36/07 •<37 Hollinger Corp. pH8.5 SB 107 .G7 Copy 1 [Prom the American Journal op Sc fnce. Vol. XL1I, October, 1891. J USEFUL PLANTS OF THE FUTUEE. SOME OF THE POSSIBILITIES OF ECONOMIC BOTANY. By George Lincoln Goodale, Cambridge, Mass. 1891. With Compliments of the Author. i Dr. Goodale ventures to ask his correspondents to send him any facts of interest regarding the local or exceptional uses of any plants, especially of those wild plants which have not yet found, a place in the economic lists. USEFUL PLANTS OF THE FUTURE. SOME OF THE Possibilities of Economic Botany, The Presidential Address for 1891, Before the American Association for the Advancement of Science, at the Washington meeting. By George Lincoln Goodale, M.D., LL.D., Fisher Professor of Natural History in Harvard University, Cambridge, Mass. NEW HAVEN: TTJTTLE, MOREHOUSE & TAYLOR, PRINTERS, 1891 . S3 10 " 1 A7 In Exchange [From the American Journal of Science, Vol. XLII, October, 1891.] Art. XXVII. — Some of the Possibilities of Economic Botany; by George Lincoln Goodale. [Presidential address delivered before the American Association for the Advance- ment of Science, at Washington, August, 1891.] Our Association demands of its president, on his retirement from office, some account of matters connected with the department of science in which he is engaged. But you will naturally expect that, before I enter upon the discharge of this duty, I should present a report respecting the mission with which you entrusted me last year. You desired me to attend the annual meeting of the Australasian Association for the Advancement of Science, and express your good wishes for its success. Compliance with your request did not necessitate any material change in plans formed long ago to visit the South Seas ; some of the dates and the sequence of places had to be modified ; otherwise the early plans were fully carried out. I can assure you that it seemed very strange to reverse the seasons, and find mid-summer in January. But in the meeting with our brethren of the southern hemisphere, nothing else was reversed. The official welcome to your representative was as cordial, and the response by the members was as kindly as that which the people in the northern hemisphere would give to any fellow-worker coining from beyond the sea. The meeting to which I was commissioned was held in January last in the Cathedral city of Christchurch, New Zea- land, the seat of Canterbury College. 272 G. L. Goodale — Possibilities of Economic Botany. Considering the distance between the other colonies and New Zealand, the meeting was well attended. From Hobart, Tasmania, to the southern harbor, known as the Bluff, in New Zealand, the sea voyage is only a little short of one thousand miles of rough water. From Sydney in New South Wales to Auckland, New Zealand, it is over twelve hundred miles. If, therefore, one journeys from Adelaide in South Australia, to Christchurch, New Zealand, where the meeting was held he travels by land and by sea over two thousand miles. From Brisbane in Queensland, it is somewhat farther. Although certain concessions are made to the members of the Associa- tion, the fares by rail and by steamship are high, so that a journey from any one of the seats of learning in Australia proper to New Zealand is formidable on account of its cost. It is remarkable that so large a number of members should have met together under such circumstances, and it speaks well for the great strength and vigor of the Association. The Australasian Association is modelled rather more closely after the British Association than is our own. The president delivers his address upon his inauguration. There are no gen- eral business meetings, but all the details are attended to by an executive committee answering to our council ; none except the members and associates are invited to attend even the sectional meetings and there are some other differences be- tween the three associations. The secretaries stated to me their conviction that their organization and methods are better adapted to their surroundings than ours would be, and all of their arguments seemed cogent. Although the Association has been in existence but three years, it has accomplished great good. It has brought together workers in different fields for conference and mutual benefit ; it has diminished misunder- standings, and has strengthened friendships. In short it is doing the same kind of good work that we believe ours is now doing, and in much the same way. Your message was delivered at the general evening session immediately before the induction of the new officers. The retir- ing president, Baron von Mueller, and the incoming president Sir James Hector, in welcoming your representative, expressed their pleasure that you should have seen fit to send personal greetings. In replying to their welcome, I endeavored to convey your felicitations upon the pronounced success of the Association, and your best wishes for a prosperous future. In your name, I extended a cordial invitation to the members to gratify us by their presence at some of our annual meetings, and I have good reason to believe that this invitation will be accepted. I know it will be most thoroughly and hospitably honored by us. G. L. Goodale — Possibilities of Economic Botany. 273 On the morning of the session to which I refer, we received in the daily papers, a cable telegram relative to the Bering Sea difficulties (which were then in an acute stage). In your stead, I ventured to say, " In these days of disquieting dispatches, when there are rumors of trouble between Great Britain, and the United States, it is pleasant to think that ' blood is thicker than water.' " This utterance was taken to mean that we are all English-speaking kinsmen, and even before I had finished, the old proverb was received with prolonged applause. The next meeting of the Australasian Association is to be held in Hobart, the capital of Tasmania, under the presidency of the governor, Sir Robert Hamilton. The energetic secre- taries Professor Liversidge, Professor Hutton and Mr. Morton, promise a cordial welcome to any of our members visiting the Association. Should you accept the invitation, you will enjoy every feature of the remarkable