miimamimmKiBaiimamlisxa.^ o P% \«8* COMPLETE KEY UMMERE'S SURYEYmG; THE OPERATIONS OF ALL THE EXAMPLES NOT SOLVED IN THAT WORK ARE EXHIBITED AT LARGE. PRINCIPALLY DESIGNED TO FACILITATE THE LABOUR OF TEACHERS, AND TO ASSIST THOSE WHO HAVE NOT THE OPPOETUNITY OF THEIR INSTRUCTION. / By SAMUEL ALSOP. ADAPTED. TO THE REVISED EDITION OF THE SURVEYING By ISAAC SHARPLESS, Author of "A Text-book of Geometry and Trigonombtky." PHILADELPHIA: PORTER & COATES. \ Copyright, 1884, BY PORTER & COATES. ' ... io.427262 ^ 2 To tang. BAD— BDA _ ^^o 35' . - - 9.960665 BDA - 27° 5' As sin. ADB 27° 5' Ar. Co. 0.341716 Is to sin. ABD 41° .----.-- - 9.816943 So is AB 40 1.602060 To AD 57.64 1.760719 16 PLANE TRIGONOMETRY. Example 11. (Fig. 65, Surveying.) To find AD: As sin. CAD 27° Ar. Co. 0.342953 Is to sin. ACD 138° - - - 9.825511 So is CD 132 ----- - 2.120574 To AD 2.289038 To find AB; As sin. ABD 109° Ar. Co. 0.024330 Is to sin. ADB 8° 9.143555 So is AD 2.289038 To AB 28.64 1.456923 PRACTICAL QUESTIONS. 17 PRACTICAL QUESTIONS. Example 1. (PI. 1, fig. 2.) Making AB radius, BC is tangent of A. As radius - - - - Ar. Co. 0.000000 Is to tang. A 52° 30' - - - 10.115020 So is AB 85 - ... 1 1.929419 To BC 110.8 2.044439 Example 2. (PI. 1, fig. 2.) Make AB radius, then will BC be the tangent of A ; making AC radius, AB will be the cosine of A ; hence, As radius - - - Ar. Co. 0.000000 Is to tang. A 61° 45' - - - 10.269767 So is AB 73 - 1.863323 To BC 135.9 - - - 2.133090 And, As cosine A .- Ar. Co. 0.324845 Is to radius ----.:..------- 10.000000 So is AB 1.863323 To AC 154.2 2.188168 Example 3. (PI. 1, fig. 7.) To find BD. We have in the triangle ABD, the angles and side AB. Hence, As sin. ADB 31° Ar. Co. 0.288161 Is to sin. BAD 100° ^ 9.993351 So is AB 339 2.530200 To BD 648.2 - - - 2.811712 2 18 PLANE TRIGONOMETRY. Again, in ABC we have the angles, and side AB, to find BC. Thus, As sin. ACB 22° 30' Ar. Co. 0.417160 Is to sin. BAC 36° 30' 9.774388 So is AB 339 - : 2.530200 To BC 526.9 2.721748 In DBC we have the sides DB and BC, and included angle DBC= 72°. To find the side DC. Thus BCD + BDC = 1 80°— 72° =108°. Then, As BD + BC 1175.1 Ar. Co. 6.929925 Is to BD— BC 121.3 2.083861 So is tang. ^CD + BDC^ _ ^^^ 10.138739 ^ 2 To tang. BCD— BDC . go 5, 9.152525 BDC 45° 55' And, As sin. BDC 45° 55' Ar. Co. 0.143677 Is to sin. DBC 72° 9.978206 So is BC 2.721748 To CD 697.64 2.843631 This example might have been solved by finding AD =496.76, AC=759.33; whence the angle ADC would be found to be 76° 55', and CD =697.64, as before. ExAMPiifl 4. (PI. 1, fig. 8.) Construction. With the given distances construct the triangle ABC. Make ACE and CAE respectively equal to 13° 30' and 29° 50'. About the triangle AEC describe the circle ACD. Join EB, and produce it to meet the circumference in D, which will be the situation of the Dbserver. Since the angles ADE and ACE are' subtended by the same arc, we have ADE=ACE=13° 30'. Also CDE=CAE=29° 50'. PRACTICAL QUESTIONS. 19 Calculation. In the triangle ABC, we have the three sides to find the angle BAG. Thus, BC 262 AC 404 Ar. Co. 7.393619 AB 213 Ar. Co. 7.671620 2)879 Half sum 439.5 ...... 2.642959 DifFerence 177.5 ..... 2.249198 2)19.957396 Cos. i BAC 17° 48' - - - 9.978698 BAC 35° 36' In the triangle ACE we have the angles and side AC, to find AE. As sin. AEC 136° 40' Ar. Co. 0.163523 Is to sin. ACE 13° 30' - - - 9.368185 So is AC 404 ... - - 2.606381 To AE 137.43 .--.....--'. 2.138089 In the triangle ABE we have the sides AB and AE, and the included angle B AE = B AC + C AE = 65° 26'. To find ABE, thus : As AB + AE .350.43 ------ Ar. Co. 7.455399 Is to AB— AE 75.57 '.-.-..,. 1.878349 So is tang. ^^^_AM^ 5^0 ^y .... 10.192195 ,^ AEB ABE „ . r- -r.rnAn To tang. ^ 18° 33' - - - - 9.o25943 ABE =38° 44' In ABD-we have ABD=180°— 38° 44'=141° 16', ADB=13° 30', and BAD=38° 44'— 13° 30'=25° 14'. To find AD and DB : As sin. ADB 13° 30'. Ar. Co. 0.631815 Is to sin. BAD 25° 14' - - - 9.629721 So is AB 213 - - 2.328380 To BD 389- -.--.- 2.589916 20 PLANE TRIGONOMETRY. And, As sin. ADB 13° 30' Ar. Co. 0.631815 Is to sin. ABD 141° 16' 9.796364 So is AB 213 - : 2.328380 To AD 570.9 - - - 2.756559 Finally, in ADC we have the angle ADC=43° 20', CAD=BAC + HAD =60° 50' and the side AC ; to find CD. Thus, As sin. ADC 43° 20' Ar. Co. 0.163523 Is to sin. CAD 60° 50' - 9.941117 So is AC 404 2.606381 To CD 514.1 2.711021 This might have been solved by finding ACB = 28° 14', CE = 292.87,. whence CBE would have been found to be = 77° 26', BD= 388.9, DC = 514, and AD = 570.8. Example 5. (PI. 1, Fig. 9.) Here AD = /BD^— AB' = v/ 1296 = 36. And AC = AD + DC = 75 Ans. Or, Trigbnometrically; As BD .39 - - - Ar. Co. 8.408935 Is to BA 15 1.176091 So is radius '- lO.OOOOOO To COS. B 67° 23' - 9.585026 And, As radius ' . . . Ar. Co. 0.000000 Is to sin. B 67° 23' - 9.965248 So is BD 39 1.591065 To AD 36 1.556313 AC - 75 PRACTICAL QUESTIONS. 21 Example 6. (PI. 1, fig. 10.) The angle ACB = DBC — DAC = 25°. Then, As sin ACB 25° Ar. Co. 0.374052 * Is to sin. BAG 26° 30' 9.649527 So is AB 75 1.875061 To BC 79.18 1.898640 To find CD, and BD: As radius Ar. Co. 0.000000 Is to sin. B 51° 30' - - 9.893544 So is CB - - - - - - - 1.898640 To CD 61.97 ^[^^ And, As radius Ar. Co. 0.000000 Is to COS. B ' 9.794150 So is CB 1.898640 To BD 49.29. - - - - - . - . . - . 1.692790 Example 7. (PI. 1, fig. 11.) Here ACB = CAD = 35° and BAC = 55° Hence, As rad. Ar. Co. 0.000000 Is to tan. BAC 55° - - 10.154773 So is AB 143. 2.155336 To BC 204.2 2.310109 Example 8. (PI. 1, fig. 12.) Construction. Make AB=76, the distance from the lower column to the statue's base. Erect the perpendiculars AD and BF, making the former= 50. With D as a centre and distance 86, cross BF in F, which will be the head of the statue. 