 1 79 0 80 3 82 j 23 70 1 72 O 73 3 75 2 77 1 79 0 80 3 82 2 84 1 86 2 4 73 2 75 1 77 0 78 3 80 2 82 2 84 1 86 1 88 0 90 25 76 2 78 1 81 1 82 0 84 0 85 3 s? 3 89 3 9 i 3 93 26 79 2 81 2 83 1 85 1 87 1 89 1 91 1 93 1 95 2 97 2 7 82 2 84 2 86 2 88 2 9 o 3 92 3 94 3 97 0 99 0 1 01 28 85 3 87 3 89 3 9 i 3 94 0 96 1 98 1 [00 2 102 3 '-o .5 29 88 3 9° 3 93 0 95 1 97 1 99 2 101 3 104 0 106 2 108 3 ° 9 i 3 94 0 96 I 98 2 too 3 103 0 105 1 107 3 no 0 [12 3 i 94 3 97 0 99 2 igjt 3 : [04 0 106 2 108 3 ; [ill ri 3 3 1 16 32 98 0 foo I 102 2 ■ r 05 0 ] [07 2 no 0: 1122 [15 0 [172 120 33 101 0 Io 3 1 10 5 3 1 [08 1 ] [IO 3 1 13 1 [ 16 c ; [ 1 8 2 j l 2 1 0 [23 34 I O4 O 106 2 109 0 1 til 2 ] [ 14 1 1163: [19 2 1 [22 0 1 [24 3 : 127 35 IO7 O ' r° 9 3 112 1 1 [14 3 ] [ 1 7 2 : 120 1 [23 0 : [25 3 1 [28 2 j [ 3 1 36 I IO I 112 3 115 2 ] [[8 1 ] [2i 0 : 123 3 i [26 2 1 [29 1 1 : 3 2 1 j [ 35 37 : ri3 1 [ 16 0 1 1 8 3 i [21 2 J [24 1 : [27 0 i [30 O! [32 3 1 •35 3 J [38 38; r 16 1 i [ 19 0 r2i 3 j [24 3 ] [27 2 : [30 2 i [33 2 ^ 36 2 i 39 2 i [42 39 1 19 1 [22 I [25 O ! :28 0 ] [300: [34 0 ] [37 oj [40 0 1 43 1 1 [46 |o [22 2 T 25 I [28 I J 31 ii [34 1 : [ 3 7 2 ] [40 2P [43 3 r 46 2 1 50 Of Solid Meafurd § 1 23 L 2 1 23 4 i 24 1 24 i 124 1 1 24 1 1 2 5 1 25 i I 3 3 3 3 4 c 4 c 4 < 4 1 L| 4 ] l 4 I 2 7 2 7 5 8 c 8 c 8 1 8 5 > 8 ; > 8 3 3 11 2 11 3 12 0 12 1 12 2 12 3 ; 13 c > 13 1 4 15 1 15 2 1 6 c 16 1 16 £ 17 c > 171 172 5 19 0 19 2 20 0 20 1 20 3 21 1 21 2 : 22 d 6 23 0 23 2 24 0 24 2 25 c 2 S 2 : 26 c > 26 2 7 26 3 27 1 28 0 28 2 29 c 29 3 30 I 3© 3 8 30 2 31 1 32 0 32 2 33 1 34 0 ■ 34 2 35 1 9 34 2 35 1 3 6 0 36 3 37 2 38 1 39 0 39 3 IO 38 1 39 0 40 0 4 ° 3 41 2 42 2 43 1 44 1 ii 42 0 43 c 44 0 44 3 45 3 46 3 47 2 48 2 12 46 0 47 0 48 0 49 ° 5 0 0 5 i 1 52 0 53 0 l 3 49 3 50 3 52 0 S 3 0 54 0 55 1 56 1 57 2 H 53 2 54 3 56 O 57 0 58 1 59 2 60 3 61 3 15 57 2 58 3 60 0 61 1 62 3 63 3 65 d 66 5 16 61 1 62 2 64 0 6 S 1 66 2 68 0 69 1 70 3 i 7 65 0 66 2 68 0 69 I 7 o 3 73 1 73 3 75 1 18 69 0 70 2 72 0 73 2 75 c 76 2 78 0 79 2 19 * 7 *- 3 74 1 76 0 77 2 79 c 80 3 82 1 84 0 20 74 2 78 1 80 0 81 2 83 1 85 0 86 3 88 2 21 80 2 82 1 84 Q 85 3 87 2 89 1 91 d 92 3 22 84 1 86 0 88 0 89 3 91 2 93 2 95 1 97 0 23 88 0 90 0 92 0 93 3 95 3 97 3 99 3 101 3 H 92 0 94 0 96 0 98 0 loo 0 102 0 104 0 106 1 25 95 3 97 3 loo 0 £02 0 i 1 04 0 106 1 0 CO to 1102 26 99 2 £01 : 104 0 I06 OI08 1 IIO 2 112 3 115 0 2? 103 2 105 3 108 0 IIO I I 12 2 1 14 3 1 1 7 6 1 19 2 28 507 1 109 2 £ I 2 0 114 I Il6 2 119 0 121 2 123 3 29 Hi 0 fi 3 2 Il6o 1 1 8 1 ! 1 2 0 3 £2*3 I 3 128 1 30 u 5 0 1 1 7 2 £20 0 122 2425 0 127 2 130 0 13 2 3 31 118 3 121 1 124 c £26 2129 O 131 3 I 34 2 137 1 32 1 22 2 125 1 128 0 130 2 133 1 136 0 138 3 141 2 33 126 2 129 1 132 0 134 3 137 * 140 1 I43 6 146 0 34 I30 1 133 0 £36 0 138 3 141 2 144 2 147 2 156 2 35 *34 0 137 0 140 0 142 3 *45 3 148 3 tji 3 r 54 3 36 138 0 141 0 144 0 147 0: 1 So 0 153 0 I.?6 1 I 59 1 37 141 3 H 4 3 148 0 151 0 154 0 157 1 160 2 163 3 38 *45 2 148 3 1 52 0 i 55 158 1 1 6 1 2 : 164 3 1 68 0 39 •49 2 152 3 156 0 159 4 162 2 1 65 3 £69 I 172 2' f° 153 1 156 2|r6o 0 163 i j ] £66 2 £70 0 £73 72 ^ 177 O c io Of Solid Meafure. 1 25 2 i 2 5 4 26 1 26 41 26 1 1 ! 26 *1 27 I: 4 2 '4 0 4 2 ! 4 3 4 3 4 3 5 c 2 9 0 9 c 9 X 9 2 9 3 9 3 10 c 3 13 2 13 3 14 0 x 4 1 34 2 H 3 15 0 4 18 c 18 1 18 3 19 0 19 2 19 3 f 20 I 5 22 2 23 0 23 1 23 3 24 1 24 3 25 1 6 27 0 27 2 28 0 28 2 29 1 29 3 30 I 7 3 i 2 3 * 0 32 3 33 1 34 0 34 3 35 I 8 3 <> C 36 3 37 2 38 1 39 0 39 3 4 o 2 9 40 2 41 1 42 1 43 0 43 3 44 2 45 2 IO 45 0 46 0 46 3 47 3 48 3 49 2 5 o 2 1 1 49 2 5 o 2 5 i 2 52 2 53 2 54 2 55 2 12 54 0 55 1 56 1 i 57 1 58 2 59 2 60 3 13 58 2 59 3 61 0 ! 62 0 63 1 64 2 65 3 H 63 0 64 1 65 2 | 68 3 68 1 69 2 70 3 *5 67 2 69 c 70 1 1 7 i 3 73 0 74 2 75 3 16 72 I 73 2 75 0 1 7 6 2 78 0 79 2 81 0 *7 76 3 78 1 79 3 81 1 82 3 84 1 86 0 18 ■ 81 1 82 3 84 2 86 0 87 3 89 ] 9 i 0 19 85 3 87 1 89 0 90 3 92 2 94 1 96 0 20 90 1 92 0 93 3 95 2 97 2 99 1 IOI 1 21 94 3 96 2 98 2 100 1 102 1 104 1 106 1 22 99 1 101 1 103 1 x °5 1 107 1 109 1 in 1 2 3 i °3 3 *°5 3 107 3 no 0 X12 0 1 *4 1 116 1 24 108 1 1 10 2 1 12 2 114 3 U 7 °,i 1 9 1 121 2 2 5 112 3 US 0 1 17 1 xi 9 2 121 3 ;i 24 0 126 2 26 117 1 119 2 122 0 124 1 126 3 i !29 0 ! 3 I 2 27 121 3 124 1 126 3 129 0 13 1 2 134 0 *36 2 2 8 126 1 128 3 131 1 133 3 136 2 139 0 I 4 I 3 29 130 3 1 33 2 13 6 0 138 3 14X I 144 0 146 3 3 o *3 5 i 138 0 140 3 143 2 146 I 149 0 151 3 3 i 139 3 142 2 H 5 2 148 1 * 5 i c 154 0 156 3 32 144 2 147 1 150 0 153 0 156 0 i 1 59 0 162 0 33 149 0 * 5 i 3 *54 3 *57 3 i 5 o 3M3 3 167 0 34 153 2 1 56 2 }S 9 2 162 2 165 3 168 3 172 0 35 158 0 1 6 1 0 164 X 167 X 170 *0 ’173 3 f 77 0 36 162 2 165 3 169 0 172 1 175 2 ‘178 3 182 X 37 167 0 170 1 *73 2 177 0 180 I 183 3 187 1 38 * 7 i 2 £74 3 irS X 181 3 185 I 188 3 192 1 39 176 0 179 2 183 0 x86 2 190 0 193 3 197 1 40 '180 2 1 84. 0 x 8^ 3 1 9 i T 121 O ‘198 3 202 2 Of Solid Meafure. n T27 ii 27 II27 4 ! 28 28 1 ; 28 ; H 28 *j 1 5 0 5 i 5 1 5 1 5 ■ 2 1 5 : 2 5 2 j 2 10 1 10 2 IO ; 2 io ; 3 n < 0 II 1 II Ij 3 15 1 *5 $ 16 c 3 16 : I 16 : 2 1 6 l 3 17 0 i 20 2 £1 D 21 J 2 1 ; 5 22 < : 22 : 2 22 3 25 3 26 26 : l 27 c 3 27 : 2 28 c D 28 2 ( 3 ° : 3 3 i ; 33 ( > 33 - * 33 ^ ' 33 ; 3 34 1 1 36 < 3 49 c > 49 3 5 o 3 51 ^ IC 5 1 2 52 3 53 1 54 1 55 1 56 1 : 57 1 I! 50 2 57 3 58 3 59 3 60 3 62 c »■ 63 0 12 6 1 3 63 O 64 0 65 1 66 2 67 2 68 3: 13 67 c 68 1 69 2 70 3 72 0 73 1 74 2 I 4 72 0 73 2 74 3 76 0 77 ^ 78 3 | 80 if 15 77 1 73 3 80 0 81 2 83 0 84 2 ! 86 c] 16 82 2 84 0 85 ^ 87 0 88 2 90 1 1 " ; 3 17 87 2 89 j 9 o 3 92 2. 94 0 95 3 | 97 2 18 92 3 94 2 96 1 98 0 99 3 101 2 i °3 1 E 9 91 3 99 3 101 2 I03 1 1 °5 4 107 0 109 0 20 (03 0 105 0 106 3 108 3 110 3 1 12 3 H 4 3 21 108 1 no 1 XI 2 I H4 1 1 16 j 118 ij '120 2 22 113 1 11 5 ^ 1 1 7 2 119 3 121 3 124 0! 126 1 23 1 1 8 2 120 3 122 3 125 0 127 r 129 2 132 0 24 123 3 126 0 128 I 130 2 135 0 135 1 137 3 25 128 3 13 1 1 I33 2 [36 0 138 2 141 0 143 ^ 26 134 0 136 2 139 ° 141 2 144 0 146 2 149 0 Z 1 '39 0 Hi 3 I44 I 147 0 149 2 152 1 154 3 28 144 1 H7 0 I49 2 152 1 l SS c 157 3I160 2 29 149 2 152 1 *55 1 157 3 160 2 163 21: 166 1 3 c 154 2 157 2 1 60 1 163 1 166 1 169 0!: 172 0 3 i 159 3 162 3 165 3 f 68 3 171 3 174 3 : [-7 3 32 i 65 0 168 0 [ 7 1 0 i [•74 0 : [77 1 e8o 2 ] [83 2 33 170 0 ; [ 73 1 - [76 i ! r .79 2 ) [82 3 j [86 03 [89 1 34 175 1 : E 7 8 2 1 [81 3 j [85 0 ! [88 1 ’j [91 3-3 [95 0 35 ' [80 1 ; 1 8 3 3 ] [87 0 ] [pO 2 J • 93 3 1 t 97 OS :oo 3 36 j [85 2 1 [89 0 ) [92 2 1 :96 c] : 9 9 2 L03 0 2 •06 2 3 7 1 [90 3 1 [94 1 1 ■97 3 2 SOI I 5 [05 0 2 S08 22 IS 2 I 381 '95 3 1 [99 2 2 >03 02 >06 3 2 SIO 2 2 ; 14 12 ;i8 -Q ' 39 2 SO I 0 2 L04 3 2 108 2 2 SI2 1 2 : - 1 6 02 '19 3 2 2 3 3 ; 402 S06 I 2 iio 0J2 : 1 3 3I217 3J-3 ,21 2 2 25 2)220 2 c * ^!c» iz Of Solid Meafure. 29 29 i\ 29 29 i \ 80 i 30 30 5 3 11 2 17 2 23 1 29 o 35 0 4 ° 3 46 2 5 2 2 58 1 64 o 70 o 75 3 r 4 81 3 87 2 93 1 99 1 1 05 c I io a Il6 3 122 2 r 5 16 17 18 x 9 20 21 22 23 4 25 26 27 28 29 30 31 32 33 34 35 36 3 7 38 39 128 134 1 40 1 146 o IS 1 3 157 2 163 2 169 1 175 o 181 o 5 3 11 3 17 3 23. 3 29 2 35 2 41 2 47 2 53 1 59 1 65 1 71 1 77 o 83 89 o 95 c 101 o 106 3 na 3 n8 3 124 3 130 2 136 2 142 148 2 254 1 160 1 166 1 172 1 178 c 184 o 186 3 190 c 192 2 196 O 198 2 202 C 204 . I 2©7 3 zio I 216 o 221 3 227 3 40233 2 6 o 12 o 18 o 24 0 30 o 3 6 1 42 1 48 1 54 x 60 1 66 1 72 2 78 2 84 2 90 2 96 2 102 2 108 3 rI 4 3 12° 3 126 3 132 3 138 3 145 O 1 5 1 o i 57 c 163 c 169 c 175 I 18 I 3 187 I 193 I 199 I 205 3 2ll 2 217 2 223 2 229 2 6 o 12 1 l8 I 24 2 30 ± 36 3 • 43 o 49 G 55 1 61 1 67 2 73 3 79 3 86 o 92 o 98 1 104 3 no 2 116 3 122 3 1 29 o 135 ° 14 1 1 6 1 12 2 18 3 25 o 3 i 1 37 2 43 3 50 o 56 1 62 2 68 3 75 o 81 87 93 100 106 6 1 12 2 19 o 2 5 1 3 i 3 38 o 44 x 50 3 57 o 63 2 6 9 3 76 1 82 2 88 3 95 1 101 2 I08 o I 12 2 I 14 I 1 1 8 3 120 2 125 o 127 o 131 137 2 143 3 147 2,150 c 153 2 156 159 3 162 2 165 3 172 o 178 c 184 1 190 2 213 3 219 3 225 3 231 2235 2 237 2 196 2 202' 3 208 3 215 c 221 1 227 1 233 2 239 2 168 3 17 5 C l8l I 187 2 *93 3 200 c 206 1 212 2 218 25 o 231 1 237 2 *5) * * 243 3 247 3 z;> x 24I 2 245 3I250 0 254 0I258 133 * 139 3 H 2 [46 o 152 2 1 65 C 17 I 2 6 1 12 3 19 1 2 5 3 3 2 1 38 3 45 ° 51 2 58 o 64 2 71 o 77 2 83 3 90 1 96 3 l0 3 1 09 3 116 122 2 129 o 135 2 148 2 155 O 158 3161 2 167 174 I 177 3 l8o 3 184 I90 196 203 209 2l6 222 228 235 241 187 193 3 200 o 206 2 213 0 219 1 226 3232 0239 1 245 3251 co Of Solid Meaiiire. 13 1 30 3 4 3 i 1 3 * 1 4 31 1 2 3 i 0 4 1 32 32 £ 4 1 6 2 6 2 6 3 6 3 ' 7 c 7 0 7 O 2 13 0 13 1 13 2 13 3 H c *4 0 H I 3 x 9 2 20 0 20 1 20 2 21 c 21 1 21 2 4 26 1 26 2 27 c 27 2 28 c 28 1 28 3 5 32 3 33 1 33 3 34 1 35 0 35 2 36 0 6 39 1 40 0 40 .2 41 1 42 0 42 2 43 1 7 45 3 46 2 47 1 48 0 49 0 49 3 50 2 8 52 2 53 1 54 1 55 0 56 0 56 3 57 3 9 59 0 60 0 61 0 62 0 63 0 64 0 65 0 10 65 2 66 2 67 3 68 3 7 e 0 71 0 72 0 11 72 0 73 1 74 2 75 3 77 0 78 0 79 1 12 78 3 80 0 81 1 82 2 84 0 85 1 86 2 13 85 1 86 3 88 0 89 2 91 0 92 1 93 3 H 9 i 3 93 1 94 3 96 1 98 0 99 2 IOI 0 1 5 98 1 100 0 IOI 2 103 1 105 0 106 2 108 1 1 6 105 0 106 3 108 2 IIO 1 1 12 0 ii 3 3 ii 5 2 i? hi 2 113 1 lI 5 1 117 0 119 0 120 3 122 3 18 118 0 120 0 122 0 124 0 126 0 128 0 x 3 o 0 29 r 24 3 126 3 128 3 130 3 333 0 x 3 5 0 1 37 0 20 131 1 x 33 1 1 35 2 x 37 3 140 0 142 0 144 1 21 137 3 140 0 142 1 H 4 2 x 47 O' 149 1 X 5 X 2 22 x 44 1 146 3 149 0 151 2 x 54 0 x 56 1 158 3 23 151 c x 53 1 155 3 158 1 161 0 163 2 c 66 0 H x 57 2 160 0 162 3 165 1 168 0 170 2 1 73 1 2 5 164 0 166 3 169 2 172 1 x 75 0 177 3 180 2 26 170 2 *73 2 176 1 179 0 182 0 184 3 187 3 27 1 77 1 180 0 183 c 186 0 189 c 192 0 195 0 28 183 3 186 3 189 3 192 3 196 0 199 0 202 0 39 190 1 193 2 196 2 199 3 203 0 206 0 209 3 3 o 196 3 200 0 203 1 206 2 210 0 213 1 216 2 3 i 203 2 206 3 210 0 213 2 217 0 220 1 22 3 3 32 210 0 213 2 2I 7 0 220 2 224 0 227 2 231 0 33 216 2 220 0 223' 3 227 1 231 0 234 2 238 1 34 223 1 226 3 230 2 234 1 238 0 241 3 245 2 35 229 3 23 3 2 '237 1 241 0 245 c 248 3 252 3 36 236 1 240 1 244 0 248 c 252 0 256 0 260 0 37 242 3 246 3 250 3 x 54 3 259 c 263 0 267 0 38 249 2 252 2 •257 4L n 261 3 266 c 27° 0 2 74 0 39 2 56 c 260 1 264 I 268 2 *73 c 277 1 28 I 2 4 ° 262 2 266 3 271 I 275 2 .280 c ’ 284 1 288 3 ?4 Of Solid Meafure. 1 r| 3 2 ' M 33 ! 33 i| 33 2I 33 i| 34 ] 7 1 7 [|- 7 : 2 7 : 2 7 ; 3 7 : 5 8 0 r 14 : 14 *5 < 3 *5 1! is ■ ^ 15 : j 16 0 22 c 5 22 22 s ? 23 < =| 2 3 i [ 23 ; 2 24 0 V *9 ^ 29 3 30 : ; 30 : 2 31 t 3 31 s > 32 0 5 36 2 37 « 37 3 38 ] ' 38 3 5 39 s ? 40 0 i 44 c 44 2 45 1 46 c 5 46 3 > 47 ] 1 48 c 7 5 * 1 52 c 52 3 ; 52 3 ! 54 2 * 55 * 56 0 8 58 2 59 2 60 s 61 3 r 62 3 [ 63 1 64 0 9 66 c 67 c 68 c ) 69 c > 70 c > 71 c > 72 1 IC 73 1 74 1 75 2 : 76 3 77 3 79 c > 80 I , 1 1 80 2 81 3 83 c 84 1 85 2 : 87 0 ' 88 1 12 88 0 89 1 90 3 92 0 93 - 94 3 96 1 *3 95 1 96 3 98 I 99 3 101 1 102 3 X04 1 H 102 2 104 1 l0 5 3 107 1 109 0 • no 2 xi2 1 i 5 xio 0 hi 2 U 3 I 115 0 r 16 3 1x8 2 120 1 1 6 117 X 1 19 0 1 21 0 122 3 124 2 126 2 128 1 i 7 124 2 126 2 128 2 130 2 132 1 134 * 136 1 1 8 X?2 O s 34 0 130 O 138 c 140 1 I42 I 144 2 1 9 *39 J 141 2 I43 2 145 3 148 0 150 I 152 2 20 146 2 s 4 8 3 I 5 I I *53 2 *55 3 158 c 160 2 2 I 154 0 156 1 *58 3 161 0 163 2 166 0 168 2 22 161 1 163 3 166 1 168 3 171 1 174 0 176 2 23 1 6 8 2 171 1 *73 3 176 2 179 0 181 3 184 2 24 176 0 178 3 x8i 2 184 1 187 0 189 3 192 2 25 183 1 l86 O 189 0 r 9 r 3 *94 3 197 3 200 2 26 190 2 *93 2 196 2 x 99 2 202 2 205 2 208 2 27 198 0 201 0 204 0(207 1 210 1 2x3 2: 216 3 28 205 1 208 2 211 3 3 218 0 221 1 22 4 3 29 212 2 2i6 0: 219 1 222 2 226 0 229 1 232 3 30 220 0 223 I ; 226 3 230 1 233 3 237 1 240 3 32 227 ! : 230 3 ; 234 1 238 0 241 2: 245 O’ 248 3 32 : 234 2' 238 1 : 242 Q . 245 2‘ : 249 I : 253 o' -$(> 3 33 ■ 242 0 : H 5 3 2 249 2 : 253 I: 257 0: 261 0 < 264 3 34 - 249 1 : 253 or 257 01 261 0: 264 3 : 268 3 5 272 3 35 : 156 2,: 260 25 S64 2 : 268 2 ; 272 3 : 276 3; ’80 3 36 : J64 0 ; 26S os 172 1 i 276 1 2 £80 2,2 284 3 s i89 O 37 ; 2-71 1 ; J75 2 s -79 3 s 284 0 : *88 n ’92 2 S >97 0 3 8 5 ^78 2 S >83 os 387- 1 2 ^91 2 2 £96 0 ; ; 00 2 3 505 0 |3 9 ^ s86 os 190 I 2 94 3 s *99 * ' >°3 3 3 ; 08 x 3 13 0 140293 is '97 33 ,02 2 3 .07 1 13 in 2 3 116 1I3 21 0 Of Solid Meafure. I? ~'| 34 ii 34 1 34 i| 35 35 J 1 35 i\ 35 1 i 8 o 8 1 8 1 8 2 8 2 8 3 8 3 2161 16 2 16 3 17 0 17 1 1 7 2 17 3 3 24 1 24 3 25 0 25 2 25 3 26 1 26 2 4 32 2 33 c 33 2 34 0 34 2 35 0 35 2 5 4 ° 2 41 1 41 3 42 2 43 0 43 3 44 1 6 . 48 3 49 2 50 1 5* 0 5 * 3 52 2 53 * 7 57 0 5 7 3 58 2 59 2 60 1 61 1 62 0 8 65 0 66 0 67 0; 68 0 69 c 70 0 71 c 9 73 1 74 1 75 1 76 2 77 2 7 B 3 79 3 10 8 1 1 82 2 8 3 3 85 0 86 1 87 2 88 3 11 89 2 90 3 92 O 93 2 94 3 96 1 97 2 12 97 3 99 0 100 2 102 0 103 2 105 c xo6 2 i 3 *05 3 107 1 109 0 1 10 2 1 12 c *13 3 115 * 14114 0 115 2 XI7 1 119 0 120 3 1 22 2 124 1 [5122 O 123 3 12 5 3 127 2 129 1 131 1 *33 o, l6 I30 I 132 1 134 ° 136 0 138 c 140 c 142 0 i 7 138 1 140 2 142 2 144 2 146 2 148 3 * 5 ° 3 l8 146 2 hs 3 150 3 153 0 *55 1 157 2 *59 3 x 9 154 3 157 0 159 I 161 2 *63 3 166 1 x68 2 20162 3 165 1 167 2 170 0 172 2 1 75 0 *77 2 2 I 171 0 173 2 176 O 178 2 181 0 i §3 3 186 1 22 179 0 181 3 184 I 187 0 1893 1 92 2 ! 95 1 23 187 1 190 0 *92 3 1 95 2 - 198 1 IOX I 2 ©4 0 24195 2 198 1 201 1 204 c • 207 c 210 C ! 