^b' •• ^^^\ 'u^c,^ 3P VI ^Ovl,. -'^C^^- ^40^ ^"^^. * d«/7^??, •» O 3.0 y , „ v^V ^'-'t. ^°^ ' ^^ " JOi ^ "- '^0* -^/ -^-fe-. %.** .-A- \/ .•^'t %,** :A-^ \>/ .-^fe-. %,** /■ , .,-.-:. /\ W\**'\ --W" /\ '"W-' *-^'^^- '-W*" /\ "•: °"^"- co\-:^."°o .^^\-^%\ co^-^.> yV^iX /.ci^^-'^o ' >>•, '^ V^R^V^^ ♦ AV -J* /y.^^X o^^^i^"°o /\c;^/\ co^^:^"°o .-^\w;^/\ / * ay o * ^^. ♦#», ^ V-0^ » . s .\ > **\.-;4.-.\. /.ij^:->o ..**,-i:^.\. ./,.iSi;;.>o ,/\c:^. >, c° %^ < -^^0^ » ^ bV ^^-n^. 'n^.o^ • rt^Atv-.. . ^ • ci?;?^.^,'^. o .V ^^ . 0^ oo-,. -^O, ,-^'^\.._^J^^, % A"- ••'* A^ <. ^ -^0^ f ^^•^°t. ^. ':^-,- .V' -q,/:-^- .^ •*bv* :;^&'' '^-^^o^' r^'^R'; '^ov^' ^"^^^^'. >-.^ V^O^ J^ 8910 Bureau of Mines Information Circular/1982 Thermodynamic Properties of Selected Transition Metal Sulfates and Their Hydrates By Carroll W. DeKock UNITED STATES DEPARTMENT OF THE INTERIOR Information Circular 8910 Thermodynamic Properties of Selected Transition Metal Sulfates and Their Hydrates By Carroll W. DeKock UNITED STATES DEPARTMENT OF THE INTERIOR Jannes G. Watt, Secretary BUREAU OF MINES Robert C. Horton, Director This publication has been cataloged as follows: DeKock, Carroll W Thermodynamic properties of selected transition metal sulfates and their hydrates. (Information circular / United States Department of the Interior, Bureau of Mines ; 8910) Bibliography: p. 42-45. Supt. of Docs, no.: I 28.27:8910. 1. Transition metal compounds— Thermal properties. 2. Sulphates- Thermal properties. 3. Hydrates— Thermal properties. I. Title. II. Series: Information circular (United States. Bureau of Mines) ; 8910. -^F^295tU4 [TN693.T7] 622s [549'. 75] 82-600258 CONTENTS Page Abstract 1 Introduction 1 Methods , conventions , and symbols 1 Estimation procedures for hydrates 3 Discussion of thermodynamic properties 4 Vanadium 4 VOSOi+(c) 4 V0S0i+-nH20(c) 4 Chromium 4 Cr2(S04)3(c) 4 Cr2(SOi+)3«nH20(c) 4 Manganese 5 MnSOt+( c) 5 MnS0^•H20(a,c) 5 MnSOit«4H20(c) 5 MnSOi+«5H20(c) 5 MnSOit •7H20( c) 5 Dissociation of MnS0i+»nH20(c) 6 Iron 6 FeSOit(c) and hydrates 6 Fe2(S0O3(c) 7 Cobalt 7 CoSO^(c) 7 CoS0i+«H20(c) 7 CoS04»6H20(c) 7 CoSOi+«7H20(c) 8 Nickel 8 NlS04(c) 8 NlS0it»H20(c) 8 NlS04»4H20(c) 8 NlSOi+»6H20(c) 9 NlSOi+»7H20(c) 9 Copper 9 CuSOt+Cc) 9 CuS04'H20(c) and CuSOi+«3H20(c) 9 CuSOi+ • 5H20( c) 9 Cu2S04(c) 10 CuO«CuSOit(c) 10 Zinc 10 ZnS04(c) 10 ZnS0i+'H20(c) 11 ZnS04»6H20(c) 11 ZnS0i+«7H20(c) 11 Zn0*2ZnS0i+(c) 11 Thermal decomposition of anhydrous metal sulfates 11 Tables 13 References 42 11 ILLUSTRATIONS Page 1. Gibbs energy of decomposition for Cr2(SOi+)3(c) and Fe2(S04)3(c) according to the reactions given in tables 53 and 55 12 2. Gibbs energy of decomposition for FeSOi+(c) , CoSOi+Cc) , and NiSOi+Cc) according to the reactions given in tables 54, 56, and 57 12 3. Gibbs energy of decomposition for CuSOi+(c) , CuO»CuSOi+(c) , ZnSOi+(c) , and ZnO*2ZnSOit(c) according to the reactions given in tables 58-61 12 TABLES 1. Thermodynamic properties of V0S04(c) 13 2. Thermodynamic properties of V0S0i|»H20(c) 13 3 . Thermodynamic properties of VOSOit •3H20( c) 14 4. Thermodynamic properties of VOS04*5H20(a,c) 14 5. Thermodynamic properties of VOSOt+«5H20(P,c) 15 6. Thermodynamic properties of VOSOit»6H20(c) 15 7. Thermodynamic properties of Cr2(SOi+)3(c) [Formation: 2Cr(c) + 3S(c,Jl) + 6 02(g) = Cr2(SO^)3(c) ] 16 8. Thermodynamic properties of Cr2(SOi+)3(c) [Formation: 2Cr(c) + 1.5S2(g) + 6 02(g) = Cr2(SO^)3(c) ] 16 9. Thermodynamic properties of [Cr2(H20)6(SOi+)3 ] •2H20(c) 17 10. Thermodynamic properties of [Cr(H20)6] 2(SOi+)3 •2H20(c) 17 11. Thermodynamic properties of [Cr(H20)6] 2(SOi+)3 •3H20(c) 18 12. Thermodynamic properties of [Cr(H20)6] 2(80^)3 •4H20(c) 18 13. Thermodynamic properties of [Cr(H20)6] 2(SOi+)3 •5H20(c) 19 14. Thermodynamic properties of MnS0i4(c) [Formation: Mn(c) + S(c,Jl) + 2 02(g) = MnSOt+(c)] 19 15. Thermodynamic properties of MnSOi+(c) [Formation: Mn(c) + 0.5S2(g) + 2 02(g) = MnSOi+(c)] 20 16. Thermodynamic properties of MnS0it»H20(a,c) 20 17. Thermodynamic properties of MnS0i+*4H20(c) 21 18. Thermodynamic properties of MnSOi+*5H20(c) 21 19. Thermodynamic properties of MnSOi+*7H20(c) 22 20. Thermodynamic properties of FeSOt+(c) [Formation: Fe(c) + S(c,Jl) + 2 02(g) = FeSOit(c)] 22 21. Thermodynamic properties of FeSOi+(c) [Formation: Fe(c) + 0.5S2(g) + 2 02(g) = FeS04(c)] 23 22. Thermodynamic properties of FeS0i+»H20(c) 24 23. Thermodynamic properties of FeS04»4H20(c) 24 24. Thermodynamic properties of FeS0i4*7H20(c) 25 25. Thermodynamic properties of Fe2(S04)3(c) [Formation: 2Fe(c) + 3S(c,l) + 6 02(g) = Fe2(SOi+)3(c) ] 25 26. Thermodynamic properties of Fe2(SOtt)3(c) [Formation: 2Fe(c) + 1.5S2(g) + 6 02(g) = Fe2(S04)3(c) ] 26 27. Thermodynamic properties of CoSOi+(c) [Formation: Co(c) + S(c,Jl) + 2 02(g) = CoSOit(c)] 26 28. Thermodynamic properties of CoSOtt(c) [Formation: Co(c) + 0.5S2(g) + 2 02(g) = CoSOi+(c)] 27 29. Thermodynamic properties of CoS0it*H20(c) 27 30. Thermodynamic properties of CoSOit»6H20(c) 28 31. Thermodynamic properties of CoSOi+*7H20(c) 28 32. Thermodynamic properties of NiSOi+(c) [Formation: Ni(c) + S(c,i) + 2 02(g) = NiSO^(c)] 29 iii TABLES — Continued Page 33. Thermodynamic properties of NiSO^(c) [Formation: Ni(c) + 0.5 S2(g) + 2 02(g) = NiS04(c)] 29 34. Thermodynamic properties of NiS0i+»H20(c) 30 35. Thermodynamic properties of NiS0it»4H20(c) 30 36. Thermodynamic properties of NiS0i|«6H20(a,c) 31 37. Thermodynamic properties of NiS0i+»7H20(c) 31 38. Thermodynamic properties of CuSOi+(c) [Formation: Cu(c) + S(c,Jl) + 2 02(g) = CuSOi+(c)] 32 39. Thermodynamic properties of CuSO^(c) [Formation: Cu(c) + 0.5S2(g) + 2 02(g) = CuSOit(c)] 32 40. Thermodynamic properties of CuS0i+»H20(c) 33 41. Thermodynamic properties of CuS04»3H20(c) 33 42. Thermodynamic properties of CuSOi+»5H20(c) 34 43. Thermodynamic properties of Cu2S0i+(c) 34 44. Thermodynamic properties of CuO»CuSOi^(c) [Formation: 2Cu(c) + S(c,Jl) + 2.5 02(g) = CuO«CuSOit(c) ] 35 45. Thermodynamic properties of CuO»CuSOi+(c) [Formation: 2Cu(c) + 0.5S2(g) + 2.5 02(g) = CuO«CuSOi+(c) ] 35 46. Thermodynamic properties of ZnSOit(c) [Formation: Zn(c,Jl) + S(c,Jl) + 2 02(g) = ZnSOit(c)] 36 47. Thermodynamic properties of ZnS04(c) [Formation: Zn(c,Jl,g) + 0.5S2(g) + 2 02(g) = ZnSOi+(c)] 37 48. Thermodynamic properties of ZnS0i+*H20(c) 37 49. Thermodynamic properties of ZnS0i4»6H20(c) 38 50 . Thermodynamic properties of ZnSOif • 7H20( c) 38 51. Thermodynamic properties of ZnO«2ZnSOi+(c) [Formation: 3Zn(c,Jl) + 2S(c,Jl) + 4.5 02(g) = ZnO»2ZnSOt+(c)] 39 52. Thermodynamic properties of ZnO*2ZnSOi+(c) [Formation: 3Zn(c,Jl,g) + S2(g) + 4.5 02(g) = ZnO»2ZnSOi+(c) ] 39 53. Thermodynamic data for the reaction l/3Cr2(SOi+)3(c) = l/3Cr203(c) + S03(g).. 40 54. Thermodynamic data for the reaction FeS04(c) = FeO(c) + S03(g) 40 55. Thermodynamic data for the reaction l/3Fe2(SOit)3(c) = l/3Fe203(s) + S03(g).. 40 56. Thermodynamic data for the reaction CoS0i+(c) = CoO(c) + S03(g) 40 57. Thermodynamic data for the reaction NiS04(c) = NiO(c) + S03(g) 40 58. Thermodynamic data for the reaction 2CuS0i+(c) = CuO«CuS04(c) + S03(g) 41 59. Thermodynamic data for the reaction CuO•CuSO^(c) = 2CuO(c) + S03(g) 41 60. Thermodynamic data for the reaction 3ZnS04(c) = ZnO»2ZnSOi+(c) + S03(g) 41 61. Thermodynamic data for the reaction 0.5ZnO»2ZnSO4(c) = 1.5ZnO(c) + S03(g)... 41 THERMODYNAMIC PROPERTIES OF SELECTED TRANSITION METAL SULFATES AND THEIR HYDRATES By Carroll W. DeKock ^ ABSTRACT Thermodynamic data for selected metal sulfates were critically evaluated and compiled as part of the Bureau of Mines program to provide a scientific base for use in developing new technology and predicting the feasibility of new processes. Values for Cp°, S°, H° - H298, -(G° - H298)/T, AHf°, AGf°, and log Kf as a function of temperature are given in tabular form. Thermodynamic data were compiled for VOSOi^, Cr2(S04)3, MnSOit, FeSOi^, Fe2(S04)3, CoSOit, NiSOi^, Cu2S04, CuSO^, CuO»CuSOi+, ZnSOit, and ZnO«2ZnSOi4, together with their stable hydrates. INTRODUCTION As a part of the Bureau of Mines continuing effort to provide thermodynamic data for mineral technology advancement, thermodynamic properties of selected tran- sition metal sulfates and their hydrates were critically evaluated and compiled. This compilation is the first in a planned series on the thermodynamic properties of metal sulfates. Kellogg (22), in 1964, reviewed the thermodynamic properties of many of the anhydrous metal sulfates found in this compilation. His values were based on high- temperature sulfate decomposition data. The thermodynamic properties here are calculated on the basis of calorimetric data, many of which were unavail- able in 1964. No review of the hydrated metal sulfates exists. This compilation has been prepared in the same format as Bureau of Mines Bul- letin 672, "Thermodynamic Properties of the Elements and Oxides," by L. B. Pankratz (36). The values for the standard heat capacities (Cp°), high-temperature relative enthalpies (H° - H598) , enthalpies of formation (AHf °) , and Gibbs energies of forma- tion (AGf°) are given in tabular form. The tables include Gibbs energy functions, -(G° - H298)/T, and logarithms (base 10) of the equilibrium constants of formation, log Kf. Where possible, all phases of an element or compound are presented in a single table. Temperatures of transformations and thermodynamic properties at these tem- peratures are included in the table. Immediately below the table, the nature of transformations are given along with their associated enthalpies. All thermodynamic values for the elements are from Pankratz (36). METHODS, CONVENTIONS, AND SYMBOLS The values in this compilation are the result of a review and critical evalua- Research chemist, Albany Research Center, Bureau of Mines, Albany, Oreg.; faculty !mber, Oregon Stat( 2 Underlined numbei end of this report. member, Oregon State University, Corvallis, Oreg. 2 Underlined numbers in parentheses refer to items in the list of references at the tion of relevant thermodynamic data through July 1981. Standard enthalpies of for- mation at 298.15 K are corrected to the latest CODATA (8^) values where the accuracy of the original djita warrants such care. The CODATA value for the standard heat of formation of S0^ (aq) at infinite dilution is the major correction for this docu- ment. CODATA gives AHf°(SO? , <=°aq) = -217.4 kcal/mol, while Wagman (47) reports AHf°(SO^ , "'aq) = -217.32 kcal/mol. Sulfate ion corrections in this document are all based on the CODATA value. Also, AHf°(H20,Jl) = -68.315 kcal/mol, used throughout this review, is from Wagman (47) . The selected experimental data were fitted to a polynomial in terms of tem- perature by using a modified form of the computer program described by Justice ( 20) . This program, along with a plot of the function (H° - H298)/(T-298.15) , which takes a known value of Cp° at 298.15 K, was used to merge high-temperature data smoothly with low-temperature heat capacity data. The resulting polynomial was then used in a subroutine of the program to calculate standard heat capacities, relative enthal- pies, Gibbs energy functions, and standard entropies at selected temperatures. In addition, tables 1-52 include values for the standard enthalpy of formation, Gibbs energy of formation, and the logarithm of the equilibrium constant of formation. Tabulated values are given for the substances in their standard states (indicated by the superscript "°"). References for data used in this compilation are given in the bibliography. Additional sources reviewed and considered less reliable are not included. Esti- mates are used where the necessary data were lacking, as explained in the section on estimation procedures. Estimated and extrapolated values are indicated in the source note below each table. The common practice of tabulating five- and sometimes six-digit values has been followed. For example, enthalpy values are given to the nearest calorie. The number of digits given is not intended to reflect the accuracy of the experimental values used, but rather to produce internal consistency in the tables. In the text, values are given to the significant figures to which they are thought to be accu- rate. The following is a list of symbols and constants used: T Thermodynamic temperature in kelvin. K Kelvin, the unit of thermodjmamic temperature. Cp Heat capacity at constant pressure. S Entropy. H - H298 Enthalpy increment between T and 298.15 K. (G - H298)/T Gibbs energy function, [(H - H298)/T] " S. AH Enthalpy change (AHf = enthalpy of formation). AG Gibbs energy change (AGf = Gibbs energy of forma- tion) . Log K Logarithm (base 10) of the equilibrium constant (Log Kf = logarithm of equilibrium constant of formation) . cal Thermochemical calorie, 1 cal = 4.1840 j. mol Mole, gram formula weight or molar mass. In Natural logarithm, base e = 2.7183. P Pressure in atmospheres, 1 atm = 101.325 kPa. R Gas constant, 1.98719 cal/mol«K. F Faraday constant, 23,060.9 cal/v»equiv. " Standard state. ESTIMATION PROCEDURES FOR HYDRATES The entropies and heat capacities for a number of hydrated sulfates in this study required estimation. Excellent heat capacity and entropy data are knovm for the 3d transition metal sulfate hydrates FeSOi+«7H20, CoSOi+«6H20, CoSOh«7H20, NiSOtt»6H20, NiSOit»7H20, CuS0it*H20, CuSOi+»3H20, CuSOt+»5H20, ZnSOit«6H20, and ZnSOi+»7H20. The average increase in heat capacity per water molecule for these 10 compounds is 9.3 cal/mol»K. Phlllipson and Finlay (38), in a review of 31 hydrates, found a similar increase of 9.26 cal/mol»K per H2O molecule. Accordingly, the heat capacities for hydrates were estimated by adding 9.3 cal/mol"K per mole H2O to the heat capacity of the anhydrous compounds to obtain the heat capacity at 298.15 K. The entropy increase per mole of H2O for the 10 hydrates is 9.46 cal/mol*K. In the absence of other data for estimation, 9.5 cal/mol*K per mole H2O was added to the entropy of the anhydrous compound to obtain the entropy of the hydrate at 298.15 K. This was the only estimation method used for the vanadium and chromium sulfate hydrates. Other estimation procedures, tailored for individual compounds, are discussed in the text. With the values at 298.15 K in hand, it then was necessary to estimate the heat capacities above 298.15 K. This was a more complex problem because no data exist for any hydrates above about 350 K. For hydrates for which low-temperature data are available, heat capacities up to 550 K were estimated by extrapolating the low- temperature data, using a least squares fit with the quadratic equation, Cp = a + bT + cT^. For salts for which data are not available, high-temperature heat capacities were