*fev* "U-d* 9* .!^L'. *> V^ ^* VV * AT *5f> A ^ ^HfiJg'." .A-*, "o?mM?« <,*«?, <. '■> ^o* T* " ^ ^ w *. ^0» J A "of I » 1 - * « A.* C« "•' ^ K * «? ^ • ^CSBR* » A, 1 V ^ ^* 'W • ■ "^^ v .'^K^'. ^^ ••JHR: ^^ v .« , ^R^": ^" ; ^!K: *^ v -*^»tt "^^ .0^ %. ♦OCT* A -C "-^.»*" ^0 ^..".f..% & ^ -^TvT* .A <», *bf q,. *..-•' a -.» *> Fs£kr.< jf>^* ^ * V »!.*•* ^ To ' .«* A <^ '» • » ' * — ■» *^. 5^-, ;• > v ^ -.V^VK/ i? V. -.jaR^/ *' » A» V« ^ *•-•* .* •fev* #++ ^0* *-oV" ^°^ **. A* .^ v >:••• 'cv 4V 4.^ ."•, *H* "* / ^ V ^ •-»!?/ . ♦ A ^«v « A» "Ve, V- *• te. -^ .>v»:- >. .^ •! •*■ A ' ^j^m^^. '^. rt < o'ffl^^iar- "bv* r^Qt 4* • l V* * ^ £^ S., ^ * 'y%M&: jP-n*. *-^^° ^°^ • -N «.• * :. ° 4^ .*', 'of * S .. <^ '• •1 o ^* **, iP^ .°^t^Ll* « ^0* .' -►♦ t°* ^% V e v^ T, v v*-*'y °°*'---v . v*--v %*>-' .V-* +*** J, * ^iV> y • in cm" ) Anharmonicity correction (uj x ) Rotational-vibrational interaction constant (a) Symmetry number (a) b) Diatomic example, CuF(g); CuF(g) Diatomic 6000 1 63.54 18.9984 1.743 621.89 3.941 0.004586 1 8 (3) The linear polyatomic input file: a) In general, Name Linear polyatomic Highest temperature to be calculated Number of noninterval temperatures, (Tp) T Pi Number of energy levels Electronic energy of level i (e-) Degeneracy of level i (g ± ) Molecular weight Number of atoms Fundamental frequency of level i (u>. ), enter degenerate frequencies as many times as the degeneracy of the modes , see examples below. Moment of inertia (I) Rotational vibrational interaction constant (a) Symmetry number (a) b) Linear polyatomic example, CuF 2 (g): CuF2(g) Linear Polyatomic 2000 3 2 9000 4 18000 4 101.5368 3 608 205 205 768 112.4008735 (see below for units) 2 (4) The nonlinear polyatomic input file: a) In general, The same as the linear case except the second line should read nonlinear polyatomic and I is the product of the three principal moments of inertia I = I.Iglp. b) The nonlinear polyatomic example Zrl^g): ZrI4(g) Nonlinear polyatomic 2000. 2 155.3 623.9 1 1 598.66 5 146. 45. 45. 237. 237. 237. 58. 58. 58. 65718000 (see below for units) 12 10 The FORTRAN-IV Plus compiler used with this program limits calculations to numbers between ±10 and ±10 . Therefore, values for the moment of inertia for linear and nonlinear polyatomics should be entered as follows: (1) Linear: values of I in units of g-cm should be multiplied by (N A /10 -16 ) before entering in the data input file. CuF 2 (g), I = 18.7 x 10 g-cm . For the input file this number would be changed to (18.7 x 10 -39 )(N A /10 -16 ) = 112. A. (2) Polyatomic: Values for I.IgI~, which would have an exponent of 10~ 117 [from (10~ 39 ) 3 ], should be entered without this exponent. For example, Zrl^Cg), I A I B Ic = 65718000 x 10" 117 . This should be entered as just 65718000. An example of the output file for the Zrl^Cg) example is given after the program listing. The program was checked by running all the examples shown and comparing the output with the accepted JANAF (1) results. Agreement between the computer output and the JANAF values was exact. 