2I3 0 25 203 2 206 2 209 2 212 2 12x5 2 2x8 3 221 3 26211 3 214 3 218 0 • 221 C >224 I 227 2 ’230 3 27219 3 223 0 226 1 229 2 ’ 232 3 236 1 239 2 28 228 0 231 1 234 3 238 c >241 2 ?2 45 c >248 2 29236 0 239 3 243 c >246 2 - 250 c > 2 53 3 1257 1 30244 J : 2 47 3 251 2 ’ 2 55 c 5258 5 \ 262 2 l 266 I 31 252 2 : 256 c >259 3 1 263 s 1 267 ] [ 271 3 [ 275 O 3 2 26° 2 : 264 s 1268 ] L 272 C 5276 c ) 280 c > 284 O 33268 3 , 272 2 \ 276 2 t 280 S M284 5 5 288 3 5 292 3 34176 2 1 281 c > 285 C 5289 C > 2 93 2 [ 297 : 1 01 3 35 185 c ) 289 1 i 293 2297 2302 C : 306 ] [3x0 2 36293 1 : 297 ; : 301 3306 ] 13101 2315 < } 319 2 37 301 ) 1 305 2 S 310 1314 : 5319 ] [ ?23 s J S 28 I 38 309 : > 314 c 5 318 ^ 2323 ! [ 3 2 7 ; 5 3 3 2 5 *337 * 39 317 2 > 322 ] t 327 c 3331 : } 336 i 2 341 ] 1 346 0 40325 ; ? 330 i 2 335 3 t 340 - r 345 c 5 3 5 ° t ■ 355 0 T THE l6 Explanation and Use T H E Figures on the Top of the Table over each Column, are the Sides of the Square, or Girt, of any Piece of Timber, Stone, <^c. to be ineafurcd, and is exprelled in Inches and Quarters, from 6 Inches Square to 36, (a Tree lels than fix Inches girt is not in common allowed the Name of Timber) the Numbers fucceeding from 6 to 6. 6. \> 6, to 36, are 6 Inches, 6 and one Quarter, 6 and 2 Quarters., and 6 and 3 Quarters, (dvv, Square, or one fourth of the Girt : And the Figures down the Left-hand Column of each Page, num- bered from 1 , to 40, are the Length of the Tree, fe>c. in Feet, and under the Girt, and againft the Length, is the Content. Of the foregoing Table of Example The Explanation, &c. 17 Example I. fVhat is the Content of a Piece of Tim- ber 2 I 2 1 4 I 2 i 3 2 C 2 C > 2 1 2 2 : 2 2 2 3 3 0 , 3 0 5 2 O 2 1 2 2 2 2 2 3 i 3 C » 3 1 3 2 ' 3 3 3 3 6 2 2 2 3 3 c 3 i 3 2 ■ 3 3 4 c 4 1 4 2 4 3 7 2 3 3 c 3 ^ 3 3 4 c > 4 1 4 2 4 3 5 1 5 2 8 3 i 3 2 4 0 4 1 4 2 • 5 0 5 1 5 2 6 0 6 1 9 : 3 3 4 0 4 2 4 3 5 1 5 2 6 0 6 1 6 3 7 0 io 4 c 4 2 5 0 5 1 5 3 6 ! 6 2 7 0 7 2 7 3 1 1 4 2 5 0 S 2 S 3 6 1 <5 3 7 1 7 3 8 1 8 2 L 12 5 0 5 2 6 0 6 2 7 c 7 2 8 0 8 2 9 0 9 2 IS 5 1 5 3 6 2 7 0 7 2 8 0 8 2 9 0 9 3 10 1 : £ 4 5 3 6 1 7 0 7 2 8 c 8 3 9 1 9 3 10 2 11 0 i 5 6 1 6 3 7 2 8 0 8 3 9 1 10 0 10 2 11 1 11 3 16 6 2 7 1 8 c 8 2 9 1 10 0 10 2 11 1 12 0 12 2 1 7 7 0 7 3 8 2 9 0 9 3 ro 2 11 1 12 0 12 3 13 1 18 7 2 8 1 9 0 9 3 10 2 11 1 12 0 12 3 13 2 14 1 19 7 3 8 2 9 2 10 1 H 0 3 12 2 13 1 14 1 15 0 20 8 1 9 0 10 0 10 3 1 1 2 *2 2 *3 i 14 o| *5 0 15 3 21 8 3 9 2 10 2 11 1 11 1 *3 0 ?4 1 14 3 15 3 16 2 22, 9 0 10 0 11 0 11 3 11 3 3 3 H 3 15 2 1 6 2 17 1 23: 9 2 10 2 11 2 12 1 12 I J 4 ’ *5 2 16 1 17 1 18 0 2 4i 10 0 ii 0 12 0 13 0 13 0 5 0 16 1 1 7 0 18 c 19 0 2 5 , 10 1 ( 1 12 2 13 2 13 2 £ 5 2 16 3 17 2 18 3 19 3 2610 3 ri 3,13 0 14 0 14 0 r 6 1 17 2 18 1 192: 20 2 27 ; 11 1 (2 i'i 3 2 ^ 14 2 14 3 ^6 3 [8 1 19 0: 20 1 : 21 1 28 11 2 T 2 3/4 0 : 15 0 15 1 T 7 2 i [8 3 { 9 3 * 21 c 2 22 0 29 12 0 *3 1 14 2 j [ 5 2 : 15 3 8 0 19 2 ■ 0 2 : 21 3 5 >3 0 30: 12 2 13 3 15 0 1 :6 ij: 1 6 2 J 8 3J20 1 ■I I 12 2 7 ’3 3 zz THE Explanation and U SE Of the foregoing Table of Flat Meafure. T HIS Table confifts of two Pages, and on the Top of every Column, in each Page, is exhibited the Breadth of the Board, Plank, in Inches and Halfs, begining at 5 Inches, and from thence to 5 and a half, and fo on to 12 Inches, and from 12, Inches to to 1 8 Inches 5 the firft Column towards the Left-hand in each Page is the Length of the Board, <&c. in Feet, begining at 1, and ending at 30, fo that under the Breadth, and againft the Length of any Board, &c. you have let down the Content in Feet, and Quarters of Feet. Example The Explanation, &c. Example I. There is a Board i o Inches Broad , and 1 5 Foot Long , how many Feet are there in that Board ? Seek io Inches the Breadth on the Top of the Columns, and 15 Foot the Length in the firft Column, and in the Angle of meeting you will find fet down 12. 2. viz. 12 Foot 2 Quarters, or a Half, the Content requir’d. Example II. There is a Board 1 1 Inches and a half Broad , and 20 Foot Long , how many Jqaare Feet are there in it I Find 1 1 Inches and a half at the Top of the Columns, and 20 Foot the Length, in the firft Column, and dire&ly againft thofe two Numbers you have let down 19. o. viz. 19 Feet, for the Content thereof. Example 24 The Explanation, &c. Example III. There is a Board i g Inches and a half Broad, and i z Foot Long, how many fquare Feet are contained therein 1 Since this T able goes but to 1 8 Inches Broad, therefore you mu ft take out the 19 Inches and a half at twice, thus ; 12 Foot Long, and Ft. % Cio Inches Broad is 100 > 9 Inches and a half Broad is 9 2 1 9 Inches and a half Broad, and 1 2 Foot Long is 19 Example IV. There is a Board 23 Inches Broad, and 1 7 Foot Long , what’s the Content ? Ft. % 17 Ft Long and 17 Inch. Broad is 24 o 17 Ft Long and 6 Inch. Broad is 8 2 17 Foot Long and 23 Inches) “ ~ Broad is K TABLE TABLE III O F Timber and Plank. Which at once fhews how many Feet are contained in any Number of Loads, from a Quarter of a Load, to 30 Load, of either rough or fquared Timber, or of Plank of any Thicknefs, from 1 Inch, to 4 Inches Thick, and the contrary. 2 6 Of Timber and Plank. Square Timber X Inch Plonk 1 i Inch Plank 2 Inch Plan. 2 I Inch Plan. 3 Inch Flan. 3 T Inch Plan. 4 Inch Plan 4 1 2 3 4 i. O 20 30 izi 25 -50 300 450 x 00 200 300 75 150 225 60 120 ; 80 5 ° 200 I 5 c 42! 85 127 i 37 i 75 112I I 40 5 C 600 400 300 240 200 170 150 2 8c xoc 1200 800 600 480 4CC 34 ° 300 3 I 2 C 15c 1800 1200 900 720 600 510 450 4 1 6c 200 2400 1600 1200 960 800 680 600 5 20c 250 300c 2000 150c [200 1 000 850 75 o 6 24c 30c 3600 2400 180c £ 4 4 ° 1200 1020 900 7 28c 35 ° 4200 2800 2100 l68o I40O 1I9C 105c 8 32c 400 480c 3200 240 c 1920 1600 X36G 1200 9 360 45 ° 540° 3600 2700 2l6o 1800 1530 i 35 o 10 40c 5 ° c 6000 4000 3000 2400 2 COO I 700 1500 1 1 44c 55 0 6600 4400 33 OG 2640 2200 1870 1650 12 480 600 7200 480c 3600 2880 I 24OO 204C 1800 13 520 650 7800 5200 3900 3 I20;2600 2210 1950 H 560 700 84OO 56 00 4200 336o!28oo 2380 2100 i 5 600 7 5 c 9000 6000 45 °° 360013000 2550 2250 1 6 64c 80c 9600 6400 4800 3840I3200 2720 2400 17 680 850 I020C 6800 5100 408013400 2890 2550 18 720 90c I080C 7200 540 c 4320k 600 3060 2700 19 760 95c I I40C 7600 5700 456° 3800. 3230 2850 20 800 xooc I 200 C. 8000 6000 48004000 3400 3000 2 1 84.0 X050 ^ 260C 8400 630c 5040 42OO 357 ° 3150 22 880 I IOC x 3200 8800 6600 5280 4400 3740 3 3 00 23 920 115c 1380c 9200 690c 5520 4600 3910 345 o 24 96c I 20 C 14400 9600 720c 5760 4800 4080 3600 25 1 00c 125c 1 500c 10000 7500 6000 5000 425° 3 75 G 26 104c 1 30 c 56 00 10400 7800 6240 5200 442c 3900 27 108c I 35 c : 6200 1 ok' 00 8100 6480 5400 459 o 4 ° 5 ° 28 II 2 C 1400 t 6800, XX ,00 8400 6*720 5600 4760 4200 29 x 160 145 c •x 7400' 1 I 600 870c 6960 5800 4930 4350 30 I 20 C 1500 18000! „ 00 9000 7200 , 6000 5100 4500 2.7 THE Explanation and U se Of the T a b l e of Timber and Plank. O VER the Top of each Column you have written the Contents thereof, and in the Left-hand Column, againft the three firft Lines are contained i Quarter, I Half, and 3 Quarters of a Load of the above Contents ; an Example or two will make it plain. Example I. In 10 Load of two Inch Plank how many Feet ? Seek for 10 in the firft Column to- wards the Left-hand, which is under Loads, and right againft it, under z Inch Plank, on the Top of the Columns, you E z have 28 The Explanation, &c. have 3000 Foot, the Number ef Feet in 10 Loads of two Inch Plank as re- quir’d. Example II. In 1 2 Load of rough Timber how many Feet ? •S, Look for 1 2 in the firft Column, and in the next Column, under rough Tim- ber, right againft 12 you have 480 Foot for the Content as requir’d. Example III. In 2210 Foot of three Inch and a half I' lank, how many Load ? Under three Inch and a Half Plank feek for 2210 Foot, and right againft it, under Loads in rhe firft Column, you will find 13, the Number of Loads requir’d. Example IV. In 4860 Foot of two Inch and a Half Flank how many Loads ? Under The Explanation, &c. 29 Under two Inch and a Half Plank on the Top of the Table feek for 4860 Foot, but you will find that it is not there, therefore feck for the next Number that is lefs than the Number propoied, which you will find to be 4800, which is 60 left than the Number given, and right againft the 4800 in the fiilt Column, is 2,0 Load, the 60 Foot remaining is a Quarter of a Load, as by the Table ap- pears, if you look againft a Quarter in the firft Column ; and under two Inch and a Half Plank, at the Top of the Ta- ble, fo that in 4860 Foot of two Inch and an Half Plank are 60 Load and 60 Foot, or one Quarter of a Load. a able 3 ° TABLE IV O F Square and Cubical Meafure. Which at once fhews how [ many Inches are contained in any Number of Feet, ! Square or Cubical, from one Quarter of a Foot to 30 Foot ; alfo how many Feet are contained in any Num- ber of Yards Square or Cu- bical, from a Quarter of a • Yard, to 30 Yards; like- wife how many Feet are contained in 30 Rod Long or Square. QfSqu, and Cubical Mea, 31 Number Square n I nches in 30 Feet Cubical Inch.in 3 c Cub. Feet Square Feet in 30 Squ. Yards Cub. Feet Feet in 30 Cub, Yards Feet in 30 Rod Long Square Feet in 30 R. Square 4 3 b 43 2 2 i 61 ) 4 f 68tV 1 2 72 864 4 t 1 3 i 84 ■136*1 3 108 1296 61 20| I 2 f 204 tM 1 144 1728 9 1 27 1 6j ztH 2 288 3456 18 54 33 54 # 3 432 5184 27 81 49 f| 8 >64 4 5 76 6912 36 108 66 | j 1089 5 720 8640 45 135 82f 13614 6 864 10368 54! 162 99 16334 7 1008 12096 63 189 115I 1 9 ° 5 i 8 1 152 13824 72 216 132 2178 9 1296 i$ 5 S 2 8l Hi 1487 2 45 # 10 1440 17280 90 270 165 2722f 11 1584 19008 99 297 i8it 29944 12 1728 20736 108 324 198 3267 13 1872 22464 117 351 214I 35394 -14 2016 24192 126 37 8 231 38114 15 2160 25920 J 3 5 405 2474 40834 16 2304 27648 144 432 264 4356 17 2448 29376 i 53 459 2804 46284 18 2592 31104 162 486 297 48904 19 2736 32832 171 5 i 3 3131 51724 20 2880 34560 180 54 ° 33 ° 5445 21 3024 36288 189 5 67 34 ^i 57174 22 3 168 38016 198 594 363 5989* 23 33 12 39744 207 621 3797 626l| 2 4 3456 41472 216 648 396 6534 25 3600 43200 225 6 75 4124 68064 26 3 744 44928 234 702 429 7078 | 4 2 7 3888 46656 243 729 445 x 734 °l 28 4 ° 3 2 48384 252 756 462 7623 29 4176 501 12 261 783 478 * 78954 30 • 4.320 5? 840 270 8lO 495 81674 THE Explanation and Use Of the T a b l e of Square and Cubical Mealure. O N the Top of the Table over each of the Columns is writ the Contents thereof, and diredfly under the Contents, inclofed within three Lines, is contained the Quarter, Half, and three Quarters of one of the above written Contents, viz. of a Foot, Yard, <&c. the firft Column towards the Left-hand is fi- gured from a Quarter to 30, and dofig- nify that there are fo many Feet, Yards, Rods, &c. contained in each of the other Columns againft every Number. Example I. In 2448 Square Inches how many Square or Superjicial Feet ? Look The Explanation, &c. 33 Look for 2,448 in the fecond Column, which is the Column of Square Inches, and right againft it in the firft Column Hands 17, which is the Number of Square or Superficial Feet contained in 2448 Square Inches, as requir’d. Example II In 39744 Cubical Inches , how many Cubical Feet ? Seek for 3 9744 in the third Column) which is the Column of Cubical Inches, and againft it in the firft Column ftands 23, the Number of Cubical or Solid Feet contained therein, as required. ; Example III. In no Foot Superjtcial Meajure , how many Tards ? In the fourth Column, under Square Feet, feek for no, but you will find that it is not there, therefore in luch Cafe when the Number is not to be exact- ly found in the Column propofed, obferte F this 34 The Explanation, &c. this Rule. Seek the next neareft Number that is lefs than the Number propofed, and fubftrabt it from the given Number, and note the Remainder, and right againft that neareft Number, in the firft Column, you have the required Content, and the Remainder are lo many Feet, or Inches, but always of the lame Name as the given Number: As in this Example, the neareft Number in the fourth Column to the Number given, that is lefs than the given Number, is 108, which if fubftra&ed from no, there remains 2 Feet, and right againft 108 in the firft Column Hands 12, the fquare Yards in 108 Feet, fo that in iio Feet there are 12 Yards and 2 Foot. I think it needleft to give any more Examples, becaufe the Ufe of the whole Table is the fame in every relpebl as in the Examples given. TABLE 3? TABLE V o F Brick-Work Reduced Which by Infpe&ion fhews how many Rods, Quarters of Rods, Feet and Inches are contained in any Num- ber of fuperficial Feet, from i Foot to 4828 Feet, and fo on ad infinitum ; and from half a Brick thick to two and a half, five, or ten Bricks thick. F 2 Of Brick-work Reduced. 2 2 45 4 ! 5 1 22 ; 8 8 0 0 0 10 2 45 4 13 1 22 8 2244 f* 2 3 0 c s 5 2 0 0 8 1 0 0 11 O 0 0 13 3 0 0 23 12 12 3 22 8 : 5 2 45 4 8 2 0 0 11 I 22 8 H 0 45 4 238c ) 2 3 45 4 -5 3 22 8 8 3 0 0 11 2 45 4 H 2 22 8 244^ *3 0 0 c > 6 0 0 0 9 0 0 0 12 0 0 0 15 0 0 0 Of Brick- work Reduced. 