island, Tasmania, where the meeting is to be held. You will be delighted by Tasmanian scenery, vegetation and climate, but that which will give you the greatest enjoyment in this as in other English South Sea colonies, is the fact that you are among English-speaking friends half way around the world. You will find that their efficient Association is devoted to the advancement of science and the promotion of sound learning. In short you will be made to feel at home. The subject which I have selected for the valedictory address deals with certain industrial, commercial and economic questions : nevertheless it lies wholly within the domain of botany. I invite you to examine with me some of the possi- bilities of economic botany. Of course, when treating a topic which is so largely specu- lative as this, it is difficult and unwise to draw a hard and fast line between possibilities and probabilities. Nowadays, possi- bilities are so often realized rapidly that they become accom- plished facts before we are aware. In asking what are the possibilities that other plants than those we now use may be utilized we enter upon a many-sided inquiry. * Speculation is rife as to the coming man. May we not ask what plants the coming man will use ? There is an enormous disproportion between the total num- ber of species of plants known to botanical science and the number of those which are employed by man. The species of flowering plants already described and named are about one hundred and seven thousand. Acquisitions from unexplored or imperfectly explored regions may increase the * For references, notes, etc., see p. 300. 274 G. L. G-oodale— Possibilities of Economic Botany. aggregate perhaps one-tenth, so that we are within very safe limits in taking the number of existing species to be somewhat above one hundred and ten thousand. 1 JMow if we should make a comprehensive list of all the flowering plants which are cultivated on what we may call a fairly large scale at the present day, placing therein all food 2 and forage plants, all those which are grown for timber and cabinet woods, for fibres and cordage^ for tanning materials, dyes, resins, rubber, gums, oils, perfumes and medicines, we could bring together barely three hundred species. If we should add to this short catalogue all the species, which with- out cultivation, can be used by man, we should find it consid- erably lengthened. A great many products of the classes just referred to are derived in commerce from wild plants, but exactly how much their addition would extend the list, it is impossible in the present state of knowledge to determine. Every enumeration of this character is likely to contain errors from' two sources : first, it would be sure to contain some species which have outlived their real usefulness, and, secondly, owing to the chaotic condition of the literature of the subject, omissions would occur. But after all proper exclusions and additions have been made, the total number of species of flowering plants utilized to any considerable extent by man in his civilized state does not exceed, in fact it does not quite reach, one per cent. The disproportion between the plants which are known and those which are used becomes much greater when we take into account the species of flowerless plants also. Of the five hundred ferns and their allies we employ for other than decorative purposes only five ; the mosses and liverworts, roughly estimated at live hundred species, have only four which are directly used by man. There are comparatively few Algae, Fungi, or Lichens which have extended use. Therefore, when we take the flowering and flowerless to- gether, the percentage of utilized plants falls far below the estimate made for the flowering alone. Such a ratio between the number of species known and the number used justifies the inquiry which I have proposed for discussion at this time — namely, can the short list of useful plants be increased to advantage ? If so, how ? This is a practical question ; it is likewise a very old one. In one form or another, by one people or another, it has been asked from early times. In the dawn of civilization, mankind inherited from savage ancestors certain plants, which had been found amenable to simple cultivation, and the products of these plants supplemented the spoils of the chase and of the sea. The question which we ask now was asked then. Wild G. L. Goodale — Possibilities of Economic Botany. 275 plants were examined for new uses ; primitive agriculture and horticulture extended their bounds in answer to this inquiry. Age after age has added slowly and cautiously to the list of cultivable and utilizable plants, but the aggregate additions have been as we have seen, comparatively slight. The question has thus no charm of novelty, but it is as prac- tical to-day as in early ages In fact, at the present time, in view of all the appliances at the command of modern science and under the strong light cast by recent biological and tech- nological research, the inquiry which we propose assumes great importance. One phase of it is being attentively and syste- matically regarded in the great Experiment Stations, another phase is being studied in the laboratories of Chemistry and Pharmacy, while still another presents itself in the museums of Economic Botany. Our question may be put in other words, which are even more practical. What present likelihood is there that our tables may, one of these days, have other vegetables, fruits and cereals, than those which we use now ? "What chance is there that new fibers may supplement or even replace those which we spin and weave, that woven fabrics may take on new veg- etable colors, that flowers and leaves may yield new perfumes and flavors? What probability is there that new remedial agents may be found among plants neglected or now wholly unknown? The answer which I shall attempt is not in the nature of a prophecy ; it can claim no rank higher than that of a reasonable conjecture. At the outset it must be said that synthetic chemistry has made and is making some exceedingly short cuts across this field of research, giving us artificial dyes, odors, flavors, and medicinal substances, of such excellence that it sometimes seems as if before