estimated using the following equation: Cp(T) = Cp(298.15) + b(T-298.15), where b is a coefficient dependent on n, the number of water molecules. The values calculated for b are: 1 0.09 2 .10 3 .132 4 .144 5 .180 6 .216 7 .252 These values of b were determined by observing that the heat capacity increase for tetrahydrates, hexahydrates, and heptahydrates averaged 1.8 cal/mol*K per mole H2O over the temperature range 250 to 300 K, a 50-degree interval. Similar data for dihydrates show an increase of 2.5 cal/mol*K, and for monohydrates, 4.5 cal/mol«K (14) . By linear interpolation, a value of 2.2 cal/mol»K was assigned for the tri- hydrates. DISCUSSION OF THERMODYNAMIC PROPERTIES Vanadium VOSOit(c) The enthalpy of formation at 298.15 K and entropy at 298.15 K are from Wagman (49). The heat capacity at 298.15 K was estimated to be 29 cal/mol*K by adding the heat capacity of VO (10.86 cal/mol*K) to the estimated heat capacity of the sulfate ion (18 cal/mol*K) (28) . High-temperature enthalpies were estimated by comparison with the known high-temperature enthalpies of MnSOit(c) (42). V0S0it»nH20(c) Reggiani, Tachez, and Bernard (41) determined the hydration enthalpies for the hydrated vanadyl sulfates, V0S0i+«nH20, by solution calorimetry. The standard enthalpies of formation of the hydrates at 298.15 K were determined from these data and the standard enthalpy of formation of VOSOi+(c) as reported by Wagman (49). The entropies at 298.15 K for the various hydrates were estimated by adding 9.5 cal/ mol»K per mole H2O to the entropy of VOSOi+(c). Heat capacities for the various hydrates were estimated as discussed earlier. Chromium Cr2(SOi,)3(c) Jacob, Rao, and Nelson (18) studied the decomposition of Cr2(SOt|)3 (c) over the temperature range 882 to 1,040 K, using thermogravimetric and differential thermal analyses. Over this temperature range, the change in the standard Gibbs energy for the reaction Cr203(c) + 3S03(g) = Cr2(S04)3(c) was found to be AG" = -143.078 + 0.1296T kcal/mol. This yielded a second-law value for AH° = -143.078 kcal/mol at 961 K for the above reaction. High-temperature enthalpies for Cr2(SOit)3(c) were estimated by adding the difference in known heat capacities between Cr2(S04)3(c) and Fe2(SOt|)3 (c) at 298.15 K (2.2 cal/mol«K) to the known high-temperature heat capacity of Fe2(SOi4)3 (c) (37) . This yielded an enthalpy difference between 298.15 K and 961 K equal to 61.4 kcal/mol. Combining this value with the appropriate enthalpies of Cr203(s) and S03(g) from Pankratz (36) yielded AHf°[Cr2(S04)3(c)] = -710 kcal/mol at 298.15 K. Alternatively, a third-law value may be obtained by combining the above heat capacity values with the low-temperature heat capacities measured by Vasileff and Grayson-Smith (45) to obtain the absolute entropy of Cr2(S04)3 in the temperature range of interest. The latter work yielded S298 = 61.85 cal/mol»K (28). This value and the heat capacities were used to obtain a third-law value of AHf'^Cr2(SOit)3 (c) ] = -705 kcal/mol, which is the adopted value. Cr2(S04)3 •nH20(c) Heat capacities and entropies for the chromium sulfate hydrates were estimated as discussed earlier for V0S0tt»nH20(c) . Manganese MnSOi+(c) The CODATA (8^) enthalpy of formation value for the sulfate ion at infinite dilution was used in recalculating the results of Southard and Shomate (42) to obtain AHf ° [MnSOi+(c) ] = -254.70 kcal/mol. This value is adopted. The enthalpy of solution at infinite dilution, AH°soln [MnSOit(c)] = -15.5 kcal/ mol^ is from Wagman (48) . When this value was combined with the CODATA value for SO^ (aq) and Wagman' s Mn^ (aq) value for the enthalpy of formation of the infinitely dilute ions, AHf ° [MnS04(c) ] = -254.66 kcal/mol was obtained, which is in excellent agreement with the adopted value. The entropy at 298.15 K is from Moore and Kelley (34) , who measured the low- temperature heat capacities of MnSOit(c). The high-temperature enthalpies are from Southard and Shomate (42) . MnS0i+«H20(a,c) The enthalpy of formation of MnS0i+«H20(a,c) is from Wagman (48) , corrected for the enthalpy of formation of the sulfate ion at infinite dilution. The entropy at 298.15 K was estimated as follows: The average difference in entropy between the monohydrates and anhydrous salts for the sulfates of Fe , Ni , Cu, and Zn is 8.18 cal/mol*K. Adding this value to the entropy of MnS0i+(c) yielded S298 = 35 cal/mol*K (rounded) . The heat capacity of MnS0it»H20(c) was estimated by adding 9.3 cal/mol«K to the heat capacity of MnSOi+(c) to give Cp298 = 33 cal/mol»K. MnSOit»4H20(c) The enthalpy of formation of MnSOit»4H20(c) at 298.15 K was taken from Wagman (48) after correcting for the enthalpy of formation of the sulfate ion (8^). The heat capacity at 298.15 K was estimated by adding 4*9.3 cal/mol»K to the heat capacity of MnSOi+(c) . The entropy at 298.15 K was estimated to be 65 cal/mol*K as discussed under "MnSOi+»7H20." MnSOi+«5H20(c) The enthalpy of formation of MnS0i+*5H20(c) at 298.15 K was taken from Wagman (48) after correcting for the enthalpy of formation of the sulfate ion (8^). The heat capacity at 298.15 K is from Wagman. The entropy was estimated to be 75 cal/mol»K as discussed under "MnSOi+*7H20." MnS0i+«7H20(c) The enthalpy of formation of MnS0i+»7H20(c) at 298.15 K was taken from Wagman ( 48 ) after correcting for the enthalpy of formation of the sulfate ion (8). The entropy at 298.15 K was estimated as follows. The entropies of the heptahydrates of the sulfates of Fe, Co, Ni, and Zn are well known (4, 30, 40, 43) . The average difference between the entropies of these heptahydrates and their anhydrous sulfates is 67.65 ±1.25 cal/mol»K. Adding this value to the entropy of MnS0i+(s) at 298.15 K yielded S298[MnS0it •7H20(c) ] = 94 cal/mol«K (rounded). The entropies for MnSOi+« 4H20(c) and MnSOi+*5H20(c) were then estimated by taking the difference for the monohydrate and heptahydrate (59 cal/mol*K) and adding the linear extrapolated entropy proportion to the entropy of the monohydrate to obtain the entropy of the tetra- and pentahydrate. The heat capacity of MnSOit»7H20(c) was estimated in the same manner as the en- tropy. Dissociation of MnS0it»nH20 Thermodynamic values for reactions of the type MnS04»YH20(c) = MnS04«XH20(c) + (Y-X)H20(Jl) were calculated as a function of temperature. The foregoing data gave reasonable decomposition temperatures for all the compounds. However, enthalpy of formation values for the hydrates that were calculated on the basis of either the enthalpy of solution values reported by Jamieson (19) or those reported by Phillipson and Finlay ( 38 ) led to inconsistent results and were not sufficiently negative to lead to stable hydrates. Iron FeSOit(c) and Hydrates Adami and Kelley (1) determined the enthalpy of formation of FeS0t+*H20(c) and FeSOit*7H20(c) by sulfuric acid solution calorimetry. Recalculation of their results using the latest CODATA (8) value for SO^ (aq) yielded AHf ° [FeS04«H20(c)] = -297.40 kcal/mol and AHf ° [FeS04*7H20(c)] = -720.44 kcal/mol. These values are adopted. Wagman (48^) reported AHf ° [FeS0it»H20(c) ] = -297.25 kcal/mol and AHf ° [FeSO^•7H20(c) ] = -720.5 kcal/mol. The enthalpies of solution at infinite dilution, AH°soln[FeSOt+« H20(c)] = -10.6 kcal/mol and AH°soln[FeS0i+»7H20(c) ] = 2._p2 kcal/mol, have been measured by Larson (29) . The enthalpy of formation for Fe^ (aq) may be obtained by combining these values with AHf° values for H20(A) ( 47 ) and SO^ (aq) (8^). This leads to AHf°[Fe2 (aq)] = -22.3 kcal/mol(FeS0it«H20) and AHf°[Fe2 (^^^j = -22.0 kcal/mol(FeS04*7H20) , respectively. These are more negative than the value given by Wagman (48), AHf°[Fe2 {^'^^^ "^ -21.3 kcal/mol. Larson ( 29 ) noted a similar discrep- ancy and chose AHf°[Fe (aq) ] = -22.1 kcal/mol. We have adopted his value in our further calculations. Combining the enthalpy of solution at infinite dilution from Wagman (48) , AH°soln [FeSOit(c)] = +16.7 kcal/mol, with the above enthalpy of formation "Tor Fe^ (aq) and the enthalpy of formation for SO^ (aq) from CODATA (8^) yielded AHf °[FeS0^(c)] = -222.8 kcal/mol, which is the value adopted here. This compares with AHf°[FeS0it(c)] = -221.9 kcal/mol given by Wagman (48). Combining the enthalpy of solution at infinite dilution, _AH°soln[FeS0t+»4H20(c) ] = -3.3 kcal/mol (29) , with the enthalpies of formation of S0$ (aq) (8^), H20(J!,) (47) , and Fe2 (aq) yielded AHf ° [FeSOit •4H20(c) ] = -509.5 kcal/mol, which is the adopted value. This compares with AHf ° f FeS0H»4H20(c) ] = -508.9 kcal/mol reported by Wagman (48). Malinin, Drakin, and Ankudimov (32) measured the entropy of the reaction FeS04«7H20(c) = FeS0^•4H20(c) + 3H20(g)~by an isopiestic method. Their value for this reaction was AS = 105.0 cal/mol'K. Combining this value with the entropies of FeSOit«7H20(c) (30) and H20(g) (47^) led to S598[FeS04«4H20(c) ] = 67.5 cal/mol»K. S298 for FeS0^•H20(c) is from Pribylov (39) . The heat capacity for FeS0it»H20(c) was estimated as discussed earlier. The heat capacity for FeS0i+«4H20(c) was reported by Kelley (21) to be 63.6 cal/mol»K at 282 K. The heat capacity above 307 K for FeS0it»7H20(c) was estimated by extrapolating the low- temperature results of Lyon and Giauque (30). Fe2(S0^)3(c) Barany and Adami (3) determined the enthalpy of formation of Fe2( 804) 3(c) by solution calorimetry. Recalculation_ of their results using the latest CODATA value for the enthalpy of formation of S04 (aq) (8) and Wagman's enthalpy of formation for Fe203(c) (48) yielded AHf ° [Fe2(S04)3 ] = -617.1 kcal/mol, which is adopted here. The low-temperature and high-temperature heat capacities are those reported by Pankratz and Weller (37) . The entropy at 298.15 K is also taken from reference 37. Cobalt CoS0^(c) The CODATA AH° value (8^) for SO^ (aq) and the heat of formation value recom- mended by Cyr, Dellacherie, and Balesdent (9) for CoO were used in recalculating the results of Adami and King {1) to obtain AHf ° [CoS0i+(c) ] = -212.3 kcal/mol. This value is adopted here. The low-temperature (52-298.15 K) heat capacities are those reported by Weller (50) with the low-temperature entropies and enthalpies those evaluated by JANAF (11) . Heat capacities in the temperature range 300-1,400 K were estimated by com- parison with CuSOi+(c). The transition temperature and enthalpy for CoSOi+(a,c) = CoSOi|(P,c) are from the differential thermal analysis studies of Ingraham and Marier (17). CoS0h»H20(c) Goldberg ( 15) reported AH° = -6.1 kcal/mol for the process CoSO^(c) + H20(A) = CoS0i^»H20(c) . Combining this result with the standard enthalpies of formation of H20(Jl) and CoS04(c) yielded AHf ° [CoS0i+-H20(c)] = -286.7 kcal/mol. Alternatively, Goldberg reported AH° = -12.8 kcal/mol for the process CoS0^•H20(c) + 5H20(J!.) = CoS0it«6H20(c) . Combining this result with the standard enthalpies of formation of H20(Jl) (47^) and CoS0i4«6H20(c) (see below) yielded AHf ° [CoS04«H20(c) ] = -287.0 kcal/mol. The average of these two values, AHf ° [CoS0it*H20(c) ] = -286.8 kcal/mol, is adopted. The entropy at 298.15 K is that selected by Goldberg (15) . Heat capaci- ties were estimated as described earlier. CoS0i+'6H20(c) Ko and Brown (25) , from sulfuric acid solution calorimetry, obtained AHf° [CoS04»6H20(c) ] = -641.33 kcal/mol, which is adopted here. The low-temperature (15-330 K) heat capacities and S298 ^^e those reported by Rao and Giauque (40) . Broers and Van Welie (6) reported CoS0i+«6H20(c) to dissociate to CoS0^•H20(c) and saturated solution at 337 K. CoSO^•7H20(c) Brodale and Giauque (_5) reported AH° = -2.455 kcal/mol for the process CoSOi+» 6H20(c) + H20(J!.) = CoSOi4»7H20(c) . Combining this value with the standard enthalpies of formation of H20(Jl) and CoS04«6H20(c) yielded AHf ° [CoSOit»7H20(c)] = -712.10 kcal/ mol, which is the adopted value. The low-temperature (15-310 K) heat capacities and S298 are those reported by Rao and Giauque (40) . They found that the transition CoS0i4»7H20(c) to CoSOit»6H20(c) and saturated solution occurs at 317.78 K with an enthalpy of transition equal to 2.848 kcal/mol heptahydrate. Nickel NiSOit(c) The CODATA AHf ° [SO^~(aq) ] value (8^) was used in recalculating the results of Adami and King (2^) to obtain AHf ° [NiSO^(c) ] = -208.71 kcal/mol. This value is adopted. Low- temperature (9-70 K) heat capacities of NiS0i4(c) were measured by Stuve, Ferrante, and Ko ( 44) and have been combined with earlier work of Weller ( 50 ) to provide data to 300 K. It is noted that Cp298[NiSOit(c) ] = 33 cal/mol*K, reported by Wagman (48), is in error. The correct value is 23.33 cal/mol"K, as reported by Weller (50) . High-temperature enthalpy data (to 1,200 K) for NiS04(c) are taken from the work of Stuve, Ferrante, and Ko. NiS0i+»H20(c) The enthalpy of solution at infinite dilution, AH°soln[NiS0i+«H20(c)] = -14.0 kcal/mol, is taken from the work of Goldberg (15) . Combining this result with the CODATA value for SO^ (aq) (8^) and Wagman' s value for Ni^ (aq) (48) for the enthalpy of formation of the infinitely dilute ions, yielded AHf " [NlS0i+»H20(c) ] = -284.61 kcal/mol. S298 estimated by Mah and Pankratz (31) is adopted, and the heat capaci- ties were estimated as discussed in the section "Estimation Procedures for Hydrates." NiS0H»4H20(c) Kohler and Zaske (26) reported the vapor pressure as a function of temperature over the range 313-326 k7 for the reaction NiSOt+«6H20(c) = NiS0^•4H20(c) + 2H20(g) . Their data gave AG298 = +5.053 kcal for this reaction. The entropy of NiS0^•4H20(c) was estimated by noting that S|98 [NiSOij •6H20(c) ] = 79.94 cal/mol»K, while S298[NiS0it(c)] = 24.2 cal/mol»K. Linear interpolation yielded S°298[NiS0if«4H20(c) ] = 61 cal/mol»K. Combining the above value with the standard Gibbs energy change for H20(g) to H20(Ji) (47) yielded AH = -5.3 kcal for the reaction NiS0i4»4H20(c) + 2H20(Jl) = NiS0i+»6H20rc) . This value combined with the standard enthalpy of forma- tion of NiSOi+«6H20 (see below) and H20(A) (47) yielded AHf ° [NiS0i4«4H20(c)] = -499.4 kcal/mol, which is the adopted value. Wagman ( 48 ) reported AHf °[NiS0tt»4H20(c) ] = -502.9 kcal/mol. However, using the latter value with the above estimated entropy requires NiS04«6H20(c) to be unstable with respect to NiS0^•4H20(c) and 2H20(J?,) at 298 K. Alternatively, accepting Wagman' s value for the enthalpy of formation of NiS0i4»4H20(c) (48) together with the above Gibbs energy data of Kohler and Zaske ( 26) requires S298[NiS04»4H20(c)] = 53 cal/mol»K. This value is too low to be acceptable. Using the above adopted value AHf ° [NiS0it«4H20(c) ] = -499.4 kcal/mol, NiS0i4*6H20(c) was calculated to be stable to 360 K with respect to NiS0i+»4H20(c) and 2H20(J!.). Cp°(NiS04*4H20) and