11 PROGRAM LISTING C C A PROGRAM TO CALCULATE HEAT CAPACITY, ENTHALPY, AND C ENTROPY FROM SPECTROSCOPIC DATA C Real*8 HT,e(100),g(100),w(100) ,xe(100) ,wexe(100) ,MW,MW1,MW2 Real*8 re,a,sig,Be,BO,y,x,c,R,pi,k,h,kT,lny Real*8 c trans, htrans,s trans, crot,hrot,srot,cvlb,hvib,svib Real*8 celec , helec , selec , cr298 ,hr298 , sr298 ,ht298 , ct298 , st298 Real*8 cv298,hv298,sv298,ce298,he298,se298 Real*8 qO , ql , q2 ,MI , Rprime , Na , hout Real*8 del,hcor,scor,eu,htotal,h298,stotal,s298,eul,T(100) ,gam Real*8 Td,ccor,ctotal,c298,u,w0(100) Byte lgas,gasnam(30) c c Initialize c do 500 1=1,100 e(i)=0.0 T(i)=0.0 g(i)=0.0 w(i)=0.0 wO(i)=0.0 xe(i)=0.0 500 wexe(i)=0.0 Na=6.02204531e23 Rprime =82. 056826 k=1.38066244e-16 h=6.62617636e-27 c=2.9979245812el0 R=l. 9871917 pi=3. 141592654 c c conversational input of constants c open( unit=l, name -'dll: gas.dat* ,type='new' .dispose"' save' ) write(5,130) 130 format(/,lx, 'Enter name of the input file') read(5,131)(gasnam(i),i=5,30) 131 format (30A1) type *, 'Output is in file gas.dat' gasnam(30)=O gasnam(l)='S' gasnam(2)='Y* gasnam(3)='0' gasnam(4)=' : ' open(unit=2,name=gasnam, type-' old' .dispose-'save' ) read(2,131)(gasnam(i),i=l,20) write(l,132)(gasnam(i),i=l,20) 132 format (lx,20Al,/) 12 read(2,101)igas 101 format(lAl) if(igas.eq.'M' .or.igas.eq. 'm' )go to 2 if(igas.eq.'D' .or.igas.eq. 'd' )go to 3 if (Igas.eq. 'L' .or.igas.eq. *1' )go to 4 if (igas.eq. 'N' .or.igas.eq. 'n')go to 5 type *,' INVALID GAS TYPE!' stop 2 type * , ' monatomic gas * iflag=7 go to 6 3 type *,' diatomic gas' iflag=8 go to 6 4 type *,' linear polyatomic gas* iflag=9 go to 6 5 type *,' non-linear polyatomic gas' iflag=9 go to 6 6 read(2,*)HT iHT=HT ntemp=iHT/100 T(l)=298.15 do 43 i=l,ntemp 43 T(i+l)=100.*i c c Read tranisition temperatures c read(2,*)nTp if(nTp.eq.0)go to 41 do 42 i-l,nTp 42 read(2,*)T(ntemp+l+i) c c Arrange the temperatures in ascending order c do 44 j=2,ntemp+nTp do 44 i»2,ntemp+nTp if(T(i).lt.T(i+l))go to 44 Ttemp=-htrans hr298=-hroc he298~-*-hel^ hv298=-hvib hc298=-hcor h298=-htotal cr298=crot ct298=ctrans cv298=cvib cc298=ccor ce298^celec sr298=srot st298=strans sv298=svib sc298=scor se298=selec c298=ctotal s298=stotal write(5,124)ht298 124 format(5x, '0' ,13x, '0' ,4x,f 12.4,10x, *0' ,5x, "Trans lational' ) write(5,125)he298 125 format(19x, '0' ,4x,f 12.4,10x, '0' ,5x, 'Electronic' ) if (igas.eq.'M' .or.igas.eq. 