long the old-fashioned chemical processes in the plant itself would play only a subordinate part. But although there is no telling where the triumphs of chemical synthesis will end, it is not probable that it will ever interfere essentially with certain classes of economic plants. It is impossible to conceive of a synthetic fiber or a synthetic fruit. Chemistry gives us fruit-ethers and fruit-acids, and after a while may pro- vide us with a true artificial sugar and amorphous starch ; but artificial fruits worth the eating or artificial fibers worth the spinning are not coming in our day. Despite the extraordinary achievements of synthetic chemis- try, the world must be content to accept for a long time to come, the results of the intelligent labor of the cultivator of the soil and the explorer of the forest. Improvement of the good plants we now utilize, and the discovery of new ones must remain the care of lar^e numbers of diligent students 276 G. L. Goodale — Possibilities of Economic Botany. and assiduous workmen. So that, in fact, our question resolves itself into this : can these practical investigators hope to make any substantial advance? It will be well to glance first at the manner in which our wild and cultivated plants have been singled out for use. We shall, in the case of each class, allude to the methods by which the selected plants have been improved, or their products fully utilized. Thus looking the ground over, although not minutely, we can see what new plants are likely to be added to our list. Our illustrations can, at the best, be only fragmen- tary. We shall not have time to treat the different divisions of the subject in precisely the proportions which would be de- manded by an exhaustive essay ; an address on an occasion like this must pass lightly over some matters which other oppor- tunities for discussion could properly examine with great ful- ness. Unfortunately, some of the minor topics which must be thus passed by, possess considerable popular interest ; one of these is the first subordinate question introductory to our task, namely, how were our useful cultivated and wild plants se- lected for use ? A study of the early history of plants employed for cere- monial purposes, in religious solemnities, in incantations, and for medicinal uses, shows how slender has sometimes been the claim of certain plants to the possession of any real utility. But some of the plants which have been brought to notice in these ways have afterwards been found to be utilizable in some fashion or other. This is often seen in the cases of the plants which have been suggested for medicinal use through the absurd doctrine of signatures. 3 It seems clear that, except in modern times, useful plants have been selected almost wholly by chance, and it may well be said that a selection by accident is no selection at all. Now- adays, the new selections are based on analogy. One of the most striking illustrations of the modern method is afforded by the utilization of bamboo fiber for electric lamps. Some of the classes of useful plants must be passed by with- out present discussion ; others alluded to slightly, while still other groups fairly representative of selection and improve- ment will be more fully described. In this latter class would naturally come, of course, the food-plants known as I. The Cereals. Let us look first at these. The species of grasses which yield these seed-like fruits, or as we might call them for our purpose seeds, are numerous ; 4 twenty of them are cultivated largely in the Old World, but G. L. Goodale — Possibilities of Economic Botany. 277 only six of them are likely to be very familiar to you, namely, wheat, rice, barley, oats, rye and maize. The last of these is of American origin, despite doubts which have been cast upon it. It was not known in the Old "World until after the discovery of the New. It has probably been very long in cultivation. The others all belong to the Old World. Wheat and barley have been cultivated from the earliest times ; according to De Candolle, the chief authority in these matters, about four thousand years. Later came rye and oats, both of which have been known in cultivation for at least two thousand years. Even the shorter of these periods gives time enough for wide variation, and as is to be expected there are numerous varieties of them all. For instance, Yilmorin, in 1880, figured sixty-six varieties of wheat with plainly distinguishable characters. 5 If the Chinese records are to be trusted, rice has been culti- vated for a period much longer than that assigned by our history and traditions to the other cereals, and the varieties are correspondingly numerous. It is said that in Japan above three hundred varieties are grown on irrigated lands, and more than one hundred on uplands. 6 With the possible exception of rice, not one of the species of cereals is certainly known in the wild state. 7 Now and then specimens have been gathered in the East which can be re- ferred to the probable types from which our varieties have sprung, but doubt has been thrown upon everyone of these cases. It has been shown conclusively that it is easy for a plant to escape from cultivation and persist in its new home even for a long time in a near approximation to cultivated form. Hence, we are forced to receive all statements regarding the wild forms with caution. But it may be safely said that if all the varieties of cereals which we now cultivate were to be swept out of existence, we could hardly know where to turn for wild species with which to begin again. We could not know with certainty. To bring this fact a little more vividly to our minds, let us suppose a case. Let us imagine that a blight without parallel has brought to extinction all the forms of wheat, rice, rye, oats, barley and maize, now in cultivation, but without affect- ing the other grasses or any other form of vegetable food. Mankind would be obliged to subsist upon the other kindly fruits of the earth ; upon root-crops, tubers, leguminous seeds, and so on. Some of the substitutions might be amusing in any other time than that of a threatened famine. Others would be far from appetizing under any condition, and only a few would be wholly satisfying even to