iP-r. ^^ tP^K .0* «t-0* o > *i»$ ^ L»_ <«. A *' J ^^ : ^^ ^ ^ c o* ... % X/: W ^ "bV A "oV" .J ^ V b 4* % ;• V >p vv •° .. ^ ••• A ^ ,A° * *"••••■* 4°* ^ V** .'&&£: \/ -«\ V* •' ^V^.o " ' A. <^, V-^S 1 *^v % 4?' /%. /X ' • **\ .. V ^ i' U «* - ; ^°: ^^ :«»: ^ :*W: < ^ * s ^ ♦ 4? "«> • U s^^ : .Hr: .* v ^ ^5. ♦/W A < 3P^K * ^ - '.ikiai'% o"*.^i-. - 4?.'2foX * -iak. * ^ .^isi: %. . 6 ° .-^sk- ^>- A < * 4 °- » \» : .^*. «fev* ^•^ , * .0' *W r o. . ^^ ♦*'*♦ : ^^ : V v^ .•• *^ %/ 4* ♦• ■• ^ 1 ^vn^ • iP-^ V ^°^ V "oV ^d* v /^. ^ / 03\/ %^-'\S V'*^*\/ V^ f ' \S '•■ ^.^' *s . ^\ . °-yjw ; .4^'x ^0 ^■\ ^q* v<-i-,-V /■ %-w--\s \*.w\f v^-V* %^r«v^ "\'-^-v»* ' '.•^k-°- y.ii&-% '°-afc.°- ***£&% q, t\^ /% ~-WW. : /\ ^. ; ** v \ .40, "-O •••» «:» ^j, -o»»" .VJ #°+ IC 8901 Bureau of Mines Information Circular/1982 Real-Time Calculation of Product-of-Combustion Spread in a Multilevel Mine By John C. Edwards and Rudolf E. Greuer UNITED STATES DEPARTMENT OF THE INTERIOR Information Circular 8901 Real-Time Calculation of Product-of-Combustion Spread in a Multilevel Mine By John C. Edwards and Rudolf E. Greuer UNITED STATES DEPARTMENT OF THE INTERIOR James G. Watt, Secretary BUREAU OF MINES Robert C. Horton, Director no. WO I This publication has been cataloged as follows: Edwards, John C Real-time calculation of product-of-e omb jstion spread in a mu lti- level mine. (Information circular United State ■i Department of the Inter or Bureau of Mines ; 890 I ) Includes bibliographic al references. Supt. of Docs, no.' I 28.27:890 1. 1. Mine fires-Data processing. 2. M ne ventilation — D ata | ro- ccs sing. 3. ( ombustic n gases— Data proc essing. 4. FC RTRAN (Computer program langu age). 5. Re al-ti me d a t a p ro c e s s 11 g- I. Greuer, Rudoll K. II. Ti le. III. Series In ormation circular (Uni ted States. Bureau of Mines) , 890 1. TN295-IM- ITN315] 622s 1622' 81 82-600293 CONTENTS Page Abs tract 1 Introduction 2 Input data preparation 4 Network input 4 Concentration input 4 Real-time input 5 Tables 1-13 5 Applications 10 Fuel-rich fire in a downcast shaft 11 Fuel-rich fire in a downcast shaft with a fan failure 11 Conclusion 13 Explanation of appendixes 14 Appendix A. — Listing of computer program 15 Appendix B. — Input data for fuel-rich fire in a downcast shaft 76 Appendix C. — Output data for fuel-rich fire in a downcast shaft calculation.... 79 Appendix D. — Input data for fuel-rich fire in a downcast shaft calculation with fan failure 91 Appendix E. — Output data for fuel-rich fire in a downcast shaft calculation with fan failure 94 ILLUSTRATIONS 1. Base schematic of small multilevel mine with an exhaust fan and booster fan 10 2. Schematic of flow reversal in small multilevel mine with failure of ex- haust fan 12 TABLES 1 . Network control card 6 2. Airway cards 6 3 . Junction cards 7 4 . Fan characteristic card 1 7 5. Fan characteristic card 2 7 6 . Additional airway cards 7 7 . Concentration control card 8 8 . Average value card 8 9 . Additional concentration airway cards 8 10. Additional concentration junction cards 8 1 1 . Contamination cards , steady-state input 9 12. Real-time control card 9 1 3 . Contamination cards , real-time input 9 REAL-TIME CALCULATION OF PRODUCT=OF~COMBUSTION SPREAD IN A MULTILEVEL MINE By John C. Edwards 1 and Rudolf E. Greuer 2 ABSTRACT A computer program, developed for the Bureau of Mines under contract, predicts in a quasi-steady-state approximation the ventilation and con- taminant concentrations and temperatures when a fire occurs in a multi- level mine. For periods of time in which there is no significant change in the ventilation, yet a fire is producing fumes, a real-time fume concentration throughout the mine is calculated. Multiple and time-variable contaminant sources can be simulated. Recirculation paths that can develop provide a mechanism for increasing the fume con- centration in the mine network and are identified by the computer pro- gram. This report contains a listing of the Fortran computer program as well as the required format of the input data. Two examples are provided of the real-time spread of smoke from a fuel-rich fire throughout a multilevel mine. The first example considers an opera- tional exhaust fan as well as a booster fan. The second example eval- uates the real-time smoke spread following a failure in the exhaust fan: recirculation occurs in this latter case. 1 Physicist, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, Pa. 2 