its temperature dependence were estimated as described earlier. NiSOit«6H20(c) Goldberg (15) reported the enthalpy of solution at infinite dilution, AH°soln [NiSOi+«6H20(c)]'~^ +1.15 kcal/mol. Combining this result with CODATA (8) values for the heat of formation of SO^ (aq) ion at infinite dilution and AHf(H20,Jl) together with AHf°[Ni2"^(aq)] (48) yielded AHf " [NiS04»6H20(c) ] = -641.34 kcal/mol, which is the adopted value. Low-temperature (1.1-320.98 K) heat capacities and entropies are those reported by Stout (43) . NiSO^«7H20(c) Goldberg (15) reported the enthalpy of solution at infinite dilution, AH°soln [NiS04»7H20(c)]'~= +2.89 kcal/mol. Combining this value with the enthalpies of formation of Ni^ (aq) and SO^ (aq) at infinite dilution together with the standard enthalpy of formation of water yielded AHf ° [NiSOi+»7H20(c) ] = -711.40 kcal/mol, which is the adopted value. Low-temperature (1-300 K) heat capacities and entropies are those reported by Stout (43). Stout ( 43 ) reported the transition from NiS0i+«7H20(c) to NiS0i+«6H20(c) , and saturated solution occurs at 304 K. Additional differential scanning calorimeter (DSC) data for the above nickel sulfate hydrates were given by Friesen, Burt, and Mitchell (13). Copper CuS04(c) The CODATA (8^) values for the standard enthalpy of formation and entropy at 298 K for CuSOij(c) are adopted. The heat capacities are those adopted by King, Mah, and Pankratz (23) . The enthalpy of solution at infinite dilution, AH°soln[CuS0i+(c) ] = -17.56 kcal/mol was reported by Larson (29) . Combining this result with the CODATA values for the enthalpies of formation of the infinitely dilute ions yielded AHf°[CuSO^(c)] = -184.14 kcal/mol, which is to be compared with the adopted CODATA value of -184.3 kcal/mol. CuS04«H20(c) and CuS04»3H20(c) The standard enthalpies of formation, entropies, and heat capacities at 298.15 K are those from Wagman (48). The high-temperature heat capacities were estimated. CuSOi+«5H20(c) The heat of solution at infinite dilution, AH''soln[CuSOi+»5H20(c) ] = +1.43 kcal/mol, was reported by Larson (29). Combining this result with the heat of solu- tion of CuSO^ (see above) yielded AH° = +18.99 kcal/mol for the reaction CuSO^• 5H20(c) = CuS04(c) + 5H20(Jl). Combining this result with the CODATA (8) values for the standard enthalpies of formation of CuS04(c) and H20(A) yielded AHf°[CuS04« 5H20(c)] = -544.87 kcal/mol, which is the adopted value. Alternatively, combining the enthalpies of formation of the ions at infinite dilution with the enthalpy of formation of water and the enthalpy of solution at infinite dilution of CuSOi+» 5H20(c) gave AHf ° [CuSOit«5H20(c) ] = -544.71 kcal/mol, in good agreement with the adopted value. The entropy and heat capacity values at 298.15 K are those reported by Wagman (48). The high-temperature heat capacities were estimated. 10 Malinin, Drakln, and Ankudimov (33), from vapor pressure measurements of water over CuSOi+»5H20(c) at 24.06 and 31.47'^, calculated AG° = 5.4 kcal, AS° = 72 cal/K, and AH° = 27 kcal at 298.15 K for the reaction CuSOi+-5H20(c) = CuSOit«3H20(c) + 2H20(g) . This Is in good agreement with the data given here, for which AG° = 5.46 kcal, AS° = 71.3 cal/mol«K, and AH° = 26.7 kcal at 298.15 K. Cu2S0t+(c) The enthalpy of formation at 298.15 K is from Wagman (48) . The entropy at 298.15 K was estimated by Nagamori and Habashi (35) , using Latimer's method. The heat capacities were estimated by comparison with K2S0it(c) (10). CuO«CuSOi+(c) All data for CuO»CuSOit(c) are from the compilation of King, Mah, and Pankratz (23). Zinc ZnS04(c) CODATA (8^) enthalpy of formation values for SO^ (aq) and ZnO(c) were used in recalculating the results of Adami and King (2) to obtain AHf °[ZnSOi+(c)] = -234.26 kcal/mol. JANAF (j^) reported the same value for ZnS04(c) . This value is adopted here. The enthalpy of solution at infinite dilution, AH''soln[ZnSOit(c) ] = -19.9 kcal/mol, was taken from Larson (29). Combining this result with the CODATA values for the heats of formation of the" infinitely dilute ions yielded AHf ° [ZnS04(c) ] = -234.16 kcal/mol. Low-temperature heat capacities of ZnSOit(a,c) have been measured by Weller ( 50 ) from 51.7 to 296.5 K. We adopt his entropy and heat capacity values in this region. High-temperature enthalpy data have been measured by Hosmer and Krikorian (16) as well as by Voskresenskaya and Patsukova (46) and Krestovnikov and Feigina ( 27 ) . The enthalpy data of Hosmer and Krikorian (16) lie above those of 46 and 27. Hosmer and Krikorian reported that the low values of 46 and 27 may be due to decomposition to the oxysulfate during vacuum dehydration. Chemical analysis of the sample of Hosmer and Krikorian indicated pure ZnSOit(c) . However, serious problems remain in matching the low- temperature heat capacity data with the high-temperature enthalpy data of Hosmer and Krikorian. JANAF ( 12) recognized this problem and arbitrarily assigned a transition at 540 K with AH° = 1.20 kcal/mol. There is no evidence in the litera- tr ture for such a transition and Brown (7) found none by DSC measurements in our laboratories. In addition, the data of" Voskresenskaya and Patsukova (46) match nicely the low-temperature heat capacity data of Weller (50). Therefore, the high- temperature enthalpy data of 46 for ZnS04(a,c) are adopted. The transition of ZnS0i+(a,c) to ZnS04(P,c) occurs at 1,015 ±15 K with a AH° given by Hosmer and Krikorian (16) as 4.87 kcal/mol, which is the adopted value. This value is in good agreement with that reported by Ingraham and Marier (jLT^, 4.74 kcal/mol) from differential thermogravimetric analysis (DTA) measurements. 11 ZnS0i+»H20(c) The enthalpy of solution at infinite dilution was calculated from Wagman (47) to be AH°soln [ZnS0^•H20(c)] = -10.63 kcal/mol. Combining this result with the heat of solution of ZnSOit(c) (27) and the heat of formation of ZnSOi+(c) and H20(A) (47) yielded AHf °[ZnS0i+»H20(c)] = -311.85 kcal/mol, which is the adopted value. The entropy at 298.15 K is taken from Wagman (47), and the heat capacity at 282 K was reported by Kelley ( 21) to be 34.7 cal/mol«K. The high-temperature heat capacities were extrapolated as discussed earlier. ZnSO^•6H20(c) The enthalpy of solution at infinite dilution, AH°soln[ZnSOi+»6H20(c) ] = -0.15 kcal/mol was reported by Larson (29) . Combining this value with the enthalpy of solution of ZnSOtt(c) (29) and the adopted enthalpy of formation of ZnSOit(c) and Wagman's H20(Jl) (47) yielded AHf °[ZnSOi+»6H20(c)] = -663.90 kcal/mol, which is the adopted value. The entropy and heat capacity at 298.15 K are taken from Barieau and Giauque (4). They also reported that ZnSOi4»6H20(c) decomposes to the monohydrate and saturated solution at 60.3° C. Heat capacities above 310 K, the highest temper- ature reported by Barieau and Giauque, were extrapolated by fitting the lower temperature data as discussed earlier. ZnS0it»7H20(c) The enthalpy of solution at infinite dilution, AH°soln[ZnSOit»7H20(c)] = 3.18 kcal/mol, was reported by Larson (29) . Combining this value with the heat of solu- tion of ZnS04(c) (29) and the enthalpies of formation of ZnS0i+(c) and H20(A) (47) gave AHf °[ZnS0i+»7H20(c)] = -735.55 kcal/mol. The entropy and heat capacities are from Barieau and Giauque (4), who reported that the transition of ZnS04«7H20(c) to ZnS04»6H20(c) and H20(Jl) oc"curs at 311.27 K with AH° = 4.017 kcal/mol. Zn0«2ZnS0it(c) Ko and Brown (25), from hydrochloric acid solution calorimetry, determined AHf°[Zn0»2ZnS0i+(c)] = -550.31, which is the adopted value. High-temperature enthalpy data for Zn0»2ZnS0it(c) were reported by Hosmer and Krikorian (16) . Their $298 = 68.19 cal/mol*K and high-temperature enthalpy values are adopted. THERMAL DECOMPOSITION OF ANHYDROUS METAL SULFATES The thermodynamic properties for the thermal decomposition of anhydrous metal sulfates were calculated as a function of temperature. These data are given in the auxiliary tables 53-61 and are plotted in figures 1-3. These tables and figures enable the reader to make a ready comparison of the stabilities of these metal sulfates as a function of temperature. For CuSOi^(c) and ZnSOi+(c), the decomposition proceeds through the oxysulfates (22). The decomposition equations are: 2CuS0it(c) = CuO«CuSOi+(c) + S03(g); Cu0»CuS0i+(c) = 2Cu0(c) + S03(g); 3ZnS0it(c) = ZnO•2ZnSO^(c) + S03(g); 12 ZnO«2ZnSOi+(c) = 3ZnO(c) + 2S03(g). The remaining systems all decompose directly to the metal oxide and S03(g) (22) . Recall that the equilibrium, S02(g) + 0.5 02(g) = S03(g), becomes important at higher temperatures. That the S02(g)-S03(g) equilibrium is attained is critical for the evaluation of the experimental decomposition data. However, recent work (24) indicates that attainment of equilibriiim depends on the solids involved and whether or not a catalyst is present. 32 KEY Cr2(S04)3 Fe2(S04)3 500 600 700 800 TEMPERATURE, K 900 FIGURE To - Gibbsenergy of decomposition for CrjCSO 4)3(0) and Fe2(S04)3(c) according to the reactions given in tables 53 and 55. o o < 1 1 <— KEY FeS04 C0SO4 NiS04 800 900 1,000 1,100 TEMPERATURE, K 1,200 FIGURE 2o = Gibbsenergy of decomposition for FeS04(c), CoS04(c), and NiS04(c) according to the reactions given in tables 54, 56, and 57., 24 "T 1 T- KEY CUSO4 CuO-CuS04 - Z nS04 ZnO-2ZnS04 800 900 1,000 1,100 TEMPERATURE, K 1,200 FIGURE 3. ° Gibbs energy of decomposition for CuSO^(c), CuO-CuSO^(c), ZnS04(c), and ZnO 2ZnS0 .(c) according to the reactions given in tables 58-61. 13 TABLE 1. - Thermodynamic properties of VOSOi,(c) [Formation: V(c) + S(c,i) + 2.5 OjCg) = VOSO^(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S" -(G°- H2,a)/T LjO ijO H - Hjse AHf AGf 298.15 29.000 26.000 26.000 -312.900 -279.779 205.081 300 29.066 26.180 26.000 .054 -312.900 -279.573 203.666 368.30 31.305 32.373 26.619 2.119 -312.841 -271.990 161.397 368.30 31.305 32.373 26.619 2.119 -312.937 -271.990 161.397 388.36 31.962 34.051 26.961 2.754 -312.905 -269.760 151.806 388.36 31.962 34.051 26.961 2.754 -313.318 -269.760 151.806 400 32.344 35.001 27.181 3.128 -313.314 -268.455 146.675 432.02 33.250 37.527 27.855 4.178 -313.307 -264.865 133.988 500 35.174 42.531 29.515 6.508 -313.334 -257.234 112.436 600 37.555 49.161 32.248 10.148 -313.088 -246.032 89.616 700 39.487 55.101 35.095 14.004 -312.642 -234.890 73.335 717.82 39.751 56.097 35.604 14.710 -312.544 -232.911 70.912 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° r kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: The enthalpy of formation at 298 K and entropy at 298 K are from Wagman (49). heat capacities are estimates. The TABLE 2. - Thermodynamic properties of V0S0h*H20(c) [Formation: V(c) + S(c,il) + 3 OzCg) + HjCg) = VOSO^'HjOCc)] T, K cal/mol'K kcal/mol Log Kf Cp" S° -(C- H|98)/T IjO IjO H - Hjse AHf° AGf 298.15 38.000 35.500 35.500 -387.550 -340.652 249.701 300 38.167 35.736 35.503 .070 -387.553 -340.361 247.949 350 42.667 41.957 35.983 2.091 -387.518 -332.496 207.617 368.30 44.314 44.173 36.335 2.887 -387.458 -329.620 195.595 368.30 44.314 44.173 36.335 2.887 -387.554 -329.620 195.595 388.36 46.119 46.571 36.801 3.794 -387.460 -326.466 183.717 388.36 46.119 46.571 36.801 3.794 -387.873 -326.466 183.717 400 47.167 47.948 37.106 4.337 -387.823 -324.627 177.365 432.02 50.049 51.689 38.047 5.894 -387.649 -319.574 161.664 450 51.667 53.763 38.634 6.808 -387.590 -316.742 153.829 500 56.167 59.440 40.432 9.504 -387.121 -308.893 135.015 550 60.667 65.004 42.413 12.425 -386.432 -301.100 119.644 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is based on Reggiani (41), entropy at 298 K and the heat capacities are estimates. The 14 TABLE 3. - Thermodynamic properties of V0S0h*3H20(c) [Formation: V(c) + S(c,A) + 4 OjCg) + 3H2(g) = V0S0h*3H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp- S" -(G°- H|9a)/T H°- H|,8 AHf AGf° 298.15 57.000 54.500 54.500 -533.880 -459.427 336.765 300 57.244 54.853 54.500 .106 -533.886 -458.964 334.351 350 63.844 64.173 55.222 3.133 -533.890 -446.473 278.787 368.30 66.260 67.488 55.749 4.323 -533.819 -441.904 262.223 368.30 66.260 67.488 55.749 4.323 -533.915 -441.904 262.223 388.36 68.908 71.071 56.448 5.679 -533.796 -436.895 245.860 388.36 68.908 71.071 56.448 5.679 -534.209 -436.895 245.860 400 70.444 73.129 56.904 6.490 -534.137 -433.979 237.112 432.02 74.671 78.714 58.314 8.813 -533.875 -425.972 215.487 450 77.044 81.807 59.191 10.177 -533.750 -421.484 204.698 500 83.644 90.266 61.876 14.195 -533.026 -409.044 178.791 550 90.244 98.548 64.835 18.542 -531.985 -396.693 157.629 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol 0.096 kcal/mol. Sources: The enthalpy of formation at 298 K is based on Reggiani (41 ). entropy at 298 K and the heat capacities are estimates. The TABLE 4. - Thermodynamic properties of V0S0^*5H20(a,c) [Formation: V(c) + S(c,il) + 5 OjCg) + 5H2(g) = V0S0^•5H20(a,c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(C- H°,8)/T H°- HUs AHf AGf 298.15 76.000 73.500 73.500 -676.690 -574.682 421.248 300 76.333 73.971 73.501 .141 -676.700 -574.049 418.189 350 85.333 86.414 74.463 4.183 -676.734 -556.931 347.759 368.30 88.627 90.847 75.167 5.775 -676.646 -550.669 326.764 368.30 88.627 90.847 75.167 5.775 -676.742 -550.669 326.764 388.36 92.238 95.641 76.102 7.588 -676.588 -543.806 306.023 388.36 92.238 95.641 76.102 7.588 -677.001 -543.806 306.023 400 94.333 98.396 76.711 8.674 -676.900 -539.816 294.938 432.02 100.097 105.879 78.595 11.787 -676.527 -528.855 267.533 450 103.333 110.026 79.768 13.616 -676.319 -522.714 253.861 500 112.333 121.379 83.363 19.008 -675.289 -505.697 221.037 550 121.333 132.508 87.328 24.849 -673.828 -488.805 194.231 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K is based on Reggiani (41 ). The entropy at 298 K and the heat capacities are estimates. 15 TABLE 5. - Thermodynamic properties of V0S0,j»5H20(e,c) [Formation: V(c) + S(c,£) + 5 OjCg) + SHjCg) = VOSO^'SHjOCe.c)] T, K cal/mol*K kcal/mol Log Kf Cp» S" -(C- H$,8)/T H'- Hjse AHf AGf 298.15 76.000 73.500 73.500 -676.200 -574.192 420.889 300 76.333 73.971 73.501 .141 -676.210 -573.559 417.832 350 85.333 86.414 74.463 4.183 -676.244 -556.441 347.453 368.30 88.627 90.847 75.167 5.775 -676.156 -550.179 326.473 368.30 88.627 90.847 75.167 5.775 -676.253 -550.179 326.473 388.36 92.238 95.641 76.102 7.588 -676.098 -543.316 305.748 388.36 92.238 95.641 76.102 7.588 -676.511 -543.316 305.748 400 94.333 98.396 76.711 8.674 -676.410 -539.326 294.670 432.02 100.097 105.879 78.595 11.787 -676.037 -528.365 267.285 450 103.333 110.026 79.768 13.616 -675.829 -522.224 253.623 500 112.333 121.379 83.363 19.008 -674. 799 -505.207 220.823 550 121.333 132.508 87.328 24.849 -673.338 -488.315 194.036 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH' 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. 