22 PLANE TRIGONOMETRY. Make AI = 64, draw IE parallel to AC, with F as a centre and distance 97, cross IE in E, then EC perpendicular to AC, will be the higher column. Calculation. To find FDG and side DG: As DF 86 Ar. Co. 8.065502 Is to FG 76 1.880814 So is radius 10.000000 To sin. FDG 62° 5i' - 9.946316 As radius Ar. Co. 0.000000 Is to cos. FDG 62° oi' ------- - 9.670300 So is FD 86 1.934498 ' To DG 40.25 1.604798 To find EFH and FH, we have FE= 97 and EH = GI = GD4 DI= 54.25. Hence, As EF 97 Ar. Co. 8.013228 Is to EH 54.25 - 1.734400 So is radius - - - 10.000000 To sin. EFH 34° 9.747628 4nd, iVs radius - Ar. Co. 0.000000 is to cos. F 34° • - 9.918574 So is EF 97 1.986772 To FH 80.42 1.905346 To find ED, we have EI = HF + FG= 156.42 and DI=U, Hence, As IE 156.42 Ar. Co. 7.805707 Is to ID 14 1.146128 So is radius - . 10.000000 To tan. lED 5° 7' - 8.951835 / PRACTICAL QUESTIONS. 23 As COS. E 5° 7' - Ar. Co. 0.001734 Is to rad. - 10.000000 So is IE 156.42 - - - - 2.194293 To ED 157.04 - - 2.196027 Otherwise. GD = /FD^— FG» = ^/ 1620 = 40.25. GI=GD + DI = 54.25. FH = V'FE^— Eff = v/ 6465.9375 = 80.41. IE = FH + FG = 156.41. DPi = yiE^ + ID='= V 24660.0881 = 157.03. 24 SURVEYING. [Cha!-. I. SURVEYING. CHAPTER I. DIMENSIONS OF A SURVEY. PROBLEM 8. Example 2. Angle B = 34° + 35° = 69°. Example 3. Here the first bearing must be reversed, since it is towards th t station C. It becomes N. 35° W. Hence C= 180°— (35° +87°) =58^. Example 4. D = 180° ~ (87° — 58°) = 151°. PROBLEM 9. Example 2. 1st side S. 40J° E. 3d N. 29i° E. N 54 E. N 54 E. 94i N. 241 W. 180 N. 85i E. Prob. 8.] DIMENSIONSOFASURVEY. 25 4th N. 281° E. 5th N. 57° W. N. 54 E. N. 54 E. N. 25i W. Ill 180 - S. 69 W. /' 6th S. 470 W. N. 54 E. S. 7 E. Example 3. 1st S. 45i° W. S. 20i W. S. 25 W. 2d N. 50° W. S. 20i W. N. 70i W. 3d N. 0° W. S. 20i W. N. 20i W. 4th N. 85° E. S. 20J W. N. 64i E. 5th S. 47° E. S. 20i W S. 67i E. 7th N. 51 i° W. S. 20i W. N. 711 W. PROBLEM 10. Example 1. As sin. bearing 32° 30' - Ar. Co. 0.269784 Is to radius - ^ - 10.000000 So is departure 10.96 1.039811 To distance 20.40 1.309595 And, As -radius - - - - Ar. Co. 0.000000 Is to cotangent bearing - 10.195813 So is departure 1.039811 To difference of latitude 17.20 - 1.235624 20 SUKVEYING. [Chap. I. Example 2. As distance 44 Ar. Co. 8.356547 Is to difference of latitude 34.43 1.536937 So is radius 10.000000 To cosine of bearing 38° 31' 9.893484 And, As rad. - - - Ar. Co. 0.000000 Is to tang, bearing 38° 31' 9.900864 So is diff. lat. 34.43 - 1.536937 To departure 27.40 1.437801 Example 3. As cosine of bearing 32° 30' - - - - Ar. Co. 0.073971 Is to radius 10.000000 So is diff of lat. 17.21 1.235781 To distance 20.41 1.309752 And, As radius Ar. Co. 0.000000 Is to tang, bearing 32° 30' 9.804187 So is diff latitude 17.21 .-..---- 1.235781 To departure 10.96 1.039968 Example 4. As diff of lat. 27.92 N. ..... Ar. Co. 8.554085 Is to departure 5.32 E. - - - - 0.725912 So is radius 10.000000 To tang. bear. 10° 47' - - - 9.279997 And, As cosine bearing 10° 47' Ar. Co. 0.007737 Is to radius 10.000000 So is diff of lat. 1.445915 To dist. 28.42 1.453652 / Prob. 12.] DIMENSIONS OF A SURVEY. 27 And, Example 5. As distance 35.35 Ar. Co. 8.451611 Is to departure 15.08 - - 1.178401 So is radius - - 10.000000 To sin. bearing 25° 15' ....... 9.630012 As radius .-.------ Ar. Co. 0.000000 Is to cos. bearing 25° 15' 9.956387 So is distance 1.548389 To diff. of lat. 31.97 1.504776 PROBLEM 12. Sta. Courses. Dist. N. S. E. W. Cor. N. Cor. E. N. S. E. W. 1 N. 75 E. 13.70 3.54 13.24 2 2 3.56 13.26 2 N. 20| E. 10.30 9.65 3.61 1 1 9.66 3.62 3 East. 16.20 16.20 2 2 .02 16.22 4 S. 33i W. 35.30 29.44 19.49 5 5 29.39 19.44 5 S. 76 W. 16.00 3.87 15.52 2 2 3.85 15.50 6 North. 9.00 9.00 1 1 9.01 .01 7 S. 84W. 11.60 1.21 11.54 2 2 1.19 11.52 8 N. 531 w. 11.60 6.94 9.29 2 2 6.96 9.27 9 N. 363 E. 19.36 15.51 11.59 3 2 15.54 11.61 10 N. 224 E. 14.00 12.93 5.36 2 2 12.95 5.3S 11 S. 76| E. 12.00 2.75 11.68 2 2 2.73 11.70 12 S. 15 W. 10.85 10.48 2.81 2 1 10.46 2.80 13 S. 18 W. 10.62 10.10 3.28 2 1 10.08 3.27 57.57 57.85 57.57 61.68 61.93 61.68 Error South .28 .25 Error West- 28 SURVEYING. [Chap. II. CHAPTER 11. SUPPLYING OMISSIONS. . PROBLEM I. Example 2. Sta. Courses. Dist. N. s. E. W. 1 N. i5r w. 9.40 9.05 2.55 2 N. 631 E. 10,43 4.61 9.36 3 S. 49 E. 8.12 5.33 6.13 4 S. 13i E. 8.45 8.22 1.98 5 S. 161 E. 6.44 6.17 1.86 6 (6.11) (10.64) 7 N. 60 W. 9.72 4.86 8.41 8 N. 17i W. 7.65 7.31 2.27 25.83 25.83 21.60 21.60 Then, As diff. lat. 6.11 S. Ar. Co. 9.213959 Is to depart. 10.64 W. - - 1.026942 So is radius 10.000000 To tang, bearing S. 60° 8' W. 10.240901 And, As cosine bearing 60° 8' Ar. Co. 0.302785 Is to radius - 10.000000 So is diff. lat. 0.786041 To distance 12.27 1.088826 Example 3. Sta. Courses. Dist. N. S. E. W. 1 S. 52° W. 10.70 6.59 8.43 2 S. 7i W. 13.92 13.80 1.82 3 S. 34i E. 9.00 7.44 5.07 4 (27.83) (5.18) 27.83 10.25 10.25 Prob. 1.] SUPPLYING OMISSIONS. 29 Then, As diff. lat. 27.83 Ar. Co. 8.555487 Is to departure 5.18 ----- 0.714330 So is radi-us 0.000000 To tang, bearing N. 10° 33' E. 9.269817 And, As cosine bearing 10° 33' - - - - - Ar. Co. 0.007404 Is to radius 10.000000 So is diff. lat. 27.83 1.444513 To distance 28.31 1.451917 Example 4. Sta. Bearing. Dist. N. S. E. W. 1 S. 10° E. 92.20 90.80 16.01 2 S. 15 W. 120.50 116.39 31.19 3 s. m w. 205.00 194.40 65.05 4 8. 