39 [Feet r. 1 7 Brick q. f. i. r 1 Brick q. f. i. 17 Brick r. q. f. i, 2 Bricks r. q f. i 27 Bricks r. q. f. i. 8 is 16 3 0 22 8 6 0 45 4 9 1 0 c * 12 1 22 8 ! l S I 45 4 0 W84 3 0 4 5 4 6 1 22 8 9 2 0 0 12 2 45 4 ■15 3 22 8 4 2652 3 1 O O 6 2 00 9 3 0 0 13 O 0 c » 16 1 0 0 8 1720 3 1 22 8 6 2 45 4 10 0 0 0 <3 I 22 8 16 2 45 4 0 2788 3 1 45 4 6 3 22 8 10 1 0 0 *3 2 45 4 - *7 0 22 8 J 856 3 2 0 0 7 0 00 10 2 0 0 14 O 0 c 1 17 2 0 0 8 2924 3 2 22 8 7 0 45 4 io 3 0 0 14 I 22 8 *7 3 45 4 0 2992 3 2 45 4 7 1 22 8 11 0 0 0 14 2 45 4 - 18 1 22 8 |^060 3 3 0 0 7 2 00 11 1 0 0 *5 O 0 0 18 3 0 0 8 3128 3 3 22 8 7 2 45 4 ii 2 0 0 15 I 22 8 19 0 45 4 .3196 3 3 45 4 7 3 22 8 11 3 0 0 15 2 45 4 19 2 22 8 3264 4 0 0 c 8 0 0 0 12 0 0 0 16 O 0 0 20 0 0 0 83332 4 0 22 8 8 0 45 4 12 1 0 0 16 I 22 8 20 1 45 4 34 °° 4 0 45 4 8 I 22 8 12 2 0 0 16 2 45 4 20 3 22 8 4 3468 4 1 0 c 8 O O 12 3 0 0 f 7 0 0 0 21 1 0 0 3536 4 1 22 8 8 2 45 4 13 0 0 0 17 I 22 8 21 2 45 4 08604 4 1 45 4 8 3 22 8 13 1 0 0 17 2 45 4 22 0 22 8 43672 4 2 0 0 9 0 00 13 2 0 0 18 O 0 0 22 2 0 0 8 874 ° 4 2 22 8 9 0 45 4 13 3 0 0 18 I 22 8 22 3 45 4 ,13808 4 2 45 4 9 1 22 8 14 0 0 0 18 2 45 4 23 1 22 8 13876 4 3 0 c 9 0 0 Cl 14 1 0 0 19 0 0 0 23 3 0 0 ,13944 4 3 22 8 9 2 45 4 14 2 0 0 19 I 22 8 24 0 45 4 ,'4012 4 3 45 4 9 3 22 8 H 3 0 0 l 9 2 . 45 4 24 2 22 8 |[j4080. 5 0 0 0 10 0 00 15 0 0 0 20 0 0 0 25 0 0 0 54148 5 0 22 8 10 0 45 4 15 1 0 0 20 I 22 8 25 1 45 4 ) 4216 5 0 45 4 10 I 2 2 8 15 2 0 0 20 2 45 4 25 3 : 22 8 44284 5 1 0 0 10 2 00 15 3 0 0 £ I O 0 0 26 1 0 0 ! 43 J 2 5 1 22 8 10 2 45 4 16 0 0 0 21 1 22 8 26 2 45 4 ) 44 20 5 1 45 4 10 3 2 2 8 16 1 0 0 21 2 45 4 27 0 : 22 8 4488 5 2 0 0 1 1 0 00 162 0 0 22 O 0 0 27 2 0 0 ! 4556 5 2 22 8 11 0 45 4 16 3 0 0 22 1 22 8 27 3 45 4 , 4624 5 2 45 4 1 1 r 22 8 17 0 0 0 22 2 45 4 28 I 22 8 4692 5 3 0 0 11 2 0 c 17 1 0 0 23 O 0 0 28 3 0 0 4760 5 3 22 8 c 1 2 45 4 17 2 0 0 23 1 22 8 : 29 0 45 4 48 28 5 3 45 4 1 1 3 2’ s 17 3 0 0 : 23 2 45 4 : ?JL I 22 8 40 THE Explanation and Use Of the foregoing Table of Brick-work Reduced. T HIS Table confifts of four Pages, and over every Column in each Page, is written the Contents thereof ; in the firft Column of every Page is to be fought the Number of foperficial Feet to be Reduced. The Firft Column in the Firft Page of the Table is figured from i to 34 Foot, or half a Quarter of a Rod • and in the Second Page, from 35 Foot to 68, or one Quarter of a Rod ; and every Number in the reft of the Table increafes by Quarters of Rods, beginning at 136 Foot, and ends at 4828 Foot. <* Example The Explanation, &c. 41 Example I. What is the Content of a Piece of Brick-work two Bricks thick, whoje fu- perjicial Content in Feet is 6 8 Foot ? Seek the firft Column towards the Left-hand, for 68, and {freight from thence, right under z Bricks, on the r. q. f. i. Top of the Column, you have o. i. i z. 8. viz. o Rods, i Quarter of a Rod, zz Foot, 8 Inches, which is the true reduced Content fought for * for the Letters on the Top of every Column, viz. r. q. f. i. do fignify, that the Figures under them are lo many Rods, Quarters of Rods, Feet, and Inches. Example II. What is the Content of a Piece of Brick-work whofe Superficies is 1360 Feet, and in Fhicknejs z Bricks and a half ? Seek 1360 Feet in the firft Column, and right againft it, under Bricks J on 2. 4 2 The Explanation, r. q. f. i. on the Top of the Table, is 8. i. zz. 8. viz. 8 Rod, i Quarter of a Rod, zz Foot, 8 Inches the Content fought. Example III. If the fuperjicial Content of a Brick IVall he 3272 Feet, and half a Brick thick , how many Rod is contained therein. Now as the Number propofed is not to be found in the Table, therefore in fuch Cafes you muft take it at twice, viz. Fir ft feek the neareft Number to the given Number 3272., which you will find to be 3264, and right againft it, r. q. f. i. under half a Brick is 4000 Secondly fubftratt 3264 from > 3272, and the Remainder is 83 ° 0 2 The Content of which is 4028 The feveral Produ&s of 3264, and 8, being found as above, fet them down one under the other, and add them together, The Explanation, &c, 45 together, and the Produ< 3 : is the Content r. q. f. i. fought, viz. 4 o 2 8 as required. Example IV. In 7480 fuperjicial Feet , at one Brick thick, how many Rod ? As the Number propoied is larger than any in the Table, firft fubftraxT the higheft: Number in the Table from the given Number, and under the pro- pofed Thicknels feek the Product of each, and fet them down one under the other, then add them together, and the Product: is the Content of the whole. The Operation, From 7480 the Number given. Take 4828 the higheft Number in the Table. Remains 2652 r - 8 - 4828 Feet at 1 Brick thick is 1 r 3 2652 Feet at 1 Brick thick is 6 2 7480 Feet at 1 Brick thick is 1 8 x f. i. 22 8 o o 22 8 G a Note, 44 The Explanation, &c. Note, That although this Table be Cal- culated only from a Half Brick thick to 2 and a Half Bricks thick, yet it may ferve for any other Thicknels, if you make ufe of it in the following manner viz. For 3 Bricks thick take twice the Product of 1 and a Half • for 3 and a Half Bricks thick, add the Produdt of 2 Bricks to 1 and a Half ; for 4 Bricks thick, take twice 2 Bricks, for 4 and a Half add a to 2 and a Half Bricks, and for 5 Bricks take twice 2 and a Half Bricks thick, and lo in like manner to any Thicknels required. TABLE VI A Second Table of Brick- Work. Whereby is lliewn, how many Bricks are required to build any piece of Brick- Work, that confifts of any Number of Feet, or Thick- nefs, from i Foot to 14000 Feet; and from Half a Brick thick to z and a Half Bricks thick, and by the Addition only of z Num- bers, to any Thicknefs, required. 46 A fecond Ta. ofBr. work. Feet ii Brick 1 Brick 1! Brick 2 Bricks ] 2 i Bricks i 5 1 1 l 6 22 27 2 1 1 22 33 44 55 a 16 33 5 o 67 82 4 22 44 67 89 hi 5 27 55 83 in. 139 6 33 67 loo i 34 165 7 39 78 117 156 195 8 44 88 134 178 223 9 50 100 150 201 251 1° 55 hi 167 224 279 ii 61 122 184 245 307 12 67 134 201 268 335 13 72 1 45 217 290 362 H 78 156 234 312 39 o i 5 83 167 251 334 417 16 89 178 268 357 447 x 7 94 189 284 399 473 18 100 20 1 301 402 502 19 106 212 338 424 53 o 20 in 223 335 446 558 21 117 234 35 1 469 586 22 122 245 368 491 613 2 3 128 2 56 385 642 24 134 268 402 536 670 25 139 279 418 558 698 26 H5 290 435 580 725 27 150 301 452 603 753 28 156 312 469 625 781 29 161 3 2 3 4 8 5 647 809 3° 167 335 502 670 837 3 i i 73 34 6 519 692 865 32 178 357 536 714 893 33 184 368 552 736 921 34 189 379 56 9 759 948 , 3 5 i95 390 586 ►7 8 1 Q77 A id Ta. of Br. work. 47 joz Feet 1 a Brick 1 Brick It Brick 2 Bricks Bricks 36 201 ' 402 603 804 1005 37 206 4 X 3 619 826 1032 38 212 424 636 848 1060 39 217 435 653 871 1 08 8 40 223 446 670 893 1116 41 228 457 686 9 i 5 1144 42 234 469 7°3 938 1172 43 240 48,0 720 960 1200 44 245 491 737 982 1228 45 251 502 753 1005 1256 46 256 5 i 3 770 1027 1284 47 262 524 787 1049 1312 48 268 5 3 6 804 1072 i 34 °i 49 273 547 820 1094 1367] 5 ° 279 558 8 37 1116 1 3 9 5 j 5 1 284 569 854 1139 * 4 2 3 j 52 290 580 871 n6i 1451 53 295 591 887 1183 1479 54 301 603 904 1206 ! 5 ° 7 55 307 614 921 1228 1535 56 312 625 938 1250 1563 57 318 636 954 1273 I 59 1 58 323 647 9 7 * 1295 1619 59 329 658 988 1317 1647 60 335 670 1005 134° 1675; 61 34 o 68 1 1021 1362 1702! 62 346 692 1038 1384 T 73 oj 63 35 i 7°3 io 55 i 4°7 1758! 64 357 714 1072 1429 1786 65 362 725 1088 1451 l8l4 66 368 737 1105 1474 I842 67 374 74 8 1122 1496 I87O 68 379 759 1139 1518 I898 69 385 770 1155 1541 1926 7 ° 390 781 1172 1563 1955 48 A 2d Ta. of Brick-work. Feet z z Brick I Brick It Brick 2 Bricks 21- Bricks 7 i 396 781 1189 1585 1982 72 4°2 804 1206 1608 2010 73 4 ° 7 815 1222 1629 2037 74 413 826 1239 1652 2065 75 418 837 1256 1675 2093 76 424 848 1273 1697 2121 77 429 859 1289 1719 2149 78 435 871 1306 1742 2177 79 44 1 882 *323 1764 2205 80 446 893 134 ° 1786 2233 81 452 9°4 1356 1809 226l 82 457 9 X 5 1373 1831 2289 83 4 6 3 926 1390 1853 23I7 84 469 938 I 4°7 1876 2345 35 474 949 1424 1897 2373 86 480 960 1440 1920 24OO 87 485 971 1457 1943 2428 . 88 491 982 1474 1965 2456 89 496 993 1490 1987 2484 90 5 02 loo 5 1507 2010 2512 9 i 508 1016 1524 2032 2540 92 513 1027 1541 | j 2°54 2568 93 5i9 1038 1557 : | 2077 2596 94 524 1049 *574 ! 2099 2524 95 530 1060 1 5 9 1 2121 2652 96 536 1072 too8 2144 2680 97 54 1 1083 1624 2166 2707 98 547 1094 1641 2188 2735 99 552 1105 1658 2211 2763 100 55 8 1 1 16 1675 2233 2791 200 1 1 16 2233 3350 4466 5583 3 00 1675 2350 5025 6700 8375 400 2233 4466 6700 893 3 n 166 5 00 2791 5583 8375 11166 13958 600 3350 6700 10050 13400 1675c A id Tab. of Brick- work Feet 1 2 Brick | Brick It Brick 2 Bricks 2 i Bricks 70c 3 9 °* i 78 1 ^ ) II72J ; 15633 i * 954 * 80c > 446 £ m 3 : 1340c > 17866 * 22333 9 oc 502j 1005c > 15075 20 I 0 C ' 25125 1 00c SSH m6£ > 1675c > 22333 27916 1 roc 614I 12283 18425 24566 1 30708 120c 67OC 1340c ) 2010c 1 26800 3 35 oo 130c 7258 14516 , 21773 29033 36291 1400 78l6 15633 2 3 450 31 £66 ♦3 9© 8 3 1500 8375 16750 25125 335 oo 41875 1600 8933 17866 26800 35733 44666 1706 949 i 18983 28475 37966 1 4745 s , 1800 10050 20100 30150 40200 50250 1900 10608 21216 31825 42433 53041 2000 I I l66 -22333 335 oo 44666 55 s 33 2100 11725 ^3450 35 1 75 46900 58625 2200 12283 24566 36850 49133 61416 2300 I284I 25683 38525 51366 64208 2400 13400 26800 40200 53600 67000 2500 13958 27916 41875 55833 69791 2600 145 1 3 29627 43541 58054' 72568 2700 15072 30144 45216 60288 75360 2800 15630 3 1260 46891 62521 78151 £900 16188 32377 48566 64754 80943 3000 16747 33494 50241 66988 s 3735 4000 22330 44660 66991 89321 111651 5000 : 2 79 r 3 55827 83741 I I ! 654 139588 6000 33497 66994 1 0049 1 133988 167485 7000 j 39080 78160 X17241 156321 195401 8000 - 44663 89327 133991 (78654^ 223318 • 9000 , 50247 100494 [50741 : 200988 ' ? ' 5 I2 35 IOOOO . 55830 1 11660 1 6 749 1 : 223321 ; 279x51 I JOOO 1 61413 122827 184241 : 245654 ; 507068 12000 1 67007 134014 201021 : 268028 ; 535035 13000 1 72590 145180 . 2 I 777 I * 200361 ; 562951 14000 r 78.137. 156347': 234521 : 3 126941 190868 Explanation and U SE Of the Second Table of work. njpHIS Table confifts of 4 Pages, and over each Column in every Page is the Title of each Column : In the firft Left-hand Column of every Page is to be fought any Number of fuperiicial Feet, and right againft which, according to the Title of each Column, you have the Number of Bricks required to build any Piece of Brick-work that confifts of fo many fuperficial Feet. It is generally allowed by all expe- rienced Workmen, that between 4500, and 4600 of Bricks, will complete one Rod of Brick-work at a Brick and half thick ; and the Reafon of this Difference, they fay, proceeds from the Workman’s laying on too thick, or too thin Joints. Therefore, The Explanation, &c. ft Therefore, that I may come as near the Truth as poffible, and as the Nature of the Thing will admit of, I have made choice of neither of the above Numbers, but inftead thereof, have allowed 4555 Bricks to a Rod, at a Brick and half thick, by which the whole Table is calculated. I lhall now proceed to give fome Ex- amples to illuftrate its Ufe. Example I. Suppofe it's required to build a Piece of Brick-work half a Brick thick , or one Brick , one Brick and a half two Bricks, or two Bricks and a half thick, and each Piece of Brick-work to contain 80 Juper- fcidl Feet, the Fpuefion is, how many Bricks are required to build each Piece of /fork ? Operation. Seek in the firft Column, under Feet, for 80, and right againft it, under the fevcral Thicknefles above exhibited, you H % have fz The Explanation, tfc. have the Number of Bricks required, viz. under half a Brick 446, under one Brick 893, under one Brick and a half 1340, under two Bricks 1786, under two Bricks and a halt 2.233 Bricks } which is the Anfwer requir’d, and the fame of any other. Example II. How many Bricks are required to build a Piece of Brick-work that conjijls of 1675 Feet , and at two Bricks thick. Now becaufe this Number is not to be exactly found in the Table at once, therefore you muft take it at twice, thus, Firft leek a Number that is neareft it, and that is lets than the Number propoled ; and then again for the Re- mainder • and laftly, add the Products of the two Numbers thus found into one Sum, and the Product thereof is the Content of the whole. 4 The Explanation, &c. $3 The Operation. Bricks. 1600 Feet at 2 Bricks thick is 26800 75 Foot at 2 Bricks thick is 1675 1 675 Foot at 2 Bricks thick is 28475 It’s Needlefs to give any more Ex- amples, and therefore I fhall conclude this Table, with Obferving, that it may be made ule of to any other Thickneis, by the Directions laid down at the latter- end of the Examples, of the Foregoing Table of Brick-work reduced. TABLE *>4 TABLE VII O F - Pavements, Shewing how many Paving Tiles, from 6 Inches to 12, Inches Square, will lay any Floor, that confifts of any Number of fuperficial Feet from 9 Foot to 630 ; like* wife, how many Bricks, Lumps, or Clinkers, laid Flat or Edg-ways will pave the fame. Of Pavements. 5$ Ut 6 Inch Tiles 8 Inch Tiles 9 inch Tiles 10 Inch Tiles 12 Inch Tiles Bricks or Lumps laid Flat ■3 2 S PQ -0 W Dutch Clinkers 9 36 21 l6 13 9 32 64 90 18 72 42 32 26 18 64 128 180 27 108 63 48 39 27 96 192 270 36 H 4 84 64 52 3 6 128 236 36° 45 1 80 105 80 65 45 160 320 45 ° 54 216 126 96 1 78 54 192 384 54 ° 63 2$ 2 147 1 12 91 63 224 448 63° 72 288 168 128 104 72 256 512 720 81 324 189 T 44 117 81 288 576 8 ip 90 360 210 160 130 90 320 640 900 99 396 231 176 143 99 352 704 990 108 432 252 192 156 108 384 768 1080 n? 468 273 208 169 117 416 832 1170 126 504 £9. 