0.096 kcal/mol. Sources: The enthalpy of formation at 298 K is based on Reggiani (41). entropy at 298 K and the heat capacities are estimates. The TABLE 6. - Thermodynamic properties of V0S0i,*6H20(c) [Formation: V(c) + S(c,«,) + 5.5 02(g) + 6H2(g) = V0S0^•6H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- H°,«)/T H°- H|,8 AHf AGf 298.15 85.000 83.000 83.000 -746.920 -631.135 462.628 300 85.388 83.527 83.000 .158 -746.932 -630.416 459.252 350 95.888 97.478 84.078 4.690 -746.998 -610.984 381.511 368.30 99.731 102.463 84.869 6.480 -746.905 -603.874 358.335 368.30 99.731 102.463 84.869 6.480 -747.001 -603.874 358.335 388.36 103.944 107.862 85.919 8.522 -746.830 -596.083 335.442 388.36 103.944 107.862 85.919 8.522 -747.243 -596.083 335.442 400 106.388 110.968 86.603 9.746 -747.127 -591.554 323.206 432.02 113.112 119.416 88.722 13.260 -746.691 -579.116 292.959 450 116.888 124.105 90.043 15.328 -746.437 -572.148 277.870 500 127.388 136.964 94.094 21.435 -745.225 -552.842 241.644 550 137.889 149.597 98.566 28.067 -743.510 -533.681 212.063 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources; The enthalpy of formation at 298 K is based on Reggiani (41), entropy at 298 K and the heat capacities are estimates. The 16 TABLE 7. - Thermodynamic properties of Cr2(S0i,)3 (c) [Formation: 2Cr(c) + 3S(c,Jl) + 6 OjCg) = C^2(S0^)3 (c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- H|98)/T H"- H2%8 AHf AGf° 298.15 67.250 61.850 61.850 -705.000 -625.554 458.538 300 67.458 62.267 61.850 0.125 -705.003 -625.061 455.351 311.50 68.655 64.827 61.913 0.908 -705.028 -621.996 436.390 368.30 74.565 76.844 63.301 4.988 -704.951 -606.857 360.106 368.30 74.565 76.844 63.301 4.988 -705.239 -606.857 360.106 388.36 76.653 80.855 64.106 6.505 -705.198 -601.498 338.489 388.36 76.653 80.855 64.106 6.505 -706.437 -601.498 338.490 400 77.864 83.137 64.627 7.404 -706.446 -598.354 326.921 432.02 80.675 89.241 66.228 9.942 -706.476 -589.702 298.314 500 86.643 101.485 70.199 15.643 -706.648 -571.292 249.708 600 93.796 117.939 76.807 24.679 -706.029 -544.264 198.245 700 99.322 132.834 83.765 34.348 -704.802 -517.391 161.535 717.82 100.017 135.340 85.015 36.124 -704.532 -512.622 156.073 Phase changes; Sources: 0.096 kcal/mol. 311.5 K, second-order transition for Cr; AH° = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; Ah° 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. The enthalpy of formation at 298 K is based on Jacob (18). The entropy at 298 K is from Kubaschewski (28). The heat capacity at 298 K is from Vasileff (45). The high-temperature enthalpy values are estimates. TABLE 8. - Thermodynamic properties of C^2(S0^)3(c) [Formation: 2Cr(c) + 1.5S2(g) + 6 02(g) = Cr2(S0H )$ (c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(C- HS9e)/T H°- H^ss AHf AGf 298.15 67.250 61.850 61.850 -751.065 -654.095 479.458 300 67.458 62.267 61.850 .125 -751.059 -653.493 476.063 311.50 68.655 64.827 61.913 .908 -751.030 -649.753 455.864 400 77.864 83.137 64.627 7.404 -750.399 -621.051 339.322 500 86.643 101.485 70.199 15.643 -749.031 -588.852 257.384 600 93.796 117.939 76.807 24.679 -747.112 -556.986 202.880 700 99.322 132.834 83.765 34.348 -744.777 -525.476 164.059 800 103.222 146.369 90.758 44.489 -742.154 -494.329 135.043 900 105.495 158.674 97.632 54.938 -739.370 -463.517 112.556 Phase change Sources: 311.5 K, second-order transition for Cr; Ah" = kcal/mol. The enthalpy of formation at 298 K is based on Jacob (18). The entropy at 298 K is from Kubaschewski (28). The heat capacity at 298 K is from Vasileff (45), The high-temperature enthalpy values are estimates. 17 TABLE 9. - Thermodynamic properties of [Cr2(H20)6(S0^)3 ]*2H20(c) [Formation: 2Cr(c) + 3S(c,Jl) + 10 OjCg) + SHjCg) - [Cr2(H20)6(S0.,)3]*2H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S° -(C- wUt)n H"- Hlse AHf AGf 298.15 141.000 138.000 138.000 -1302.500 -1112.880 815.752 300 141.536 138.874 138.004 .261 -1302.523 -1111.705 809.866 311.50 144.871 144.261 138.136 1.908 -1302.642 -1104.387 774.833 350 156.036 161.781 139.778 7.701 -1302.907 -1079.863 674.288 368.30 161.343 169.869 141.074 10.605 -1302.707 -1068.215 633.873 368.30 161.343 169.869 141.074 10.605 -1302.995 -1068.215 633.873 388.36 167.160 178.577 142.786 13.900 -1302.867 -1055.428 593.935 388.36 167.160 178.577 142.786 13.900 -1304.106 -1055.428 593.936 400 170.536 183.563 143.901 15.865 -1304.033 -1047.977 572.581 432.02 179.822 197.047 147.341 21.474 -1303.706 -1027.492 519.780 450 185.036 204.486 149.477 24.754 -1303.633 -1015.995 493.428 500 199.536 224.732 155.994 34.369 -1302.486 -984.087 430.139 550 214.036 244.430 163.143 44.708 -1300.649 -952.329 378.416 Phase changes ; 311.5 K, second-order transition for Cr; AH° = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; AH" 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. 0.096 kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48). capacities are estimates. The entropy at 298 K and heat TABLE 10. - Thermodynamic properties of [Cr(H20)6]2(S0^) j*2H20(c) [Formation: 2Cr(c) + 3S(c,)l) + 13 02(g) + 14H2(g) = [Cr(H20)6 ]2(S0^)3»2H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(c- wu^)n L|0 ijO M - 0298 AHf AGf 298.15 197.000 195.000 195.000 -1732.000 -1459.716 1069.987 300 197.925 196.221 195.004 .365 -1732.036 -1458.028 1062.159 311.50 203.675 203.774 195.190 2.674 -1732.212 -1447.520 1015.574 350 222.925 228.609 197.503 10.887 -1732.473 -1412.309 881.874 368.30 232.075 240.203 199.339 15.050 -1732.167 -1395.585 828.132 368.30 232.075 240.203 199.339 15.050 -1732.455 -1395.585 828.132 388.36 242.105 252.773 201.774 19.806 -1732.134 -1377.242 775.034 388.36 242.105 252.773 201.774 19.806 -1733.373 -1377.242 775.034 400 247.925 260.009 203.364 22.658 -1733.151 -1366.573 746.651 432.02 263.935 279.708 208.293 30.853 -1732.274 -1337.260 676.483 450 272.925 290.653 21 1 . 366 35.679 -1731.804 -1320.828 641.473 500 297.925 320.703 220.803 49.950 -1729.203 -1275.291 557.422 550 322.925 350.271 231.231 65.472 -1725.405 -1230.071 488.779 Phase changes ; 311.5 K, second-order transition for Cr; AH° = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; Ah° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), capacities are estimates. The entropy at 298 K and heat 18 TABLE 11. - Thermodynamic properties of [Cr(H20)j]2(S0^)3*3H20(c) [Formation: 2Cr(c) + 3S(c,A) + 13.5 O^ig) + ISHjCg) = [Cr(H20)j]2(S0,,)3*3H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S" -(G°- H29b)/T H - Hjse AHf AGf 298.15 206.000 204.000 204.000 -1802.100 -1515.889 1111.162 300 206.999 205.277 204.004 .382 -1802.139 -1514.115 1103.018 311.50 213.209 213.180 204.197 2.798 -1802.327 -1503.070 1054.547 350 233.999 239.214 206.623 11.407 -1802.595 -1466.057 915.436 368.30 243.881 251.391 208.547 15.780 -1802.272 -1448.478 859.518 368.30 243.881 251.391 208.547 15.780 -1802.560 -1448.478 859.519 388.36 254.713 264.608 211.100 20.781 -1802.205 -1429.198 804.272 388.36 254.713 264.608 211.100 20.781 -1803.444 -1429.198 804.272 400 260.999 272.223 212.768 23.782 -1803.195 -1417.986 774.741 432.02 278.290 292.978 217.944 32.416 -1802.218 -1387.186 701.739 450 287.999 304.523 221.174 37.507 -1801.675 -1369.922 665.316 500 314.999 336.264 231.100 52.582 -1798.804 -1322.089 577.877 550 341.999 367.553 242.086 69.007 -1794.640 -1274.606 506.475 Phase changes ; 311.5 K, second-order transition for Cr; AH" = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48). capacities are estimates. The entropy at 298 K and heat TABLE 12. - Thermodynamic properties of [Cr(H20)e]2(S0^)3'4H20(c) [Formation: 2Cr(c) + 3S(c,il) + 14 02(g) + 16H2(g) = [Cr(H20)e]2(S0^)3'4H20(c) T, K cal/mol*K kcal/mol Log Kf Cpo S" -(G"- H^9e)/T M - M298 AHf AGf 298.15 216.000 214.000 214.000 -1871.300 -1571.461 1151.897 300 217.073 215.339 214.002 .401 -1871.339 -1569.601 1143.439 311.50 223.743 223.630 214.206 2.936 -1871.529 -1558.031 1093.108 350 246.073 250.979 216.753 11.979 -1871.765 -1519.260 948.656 368.30 256.687 263.790 218.775 16.579 -1871.407 -1500.847 890.594 368.30 256.687 263.790 218.775 16.579 -1871.695 -1500.847 890.594 388.36 268.322 277.707 221.457 21.845 -1871.286 -1480.655 833.229 388.36 268.322 277.707 221.457 21.845 -1872.525 -1480.655 833.229 400 275.073 285.731 223.211 25.008 -1872.238 -1468.915 802.567 432.02 293.645 307.618 228.655 34.114 -1871.128 -1436.669 726.771 450 304.073 319.804 232.055 39.487 -1870.494 -1418.599 688.957 500 333.073 353.342 242.512 55.415 -1867.304 -1368.544 598.183 550 362.073 386.448 254.095 72.794 -1862.723 -1318.877 524.067 Phase changes ; 311.5 K, second-order transtion for Cr; ^H" = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; Ah° 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. 0.096 kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), capacities are estimates. The entropy at 298 K and heat 19 TABLE 13. - Thermodynamic properties of [C^(H20)s]2(S0^) j»5H20(c) [Formation: 2Cr(c) + 3S(c,]l) + 14.5 OjCg) + ITHjCg) = [Cr(H20)s]2(S0.^)j'5H20(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(G°- HUb)/T H"- Hjse AHf AGf 298.15 225.000 223.000 223.000 -1940.700 -1626.934 1192.560 300 226.128 224.395 223.005 .417 -1940.742 -1624.989 1183.789 311.50 233.143 233.033 223.217 3.058 -1940.946 -1612.881 1131.590 350 256.629 261.544 225.870 12.486 -1941.200 -1572.308 981.780 368.30 267.792 274.907 227.977 17.284 -1940.836 -1553.038 921.563 368.30 267.792 274.907 227.977 17.284 -1941.124 -1553.038 921.564 388.36 280.029 289.428 230.774 22.779 -1940.698 -1531.907 862.071 388.36 280.029 289.428 230.774 22.779 -1941.937 -1531.907 862.071 400 287.129 297.803 232.603 26.080 -1941.635 -1519.623 830.273 432.02 306.661 320.654 238.281 35.587 -1940.463 -1485.884 751.668 450 317.629 333.382 241.829 41.199 -1939.781 -1466.977 712.452 500 348.129 368.426 252.740 57.843 -1936.409 -1414.608 618.317 550 378.629 403.037 264.833 76.012 -1931.575 -1362.649 541.460 Phase changes ; 311.5 K, second-order transition for Cr; AH° = kcal/mol. 368.3 K, orthorhombic-monoclinic transformation of S; Ah° = 0.096 kcal/mol. 388.36 K, melting point of S; Ah° r 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48). capacities are estimates. The entropy at 298 K and heat TABLE 14. - Thermodynamic properties of MnS0^(c) [Formation: Mn(c) + S(c,A) + 2 OjCg) = MnSO,j(c)] T, K cal/mol*K kcal/mol Log Kf Cp' S" -(G"- HU,)/J H°- HUi_ AHf° AGf° 298.15 24.020 26.790 26.790 -254.700 -228.901 167.787 300 24.110 26.939 26.789 .045 -254.703 -228.740 166.635 368.30 26.780 32.208 27.314 1.802 -254.735 -222.825 132.223 368.30 26.780 32.208 27.314 1.802 -254.831 -222.825 132.223 388.36 27.564 33.649 27.605 2.348 -254.826 -221.081 124.412 388.36 27.564 33.649 27.605 2.348 -255.239 -221.081 124.412 400 28.019 34.470 27.793 2.671 -255.249 -220.057 120.232 432.02 28.859 36.660 28.370 3.582 -255.283 -217.240 109.896 500 30.643 41.018 29.796 5.611 -255.406 -211.236 92.330 600 32.674 46.791 32.158 8.780 -255.346 -202.405 73.725 700 34.313 51.956 34.623 12.133 -255.131 -193.600 60.444 717.82 34.550 52.822 35.064 12.747 -255.079 -192.033 58.466 Phase changes ; Sources; 368.3 K, orthorhombic-monoclinic transformation of S; Ah° = 0.096 kcal/mol. 388.36 K, melting point of S; Ah" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah" = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. The enthalpy of formation at 298 K is taken from Southard (42), corrected for sulfate ion CODATA (8) value. The entropy at 298 K and low-temperature heat capacities are from Moore (34). The high temperature enthalpy data are from Southard (42). 20 TABLE 15. - Thermodynamic properties of MnSOi,(c) [Formation: Mn(c) + 0.5S2(g) + 2 OjCg) = MnSO^(c)] T, K cal/mol*K kcal/mol Log Kf Cp" 5" -(C- H|,8)/T mO mO M - Haae AHf AGf 298.15 24.020 26.790 26.790 -270.055 -238.414 174.760 300 24.110 26.939 26.789 .045 -270.055 -238.217 173.539 400 28.019 34.470 27.793 2.671 -269.900 -227.623 124.366 500 30.643 41.018 29.796 5.611 -269.534 -217.089 94.888 600 32.674 46.791 32.158 8.780 -269.040 -206.646 75.270 700 34.313 51.956 34.623 12.133 -268.456 -196.295 61.285 800 35.642 56.627 37.086 15.633 -267.806 -186.032 50.821 900 36.702 60.889 39.498 19.252 -267.104 -175.853 42.703 980 37.350 64.044 41.374 22.216 -266.516 -167.763 37.412 980 37.350 64.044 41 . 374 22.216 -267.048 -167.763 37.412 1000 37.512 64.800 41.835 22.965 -266.901 -165.743 36.223 1100 38.085 68.404 44.089 26.747 -266.150 -155.653 30.925 Phase change ; 980 K, a-6 transition of Mn; AH° = 0.532 kcal/mol. Sources: The enthalpy of formation at 298 K is from Southard (42), corrected for sulfate ion CODATA (8^) value. The entropy at 298 K and low-temperature heat capacities are from Moore (34). The high-temperature enthalpy data are from Southard (42). TABLE 16. - Thermodynamic properties of MnS0^•H20(a,c) [Formation: Mn(c) + S(c,A) + 2.5 02(g) + H2(g) = MnS0^•H20(a,c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(C- H598)/T H"- H29e AHf° AGf 298.15 33.000 35.000 35.000 -329.100 -289.139 211.942 300 33.167 35.205 35.002 .061 -329.107 -288.891 210.454 350 37.667 40.655 35.421 1.832 -329.161 -282.182 176.200 368.30 39.314 42.617 35.730 2.536 -329.135 -279.726 165.988 368.30 39.314 42.617 35.730 2.536 -329.231 -279.726 165.988 388.36 41.120 44.749 36.141 3.343 -329.176 -277.030 155.897 388.36 41.120 44.749 36.141 3.343 -329.589 -277.030 155.897 400 42.168 45.979 36.409 3.828 -329.561 -275.456 150.500 432.02 45.050 49.335 37.242 5.224 -329.448 -271.129 137.157 450 46.669 51.205 37.763 6.049 -329.423 -268.700 130.497 500 51.169 56.355 39.365 8.495 -329.055 -261.970 114.505 550 55.670 61.443 41.141 11.166 -328.472 -255.288 101.441 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48) corrected for sulfate ion CODATA (8) value. The entropy at 298 K and heat capacities are estimates. 21 TABLE 17. - Thermodynamic properties of MnS0i,*4H20(c) [Formation: Mn(c) + S(c,A) + 4 OjCg) + 4H2(g) = MnS0^•4H20(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(G°- HU,)/1 H"- Hl„ AHf AGf 298.15 61.000 65.000 65.000 -539.800 -458.954 336.418 300 61.266 65.378 65.001 .113 -539.813 -458.452 333.978 350 68.467 75.363 65.774 3.356 -539.963 -444.877 277.790 368.30 71.103 78.920 66.340 4.633 -539.941 -439.905 261.037 368.30 71.103 78.920 66. 