Professor of mining engineering, Michigan Technological University, Houghton, Mich, INTRODUCTION The successful planning of miner escape and rescue measures in the event of a fire in a mine, as well as the implemen- tation of a fire detection system, is contingent upon the capability to predict the time-dependent concentration of the products of combustion in the mine net- work. Michigan Technological University (MTU) 3 has developed for the Bureau of Mines under contract J0285002 a computer program for the real-time spread of fumes throughout a multilevel mine network. The program is a combination of an ear- lier program 4 developed by MTU, that was restructured for steady-state analysis 5 with a real-time modification and a pro- gram modification that gives the user the choice of using a least squares represen- tation of the fan characteristic data as an alternative to a Lagrange interpola- tion of the fan data. The computation procedure accounts for airway resistances, interaction of fans, and thermal exchange with the airway walls. The buoyancy induced natural ven- tilation is calculated directly from the airway temperatures, which change in a quasi-steady-state manner owing to ther- mal diffusion into the airway walls. The fire is quantified by its heat production in determining the effects of natural 3 Greuer, R. E. Real-Time Precalcula- tion of the Distribution of Combustion Products and Other Contaminants in the Ventilation System of Mines. Final Report to Bureau of Mines (Con- tract JO285002 by Michigan Technological University) . BuMines OFR 22-82, March 1981, 261 pp.; NTIS PB 82-183104. 4 Greuer, R. E. Study of Mine Fires and Mine Ventilation. Part I. Computer Sim- ulation of Ventilation Systems Under the Influence of Mine Fires. BuMines OFR 115(1) -78, October 1977, 162 pp.; NTIS PB 288 231/AS. 5 Computer Sciences Corp. Computer Sim- ulation of Ventilation Systems Under the Influence of Mine Fires. Program Users Manual and Program Maintenance Manual, 1980; prepared for the Bureau of Mines under GSA Contract GS-045-22715. ventilation. Discussion of the program capability was reported earlier. 6 This report furnishes the user a com- plete listing of the mine ventilation computer program for a real-time calcula- tion of contaminant spread throughout a multilevel mine network. Instructions are provided on how to prepare the data, and two sample calculations are presented. The mine ventilation computer program is used to simulate airflow in a multi- level mine network by designating each junction (crosscut and intersection) and branch (airway) with an identification number. The program internally forms closed paths (meshes) throughout the net- work. The conservation of energy is ap- plied to each mesh, and the conservation of mass is applied to each junction. The program iteratively develops solutions to the airflow rates and temperatures throughout the mine. In the case where one or more fires are simulated, the pro- gram calculates the smoke concentration in each airway in the steady-state mode based upon an airflow rate computed for a fixed time after the inception of the fire. These airflow rates are further utilized to calculate the smoke spread throughout the mine network under the condition of one or more fires of various durations. The real-time concentration calculation performed by the computer program assumes a steady ventilation flow. This is a reasonable approximation for fires in their incipient stage of growth. In this early stage changes occur primarily in the immediate vicinity of the fire. There are three ways to characterize the fire in an airway: (1) a specified ^Edwards, J. C. Computer-Aided Venti- lation Modeling. Paper in underground Metal and Nonmetal Mine Fire Protection. BuMines IC 8865, 1981, pp. 78-85. Pro- ceedings: Bureau of Mines Technology Transfer Seminars, Denver, Colo., Nov. 3, 1981, and St. Louis, Mo., Nov. 6, 1981. concentration and heat input, (2) the ox- ygen concentration of the fumes that leave the fire zone, or (3) the fume and heat production associated with the oxy- gen delivered to the fire. Options 2 and 3 correspond to oxygen-rich and fuel-rich fires respectively. The real-time computational feature of the computer program enables the user to discriminate between (1) airways that have subcritical product-of-combustion concentrations for a period of time ade- quate for rescue measures before reaching a critical level of concentration, and (2) airways that remain subcritical for long times. The word "critical" is ap- plied to those airways that are unsafe for human survival. In addition to a time-dependent evalu- ation of the product-of-combustion hazard throughout the mine network, the program can be used to evaluate the total expo- sure a miner receives while waiting for rescue in a specified airway. The computational procedure for the network computation is explained else- where, as is that for the real-time fume (product of combustion, contaminants). 