224 182 126 448 896 1260 135 54 ° 315 24O 195 135 480 960 135 ° 144 576 33 6 256 208 r 44 512 1024 * 44 ° 153 612 357 272 221 *53 544 1088 i 53 ° 162 648 378 288 254 162 • 576 1152 1620 171 684 399 304 247 171 608 1216 1710 180 720 420 320 260 180 640 1280 1800 189 756 441 336 273 189 672 *344 1890 198 792 462 352 286 198 704 1408 1980 207 828 483 368 299 207 736 H 72 2070 216 864 5 ° 4 3 H 312 216 768 1536 2160 225 900 525 400 325 225 800 1600 2250 234 936 546 4l6 338 234 832 1664 2340 243 972 567 432 35 l 243 864 1728 2430 252 I008 588 448 364 252 896 1792 252c 261 IO44 609 464 377 261 928 1856 2610 270 1080 630 480 39 ° 270 960 1920 2700 279 I I l6 65 1 49 6 403 279 992 1984 2790 288 1152 672 512 416 288 1024 2048 2880 297 Il88 693 S 28 429 297 1056 21 12 2970 3 °6 1224 7 MI 544 442 306 1088 2176 3060 3 i 5 1260 73 J| 56 c | 455 315 1120 2240 315° $6 Of Pavements. Feet 6 Inch Tiles 8 Inch Tiles 9 Inch Tiles 10 Inch Tiles 12 Inch Tiles Bricks or Lumps laid Flat Bricks laid Ede-wavs Dutch | Clinkers,! 324 1296 756 576 468 ! 324 - H 5 2 2304 3240 333 i 33 2 777 592 48 1 333 1 184 2368 333 ° 34 2 1368 798 608 494 • 34 2 ; 1216 2432 34 2 ° 351 1404 819 624 5 o 7 35 i 1248 2496 3510 360 1440 840 640 520 360 1280 2560 3600 369 1476 861 656 533 369 131 2 2624 3690 378 1512 882 672 546 378 1344 2688 3780 387 1548 903 688 559 387 1376 2752 3870 396 1584 924 704 572 | 396 1408 28 16 3960 4°5 1620 945 720 585 ' 4°5 I 44 ° 2880 4 ° 5 ° 4 H 1 656 966 736 598 4*4 1472 2944 4140 423 1692 987 752 6 11 4 2 3 1504 3008 423° 43 2 1728 1008 768 624 432 1536 3072 4320 44 1 1764 1029 784 <>37 44 ! 1568 3136 4410 45 ° 1800 1050 800 65 0 450 1600 3200 4500 459 1836 1071 8l6 663 459 1632 3264 4590 +68 1872 1092 832 676 468 1664 33 2 8 4680 477 1908 m3 848 689 477 1696 3 39 2 4770 486 1944 1134 864 702 486 1 728 3456 ^.8 60 495 1980 1 15 5 880 715 495 1760 35 2 Q 49 5 ° J04 2016 1176 896 728 504 1792 35 fy 5040 5*3 2052 1197 912 741 5*3 1824 3648 5130 J22 2088 1218 928 754 522 1856 37 12 5220 53 1 2124 I2 39 944 767 53 * 1888 3766 > 3 i° 54 ° 2160 1260 960 780 540 1920 3840 0 0 549 2196 1281 976 793 549 i 95 2 3904 > 49 ° S*8 2232 1302 992 806 558 1984 3968 5580 >67 2268 1323 1008 819 567 2016 4032 5670 57 6 2304 1344 £024 832 576 2048 4096 5760 585 234° 1365 IO40 845 585 2080 4160 5850 594 2376 <386 IO56 858 594 2112 4224 5949 603 2412 1407 1072 871 603 2144 4288 6030 612 2448 1428 1088 884 6l2 2176 435 2 6120 1621 2484 1449 1 10 4 897 621 2208 4416 6210 63° 2^20 1470 1120 910 630 2240 4480 6300 n THE Explanation and U SE Of the foregoing Table of Pavements. T his Table contains two Pages, the firft Column towards the Left-hand is the Column of Feet, in which is to be fought the Number of luperficial Feet that any Floor contains that is to be paved, and right againft each Number, in each of the other Columns, according to their Titles, is the Number of paving Tiles, Bricks, &>c. that will pave fo many luperficial Feet I Example / $8 The Explanation, &c. Example I. If a Floor contains 342 fquare or fu- perfdal Feet , how many Paving Tiles , fuppojing the Floor to be paved with either of the' Sorts mentioned tn the Table , or with the Bricks , Lumps, dCc. laid fat or edge-ways. Seek in the "firft Column for the Number of Feet propofed, viz. 342, and right againft it, in the other Columns, you have the Content required, viz.< 6 Inch Tiles 8 Inch Tiles 9 Inch Tiles 10 Inch Tiles 1 2 Inch Tiles Bricks or Lumps laid Flat Bricks laid Edge- ways Dutch Clinkers 136 8 798 608 494 3 4 * 1216 2432 3420 Example The Explanation, &c. 59 Example II. How many Bricks laid Edge-ways will pave a Floor of 300 jquare Feet ? In this Example the Number propofed is not to be found in the Table, there- fore in fuch a Cafe obferve the .following Rule. Firft leek the next neareft Number that is lefs than the Number propoled, and note the Bricks required thereto, and the remaining Feet, are fo many Ninths of the firft Number in the fame Column in the Firft Page • as in this Example given, the neareft Number in the Table to the given Number 300, is zgy, the Bricks required thereto, is 2,102, and the three Feet remaining is three ninths of 64, which is 21 Bricks and three ninths, or one third of a Brick, fo that in the whole, 300 Feet will require 2123 and one third, viz. 2123 Bricks, and one third of a Brick. See the Operation following. 6o The Explanation, &V. 297 Feet require 2,102, Bricks | of 64 Bricks is 21^ or * • ■iixzl Anil i)6 4 3 Multiply 64 by 3 9)l92,(Divide 192 by 9 21 Bricks | Remains Example III. ifoTO many Bricks laid Flat will pave a Floor of 175 fquare Feet ? The neareft Number to 175 in the firft Column of the Table, is 171 Feet, and the Number of Bricks laid flat to 171 Foot, is 608 4 Remaining is £ of 32, which is 14^ So that 175 Foot, will require,? , * of Bricks laid flat S Note, That always the Number of Feet remaining above the Number to be ; / The Explanation, &c, 6t be found in the Table, provided it be left than 9, is fo many ninths of the firft or upper Number in the fame Co- lumn (in the firft Page) that your Queftion is of j which being well un- derftood, you may, by dividing the Fractional Part, as above, know the ex- a£t Number of paving Tiles, Bricks, fe>c. that will pave any Floor that doth not confift of above 630 fuperficial Feet. 1 TABLE 6z TABLE VIII- o F Wherein is fhewen,how many Plain, or Pan-Tiles, will cover any Number of fquare or fuperficial Feet, from one Foot to 4000 Feet; according to five feveral Gauges. 4 Of Tiling. 6 $ Plain-Tiles Pan-Tiles Square Feet 6 Inch Gauge C W H" c 3 VO U 7 Inch Gauge 10 In. Gauge 11 In. Gauge i ' 7 ( 7 6 1 1 2 15 *4 13 3 3 3 22 21 19 5 4 4 30 28 26 7 6 s 38 35 32 9 8 6 45 42 39 10 9 7 53 49 45 12 U 8 60 56 52 H 13 9 68 63 56 16 i 4 io 76 7 o 65 18 16 20 152 140 130 36 | 33 30 228 210 195 54 49 40 304 280 260 7 2 66 50 38 o 35o 325 90 82 60 456 420 39 ° 108 : ; 99 70 J32 49 o 455 126 115 80 608 560 52 0 i 44 132 90 684 630 585 162 148 loo 760 7°o 65 0 180 165 2oo 1520 1400 1300 360 33 ° 300 2280 2100 195 © 54 ° 495 400 3040 2800 2600 720 660 5 00 3800 3500 3250 900 825 600 4560 4200 3900 1080 99 ° 7 °P 5320 4900 455 o 1260 1155 800 6080 5600 5 200 1440 1320 900 684O 6300; 5850 1620 H 85 1000 7600 7000 65 00 1800 1650 2000 15200 14000 13000 3600 3300 3000 22800 ■ 21000 19500 5400 4950 1 4.000 30400 28000 26000 7200 5600 THE Explanation andU SE Of the Table of TILING. H E firft Column toward the Left- hand confifts of fquare or fuper- fieial Feet j and right againft each of the Numbers therein contained, in either of the other Columns, is exhibited the Number of Tiles required to cover fo many fquare Feet, according to the fe- ' veral Gauges inferted on the Top of each of them. Seek in the fil'd: Column, under fquare Feet for 100, and under Plain-Tiles , at Example I. How many Tiles will cover 100 fquare Feet ? a The Explanation, &c. a 6 Inch Gauge, you have 760, at 6 Inch and half Gauge 7°°, and at a 7 Inch Gauge 650 Tiles ; and under Pan-Tiles, in the fame Line* at a 10 Inch Gauge 180, and at a 11 Inch Gauge 165 Tiles, as required. And the fame of any other. Example II. How many Plain-Tiles., at a 6 Inch Gauge $ will cover 2346 Jquare Feet ? Now when the Number propofed is not to be found at once in the Table, as in the given Example, you rauft take it out at feveral Times, and add all their Products together, and their Sum will be the Number of Tiles required. Operation. Feet 2,000 at 6 Inch Gauge is 300 ditto 40 ditto 6 ditto 2346 Feet at a 6 Inch Gauge is Tiles 15200 2280 3°4 45 17829 The fame ot any other. K Note, BLE 66 The Explanation, &c. « Note , The Gauge here Ipoken of, is the Diftance that the Lathes are Nailed at, for the Tiles to hang on, and is accounted from the upper Edge of one, to the upper Edge of the other, in Tiling, there is another between them. and in pi a 6i TABLE IX Shewing what any Number of odd Feet in a fuperfi- cial or folid Yard comes unto, at any Price, by the Yard, from a Farthing per Yard to Ten Pounds, &c. K z 68 The Value of, &c. Squ. i 2 3 4 5 T eet s. d. q. s. d. q- s. d. q- s. d. q s. d. q. -a i o O O 0 0 0 0 0 0 0 00 0 0 of S 2 0 O O 0 0 of 0 0 of 0 0 of 0 0 1 * 3 o O O 0 0 of 001 001 0 0 it I o O O 0 0 of 0 0 j~ m O O 0 0 2 2 o 0 of 0 0 If. 0021 0 0 3f 0 1 0 3 o 0 1 0 O 2f 0 1 p Oil Q I 21 4 o 0 if 0 0 3 f oil 013 O 2 OT o 5 o 0 2 0 1 0 0 I 2f 0 2 0 O 2 3 - 6 o O 2f 0 1 1 0 2 0 0 2 2t O 3 1 CD M 7 o O 3 0 1 2 0 2 1 0 3 0 O 3 3 i 8 o 0 3 f 0 1 3 O 2 2f O 3 2 x O 4 ^ 9 o 1 0 0 2 0 030 040^ O 4 3 t I o o 1 0 0 2 of O 3 I 041? O 5 2 ii o 1 i 0 2 if ! 1 0 3 27 0 4 3 f O 6 0 1 o 1 1 0 2 2T 040 0 5 1 O 6 2 2 o 2 2f 0 5 1 080 O IO 2f I 1 1 . 3 o 4 0 0 8 Q loo I 40 I 8 oi & 4 o 5 1 0 IO 2f 140 I 9 I 2 2 2f 1 ^ La 6 1 O 6 2f 1 I I 180 2 2 2f 2 9 1 1 ° 8' 0 1 4 0 200 2 8 0 3 4 0 cq ^ \ a 9 1 1 6 21 .240 3 1 1 3 IO 2 f 8 1 ° IO 2 | - 1 9 1 280 3 6 2* 3 5 1 9 1 i O O 2 0 0 300 4 o 0 5 0 0 IC >1 i I I ! 2 2 2^ -340 4 5 1 5 6 21 ] [j 2 2 2i a 4 5 1 680 8 10 2- r«i 1 1 - 4 £ ' ^ 4 5 1 8 10 2- r 13 4 0 17 9 1 22 2 2f $ 6 8 0 13 4 0 2000 26 80 33 4 0 £4 ' \ 9 10 2 i'i 1 7 9 1 26 S 0 35 6 2- 144 5 1 5(12 1 1 (23 2 2^ 1(23 4 . 0 44 - 5 1 <5 6 21 Soli Fee ri r ^ 6 i 9 12 1 - The Value of, &c. 69 Squa. I Feet. 6 s. d. q. 7 s. d. q. 8 s. d. q. 9 s. d, q. 1 £ 2 cj * 3 0 0 of 0 0 1 002 0 0 of 0 0 if 002 0 0 of 0 0 if 0 O 2f 001 0 02 o 03 1 2 3 4 5 S 6 £ 7 8 9 10 11 O O 2f Oil 0 2 0 O 2 2| 031 04° 0 4 2 t 0 5 1 060 O 6 2y O *7 I 003 0 12 021 030 0 3 3 t 0 4 2f O 5 If 0 6 of 0 6 3f 0 7 3 O 8 2 0 0 3f 0 1 3 O 2 2 f 0 3 2 0 4 if 0 5 1 0 6 of 070 0 8 of 0 9 of 0100 0 1 0 020 030 0 4 © 0 50 0 60 070 0 80 0 90 0 10 0 0 11 0 Shillings. M O VO 004 ioi 5 3 5 7i „5c 2 9 3 c >3 3 3 ( 5 3 9 25 1 4i li t > 1 7i ■ 1 ( ? i iof s. d. q- 1*. d. q $. G. q. 9; d. q , s. d q. 24 1 3 3 1 5 1 1 6 2| 1 7 3 II 9 xi 23 1 3 of 1 4 2 1 6 0 1 6 2 ,|i 8 li 22 1 2 if 1 3 3 1 5 0 1 S 3 1 7 1. 21 1 1 3! 1 3 0 1 4 2 1 5 0 1 6 2I 20 1 1 1 2 1 1 3 2 s 1 4 1 i 5 2! 19 1 0 2 1 1 2 1 2 31 1 3 2 1 4 3 8 l8 0 ti 3 1 0 3 1 I 2T 1 2 2 1 3 3 i 17 0 ii of 1 0 c 1 I I 1 1 3 1 2 3 1 16 0 10 if 0 11 I 1 0 I 1 1 0 1 2 0 * 0 9 3 0 10 2 0 II 27 1 0 0 1 10 14 0 9 of 0 9 3 0 II 0 0 12 1 I © lx 13 0 8 if 0 9 0 0 10 0 0 10 2 0 11 i| 12 0 7 3 0 8 1 0 9 2 0 9 3 0 10 2I 0 9 3 S 11 0 7 °f 0 H / 2 0 8 2f 0 9 0 10 0 6 if 0 6 3 0 7 3 0 8 1 ® 8 3 f 9 0 5 3 0 6 c 0 7 ofi 0 7 1 0 7 3 f 8 0 5 1 0 5 1 0 6 1 < 0 6 2 0 7 Qi 7 0 4 1 0 4 2 0 5 if < D 5 3 0 6 o| 6 0 3 3 1 0 3 3 < 0 4 1 ; ( D 5 0 0 5 M 5 0 3 1 0 3 0 < 0 3 3f'o 4 0 0 4 1 f 4 ! 0 2 27 0 0 1 < D 2 3 j< D 3 1 032 3 0 1 3 f 0 1 3 < D 2 ifc D 2 2 023 2 0 1 1 0 1 i< D I 2f O 1 3 0 1 34 1 0 0 2f 0 0 3l< D 030 0 3 ^ 0 3i ISquar. *- cr oo M|^ S-. C v> c* »h H The Value of, &c. 77 5, d. cL 3 . d. s. d. s. d PerSqua re 8 0 8 6 1 9 0 9 6 10 0 fSquar. 75 6 0 6 4* 6 9 7 ii 7 6 fSquar So 4 0 4 3 4 6 4 9 5 0 fSquar. 25 2 0 2 Tt |2 3 2 4 i 2 6 I s d. q| 5 , d. q. |s. d. q s. d. q-l 5 . d. q. QJ 24 1 1 1 0 2 0 O 2 I 0 2. 2 3 * 2 4 3 p rr* 23 1 10 1 1 1 1 I 2 0 3 2 2 oi 2 3 2 OQ 22 1 9 0 i 10 If I II 3 2 1 0 2 2 1 •"W 21 1 8 1 1 9 2 I IG 3 2 0 0 2 1 1 O 20 1 7 0 1 8 I I 9 1 10 3 , 2 0 0 v-» N 19 1 6 1 1 7 {I I 8 2 1 9 28 1 10 3 u* 18 1 5 0 1 6 I I n t 2 1 8 2 1 9 2 *X5 c 17 1 4 1 1 5 I I 6 1 1 7 I 1 8 1 p 16. 1 3 0 1 4 °l l S 1 X 6 if 1 7 2 ■i-J 0 7 0 0 10 c 1 O 2 19 THE Explanation and Use of the Foregoing A T the Head of the Table, you have the Price of a Square, | of a Square, * a Square, and a ' of a Square, placed over each Column, Calculated from 3/. per Square, to 5/. per Square, and by addition only to 1 o /. per Square. And in the firft Column you have any Number. of odd feet under 25, and right againft thole feet in the other Column, you have the Value or Price thereof, ac- cording to the Rule or Price at the Head of the Columns. Example 80 The Explanation, &c. Example I. At 3s. per Square , what is the Value of \of a Square , \ a Square , a\of a Square , and 23 Feet ? The price agreed on, being found at the Head of the Table, underneath it, you have the Price of \ of a Square, ’ a Square, and a ’ of a Square ; and in the fame Column right againft 23 feet in the ; firft Column, you have the Value of the: 23 foot alfo, at the Rate of 3s. per Square, fee the Opperation as follows. r . s. d. q at 3s. per Square, l of a Square is 230 Ditto * of a Square is 160 Ditto l of a Square is 090 Ditto 23 feet is 081 The Whole Content is 521 Example The Explanation, &c. 8 1 Example II. At 14 Shillings and Six-pence per Square ? what comes 1 6 Foot to ? S dq At io j. per Square 1 6 Foot is i 7 a At 4 s. 6 d. Square 16 Foot iso 8 2| At 14/. 6^. per Square 16 Foot is 2, 4 o Example HI At 9 Pound 17 Shillings and Six-pence per Square , what comes 12 Foot to? s d q At 5/. per Square 12 Foot is 11 11 3 ; At 4/. per Square 12 Foot is 9 70 At 1 os. per Square 1 2 Foot is 1 2 1 At 7-f. 6 d. per Sq. 1 2 Foot is o 10 2\ A t 9/. 1 71. 6 d. per Sq. 12 Foot is 23 7 2 j The fame of any other, c TABLE M H03 8z T A B L E XI Shewing the Value, or Price, of any Number of odd Feet of Brick- work (or other performed by the Rod Square) calculated from one Foot, to 34 Feet, or half Quarter of a Rod, and at any Price from three Shillings to eight or ten * Pounds per Rod. The Value of, dV. 8? 1 s d s d S cl j s d 5 d Per Rod 272 3 0 3 6 4 . 0 1 46 S 0 is Rod 204 2 3 I 2 1 i 3 0 3 4 * 3 9 { Rod 136 1 6 1 9 2 0 2 3 2 6 i Rod 68 0 9 0 1 of 1 0 1 if 1 3 i Rod 34 0 41 0 Si 0 6 0 64 0 7 x ' 2 i 1 d q, d 9 1 d 9 ! -» £ 03 £4- C 0 7 3 0 19 \5 0 5 3 6 2 . 