340 4.633 -540.037 -439.905 261.037 388.36 73.992 82.766 67.087 6.089 -539.967 -434.452 244.485 388.36 73.992 82.766 67.087 6.089 -540.380 -434.452 244.485 400 75.668 84.976 67.576 6.960 -540.334 -431.278 235.636 432.02 80.280 90.978 69.089 9.456 -540.140 -422.555 213.759 450 82.869 94.304 70.031 10.923 -540.047 -417.662 202.842 500 90.069 103.408 72.914 15.247 -539.402 -404.093 176.627 550 97.270 112.330 76.094 19.930 -538.418 -390.609 155.212 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), corrected for sulfate ion CODATA (8) value. The entropy at 298 K and heat capacities are estimates. TABLE 18. - Thermodynamic properties of MnS0^•5H20(c) [Formation: Mn(c) + S(c,il) + 4.5 02(g) + 5H2(g) = MnS0^*5H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(C- HUJ/1 H"- H|,8 AHf AGf° 298.15 78.000 75.000 75.000 -610.300 -515.826 378.105 300 78.333 75.484 75.001 .145 -610.300 -515.239 375.347 350 87.332 88.234 75.988 4.286 -610.075 -499.408 311.841 368.30 90.626 92.769 76.710 5.914 -609.894 -493.626 292.915 368.30 90.626 92.769 76.710 5.914 -609.990 -493.627 292.915 388.36 94.237 97.670 77.666 7.769 -609.732 -487.294 274.221 388.36 94.237 97.670 77.666 7.769 -610.145 -487.294 274.222 400 96.332 100.484 78.289 8.878 -609.984 -483.614 264.231 432.02 102.095 108.120 80.218 12.054 -609.449 -473.519 239.540 450.00 105.331 112.349 81.418 13.919 -609.151 -467.866 227.224 500 114.331 123.913 85.091 19.411 -607.871 -452.232 197.668 550 123.330 135.232 89.137 25.352 -606.166 -436.748 173.546 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° r kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), corrected for sulfate ion CODATA (8^) value. The entropy at 298 K is estimated. The heat capacity at 298 K is from Wagman (48). 22 TABLE 19. - Thermodynamic properties of MnS0i,*7H20(c) [Formation: Mn(c) + S(c,i) + 5.5 OjCg) + THjCg) = MnSO^'THjOCc)] T, K cal/mol'K kcal/mol ' 1 «-»«t i/r Cp" S° -(C- H2,8)/T n - "2 9 8 AHf° AGf 298.15 91.000 94.000 94.000 -750.400 -628.371 460.602 300 91.444 94.564 94.001 .169 -750.416 -627.613 457.210 350 103.443 109.562 95.159 5.041 -750.504 -607.132 379.105 368.30 107.835 114.946 96.010 6.974 -750.403 -599.638 355.822 368.30 107.835 114.946 96.010 6.974 -750.499 -599.638 355.822 388.36 112.649 120.790 97.138 9.186 -750.307 -591.425 332.820 388.36 112.649 120.790 97.138 9.186 -750.720 -591.425 332.820 400 115.442 124.158 97.875 10.513 -750.587 -586.653 320.528 432.02 123.127 133.339 100.164 14.332 -750.087 -573.548 290.142 450 127.442 138.448 101.592 16.585 -749.783 -566.206 274.984 500 139.441 152.496 105.982 23.257 -748.391 -545.877 238.599 550 151.440 166.349 110.842 30.529 -746.429 -525.717 208.898 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; Ah° = 0.096 kcal/mol. 388.36 K, melting point of S; Ah° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), corrected for sulfate ion CODATA (8) value. The entropy at 298 K and heat capacities are estimates. TABLE 20. - Thermodynamic properties of FeSO^(c) [Formation: Fe(c) + S(c,il) + 2 02(g) = FeSOH(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S° -(G°- H|98)/T n - "298 AHf° AGf° 00 -4.008 -220.529 -220.529 00 100 10.534 10.223 46.563 -3.634 -221.810 -214.108 467.926 200 18.845 20.319 30.964 -2.129 -222.512 -206.098 225.211 298.15 24.040 28.909 28.909 -222.800 -197.969 145.114 300 24.140 29.058 28.908 .045 -222.802 -197.814 144.106 368.30 26.694 34.282 29.430 1.787 -222.831 -192.122 114.004 368.30 26.694 34.282 29.430 1.787 -222.927 -192.122 114.004 388.36 27.445 35.718 29.718 2.330 -222.919 -190.443 107.171 388.36 27.445 35.718 29.718 2.330 -223.332 -190.444 107.171 400 27.880 36.535 29.905 2.652 -223.341 -189.458 103.514 432.02 28.818 38.718 30.478 3.560 -223.372 -186.745 94.469 500 30.810 43.085 31.899 5.593 -223.481 -180.968 79.100 600 32.990 48.904 34.257 8.788 -223.390 -172.469 62.821 700 34.570 54.113 36.727 12.170 -223.159 -163.998 51.202 717.82 34.773 54.985 37.170 12.788 -223.108 -162.492 49.472 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: Enthalpy of formation at 298 K is based on Wagman (48). at 298 K are from JANAF (10). Heat capacities and entropy 23 TABLE 21. - Thermodynamic properties of FeSOi,(c) [Formation: Fe(c) + O.SSjCg) + 2 OjCg) = FeSO^(c)] T, K cal/mol*K kcal/mol Log Kf Cp« S° -(C- H598)/T LfO ijO n - H2 9 8 AHf AGf° 00 -4.008 -235.847 -235.847 oo 100 10.534 10.223 46.563 -3.634 -237.331 -227.598 497.408 200 18.845 20.319 30.964 -2.129 -237.995 -217.560 237.735 298.15 24.040 28.909 28.909 -238.155 -207.483 152.087 300 24.140 29.058 28.908 .045 -238.154 -207.292 151.010 400 27.880 36.535 29.905 2.652 -237.992 -197.023 107.647 500 30.810 43.085 31.899 5.593 -237.609 -186.821 81.658 600 32.990 48.904 34.257 8.788 -237.085 -176.710 64.366 700 34.570 54.113 36.727 12.170 -236.484 -166.693 52.043 800 35.710 58.808 39.199 15.687 -235.864 -156.768 42.826 900 36.510 63.061 41.618 19.299 -235.282 -146.916 35.676 1000 37.160 66.943 43.960 22.983 -234.831 -137.126 29.968 1043 37.396 68.512 44.940 24.586 -234.773 -132.926 27.853 1100 37.710 70.511 46.214 26.727 -234.544 -127.364 25.305 1185 38.126 73.333 48.058 29.951 -234.029 -119.100 21.965 1185 38.126 73.333 48.058 29.951 -234.244 -119.099 21.965 1200 38.200 73.813 48.377 30.523 -234.117 -117.644 21.426 1300 38.640 76.889 50.454 34.365 -233.261 -107.974 18.152 1400 39.040 79.767 52.446 38.250 -232.404 -98.367 15.356 1500 39.420 82.473 54.358 42.173 -231.544 -88.824 12.941 1600 39.780 85.029 56.196 46.133 -230.684 -79.337 10.837 1667 40.008 86.666 57.388 48.806 -230.108 -73.011 9.572 1667 40.008 86.666 57.388 48.806 -230.308 -73.011 9.572 1700 40.120 87.451 57.964 50.128 -230.050 -69.900 8.986 1800 40.460 89.754 59.667 54.157 -229.269 -60.500 7.346 1811 40.495 90.001 59.850 54.602 -229.186 -59.472 7.177 1811 40.495 90.001 59.850 54.602 -232.486 -59.472 7.177 1900 40. 780 91.950 61.308 58.219 -231.864 -50.985 5.865 2000 41.100 94.050 62.894 62.313 -231.146 -41.484 4.533 Phase changes : 1043 K, Curie temperature of Fe; Ah° = kcal/mol. 1185 K, a-Y transition point of Fe; AH" = 0.215 kcal/mol. 1667 K, Y-6 transition point of Fe; AH° = 0.200 kcal/mol. 1811 K, melting point of Fe; AH° = 3.300 kcal/mol. Sources: Enthalpy of formation at 298 K is based on Wagman (48). at 298 K are from JANAF (10). Heat capacities and entropy 24 TABLE 22. - Thermodynamic properties of FeS0i,*H20(c) [Formation: Fe(c) + S(c,J.) + HjCg) + 2.5 OjCg) = FeS0^•H20(c)] T, K cal/mol»K kcal/mol Log Kf Cp" S° -(0°- H°98)/T H"- H2%8 AHf AGf 298.15 33.346 37.700 37.700 -297.400 -258.581 189.542 300 33.513 37.907 37.700 .062 -297.404 -258.339 188.198 350 38.015 43.411 38.125 1.850 -297.429 -251.825 157.244 368.30 39.663 45.390 38.438 2.561 -297.391 -249.441 148.017 368.30 39.663 45.390 38.438 2.561 -297.487 -249.441 148.017 388.36 41.469 47.541 38.853 3.374 -297.420 -246.825 138.899 388.36 41.469 47.541 38.853 3.374 -297.833 -246.825 138.899 400 42.517 48.781 39.123 3.863 -297.798 -245.297 134.022 432.02 45.400 52.165 39.964 5.271 -297.668 -241.099 121.965 450 47.019 54.049 40.489 6.102 -297.634 -238.745 115.949 500 51.521 59.236 42.106 8.565 -297.242 -232.221 101.502 550 56.023 64.357 43.895 11.254 -296.636 -225.744 89.701 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: Enthalpy of formation at 298 K is based on Adami (1). Pribylov (39). Heat capacities are estimates. The entropy at 298 K is from TABLE 23. - Thermodynamic properties of FeS0H*4H20(c) [Formation: Fe(c) + S(c,)l) + 4H2(g) + 4 02(g) = FeS0.,*4H20(c) ] T, K cal/mol'K kcal/mol Log Kf cp- S" -(G°- H|9e)/T H"- H|,e AHf° AGf° 298.15 65.924 67.500 67.500 -509.500 -429.736 315.001 300 66.190 67.909 67.502 .122 -509.503 -429.241 312.698 350 73.390 78.653 68.333 3.612 -509.392 -415.868 259.676 368.30 76.025 82.460 68.941 4.979 -509.276 -410.981 243.874 368.30 76.025 82.460 68.941 4.979 -509.372 -410.981 243.874 388.36 78.914 86.567 69.746 6.533 -509.198 -405.625 228.263 388.36 78.914 86.567 69.746 6.533 -509.612 -405.625 228.263 400 80.590 88.922 70.270 7.461 -509.506 -402.510 219.919 432.02 85.201 95.303 71.888 10.116 -509.147 -393.958 199.293 450 87.790 98.830 72.894 11.671 -508.963 -389.169 189.004 500 94.990 108.452 75.972 16.240 -508.066 -375.903 164.305 550 102.190 117.844 79.353 21.170 -506.830 -362.743 144.139 Phase chanqes: 0.096 kcal/mol. Sources: 368.3 K, orthorhombic-monoclinic transformation of S; AH' 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Heat of formation at 298 K is based on Larson (29^). Entropy at 298 K is based on Malinin (32). Heat capacity at 298 K is from Kelley (21). 25 TABLE 24. - Thermodynamic properties of FeS0H*7H20(c) [Formation: Fe(c) + S(c,il) + IH^ig) + 5.5 OjCg) = FeSO^'THjOCc)] T, K cal/mol*K kcal/mol Log Kf Cp" S° -(G°- H|38)/T H - H29e AHf° AGf 298.15 94.313 97.800 97.800 -720.440 -599.881 439.719 300 94.784 98.385 97.802 .175 -720.448 -599.133 436.462 350 107.210 113.937 99.003 5.227 -720.343 -578.913 361.485 368.30 111.543 119.511 99.884 7.229 -720.169 -571.523 339.138 368.30 111.543 119.511 99.884 7.229 -720.265 -571.523 339.138 388.36 116.293 125.557 101.053 9.516 -719.992 -563.427 317.065 388.36 116.293 125.557 101.053 9.516 -720.405 -563.427 317.065 400 119.049 129.032 101.817 10.886 -720.227 -558.724 305.269 432.02 126.254 138.478 104.185 14.816 -719.610 -545.819 276.115 450 130.300 143.709 105.660 17.122 -719.250 -538.595 261.574 500 140.964 157.995 110.183 23.906 -717.739 -518.598 226.676 550 151.040 171.907 115.163 31.209 -715.741 -498.775 198.192 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: Enthalpy of formation at 298 K is based on Adami (J_). The entropy and heat capacity at 298 K are from Lyon (30). The high-temperature heat capacities are estimates. TABLE 25. - Thermodynamic properties of Fe2(S0i,)3 (c) [Formation: 2Fe(c) + 3S(c,A) + 6 OjCg) = Fe2(S0^)3(c) ] T, K cal/mol*K kcal/mol Log Kf Cp" S° -(C- H29b)/T H - H298 AHf AGf° 298.15 64.950 67.550 67.550 -617.100 -538.835 394.971 300 65.207 67.953 67.553 .120 -617.110 -538.348 392.181 368.30 72.795 82.213 68.964 4.880 -617.242 -520.395 308.799 368.30 72.795 82.213 68.964 4.880 -617.530 -520.395 308.799 388.36 75.024 86.134 69.752 6.362 -617.523 -515.103 289.871 388.36 75.024 86.134 69.752 6.362 -618.762 -515.103 289.871 400 76.317 88.369 70.262 7.243 -618.799 -511.997 279.738 432.02 78.866 94.344 71.828 9.727 -618.918 -503.444 254.679 500 84.277 106.287 75.711 15.288 -619.315 -485.227 212.090 600 90.928 122.255 82.162 24.056 -619.122 -458.415 166.975 700 96.850 136.724 88.938 33.450 -618.586 -431.681 134.775 717.82 97.818 139.171 90.155 35.184 -618.204 -426.928 129.982 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; Ah° r 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol 717.824 K, boiling point of S to equilibrium mixture. 0.096 kcal/mol. Sources: Enthalpy of formation at 298 K is based on Barany (3). temperature enthalpy values are from Pankratz (37). The entropy and high- 26 TABLE 26. - Thermodynamic properties of Fe2(S0i,)3(c) [Formation: 2Fe(c) + 1.5S2(g) + 6 O^Cg) = Fe2(S0^)3(c)] T, K cal/mol'K kcal/mol Log Kf Cpo S" -(G°- H;,«)/T AHf» AGf 298.15 64.950 67.550 67.550 -663.165 -567.376 415.892 300 65.207 67.953 67.553 .120 -663.166 -566.780 412.893 400 76.317 88.369 70.262 7.243 -662.752 -534.693 292.139 500 84.277 106.287 75.711 15.288 -661.697 -502.787 219.765 600 90.928 122.255 82.162 24.056 -660.206 -471 . 1 38 171.610 700 96.850 136.724 88.938 33.450 -658.361 -439.766 137.299 800 102.282 150.015 95.753 43.410 -656.226 -408.687 111.647 800 102.720 150.643 95.753 43.912 -655.724 -408.687 111.647 900 102.720 162.742 102.538 54.184 -653.579 -377.939 91.775 Phase changes : 800 K, a-B transition point of Fe2(S0ij)3; AH" = 0.540 kcal/mol. Sources: Enthalpy of formation at 298 K is based on Barany (3). The entropy at 298 K and high-temperature enthalpy values are from Pankratz (37). TABLE 27. - Thermodynamic properties of CoSO^(c) [Formation: Co(c) + S(c,Jl) + 2 OjCg) = CoSO^(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S" -(G°- Hl,8)/T H°- HUe AHf AGf 00 -4.120 -210.077 -210.077 00 100 10.625 9.022 46.032 -3.701 -211.334 -203.474 444.686 \ 200 19.188 19.309 30.144 -2.167 -212.042 -195.303 213.414 298.15 24.670 28.060 28.060 -212.300 -187.020 137.087 300 24.773 28.213 28.060 .046 -212.301 -186.861 136.126 368.30 27.404 33.608 28.596 1.846 -212.266 -181.076 107.449 368.30 27.404 33.608 28.596 1.846 -212.362 -181.076 107.449 388.36 28.177 35.082 28.894 2.403 -212.336 -179.372 100.940 388.36 28.177 35.082 28.894 2.403 -212.749 -179.372 100.940 400 28.625 35.921 29.086 2.734 -212.747 -178.372 97.457 432.02 29.345 38.153 29.676 3.662 -212.750 -175.621 88.842 500 30.874 42.568 31.134 5.717 -212.818 -169.763 74.202 600 32.466 48.344 33.531 8.888 -212.706 -161.159 58.701 700 33.746 53.447 36.018 12.200 -212.478 -152.585 47.639 700 33.746 53.447 36.018 12.200 -212.586 -152.585 47.639 717.82 33.945 54.298 36.462 12.803 -212.532 -151.061 45.992 Phase changes : Sources: 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 700 K, a-3 transition for Co(c); AH° = 0.108 kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Enthalpy of formation at 298 K is based on Adami (J^). Entropy and low-temperature heat capacities are from Weller (50). The high-temperature heat capacities are estimates. 