7H E. 68.00 21.58 64.49 5 423.17 80.50 96.24 80.50 15.74 Then, As diff. of latitude 423.17 Is to departure.,15.74 - - So is radius ----- Ar. Co. 7.373485 - - - 1.197005 - - - 10.000000 To tans;, bearina; 2° 8' 8.570490 And, As cosine bearing 2° 8' Is to radius - - 'i - So is diff lat. 423.17 - Ar. Co. 0.000301 - - - 10.000000 - - - 2.626515 To distance 423.46 2.626816 30 SURVEYING. [Chap. II. PROBLEM 11. Example 2. Sta. Bearing. Changed Bearing. Dist. N. S. E. W. 1 S. 40i E. N. 85i E." 31.80 2.49 31.70 2 N. 54 E. North. (2.08) 3 N. 29i E. N. 24f W. 2.21 2.01 .93 4 N. 28| E. N. 25i W. 35.35 31.98 15.08 5 N. 57 W. S. 69 W. (7.49) (1^.51) 6 S. 47 W. S. 7 E. 31.30 31.07 3.82 38.56 38.56 35.52 35.52 As sine changed bearing 69° Is to radius ------ So is departure 19.51 - - - To distance 5th side 20.90 - Ar.Co. 0.029848 - - - 10.000000 - - - 1.290257 1.320105 A.nd, As radius Is to cotaug. bearing 69° So is departure 19.51 - - To diff. latitude 7.49 S. - Ar. Co. 0.000000 - - - 9.584177 - - - 1.290257 0.874434 PROBLEM III. Example 2. 6ta. Bearing. Changed Bearing. Dist. N. S. . E. W. 1 S. 40i E. N. 85i E. 31.80 2.49 31.70 2 N. 54 E. North. (2.09) 3 N. 29i E. N.24|W. 2.21 2.01 .93 4 N. E. 35.35 (31.97) (15.08) 5 N. 57 W. S. 69 W. 20.90 7.49 19.51 6 S. 47 W. S. 7 E. 31.30 31.07 3.82 38.56 38.56 35.52 35.52 Prob. 4.] SUPPLYING OMISSIONS. 31 Then, As distance 4th side 35.35 - - - Ar. Co. 8.451611 Is to departure 15.08 1.178401 So is radius 10.000000 To sine chang. bearing N. 25° 15' W. 54 9.630012 Bearing 4th side N. 28° 45' E. And, As radius - - - - Ar. Co. 0.000000 Is to cos. chang. bearing 25° 15' .... 9.956387 So is distance ---.-- 1.548389 To diff. latitude 31.97 1.504776 PROBLEM IV. Example 2. (PI. 1, fig. 13.) Bearing. Dist. N. S. E. W. FA S. E. 31.80 AB N. 54 E. 2.08 1.23 1.68 BC N. 29i E. 2.21 1.92 1.08 CD N. 281 E. 35.35 31.00 17.00 DE N. 57 W. 20.90 11.38 17.52 EF S. W. 31.30 Diff. latitude of '. EA 45.53 19.76 17.52 17.52 Departure of EA 2.24 Then, As diff. lat. EA 45.53 . - . . Ar. Co. 8.341702 Is to departure 2.^4 0.350248 So is radius 10.000000 To tang, bearing EA 2° 49' 8.691950 32 SURVEYING. [Chap. II. And, As cosine bearing 2° 49' ----- Ar. Co. 0.000525 Is to radius - 10.000000 So is diff. lat. - - . - - 1.658298 To distance EA 45.59 - - - - 1.658823 To find AEF: AF 31.80 AE 45.59 Ar. Co. 8.341177 EF 31.30 Ar. Co. 8.504456 2)108.69 Half sum 54.34 1.735120 Difference 22.54 ------ 1.352954 """^" 2 )19.933707 Cos. i AEF 22° 6' - - - 9.966853 AEF 44° 12' Bearing of EA - 2° 49' EF S.47°~TW. To find EAF and bearing of FA : As AF 31.80 Ar. Co. 8.497573 Is to EF 31.30 1.495544 So is sin. AEF 44° 12' 9.843336 To sin. EAF - 43° 20' 9.836453 Bearing of EA 2° 49' ==" AF 40° 31' CHAPTER III. CONTENT OF LAND. PROBLEM I. Example 4. Here, Area = 176.4 x 176.4 = 31 1 16.96 Sq. Perches, = 194 A. 1 R. 36^96 P. Proe. 3.] CONTENT OF LAND. 38 Example 5. Here, Area = 52.25 x 38.24 = 1998.04 Sq. Ch, = 199 A. 3 R. 8.64 P. Example 6. Here, Area = 16.54 x 12.37 = 204.5998 Sq. Ck = 20 A. 1 R. 33.5968 P. Example 7. Here, Area = 21.16 x 11.32=239.5312 Sq. Ch. = 23 A. 3 R. 32.4992 P. PROBLEM 2. Example 2 . 18.37X13.44 246.8928 ,^^..^, ^ ^, ;re, Area = = = 123.4464 Sq. Ch. = 12 A. 1 R. 15.1424 P. Example 3. 49X34 1666 ^ „ Here, Area = — ^ — = ~2~ "^ ^^^ ^' = 5 A. R. 33 Pe. PROBLEM 3. •Example 2. (PI. 1, fig. L) As radius Ar. Co. 0.000000 Is to sin. A 47° 30' 9.867631 AB 15.36 1.186391 AC 11.46 1.059185 So is AB X AC To double area 129.78 2.113207 ABC - 64.89 Ch. = 6 A. 1 R. 38. 24 P 3 34 SURVEYING. [Chap. Ill, Example 3. (PL 1, fig. 14.) Here, As radius - Ai\ Co. 0.000000 Is to sin. A 66° 30' 9.962398 ^ . ,^ ,„(AB 13.84 1.141136 boisABXAUj^^ 18.23 - 1.260787 To 2 ABC 231.38 - 2.364321 ABC - 115.69 Ch. = 11 A. 2 R. 1L04 R Example 4. (PI. 1, fig. 15.) Here, As radius .--.-..-. Ar. Co. 0.000000 Is to sin. A 121° 45' ------- - 9.929599 ^ ■ AH &n iAB 19.74 - - - - - 1.295347 feo IS AJJ, AO j ^^ ^^^^^ ..... 1.239049 To 2 ABC 291,07 2.463995 ABC - 145.535 Ch. = 14 A. 2 R. 8.56 P. ^^"""^ PROBLEM 4. Example 2. (PL 1, fig. 1.) Here, Angle C = 180— (A + B) = 43°. Hence, A A • n \ radius - - - Ar. Co. 0.000000 As rad., sm. C | ^.^^ ^ ^^, _ ^^^ ^^^ ^^^^^^^^ , , . A • Tj < sin. A 63° - - - . 9.949881 Is to sm. A, sm. B j ^.^^ ^ ^^, _ _ ^^^^^^^^ ^ . ,^2 (AB 24.32 - - - - 1.385964 feo is At. i AB ------ - 1.385964 To 2 ABC 742.8 2.870868 ABC - ^L4 Ch. r= 37 A. R. 22.4 P. • """""^ Example 3. Here, the angle C = 94° 15'. Hence A A • r i rad. - - - Ar. Co. 0.000000 As rad., sm. C j ^.^^ ^ ^^, ^^, ^^^ ^^^ ^^^^^^^^ T , . A • -D < sin. A 37° 30' - - - 9.784447 Is to sm. A. sm. B < . „ „ ^ onL^nrm I sin. B 48° 15' - - - 9.872772 ^ • ,r,, (AB 17.36 - - - - 1.239550 f^o IS AtS j ^g 1.239550 To 2 ABC 137.25 -...-... 2.137515 ABC -~68!625 Ch. = 6 A. 3 R. 18 P. / Prob. 6.] CONTENT OF LAND. 35 PROBLEM 5. Example 2. Here, 10.64 + 12.28 + 9.00 = 3L92 = sum of sides. Half sum 15.96 log. 1.203033 r 5.32 0.725912 Remainders ) 3.68 0.565848 ( 6.96 0.842609 2)8.837402 Area 10)46.63 Ch. ..----- 1.668701 4.663 = 4 A. 2 R. 26.08 P. Example 3. Here, 20 + 30 + 40 = 90 = sum of sides. ' Half sum 45 - - 1.653218 /25 1.397940 Remainders <15 1.176091 (5 0.698970 2)4.926214 10)290.47" 2.463107 29,047 A. = 29 A. R. 7.52 P. PROBLEM 6. Example 2, Here, 16.10 x ^4^^ = 16.1x5.1 = 82.11 Ch. = 8 A. OR. 33.76 P. Example 3. 8 274- 12 43 Here, 24 X - — ^ — '— = 24 X 10.35 = 248.4 Ch. = 24 A. 3R. 14.4 P. 36 SURVEYING. [Chap. III. PROBLEM 7. Example 2. 12.41+8.22 Here, Area = ~ x 5.15 = 53.12225 Ch. = 5 A. 1 R. 9.95G P. Example 3. 