0 7 2 0 18'u b 3 5 2 6 i : Jo 1 7 0 0 1 7 ' . 2 5 1 6 c )lc > 6 3 0 16 r ^ 4 3 5 20 6 1 0 15 3 3 4 2 s l P 5 3 0 14 3 2 ■ 4 1 4 3jO 5 2 0 13 3 1 4 0 4 2 \° Sc 0 12 3 c > 3 2 4 °!° 4 3 1 0 1 1 l a i 3 1 3 3 ,o 4 5 ;| c 10 2 : * 3 0 3 2 ;° 3 5 il C 9 2 3 I 2 3 3 0,0 3 : l c 8 2 C D 2 I 2 3 ,o 3 < D C 7 1 : 5 2 0 2 * O 2 : 3 c 6 i : z i 3 2 00 2 : 1 < 1 5 1 1 1 2 1 3 o 1 3 < 1 1 0 1 0 i 1 0 I 2 ( 3 0 3 Q 3 1 0 0 I 0 < 5 1 0 2 0 2 0 2 0 0 3 < 1 0 l| O I 0 1 0 0 1 1 2 2 2 O I 2 I O 0 3 O I 9 ^ 9 1 8 3 8 i 7 3 7 2 7 o 6 2 6 c 5 ^ 4 3 4 i 3 3 3 2 3 o 2 2 2 C I 3 I I o 3 o r The Value of &c. 8f s. d's. d 3 . dj S. d s. d perRod 272 2 20 o| 3 o 0 40 0 5 ° d 60 O ! ■J Rod 20i f ij 0 22 6 3 ° 0 37 6 45 O i Rod r 3 < 5 10 0 l S 0 20 0 2 5 0 30 O f Rod 65 S 0 7 6 10 c 12 6 15 O %\ . I | Rod 34 (. 2 6 3 9 5 0 6 3 7 6 1 1 * 1 s . d. q. s. d. q / s . d. q | s. d. q.| I S. d. Q. 1 33 2 5 1 3 7 ^ 4 ] [Q O 6 0 3 7 3 2 i 32 2 4 1 3 6 1 4 8 1 5 10 2 7 0 2 . 3 i 232 3 5 0 4 6 2 5 8 1 6 10 0 0 3 = 222 3 3 2 4 4 3 5 6 0 6 7 i ! p£ -2-5 2 i 3 3 2 1 4 3 0 5 3 3 6 4 3 1 * 2* 203 3 1 c 4 1 1 5 1 3 6 2 0 O 2/ t at ‘2 CO > I II O 2 2 11 2 10 1 3 3 11 2 9 3 4 4 11 2 9 1 5 5 11 1 8 3 I 0 2. £ I IO I 2 9 0 3 8 0 4 7 c 5 6 0 tf 1 9 1 2 7 3 3 6 1 4 4 3 5 3 2 jf £ 2 ' $18 2 2 6 1 3 4 2 4 2 2 5 0 3 ^ 2: 2 1 72 2 5 0 3 2 3 4 0 2 4 10 0 1 cn * 2 II63 2 3 3 3 1 c 3 10 1 4 7 2 0 15 3 2 2 1 2 11 1 3 8 c 4 4 3 ' § I 9 14 3 2 1 0 2 9 2 3 5 3 4 2 1 CD A 8 13 3 1 11 3 2 1 3 3 3 2 3 1 1 2 O T PH 1 7 13 0 1 10 2 2 6 c 3 1 2 3 9 Q C4- « I 6l 2 0 1 9 0 2 4 f 3 11 1 3 6 1 . 1 2 1 5 1 IO 1 7 3 2 2 1 2 9 c 3 3 2 ! J8 1 4 1 OI 1 6 2 2, 0 2 2 6 3 3 I Q ’! i 1 3 0 ii i 1 5 0 1 10 3 1 2 4 2 2 IO I 1 & 1 :2 0 10 2 1 3 3 1 9 ° 1 2 2 i 2 7 3 ' , >, i :i 0 92 1 2 2 1 7 1 1 2 0 1 2 5 c > c c 3 ] [o 0 83 1 1 c > 1 5 2 1 1 10 c 2 2 1 r ^-4 0 9073 0 11 3 1 3 3 1 1 7 3 ; 1 11 % ■ 0 1 c II c 8 i : I ; 1 ? 0 3 ■? 1 c 10 : j 1 5 ! r i 302: l 0 3 : l 0 5 : 1 0 6 : 2 0 7 : 1 2 O I ! l 0 2 2 2] 0 3 2 2 0 4 1 0 5 : ii j Ml || i 0 0 ; 31 0 I 1 [1 0 I : 3 0 2 ( D 0 2 : 2 S * * “ 86 The Value of, &c. 1 ; s . 1 . s •1 L s, 1. s. 1 . s. perRod «72 4 c 5 c 1 6 0 7 0 8 0 i Rod 204 3 0 3 15 4 IO, 5 5 6 0 i Rod 136 2 0 2 10 3 0 3 10 4 0 \ Rod 68 1 0 1 5 1 10 1 15 2 0 f Rod 34 0 10 x 2 6 0 15 17 6 1 0 s. d. c s. d. q s. d. q 1 s - d. q l s - d. q 33 9 8 I 12 1 2 H 6 2 16 7 1 19 6 3 32 9 4 3 1 1 9 0 H 1 1 16 1 0 18 11 3 3 *" 9 1 1 II 4 3 13 8 0 15 6 3 18 4 3 “C o 30 8 9 3 II 0 1 13 2 3 i 5 0 3 i 7 9 3 Pd 29 8 6 1 IO 7 3 12 9 2 14 8 3 17 2 2 vi 28 8 2 3 10 3 2 12 4 0 H 2 2 16 7 2 o 27 7 11 1 9 10 0 11 10 3 13 10 2 16 0 2 Hjas 26 7 7 2 9 6 2 11 5 2 13 4 1 i 5 5 2 o 25 7 4 0 9 2 1 11 0 1 12 10 1 H 10 1 4~> 24 7 0 2 8 9 3 10 7 0 12 4 0 i 4 3 1 17 5 0 0 6 3 0 7 6 0 8 9 0 10 2 0 l6 4 8 1 5 10 2 7 0 2 8 2 3 9 6 3 O 15 4 4 3 5 6 0 6 7 1 7 8 2 8 11 3 S-H Example III At 14 h 12 Si 6cL per Rod, what comes 6 Root to ? To refolve this Queftion or any other of the like Nature, you muft take, it out at l'everal times, as follows viz. 5. d.

0 1 2 0 2 C ) 0 4 0 3 0 0 30 I 2 ; 0 2 1 0 3 c ) 0 6 0 A 0 1 0.0 2 C 1 0 3 0 0 4 c > 0 8 0 5 0 1 ijo 2 2 0 3 3 0 5 c ) 0 10 0 6 O I 2*0 3 c > 0 4 2 0 6 c ) 1 0 0 7 O I 3J0 3 2 ; 0 5 1 0 7 c > 1 2 0 8 O 2 OO 4 0 > 0 6 0 0 8 c > 1 4 0 9 O 2 IO 4 2 0 6 3 0 9 c > i 6 0 10 O "cF M O 5 0 0 7 2 0 10 c > 1 8 0 1 1 0 2 30 5 2 0 8 1 0 11 0 1 10 0 12 O 3 OO 6 0 0 9 0 1 0 0 2 0 0 13 0 3 IQ 6 2 0 9 3 1 1 0 2 2 0 i 4 032 0 7 0 0 10 2 1 2 0 2 4 c 1 5 033 0 7 2 0 H 1 1 3 0 2 6 0 16 040 0 8 0 I 0 0 1 4 0 0 8 0 17 041 0 8 2 1 0 3 1 5 0 2 10 c 18 042 0 9 Q 1 1 2 1 6 0 3 0 0 19 O 4 3 0 9 2 1 2 1 1 7 0, 3 2 0 20 0 5 0 0 10 0 1 3 0 1 8 0 3 4 0 21 0 5 i 0 10 2 1 3 3 1 9 0 3 6 oj 22 052 0 11 0 1 4 1 loo 3 8 oi 23 0 5 3 0 11 2 1 5 V ii 0 *> 10 0 24 060 1 0 0 I 6 02 t 0 0 4 0 p 25 061 1 0 2 1 6 32 1 O'! 4 2 0 26 062 i 1 0 i 7 22* 2 0 4 4 0] 27 063 1 1 2 I 8 X ! 2 j 3 0. 4 6 0 28 ■ 070 r 2 0 I 9 °4 4 0 4 8 oj 29 ' 071 1 2 2 1 9 3 | ; 1 5 4 M O O 3 °< D 7 2 1 3 0 1 lo 2,2 6 0 5 0 oj 3 1 ( D 7 3 1 3 2 1 II 12 7 5 2 Oj 32 ( D 8 0 1 4 0 : 2 O 0 f 2 8 o a ? 4 °j 33 < D 8 1 1 4 2: 2 0 3 * > 9 0. S' 6 0 34 ( 382 1 5 0: 2 1 22 > 10 0 j 5 8 oj 35 ( 583 1 5 2 ' 2 2 I X > II O' S' : 10 oj 36c ■> 9 0 i 6 0 : 2 3 0 3 0 0 < 5 0 ol What any Number, 6V. 93 1 ]No Farthin. I 2 Farthin. 13 Farthin. Penny. (2 Pence: ' " s. d. c 1. 1 s„ d. q. ji . s. d. q.Ji. s. d q .1 s. d. V , 0 0 9 1 c 1 6 ^ O 2 3 : i 0 3 I c 5 0 6 2 \ 3 8 O 0 9 2 0 1 7 c O 2 4 2 : 3 3 2 C > 0 6 4 39 0 0 9 3 0 I 7 - 0 2 5 1 3 3 3 C ) 0 6 6 40 0 0 10 c 0 1 8 c 0 2 6 c 0 3 4 c > 0 6 8 4 1 0 0 10 i 0 1 8 2 0 2 6 3 3 3 5 c 1 0 6 ic 42 0 0 10 2 0 1 9 G 0 2 7 2 O 3 6 c 1 0 7 0: 43 0 0 10 3 0 1 9 2 0 2 8 1 3 3 7 c 1 0 7 2 44 0 0 11 0 0 1 10 c 0 2 9 0 0 3 8 Q 1 0 7 4 45 0 0 11 1 0 1 10 2 0 2 9 3 3 3 9 0 1 0 7 6 46 0 0 11 2 0 I 1 1 0 0 2 10 2 O 3 io 0 0 7 8 47 0 0 11 3 0 1 11 2 0 2 11 i 0 3 11 0 0 7 i© 48 0 1 0 0 0 2 0 0 0 3 0 0 O 4 0 0 0 8 0 49 0 1 0 1 0 2 0 2 0 3 0 3 0 4 1 0 0 8 2 5 o 0 1 0 2 0 2 1 0 0 3 1 2 0 4 2 0 0 8 4 5 i 0 1 0 3 0 2 1 2 0 3 2 1 0 4 3 0 0 8 6 52 0 1 1 c 0 2 2 0 0 3 3 0 0 4 4 0 0 - 8 8 53 0 1 1 1 0 2 2 2 0 3 3 3 3 4 5 0 0 8 io 54 0 1 1 2 0 2 3 0 0 3 4 2 O 4 6 0 0 9 0 55 0 1 1 3 0 2 3 2 0 3 5 1 O 4 7 0 0 9 2 56 0 i 2 © 0 2 4 0 0 3 6 0 O 4 8 0 0 9 4 57 0 1 2 1 0 2 4 2 0 3 6 3 O 4 9 0 0 9 6 58 0 1 2 2 0 2 5 0 0 3 7 2 O 4 loo j 9 8 59 0 1 2 3 0 2 5 2 0 3 8 x 3 4 11 0 0 9 10' 60 0 1 3 0 0 2 6 0 0 3 9 0 3 0 5 0 0 0 10 0 7 ° 0 1 5 2 0 2 11 0 0 4 4 2 0 5 100 0 1 1 8 8° ( 0 1 8 0 3 3 4 c 0 5 0 c 3 6 8 0 0 13 4 90 0 1 102 3 3 9 0 3 5 7 3 3 7 6 0 0 15 0 100 0 2 1 0 0 4 2 0 1 3 6 3 0 0 8 4 0 0 16 8; O O 0 4 2 0 0 8 4 c 3 12 6 0 3 16 8 0 X 13 4 300 0 6 3 0 3 12 6 c 3 18 9 0 I 5 0 0 44 so 0 ; 4 °° 0 8 4 4 3 l6 8 c l - 05 0 c r A. 13 4 0 3 6 8 lyoo < 0 10 5 0 I 0 10 0 E XX 5 0 2 1 8 0 4 * 3 ,600 1 3 12 6 0 I 5 O 0 I 17 6 0 2 10 0 0 5 0 oj 700 < 3 *4 7 0 I 9 2 C Z 3 9 0 2 18 4 0 5 1 6 C | jBoo i 0 16 8 oj I 13 4 C : 2 10 0 0 3 6 8 oj 6 13 ' 4 94 What any Num. &c. N0I3 Pen.|4 Pencej5 Pencc|6 Pena |7 Pence ii. s. dll. s. d |l. s. dji. s d. 1. s. 'd. 2 0 0 6 0 0 8 0 0 lo;o 1 0 0 1 2 3 0 0 9 0 1 0 0 1 3 0 1 6 0 1 9 4 0 1 0 0 1 4 . 0 1 8 0 2 0 0 2 4 5 0 1 3 0 1 8 0 2 1 0 2 6 0 2 11 6 0 1 6 0 2 0 > 0 2 6 0 3 0 0 3 6 7 0 1 9 .0 2 4 . 0 2 11 j° 3 6 0 4 1 8 0 2 0 0 2 8 0 3 4 :o 4 0 0 4 8 9 0 2 3 0 3 0 0 3 9 0 4 6 0 S 3 10 0 2 6 0 3 4 0 4 2 0 S 0 0 5 10 ii 0 2 9 0 3 8 0 4 7 0 S 6 0 6 5 12 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 13 0 3 3 0 4 4 0 5 5 0 6 6 0 7 7 H 0 3 6 0 4 § 0 5 10 0 7 0 0 8 2 i 5 .o 3 9 0 5 0 0 6 3 0 7 6 0 8 9 x 6 o 4 0 0 5 4 0 6 8 0 8 0 0 9 4 i 7 o 4 3 0 5 § 0 7 1 0 8 6 0 9 1 1 iS,o 4 6 0 6 0 0 7 6 0 9 0 0 io 6 19° 4 9 0 6 4 0 7 i 1 0 9 6 0 U 1 200 5 0 0 6 8 0 8 4 0 10 0 0 H 8 21 0 f 5 3 0 7 0 0 8 9 0 10 6 0 12 3 22 0 5 6 0 7 4 0 9 2 0 1 1 0 0 12 10 23 0 5 9 0 7 8 0 9 7 0 11 6 0 T 3 5 24 0 6 0 0 8 c 0 10 0 0 12 0 0 H 0 25 0 6 3 0 0 8 4 0 10 5 0 12 6 0 H 7 26 0 6 6 O 8 8 0 10 10 0 13 0 0 15 2 27 0 6 9 O 9 0 0 1 1 3 0 13 6 b 15 9 28 0 7 0 O 9 4 0 1 1 8 0 H c b 16 4 29 0 7 3 O 9 8 0 12 1 0 H 6 0 16 11 30 0 7 6 O 10 c 0 12 6 0 15 0 0 17 6 3*1 0 7 9 0 1 0 4 0 12 11 0 15 6 0 18 1 3 2 ° 8 0 0 10 8 0 13 4 0. 16 0 0 18 8 33 0 8 3 0 no 0 13 9 0 16 6 0 19 3 34,0 8 6 0 11 4 0 H 2 0 i7 0 0 19 10 350 8 c y 0 11 8 0 H 7 0 17 6 1 0 5 36 : 0 9 c 0 12 0 0 *5 0 0 18 c 1 1 0 What any Number, &c, 97 No. ( 3 Fence [ 4 Pence! 5 Pence | 6 Pence [ 7 Fence | 1. s. d| 1. s. d| 1. s. dj 1. s. dj i. s. d 371 0 9 3 0 12 4 0 15 5 O 18 6 1 1 7 38 0 9 6 0 12 8 0 15 10 O 19 0 1 2 2 39 0 9 9 0 13 0 0 l6 3 O 19 6 1 2 9 4 ° 0 10 0 0 *3 4 0 l6 8 I O 0 1 3 4 41 0. 10 3 0 *3 8 0 17 1 I O 6 1 3 11 44 0 10 6 0 14 0 0 17 6 I I 0 1 4 6 43 0 10 9 0 i 4 4 0 17 XI I I 6 1 5 1 44 0 no 0 H 8 0 18 4 I 2 0 1 5 8 45 0 11 3 s 0 1 S 0 0 IS 9 I 2 6 1 6 3 46 0 11 6 0 15 4 0 19 2 I 3 0 1 6 10 47 0 11 9 0 15 8 0 19 7 I 3 6 1 , 7 5 48 0 12 0 0 16 oi 1 O 0 I 4 0 i 8 0 49! 0 12 3 0 16 4 1 O 5 I 4 6 1 8 7 50 0 12 6 0 16 8 1 O io I 5 0 1 9 2 5 i 0 12 9 0 17 O 1 I 3 I 5 6 1 9 9 52 0 13 0 0 17 4 1 I 8 I 6 0 1 10 4 53 0 13 3 0 17 8 1 2 1 I 6 6 1 10 1 1 54 0 13 6 0 18 0 1 2 8 I 7 0 1 il 6 55 0 13 9 0 18 4 1 3 XI I 7 6 1 12 1 56 0 14 0 0 18 8 1 3 4 I 8 0 1 12 8 57 0 14 3 0 *9 0 1 3 9 I 8 6 1 1 3 3 58 0 14 6 0 19 4 1 4 2 I 9 0 1 13 10 59 0 14 9 0 1.9 8 1 4 7 I 9 6 1 H 5 60 0 15 0 I 0 0 1 5 0 I 10 0 1 15 o| 70 0 17 6 I 3 4 1 9 2 I 15 0 2 0 10 80 1 0 0 I 6 8 1 *3 4 2 0 0 2 6 8 90 1 2 6 I 10 c 1 6 2 5 0 2 12 6 100 1 5 c I 13 4 2 1 8 2 10 0 2 18 4 i 2C O > 2 10 c > 3 6 8 4 3 4 5 0 0 5 16 8 300 3 15 c > 5 0 c > 6 5 0 1 7 10 0 8 15 0 4 ° c > 5 0 c ) 6 13 4 , 6 6 8 10 0 0 1 1 13 4 50c ) 6 5 c > 8 6 8 ! 10 8 4 .12 10 0 14 1 1 8 60c > 7 lo c ) 10 0 c ) 1 2 9 c » 15 0 0 17 10 oj 70c > 8 15 C >;n 13 A • ! 4 12 8 ‘£7 10 0 1 20 8 4 ,80 c 3 10 0 c >!i 3 6 8 !. f 6 13 A "Tt - 20 0 c '23 6 81 96 What any Num. &c. |No.|8 Fencejo P nce|io PencHiiP~nce]iShi]Jin ! |! S . ifi ' s. d i. s. dji. s. d 20 1 40 1 60 1 80 1100 20 3 0 2 00 2 30 2 60 2 90 30 40 2 So 3 00 3 4 ° 3 8!o 4 0 5 ° 3 - 0 3 : 9 ° 4 20 4 7 '° 5 ° 5 0 4 O 4 l 605 00 5 60 6 0 70 4 ? 0 S : j|o 5 i' 0 0 6 50 7 0 * 5 o s t L 0 6 < DO 6 < 5 0 7 - 40 80 ( 0 6 c > 0 6 c ?o 7 < So 8 : 3 0 9 0 Ic ) 0 6 c 0 7 < So 8 1 1-0 9 - 20 IO 0 I] [0 7 4 .0 8 7 5092 Jo 10 ; O M M O 12 .0 8 c 0 9 c >010 c ) 0 1 1 c >0120 13 8 8 0 9 S ) 0 10 Ic >0 11 n [0130 M .0 9 4 0 io ( ) 0 11 8 lo 12 IC )o 14 0 15 0 10 0 0 H 3 0126 •O 13 9 IO 15 O l6 0 10 80 1 2 C >o 13 4 0 14 8 ! O l6 0 ! 17 0 11 410 12 9 0 T4 2 0 15 7 0 17 0 18 0 12 0 0 13 6 0 15 0 016 6 O l8 O 19 0 12 8 0 14 3 0 15 10] oi 7 5 0 19 0 20 0 13 4 0 15* 0 016 8 018 4 I 00 21 0 14 0 0 15 9 017 6 0 19 3 I I 0 22 0 14 8 0 16 6 0184 102 12 0 2 3 0 15 4 0 17 3 019 2 1 1 1 * 3 0 2 4 0 16 0 0 18 0 100 120 1 40 251 o 1 6 8J< D l8 9 1010 1 2 11 1 5 0 26c 3 17 4 < d 19 6 1 1 8 r 3 10 1 60 27 ( >180; [ 0 3 126 1 4 9 1 70 28 c >188] e 1 0 r 3 4 ] 1 5 8: r 8 0 29 c ) 19 4 ] £ 19 142] [6 7 ] [ 9 0 x i 301 0 0] 26] [ 5 0 1 [ 76] [ 10 0 31 1 081 : 3 3 i [ 5 10 i 85] [ 11 0 32 I 1 41 4 0 1 [681 9 4 i : 12 0 33 1 201 4 9 1 761 10 31 : 13 0 34 i 281 5 61 8 41 11 21 14 0 35 1 3 41 6 3 1 * 9 21 12 11 15 0 36J1 4 oil 7 0 r 10 01 13 01 16 0 What any Number, &V. ^ No.| 8 Pence 1 9 Pence |io Pence [n Pence |iShiTl'ing. 1 . s. d 1 . s di 1. s. <4 1 s d| 1 . s . d 37 I 4 8 1 7 9 1 IO IO 1 13 II I 17 0 38 I 5 4 1 8 6 1 1 1 8 1 H IO I 18 0 39 I 6 0 1 9 3 1 12 6 1 15 9 I 19 6 40 I 6 8 1 10 0 1 13 4 1 16 8 2 0 0 4 1 I 7 4 1 IO 9 1 14 2 1 17 7 2 I 0 4 2 I 8 0 1 II 6 1 15 0 1 18 6 2 2 0 43 I 8 8 1 12 3 1 15 10 1 19 5 2 3 6 44 I 9 4 1 13 0 1 l6 8 2 0 4 2 4 d 45 I 10 0 1 13 9 1 17 6 2 1 3 2 5 e 46 I io 8 1 ! 4 6 1 18 4 2 2 2 2 6 0 47 I 11 4 1 15 3 1 19 2 2 3 1 2 7 6 48 I 12 O 1 l6 0 2 O 0 2 4 0 2 8 0 49 I 12 8 1 l6 9 2 0 IO 2 4 1 1 2 9 0 50 I *3 4 1 17 6 2 I 8 2 5 IO 2 IO 0 5 i I 14 O 1 18 3 2 2 6 2 6 9 2 11 0 5 2 I 14 8 1 19 0 2 3 4 2 7 8 2 12 0 53 I 15 4 1 19 9 4 <4* 2 8 7 2 13 6 54 I 16 0 2 O 6 2 5 0 2 9 6 2 14 6 55 I 16 8 I 3 2 5 IO 2 io 5 2 15 0 56 I 17 4 2 2 0 2 6 8 2 1 1 4 2 16 O 57 I 18 0 2 2 9 2 7 6 2 12 3 2 17 0 5 S I 18 8 2 3 6 dm 8 t 4 2 13 2 2 18 O 59 I 19 4 2 4 3 2 9 2 2 14 1 2 19 O 60 2 0 0 2 5 0 2 10 0 2 15 6 3 0 O 70 2 6 8 2 12 6 2 18 4 3 4 2 3 10 O 80 2 13 4 3 0 0 3 6 8 3 13 4 4 0 O 90 3 0 0 3 7 6 3 i 5 0 4 2 6 4 IO O ioo 3 6 8 3 15 0 4 3 4 4 1 1 8 5 0 O 2 oO 6 13 4 7 10 0 8 6 8 9 3 4 IO 0 O 300 10 0 0 n 5 0 12 1 0 0 13 15 0 15 0 0 400 13 6 8 *5 0 0 16 13 4 18 6 8 20 0 O 5 QO 16 13 4 18 15 0 20 1 6 8 22 18 4:25 0 0 600 20 0 0 22 IO 0 2 5 0 0 27 IO ©'30 0 0 700 23 6 8 26 5 0 29 3 4 32 1 8,35 0 of 800 26 13 4 30 0 0 33 6 8 36 13 44 ° 0 0 o 98 What any Num. &c. No. 2 Shill | 3 Shill. | 4 Shill | 5 Shill. | 6 Shili. 1. s. { 1 s. ! i- s* j I 1. s. 1 1. s 2 0 i 0 6 0 8 0 10 0 12 3 0 6 0 9 0 12 0 15 0 18 4 0 8 0 12 0 16 1 0 1 4 5 0 10 0 i 5 I 0 1 5 1 10 6 0 12 0 18 I 4 1 10 1 16 7 0 14 1 1 I 8 1 i 5 2 2 8 0 16 1 4 I 12 2 0 2 8 9 0 18 1 7 I 16 2 5 2 H io I 0 1 10 2 0 2 10 3 0 ii I 2 i 13 2 4 2 15 3 6 12 I 4 1 16 2 8 3 0 3 12 r 3 I 6 1 19 2 12 3 5 3 18 H I 8 2 2 2 1 6 3 10 4 4 r 5 I 10 2 5 3 0 3 15 4 10 1 6 I 12 2 8 3 4 4 0 4 16 *7 I H | 2 11 3 8 4 5 5 2 18 I 16 ! 2 H 3 12 4 10 5 8 r 9 I 18 2 *7 3 16 4 15 5 H 20 2 0 3 0 4 0 5 0 6 0 21 2 2 3 3 4 4 5 5 6 6 22 2 4 3 6 4 8 5 TO 6 12 2 3 2 6 3 9 4 12 5 15 6 18 24 2 8 3 12 4 1 6 6 0 7 4 2 5 2 10 3 15 5 0 6 5 7 10 26 2 12 3 18 5 4 6 to 7 16 2 7 2 14 4 1 5 8 6 15 8 2 28 2 16 4 4 5 12 7 0 8 8 29 2 18 4 7 5 16 7 5 8 r 4 30 3 0 4 10 6 0 7 10 9 0 3 i 3 2 4 13 6 4 7 15 9 8 32 3 4 4 16 6 8 8 0 9 12 33 3 6 4 19 6 12 8 5 9 18 34 3 8 5 2 6 16 8 10 io 4 35 3 10 5 5 7 0 8 15 10 10 I36 3 12 5 8 7 4 9 © 70 161 What any Num. &c. 99 No.) 2 Shill. 3 Shri Jl. | 4 Shill. | 5 Shill. ] 6 Shill. M- s. 1. s.l 1. S ( 1. M 1. s ,37 3 14 5 ii 7 8 9 5 L I 2 38 3 16 5 14 7 . 12 9 10 I I 8 39 3 18 5 17 7 16 9 15 I I 14 40 4 c 6 0 8 0 10 0 12 0 4 1 4 02 6 3 8 4 10 5 12 6 42 4 4 6 6 8 8 10 10 5 2 12 43 4 6 6 9 8 12 10 15 12 18 44 4 8 6 1 2 8 16 1 1 c 13 4 45 4 10 6 *5 9 0 1 1 5 !3 - 10 46 4 12 6 18 9 4 1 1 10 13 16 47 4 H 7 1 9 8 1 1 15 T 4 2 48 4 16 7 4 9 12 12 0 x 4 8 49 4 18 7 7 9 16 12 5 l 4 14 5 o 5 0 7 io 10 0 12 IC 15 0 5 i 5 2 7 *3 10 4 12 15 i 5 6 52 5 4 7 16 10 8 13 0 J 5 12 53 5 6 7 *9 10 1 2 13 5 15 18 54 5 8 8 2 10 16 13 10 16 4 55 5 10 8 5 Ji 0 13 15 1 6 IC 56 5 12 8 8 1 1 4 14 0 16 16 57 5 *4 8 11 1 1 ? 14 5 17 O a . 