'm' )go to 25 write(5,200)hr298 200 format(19x, '0' ,4x,f 12.4,10x, '0' ,5x, 'Rotational' ) write(5,201)hv298 201 format(19x, '0' ,4x,f 12.4,10x, '0' ,5x, 'Vibrational' ) write(5,202)hc298 202 format(19x, '0' ,4x,f 12.4,10x, '0' ,5x, 'Anharmonic' ) 25 write(5,203)h298 203 format(19x, , 0•,4x,fl2.4,10x,•0•,5x,•Total , ) hout«=h298/1000. write(l,204)hout 204 format(8x,'0',13x,'0',3x,fll.3,13x,'0') is tart -2 go to 17 19 continue close (unit-1) end c c subroutine to calculate partition functions c subroutine Q(e,g,nlevel,T,q0,ql,q2) Real*8 e(nlevel) ,g(nlevel) ,T,q0,ql,q2,kT,ekT,ge kT=1.438785935/T 17 qO=-0.0 ql=0.0 q2=O.0 do 1 i=l,nlevel ekT=e(i)*kT ge=exp(-ekT)*g(i) qO=qO+ge ql=ql+ekT*ge q2=q2+ekT*ekT*ge return end 18 PROGRAM OUTPUT Zrl4(g) T Cp H-H298 S K cal/mol-K kcal/mol cal/mol-K -6.330 100.00 21.258 -4.743 80.982 200.00 24.284 -2.430 96.897 298.15 25.090 0.000 106.772 300.00 25.098 0.046 106.927 400.00 25.410 2.574 114.196 500.00 25.559 5.123 119.884 600.00 25.642 7.684 124.552 700.00 25.692 10.251 128.509 800.00 25.725 12.822 131.942 900.00 25.748 15.395 134.973 1000.00 25.764 17.971 137.687 1100.00 25.776 20.548 140.143 1200.00 25.785 23.126 142.386 1300.00 25.792 25.705 144.450 1400.00 25.798 28.284 146.362 1500.00 25.802 30.864 148.142 1600.00 25.806 33.445 149.807 1700.00 25.809 36.026 151.372 1800.00 25.812 38.607 152.847 1900.00 25.814 41.188 154.243 2000.00 25.816 43.769 155.567 19 REFERENCES 1. Dow Chemical Co. Thermal Research Laboratory. JANAF Thermochemical Tables, 2d ed., NSRDS-NBS 37, S/N 03030872, U.S. Government Printing Office, Washington, D.C., 1971, 1141 pp. 2. International Union of Pure and Applied Chemistry, Division of Physical Chemistry, Commission of Physicochemical Symbols, Terminology, and Units. Manual of Symbols and Terminology for Physicochemical Quantities and Units. 1979, p. 35. 3. King, E. G., A. D. Mah, and L. B. Pankratz. Thermodynamic Properties of Copper and Its Inorganic Compounds, INCRA Monograph Series II (sponsored by The International Copper Research Association and the U.S. Bureau of Mines), New York, 1973, pp. 5-8. 4. Mayer, J. E., and M. G. Mayer. Statistical Mechanics. John Wiley and Sons, Inc., London, 1940, 495 pp. 5. McBride, B. J., and S. Gordon. Fortran IV Program for Calculation of Thermodynamic Data. NASA TND-4097, 1967, 129 pp. trU.S GOVERNMENT PRINTING OFFICE: 1981-505-002/131 int.-bu.of mines,pgh.,pa. 25902 C 15? 82 A*** r "*♦•.«&•* .• «J» v» » . A* **. '•■ V* :'&&: W ; '2K: V ' ••> .«. * *V«* w O--* •*. o • » - .V 0* ,0* %."*>ll? , \< e / ^*^^ ft 0* V*^^' .^ ^ ^W?/ n * ^ * * J /% /.f?#, /\ : -sR\ ****** '"■ \/% : IIK-v*** j * "• /% •• S^y* \J^^\o^\\; .♦ *>V^. tft, > ^ ,^ V -.SB?.- . ♦ » AT ^-* <• .# •**•»,•♦' V n~ • • • / 'i « > %. f° x0 v ,-v •• / V »!*' %. * -*^ / .**' ^ ^TT,. 4 A o 4 o "of ^ A v >♦ ..^'.% ^ *...• ^ •' J • ^ A* ^^ « .^ "V •-»»/ . ♦ ° A^"^<- • r\ v . o " • . Vi * A V*" ,, V "^0* 0' .LVL% V ^* ; ^'\^ 1 A* ."•• ^ o V >°^ 4 o ■a? re. ^♦* .-isK^-. \/' /ate'- ^ ^.^ " /Mic. \.c/ :&&['. \ V\^ 4 ■?- £,\ o< c ° ,^fc.x / $x&\. s .-^feX s $^*x ^ -^"- ^ • • • • * <* V* »' °o. *.-rrr.«-v o V^ v v-s v ^ . ^TO^ ; JX •»' . ^% ^5W! ; ^ •V 4 -**"* ^ .0 A° .6* ^a ♦^T r .V A r 0^ .-v. **b a* . ^ C /^SK- ° a^ •* •1 o • or cv ^•V - . o V - -*-