11.34+18.46 Here, Area = ~ x 13.25 = 197.425 Ch. = 19 A. 2R. 38.8 P Prob. 9.] CONTENT OF LAND. 37 pq O C3 00 CO »o It T— 1 1 1—; CO CO tHO (:oco CO CO CO t^ CO 00 r-l U o CO CO lO T— 1 o o CO o o o co' o CO CO oo' ft ft o c4 o o r-l o "*. co' 1—1 00 o 1—1 05 ^ o CO 00 o I— 1 OS CO CO o T— I H O o CO o 1—1 02 CO ^ rH o 1—1 ;zi 1— ( Oi OQ l-H o c 1—1 1— 1 03 1—1 CO 1-H 05 o 1—1 ^ 1—1 00 I-I o o4 1—1 1—1 d d 1—1 1— ( "S CO oo CO Oi CO CO co" o o d CO V o 00 CO r-l o IC CO W V 05 •o >— 1 CO o CO CO V CO V 05 lO o CO CO ■ 1— 1 C<) eo 'tt lO CO 1—1 o o o o o o ICTtl o^ Ci ■^ ■*! oo TtH t^ t- o 2. -^ -i* c-i Ph CO of w OQ W 38 SURVEYING. [Chap. III. o o Tt< CO m CO Oi O 7-< TO t^ CO TO TO tH CMTf< 00 03 OS CO rH CO lO OO TO rHO o in lO T—< TfH 1—1 o ^ TO (M 00 as rH (M as ■^ ^ 00 CI id '^' rH* OO' id ^ CO id C4 CD CO in rH 00 o o ^ o t^ lO t^oo OS ^ ^ ^ C- r; Oi lO as CO o CO 00 -*• o lO o lO t^ CO CO ©■J CO TO ffq oo oo cq < Tt< O ^. oo CO CO c:> CO r-1 o 05 t-^ CO 1—1 CO CO CO as 00 id |z^ iO ^ CO 1— I CO TO C<1 ^ It^ 00 cq T— 1 CO ft r-l C£> OS OT CO Oi TO TO l>- 1— i TO o C<) 1— 1 O 05 t- CO 00 t- 00 iq o t-; O ^ OO TO (M o iq ^ \a<> o §■ ^' CO OJ Tt^ to' oo' CO Oi CO to' o to' O o o'!i>: CO* (M 1—1 tH 1—1 (M TO -* M^ lO lO lO 'st* TO fi Ah' lO CM iq a (O 1— 1 05 1 1 P-H iin 1 iin t=^ ^ o o o 00 i q ^ rt* t- T^ o ■^ ■^ 1 TO i. ■^ CD F^ i- TO 1-1 iTO 00 ■^*" -* K lO 05 CO CO 00 m 00 Oi TO CJ CO ^ CO CO '?} CO CO oT lO in •^ ]oo O Tf TO ^ ■ u J b 92 TO in •^ CO 00 in in s 05 to" r- oT 15" to" 1— 1 TO in ■^ < X s: irf TO 1?} to" in (7J q in in 05 1 0) < o 1 I— t r-H i-H rH o 1—1 1-^ 1— ( rH 1—1 O 1-1 r-^ 1— 1 1-t i-t O 1 12 kl t-4 rH 1-H I— 1 O o O l-H l-H 1—1 1— < O rH r-^ j-^ ^' rH 5 "oo" To" 00" ~~~' W t "^ 'in ^ 1© o 00 -rP r- c^ ^ CO ^' ^ CO CO "^j? i t^ t^ 00 ■^^^ c5" '^ 00" In" i?5" 0,0 ts H lO 05 CD CO 00 in 00 05 TO •*c^ CO TJH CO CD CQ TO CO oo iC . , t^ ICD ■* o" oo" o" rH t^ "co lO in Irt* 00 1-1 ^ •rr Tft CQ rH 03 CO iri •* CD* QD in id OJOJ TO TO ^ cJT CD" (M CD" TO" CO Tn" TO l^ I? OD TO C< in ■^ in rH a> <^ 02 05 tH id 1-; CO rt* a. TO 1—1 CD t^ o ^^ "* w o o' O c* ¥ m UJ lO 00 00 00 00 CO C* ■~D 00 in in T-* 05 00 '^ 00 « i=l l-^ id in 00 <*■ "^ in in in CO in TO_ t-^ GC3 CO' QD CO M ^ ^ x: ^ w e4 e4 W H ^ e4 K ^ H ^ ^ S CD TO o TO CD CD CO 1 o 00 CO S ^ TO o in t CQ 02 ^ ^ ^" ai ^ 02 m ^ 02 02 02 02' ^ « T-H (N TO ^ lO CO i> 00 a o rH CQ TO -^ in' CD i> J^ f-H l-H l-H r—i 1— ( 1—1 1— 1 £ — ^_ — ■■ Pros. 9.] CONTENT OF LAND. X o C-5 i-O USTjH OTf< o Co lOrtH oo rH o CO ■* 00 05 o^ t^ CO CO lO CO T|H ^ t- C o CO T-H 1—1 (M «5 00 oo I— 1 P5 CO ^ Prob. 9.j C N T E N T F L A N D . 41 As difF. lat. DF 3.91 Ar. Co. 9.407823 Is to depart. 19.73 1.295127 So is radius .....-- 0.000000 To tang, bearing N. 78° 47' E. - - - - - 10.702950 As cosine bearing 78° 47' - - - Ar. Co. 0.711036 Is to radius - 10.000000 So is diff. latitude 3.91 0.592177 To distance DF 20.10 r - 1.303213 FE 19.18 ED 9.61 --"...■- Ar. Co. 9.017277 DF 20.10 .-.---." " 8.696804 2)48.89 Half sum 24.445 - - - - 1.388190 Diff. 5.265 ----.--•-- 0.721398 2)19.823669 Cos. i FDE 35° 17' 9.911834 FDE 70° 34' Bearing DF N. 78 47 E. Bearing DE N. 8° 13' E. As FE 19.18 - - -. -8.717151 Is to DE 9.61 --...-.... 0.982723 So is sin. FDE 70° 34' -.-.... 9.974525 To sin. DFE" - - 28° 12' 9.674399 Bearing FD S. 78 47 W. 106 59 180 Bearing EF S. 73 1 E. 42 SURVEYING. [Chap. III. Example 6. (Fig. 81, Surveying.') CO 00 1-1 (M 00 lO 1—1 -* (M (M T}< GOO o TTl 05 ^ CO CO lO 05 Oi o O O O'* (>J o '^l >o 00 CO lO CO (M 1— ( 1— ( Tt< CO 2 CO CO t^ (M CO CO t- CO 00 CO (M CD < rH o CO lO CO ^ 00 to 1^ t^ T-^ Oi OS CD 1—1 o Oi CO CO Oi -^ ^ CO ■^ i-H CO lO CO or) ^ ^ (M (M J>-0 00 O rH OS t- »o a; p 1—1 tH ;-i <) ^ CO o lO 1—1 Oi o 00 00 Oi '^ 1—1 c4 tH CD CD 00 CO H ^ Oi CD 1—1 o CO CO oo' CO CO CO 1— ( CO 00 c<5 CO cc CD CO o CO i-H 1^ 00* Co" CO CO T-H 00 ^ 5 CO 00 r-J Oi o co 1—1 o 1—1 CO 00 00 o CO 1—1 o CO CD CO 00 c 10 lOTl* o -* •>* CD 00 o 03 CO T-l r-l O 03 Oi o> CDOJ ^ w^ l» CO fr: in rn W Tj! CD in in O in CO (») CO tH r-t Oi Ol CO >H 1H iH t-l O O ■i ^ iz; ^ rH OJ CO i© o'olw lO «^ o in 1 in cr. Ci rt -* CO o in (rt 00 ,03 rH 01 iH o O) I-l O ^ en CO < tH w ^ 1-1 ^ m lO o lO lO q o i> CD Oi 3 CO in in O! 03 ^ ■^ o 10 o 1-1 w (M 00 rH 00 ^ CO t- CO a M -2 10 o ^ 10 en ffl -in m OJ T)< m O o OJ ci (N o o o 10 in CO to o O! o 1-1 C5 fi o •* (T) in CO 1 1-1 1-1 o T-l 0} CO ■^ 10 ^ CO 1 00 in 03 © CO !> 1 oi T-l tH in O CO © in CD CO CD CD CO S 1 © CD C3 CO in o Tjl 1 o d © CO © 1-1 CO CD CO © d © iH CO in 00 ""! "=? d -ri5 IH ^ ol© (>! a ai i-i 1-1 O! 1 r-l CO '^ Tt* Ttl iH o> Oi rH d s © © d in © © d rH CD CO 1 iH OJ CO TH ^ ^ o5 C^ (M a? CO CO i> J lO lO * in in ffi © © O © ■* "rn o •^ ft o CO T-{ o rH (N tzi 46 SUKVEYING. [Chap. III. Problem 10. (Example 3.) Adding 1' to each of the angles, we find the bearings as follows ; O) THi> on ao-^ (MO O) coco (M r-l ■<* (^ CO CO o i-H CO QC-"* 70 CO ?* 05 ■^ -ctl OS 03 !>: CO M CO CO W CO I -^jH Tj; I CO od w 03 lO ! n\< -* CO O o o o o O O i> i> 03 o (W (<) o lO lO O CD CO CO f- (I) (»> o o* *-- 05 t^ CO

^ in o a o i-H OJ CO 'i* CO x> o 03 CD w o lo m CO © in OJ lO r' C3 Si o Ol CO o fT) •^ © in OJ Cf lO lO O T« iH t^ o in !in t- CO CO in 00 ^ 05 o iH © © © J> a < 1-1 1-1 iS o Ol m lO 1-1 CD CD O O OJ t^ iH 1-1 iH H CO CO £- 05 O t> O-l iH 1-1 OJ OJ 3 03 ^• 1 'S o m CD (M iiH ■^ ■^ Oi © lO OJ M o in CO Oil-* i> CO in in OJ ^ iH 1-1 0* a M i o lO CO o 1 1 CD !-^ IcO CO 1-1 © 1-1 © m o CO w in '^ iiniiH © T-i © OJ © SH o i o 1 o o Ol m i> CO CQ CO in in <-> O) CO o o m oj T-i m CO CO OJ t- o -^ fi o tH 1-1 OJ rti Tj! j> !> 00 00 05 O! PROB. li.J CONTENT OF LAND. 47 PROBLEM 13. Example 2. (PI. 2, fig. 5.) Here the various angles will be found to be as in the following proportions. Then, To find log. of GA : As sin. FAG 88° 30' - - . . . Ar. Co. 0.000149 Is to sin. GFA 68° 30' 9.968678 So is FG 20 ch. - - 1.301030 To GA - 1.269857 To find log. GB: As sin. FBG 42° x\r. Co. 0.174489 Is to sin. GFB 24° 9.609318 So is FG -1.301030 To GB 1.084832 To find log. GC: As sin. GCF 43° 15' Ar. Co. 0.164193 Is to sin. GFC 38° 9.789342 So is FG 1.301030 To GC 1.254565 To find log. GD: As sin. GDF 44° 30' ..... Ar. Co. 0.154338 Is to sin. GFD 59° - . ...... 