58 5 16 8 M 1 1 12 14 10 17 8 59 5 18 8 17 11 16 14 15 17 M 60 6 c 9 <> 12 c 15 0 18 0 70 7 0 10 10 14 0 17 10 21 0 80 1 8 0 12 0 16 0 20 0 24 0 90 9 0 13 10 18 0 22 10 27 0 100 10 c i 5 c 20 0 ^5 0 30 0 200 20 0 30 0 40 0 50 0 60 0 300 30 0 45 0 60 0 75 0; 90 0 400 40 0 60 0 80 0 100 0 120 0 500 50 0 75 0 100 0 125 0; 150 0 600 60 0 90 0 120 c 150 0 180 0 700 70 c i <>5 0 140 0 175 0 210 0 ,8 00 80 c 120 0 160 0 200 0 240 0 loo What any Number, &c. No. ingjB Shilling./? Shilling \ 1 1 0 Shillin f t r Shi], 1 1. s. 1 s. 1 1 1. s. 1 1. 5. 1 1 . s 2 0 H 0 16 0 18 1 0 I 2 3 i I 1 4 1 7 1 10 I 13 4 1 8 1 12 1 16 2 0 2 4 5 1 15 2 O 2 5 2 10 2 15 6 2 2 2 8 2 H 3 0 3 6 7 2 9 2 16 3 3 3 10 3 17 8 2 16 3 4 3 12 4 0 4 8 9 3 3 3 12 4 1 4 io 4 19 io 3 10 4 O 4 10 5 0 5 lo U 3 17 4 8 4 19 5 10 6 1 12 4 4 4 16 5 8 6 0 6 12 *3 4 1 1 5 4 5 17 6 10 7 3 ‘4 4 18 5 12 6 6 7 0 7 14 l S 5 5 6 0 6 J 5 7 10 8 5 1 6 5 12 6 8 7 4 8 0 8 16 1 7 5 19 ‘ 6 16 7 13 8 10 9 7 18 6 6 7 4 8 2 9 0 9 18 19 6 13 7 12 8 1 1 9 IO Io 9 20 7 P 8 0 9 0 IO 0 1 1 c 21 7 7 8 8 9 9 IO IO 11 1 1 22 7 14 8 1 6 9 18 I I 0 T2 2 23 8 1 9 4 10 7 II 10 12 13 24 8 8 9 12 10 16 12 0 13 4 25 8 15 10 0 ii 5 12 10 13 15 26 9 2 10 8 11 14 13 0 14 6 27 9 9 10 16 12 3 13 IO 14 17 28 9 16 11 4 12 12 *4 0 15 8 29 10 3 11 12 13 1 H IO 15 19 30 10 10 12 0 13 10 15 0 1 6 10 31 10 17 12 8 13 19 15 10 17 1 32 1 1 4 12 16 H 8 16 0 17 12 33 1 1 T I 13 4 14 17 1 6 10 18 3 34 11 18 13 12 i 5 6 * 7 ' 0 18 H 35 12 5 T 4 0 15 15 17 10 19 5 36 T 2 12 1 14. 8 1 6 4. t 8 0 19 16 ~ What any Nu. &c. ioi No 1- I- 41 . 8 Shill Jq Si ail: 1 0 Shil.J 1 1 Shil "TTT 1 . .,) 1 J. s. i. S. 1 1 s. 12 19 14 16 16 x -3 18 10 20 *1 1 38 13 6 15 4 17 2 r 9 0 20 18 39 13 13 15 12 17 U 19 10 21 9 4 ° H 0 1 6 0 18 0 20 0 22 c 4 1 H 7 16 8 18 9 20 10 22 1 1 42 14 M 16 16 18 18 21 0 23 2 43 15 I 17 4 19 >■* 7 21 10 23 13 44 15 8 i 7 12 19 I6 22 0 24 4 4 5 15 15 18 0 20 5 22 10 24 15 46 16 2 18 8 20 H 23 0 25 6 47 16 9 18 1 6 21 3 23 10 25 17 48 16 16 19 4 21 12 24 0 26 8 49 17 3 19 12 22 1 24 10 26 19 50 17 10 20 0 22 10 25 0 27 10 51 17 17 20 8 22 19 25 10 28 1 52 1 8 4 20 16 23 8 26 0 28 12 53 18 11 21 4 23 j 7 26 10 29 3 54 18 18 2 T 12 24 6 27 0 29 14 55 19 5 22 0 24 15 27 10 30 5 56 19 12 22 8 25 4 28 0 3 ° 16 57 19 19 22 16 25 13 28 10 3 i 7 58 20 6 23 4 26 2 29 0 31 18 59 20 13 23 12 26 1 1 29 10 32 9 60 21 0 24 0 27 0 30 0 33 0 70 24 10 28 0 3 i 10 35 0 3 8 10 80 28 0 32 0 36 0 40 0 44 0 90 3 i 10 36 0 40 0 45 0 49 10 1 00 35 0 40 0 45 0 5 ° 0 55 0 2 00 70 0 80 0 90 0 100 0 no 0 3 oo 105 O I2o 0 135 0 15 ° c 1 65 0 4 oo 140 0 160 0 180 0 200 0 220 0 5 oo 175 O 200 ( 0 225 0 250 0 27 5 0 6 oc 210 0240 0 270 0 300 0 330 0 7 oc 245 0*280 0 315 A 35 o 0 385 0 8or 280 O 320 0*360 04,00 0440 0 102 What any Number, &c. No. j i ^Shillingj t. 3 Shill in.J 14Shillin.l15Shillin.j1 6Shill. 1 1 . s. | 1 . s. S 1 . s. ( 1 . s. 1 . s. 2 I 4 1 6 1 8 1 10 1 12 3 I 16 1 1 9 2 2 2 5 2 8 4 2 8 2 2 2 16 3 0 3 4 5 3 0 2 *5 3 10 3 15 4 0 6 3 12 3 8 4 4 4 10 ,4 16 7 4 4 4 1 4 18 5 5 5 12 8 4 1 6 4 H 5 12 6 0 6 8 9 5 8 5 7 6 6 6 *5 7 4 1 0 6 0 6 10 7 0 7 10 8 0 1 1 6 12 7 3 7 H 8 5 8 16 12 7 4 7 16 8 8 9 0 9 12 13 7 16 8 9 9 2 9 J 5 10 8 14 8 8 9 2 9 16 10 10 11 4 15 9 0 9 15 10 10 11 5 12 0 16 9 12 10 8 31 4 12 0 12 16 17 10 4 1 1 1 II 18 12 15 13 12 18 ip 16 11 14 12 12 13 10 *4 8 19 1 1 8 12 7 13 6 *4 5 *5 4 20 12 0 13 0 H 0 15 0 16 0 21 12 12 13 13 I 4 14 15 !5 16 16 22 13 4 14 6 *5 8 16 10 x 7 12 23 13 16 14 19 16 2 17 5 18 8 24 14 8 15 12 16 1 6 18 0 19 4 2 5 *5 0 1 6 5 *7 10 18 20 0 26 x 5 12 16 18 18 4 19 10 20 16 27 16 4 17 11 18 18 20 5 21 12 28 1 6 16 18 4 19 12 21 0 22 8 29 17 8' 18 17 20 6 21 15 23 4 30 18 0 19 10 21 0 22 10 24 0 31 18 12 20 3 2* H 23 5 24 1 6 32 19 4 20 16 22 8 24 0 25 12 33 19 16 21 9 23 2 25 15 26 8 34 20 8 22 2 23 16 25 10 27 4 35 21 0 22 24 10 26 5 28 0 li!L I 21 12 23 8 25 4 i 27 0 28 t6 What anyNum. &c. lot V0T12S hill.|i 3Shill.|i4.Shill.|r?Shill 1 1 6Shill. | 1 . sJ 1. s. 1 . S-l 1 . s. i. s. 37 22 4 24 i \ i 2 5 18 27 15 29 12 38 22 16 24 14 26 12 28 10 30 8 39 23 8 25 7 27 6 29 5 31 4 4 ° 24 0 26 0 28 0 30 0 32 0 41 24 i:t 26 13 28 H 30 !5 32 16 42 25 4. 27 6 29 8 3 i 10 33 12 43 25 16 27 9 30 2 32 5 34 8 44 26 8 28 12 30 16 33 0 35 4 45 27 0 29 5 3 i 10 33 15 36 0 4 6 27 12 .29 18 32 4 34 10 36 16 47 28 4 30 11 32 18 35 5 37 12 48 28 1 6 3 t 4 33 12 36 0 38 8 49 29 8 3 i 17 34 6 36 *5 39 4 5 ° 30 0 32 10 35 0 37 10 40 0 5 i 30 12 33 3 35 14 38 5 40 16 52 3 i 4 33 1 6 36 8 39 0 4 1 12 53 3 i 16 34 9 37 2 39 15 42 8 54 32 8 35 2 37 16 40 10 43 4 55 33 0 35 15 38 10 41 5 44 0 56 33 12 36 8 39 4 4 2 0 44 16 57 34 4 37 1 39 18 42 15 45 12 58 34 16 37 4 40 12 43 10 46 8 59 35 8 38 7 , 4 i 6 44 5 47 8 60 3 6 0 39 0 42 0 45 0 48 0 70 42 0 45 10 49 0 52 10 56 0 80 48 0 52 Q 56 c 60 0 64 0 90 54 0 58 10 63 0 67 Io 72 0 100 60 0 65 O 70 0 75 0 80 °i 200 120 0 130 O 140 0 * 5 ° G s6o 0 300 180 0 i 95 O 210 0 225 0 240 0 400 1 240 0 260 0 280 c 300 O 320 0 50c ' 3 oo 0 325 0 35 ° c 3 75 O 400 0 60c » 360 0 390 0 420 0 4*50 0 48° 0 700 1 420 0 455 0 490 c 525 0 560 0 80c '{480 0 52 0 0 560 0 600 0 640 0 104 THE Explanation and Use Of the foregoing TABLE. T H E Number of Feet, Yards, is to be fought under No. in the firil Left-hand Column of every Page, where you may obferve, that the Num- ber in the Right-hand Page begins where the other ends. The uppermoft Row of Figures is the Price at per Foot, Yard, fee. Example I. At l q. per Foot , what comes 3 z Feet to ? Seek the Price at per Foot on the Top of the Table, viz. 3 Farthings, and ftrait down that Column, againft 32, the Number of Feet, ftands zs. od. oq. that The Explanation, &>c. io? that is two Shillings, as the Letters on the Top of the Columns denote* Example II At Two-pence Farthing per Pound , what comes two hundred Pound to ? Now becaule you cannot find on the Top of the Table Two-pence Farthing at once, you muft take it out at twice, thus I. s. d. 2,00 Pound at 2 d. per Pound is 1134 200 Pound at ' per Pound is o 42 200 Pound at zd * per Pound is 1 17 6 Example III At 1 or. 4 d. I per Tardy what comes 60 Tards to ? P At io 6 The Explanation, £fc. 1 . s. d At 1 OS. per Yard 60 Y. is 30 0 0 Ditto at j^d. per Yard 1 0 0 Ditto at l d. fin Yard o 2 6 60 y. at 1 OS. 4 d. 1 per Y ard is 31 2 6 Example IV. At 1 3/. yd. 1 per Tardy what comes 156 Tards to ? 1. S. d 100 Yards at 13/ per Yard is 65 O 0 ditto at or. yd per yard 2 l8 4 ditto at or. 0 d. 1 per yard 0 4 Ad 56 Yards at I3r 0 d. per yard 36 8 0 ditto at or. yd. per yard 1 12 8 ditto at or. 0 d. * per yard 0 2 4 156 yards yard is at i^.yd.iper ^ 5 6 Example V. At 12 s. per Square , !►« no The Value of, &rV. iH, s. d. I s ' d. s. d. s. d s. d 120 ! 4 6 Is 0 6 0 7 0 8 0 |H. 90 3 4* 3 9 4 6 5 3 6 0 IH. 60 2 3 2 6 3 0 3 6 4 0 |H. 30 1 It 1 3 1 6 1 9 2 0 1 d. q- s. d. ?• s. d. _q| s. d. q- s. d. q. 29 13 0 1 2 2 1 5 17 1 8 1 I 11 oi 28 12 2 1 2 0 1 4 3 1 7 2 I 10 i£ 27 12 oi 1 1 2 1 4 07 1 6 3 t I 9 2 26 11 1 1 0 1 3 2 1 6 oi I 8 3 25 1 1 I 1 0 2 1 3 0 1 5 2 I 8 0 24 10 3 1 0 0 1 2 1 i 1 4 3 I 7 oi 23 10 1 0 11 2 1 1 3 1 4 0 l 6 ii 22 9 3 ! O 1 1 0 1 1 oi 1 3 I 5 2 21 9 Ii 0 10 2 1 0 2 1 2 2 i I 4 3 20 9 O 0 10 0 1 0 0 1 2 0 I 4 0 19 8 2 0 9 2 0 11 ii 1 1 r I 3 oi l8 8 O 0 9 0 0 10 3 1 0 2 I 2 ii *7 7 2| O 8 2 0 10 07 0 11 3 * 1 I 2 l6 7 oi 0 8 0 0 9 2 0 11 07 I 0 3 15 6 3 0 1 7 2 0 9 0 0 10 0 I 0 0 H 6 i ! ( o 7 00 8 1 1 0 9 3 0 11 oi 13 5 3 0 1 6 20 5 7 3 1° 9 0 0 10 ii 12 5 i| 0 6 00 7 07 0 8 ii 0 9 2 II 4 3 i 0 5 2 ° 6 2 1° 7 2i 0 8 3 IO 4 2 ;o 5 0,0 6 0 ;o 7 0 0 8 0 9 4 0 0 4 2 0 1 5 ii 0 1 6 1 0 7 oi S 3 2 *o 4 0 0 4 3 ! 1° 5 2 0 6 ii 7 3 of 0 3 2 0 4 oi 0 4 3 t 0 5 2 6 2 0 3 0 0 3 2 d 4 oi 0 4 3 5 2 I i 0 1 2 2 0 3 0 0 3 2 0 4 0 4 1 3 1° 2 0 0 2 ii 0 2 3 0 3 oi 3 1 1 ‘o 1 1 2 0 1 3 0 2 0 0 2 ii 2 0 3 i 0 1 0 0 1 oi 0 1 ii 0 1 2 1 0 Ii 0 0 2 0 0 2 0 0 2i 0 0 3 The Value of, &c. 1 i 1 iHn 120 I s. d. 1 9 0 s. d. 10 0 1 . s- 1 0 1 . s. 2 0 <>3 h— O £« 4 H. 90 6 9 7 6 0 15 I IO 2 5 fH. 60 4 6 5 0 0 IO I 0 I IO fH. 30 2 3 2 6 0 $ 0 10 0 15 1 | s. d. q. j s. d. s. d. | s. d. s. d- 29 28 27 26 25 24 23 22 21 20 19 18 17 16 iS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 1 o 11 10 9 Of 1 It 2 2 8 2f 7 3 6 si 6 o 5 o 4 oi 3 1 2 1 0 11 jo 9 9 8 7 6 5 4 3 2 1 o It 2 2 2 f 3 3t o o of 1 If 2 2 2f 3 3 f 1 11 1 10 9 8 7 6 5 4 3 2 1 o Oil o IO o 9 o o o o o o o o IO 8 6 4 2 o 10 8 6 4 2 o IO 8 6 4 2 o 10 8 6 4 2 o IO 8 6 4 2 8 8 8 4 o 8 4 o 8 4 o 8 4 o 8 4 o 8 3 4 o 8 4 o 8 4 o 8 o 4 14 14 13 13 12 12 11 II IO IO 9 9 8 6 8 o O O 1 12 The Value of, &c. iHui 120 1 4Poun\>Poun.|6Poun | 7 Pound IsPound |Hi;r 1 s . 1. s. 1. < 5 1. s. 1. s. 9 ° 3 c 3 15 4 II 3 5 . 5 6 0 |Hun 6o 2 c 2 IC • 3 1 3 3 10 4 0 iHun '60 I c 1 5 1 II o| i *5 2 0 [ s. d s. d s d | 1. s d.| 1. s. d. 29 19 4 24 2 1 9 1 13 IO 1 18 8 28 18 8 23 4 1 8 1 12 8 1 17 4 27 18 0 22 6 1 7 1 11 6 x 16 0 26 17 4 21 8 1 6 1 10 4 r 14 8 25 16 8 20 10 £ 5 1 9 2 1 13 4 24 . 16 0 20 0 I 4 1 8 0 1 12 0 23 15 4 19 2 I 3 1 6 10 1 10 8 22 14 8 18 4 I 2 1 5 8 1 9 4 21 14 0 17 6 I 1 1 4 6 180 20 13 4 16 8 I 0 1 3 4 1 6 8 ^9 12 8 15 10 O 19 1 2 2 1 5 4 18 12 0 15 0 O 18 j 1 1 0 1 4 ° 17 11 4 14 2 O T 7 0 19 10 1 2 8 16 10 8 13 4 O 16 0 18 8 1 1 4 15 10 0 12 6 O 15 0 17 6 i 0 0 14 9 4 1 1 8 0 14 0 1 6 4 0 18 8 *3 8 8 10 10 0 13 0 15 2 i 0 17 4 12 8 0 10 0 0 12 0 14 ° 0 16 0 ii 7 4 9 2 0 1 1 c 12 10 0 H 8 10 6 8 8 4 0 10 0 11 8 0 13 4 9 6 0 7 6 0 9 0 *-1 0 6 0 12 0 8 5 4 6 8 , 0 8 0 9 4 0 10 8 7 4 8 5 10 ; 0 7 0 8 2 ° 9 4 6 4 0 5 0 0 6 0 7 0 080 5 3 4 4 2 0 S 0 5 10 068 4 2 8 3 4 0 4 0 4 8 0 S 4 3 2 0 2 6 0 3 0 3 6 040 2 1 4 1 8 0 2 0 2 4 0 28 1 0 8 0 10 0 1 0 1 2 0 1 4 THE m Explanation and Usfi Of the foregoing TABLE, '*• . * . ' : I N the uppermoft Row of Figures you have exhibited the Price of a Hundred, at Six-fcore, or I zo to the Hundred, from is. 6di per Hundred to 8 Pound, And immediately under the Price per Hundred, between the Lines, is the Value of three quarters of a Hun- dred, half a Hundred, and a quarter of a Hundred, at the above Rate per Hun- dred, In the firft Column towards the Left-hand, is to be fought any Number lels than a quarter of a Hundred, and alfo a quarter of a Hundred, half a Hun- dred, and three quarters of a Hundred | and right againft any Number in the other Columns you have the Value thereof, according to the Rate or Price exhibited on the Top, QL Example 1 14 The Explanation, &c. Example I. At 3/. Sd. per Hundred , what comes 16 Foot to ? Seek in the firft Column for 16 Foot, and on the Top of the Table for the Price per Hundred, viz. 3 s. 8 d. and in the Angle of meeting you have 5 d. %q. viz. Five Pence Three Farthings, the Price fought. Proceed in the fame manner for the Solution of any other Queftion. Example II. At ps. 64 . per Hundred , what comes 2,5 Pound to ? Now becaufe you cannot find 9/. 6d. over either of the Columns, which is the Price per Hundred required, in fuch a cafe you muft take it out at twice, as follows. The Explanation, &c. 1 1 9 s. d. q 2, 5 Pound at qx 6 d. per Hun, is 1 1 i Ditto at 5/. 103 2,5 Pound at gs. 6d. perH\m, is i n 3 Example III, If one Hundred of Deals cojl yl. 10 s, what is that per Deal? % s. d 1 Deal at yl. per Hundred is 12 Ditto at 1 ox per Hundred o 1 1 Deal at yl. 10s. per Hundred is 1 3 Example IV. If one Hundred of Deals cojl 5/. ax 6d. what doth Seventy three come to at that Rate, 1. S« d q ’ Hundred or 60 at 5/. pery Hundred is S IO 0 O l Hun. at ax 6 d. per Hun. 0 I 3 O 13 Deals at 5/. per Hun. is a IO IO O 13 Deals at ax 6 d. per H.o 0 3 X 75 Deals at 5 /. ax 6d. per H. 1 2 4 I ll6 The Explanation . Note, By this Hundred Sawyers mealiire their Work, and Deals, Nails, four Foot Lathes, Barrel Hoops, Can- vas Cloth, Herrings, and Eggs are fold * and therefore by this Table they may be valued. N.B. That the l in either of the Co- lumns are half Farthings, TABLE ■ 1 17 TABLE XIV. Shewing the Value of any Parts of a Hundred, at a Hundred and twelve to the Hundred, of any Com- modity fold either by Number, Weight, or Mea- fure, from Two Shillings and Six-pence to Eight Pound per Hundred. nS The Value of, &c. iHn 1 1 2 s. 2 d. 6 s. d. 3 0 S. 3 d. u 6 L . d. [ 0 s. 4 d. 6 |H. 84 1 iof 2 3 2 7 i 2 ; 0 3 4 t |H. 56 1 3 1 6 1 9 * : 0 2 3 28 0 7 f 0 9 0 1 of ] [ 0 1 if 1 d. q- <1. q | d. q- d q. j d q- 27 7 of 8 2f 10 Of 11 2 13 0 26 6 3 f 8 1 9 8 11 of 12 2 25 6 2f 8 0 9 if 10 2f 12 0 24 6 if 7 2f g 0 10 1 11 2 23 6 of 7 1* 8 2f 9 3 11 0 22 5 3 7 0 8 I 9 if 10 2 21 5 2 6 3 7 3 i 9 0 10 Of 20 5 1 6 if 7 2 8 2 9 2f 19 5 0 6 of 7 of 8 of 9 of l8 4 3 5 3 6 3 7 2 * 8 2f 17 4 2 5 1* 6 if 7 1 8 of 1 6 4 1 5 of 6 0 6 3 7 2! 15 4 0 4 3 5 2 f 6 if 7 0| 14 3 3 4 2 5 1 6 0 6 3 13 3 'if 4 oj 4 31 5 2 6 1 12 3 0! 3 3 4 2 5 of 5 3 n 2 3 f 3 ^ 4 °f 4 2f 5 1 10 2 2f 3 of 3 3 4 1 4 3 9 2 If 2 3 i 3 if 3 3 4 1 8 2 of 2 2 3 0 3 if 3 3 7 1 3 2 1 2 2f 3 0 3 if 6 1 2 1 31 2 I 2 2 2 3 f 5 1 1 1 2 1 3 f 2 of 2 if 4 1 0 1 1 1 2 I 2f 1 3 f 3 0 3 0 3 f 1 of I I 1 if 2 0 2 O 2 } 0 3 0 3 0 3 * j 1 0 1 O I 0 1 0 if 0 if The Value of, &c. 119 1 H.|S. d s. d s. d s. d s. d ii 2(5 0 6 0 7 0 8 0 1 9 0 4 HJ 84 3 9 4 ^ 5 3 6 0 6 9 IH r. 56 2 6 0 3 6 4 0 4 6 *H . 28 1 3 ] [ 6 1 9 2 0 2 3 1 d- q ■ 1 s. d. q. |s. d. q s. d. q | K <*• q. 2 / 14 if 1 5 1 i 8 1 1 11 of • 2 2 0 26 13 3 i 1 4 2! 