the most pronounced vegetarian. In short, it would seem, from the first, that the cereals fill a place occupied by no other plants. The composition of the grains 278 G. L. Goodale — Possibilities of Economic Botany. is theoretically and practically almost perfect as regards food ratio between the nitrogenous matters and the starch group ; and the food value, as it is termed, is high. But aside from these considerations, it would be seen that for safety of preser- vation through considerable periods, and for convenience of transportation, the cereals take highest rank. Pressure would come from every side to compel us to find equivalents for the lost grains. From this predicament I believe that the well- equipped Experiment Stations and the Agricultural Depart- ments in Europe and America would by and by extricate us. Continuing this hypothetical case, let us next inquire how the Stations would probably go to work in the uphill task of making partially good a well-nigh irreparable loss. The whole group of relatives of the lost cereals would be passed in strict review. Size of grain, strength and vigor and plasticity of stock, adaptability to different surroundings, and flexibility in variation would be examined with scrupulous care. But the range of experiment would, under the circum- stances, extend far beyond the relatives of our present cereals. It would embrace an examination of the other grasses which are even now cultivated for their grains, but which are so little known outside of their own limit, that it is a surprise to hear about them. For example, the Millets, great and small, would be investigated. These grains, so little known here, form an important crop in certain parts of the east. One of the leading authorities on the subject 8 states that the Millets constitute " a more important crop " in India " than either Rice or Wheat, and are grown more extensively, being raised from Madras in the south to Rajputana in the north. They occupy about eighty- three per cent of the food-grain area in Bombay and Sinde, forty-one per cent in the Punjab, thirty-nine per cent in the Central Provinces," " in all about thirty million acres." Having chosen proper subjects for experimenting, the culti- vators would make use of certain well-known principles. By simple selection of the more desirable seeds, strains would be secured to suit definite wants, and these strains would be kept as races, or attempts would be made to intensify wished-for characters. By skillful hybridizing of the first, second and higher orders, tendencies to wider variation would be obtained and the process of selection considerably expedited. 9 It is out of our power to predict how much time would elapse before satisfactory substitutes for our cereals could be found. In the improvement of the grains of grasses other than those which have been very long under cultivation, experi- ments have been few, scattered and indecisive. Therefore we are as badly off for time-ratios as are the geologists and archaeologists, in their statements of elapsed periods. It is G. L. Goodale — Possibilities of Economic Botany. 279 impossible for us to ignore the fact that there appear to be occasions in the life of a species when it seems to be peculiarly susceptible to the influences of its surroundings. 10 A species, like a carefully laden ship, represents a balancing of forces within and without. Disturbance may come through variation from within, as from a shifting of the cargo, or, in some cases from without. We may suppose both forces to be active in producing variation, a change in the internal condition render- ing the plant more susceptible to any change in its surround- ings. Under the influence of any marked disturbance, a state of unstable equilibrium may be brought about, at which times the species as such is easily acted upon by very slight agencies. One of the, most marked of these derangements is a conse- quent of cross-breeding within the extreme limits of varieties. The resultant forms in such cases can persist only by close breeding or by propagation from buds or the equivalents of buds. .Disturbances like these arise unexpectedly in the ordi- nary course of nature, giving us sports of various kinds. These critical periods however, are not unwelcome, since skill- ful cultivators can take advantage of them. In this very field much has been accomplished. An attentive study of the sagacious work done by Thomas Andrew Knight shows to what extent this can be done. 11 But we must confess that it would be absolutely impossible to predict with certainty how long or how short would be the time before new cereals or acceptable equivalents for them would be provided. Upheld by the confidence which I have in the intelligence, ingenuity, and energy of our Experiment Stations, I may say that the time would not probably exceed that of two generations of our race, or half a century. In now laying aside our hypothetical illustration, I venture to ask why it is that our Experiment Stations and other insti- tutions dealing with plants and their improvement, do not undertake investigations like those which I have sketched? Why are not some of the grasses other than our present cereals studied with reference to their adoption as food grains % One of these species will naturally suggest itself to you all, namely, the Wild Rice of the Lakes. 12 Observations have shown that, were it not for the difficulty of harvesting these grains which fall too easily when they are ripe, they might be utilized. But attentive search might find or educe some variety of Zizania, with a more persistent grain and a better yield. There are two of our sea-shore grasses which have excellent grains, but are of small yield. Why are not these, or better ones which might be suggested by observation, taken in hand ? 