9.933066 So is GF 1.301030 To GD - -^- - - - - - 1.388434 To find log. GE : Assin. GEF 35° 30' ..... Ar. Co. 0.236046 Is.to sin. GFE 103° 30' 9.987832 So is GF 1.301030 To GE 1.524908 48 SUKVEYING. [Chap. III. To find 2ABG: As radius Ar. Co. 0.000000 Is to sin. AGB 91° 9.999934 o • -or- Ai- ^BG 1.084832 So IS BG, AG j ^^ ^^^3^3^^ To 2 ABG 226.268 2.354623 Tofind2BGC: As radius Ar Co. 0.000000 Is to sin. BGC 15° 15' 9.420007 ^ ' rn rr i ^B - 1.084832 bo IS GB, GC I ^^ _ 1.254565 To 2 BGC 57.465 1-759404 . To find 2CGD: As radius Ar. Co. 0.000000 Is to sin. CGD 22° 15' 9.578236 a • nn nn \ ^C 1.254565 So IS GC, GD I ^j^ 1.388434 To 2 CGD 166.431 2.221285 To find 2 DGE : As radius ..-..-.. Ar. Co. 0.000000 Is to sin. DGE 35° 30' 9.763954 GD 1.388434 So is GD, GE ^ ^^ 1.524908 To 2 DGE 475.657 ----.--- 2.677296 To find 2 EGA : As radius - - Ar. Co. 0.000000 Is to sin. EGA 18° 9.489982 ^n ^.vr CA ^GE 1.524908 So IS EG, GA I ^^ ^269857 To 2EGA 192.640 - 2.284747 2 DGE 475.657 [ — 2 CGD 166.431 2 BGC 57.465 892.193 2 AGB 226.268 2)665.925 ABCDE 332.9625 Ch. = 33 A. 1 R. 7.4 P. / Prob. 5.] LAYING OUT AND DIVIDING LAND. 49 CHAPTER IV. LAYING OUT AND DIVIDING LAND. PROBLEM 1. Example 2. Here, 325 Acres = 3250 chains. And side = v 3250 = 57 chains. PROBLEM 2. Example 2. Here breadth = ^— ,- = — = 6.25 chains. 8 chains 8 PROBLEM 3. Example 2. Here, 27 A. 3 R. 20 P. = 4460 P. And, As 7 : 9 : : 4460 : 5734.2857. /5734.2857"== 75.725 = length. Also, As 9 : 7 : : 75.725 : 58.897 = breadth. PROBLEM 4, Example 2. (PI. 2, fig. 6.) Here, 114 A. 2 R. 33.4 P. = 1147.0875 chains. Also, 71147.0875 + 7.55^ = v/ 1204.09 = 34.7. And, 34.7 + 7.55 = 42.25 length. 34.7—7.55 = 27.15 breadth. ^ PROBLEM 5. Example 3. (PI. 2, fig. 7.) Here, 2 Acres = 320 Perches. 50 SURVEYING. [Chap. IV. And, . . P . . ( AB 30 P. - Ar. Co. 8.522879 AS At5, Sin, A j ^.^^ ^ ^j, jg, ^^^ ^^^ 0.023682 Is to 2 ABC 640 2.806180 So is radius - - 10.000000 To AC 22.53 1.352741 Example 4. (PI. 2, fig. 8.) AB 32.26 - Ar. Co. 8.491336 As AB, sin. A . ^.^^ ^ ^^^ ^^, ^^ ^^_ 0.002801 Is to ABCD 740 2.869232 So is radius 10-000000 To AD 23.09 1.363369 PROBLEM 6. Example 2. (PI. 2, fig. 9.) Here, 27 A. IR. 16 P. = 273.5 Ch. And, As ABC 273.5 - Ar. Co. 7.563043 Is to BDC 100 2.000000 So is AB 35.20 1.546543 To BD 12.87 r - - - 1.109586 PROBLEM 7. Example 2. (PI. 2, fig. 10.) Construction. Make AB, equal to the greater of the given sides (20). Draw BD perpendicular to AB, equal to twice the given area, divided by AB (12.39). Through D draw DC parallel to AB. Then if AC be made equal to the other given side (16.25), and BC be joined; ABC will be the triangle. For the Division Line. Make AP = 8.50 the given distance. Take AF to AC in the ratio of the part to be cut off to the whole area. Join PF, draw BG parallel to it ; then PG will be the division line. Pros. 9.] LAYING OUT AND DIVIDING LAND. 51 Demonstration. AB : AP : : AG : AF, Therefore, AB. AC : AP. AG : : AC . AG : AG.AF : : AC : AF, or AB.AC.sin. A : AP. AG.sia A : : AC : AF : : m : n (m being the whole area, and n the part to be cut off.) Hence, since AC . AB sin. A = m, AP. AG sin. A = n, and PG is .the division line. Calculation. As ABC 123.9375 Ar. Co. 7.906798 Is to APG 30 1.477121 ^ ■ Kx> Kn < AB 20 1.301030 So is AB.AC ] .^ ,„^„ \ AC 16.25 1.210853 To AP. AG - - - - 1.895802 AP = 8.50 0.929419 AG = 9.255 0.966383 PROBLEM 8. Example 2. (PI. 2, fig. 11.) Here, As BAC 100 ch. Ar. Co. 8.000000 Is to BDG 45 1.653213 So is BA^ S ^A 25 1.397940 (BA 1.397940 To BD^ - 2)2.449093 BD = 16.77 1.224546 PROBLEM 9. Example 2. (PI. 2, fig. 12.) Here the angles are, A= 71° 45', B = 49° 15', and C = 59°. Hence, sin. A 71° 45' Ar. Co. 0.022414 As sin. A. sin. B , . t» ^r^o-.^, ^-io^m^ \ sin. B 49° 15' " " 0.120580 T , J • r^ < radius 10.000000 Istorad.sm. C j ^.^^ ^ ^^^ _ _ _ _ ^^3^^^^ So is 2 ABC 80 ch. 1.903090 To AB^ . . ^ 2)1.979150 AB = 9.763 ......... .989575 52 SURVEYING. [Chap. IV, PROBLEM 10. Example 2. (PI. 2, fig. 13.) Here the angles A == 99° 30', B = 122°, and P = 41° 30'. , , , . . . T. ^ sin. A 99° 30' Ar. Co. 0.005997 And, As sm. A. sin. B | ^j^. ^ 122° - " " 0.071580 . ( radius 10.000000 Is to rad. . sm. P j ^^^^ p ^^o gQ, ... 9.821265 So is 2 ABCD 50 ch. - - 1.698970 To fourth term 39.61 - 1.597812 AB^ - - 36 "="""^ CD^ - V 75.61 = 8.695. Also, As sin. P 41° 30' Ar. Co. 0.178735 Is to sin. B 122° -...-.... 9.928420 So is DC— AB 2.695 0.430559 To AD 3.449 0.537714 Example 3. (PI. 3, fig. 1.) Here the angles are, A = 90°, B = 73° 30', and P = 16° 30'. . ( sin. A 90° - Ar. Co. 0.000000 Also, As sm. A.sm. B j ^j^^ g ^30 gQ, . » ,, 0.018263 ( radius 10.000000 Is to rad..sm. P j gj^ p jgo g^. . . . 9.453842 So is 2 ABCD 160 ch. .---.. . .'2.204120 To fourth term 47.39 1.675725 AB^ - 182.25 "^"""^ CD = V 134.86 = 11.61. And, As sin. P 16° 30' Ar. Co. 0.546658 Is to sin. B 73° 30' 9.981737 So is AB— CD 1.89 0.276462 To AD 6.38 0.804857 Prob. 14.] LAYING OUT AND DIVIDING LAND. PROBLEM 12. Example 2. (PI 3, fig. 6.) Here, As 2 : 1 : : 60^(100) : EF^ = 50, EF = V50 = 7.07. And, As BC (10) : EF (7.07) : : AB (15) ; AF = 10.605. PROBLEM 13. Example 2. (PI. 3, fig. 7.) Here the angles are, A = 36^ 30', B = 100° 30', C = 43°, E 74° 30', and F = 69°. As sin. E.sin. F Is to sin. C . sin. B So is BC^ sin. E 74° 30 Ar. Co. 0.016089 sin. F 69 - - " " 0.029848 sin. C 43° 9.833783 sin. B 100° 30' - - - 9.992666 BC 18.66 1.270912 BC 1.270912 To fourth term 259.54 - - 2.414210 4 9)1038.16 EF = v/ 11 5.35 = 10.74. As sin. A 36° 30' Ar. Co. 0.225612 Is to sin. E 74° 30' , 9.983911 So is EF 10.74- - - 1.031004 To AF 17.40 1.240527 PROBLEM 14. Example 2. (PI. 3, fig. 8.) YABM-JCD^^ And, DC— AB (29.4): FE— AB (16.13) : : AD (30) : AF = 16. 