8 To facilitate the real-time concentration calculation, the program generates con- trol volumes of homogeneous contaminant concentrations that advance with the flow throughout the mine network. When two or more control volumes meet at a junction, a new control volume leaves the junction with a concentration determined by con- servation of mass at the junction. As part of the computer output, the terms "fumes" and "waves" are used. "Fumes" represents contaminated air, and "waves" represents the boundary between moving control volumes with different concentrations. Waves are introduced to enable the pro- gram user to monitor the spread of con- taminated air throughout the network. 7 Work cited in footnote 4. 8 Work cited in footnote 3. When contaminated air enters an airway at the starting junction of an airway with otherwise fresh air, the wave marks the interface between the contaminated and the fresh air. The wave travels with the airflow velocity in the airway and is identified with a number. When two waves of different concentration meet at a junction and further contamination or dilution occurs, a new wave is used to characterize the resultant contaminant concentration. In this manner, one or more waves are generated. The output of the program execution identifies in as- cending order those airways that have contaminated air by the highest wave num- ber for the airway, the concentration (volume-percent) of the contaminated air behind the front of the wave, and the starting time for the wave. Subsequent output specifies the start and arrival time and concentration for the last five waves generated. The number of waves generated depends upon the complexity of the ventilation system. If recirculation occurs, then potentially an infinite num- ber of waves can be generated. The wave generation process is suspended when the difference between the concentration associated with two sequential waves be- comes less than a user-specified thresh- old, designated CRITSM in the data input. A more detailed explanation of the wave generation mechanism is available. 9 The program has a limitation of a maxi- mum of five waves that can be stored per airway. If more than five waves are stored, wave compaction occurs through the removal of the excess waves and the advancement of the data in the remaining waves in the storage by the number of deleted waves. The following section gives an overview of the structure of the input data and explains how to prepare the input data for a real-time calculation. This is followed by a section that presents the results of two sample calculations. A. listing of the Fortran computer program is supplied in appendix A. — ^Work cited in footnote 3. INPUT DATA PREPARATION There are three major sections of the input data: (1) network input, (2) con- centration input, and (3) real-time input. NETWORK INPUT The network input furnishes a basic description of the mine network including the fan characteristic data and physical dimensions, airflow resistance, and ther- mal properties of the airways. This sec- tion controls the type of calculation requested, i.e., network airflow rates with or without concentration and temper- ature calculations. The following data cards are included: network control card, airway cards, junction cards, fan characteristic cards, and additional air- way cards. (Tables 1-6, which illustrate these cards, appear on pages 6-7.) The network control card specifies the number of airways, NB, the number of junctions NJ, and the number of fans NFNUM in the network. If additional airway cards are used to supplement or replace the origi- nal airway cards to be read in, their number NADBC is entered. Further data on the network control card includes condi- tional values as to whether NJ junction cards will be entered for use in calcu- lating the natural ventilation pressures as well as to whether a network, tempera- ture, or concentration