280 G. L. Goodale — Possibilities of Economic Botany. The reason is plain. We are all content to move along in lines of least resistance, and are disinclined to make a fresh start. It is merely leaving well enough alone, and so far as the cereals are concerned it is indeed well enough. The generous grains of modern varieties of wheat and barley com- pared with the well-preserved charred vestiges found in Greece by Schliemann, 13 and in the lake-dwellings, 14 are satisfactory in every respect. Improvements, however, are making in many directions; and in the cereals we now have, we possess far better and more satisfactory material for further improvement both in quality and as regards range of distribution than we could reasonably hope to have from other grasses. From the cereals we may turn to the interesting groups of plants comprised under the general term II. Vegetables. Under this term it will be convenient for us to include all plants which are employed for culinary purposes, or for table use such as salads and relishes. The potato and sweet potato, the pumpkin and squash, the red or capsicum peppers, and the tomato, are of American origin. All the others are, most probably, natives of the Old World. Only one plant coming in this class has been derived from Southern Australasia, namely, New Zealand Spinach, (Tetra- gonia. Among the vegetables and salad-plants longest in cultivation we may enumerate the following — turnip, onion, cabbage, purslane, the large bean (Faba), chick-pea, lentil and one species of pea, garden pea. To these an antiquity of at least four thousand years is ascribed. Next to these, in point of age, come the radish, carrot, beet, garlic, garden cress, and celery, lettuce, asparagus and the leek. Three or four leguminous seeds are to be placed in the same category, as are also the black peppers. Of more recent introduction the most prominent are, the parsnip, oyster plant, parsley, artichoke, endive and spinach. From these lists I have purposely omitted a few which belong exclusively to the tropics, such as certain yams. The number of varieties of these vegetables is astounding. It is, of course, impossible to discriminate between closely allied varieties which have been introduced by gardeners and seedsmen under different names, but which are essentially identical, and we must therefore have recourse to a conserva- tive authority, Yilmorin, 16 from whose work a few examples have been selected. The varieties which he accepts are suf- G. L. Goodale — Possibilities of Economic Botany. 281 ficiently well distinguished to admit of description and in most instances of delineation, without any danger of confusion. The potato has, he says, innumerable varieties, of which he accepts forty as easily distinguishable and worthy of a place in a general list, but he adds also a list, comprising, of coarse, synonyms, of thirty-two French, twenty-six English, nineteen American and eighteen German varieties. • The following numbers speak for themselves, all being selected in the same careful manner as those of the potato : celery more than twenty ; carrot more than thirty ; beet, radish and potato more than forty ; lettuce and onion more than fifty ; turnip more than seventy ; cabbage, kidney bean and garden pea more than one hundred. . The amount of horticultural work which these numbers represent is enormous. Each variety established as a race (that is a variety which comes true to seed) has been evolved by the same sort of patient care and waiting which we have seen is necessary in the case of cereals, but the time of wait- ing has not been as a general thing so long. You will permit me to quote from Vilmorin 16 also an account of a common plant, which will show how wide is the range of variation and how obscure are the indications in the wild plant of its available possibilities. The example shows how com- pletely hidden are the potential variations useful to mankind. " Cabbage, a plant which is indigenous in Europe and Western Asia, is one of the vegetables which has been cultivated from the earliest time. The ancients were well acquainted with it, and certainly possessed several varieties of the head-forming kinds. The great antiquity of its culture may be inferred from the im- mense number of varieties which are now in existence, and from the very important modifications which have been produced in the characteristics in the original or parent plant. The wild Cabbage, such as it now exists on the coasts of England and France, is a perennial plant with broad-lobed, undu- lated, thick, smooth leaves, covered with a glaucous bloom. The stem attains a height of from nearly two and a half to over three feet, and bears at the top a spike of yellow or sometimes white flowers. All the cultivated varieties present the same peculiarities in their inflorescence, but up to the time of flowering they exhibit most marked differences from each other and from the original wild plant. In most of the Cabbages, it is chiefly the leaves that are developed hj cultivation ; these for the most part become imbricated or overlap one another closely, so as to form a more or less compact head, the heart or interior of which is composed of the central undeveloped shoot and the younger leaves next it. The shape of the head is spherical, sometimes flattened, sometimes conical. All the varieties which form heads in this way are known by the general name of Cabbages, while other kinds with 282 G. L. Goodale — Possibilities of Economic Botany. large branching leaves which never form heads are distinguished by the name of Borecole or Kale. In some kinds, the flower-stems have been so modified by cul- ture as to become transformed into a thick, fleshy tender mass, the growth and enlargement of which are produced at the expense of the flowers which are absorbed and rendered abortive. Such are the Broccolis and Cauliflowers." But this plant has other transformations. "In other kinds, the leaves retain their ordinary dimensions, while the stem or principal root has been brought by cultivation to assume the shape of a large ball or turnip, as in the case of the plants known as Kohl-Rabi and Turnip-rooted Cabbage or Swedish Turnip. And lastly, there are varieties in which cultivation and selection have produced modifications in the ribs of the leaves, as in the Couve Tronchuda, or in the axillary shoots (as in Brussels sprouts), or in several organs together, as in the Marrow Kales, and the Neapolitan Curled Kale." Here are important morphological changes like those to. which Professor Bailey has called attention in the case of the tomato. Suppose we are strolling along the beach at some of the sea- side resorts of France, and