16 Here, EF = \/[ " 2 "^ ' "^ \/ 5796. 18 = 76.13. 54 SURVEYING. [Chap. IV. PROBLEM 16. Example 1. (PL 3, fig. 12.) The area of this tract may be found to be 858.552 square chains. (The latitudes and departures are mostly given in the subsequent oper- ations.) To find area ABODE, and the latitude and departure of EA. N. s. E. w. D. M. D. N. Areas. S. Areas. AB 9.15 6.46 40.86 373.8690 BC 17.21 17.20 17.20 296.0120 CD 10.41 2.89 2.89 30.0849 DE 3.61 16.60 21.38 77.1818 EA (14.86) (6.17) 42.15 626.3490 27.62 27.62 23.66 23.66 326.0969 2ABCDEI AEI 1077.3998 326.0969 751.3029 858.552 2)107.2491 63.6245 AE 14.J w. 5.17 D. M. D. 5.17 N. Areas. 76.8262 S. Areas. EF FA .93 21.49 21.49 19.9857 (15.79) (16.32) 26.66 420.9614 96.8119 AEF 96.8119 2)324.1495 162.07475 As AEF 162.07475 Ar. Oo. 7.790285 Is to AEI 53.6245 1.729363 So is lat. EF .93 —1.968483 To lat. EI .31 —1.488131 Prob. 16.] LAYING OUT AND DIVIDING LAND. As AEF - • - Ar. Co. 7.790285 Is to AEI 1.729363 So is depart. EF 21.49 1.332236 To depart. EI 7.11 - - 0.851884 55 N. s. E. w. AE 14.86 5.17 EI .31 7.11 lA (15.17) (1.94) As diff. lat. 15.17 Ar. Co. 8.819014 Is to depart. 1.94 0.287802 So is radius - - 10.000000 To tang, bearing AI 7° 17' 9.106816 As COS. bearing .------ Ar. Co. 0.003518 Is to radius 10.000000 So is diff. lat. 15.17 1.180986 To dist. AI 15.29 1.184504 56 MISCELLANEOUS QUESTIONS. [Chap. V. - CHAPTER V. MISCELLANEOUS QUESTIONS. Question 1. square yarc / / 2420 \ And radius = \/ (^rnTT^) = v/ 770.3081 = 27.75. Here 4 Acre = 2420 square yards ; 2420 \ Question 2. Construction. Make AB (PI. 4, fig. 1) = 40 = one of the given sides, and at A 320 draw AL perpendicular to AB and = -rjr = 8 ; through L draw GH parallel to AB, and with the centre A and distance = 20 = the other given side, describe an arc, cutting GH in D and C ; join AC, BC, AD, and BD : then will ABC and ABD answer the conditions of the pestion. Calculation. AE = AF = VAC^ — CE^ = ^400 — 64 = 18.3303 ; and BE = AB— AE = 21.6697 ; therefore, BC= v/ BE" + EC^=: V 533.57589809 = 23.099. Also, BF = AB + AF= 58.3303, and BD = n/BF+FP = V 3466.42389809 = 58.876. Another Solution. Find AE = AF as before. Then, from Geometry, BC' = AB' + AC^ - 2 AB.AE = 2000 - 1466.424 = 533.576, and BC = 23.099. Also, BD^ = AB^ + AD^ + 2 AB.AF - 2000 + 1466.424 = 3466.424, and BF ^ 58.876. Chap, v.] MISCELLANEOUS QUESTIONS. 57 Question 3. Here it is evident the number of acres will be inversely as the number of square yards in a Perch : Therefore, 6^ : 5.5^ :: 110 A. : 92 A. 1 R. 28^ P. Cheshire. And T : 5,5^ :: 110 A. : 67 A. 3 R. 25 if P. Irish. Question 4. 28 7 Here-r7r = — = twice the thickness of the wall, also 840 links = 554.4 feet=the longer diameter within the walls ; 612 links=:403.92 , , 7 1670.2 , ,. ., , feet — the shorter; 554.4 + -= — - — =: longer diameter outside, and 7 1218 7fi 403.92 +^= ^ = shorter. By Frob. 10, Chap. III. the area o o within the walls = 554.4 x 403.92 x .7854 = 223933.248 X .7854 = 175877.1729792 ft. = 4 A. R. 6 P. The area to the outside = 1670.2 1218.76 2035572.952 1598738.9965008 -^— X X .7854 = X .7854= ^ = 177637.6662778 feet. Therefore 177637.666 — 175877.173== 1760.493 = area the wall stands upon. Question 5. Here the area of an ellipse whose diameters are 3 and 2 is 4.7124. Then, since similar figures are as the squares of their like dimensions, we have. As 4.7124 : 160 :: 9 : 305.5768 = square of the longer dia- meter; consequently V 305.5768 = 17.481 = longer diameter; and 3:2:: 17.481 : 11.654 = shorter diameter. Question 6. Find the area of the triangle whose sides are 9, 8, and 6 ; thus, ' ^ ' -= 11.5, and 711.5x2.5x3.5x5.5= 7553.4375 =23.525 square perches. Also, 6 A. 1 R. 12 P. = 1012 P., and 23.525 : 1012 :: 82 : 2753.1562 = square of the second side; therefore 72753.1562 = 52.47. Also, 8:9:: 52.47 : 59.029 = longest side. 8:6:: 52.47 : 39.353 = shortest side. 58 MISCELLANEOUS QUESTIONS. [Chap. V. Question 7. (PI. 4, fig. 2.) To find ABC : AB 27.35 EC . 31.15 CA 38.00 2)96.50 Half sum 48.25 ' 1.683497 r 20.90 1.320146 Remainders j 17.10 1.232996 ( 10.25 -.-.... 1.010724 2)5.247363 ABC 420.417 2.623681 To find ACE: AC 38. CE 40.10 EA 22.20 2)100.30 Half sum 50.15 - - 1.700271 ( 12.15 -...-.. 1.084576 Remainders } io.05 1.002166 (27.95 1.446382 2)5.233395 ACE 413.71 ..-....-.. 2.616697 To find CED: CE 40.10 CD 23.70 DE 29.25 2)93.05 Half sum 46.525 1.667686 C 6.425 0.807873 Remainders j 22.825 -.-.--. 1.358410 (17.275 1.237408 2)5.071377 CED 343.311 2.535688 Chap, v.] MISCELLANEOUS QUESTIONS. 59 Hence the whole area = 420.418 + 413.71 + 343.308 = 1177.436 Ch. = 117 A. 2R. 38.976 P. Question 8. Construction. Make AB (PI. 4, fig. 3.) equal to half the given perimeter = 52, and bisect it in D ; make DC perpendicular to AB and equal to the square root of the given area ; with the centre C and radius equal to AD, describe an arc cutting AB in E, complete the rectangle AEFG and it will be the one required. The demonstration is evi- dent from Geometry. Calculation. DE = v/CE^— CD^ = ^/ 676— 480 = n/196= 14. AE = AD + DE = 26+14 = 40, and EF = EB = 26—14 = 12. Question 9. Construction. Draw any line AC, (PI. 4, fig. 4.) and in it take AE = 20 = given difference ; make EF perpendicular to AC = 20 ; join AF and pro- duce it to B, making FB = 20 ; then will AB be a side of the square. Demonstration. Since EA =:EF,the angles FAE and AFE are each equal to half a right angle, and AC must be the diagonal of the square. Again the triangles CEF and CBF are equal, since they are