27 TABLE 28. - Thermodynamic properties of CoSOi,(c) [Formation: Co(c) + O.SSjCg) + 2 OjCg) = CoSO^(c)] T, K cal/mol*K kcal/mol Log Kf Cp" S° -(G°- HS,8)/T AHf° AGf° 00 -4.120 -225.395 -225.395 00 100 10.625 9.022 46.032 -3.701 -226.855 -216.964 474.168 200 19.188 19.309 30.144 -2.167 -227.525 -206.764 225.939 298.15 24.670 28.060 28.060 -227.655 -196.533 144.061 300 24.773 28.213 28.060 .046 -227.653 -196.338 143.030 400 28.625 35.921 29.086 2.734 -227.398 -185.937 101.590 500 30.874 42.568 31.134 5.717 -226.946 -175.616 76.761 600 32.466 48.344 33.531 8.888 -226.400 -165.400 60.246 700 33.746 53.447 36.018 12.200 -225.803 -155.280 48.480 700 33.746 53.447 36.018 12.200 -225.911 -155.280 48.480 800 34.861 58.028 38.488 15.632 -225.262 -145.234 39.676 900 35.880 62.193 40.894 19.169 -224.593 -135.272 32.848 964 36.500 64.679 42.392 21.485 -224.156 -128.945 29.233 964 36.495 65.213 42.392 22.000 -223.641 -128.945 29.233 1000 36.837 66.557 43.237 23.320 -223.394 -125.413 27.409 1100 37.759 70.112 45.521 27.050 -222.706 -115.640 22.975 1200 38.653 73.436 47.710 30.871 -222.023 -105.938 19.294 1300 39.528 76.564 49.810 34.780 -221.372 -96.295 16.188 1394 40.336 79.352 51.709 38.534 -220.839 -87.278 1400 40.388 79.525 51.828 38.776 -220.798 -86.703 13.535 Phase changes ; 700 K, a-3 transition for Co(c); AH° = 0.108 kcal/mol. 964 K, a-B transition of CoSO^Cc); AH° = 0.515 kcal/mol. 1394 K, Curie temperature of Co(c); AH°= kcal/mol. Sources: Enthalpy of formation at 298 K is based on Adami (1). Entropy and low-temperature heat capacities are from Weller (50). High-temperature heat capacities are estimates. TABLE 29. - Thermodynamic properties of CoS0^*H20(c) [Formation: Co(c) + S(c,£) + 2.5 02(g) + H2(g) = CoS0^»H20(c)] T, K cal/mol"K kcal/mol Log Kf Cp° S" -(G°- H|,J/T H°- H2%8 AHf AGf 298.15 34.000 42.000 42.000 -286.800 -239.762 175.748 300 34.170 42.211 42.001 .063 -286.816 -239.469 174.450 350 38.668 47.816 42.433 1.884 -287.150 -231.553 144.586 368.30 40.314 49.829 42.751 2.607 -287.225 -228.644 135.676 368.30 40.314 49.829 42.751 2.607 -287.321 -228.644 135.676 388.36 42.118 52.014 43.172 3.434 -287.377 -225.445 126.868 388.36 42.118 52.014 43.172 3.434 -287.790 -225.446 126.868 400 43.165 53.273 43.448 3.930 -287.827 -223.577 122.155 432.02 46.045 56.707 44.305 5.358 -287.893 -218.431 110.498 450 47.662 58.617 44.839 6.200 -287.970 -215.534 104.676 500 52.159 63.871 46.479 8.696 -287.878 -207.488 90.692 550 56.656 69.053 48.297 11.416 -287.572 -199.462 79.258 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: Enthalpy of formation at 298 K is based on Goldberg (15), from Goldberg (15). Heat capacities are estimates. The entropy at 298 K is 28 TABLE 30. - Thermodynamic properties of CoS0i,*6H20(c) [Formation: Co(c) + S(c,«,) + 5 OjCg) + eHjCg) = CoS0,,*6H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- H|,8)/T H - "298 AHf° AGf 00 -13.525 -630,143 -630.143 00 100 33.674 26.822 146.552 -11.973 -636,651 -603,724 1319.420 200 61.028 58,923 94.848 -7.185 -640,057 -569,293 622,086 298.15 84.340 87.863 87.863 -641.330 -534,221 391.590 300 84.759 88.386 87.866 .156 -641.338 -533,556 388.690 337 92.978 98.715 88.489 3.446 -641.315 -520.260 337.393 350 95.794 102.287 88.936 4.673 -641.241 -515,596 321.948 368.30 99.630 107,267 89.724 6.461 -641.086 -509,030 302.055 568.30 99.630 107.267 89,724 6.461 -641.182 -509,030 302.055 388.36 103.834 112.667 90,769 8.504 -640.938 -501,837 282,406 388.36 103,834 112.667 90,769 8.504 -641,351 -501,837 282,406 400 106.274 115.769 91,451 9.727 -641.195 -497,658 271,904 432.02 112.631 124.200 93,567 13,234 -640.655 -486.188 245,949 450 116.200 128.865 94.885 15,291 -640.349 -479.762 233.001 500 125.572 141.598 98.924 21,337 -639,026 -461.986 201.931 550 134.389 153.984 103.368 27,839 -637.273 -444.363 176.571 Phase changes; Sources: 337 K CoS0^*6H20(c) dissociates to CoS0i,*H20(c) and saturated solution. 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol, 388,36 K, melting point of S; AH° = 0.413 kcal/mol, 432,02 K, second-order transformation of S; AH° = kcal/mol. Enthalpy of formation at 298 K is from Ko (25), Entropy at 298 K and heat capacities are from Rao (40), The transition temperature is from Broers (6), TABLE 31, - Thermodynamic properties of CoS0,,*7H20(c) [Formation: Co(c) + S(c,ll) + 5,5 02(g) + 7H2(g) = CoS0^'7H20(c) ] T, K cal/mol'K kcal/mol Log Kf Cp° S" -(G"- H|9e)/T fjO ijO M - M290 AHf° AGf 00 -15.097 -699.423 -699.423 00 100 37.564 28.644 162.704 -13.406 -706.857 -669.637 1463,471 200 69.109 64.777 104.832 -8.011 -710,647 -630.730 689.220 298.15 93.483 97.048 97.048 -712,100 -591.120 433,297 300 93.924 97.628 97.051 .173 -712,110 -590.369 430.078 317.78 98.144 103.156 97,237 1.881 -712,154 -583.151 401.051 350 105.746 112.996 98,236 5.166 -712.060 -570.078 355.968 368.30 110.019 118.494 99,107 7.140 -711.911 -562.658 333.878 368.30 110.019 118.494 99,107 7.140 -712.007 -562.658 333.878 388.36 114.703 124.452 100,263 9.394 -711.764 -554.529 312.057 388.36 114.703 124.452 100,263 9.394 -712.177 -554,529 312.057 400 117.421 127.880 101,018 10.745 -712.016 -549,806 300.396 432.02 124.804 137.204 103,354 14.624 -711.443 -536,842 271.574 450 128.949 142,377 104.810 16.905 -711.104 -529,579 257,195 500 140.331 156.554 109.278 23.638 -709.628 -509,483 222,692 550 151.565 170.457 114,210 30.936 -707.616 -489,562 194,531 Phase changes : 317,78 K CoS0,,'7H20(c) dissociates to CoS0,,*6H20(c) and saturated solution; AH° = 2,848 kcal/mol (heptahydrate), 368,3 K, orthorhombic-monoclinic transformation of S; AH° = 0,096 kcal/mol. 388,36 K, melting point of S; AH° = 0,413 kcal/mol, 432,02 K, second-order transformation of S; Ah° = kcal/mol. Sources: Enthalpy of formation at 298 K is based on Ko (25^) and Brodale (5^). 298.15 K is from Rao (40). Heat capacities are from Rao (40). The entropy at 29 TABLE 32. - Thermodynamic properties of NiSO^(c) [Formation: Ni(c) + S(c,£) + 2 OjCg) = NiSO,,(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- H;,s)/T AHf AGf° oo -3.810 -206.172 -206.172 00 100 9.020 6.760 40.960 -3.420 -207.455 -199.375 435.728 200 17.840 15.990 26.190 -2.040 -208.312 -190.929 208.635 298.15 23.330 24.210 24.210 -208.710 -182.294 133.623 300 23.420 24.350 24.217 .040 -208.718 -182.131 132.681 368.30 26.213 29.492 24.718 1.758 -208.788 -176.066 104.477 368.30 26.213 29.492 24.718 1.758 -208.884 -176.066 104.477 388.36 27.034 30.905 25.001 2.293 -208.890 -174.278 98.074 388.36 27.034 30.905 25.001 2.293 -209.303 -174.278 98.074 400 27.510 31.710 25.185 2.610 -209.320 -173.228 94.646 432.02 28.323 33.860 25.749 3.504 -209.374 -170.338 86.169 500 30.050 38.140 27.140 5.500 -209.539 -164.174 71.760 600 31.910 43.790 29.457 8.600 -209.588 -155.098 56.494 631 32.363 45.409 30.201 9.596 -209.591 -152.281 52.743 700 33.370 48.820 31.863 11.870 -209.472 -146.011 45.586 717.82 33.584 49.662 32.294 12.467 -209.425 -144.396 43.963 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 631 K, Curie temperature of Ni. 717.824 K, boiling point of S to equilibrium mixture. Sources: Enthalpy of formation is based on Adami (2^). Low-temperature heat capacities are from Stuve (44) and Weller (50). High-temperature enthalpy data are from Stuve (44). Entropy at 298 K is from Stuve (44). TABLE 33. - Thermodynamic properties of NiSOi,(c) [Formation: Ni(c) + 0.5 S2(g) + 2 02(g) = NiSO^(c)] T, K cal/mol*K kcal/mol Log Kf Cp" S" -(G-- HS9e)/T H°- H298 AHf AGf oo -3.810 -221.490 -221.490 00 100 9.020 6.760 40.960 -3.420 -222.976 -212.865 465.210 200 17.840 15.990 26.190 -2.040 -223.794 -202.390 221.159 298.15 23.330 24.210 24.210 -224.065 -191.807 140.597 300 23.420 24.350 24.217 .040 -224.070 -191.608 139.585 400 27.510 31.710 25.185 2.610 -223.971 -180.794 98.780 500 30.050 38.140 27.140 5.500 -223.667 -170.028 74.318 600 31.910 43.790 29.457 8.600 -223.283 -159.339 58.039 631 32.363 45.409 30.201 9.596 -223.166 -156.037 54.043 700 33.370 48.820 31.863 11.870 -222.797 -148.707 46.428 800 34.570 53.360 34.2.35 15.260 -222.176 -138.181 37.749 900 35.560 57.490 36.634 18.770 -221.482 -127.720 31.014 1000 36.380 61.280 38.910 22.370 -220.741 -117.343 25.645 1100 37.030 64.780 41.107 26.040 -219.975 -107.032 21.265 1200 37.530 68.020 43.212 29.770 -219.188 -96.795 17.629 Phase change ; 631 K, Curie temperature of Ni. Sources: Enthalpy of formation at 298 K is based on Adami (.2). Low-temperature heat capacities are from Stuve ( 44 ) and Weller (50). High-temperature enthalpy data are from Stuve (44). Entropy at 298 K is from Stuve (44). 30 TABLE 34. - Thermodynamic properties of NiS0i,*H20(c) [Formation: Ni(c) + S{c,l) + 2.5 OjCg) + HjCg) = NiSO^'MjOCc)] T, K cal/mol*K kcal/mol Log Kf Cp" S" -(G°- H5,b)/T n - H29B AHf LGf 298.15 32.597 32.700 32.700 -284.600 -244.105 178.932 300 32.763 32.902 32.702 .060 -284.608 -243.854 177.645 350 37.260 38.290 33.116 1.811 -284.681 -237.054 148.021 368.30 38.906 40.231 33.421 2.508 -284.663 -234.564 139.189 368,30 38.906 40.231 33.421 2.508 -284.759 -234. 564 139.189 388.36 40.710 42.341 33.828 3.306 -284.712 -231.830 130.461 388.36 40.710 42.341 33.828 3.306 -285.125 -231.830 130.461 400 41.757 43.559 34.094 3.786 -285.103 -230.234 125.792 432.02 44.636 46.884 34.917 5.170 -285.005 -225.844 114.249 450 46.253 48.737 35.433 5.987 -284.989 -223.383 108.488 500 50.750 53.843 37.019 8.412 -284.650 -216.554 94.654 550 55.246 58.891 38.778 11.062 -284.099 -209.770 83.354 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: Enthalpy of formation at 298 K is based on Goldberg (15). Mah (31). Heat capacities are estimates. Entropy at 298 K is from TABLE 35. - Thermodynamic properties of NiS0i,*4H20(c) [Formation: Ni(c) + S(c,A) + 4 02(g) + 4H2(g) = NiS0^•4H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S" -(G°- H|„)/T H"- H5,8 AHf AGf 298.15 60.500 61.000 61.000 -499.400 -417.513 306.042 300 60.767 61.375 61.002 .112 -499.414 -417.005 303.784 350 67.973 71.283 61.766 3.331 -499.587 -403.252 251.799 368.30 70.611 74.814 62.327 4.599 -499.574 -398.215 236.298 368.30 70.611 74.814 62.327 4.599 -499.670 -398.215 236.299 388.36 73.502 78.635 63.070 6.045 -499.610 -392.689 220.983 388.36 73.502 78.635 63.070 6.045 -500.023 -392.689 220.983 400 75.180 80.830 63.555 6.910 -499.984 -389.473 212.796 432.02 79.795 86.795 65.058 9.391 -499.807 -380.634 192.552 450 82.387 90.102 65.993 10.849 -499.725 -375.677 182.451 500 89.593 99.155 68.859 15.148 -499.113 -361.923 158.194 550 96.800 108.032 72.017 19.808 -498.163 -348.248 138.379 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; Ah° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. Sources: Enthalpy of formation at 298 K — see discussion in text, at 298 K are estimates. Heat capacities and entropy 31 TABLE 36. - Thermodynamic properties of NiS0i,*6H20(a,c) [Formation: Ni(c) + S(c,i) + 5 OjCg) + 6H2(g) = NiS0H*6H20(a,c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(C- H|98)/T H"- H|,a AHf° AGf° 00 -12.391 -629.014 -629.014 00 100 29.980 23.841 134.231 -11.039 -635.719 -602.500 1316.745 200 56.680 53.128 86.428 -6.660 -639.529 -567.626 620.265 298.15 78.361 79.935 79.935 -641.340 -531.879 389.873 300 78.730 80.421 79.938 .145 -641.360 -531.200 386.974 350 88.180 93.280 80.931 4.322 -641.620 -512.814 320.211 368.30 91.254 97.852 81.660 5.964 -641.618 -506.079 300.304 368.30 91.254 97.852 81.660 5.964 -641.714 -506.079 300.304 388.36 94.624 102.792 82.622 7.833 -641.653 -498.691 280.635 388.36 94.624 102.792 82.622 7.833 -642.066 -498.691 280.635 400 96.579 105.615 83.250 8.946 -642.025 -494.395 270.121 432.02 101.285 113.241 85.191 12.118 -641.836 -482.584 244.126 450 103.928 117.425 86.396 13.963 -641.749 -475.959 231.154 500 110.227 128.710 90.068 19.321 -641.146 -457.567 200 550 115.476 139.470 94.074 24.968 -640.283 -439.250 174.540 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: Enthalpy of formation is based on Goldberg (15). Low-temperature heat capacities and entropies are from Stout (43). Heat capacities above 300 K are estimates. TABLE 37. - Thermodynamic properties of NiS0i,*7H20(c) [Formation: Ni(c) + S(c,il) + 5.5 02(g) + 7H2(g) = NiS0„*7H20(c)] T, K cal/mol'K kcal/mol Log Kf Cp° S° -(G°- HU,)/1 IjO ijO H - H298 AHf° AGf° 00 -14.085 -697.707 -697.707 00 100 34.700 26.549 152.079 -12.553 -705.296 -667.872 1459.615 200 64.800 60.327 97.867 -7.508 -709.432 -628.644 686.941 298.15 87.142 90.570 90.570 -711.400 -588.500 431.377 300 87.503 91.110 90.570 .162 -711.423 -587.737 428.161 304 88.277 92.274 90.587 .513 -711.466 -586.088 421.342 350 96.425 105.290 91.670 4.767 -711.777 -567.089 354.102 368.30 99.098 110.272 92.472 6.556 -711.820 -559.523 332.017 368.30 99.098 110.272 92.472 6.556 -711.916 -559.523 332.017 388.36 102.028 115.622 93.530 8.580 -711.912 -551.222 310.196 388.36 102.028 115.622 93.530 8.580 -712.325 -551.222 310.196 400 103.728 118.660 94.218 9.777 -712.323 -546.393 298.532 432.02 107.368 126.8 96.333 13.163 -712.258 -533.113 269.687 450 109.412 131.222 97.640 15.112 -712.260 -525.659 255.292 500 113.477 142.974 101.592 20.691 -711.969 -504.939 220.706 550 115.923 153.917 105.857 26.433 -711.548 -484.257 192.423 Phase changes ; 304 K NiS0^•7H20(c) dissociates to NiS0^•6H20(c) and saturated solution. 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources; Enthalpy of formation at 298 K is based on Goldberg (15). and transition temperature are from Stout (43). Heat capacities, entropies, 32 TABLE 38. - Thermodynamic properties of CuSOi,(c) [Formation: Cu(c) + S(c,il) + 2 OjCg) = CuSO^(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- Hl,8)/T H""- H2,e AHf AGf 00 -4.032 -181.932 -181.932 00 100 10.454 7.865 43.425 -3.556 -183.168 -175.136 382.756 200 18.419 17.786 28.176 -2.078 -183.956 -166.762 182.227 298.15 23.632 26.173 26.173 -184.300 -158.235 115.988 300 23.710 26.319 26.172 .044 -184.303 -158.072 115.154 368.30 26.353 31.491 26.685 1.770 -184.330 -152.095 90.252 368.30 26.353 31.491 26.685 1.770 -184.426 -152.095 90. 252 388.36 27.130 32.910 26.971 2.307 -184.416 -150.334 84.599 388.36 27.130 32.910 26.971 2.307 -184.829 -150.334 84. 599 400 27.580 33.718 27.155 2.625 -184.836 -149.300 81.573 432.02 28.448 35.875 27.723 3.522 -184.859 -146.455 74.088 500 30.290 40.180 29.128 5.526 -184.946 -140.401 61.368 600 32.300 45.889 31.456 8.660 -184.805 -131.500 47.898 700 33.890 50.991 33.888 11.972 -184.488 -122.639 38.289 717.82 34.136 51.846 34.323 12.578 -184.416 -121.065 36.859 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah" = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: The enthalpy of formation at 298 K and entropy at 298 K are from CODATA (8). capacities are from King (23). Heat TABLE 39. - Thermodynamic properties of CuSOi,(c) [Formation: Cu(c) + 0.5S2(g) + 2 OjCg) = Cu50^(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- HS98)/T H - H298 AHf AGf 00 -4.032 -197.250 -197.250 00 100 10.454 7.865 43.425 -3.556 -198.689 -188.626 412.237 200 18.419 17.786 28.176 -2.078 -199.439 -178.224 194.751 298.15 23.632 26.173 26.173 -199.655 -167.749 122.962 300 23.710 26.319 26.172 .044 -199.655 -167.550 122.058 400 27.580 33.718 27.155 2.625 -199.487 -156.866 85.706 500 30.290 40.180 29.128 5.526 -199.074 -146.254 63.927 600 32.300 45.889 31.456 8.660 -198.499 -135.741 49.443 700 33.890 50.991 33.888 11.972 -197.813 -125.334 39.131 800 35.270 55.609 36.320 15.431 -197.036 -115.034 31.426 900 36.530 59.836 38.700 19.022 -196.176 -104.834 25.457 1000 37.700 63.747 41.013 22.734 -195.238 -94.736 20.704 1100 38.730 67.390 43.246 26.558 -194.232 -84.731 16.834 Sources: The enthalpy of formation at 298 K and entropy at 298 K are from CODATA (B) . capacities are from King (23). The heat 33 TABLE 40. - Thermodynamic properties of CuS0i,*H20(c) [Formation: Cu(c) + S(c,A) + 2.5 OjCg) + HjCg) = CuSO^'HjOCc)] T, K cal/mol»K kcal/mol Log Kf Cp' S° -(C- H5,8)/T H°- H,%, AHf AGf 298.15 32.000 34.900 34.900 -259.520 -219.447 160.857 300 32.180 35.099 34.902 .059 -259.527 -219.199 159.684 350 36.678 40.397 35.308 1.781 -259.606 -212.468 132.669 368.30 38.324 42.308 35.609 2.467 -259.587 -210.003 124.615 368.30 38.324 42.308 35.609 2.467 -259.683 -210.003 124.615 388.36 40.129 44.387 36.009 3.254 -259.634 -207.298 116.656 388.36 40.129 44.387 36.009 3.254 -260.047 -207.298 116.656 400 41.176 45.588 36.271 3.727 -260.022 -205.718 112.397 432.02 44.057 48.869 37.084 5.091 -259.918 -201.375 101.870 450 45.674 50.698 37.591 5.898 -259.897 -198.940 96.617 500 50.172 55.743 39.153 8.295 -259.530 -192.183 84.002 550 54.670 60.736 40.889 10.916 -258.942 -185.474 73.699 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K, entropy at 298 K, and heat capacity at 298 K are from Wagman (48). The high-temperature heat capacities are estimates. TABLE 41. - Thermodynamic properties of CuS0^'3H20(c) [Formation: Cu(c) + S(c,A) + 3.5 OaCg) + 3H2(g) = CuS0^'3H20(c)] T, K cal/mol*K kcal/mol Log Kf Cp" S° -(G°- H|98)/T H"- HUs AHf° AGf 298.15 49.000 52.900 52.900 -402.560 -334.634 245.290 300 49.244 53.204 52.901 .091 -402.574 -334.212 243.470 350 55.843 61.290 53.524 2.718 -402.793 -322.797 201.561 368.30 58.259 64.198 53.983 3.762 -402.801 -318.614 189.064 368.30 58.259 64.198 53.983 3.762 -402.897 -318.614 189.064 388.36 60.907 67.357 54.592 4.957 -402.862 -314.024 176.715 388.36 60.907 67.357 54.592 4.957 -403.275 -314.024 176.715 400 62.443 69.178 54.991 5.675 -403.251 -311.349 170.111 432.02 66.669 74.147 56.227 7.742 -403.122 -303.997 153.784 450 69.042 76.914 56.998 8.962 -403.071 -299.874 145.637 500 75.641 84.530 59.372 12.579 -402.552 -288.432 126.072 550 82.240 92.048 62.001 16.526 -401.712 -277.056 110.091 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K, entropy at 298 K, and heat capacity at 298 K are from Wagman (48). High-temperature heat capacities are estimates. 