should fall in with this coarse cru- ciferous plant, with its sprawling leaves and strong odor. Would there be anything in its appearance to lead us to search for its hidden merit as a food plant? What could we see in it which would give it a preference over a score of other plants at our feet ? Again, suppose we are journeying in the high lands of Peru, and should meet with a strong-smelling plant of the Night-shade family, bearing a small irregular fruit, of sub- acid taste and of peculiar flavor. We will further imagine that the peculiar- taste strikes our fancy, and we conceive that the plant has possibilities as a source of food. We should be led by our knowledge of the potato, probably a native of the same region, to think that this allied plant might be safely transferred to a northern climate, but would there be promise of enough future usefulness in such a case as this, to warrant our carrying the plant North as an article of food ? Suppose, further, we should ascertain that the fruit in question was relished not only by the natives of its home, but that it had found favor among the tribes of South Mexico and Central America, and had been cultivated by them until it had attained a large size ; should we be strengthened in our venture ? Let us go one step further still. Suppose that having decided upon the introduction of the plant, and having urged everybody to try it, we should find it discarded as a fruit, but taking a place in gardens as a curiosity under an absurd name, or as a basis G. L. Goodale — Possibilities of Economic Botany. 283 for preserves and pickles ; should we not look upon our experi- ment in the introduction of this new plant as a failure? This is not a hypothetical case. The Tomato, 17 the plant in question, was cultivated in Europe as long ago as 1554 ; 18 it was known in Virginia in 1781 and in the Northern States in 1785 ; but it found its way into favor slowly, even in this land of its origin. A credible witness states that in Salem it was almost impossible to induce people to eat or even taste of the fruit. And yet, as you are well aware, its present cultivation on an enormous scale in Europe and this country is scarcely sufficient to meet the increasing demand. A plant which belongs to the family of the tomato has been known to the public under the name of the strawberry tomato. The juicy yellow or orange-colored fruit is enclosed in a papery calyx of large size. The descriptions which were published when the plant was placed on the market were attractive, and were not exaggerated to a misleading extent. But, as you all know, the plant never gained any popularity. If we look at these two cases carefully we shall see that what appears to be caprice on the part of the public is at bottom common sense. The cases illustrate as well as any which are at command, the difficulties which surround the whole subject of the introduc- tion of new foods. Before asking specifically in what direction we shall look for new vegetables I must be pardoned for calling attention, in passing, to a very few of the many which are already in limited use in Europe and this country, but which merit a wider em- ployment. Cardon, or Carcloon ; Celeriac, or turnip-rooted celery ; Eetticus, or corn-salad ; Martynia ; Salsify ; Sea-kale ; and numerous small salads, are examples of neglected treasures of the vegetable garden. The following which are even less known may be mentioned as fairly promising. 19 (1) Arracacia esculenta, called Arracacha, belonging to the Parsley family. It is extensively cultivated in some of the northern States of South America. The stems are swollen near the base, and produce tuberous enlargements filled with an excellent starch. Although the plant is of comparatively easy cultivation, efforts to introduce it into Europe have not been successful, but it is said to have found favor in both the Indies, and may prove useful in our Southern States. (2) Ullucus or Ollucus, another tuberous-rooted plant from nearly the same region, but belonging to the Beet or Spinach family: It has produced tubers of good size in England, but they are too waxy in consistence to dispute the place of the better tubers of the potato. The plant is worth investigating for our hot dry lands. 284 G. L. Goodale — Possibilities of Economic Botany. (3) A tuber-bearing relative of our common Hedge-nettle, or Stockys, is now cultivated on a large scale at Crosnes in France, for the Paris market. Its name in Paris is taken from the locality where it is now grown for use. Although its native country is Japan, it is called by some seedsmen Chinese Artichoke. At the present stage of cultivation, the tubers are small and are rather hard to keep, but it is thought " that both of these defects can be overcome or evaded." 21 Experiments indicate that we have in this species a valuable addition to our vegetables. We must next look at certain other neglected possibilities. Dr. Edward Palmer, 20 whose energy as a collector and acute- ness as an observer are known to you all, has brought together very interesting facts relative to the food-plants of our North American aborigines. Among the plants described by him there are a few which merit careful investigation. Against all of them, however, there lie the objections mentioned before, namely : (1) The long time required for their improvement, and (2) The difficulty of making them acceptable to the commu- nity, involving (3) The risk of total and mortifying failure. In the notes to this address the more prominent of these are enumerated. In 1854 the late Professor Gray called attention to the re- markable relations which exist between the plants of Japan and those of our Eastern coast. You will remember that he not only proved that the plants of the two regions had a common origin, but also emphasized the fact that many species of the two countries are almost identical. It is to that country which has yielded us so many useful and beautiful plants that we turn for new vegetables to supplement our present food-resources. One of these plants, namely, Stackys, has already been men- tioned as rather promising. There are others which are worth examination and perhaps acquisition. One of the most convenient places for a preliminary exami- nation of the vegetables of Japan is at the railroad stations on the longer lines, for instance, that running from Tokio to Kobe. For native consumption there are prepared luncheon boxes of two or three stories, provided with the simple and yet embar- rassing chop-sticks. It is worth the shock it causes one's nerves to invest in these boxes and try the vegetable contents. The bits of fish, flesh and fowl which one finds therein can be easily separated and discarded, upon which there will remain a few delicacies. The pervading odor of the box is that of aromatic vinegar. The generous portion of boiled rice is of excellent quality with every grain well softened and distinct, and this G. L. Goodale — Possibilities of Economic Botany. 