right angled at E and B, and have the hypothenuse and one leg in each equal : we have therefore CE = CB = CA— 20. Calculation. AF =VAE'' + EF2= n/800 = 28.284, and AB = AF + FB = 48.284 ; hence the area = AB^ = 2331.344656 sq. per. = 14 A. 2 R. 11.34 P. Question 10. Construction. Let ABCD (PI. 4, fig. 5.) be the given rectangle. In BA and BA produced take BH = BC, and AR = I AD. On BR describe the semicircle BPR, meeting DA produced in P ; bisect AH in O, and with the centre O and radius OP, describe the semicircle EPQ, make AG = AQ, complete the rectangle AF, and the thing is done. 60 MISCELLANEOUS QUESTIONS. [Chap. V. Demonstration. AF = AEx AG = AEx AQ = AP^ = ABx AR = f ABx AD = t AC. Also, BE = BH— HE = BC— AQ = AD— AG = GD. Calculation. AO = 1 AH = 10 : AP^ = ABx f AD = 6000 ; therefore, OP = v/AP^ + OA^ = V6100 = 78.1025; BE = BO— OE = 90—78.1025 = 11.8975. Question 11. Construction. Let ABD (PI. 4, fig. 6.) be the given circle. Draw the diameter AB and radius CD perpendicular to it ; take CF = | AC ; upon BF describe a semicircle cutting CD in E : with C as a centre and radius CE, describe the circle EGH, and the thing is done. Demonstration. CE is a mean proportional between CF and CB ; hence CF : CB : : CE^ : CB^ : : 4 : 5 ; and since circles are as the squares of their radii, we have GEH = j ABD. Calculation. V5 : v^4 : : AC (75) : EC = Z^^ >/5 ^150vA5 ^ 3Q^g ^ 67.082, and DE = DC— EC = 7.918. 5 Question 12. Construction. With the given distances form the triangle ABC, (PI. 4, fig. 7.) Upon AB describe the equilateral triangle ABD ; join CD and on it describe the equilateral triangle CDE, which will be the one required. Demonstration. Since BD and BC are by construction two of the given distances ; it is only necessary to prove that BE = AC, which is evident from the equaUty of the triangles DAC and DBE. Chap.V.] miscellaneous questions. 61 Calculation. In the triangle ABC, find the angle BAG, thus, BC 10 AC 7.5 Ar. Co. 9.124939 AB 12.5 ....... Ar. Co. 8.903090 2)30. 15 1.176091 5 0.698970 2)19.903090 Cos. i BAC 26° 34' - . - - . 9.951545 BAC 53° 8' Then in the triangle DAC we have DA and AC, and the angle DAC = 113° 8' to find DC, thus. As DA + AC 20 - Ar. Co. 8.698970 Is to DA— AC 5 0.698970 So is tang. — A±^5^ . 33° 26' .... 9.819684 ^ 2 To tang. DCA— ADC _ go 33- .... 9.217624 ACD - 42° 48' And, As sin. ACD 42° 48' Ar. Co. 0.167848 Is to sin. DAC 113° 8' - 9.963596 So is AD 12.5 - - 1.096910 To DC 16.92 1.228354 Then in CDE, we have the sides and angles to find the area thus. As radius Ar. Co. 0.000000 Is to sin CDE 60° 9.937531 o • nr^v^rkT? (CD 1.228354 SoisCDxDE jj^^ ^228354 To 2 CDE 247.88 2.394239 123.94 Ch. = 12 A. 1 R. 23.04 P. 62 MISCELLANEOUS QUESTIONS. [Chap. V. Question 13. Construction. With the given bearings and distances protract the figure ABCDfg PL 4, fig. 8. Join Ag, and with the centres g and A, and distances equal to the 4th and 7th sides, describe arcs cutting in G. Join AG and gG, and draw DE, EF, and FG respectively parallel and equal to gG, Df, and fg. Then will ABCDEFG be the required map. Calculation. To find the bearing and distance of gA. Bearing. Dist. N. S. E. W. AB S. 72W. 24.00 7.42 22.83 EC North. 38.00 38.00 CD N. 824 E. 41.00 5.35 40.65 Df S. 80 E. 11.50 2.00 11.32 % S. 26 W. 22.00 19.77 9.64 gA (14.16) (19.50) 43.35 43.35 51.97 51.97 As diff. lat. 14.16 Ar. Co. 8.848937 Is to departure 19.50 - - - - ■- 1.290035 So is radius 10.000000 To tang, bearing gA S. 54° V W. 10.138972 As COS. bearing 54° 1' --.--. Ar. Co. 0.230955 Is to radius - - - - 10.000000 So is diff. lat. 14.16 1.151063 To distance gA 24.10 1.382018 Chap, v.] MISCELLANEOUS QUESTIONS. 63 In the triangle AGg we have the sides to find the angles AgG and GAg; Thus, AG 37 gG 20 Ar. Co. 8.698970 Ag 24.1 Ar. Co. 8.617982 2)81.1 Half sum 40.55 1.607991 » Remainder 3.55 0.550228 2)19.475171 Cos. i AgG 56° 52i' - - - - 9.737585 AgG 113° 45' And, As AG 37 -..----. - Ar. Co. 8.431798 Is to gG 20 1.301030 vSo is sin. AgG 113° 45'.- - - .... 9.961569 To sin. gAG 29° 39' - - 9.694397 Applying now the bearing of gA to these angles we will have the bearing of gG or DE = S. 59° 44' E, and of GA = S. 83° 40' W The area will then be calculated as in the following table, viz. 64 MISCELLANEOUS QUESTIONS. [Chap. V. t^ Tt< o 00 CO lO o lO CO ^ Ph' ta to o o t^ I— 1 rH o lO S (M 00 CO 1 o lO CO l^ 1—1 lO lO ^ CO CO CO 00 o lO o uo CNl ^ c^' 1-H T— ( c<5 • CO Oi »o ^ CO Oi ^ OO ■* 1—1 1— ( CQ 1— 1 Ci 01 CM CO t (M o o 'CH o ■ r— 1 2 o Pm 3 o o OO' t^ od cm' . (>q o •* Ci oq s^ CO c3^ ft 1—1 1—1 1 ^ §§ ^ ?2 CQ ci td C o 02 1> o N 05 i-< '^ a> ■* Oi CO 1? CO o «: M o O m c I— 1 1—1 r— 1 1— 1 T-l 6 ■ CO 1 '^ 00 ~To ^ CD CO J^ w ci o5 CD C5 c^ CO CD lO QO C\! lO O (^( CO C: o c^' «* ^ s S 1 ^ od lO CO CO ■* o o O 1 o o Q (3 o o p 1 o lO o o (3 ^ c6 CO r-5 o 1-H p-l g^' CO M ^ _c e4 pq H ^ ^* !3 s s COW- 'S 72 CO 00 5 PO O Q H fe O EF = CEFG. . " Calculation. Since AB^ = | CE' CE^ = f AB^ = f the given area = 784, and CE = 28 ; hence EF ■- | EC = 21. Question 18. Construction. With the given bearings and distances protract the figure ABCD, (PI. 4, fig. 13.) and from B draw BP according to the given bearing 68 MISCELLANEOUS QUESTIONS. [Chap. V. and distance of the spring. Produce DA and CB to meet in F, and through P draw EH parallel to AD. Bisect AF in G, join EG, and draw BM parallel to it, and MN parallel to FE. Make MT perpen- dicular to MN, and equal to the square root of the given area. Take MU a third proportional to MN and MT ; draw UH parallel to MN, cutting AF in I; draw IK perpendicular to AF and equal to EP, and with the centre K and distance PH describe an arc cutting AD in Q ; draw QPR, and