34 TABLE 42. - Thermodynamic properties of CuS0^*5H20(c) [Formation: Cu(c) + S(c,l) + 4.5 OjCg) + 5H2(g) = CuSOh'SHjOCc)] T, K cal/mol*K kcal/mol Log Kf Cp° S° -(C- H59e)/T H'- H2,a AHf AGf° 298.15 67.000 71.800 71.800 -544.870 -449. 360 329.385 300 67.360 72.216 71.803 .124 -544.890 -448.767 326.923 350 76.354 83.275 72.655 3.717 -545.188 -432.717 270.197 368.30 79.646 87.250 73.282 5.144 -545.197 -426.836 253.282 368.30 79.646 87.250 73.282 5.144 -545.293 -426.836 253.282 388.36 83.254 91.567 74.113 6.779 -545.242 -420.383 236.568 388.36 83.254 91 . 567 74.113 6.779 -545.655 -420.383 236.568 400 85.348 94.057 74.657 7.760 -545.613 -416.629 227.633 432.02 91 . 1 08 100.848 76.347 10.585 -545.405 -406.312 205.542 450 94.342 104.629 77.402 12.252 -545.290 -400.526 194.520 500 103.336 115.035 80.647 17.194 -544.513 -384.479 168.053 550 112.330 125.305 84.240 22.586 -543.302 -368.529 146.438 Phase changes ; 368.3 K, orthorhombic-monoclinic transformation of S; AH" = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K is based on Larson (29). capacity at 298 K are from Wagman (48). The entropy and heat TABLE 43. - Thermodynamic properties of Cu2S0^(c) [Formation: 2Cu(c) + S(c,ll) + 2 02(g) = Cu2S0„(c)] T, K cal/mol*K kcal/mol Log Kf Cp" S" -(C- H|98)/T H - H298 AHf° AGf 298.15 31.000 43.600 43.600 -179.600 -156.368 114.620 300 31.068 43.792 43.602 .057 -179.601 -156.224 113.808 368.30 33.489 50.411 44.262 2.265 -179.550 -150.905 89.546 368.30 53.489 50.411 44.262 2.265 -179.646 -150.905 89.546 388.36 34.200 52.206 44.627 2.944 -179.614 -149.339 84.040 388.36 34.200 52.206 44.627 2.944 -180.027 -149.339 84.040 400 34.613 53.222 44.862 3.344 -180.022 -148.420 81.092 432.02 35.657 55.928 45.583 4.469 -180.011 -145.891 73.802 500 37.872 61.301 47.361 6.970 -180.019 -140.518 61.420 600 40.846 68.473 50.291 10.909 -179.699 -132.640 48.314 700 43.535 74.975 53.361 15.130 -179.112 -124.840 38.976 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of 5; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH" = kcal/mol. Sources: The enthalpy of formation at 298 K is from Wagman (48), Nagamori (35). The heat capacities are estimates. The entropy at 298 K is from 35 TABLE 44. - Thermodynamic properties of CuO*CuSOh(c) [Formation: 2Cu(c) + S(c,Jl) + 2.5 OzCg) = CuO'CuSO^ (c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(C- H|98)/T H°- Hlse AHf AGf° -5.909 -216.376 -216.376 100 16.148 13.806 65.066 -5.126 -217.812 -208.065 454.719 200 26.484 28.410 43.205 -2.959 -218.740 -197.915 216.268 298.15 33.450 40.358 40.358 -219.100 -187.596 137.510 300 33.570 40.565 40.358 .062 -219.103 -187.400 136.519 368.30 36.659 47.790 41.078 2.472 -219.091 -180.180 106.918 368.30 36.659 47.790 41.078 2.472 -219.187 -180.181 106.918 388.36 37.566 49.759 41.476 3.217 -219.161 -178.056 100.200 388.36 37.566 49.759 41.476 3.217 -219.574 -178.056 100.200 400 38.092 50.876 41.734 3.657 -219.571 -176.812 96.604 432.02 39.144 53.850 42.523 4.894 -219.564 -173.390 87.713 500 41.376 59.750 44.470 7.640 -219.576 -166.119 72.610 600 43.701 67.511 47.678 11.900 -219.313 -155.448 56.621 700 45.332 74.378 51.011 16.357 -218.879 -144.835 45.219 717.82 45.547 75.520 51.605 17.167 -218.788 -142.951 43.523 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Source: All data are from King (23). TABLE 45. - Thermodynamic properties of CuO*CuSOi,(c) [Formation: 2Cu(c) + 0.5S2(g) + 2.5 02(g) = CuO»CuSO^(c)] T, K cal/mol'K kcal/mol Log Kf Cp" S" -(G°- \^Ua)/^ 11° u° H - H298 AHf° AGf -5.909 -231.693 -231.693 100 16.148 13.806 65.066 -5.126 -233.332 -221.554 484.201 200 26.484 28.410 43.205 -2.959 -234.222 -209.376 228.793 298.15 33.450 40.358 40.358 -234.455 -197.110 144.484 300 33.570 40.565 40.358 .062 -234.455 -196.877 143.423 400 38.092 50.876 41.734 3.657 -234.222 -184.378 100.738 500 41.376 59.750 44.470 7.640 -233.704 -171.973 75.168 600 43.701 67.511 47.678 1 1 . 900 -233.007 -159.689 58.166 700 45.332 74.378 51.011 16.357 -232.204 -147.530 46.060 800 46.539 80.513 54.322 20.953 -231.340 -135.495 37.015 900 47.587 86.055 57.545 25.659 -230.435 -123.568 30.006 1000 48.744 91.127 60.653 30.474 -229.483 -111.745 24.421 1100 50.278 95.840 63.640 35.420 -228.466 -100.017 19.871 1200 52.455 100.303 66.511 40.551 -227.336 -88.387 16.097 Source: All data are from King (23). 36 TABLE 46. - Thermodynamic properties of ZnSOi,(c) [Formation: Zn(c,il) + S(c,Jl) + 2 OjCg) = ZnSO^(c)] T, K cal/mol*K kcal/mol r ■ — Log Kf Cp" S" -(C- H29e)/T H"- H2,8 AHf AGf 00 -4.120 -231.823 -231.823 00 100 11.373 7.548 43.868 -3.632 -233.125 -224.907 491.527 200 18.655 17.979 28.429 -2.090 -233.902 -216.360 236.425 298.15 23.680 26.430 26.430 -234.260 -207.668 152.223 300 23.746 26.577 26.430 .044 -234.263 -207.502 151.163 368.30 25.885 31.681 26.938 1.747 -234.330 -201.400 119.509 368.30 25.885 31.681 26.938 1.747 -234.426 -201.400 119.510 388.36 26.513 33.071 27.220 2.272 -234.431 -199.600 112.324 388.36 26.513 33.071 27. 220 2.272 -234.844 -199.600 112.324 400 26.878 33.859 27.402 2.583 -234.862 -198.544 108.478 432.02 27.719 35.961 27.959 3.457 -234.917 -195.635 98.966 500 29.506 40.144 29.336 5.404 -235.080 -189.437 82.802 600 31.945 45.741 31.611 8.478 -235.039 -180.307 65.676 692.73 34.124 50.486 33.825 11.541 -234.805 -171.866 54.222 692.73 34.124 50.486 33.825 11.541 -236.555 -171.866 54.222 700 34.295 50.843 34.000 11.790 -236.533 -171.187 53.446 717.82 34.705 51.710 34.429 12.405 -236.470 -169.524 51.613 Phase changes: Sources: 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 692.73 K, melting point of Zn; AH" = 1.750 kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Enthalpy of formation at 298 K is based on Adami (2). Heat capacities of a-ZnSOj, are from Weller ( 50 ) and Voskresenskaya (46). Enthalpy and entropy values are taken from JANAF (12). 37 TABLE 47. - Thermodynamic properties of ZnSOi,(c) [Formation: Zn(c,A,g) + 0.5S2(g) + Z OjCg) = ZnS0^(c)] T, K cal/mol*K ! kcal/mol ] Log Kf Cp- S° -(C- H|58)/T H°- Hiss AHf° AGf° OS -4.120 -247.141 -247.141 00 100 11.373 7.548 43.868 -3.632 -248.645 -238.397 521.009 200 18.655 17.979 28.429 -2.090 -249.384 -227.822 248.949 298.15 23.680 26.430 26.430 -249.615 -217.181 159.196 300 23.746 26.577 26.430 .044 -249.615 -216.979 158.067 aoo 26.878 33.859 27.402 2.583 -249.513 -206.110 112.612 500 29.506 40.144 29.336 5.404 -249.207 -195.290 85.360 600 31.945 45.741 31.611 8.478 -248.734 -184.548 67.221 692.73 34.124 50.486 33.825 11.541 -248.156 -174.672 55.107 692.73 34.124 50.486 33.825 11.541 -249.906 -174.672 55.107 700 34.295 50.843 34.000 11.790 -249.858 -173.882 54. 288 800 36.597 55.573 36.404 15.335 -249.094 -163.080 44.551 900 38.871 60.015 38.783 19.109 -248.139 -152.383 37.003 1000 41.128 64.227 41.118 23.109 -246.986 -141.804 30.991 1015 41.466 64.842 41.285 23.910 -246.615 -140.046 30.154 1015 34.700 69.640 41.285 28.780 -241.745 -140.046 30.154 1100 34.700 72.431 43.586 31.729 -241.241 -131.549 26.136 1180 34.700 74.867 45.625 34.505 -240.781 -123.584 22.889 1180 34.700 74.867 45.625 34. 505 -268.346 -123.584 22.889 1200 34.700 75.450 46.117 35.199 -268.184 -121.134 22.061 Phase changes ; 692.73 K, melting point of Zn; AH° = 1.750 kcal/mol. 1015 K, a-B transition point for ZnSO^Cc); Ah° = 4.87 kcal/mol. 1180 K, boiling point of Zn; Ah° = 27.565 kcal/mol. Sources: Enthalpy of formation at 298 K is based on Adami (2). Heat capacities of a-ZnSO^ are from Weller (50) and Voskresenskaya (46). Heat capacities of B-ZnSOi, and AH for the ot-3 transition are from Hosmer (16). Enthalpy and entropy values are taken from JANAF (12). ~ TABLE 48. - Thermodynamic properties of ZnS0i,*H20(c) [Formation: Zn(c) + S(c,ll) + 2.5 02(g) + H2(g) = ZnS0^*H20(c)] T 1^ cal/mol*K kcal/mol 1 nn Vf 1 , K Cp° S° -(G°- H53e)/T H - H298 AHf° AGf 298.15 36.153 33.100 33.100 -311.850 -270.637 198.379 300 36.319 33.324 33.101 .067 -311.850 -270.380 196.969 350 40.819 39.261 33.561 1.995 -311.734 -263.476 164.520 368.30 42.466 41.383 33.897 2.757 -311.643 -260.955 154.849 368.30 42.466 41.383 33.897 2.757 -311.740 -260.955 154.849 388.36 44.272 43.682 34.341 3.628 -311.612 -258.190 145.295 388.36 44.272 43.682 34.341 3.628 -312.025 -258.190 145.295 400 45.320 45.005 34.632 4.149 -311.955 -256.578 140.186 432.02 48.202 48.605 35.536 5.646 -311.726 -252.155 127.558 450 49.820 50.603 36.099 6.527 -311.634 -249.678 121.258 500 54.320 56.085 37.823 9.131 -311.076 -242.820 106.135 550 58.820 61.473 39.729 11.959 -310.299 -236.030 93.788 Phase ch anges: 368 . 3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: Enthalpy of formation is based on Wagman (47). Entropy at 298 K is from Wagman (47). Heat capacity at 298 K is from Kelley (21 ), and high-temperature heat capacities are estimates. 38 TABLE 49. - Thermodynamic properties of ZnS0H*6H20(c) [Formation: Zn(c) + S(c,Jl) + 5 OjCg) + 6H2(g) = ZnS0^•6H20(c)] T, K cal/mol*K kcal/mol Log Kf Cpo S' -(C- H59e)/T U|0 u** AHf° AGf° 298.15 84.994 86.900 86.900 -663.900 -555.678 407.318 300 85.456 87.427 86.900 .158 -663.906 -555.006 404.316 333.40 93.988 96.887 87.430 3.153 -663.862 -542.882 355.865 350 98.362 101.559 87.988 4.750 -663.739 -536.860 335.226 368.30 103.380 106.700 88.791 6.596 -663.526 -530.231 314.636 368.30 103.380 106.700 88.791 6.596 -663.622 -530.231 314.636 388.36 108.880 112.317 89.861 8.721 -663.296 -522.973 294.300 388.36 108.880 112.317 89.861 8.721 -663.709 -522.973 294.300 400 112.072 115.580 90.563 10.007 -663.489 -518.759 283.433 432.02 121.367 124.555 92.749 13.741 -662.719 -507.201 256.579 450 126.586 129.610 94.121 15.970 -662.238 -500.740 243.189 500 141.904 143.733 98.375 22.679 -660.243 -482.895 211.071 550 158.026 158.008 103.146 30.174 -657.484 -465.287 184.886 Phase chanqes: Sources: ZnS0i,*6H20(c) dissociates to ZnS0i,*H20(c) and saturated solution at 333.4 K. 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; Ah° = kcal/mol. The enthalpy of formation at 298 K is based on Larson (29). The entropy and heat capacity at 298 K are from Barieau (4). The high-temperature heat capacity values are obtained by extrapolating the low-temperature values of Barieau (4^) . TABLE 50. - Thermodynamic properties of ZnS0i,*7H20(c) [Formation: Zn(c) + S(c,)l) + 5.5 02(g) + 7H2(g) = ZnS0H'7H20(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(G-- H^,g)/T mo ijO M - M298 AHf AGf° 00 -14.592 -722.154 -722.154 OS 100 36.630 26.991 156.231 -12.924 -729.724 -692.129 1512.627 200 66.139 61.789 100.464 -7.735 -733.798 -652.747 713.279 298.15 91.144 92.900 92.900 -735.550 -612.507 448.974 300 91.620 93.465 92.902 .169 -735.564 -611.743 445.649 311.27 94. 590 96.898 92.982 1.219 -735.625 -607.090 426.246 350 103.820 108.512 94.063 5.057 -735.624 -591.093 369.090 368.30 108.143 113.913 94.917 6.996 -735.509 -583.539 346.268 368.30 108.143 113.913 94.917 6.996 -735.605 -583.539 346.268 388.36 112.881 119.776 96.048 9.215 -735.398 -575.260 323.724 388.36 112.881 119.776 96.048 9.215 -735.811 -575.260 323.724 400 115.631 123.150 96.788 10.545 -735.669 -570.450 311.676 432.02 122.962 132.336 99.083 14.366 -735.152 -557.244 281.894 450 127.078 137.434 100.514 16.614 -734.843 -549.847 267.039 500 138.163 151.400 104.906 23.247 -733.458 -529.360 231.380 550 148.885 165.074 109.756 30.425 -731.553 -509.038 202.270 Phase changes ; 311.27 K, ZnS0i,*7H20(c) dissociates to ZnS0^*6H20 and saturated solution with AH of dissociation = 4.017 kcal/mol hydrate. 368.3 K, orthorhombic-monoclinic transformation of S; Ah° r 0.096 kcal/mol. 388.36 K, melting point of S; AH° = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. Sources: The enthalpy of formation at 298 K is based on Larson (29). The entropy at 298 K and heat capacities are from Barieau (4). The AH of dissociation is from Barieau (4). 