1 72 ; I 10 1 2 1 0 25 13 J f I 4 0 1 6 3 I 9 H 2 0 0 24 12 3 1 3 1 1 1 6 c > I 8 2 I II of 23 12 I 1 2 3 1 5 1 I 7 2I I 10 of 22 II 3 I 2 of 1 42 - I 6 3 I 9 °t 21 II I 1 1 2 1 3 3 I 6 0 I 8 1 20 10 2-4 I 0 3 1 3 0 I S of I 7 1 19 ro of 1 0 p| £ 2 I I 4 1 I 6 1 18 9 2f 1 0 11 2 I 12 I 3 it I 5 1 17 9 0 1 3 10 3 f I 0 3. I 2 2 I 4 if l6 8 2 ( D 10 1 I OO I I 2f I 3 if 15 8 0 < 3 9 2f O II I I O 3 I 2 if H 7 2 < 3 9 0 M O M O I O O I 1 2 13 6 3* 0 8 1 0 9 3 O II of I 0 2 12 6 if O 7 2! 0 90 O IO I O 11 2 u 5 3 * O 7 0 081 0 9 if O 10 2 10 5 1 O 6 if 072 0 8 2 O 9 2f 9 4 3 c ) 5 3 063 0 7 2| 0 8 2 f J 8 4 1 c ) 5 of* o 6 0 < 3 6 3 0 7 2 f 7 3 3 c > 4 2 < 3 5 1 < 3 6 0 ( 3 6 3 6 3 °t c ► 3 3 < 3 4 2 < 3 5 of* 3 5 3 5 2 2f 0 1 3 ofc > 3 3 < D 4 1 < 3 4 3 4 2 of 0 1 2 2 c > 3oc > . 3 *f< 3 3 3 3 I 2 0 1 Si < 3 2 1 c > 2 2 ( 3 2 3f 2 X 0 0 I 1 c ) I 2K ) 1 2 1 3 1 3 f 1 O 2 0 O 2 f C > 0 3 lc ) 0 3 |o 0 3 f The Value of, &c. iii iHun. 1. s 1 . s 8 1 12 0 0 6 00 |Hun. 84 3 15 4 10 iHun. 56 2 10 3 0 iHun. 28 1 5 1 10 1 s- d. q. s. d. q- 27 24 I I 28 1 1 of 26 23 2 2 27 10 I 25 22 3 3 26 9 if 24 21 5 Of 25 8 2 I 23 20 6 if 24 7 2f 22 i 9 7 2| 23 6 3 21 18 9 0 22 6 0 20 r 7 10 1 21 5 of 19 16 11 2 20 4 1 18 16 0 3 19 3 if 17 15 2 of 18 2 2 16 14 3 if 17 1 2f 15 13 4 16 0 3 14 12 6 0 1 5 0 0 1 13 11 7 1 13 11 of 12 10 8 2 12 10 1 11 7 9 3 11 9 if 10 8 11 of lb 8 2 9 8 0 if 9 7 2t 8 7 I 2j 8 6 3 7 6 3 0 7 6 0 6 5 4 1 6 5 of 5 4 5 ^ 5 4 1 4 3 6 3 4 3 if 3 2 8 of 3 2 2 2 1 9 if 2 1 2i 1 0 10 2-f 1 b 3 R 112 The Value of, &c. iH. 1. s. 1. s> 1. s. 1 12 7 0 8 0 9 00 IH. 84 JU 5 5 6 0 6 15 i 56 3 10 4 0 4 10 iH. j 28 1 i 5 2 0 2 5 i s. d 0. s. d. q. 1 s 9 - 27 33 9 0 38 6 3 43 4 2! 26 32 6 0 37 1 2! 4 1 9 1* 25 3 i 3 0 35 8 2 40 2 of 2 i 23 30 0 0 34 3 It 38 6 3 28 9 0 32 10 1 36 11 2 22 27 6 0 3 i 5 0 35 4 1 21 26 3 0 30 0 0 33 9 0 20 25 0 0 28 6 3 32 1 2! 19 23 9 0 27 1 2I 3 ° 6 if l8 22 6 0 25 8 2 28 11 of 17 21 3 0 24 3 if 27 3 3 l 6 20 0 0 22 10 1 25 8 2 15 18 9 0 21 5 of 24 1 1 14 17 6 0 20 0 0 22 6 0 13 16 3 0 18 6 3 20 10 2I 1 2 15 0 0 17 1 2! 19 3 ii II 13 9 0 15 8 2 17 8 of IO 12 6 0 14 3 1 16 0 3 9 11 3 0 12 10 1 H 5 2 8 1 10 0 0 1 1 5 of 12 10 1 7 8 9 0 10 0 0 1 1 3 0 6 7 6 0 8 6 3 9 7 2! 5 6 3 0 7 1 0 JL 2 4 8 0 if 4 5 0 0 5 8 2 6 5 of 3 3 9 0 4 3 If 4 9 3 2 2 6 0 2 10 I 3 2 2 1 1 3 0 1 5 of 1 7 1 THE Explanation and Use ■ ■ of the Foregoing TABLE, B Y This Table may be valued Iron, Lead, Copper, Tin, Wax, Rozin, Pitch, Butter, Cheefe, Silk, Worfted, Thread and Hemp ; and all fuch Gro-^ eery Wares as are fold by the Hundred, of 1 1 2 lb. to the Hundred. Explanation. On the Top of every Column, is to be Sought, the Price at per Hundred, and dire&ly underneath, between the Lines, is the Value of *, and a * of a Hundred, R 2 at 124 The Explanation, &V, at that Rat cper Hundred. The parts lefi* than a Quarter of a Hundred are to be Sought in the Left-hand Column of each Page, and are Figured defending from 27 to 1. The Value of each of thole parts are to be found, right againll: their Num- bers in the Oppofit Columns, right under the Price per Hundred. Example I. At 1 or. per Hundred , what comes 1 jib, to ? Seek on the Top of the Table for ior. the Price per Hundred, and in the fame Column right againft 17/^, in the Left- hand Column ftands is. 6 d. oq. 3 which is one Shilling and Six-pence, no Farthings | of a Farthing. So likewile, by the fame Rule you will find that 6 lb. at 4/. per Hundred comes to 4 s. 3d. iq. I, and the fame of any other. Example The Explanation, iz X O **— ( *Q [2 CO i-l CO <~H co M M O O Os OsOO oo O O Os On oo go r- r- X> £ x> <1 £ • ^ 05 o V 1 ° V Q> 4^, Ci 55 5< c< X> -sa •k^ O 04 0 re, h oo o) On ON CO 00 t" r- o CM r- no M|« X> VO hJn 20 v> *l« rh OC^mcO^OC^Hco Os oco co t~~ t — so so vo comQC'Jm co M O cci N O ** vN r Q> S* Q> V Jp vo vo O co M o CO M cm ~a cr XJ Ol 20 C r 20 Cr CO M o CO W go_ r-_ V o y-> ”*« rj- CM O co CM w cn cl *■« O CM m O co r- r-'O vo o v->v>v-ivort*ri"T{“co ■»^ ■**>4 X> K b c> *N Q> co ^ O co CM M O CO M o SQ SQ SQ SO Vo’toV^r-ihH-rt'Tf-CO'VN CO W o co cm OcoCM*“sOcocm>“< OroM so <5 v~i »o <0 rj- rj- __rh c o co co co CM CM _ CM ~p+ O co CM! oi 6 O co CM m O co CM m p V> V*J 't 't 'f rf- c o c o C O cr> CM C M CM O co d w O co co W H 0 co CM CM m 0~VrT~cM V~i rf- "-j- co CM co co co CM CM M rJ rvi t_* ^ 1-4 1 ° * N **»G s !-<00cOCMCM>-i06OCMCM»"400coC4*-.m rj- -f- r^h co CO CO co co N CMcJ^CMC^nwmh coCMmw OcocoWNMoOco^Nh cocococococMCMcmCMCMCMcM^^wm co O OcococI^whOO OcoCMeM cocMcMcMCMNCMCMCMCM'-**-f»-» O O cri co CM ^ ^ O O O CMc-i-^OGOcocoCMCs* CM CM CM o v% 'cf- co co CM CM s VO O Jo -I j M 6 m“( 5 crT"w oo m o”M O O O ©\ On CO CO l>t^ t-VO VO b-< >-i • CDHcfltlHMHCflNOcO ovOnoooo oo r~ t^cjovc * V»> *dh Vj M CO CsJ b-« CO N W O CTi H r- r-vc vo vo , o>o’o l o + + co CNj h CO W W O w rt i-t G N© NO NO ’O *0 V© V") r+- '•+• do CO CN -< o CT. -„ cr, M O «> >M T3 "c^ •M XJ -ijPt "dr o xf. cr o X M cr Os X — "o’ On X Fi« Cr po X i Cr bo i X o , |l> X! . "o’ N O m o On CvJ M M H CSI On CO r- fM M M cV" CO o'" oo r»vo so W M MJ co o m cvi r'VO vo *o rf“ d m h ^ po 5 'O v«* ^}- cr> co M M M M M4 Mt co O C* Cl O w on *n ^ M m M M »M Mi M M (M CO O 01 O M CO 0~CJ ^-rf-COCOC^ M M O O H CO H O M M H ^ co M (NjMi-* o On On OC^OC^coMcoi-irr»M co N M h O O On OnOO OO VO x ~cr " o “cr -d “o 1 ’ X? cr xf mC'JmcoQC'JOcoOOIO m m o O On On GO OO r> I > ><1 o 3 03 H M o M CO M O N O N O N M M M O Q\ On ONOO OO t- t-'O 'O NONOcomooimONOcom O O on Onoo oo r- r- r-vo vo K 5 S <5 * ^ ' nS <-£b •4^fc S. C? § "S^IS iT^ Q> V5 52 52 h U4 O Pm Q> N O co w O h w C] ON m co O O, Os OO OO OO r-t-VQvOVQ V> r f- COM o N M CO N M CO OJ, O CO M O N OOOOCO t^-lfc'NOVOVO *0 >o V«| 4- 4- ^ CO S> g £ <-> lx ■*-4 fed r\^ SO ^ S ^ Q> ^ CU I 4-? C5 O I” 1 ^ P vO o Ch o 00 ' N cr T) cr x? Or x or co w O co C *4 i-»co(M«Oc 4 mOO» f- r— r-vQ vp vp v-> vo rf-rf-jr?- co OC'JmocoMmOcomOcoc^m t—VQ VO VQ Vn V> V*) Ia rf - tJ* co co co O co c^ m o co M m O cn~ci 5 O crT NQ V *> Vn ^^t’f’ t^COCOCOCO^ hOco^hOOcoo| h Oco i M^ * 4 - Tf- rf” ^ co co coco d 1 N C3 CO Cj CO M § ^ rs St N N O co c3 c\i m M o CO OS (N| |r,' o 7 -oj u ~c W— i C7 -f- T3 Jm4«. C— — ■ -i|« 1 ^ ■TO -r-t O' OO t: cp 04 ■n cr 04 “T5 o O M o On CO r- no r c3 CJ ^ M H O f-t W H cri O H On co t^-vo Vo vo fc— < M W* M M l-t C M C4 CO o M 00 IP' NO V*> V^ r3- co *■* »-4 M M l-i j^| M "o' M M CO O M CO ~o t ‘ NO V-> rf- rf- co 04 M •-I M t-( or *“■ — hr o « OJ \z |l o c m c4 'O '‘O -r i- cr, « * p, £ rf- on co c^ sh '-' O o on, buQ ST • P* , ^ 'S c r> biD a H-V CG ft \ •1-4 hi 5^ Q> • H IS CO ^s: o of 0. K ?p. ^5 5: H O H co *-< M O N m h' w O Pf” CO 04 O] w M o C\ On 00 00 M M t-J HT hr -j o co hr co i*r co O 04 O 04 O cooj m m c O on onoc od ir~ r~- »■* M hr hr M O 03 "ct’o’crp M 6 04 O of 'o ^ ^ o O On On CO GO ip- £~- VO sp CC^ O 03 O M w co h cn h co c4 Q M O O On On oo cc ^ P- ao nq Vn V) Q3> «s $ > <§ - ^ 6 o 40 cohrcoe 40 o 4 McowOo 40 O On On 00 OO |P~- IP~ IP- NO VO V-> V> V»> O cl W CO 04 O CO hT O 04 H CO 5M o or; On c» go r-jt— r~-NO no no v-> v-> tJ- *cf- rf- co ~0 03 m O 01 ^ O 03 *-< p 03 hr Q 03 w oo r- r ft 5 <5 1 ° * P, K| c o 3 oo 04 Jp- NO NO JO v-> v~> Vo r^f- tJ- rj- co r O NhOw^hco^ *- O to M h co 03 in O E— \Q NQ NQ V*> Vn C'n «-$- , r?~ cr, rr, ri M 03 04 04 O oo CNj G oo O* O CO 04 *-• G co 04 i-r O CO 03 <^N I * P» a v> U Vn Vn ^O pj~ rfr» rf * rj - c o QO eoeo040404Qlhr*~> O 03 04 M 0 ~oo~fti M w C co^cM^OeoMt-iMd' No r$- rf- co co co or. co 0! Qj Q3 03 03 hr m >-r hr *■* 9 co 03 04 m O O co 03 c* i-t O O **iH oo •*o ro rr- r o OO Ol oo CnJ CnI OJ 05 CT; M CN o n O COi IM u_ii^^iv-ttHI-tO O Oj w|« • - O o «!" w ~||« Ml« M|f 4 «!« «|m M|N -|p, OW Cn On OO' CO IS t-NO NO Vo rj- rj- OO CO OJ M per Foot Crtbirre'zl 7\Ac'rz/ss r~e?- THE *33 Explanation and Use O F Table XVI, XVII, XVIII, XIX. T HO’ thefe Tables were defigned on- ly for valuing of Timber, yet they may as well be applied to the valuing of Stone, as I {hall make appear by the fol- lowing Examples. The Scantling of the Timber or Stone to be valued, muft be fought in the firft Column, and on the top of each of the other, always obforving to feek the lar- geft Scantling in the Side of the Table, and the {mailed on the Top ; and in the Angle of Meeting, you have the value of one Foot in length thereof, according to the Price per Foot Cabical, that the Table is of, in which you feek it in. Example I. At 1 5 Pence per Foot Cubical , what is the value of a Piece of Timber , or Stone , whoje to- 1 34 The Explanation, 6 s c* < vohofe Scantling or Sides are 9 Inches by 7 Inches ? ByTable XVI feek the given Scantlings viz. 9 on the Side of the Table and 7 on the Top, and in the Angle of Meeting, you will find 6 2 which is 6 Pence 2 Farthings the Price fought. For the firft Figure is Pence, and the other Farthings in all the Tables. Example II. At 21 Pence per Foot , Table XVIII. what's the value of a Piece of Timber or Stone , whofe Scantling is 8 l by 6 \ ? Seek the Scantling as above directed, and in the Angle of Meeting, you will find 8 d. oq. the Price fought, and the fame of any other Scantling which is to be found in the Tables at the Prices they are calculated to. Example The Explanation, &c. 139 Example III. What is the value of a Piece of Stuff, vohofe Scantling is 15 by 14 at the Rate of 2 s. per Foot Cubical , Table XIX. Now becaufe either of the given Di- mensions is larger than any to be found in the Tables, therefore in fuch a Cafe, to know the value thereof, you rauft leek the Price to half each of the Scantlings, and four Times that Price is the Price fought. As in the given Example, the half of the two given Scantlings is 7 * by 7, and the Price thereof by the XIX Table, is Sd. $q. and 4 Times 8 d. $q, is zs. nd. o q. the Price or Value of one Foot in length of a Piece of Timber or Stone, whole Scantling is 1 5 by 14, at z s per Foot Cubical, and the like of any other of the lame Nature. Example IV. ydt 3 s. 9 d. per Foot Cubical , vchat is the value of one Foot in length of a Piece of Tim- 13 6 The Explanation & Sope or Herrings. ^ Firkins j 1 Kilderkin. 1 l Bar. or 48 Gall, j 1 Hoglhead. In a Barrel of Ale are 9024 Solid Inches. 256 Points. 128 Quarts. 64 Pottles. 32 Gallons. 4 Firkins. 2 Kilderkins. The Beer and Ale Gallons are the fame, viz. 282 Solid Inches, but the Barrel of Beer contains 1128 Cubical In- ches more than the Barrel of Ale that is, 4 Gallons. Table * 4 ? Table XXXII. OfDry- Meafure. By this are meafured all Sorts of Grain $ Salty Sea-Cole , &c. Pints. 2 | Quarts . 4 | 2 | Pottles. 8 [ 4 j 2 | Gallons. 1 6 | 8 1 4 \ 2 | Pecks. 64 1 32 | l6 8 1 4 | Bufhels. 512 1 256 | 128 64 j 32 | 8 | | Quarters. 2560 | 1280 | 646 320 j l60 | 40 | 5 1 Weys. 5120 j 2560 | 1280 | 640 | 320 | 80 j 10 1 2 | La& Note, There are 4 Pecks in a Land- Buihel, and 5 in a Water-BulheL Oblerve alio that when Salt and Sea-* Coals are meafured by the Corn-'Mealure, they are heaped, or otherwife there are 5 ftriked Pecks to the Buihel ; and 36 Bulhels is a Chaldron of Coales, there being 2 1 Chaldrons to the Score, in the River of Thames . A Gallon contains 268^ cubical Inches, and a Buihel of Com 2150* cubical Inches. Note, A Buihel ought to be 1 8* In- ches wide, and 8 Inches deep, as by A& of Parliament in 1697. U Some 146 Some make 6 Quarters of Meal a Weight, and one Weight 3 Quarters, a Laft. Table XXXIII. Of Time. Seconds. 60 | Minutes. 3600 6g j Hours. 86400 1 I 1440 ! M | Days. 604800 j 10080 | 168 | 7 | Weeks. 1419100 1 1 4°r~o | 67 z | z8 J 4 | Months. 31557600 j 515960 [ 8766 j 1 1 '5 3 hours | Yean A Century is 100 Years • the Roman In- diffiion, a Revolution of 15 Years. Table XXXIV. Of the Mo tion of the heavenly Bodies. Seconds. 60 | | Minute or Miles. 36OO | 60 ) Degree or 60 ] 108000 | 1800 j 30 | Sign. H96OOO | 1 1600 | 360 | 11 i A Table XXV- Of Dozens. f 1728 Pieces of Things. In a great Grofs < 144 Dozens. are C 1 2 fmall Grols. Tann’d Calf- Skins are fold 13 to the dozen Table *47 Table XXXVI. Of Filh. xzo Of Ling , Cod , or Haber dine, to the ioo, viz. izol f ioo 1 2oo> accounted <1000, or a Barril, 10000 j £A Laft or 12 Barril. Table XXXVII. Of Paper and Parchment. i Bail is — — — — 5 Bundles. 1 Bundle ■ — - — ■. . ... . . ■ — 2 Reams. 1 Ream is — 20 Quires. 1 Quire is 24 or z 5 Sheets. 1 Role of Parchments is 5 Dozen, and 1 Dozen is — — - — 1 z Skins. Table XXXVIII. Of Wood. Block-Wood , being great Logs, are fold by the Chord, and lmall by the Stack. A Chord of Wood is 8 foot long, 4 foot over, and 4 foot deep 5 being 128 Cubical feet. A Stack of Wood is 1 z foot long, 3 foot over, and 3 foot deep * being 108 Cubical feet, U 2 Table 148 Table XXXIX. Of fuch Meafure as are ufed in Land, Building &c. A Square Foot, 144 Square Inches. A Cubical Foot, 172.8 Cubical Inches, A Square Yard, 9 Square Feet. A Cubical Yard, 27 Cubical Feet, A Square, 100 Square Feet, A Geometrical Pace, 5 Foot, p j A Geometrical Perch 1 o Feet, rieneth A Statute Pole or Perch, 16 1 Feet, j b A Square Statute Perch, 272 ’ Square Feet. A Wood-land pole or Perch, x 8 Foot in Length. A Square Wood-land pole 234 Squ, Feet A Foreft pole or Perch, 21 Foot in Leng. 4 Statute Perches, 1 Chain Length. 10 Chains Length, A Furlong or Acre’s Length. 4 Chains Length, an Acre’s breadth. 40 Square Perches, a Rod or \ of an Acre, 4 Rods or 160 Perches, one Acre. A hide of Land, 100 Acres. A Faggot of Steel 120 lb. A Burthen of Gad Steel, 1 80 lb. A '49 A Sack of Coals 3 Bufhels. An Hundred of Scots Coals , 1 1 2 lb. A Load of Squared Timber, 50 Feet. A Load of Rough Timber 40 Feet. A Load of Hay, 36 Trades, at 56 Pound the Trufs; or 4 Stone at 14 pound the Stone, but new Hay ought to be 60 pound the Trufs. 