285 without anything else would suffice for a tolerable meal. In the boxes which have fallen under my observation there were sundry boiled roots, shoots and seeds which were not recog- nizable by me in their cooked form. Professor Georgeson, 22 formerly of Japan, has kindly identified some of these for me, but he says " there are doubtless many others used occasionally." One may find sliced Lotus roots, roots of large Burdock, Lily bulbs, shoots of Ginger, pickled green Plums, beans of many sorts, boiled Chestnuts, nuts of the Gingko tree, pickled greens of various kinds, dried cucumbers, and several kinds of seaweeds. Some of the leaves and roots are cooked in much the same manner as beet-roots and beet -leaves are by us, and the general effect is not unappetizing. The boiled shoots are suggestive of only the tougher ends of asparagus. On the whole, I do not look back on Japanese railway luncheons with any longing which would compel me to advocate the indis- criminate introduction of the constituent vegetables here. But when the same vegetables are served in native inns, under more favorable culinary conditions, without the flavor of vinegar and of the pine wood of the luncheon boxes, they appear to be worthy of a trial in our horticulture, and I there- fore deal with one or two in greater detail. Professor Georgeson, whose advantages for acquiring a knowledge of the useful plants of Japan have been unusually good, has placed me under great obligations by communicating certain facts regarding some of the more promising plants of Japan which are not now used here. It should be said that several of these plants have already attracted the notice of the Agricultural Department in this country. The Soy Bean {Glycine hispida). This species is known here to some extent, but we do not have the early and best varieties. These beans replace meat in the diet of the common people. Mucuna {Mucuna capitata) and Dolichos {Dolichos cultra- tus) are pole beans possessing merit. Dioscorea; there are several varieties with palatable roots. f Years ago one of these was spoken of by the late Dr. Gray, as "possessing "excellent roots, if one could only dig them." Colocasia antiquorum has tuberous roots, which are nutri- tious. Conophallus KonjaJc has a large bulbous root, which is sliced, dried and beaten to a powder. It is an ingredient in cakes. Aralia cordata is cultivated for the shoots, and used as we use Asparagus. (Enanthe stolonifera and CryptotcBnia Canadensis are pala- table salad plants, the former being used also as greens. 286 G. L. Goodale — Possibilities of Economic Botany. There is little hope, if any, that we shall obtain from the hotter climates for our southern territory new species, of merit. The native markets in the tropical cities, like Colombo, Batavia, Singapore and Saigon, are rich in fruits, but outside of the native plants bearing these, nearly all the plants appear to be wholly in established lines of cultivation, such, for instance, as members of the Gourd and Night-shade families. Before we leave the subject of our coming vegetables, it will be well to note a naive-caution enjoined by Yilmorin in his wprk, Les Plantes Potageres. 23 " Finally," he says, " we conclude the article devoted to each plant with a few remarks on the uses to which it may be ap- plied and on the parts of the plants which are to be so used. In many cases such remarks may be looked upon as idle words, and yet it would sometimes have been useful to have them when new plants were cultivated by us for the first time. For instance, the giant edible Burdock of Japan {Lappa edulis) was for a long time served up on our tables only as a wretchedly poor Spinach, because people would cook the leaves, whereas, in its native country, it is only cultivated for its tender fleshy roots." I trust you are not discouraged at this outlook for our coming vegetables. Two groups of improvable food-plants may be referred to before we pass to the next class, namely, edible fungi and the beverage plants. All botanists who have given attention to the matter agree with the late Dr. Curtis of North Carolina that we have in the unutilized mushrooms an immense amount of available nutriment of a delicious quality. It is not improbable that other fungi than our common " edible mushroom " will by and by be subjected to careful selection. The principal beverage-plants, Tea, Coffee and Chocolate, are all attracting the assiduous attention of cultivators. The first of these plants is extending its range at a marvellous rate of rapidity through India and Ceylon ; the second is threatened by the pests which have almost exterminated it in Ceylon, but a new species, with crosses therefrom, is promising to resist them successfully ; the third, Chocolate, is every year passing into lands farther from its original home. To these have been added the Kola, of a value as yet not wholly determined, and others are to augment the short list. III. Fruits. Botanically speaking, the cereal grains of which we have spoken, are true fruits, that is to say, are ripened ovaries, but for all practical purposes they may be regarded as seeds. The G. L. Goodale — Possibilities of Economic Botany. 