39 TABLE 51. - Thermodynamic properties of Zn0'2ZnS0i,(c) [Formation: 3Zn(c,A) + 2S(c,i) + 4.5 OzCg) = ZnO»2ZnSO„(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S" -(C- Hl98)/T H - M298 AHf° AGf° 298.15 56.686 68.190 68.190 -550.310 -491.424 360.219 300 56.939 68.541 68.191 .105 -550.317 -491.056 357.730 368.30 63.332 81.017 69.425 4.269 -550.352 -477.553 283.377 368.30 63.332 81.017 69.425 4.269 -550.544 -477.553 283.377 388.36 65.209 84.427 70.114 5.559 -550.514 -473.577 266.502 388.36 65.209 84.427 70.114 5.559 -551.340 -473.578 266.503 400 66.299 86.369 70.559 6.324 -551.346 -471.247 257.474 432.02 67.919 91.537 71.925 8.473 -551.373 -464.835 235.147 500 71.359 101.753 75.297 13.228 -551.526 -451.197 197.215 600 74.727 115.077 80.842 20.541 -551.323 -431.143 157.042 692.73 77.108 125.991 86.169 27.586 -550.943 -412.604 130.171 692.73 77.108 125.991 86.169 27.586 -556.193 -412.603 130.171 700 77.295 126.797 86.587 28.147 -556.168 -411.096 128.348 717.82 77.677 128.745 87.609 29.528 -556.095 -407.403 124.038 Phase changes : 368.3 K, orthorhombic-monoclinic transformation of S; AH° = 0.096 kcal/mol. 388.36 K, melting point of S; AH" = 0.413 kcal/mol. 432.02 K, second-order transformation of S; AH° = kcal/mol. 692.73 K, melting point of Zn; AH° = 1.750 kcal/mol. 717.824 K, boiling point of S to equilibrium mixture. Sources: The enthalpy at 298.15 K is from Ko (25). at 298.15 K are from Hosmer (16). High-temperature enthalpies and the entropy TABLE 52. - Thermodynamic properties of Zn0*2ZnS0H(c) [Formation: 3Zn(c,il,g) + S2(g) + 4.5 02(g) = Zn0*2ZnS0^(c)] T, K cal/mol*K kcal/mol Log Kf Cp° S° -(C- HS98)/T H - H29e AHf AGf 298.15 56.686 68.190 68.190 -581.020 -510.451 374.166 300 56.939 68.541 68.191 .105 -581.021 -510.011 371.538 400 66.299 86.369 70.559 6.324 -580.648 -486.378 265.741 500 71.359 101.753 75.297 13.228 -579.781 -462.903 202.332 600 74.727 115.077 80.842 20.541 -578.711 -439.625 160.131 692.73 77.108 125.991 86.169 27.586 -577.643 -418.216 131.941 692.73 77.108 125.991 86.169 27.586 -582.893 -418.214 131.941 700 77.295 126.797 86.587 28.147 -582.818 -416.486 130.031 800 79.438 137.261 92.279 35.986 -581.690 -392.802 107.307 900 81.333 146.729 97.811 44.026 -580.443 -369.266 89.669 1000 83.074 155.389 103.141 52.248 -579.080 -345.874 75.590 1100 84.714 163.385 108.260 60.638 -577.610 -322.622 64.098 1180 85.972 169.376 112.202 67.465 -576.354 -304.112 56.324 1180 85.972 169.376 112.202 67.465 -659.049 -304.112 56.324 1200 86.286 170.824 113.167 69.188 -658.574 -298.104 54.292 Phase changes : 692.73 K, melting point of Zn; Ah° = 1.750 kcal/mol. 1015 K, a-B transition point for ZnSO^(c); AH° = 4.87 kcal/mol. 1180 K, boiling point of Zn; AH" = 27.565 kcal/mol. Sources: The enthalpy at 298.15 K is from Ko (25). at 298.15 K are from Hosmer (16). High-temperature enthalpies and the entropy 40 TABLE 53. - Thermodynamic ciata for the reaction 1/3Cr2(S0j3(c) = 1/3Cr20j(c) + SO3 (g) TABLE 56. - Thermodynamic data for the reaction CoSO^(c) = CoO(c) + SOj(g) T, K AH% kcal AG% kcal 1 Log K 298.15 49.872 35.801 -26.242 300 49.870 35.713 -26.016 305 49.868 35.477 -25.421 400 49.636 31.025 -16.951 500 49.256 26.412 -11.545 600 48.754 21.891 -7.974 700 48.145 17.461 -5.452 800 47.459 13.122 -3.585 900 46.737 8.877 -2.156 Phase change : 305 K, second-order transition point of Cr203; AH° = kcal/mol. TABLE 54. - Thermodynamic data for the reaction FeSO^(c) = FeO(c) + SOjCg) T, K AH% kcal AG% kcal Log K 298.15 63.220 49.220 -36.079 300 63.219 49.133 -35.793 400 63.130 44.448 -24.285 500 62.892 39.802 -17.397 600 62.552 35.215 -12.827 700 62.144 30.689 -9.581 800 61.695 26.226 -7.165 900 61.226 21.820 -5.299 1000 60.748 17.468 -3.818 1100 60.262 13.162 -2.615 1200 59.769 8.902 -1.621 1300 59.270 4.686 - .788 1400 58.762 .504 - .079 1500 58.245 -3.641 .530 1600 57.718 -7.748 1.058 TABLE 55. - Thermodynamic data for the reaction 1/3Fe2(S0^)3(c) = 1/3Fe203(c) + S03(g) T, K AH% kcal AG% kcal Log K 298.15 45.439 31.786 -23.300 300 45.437 31.702 -23.094 400 45.268 27.146 -14.832 500 45.042 22.641 -9.896 600 44.760 18.186 -6.624 700 44.419 13.784 -4.303 800 44.022 9.433 -2.577 800 43.854 9.433 -2.577 900 43.495 5.154 -1.252 T, K AH% kcal AG% kcal Log K 298.15 60.850 47.152 -34.563 300 60.850 47.066 -34.287 400 60.732 42.483 -23.211 500 60.466 37.950 -16.588 600 60.148 33.476 -12.193 700 59.787 29.058 -9.072 800 59.377 24.695 -6.746 900 58.918 20.387 -4.951 964 58.598 17.659 -4.003 964 58.083 17.659 -4.003 1000 57.894 16.152 -3.530 1100 57.336 12.005 -2.385 1200 56.732 7.910 -1.441 1300 56.086 3.868 - .650 1400 55.399 - .125 .020 Phase change : 964 K, a-6 transition of CoSO^(c); AH° = 0.515 kcal/mol. TABLE 57. - Thermodynamic data for the reaction NiS0^(c) = NiO(c) + SOjCg) T, K AH% kcal AG% kcal Log K 56.234 56.234 00 100 56.752 52.203 -114.087 200 56.856 47.594 -52.008 298.15 56.830 43.051 -31.557 300 56.832 42.966 -31.301 400 56.712 38.362 -20.960 500 56.628 33.775 -14.763 525 56.661 32.636 -13.586 525 56.661 32.636 -13.586 565 56.597 30.804 -11.915 565 56.597 30.804 -11.915 600 56.498 29.211 -10.640 700 56.155 24.686 -7.707 800 55.757 20.236 -5.528 900 55.278 15.809 -3.839 1000 54.768 11.457 -2.504 1100 54.237 7.162 -1.423 1200 53.680 2.888 - .526 Phase changes ; 525 K, a-3 transition point of NiO; AH° = kcal/mol. 565 K, 8-6 transition point of NiO; Ah° = kcal/mol. TABLE 58. - Thermodynamic data for the reaction 2CuS0^(c) = CuO•CuSO^(c) + SOjCg) T, K kcal AG% kcal Log K 54.279 54.279 00 100 54.908 50.027 -109.333 200 55.023 45.071 -49.251 298.15 54.920 40.204 -29.470 300 54.916 40.112 -29.221 400 54.649 35.215 -19.240 500 54.276 30.397 -13.287 600 53.828 25.663 -9.348 700 53.308 21.009 -6.559 800 52.698 16.437 -4.490 900 51.983 11.944 -2.900 1000 51.174 7.540 -1.648 11GG 50.301 3.215 - .639 TABLE 59.- Thermodynamic data for the reaction CuO»CuSO,»(c) = 2CuO(c) + SOjCg) T, K AH% kcal AG% kcal Log K 49.839 49.839 00 100 50.166 46.006 -100.545 200 50.143 41.856 -45.738 298.15 50.120 37.787 -27.698 300 50.118 37.711 -27.472 400 49.965 33.595 -18.355 500 49.726 29.529 -12.907 600 49.426 25.516 -9.294 700 49.098 21.557 -6.730 800 48.752 17.646 -4.821 900 48.381 13.781 -3.347 1000 47.960 9.958 -2.176 1100 47.461 6.179 -1.228 1200 46.855 2.455 - .447 41 TABLE 60. - Thermodynamic data for the reaction 3ZnS0,»(c) = ZnO*2ZnSO^(c) + SOjCg) T, K AH% kcal AG% kcal Log K 298.15 57.890 42.910 -31.453 300 57.885 42.816 -31.191 400 57.787 37.812 -20.659 500 57.674 32.830 -14.350 600 57.325 27.887 -10.158 700 56.642 23.032 -7.191 800 55.558 18.300 -4.999 900 54.037 13.727 -3.333 1000 52.059 9.350 -2.043 1015 51.177 8.168 -1.759 1015 36.567 8.168 -1.759 1100 36.418 5.797 -1.152 1200 36.411 3.014 - .549 Phase change ; 1015 K, a-3 transition point for ZnSO^Cc); AH'r 4.87 kcal/mol. TABLE 61. - Thermodynamic data for the reaction 0.5ZnO*2ZnSOH(c) = 1.5ZnO(c) + SOjCg) T, K AH% kcal AG% kcal Log K 298.15 54.932 42.143 -30.891 300 54.928 42.063 -30.643 400 54.666 37.811 -20.659 500 54.300 33.638 -14.703 600 53.905 29.548 -10.763 700 53.495 25.514 -7.966 800 53.072 21.544 -5.885 900 52.633 17.627 -4.280 1000 52.173 13.762 -3.008 1100 51.688 9.951 -1.977 1200 51.175 6.175 -1.125 42 REFERENCES 1. Adami, L. H., and K. K. Kelley. Heats of Formation of Two Crystalline Hy- drates of Ferrous Sulfate. BuMines RI 6260, 1963, 7 pp. 2. Adami, L. H., and E. G. King. Heats of Formation of Anhydrous Sulfates of Cadmium, Cobalt, Copper, Nickel, and Zinc. BuMines RI 6617, 1965, 10 pp. 3. Barany, R., and L. H. Adami. Heats of Formation of Anhydrous Ferric Sulfate and Indium Sulfate. BuMines RI 6687, 1965, 8 pp. 4. Barieau, R. E., and W. F. Giauque. Heat Capacities, Entropies and Crystal Perfection at Low Temperatures. Heats of Solution and Transition. J. Am. Chem. Soc, V. 72, 1950, pp. 5676-5684. 5. Brodale, G. E., and W. F. Giauque. The Heat of Hydration of Cobalt Hexahy- drate to Heptahydrate. Their Solubilities and Heats of Solution. J. Phys. Chem., V. 69, 1965, pp. 1268-1272. 6. Broers, P. M. A., and G. S. A. Van Welie. System C0SO1+-H2O Vapor Pressure Measurements From 0-150°. Rec. Trav. Chim., v. 84, 1965, pp. 789-798. 7. Brown, R. R. Private communication, 1981. Available upon request from R. R. Brown, Bureau of Mines, Albany, Oreg. 8. CODATA Task Group on Key Values for Thermodynamics. CODATA Recommended Key Values for Thermodynamics 1977. CODATA Bull. 28, 1978, 17 pp.; available from CODATA Secretariat, Paris, France. 9. Cyr, J. P., J. Dellacherie, and D. Balesdent. Standard Data for the Forma- tion of Solid Cobaltous Oxide. J. Chem. and Eng. Data, v. 26, 1981, pp. 319-321. 10. Dow Chemical Co., Thermal Research Laboratory. JANAF Thermochemical Tables. NSRDS-NBS 37, U.S. Government Printing Office, Washington, D.C., SN03030872, 2d ed., 1971, 1,141 pp. 11. . JANAF Thermochemical Tables, 1974 Supplement. 12. . JANAF Thermochemical Tables, Supplement No. 55, March 1979. 13. Friesen, M. , H. M. Burt, and A. G. Mitchell. The Dehydration of Nickel Sul- fate. Thermochim. Acta, v. 41, 1980, pp. 167-174. 14. Gardner, T. E., and A. R. Taylor, Jr. Low-Temperature Thermodynamic Proper- ties of the Hydrates of Beryllium Sulfate. BuMines RI 6925, 1967, 9 pp. 15. Goldberg, R. N., R. G. Riddell, M. R. Wingard, H. P. Hopkins, C. A. Wulff, and L. G. Hepler. Thermochemistry of Cobalt Sulfate and Hydrates of Cobalt and Nickel Sulfates. Thermodynamic Properties of Co^ (aq) and the Cobalt Oxidation Potential. J. Phys. Chem., v. 70, 1966, pp. 706-710. 16. Hosmer, P. K. , and 0. H. Krikorian. The High-Temperature Enthalpies of Zinc Sulfate and Zinc Oxysulfate. High Temp. -High Press., v. 12, 1980, pp. 281-290. 43 17. Ingraham, T. R. , and P. Marier. Heats of Some Polymorphic Metal Sulfate Transitions. Can. Met. Quart., v. 4, 1965, pp. 169-176. 18. Jacob, K. T., D. B. Rao, and H. G. Nelson. Stability of Chromium (III) Sul- fate in Atmospheres Containing Oxygen and Sulfur. Met. Trans. A., v. lOA, 1979, pp. 327-331. 19. Jamieson, J. W. S., R. A. LaMontagne, B. A. Pattern, and G. R. Brown. High- Energy Modifications of the Hydrates of Zinc Sulfate. Can. J. Chem. , v. 43, 1965, pp. 3129-3132. 20. Justice, B. H. Thermal Data Fitting With Orthogonal Functions and Combined Table Generation. The FITAB Program. Univ. Mich., Ann Arbor, Mich., COO-1149143, 1969, 49 pp. 21. Kelley, K. K. Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds. BuMines Bull. 584, 1960, 232 pp. 22. Kellogg, H. H. A Critical Review of Sulfation Equilibria. Trans. Met. Soc. AIME, V. 230, 1964, pp. 1622-1634. 23. King, E. G., A. D. Mah, and L. B. Pankratz. Thermodynamic Properties of Cop- per and Its Inorganic Compounds. INCRA Series on the Metallurgy of Copper. Mono- graph II. The International Copper Research Association, Inc., New York, 1973, 257 pp. 24. Knittel, D. R. , K. H. Lau, and D. L. Hildenbrand. Torsion-Effusive Study of the Catalyzed Thermal Decomposition of Magnesium Sulfate. Paper in Proceedings of the Workshop on Techniques for Measurement of Thermodynamic Properties, Albany, Oreg., August 21-23, 1979, comp. by N. A. Gokcen, R. V. Mrazek, and L. B. Pankratz. BuMines IC 8853, 1981, pp. 363-373. 25. Ko, H. C, and R. R. Brown. Enthalpies of Formation of ZnO»2ZnSOj+ and CoS0^•6H20. BuMines RI 8688, 1982, 6 pp. 26. Kohler, K. , and P. Zaske. The Thermochemistry of Hydrates. II. The Thermal Decomposition of MgS0i+»7H20, NiS0^•7H20, ZnS0if»7H20. Z. Anorg. Allg. Chem., v. 331, 1964, pp. 1-6. 27. Krestovnikov, A. N., and E. I. Feigina. Heat Capacities of Copper, Zinc and Lead Sulfates at High Temperatures. J. Gen. Chem. USSR (Engl. Transl.), v. 6, 1936, pp. 1481-1487. 28. Kubaschewski , 0., and C. B. Alcock. Metallurgical Thermochemistry. Pergam- mon Press, New York, 5th ed., 1979, 449 pp. 29. Larson, J. W. , P. Cerutti, H. K. Garber, and L. G. Hepler. Electrode Poten- tials and Thermodynamic Data for Aqueous Ions. Copper, Zinc, Cadmium, Iron, Cobalt, and Nickel. J. Phys . Chem., v. 72, 1968, pp. 2902-2907. 30. Lyon, D. N., and W. F. Giauque. Magnetism and the Third Law of Thermodynam- ics. Magnetic Properties of Ferrous Sulfate Heptahydrate From 1 to 20° K. Heat Capacity From 1 to 300° K. J. Am. Chem. Soc, v. 71, 1949, pp. 1647-1657. 44 31. Mah, A. D., and L. B. Pankratz. Contributions to the Data on Theoretical Metallurgy. XVI. Thermodynamic Properties of Nickel and Its Inorganic Compounds. BuMines Bull. 668, 1976, 125 pp. 32. Malinin, A. A., S. I. Drakin, and A. G. Ankudimov. Equilibrium Dehydration Pressures of Salt Crystal Hydrates. Russ. J. Phys. Chem. (Engl. Transl.) , v. 53, 1979, pp. 755. 33. . (Measurement of Equilibrium Pressure During Multistep Dehydration Using Saturated Reference Solutions.) Zh. Fiz. Khim., v. 51, 1977, pp. 1557-1558. 34. Moore, G. E., and K. K. Kelley. The Specific Heats at Low Temperatures of Anhydrous Sulfates of Iron, Magnesium, Manganese, and Potassium. J. Am. Chem. Soc, V. 64, 1942, pp. 2949-2951. 35. Nagamori, M. , and F. Habashi. Thermodynamic Stability of Cu2S0it. Met. Trans., v. 5, 1974, pp. 523-524. 36. Pankratz, L. B. Thermodynamic Properties of the Elements and Oxides. Bu- Mines Bull. 672, 1982. 37. Pankratz, L. B., and W. W. Weller. Thermodynamic Data for Ferric Sulfate and Indium Sulfate. BuMines RI 7280, 1969, 9 pp. 38. Phillipson, A., and G. R. Finlay. Heats of Formation of Some Hydrates. Can. J. Chem., V. 54, 1976, pp. 3163-3168. 39. Pribylov, K. B. Determination of the Thermal Effects of the Dehydration of FeSOit»7H20. Russ. J. Inorg. Chem. (Engl. Transl.), v. 14, 1969, pp. 168-169. 40. Rao, R. V. G., and W. F. Giauque. The Heat Capacities and Entropies of Cobalt Sulfate Heptahydrate and Hexahydrate From 15 to 330° K. J. Phys. Chem., v. 69, 1965, pp. 1272-1277. 41. Reggiani, J. C. , M. Tachez, and J. Bernard. A Thermodynamic Study of the Hydrates of Vanadyl Sulfate. J. Chim. Phys. et Phys.-Chim. Biol., v. 78, 1981, pp. 79-83. 42. Southard, J. C, and C. H. Shomate. Heat of Formation and High-Temperature Heat Content of Manganous Oxide and Manganous Sulfate. High-Temperature Heat Con- tent of Manganese. J, Am. Chem. Soc, v. 64, 1942, pp. 1770-1774. 43. Stout, J. W., R. C. Archibald, G. E. Brodale, and W. F. Giauque. Heat and Entropy of Hydration of a-NiS0i+»6H20 to NiS0i+«7H20. Their Low-Temperature Heat Capacities. J. Chem. Phys., v. 44, 1966, pp. 405-409. 44. Stuve, J. M. , M. J. Ferrante, and H. C. Ko. Thermodynamic Properties of NiBr2 and NiSO^ From 10 to 1,200° K. BuMines RI 8271, 1978, 15 pp. 45. Vasileff, H. D., and H. Grayson-Smith. Specific Heats of Certain Salts of the Iron Group Elements From 65 to 300° K. Can. J. Res. Sect. A, v. 28A, 1950, pp. 367-376. 45 46. Voskresenskaya , N. K., and N. N. Patsukova. (Thermodynamic Properties of Salts KCl«ZnS04, KBr»ZnSOi+, and ZnSOit at High Temperatures.) Izv. Sek. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim. , Akad. Nauk SSSR, v. 25, 1954, pp. 159-167. 47. Wagman, D. D., W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm. Selected Values of Chemical Thermodynamic Properties. Tables for the First Thirty-Four Elements in the Standard Order of Arrangement. NBS Tech. Note 270-3, 1968, 264 pp. 48. . Selected Values of Chemical Thermodynamic Properties. Tables for Elements 35 Through 53 in the Standard Order of Arrangement. NBS Tech. Note 270-4, 1969, 152 pp. 49. . Selected Values of Chemical Thermodynamic Properties. Tables for Elements 54 Through 61 in the Standard Order of Arrangement. NBS Tech. Note 270-5, 1971, 37 pp. 50. Weller, W. W. Low-Temperature Heat Capacities and Entropies at 298.15° K of Anhydrous Sulfates of Cobalt, Copper, Nickel, and Zinc. BuMines RI 6669, 1965, 6 pp. INT.-BU.OF MINES,PGH.,P A. 26534 HI 75 83 • • ' .V bV ^^-n^ <. "'o.';*' 0*" V ♦'TIT*' A .^ V ^miM:^^\ "•^.^<( oV'^^^i]^'' '^'^c^ •^Mm>.;:. ^^m^ '^o^ '. o .-i^^ /.i^:'>o ./y^J^^.X. //^^% ./^v;^^\ ^0^ '^O^ ^^■Ts A, » » s .V' >o^ .-^^^ 0° -i^l- °- /.•i;;^'\ c°*.i^l-"^°. /.'i-^-^ <■" •^<.°- ./ 'Tf.'/ V-^'/ "°**^--'/ %--3^\.*' "°^'-^-' ^^ .^"* v-o^ oV v-o^ 'bV "^^' C^°^ ^^ * O N ' ^^ . *,W-S ^ ^v V v-^;^ ^^-o.^^' ^^'^-^^ ' V^-'*/ V-^"\/ %-^-''/ V-^'/ %'^--/ ^m^^ \/ /Jfe^ %.^" .^^I&^» \/ »^^\ %/ '^^^ "-^/ 'I ■* • • 5 \ * ^. ^^-n^. /.iy^:'>o .,^^\^':^%\. ./..^i^^-o ./Vi>:^^\ .. ^^<>' -^m^r.\ "^^.^ ov^^^^i""" ^a9^ :^m^< ^-^o^ 'oK ';^o^ '^..^^ yMM^ >..^^ .' C" *'ar/f^^^. ~^ A^ /^^^I^^-^^ C" * o > ^'-"t. 0*1°^ 'bV" K-- y "^^'^^'Z ^^,^^*\/ %'*^'/ ^^^^^•\/ %-.«o- . ^- ^ "^ <«> ., -^ ' K;-.^-- /■% '••^' y%/-.^' /\ ''^W' y\, ..«^.- ^v .^ 4> ■'•^^ 'bV" 'bV "^0^ 5-^ ^ .-to*. « 'oK '^O' O * „ « ,0 ^^. "' ^^ ^ o.»' A <^ "'T"."*' A^ xy APR 83 vaji=iw N. MANCHESTER, ^5^3^ INDIANA 46962