the thing is done. Denumstratiov . In the similar triangles FGE and FMB, we have FB : FM : : FE : FG ; therefore, 15.6, the triangle EFM = BFG ; but EFM= 1 FMNE, and BFG = h BFA ; hence FMNE = BFA. Again, be- cause the triangles EPR, IQS, and PHS are similar, and the homo- logous sides EP (IK), IQ, and PH (KQ) form a right angled trian- gle, we have from Geometry EPR + IQS=SPH. Add FISPE to each, and we have FQR = EFIH. But FBA = EFMN, hence BAQR = MNIH = MN.MU =MT2 = the given area. Calculation. From the bearings of the lines the angles may be found as follow. AFB = BEP = 23°, ABF = 84° 30', BAF = 72° 30', EBP - 145° 30', and EPB = 11° 30'. Then, in the triangle EBP we have all the angles and side BP, to find EP and EB : Thus, As sin. BEP 23° - - Ar. Co.. 0.408122 Is to sin. EBP 145° 30' - - 9.753128 So is BP 7.90 0.897627 To EP 11.452 1.058877 And, As sin. BEP Ar. Co. 0.408122 Is to sin. BPE 11° 30' 9.299655 So is BP 0.897627 To BE 4.031 0.605404 Chap.V]. miscellaneous questions. 69 Also, in the triangle ABF, all the angles and side AB are given, tofindBFand AF-; Thus, As sin. AFB 23° Ar. Co. 0.408122 Is to sin. BAF 72° 30' 9.979420 So is AB 15.20 1.181844 To BF 37.101 - - 1.569386 And, As sin. AFB Ar. Co. 0.408122 Is to sin. ABF 84° 30' 9.997996 So is AB - . - - 1.181844 To AF 38.722 1.587962 And FE = FB— BE = 33.07, and FG = i AF = 19.361 ; Also, As EF 33.07 .--..--- Ar. Co. 8.480566 Is to GF 19.361 1.286927 So is BF 37.101 "1.569386 To FM 21.721 1.336879 Now, in the parallelogram MIHN, we have MN = FE = 33.07, and IMN = F = 23°, and the area = 100 square chains, to find MI; Thus, MN 33.07 - Ar. Co. 8.480566 As MN, sin. IMN ^ ^.^^ j^^ ^3, ^^ ^^^ ^^^^^^2 Is to radius 10.000000 So is MIHN 2.000000 To MI 7.739 - - '- 0. Therefore PH = EH — EP = FM+MI — EP = 18.008. Now, in the right angled triangle IKQ, we have IK = EP = 11.452, and KQ = PH = 18.008, to find IQ; thus, KQ+KI = 29.46 log. 1.469233 KQ— KI = 6.556 0.816639 2)2.285872 IQ= 13,898 1.142936 Hence AQ = FQ — FA = FM+MI + IQ — FA = 4.636. 70 MISCELLANEOUS QUESTIONS. [Chap. V. Question 19. Construction. With the given bearings and distances, protract the figure ABCD, (PL 4, fig. 14;) then, by Prob. 15, Chap. IV. divide ABCD into two equal parts by the Hne EF, parallel to CD ; also, by the same pro- blem, divide ABCD, and EBAF, each into two equal parts by the lines OM and PN, parallel to AD ; join MN, produce it to I, and draw OH parallel to IM; join IH, then will EF and IH be the division hnes required. Demonstration. Because PN is parallel to OM, we have IN : NM : : IP : PO : : IG : GH, because NG is parallel to HM ; therefore, PG is parallel to OH, and consequently to IM. Now since OH is parallel to IM, we have IHM = lOM, to each add AIMD, and AIHD = AOMD = \ ABCD. In the same manner it may be shown that AIGF = i ABEF = i ABCD. Calculation. Draw EK and IL, each parallel to AD, and MU parallel to AB. From the given bearings find the angle A = 78° 30', B = 139° 45', C = 78° 45', and D = 63°. By Prob. 15, Chap. IV., find EF and AF, thus, . • r^ ■ T^ \ sin- C 78° 45' Ar. Co. 0.008426 Is to sin. A. sin. B j .-"• A 78° 30' - - - .- 9.991193 i sin. B 139° 45' ... 9.810316 SoisAB^ j^B 23 ^-3^1^28 ^ AB 1.361728 To fourth term 383.274 2.583510 CD" 2161.3201 . 2)2544.5941 EF = 1/1272.2970 = 35.67 Chap, v.] MISCELLANEOUS QUESTIONS. And in the triangle ECK, As sin. E 38° 15' Ar, Co. 0.208243 Is to sin. C 78° 45' 9.991574 So is CD— EF 10.82 - 1.034227 To FD - 17.14 - - -1.234044 AD 49.64 AF 32.50 71 Then in the triangle ECK, we have the angles and side EK = FD, to find EC, thus, As sin. C 78° 45' - - • - - - - Ar. Co. 0.008426 Is to sin. K 63° - - ' 9.949881 So is EK 17.14 1.234044 To CE 15.57 1.192351 Consequently BE = BC — CE = 14.93. Now by the same pro- l>lem find OM, AO, FN and AP, thus, . A • -n i ^^"- A - - Ar. Co. 0.008807 As sin. A. sin. D ^ ^.^^ ^ _ _ ^^_ ^^_ 0.050119 . „ . ^ ( sin. B 9.810316 Istosm.B.sm.C j ^.^^ ^ ...... 9.991574 ( BC 30.50 ... - 1.484300 ^^ *^ -^^^ i BC 1.484300 To fourth term 675.18 2.829416 AD^ 2464.1296 == 2)3139.3096 OM = V 1569.6548 = 39.62 And, As sin. EMD 38° 30' Ar. Co. 0.205850 Is to sin. D 9.949881 So is AD— OM 10.02 1.000868 To AO 14.34 1.156599 72 MISCELLANEOUS QUESTIONS. [Chap. V. And, l Sin. F - - - Ar. Co. 0.050119 . „ . „ ( sin. B 9.810B16 Is to sm. B.sin. ii J • r, nnn-i^^nA ( sin. E 9.991574 . (BE 14.93 .... 1.174060 So is BE j gj, ^^^^^g(^ To Fourth term 161.78 2.208936 AF^ .... 1056.25 2)1218.03 PN ... ^/609.01= 24.68. And, As sin. HMD 38° 30' . . - - Ar. Oo. 0.205850 Is to sin. F 9.949881 So is AF — PN 7.82 ........ 0.893207 To AP 11.19 1.048938 Hence OP = AO — AP = 3.15 ; wherefore we have OM— PN (14.94) : PN (24.68) : : OP (3.15) : IP = 5.20 ; and AI = AP— IP = 5.99. In the triangle MUL we have the angle U = A, L = D, and side MU = 10 = IP + PO == 8.35, to find ML and UL; thus, As sin. ULM 63° Ar. Co. 0.050119 Is to sin. MUL 78° 30' .... . ■ . 9.991198 So is MU 8.35 ..." 0.921686 To ML 9.18 0.962998 And, As sin. MLU 63° Ar. Co. 0.050119 Is to sin. UML 38° 30' 9.794150 So is MU 8.35 0.921686 To UL 5.83 0.765955 Chap, v.] MISCELLANEOUS QUESTIONS. 73 Therefore IL = lU+UL = OM+UL = 45.45, and from the simi- lar triangles ILM and OMH, we have As IL (45.45) : LM (9.18) :: OM (39-62) : MH = 8. Now, in the triangle ILH, we have the angle L = D, and sides [L and LH = LM4-MH = 17.18, to find the angle LIH; thus, As LI + LH G2.63 Ar. Co. 8.203218 Is to LI — LH 28.27 - - 1.451326 So is tang. LHI + LjH _ ^go 30' . . . . io.212681 LIH - ... 22 7 Bearing IL - - 66 15 IK - S. 88 22 E. To tang. i^5? yi? . 36 23 - - - - 9.867225 * 2 =^=^= I 'I.. in: I I'lJIT. 1 rLiri-: :i G 1 A IjT ...-■•■" 1 ji: « /li PL.aK i