calculation will be made. The conditional values are set by the value 1 for occurrence and for omission. Suggested values for the maxi- mum number of network calculations and the maximum number of iterations within the network and concentration parts of the program are MADJ=10 and ITN=30 re- spectively. The reference air density DR and air temperature TR must be specified. If a real-time analysis is to be made, the marker IRTCC is set equal to 1; oth- erwise it is at 0. The airway cards identify each airway by a number, NO, from starting junction JS to ending junction JF, as well as the type of airway, NWTYP. Each airway is one of three types: (1) a fixed-quantity airway, (2) a regular airway, or (3) an airway containing a fan. The airway re- sistance R is specified for each airway, or, if not, the program will calculate the resistance from the friction factor KF, length LA, cross-sectional area A, and perimeter that are specified for each airway. The airflow rate Q is ei- ther the desired value in the case of no network calculation or a regulated air- way, or the value estimated prior to the network calculation. The junction cards are used to specify junction temperature and elevation in preparation for a natural ventilation calculation, as well as methane concen- tration in the case of a gassy mine. The fan characteristic cards specify the airway number of the fan as well as the number of data points that will be used to represent the fan characteristic curve. The fan data points are entered as pairs — airflow rate QF and pressure PF. The additional airway cards are used to supplement or replace airway data on the airway cards. CONCENTRATION INPUT The concentration input section is used to specify the contaminant source, either smoke from a fire or methane in a gassy mine, in preparation for a calculation of the steady-state contaminant distribution in a mine network. The concentration in- put (tables 7-11) consists of concentra- tion control card, average value card, additional concentration airway cards, additional concentration junction cards, and contamination cards. The concentra- tion control card specifies the number NDIM of concentration airway cards and the number NCH4C of junction cards, as well as the number INFLOW of contami- nation cards used to specify a contami- nant source. It is recommended to let JSTART, the starting junction number from which the concentration calculation is calculated, be the surface junction. The accuracy required for the fume, methane, and temperature calculations, as well as the critical values for pressure loss, fume concentration, methane concentra- tion, and temperature, are specified in the concentration control card. The word "critical" is used in the sense of pro- hibiting safe usage of an airway. The average value card is used to spec- ify average thermal properties and tem- perature of the airway walls, as well as average flow resistance for the airways. These values are used by the program if they were not made available elsewhere in the input data. The additional concentration airway cards were used to assign methane produc- tion rates, either as volume production CH4VX or as volume production per unit surface area CH4PAX, and rock temperature TROCKX and thermal properties (rock ther- mal diffusivity HAX and rock thermal con- ductivity HKX) to airway number NOX. The airway elevation change can be entered through this card if the junction eleva- tion had not been inserted on the junc- tion cards. The additional concentration junction cards can be used to specify methane con- centration in the junctions. If the methane production has not bean specified on the additional concentration airway cards, the methane concentration in the junctions will be used to calculate the methane production rate for that airway. The contamination cards are used to specify for airway number NCENT a contam- inant source in one of three ways. The first option is to specify the volume flow rate and concentration of contami- nant inflow as well as the heat produc- tion in the airway. The second option is to specify the oxygen concentration of the gas leaving the fire zone for an oxygen-rich fire. The third option is to specify the fume and heat production for a fuel-rich fire. The options correspond to sections 1, 2, and 3 of the contamina- tion card. REAL-TIME INPUT The real-time input is used if a real- time analysis of the contaminant spread from one or