500 of Bricks a Load, and 1000 plain Tiles the fame. Lathes are five fcore to the Bundle, either 5 Foots or 4 foot in Colchejler , but in fome other places, 4 foot Lathes have 6 fcore to the Bundle. Deals and Nails are 120 to the Hun- dred. A Ton of Iron is 2240 pound Weight. A Fodder of Lead is 1 9 Hun- dred and a half, or 2184 pound. One Hundred of Lime is 3 5 Bufhels, a load of Lime is 3 2 Bufhels, and a Load of Sand is 36 Bufhels. A Stone of Glafs is 5 pound ; a feam of Glafs is 24 Stone or 1 20 lb, 5 Foot of Glafs makes a Table, and 45 Tables a Cafe, but of Ncwcajlle , Normandy Glafs 25 Tables is a Cafe. Glafs-bottles 21 to the dozen, 12 dozen makes a grofs, which is 251. Hoops 1^0 • Hoops are fold by the Bundle, viz. Pipe Hoops. 70 -n Hogshead. oo ( . -011 t > -i 17 -u 1* > in a Bundle. Barra or Kilderkin. 120 ( Firkin. 180 J A Laft of Pitch , Tar , or Ajhes is 14 Barrils. A Laft of Oftnonds or Iron Stone, is 4000 Weight. A Stone of Wire 1 o Pound. Table XL. A Perpetual Almanack. S Hewing the day of the Month, Do- minical Letter, Golden Number Epa& and New-Moon. A Table XL A Perpetual Almanack. Sundays. Years. I! 2 \ 3| 4! Si 6 I 7 E |D|C |B |A |G jF 8 i q1io|ii|i2|i^|i4 i 735 i 136137133 39 l I5r|i6! 1 7I i8J 1 9)20 21 40 14 1 142143 [_|44|4J 22|23l24j2 5 .| 26 i 27 | 2 S 219! 3 °j 3 1 1 W. Salmon. '46 47 ( ' I48I49I50I51 ‘ 52 l 53 l 54 ’ 55 l I56 JAN. A |B jC |D|E |F |G OCT. 57 |j 8 | 59 l !6o| 6 il 62 MAY B |C |D IE |F |G/A MAY- 6 3 | I64I65166I67I AUG. " C (DIE |F |G jA iB AUG. 63 169 \ 70! 71 ( I72I73 Fe. No. D|E |F |G |A |B |C MAR. 74(75' 176177178I79 JUN. E IF |G |A |B |C (D JUN |8o|8i|8£|83| (84 SEP. F |G )A IB |G |D IE DEC. 85l86|87| |88|89l90 APR. G |A |B |C |D[E |F JUL. 9i| | 92 i 93 < 94 l 95 S The Golden Number, Epa6t and new Moon. The Year of our Lord. G.Num EPACT M cr> C ce > Feb. 28 1— 1 CO 5 -* cS s O or sZ Q. O 1735 1754 • 7 17 13 1 1 13 I 1 1 1 9 i 8 7 5 5 3 ; 3 1736 1755 8 28 2 - 3 l 0 1.31 29 29 27 26 25 23 23 21 i 21 1737 1756 9 9 10 ✓ 18 20 10 / 18 17,16 £ 5 13 12 In 10 1738 1757 10 20 3 .7 9 8 7 6; 5 4 3 2 - 3 1 i 3 o 29 1 7 39 1758 11 1 28 2727 26 26 2424 22 21 20 19 49 174° 1759 12 12 17 1516 15 *5 13 13 11 10 IO 8| i 8 1741 1760 13 ■ 2 $ 6 5 1 6 5 4 4 2 2 r.30 29 28 2727 1742 I76l H 4 25 23 23 23 2121 19 18 1 8 1 6| 1 6 1743 1762 15 15 13 H 12 12 IO 9 8 6 6 4 | 4 1744 1763 16 26 3 2 3 2 1.3 c 28 28 27 25 14 23 i 2 3 '745 ^764 i 7 ! 7 22 20 22 21 20 : 1817T6 14 14 12 12 1746 1765 i8 i r 8 1 1 io ,n i 10 9 8 7 6 4 3 2 I ’ 3 l *747 I76619 29 3 o 28 29 .28 27 26 2524 22 21 ! 20 20 1748 1767 i 1 1 18 17 I18 17 16 I 5 I 5 ;I 3 12 11 | ? 9 ' '749 1768 0 22 7 6 7 6 S 4 4 2 1.3c 28 : 28 28 1750 1769 3 n. 6 26 25 26 . 25 24 23 22 21 20 19 1 48(18 1751 1770 4 i 4 16 14 15 13 13 12 loi 9 8 7 6! 6 1752 1771 5 23 5 3 5 3 2.31 30 2 9 28 26 26 ; 25:25 1753 ' 1772 6 6*23 22 24_ : 22 .21 20 19(17 16 15 1 ; i 4 Ji 4 Tide I?* THE EXPLANATION OF THE Perpetual Almanack. U Nder Tears , on the Top of the Ta- ble, i$ to be fought the domini- cal Letter 5 by the help of which the Day of the Month is found under Sun- days, by feeking the fame dominical Letter againft the Month as is under the date of the Year, and right over it you have all the Sundays in that Month ; that is, the Davs of the Month on which the Sundays fall on. So likewife under golden Number, EpaSs, and the twelve Months, you have the goldenN umber ,Epa<9: and New Moon, right againft the Year of our Lord in the two firft Columns towards the left-hand. Example Example I. In the Tear 1 736, what Days of the Month do the Sundays In Auguft fall on* Seek under Tears for 1736, and right over it you have the dominical Letters, D, C, and here you muft oblerve that every leap Year hath 2 dominical Letters., and that every blank Space denotes the Leap Year, and the Letters over the blank Space is uled only for January and February , and the other all the reft of the Year. To know what Days of the Month in Mugufl the Sundays are of, feek Augufi under Sundays, and right againft it, the dominical Letter C, and right over the dominical Letter C, you have j, 8, 15, 11, 2,9, the Days of the Month required. The fame of any other. Example II. What is the golden Number and Epaffif and what Day of the month is the new Moon on in Auguft 1736. In the left hand Columns, leek the Year under the Year of our Lord, and X right v *94 right again ft it under G, Number is 8, and under Epadt is 28, and under Au~ gu(i is 25, fo that the Golden Number is 8, the Epadt is 28, and the Day of the Month that the new Moon is on in Au- guft 7 is 25 as required. The fame of any other. How to fnd the Dominical Letter , Gol- den Number and Epabl, by Arithmetick ; and thereby make the ufe oj this Almanack perpetual. To find the Dominical Letter. Add to the Year its fourth and 4, di- vide the Produdt by 7, and fubftradt what remains from 7, the remainder is the Dominical Letter, accounting A 1, B2, C 3, D 4, E 5, F 6, G 7. To find the Golden Number. To the Year of our Lord add 1, and divide the Produdt by 1 9, the Remainder is the Golden Number ; which when found feek it in the Table, and right againft it underEpadt you have the Epadt j Iff j fo that you fee that by knowing the Golden Number you with Eafe find the j Epa£t, and by having of either you may always find the New Moons. | To Jind the Epaffl by Figures . j Multiply the Prime, or golden Num- | her by 1 1, and divide the Product by 30, l j and the Remainder is the Epact, I tl 1 FINIS. ) A Catalogue of BOOKS juft publifhed^ Printed for J. Hodges, at the Looking - Glajs on London-Bridge. H B Country Builder $ Eftimator ; or, the Architect's Companion : For eftimating of New Buildings or repairing of Old j in a concife eafy Method, entirely new, and of Ufe to Gen- tlemen qr their Stewards, Matter-Workmen, Ar- tificers, or anyPerfon that undertakes or lets out ,Wprl$. Wherein the feveral Artificers Works concerned in Building, and every Article belong- ing to each of them, are fully, diftindtly and fe- parately confidered, not only of the Workman - fhip, but of the Materials alfo, and what Quan- tity of Materials are required to the Performance thereof ; with the manner of taking Dimenfions, Meafuring and Valuing the fame. Vo which is added, feveral new Tables never before publifhed, for the valuing of Oak, or any other Timber that’s fquared and cut to any Scantling or Size fit for Building. By William Salmon, jun. Carpenter, of Cole heft er, who will undertake any Work at the Prices therein exhibited. II. 5 the 12th Edition corrected and enlarged, with a new Model of the Cathedral of St. Paul, London, curioufty engraved , as it is now rebuilt , T HE firft Book of Architecture , by Andrea Palladio f Tranfiated out of the Italian ; with an Appendix touching Doors and Window's, by' Pr. Lemeut , Architect to the Fre?ich King. Tranfiated into Englijh by Godf rey Richards. The " j whole whole illuftrated with above Seventy Copper Cut®, Alfo Rules and Demonftrations, with feveral De- figns for the Framing of any manner of Roofs ? either above Pitch, or under Pitch, whether Square or Bevel ; never before publiffied : By that ingenious Architect, Mr .William Pope, of London . With Defigns of Floors of Variety of final 1 Pieces of Wood inlaid, lately made in the Palace of Somerfei-houfe ; a Curiofity never praCtifed before in England . Price bound 41. 1. III. The \\th Edition corrected , with Additions , of C* I R Samuel Moreland's Fade Mecum : . or, the O Neceffary Pocket Companion : Being a Book of Accompts ready caft up, whereby the greateft Stranger to Arithmetick may find the Price of any Commodity, from one Farthing to twenty Shillings. With feveral Tables of Intereft, and Tables for calling up Nobles, Marks, and Guineas; with feveral other Things highly neceffary for all Merchants, Tradefmen and others. Price bound 2 s. IV. The Fourth Edition , being the heft Spelling- Book extant , recommended by 26 Eminent School- Mafters ( under their Hands) as the moft practi- cal Performance of this Kind } A '"N Introduction to Spelling and Pleading Eng- UJh : Being the moft Plain and Eafy Method of Teaching Young Children to Read. Contain- ing, Firft, Tables of Monofyllables, adapted to the Capacity of the youngeft Children; leading them on gradually, from the eaiieft to the more diffi- cult, and fo to the hardeft Words. II. Fables of Dyffyllables, after the fame Manner. III. Tables of Tryffyllables, with their proper Diviiions and Accents. To which are added, One Hundred and Eighty Leffons in Words of One, Two, and ' k " 1 ■ 1 rri E 1 liree Three Syllables, ranged in proper Order, byway of Praxis on the feveral Tables, and a fhort Cate- chetical Difcourfe, explaining the Rules for Spel- ling, Pointing, &c y By William Markham , School- mafter. Price bound is. Where is likewife to be had by the fame Author , V. H E Youth’s A in ft ant in the Art of Nam - JL bering: Being an Eafy Method of Arith- metick in all its Parts, Vulgar and Decimal. Wherein the young Scholar is inftruCted in all the Rules contained in that moft valuable Science, in a very fuccinCt, but plain and familiar Manner j illuftrated with various Examples, drawn up and defign’d for the Ufe of Schools, with the Ap- probation of many School-mafters, and Perfons skill’d in Numbers. Price flitch' d 6 d. VI. T H E Syren: Containing a Collection of Jt 420 of the moft Celebrated Englifh Songs, in a neat Pocket Volume. Being the beft and cheapeft Book of this Kind extant. Price bound 2 s. VIL j The Second Edition , corrected and amended , with large Additions , Price 3 s. A Compleat Melody: or the Harmony of Sion. In Three Parts. Containing, I. A new com- pleat Introduction to all the true Grounds of Mu- lick, both Vocal and Inftrumental, by Way of Dialogue, in a new and eafy Method. With an Explanation of all the ufual Terms ufed in Mu- fick, collected from the Greek , Latin, French , Italian , &c. in Ten Chapters. II. The Pfalms of David new tun’d. Which Mufick expreifes the true Senfe and Sound of the Words more than any ever yet publifh’d. With an Alphabetical Table of all the Tunes, and what Pfalms are proper to each Tune* Alfo a Table of Pfalms fuited to the Feafts and Fails of the Church of England , and other other Varieties of Life. With fourteen Gloria Patrias , fuited to the true Meafure of every Pfalm in the Book. III. A new and feledt Num- ber of divine Hymns and eafy Anthems on feverai Occafions ; with feverai Canons of two, three, and four Parts in one. The whole is compos'd in two, three, and four mufical Parts, according to themoft authentick Rules, for Voice or Organ. By William Panfur , of Ewell , (near Epfom) in the County of Surry . Phrd all the changing Scenes of Life i in Prouble and in Joy , Phe Praifes of my God Jhall fill my Heart and Pongue employ . Pf. xxxiv. x, VIII. Y H E Melody of the Heart: or, the PfaU mifi J % Pocket Companion. In two Parts. Containing, x. The New Verfion of Pfalms new tun'd ; with Mufick more proper to the Senfe of the Words than any extant. With an Alphabe- tical Table of all the Tunes, and what Pfalms are proper to each Tune, with Gloria P atria fuited to the Meafures of all the Pfalms in the Book. 2 . New and feled: Hymns, and eafy An- thems on feverai Occafions, &c. The whole is compofed in two and three mufical Parts, for either Voice or Organ. By Will. Panfur . Pr. is. 6 d. IX. HP H E Carpenters Rule made eafy, or, the ^ the Art of meafuring Supeihcies and Solids : Alfo a fecond Way, being the Ground- work of meafuring Timber, Stone, Board, Glafs, (Sc. with a Table of Accompts much enlarged ; performing Multiplication, Divifion, the Golden Rule, and Rule Reverfe, by Infpe&ion, being of excellent Ufe for Carpenters, Joyners, Ma foils, Glafiers, Painters, Sawyers, &c. by John Darling $ and and alfo a Treatife of practical Gauging by Heber Lands . The Eighth Edition, carefully revifed and corrected ; with an Addition of the Ufe of the Sliding Rule, and of Gunter' s Line with Compaffesj in meafuring Plank and Timber; which renders this Book of more general Ufe than heretofore. By Thomas Hafelden , Teacher of the Mathematicks. Price bound 2 s. X. JDRISCAIN' s Glory , or, Ship Building un- veiled, being a general Director for build- ing and compleating the faid Machines, by William Sutherland . The fecond Edition, Folio* P rice 1 $s. XI . fXRpheus Rritannicus ; a Collection of the ^ choiceft Songs for one two and three Voices. Compofed by Mr. Henry Parcel. Toge- ther with fuch Symphonies for Violins or Flutes as were by him defign’d for any of them, and a thorough Bafs to each Song ; figured for the Or- gan, Harplicord, or Theorbo Lute. Part II. Folio* price \2s. XII. TPHE infiruSior , or Young Mans bejl Com- -®- panion ; containing Spelling, Reading, Writing, and Arithmetick, in an eafier Way than any yet pubiifhed; and how to qualify any Man for Bufinefs without the Help of a Mailer. By George Fijher , Accomptant. With Cuts, and a Frontifpiece, curioufly engraved. Pr. bound 2s. 6 d. XIII. .HP H E New Art of War ; containing the ** Dudes of the Officers of Horfe and Foot, the Duties of a Soldier in general, from a private Centinel to a chief Commander. With an Abridgement of the Articles of War now in force, &c. Price 2s t 6d 9 ^^^10 -»yjj' CENTER IjSRARV