287 fruits, of which mention is now to be made, are those com- monly spoken of in our markets, as fruits. First of all, attention must be called to the extraordinary changes in the commercial relations of fruits by two direct causes, (1) The canning industry, and (2) Swift transportation by steamers and railroads. The effects of these two agencies are too well known to require more than this passing mention. By them the fruits of the best fruit-growing countries are carried to distant lands in quantities which surprise all who see the statistics for the first time. The ratio of increase is very startling. Take for instance, the figures given by Mr. Morris at the time of the great Colonial and Indian Exhibition, in London. Compare double decades of years. 1845, £886,888. 1865, £3,185,984. 1885, £7,587,523. In the Colonial Exhibition at London, in 1886, fruits from the remote colonies were exhibited under conditions which proved that, before long, it may be possible to place such delicacies as the-Cherimoyer, the Sweet-cup, Sweet-sop, Ram- butan, Mango and Mangosteen, at even our most northern sea- ports. Furthermore, it seems to me likely that with an in- crease in our knowledge with regard to the microbes which produce decay, we may be able to protect the delicate fruits from injury for any reasonable period. Methods which will supplement refrigeration are sure to come in the very near future, so that even in a country so vast as our own, the most perishable fruits will be transported through its length and breadth without harm. The canning industry and swift transportation are likely to diminish zeal in searching for new fruits, since, as we have seen in the case of the cereals, we are prone to move in lines of least resistance and leave well enough alone. To what extent are our present fruits likely to be improved? Even those who have watched the improvement in the quality of some of our fruits, like oranges, can hardly realize how great has been the improvement within historic times in the character of certain pears, apples, and so on. The term historic is used advisedly, for there are pre-historic fruits which might serve as a point of departure in the consid- eration of the question. In the ruins of the lake-dwellings in Switzerland, 24 charred apples have been found, which are 288 G. L. Ooodale — Possibilities of Economic Botany. in some cases, plainly of small size, hardly equalling ordinary crab apples. But, as Dr. Sturtevant has shown, in certain directions, there has been no marked change of type, the change is in quality. Incomparing the earlier descriptions of fruits with modern accounts it is well to remember that the high standards by which fruits are now judged are of recent establishment. Fruits which would once have been esteemed excellent, would to-day be passed by as unworthy of regard . It seems probable that the list of seedless fruits will be materially lengthened, provided our experimental horticultur- ists make use of the material at their command. The com- mon fruits which have very few or no seeds are the banana, pineapple and certain oranges. Others mentioned by Mr. Darwin as well known are the bread-fruit, pomegranate, azarole or Neapolitan medlar, and date palms. In commenting upon these fruits, Mr. Darwin 26 says that most horticulturists "look at the great size and anomalous development of the fruit as the cause and sterility as the result," but he holds the opposite view as more probable, that is, that the sterility, com- ing about gradually, leaves free for other growth the abundant supply of building material which the forming seed would otherwise have. He admits, however, that "there is an antag- onism between the two forms of reproduction, by seeds and hy buds when either is carried to an extreme degree which is independent of any incipient sterility." Most plant-hybrids are relatively infertile, but by no means wholly sterile. With this sterility there is generally aug- mented vegetative vigor, as shown by Nageli. Partial or com- plete sterility and corresponding luxuriance of root, stem, leaves and flower, may come about in other obscure ways, and such cases are familiar to botanists. 10 Now it seems highly probable that either by hybridizing directed to this special end, or by careful selection of forms indicating this tendency to the correlated changes, we may succeed in obtaining impor- tant additions to our seedless or nearly seedless plants. Whether the ultimate profit would be large enough to pay for the time and labor involved is a question which we need not enter into ; there appears to me no reasonable doubt that such efforts would be successful. There is no reason in the nature of things why we should not have strawberries without the so-called seeds ; blackberries and raspberries, with only deli- cious pulp ; and large grapes as free from seeds as the small ones which we call "currants" but which are really grapes from Corinth. These and the coreless apples and pears of the future, the stoneless cherries and plums, like the common fruits before G. L. Goodale — Possibilities of Economic Botany. 289 mentioned must be propagated by bud division, and be open to the tendency to diminished strength said to be the conse- quence of continued bud-propagation. But this bridge need not be crossed until we come to it. Bananas have been per- petuated in this way for many centuries, and pineapples since the discovery of America, so that the borrowed trouble alluded to is not threatening. First we must catch our seedless fruits. Which of our wild fruits are promising subjects for selec- tion and cultivation ? Mr. Crozier of Michigan has pointed out 28 the direction in which this research may prove most profitable. He enumer- ates many of our small fruits and nuts which can be improved. Another of our most careful and successful horticulturists believes that the common blueberry and its allies are very suitable for this purpose and offer good material for experi- menting. The sugar-plum, or so-called shadbush, has been im- proved in many particulars, and others can be added to this list. But again we turn very naturally to Japan, the country from which our gardens have received many treasures. Referring once more to Professor Georgeson's studies, 27 we must mention the varieties of Japanese apples, pears, peaches, plums, cherries and persimmons. The persimmons are already well-known in some parts of our country, under the name " kaki " and they will doubtless make rapid progress in popular favor. The following are less familiar : Actinidia arguta and