more fires throughout the mine network is desired. These fires can be of various durations. The airflow rate used for the calculation is output from the network concentration section. The real-time input includes a real-time control card and contamination cards (tables 12-13). The real-time control card specifies the number NACC of addi- tional contamination cards, the duration IDUR of the simulation, and the time in- terval INC for printing output from the real-time simulation. The program inter- nally calculates a time interval XINT for calculation of the time contaminants take to travel an airway with some exclusion of travel time and airways. The exclu- sion is introduced because airways with a travel time considerably less than that of the majority of the airways would pro- duce an unnecessary number of calcula- tions. The percent of travel time EPX and the percent REP of airways that can be excluded are entered on the real-time control card. A value of 5% is a reason- able choice for EPX and REP. Values of the threshold critical fume concentration and accuracy of the contamination calcu- lation are entered on the real-time con- trol card. The contamination cards are the same as in the concentration input section except for the inclusion of the starting time ISTT and ending time IENDT of the contam- ination event. TABLES 1-13 The input data are entered on 80-character punch cards (80 columns) as integer (I) or real (F) variables. The term "Symbol" specifies the variable name used in the program. A short definition of each variable name (symbol) is given. RC - required for concentration calcu- The column labeled "Option" describes lations. when the variable must be stated in the input. The following abbreviations are RN - required for network calculations. used in this column: RO - required, but optional modes of C - Conditional, depends on details of specification are possible, the ventilation system. RR - required for real time. - optional for all calculations. RT - required for temperature calcula- R - required. tions. TABLE 1. - Network control card Column Format Symbol Option Definition of symbol 1-5 15 NB R Number of airways in network. 6-10 15 NJ R Number of junctions in network. 11-15 15 NFNUM C Number of fan characteristics to be read in. 16-20 15 NADBC C Number of additional airway cards to be read in. 21-25 15 NVPN C Junction card marker; NVPN > indicates that NJ junction cards shall be read in and the natural ventilation pressures will be calculated from the junction data as part of the network part of the program. 26-30 15 NETW RN = 1 marker for network calculation. 31-35 15 NCONC RC = 1 marker for concentration calculation. 36-40 15 NTEMP RT = 1 marker for temperature calculation. 41-45 15 MADJ R Maximum number of times a network calculation shall be performed in 1 program run. 46-50 15 1TN R Maximum number of iterations permitted within the network and concentration parts of the program. 51-60 F10.5 DR R Reference air density, lb/ft 3 . 61-70 F10.5 TR R Reference air temperature, ° F. 71-75 15 1RTCC RR = 1 marker for real-time calculation. TABLE 2, Airway cards Co lumn Format Symbol Option Definition of symbol 1-5 15 NO R Identification number of airway. 6-10 15 JS R Starting junction number. 11-15 15 JF R Ending junction number. 16-20 15 NWTYP R Airway type: -1 = fixed quantity airway. = regular airway. 1 = fan airway. 21-30 F10.3 R C,R0 Resistance of airway, in wg/cfra 2 x 10 10 pressure, in wg). (as fan 31-40 F10.0 Q C Desired or estimated airflow rate, cfra. 41-50 110 KF c Friction factor of airway. 51-60 110 LA RO Length of airway, ft. 61-70 F10.1 A RO Cross-sectional area, ft 2 . 71-78 F8.0 C,R0 Perimeter of airway, ft. TABLE 3. - Junction cards Column Format Symbol Option Definition of symbol 1-5 15 JNO R Junction number. 11-16 F5.1 T R Air temperature ia junction, ° F. 20-26 F6.0 Z R Elevation of junction, ft. 27-31 F5.2 CH4C Methane concentration in junction, pet. TABLE 4. - Fan characteristic card 1 Column Format Symbol Option Definition of symbol 1-5 6-10 15 15 NOF MPTS R R Airway number of fan. Number of points that will be used to define the fan curve; 2 are required, 10 is maximum. TABLE 5. - Fan characteristic card 2 Column Format Symbol Option Definition of symbol 1-8 F8.0 QF R Airflow rate at point on fan curve, cfra. 9-14 F6.2 PF R Fan pressure at point on fan curve, in wg. 15-22 F8.0 QF R Airflow rate. 23-28 F6.2 PF R Fan pressure. 29-36 F8.0 QF R Airflow rate. 37-42 F6.2 PF R Fan pressure. 43-50 F8.0 QF R Airflow rate. 51-56 F6.2 PF R Fan pressure. 57-64 F8.0 QF R Airflow rate. 65-70 F6.2 PF R Fan pressure. TABLE 6. - Additional airway cards Column Format Symbol Option Definition of symbol 1-5 15 NOX R Airway number. 41-50 110 KX Friction factor K. 51-60 110 LX Airway length, ft. 61-70 F10.1 AX Cross-sectional area of airway, ft 2 . 71-80 F10.1 OX Perimeter of airway, ft. TABLE 7. Concentration control card Column Format Symbol Option Definition of symbol 1-5 15 NDIM C Number of concentration airway cards. 6-10 15 NCH4C C Number of concentration junction cards. 11-15 15 NAV C Marker for presence of average value card (NAV = 0, NO; NAV > 0, Yes). 16-20 15 MAXJ R Highest junction number used in network NOT num- ber of junctions. 21-25 15 INFLOW C Number of contamination cards to be read. 26-30 15 JSTART R Number of junctions from which concentration cal- culation shall start. 31-35 F5.1 TSTART RT Air temperature in JSTART, ° F. 36-43 F8.2 TIME RT Elapsed time since the start of contamination, hr. Accuracy of fume and methane concentrations pet 44-50 F7.2 CRITSM RC 51-55 F5.3 CRITGS RC and temperature (° F) calculation when recircu- 56-61 F6.3 CRITHT RT lation occurs. 62-66 F4.2 WRNPR R Pressure loss (in wg) , fume concentration pet, 67-71 F6.4 WRNSM RC methane concentration pet, and temperatures 72-75 F4.1 WRNGS RC (° F) that shall be considered critical. 76-80 F5.0 WRNHT RT TABLE Average value card Column Format Symbol Option Definition of symbol 1-10 F10.5 TAVR Rock temperature, ° F. 11-20 F10.5 HAAVR Rock diffusivity, ft 2 /hr. 21-30 F10.5 HKAVR Rock thermal conductivity, Btu/hr/ft 2 /° F/ft. 31-40 110 KFAVR Friction factor. 41-50 no LAAVR Length airway, ft. 51-60 F10.2 AAVR Cross-sectional area, ft 2 . 61-70 F10.2 OAVR Perimeter of airway, ft. TABLE 9. - Additional concentration airway cards Column Format Symbol Option Definition of symbol 1-5 15 NOX R Airway number. 6-15 F10.2 CH4VX Methane volume production, cfm. 16-20 F10.5 CH4PAX Methane volume production rate per unit surface area, cfm/ft 2 . 26-35 F10.5 TROCKX Average rock temperature in airway, ° F. 36-45 F10.5 HAX Thermal diffusivity of rock, ft 2 /hr. 46-55 F10.5 HKX Thermal conductivity of rock, Btu/hr/ft 2 /° F/ft. 56-65 F10.1 DZRDX RO Elevation change in airway, ft. TABLE 10. - Additional concentration junction cards Column Format Symbol Option Definition of symbol 1-5 26-30 15 F5.2 JNOX CH4CX R Junction number. Methane concentration in junction, pet. TABLE 11. - Contamination cards, steady-state input Column Format Symbol Option Definition of symbol 1-5 15 NCENT R Airway number into which contaminant enters. SECTION 1 6-15 16-25 26-35 FIO.O F10.5 F10.2 CONT CONC HEAT Volume flow rate of contaminant inflow, cfm. Concentration of contaminant inflow, pet. Heat entering airway, Btu/min. SECTION 2 36-45 F10.5 02MIN Oxygen concentration with which fumes leave fire zone, pet used for oxygen-rich fires. SECTION 3 46-55 F10.5 SMP02 Fume production per ft fuel-rich fires, ft 3 . of oxygen delivery for 56-65 F10.5 HTP02 Heat production per ft 3 fuel-rich fires, Btu. of oxygen delivery for TABLE 12, Real-time control card Co lumn Format Symbol Option Definition of symbol 1-5 15 NACC C Number of additional contamination cards. 6-10 15 IDUR R Simulation duration, min. 11-15 15 INC R Interval at which conditions are output, min. 16-21 F6.2 EPX R Average fume travel time that can be excluded in the calculation of XINT, pet. 22-27 F6.2 REP R Maximum airways that can be excluded in the cal- culation of XINT, pet. 28-35 F8.4 WRNSM R Threshold value for critical fume contamination, pet. Number of atmospheric junction. 36-40 15 JSURF R 41-46 F6.5 CRITSM R Accuracy of contamination calculation, pet. TABLE 13. - Contamination cards, real-time input Column Format 1 Symbol Option Definition of symbol 1-5 15 | NCENT R Airway number into which contaminant enters. F10.5 SECTION 1 6-15 FIO.O CONT Volume flow rate of contaminant inflow, cfm. 16-25 F10.5 CONC Concentration of contaminant inflow, pet. 26-35 F10.2 HEAT Heat entering airway, Btu/min. SECTION 2 02MIN Oxygen concentration with which fumes zone, pet used for oxygea-rich fires leave fire SECTION 3 46-55 F10.5 SMP02 Fume production per ft 3 of oxygen delivery for fuel-rich fires, ft 3 . 56-65 F10.5 HTP02 Heat production per ft 3 of oxygen delivery for fuel-rich fires, Btu. 66-70 15 ISTT Starting time of contamination event, min. 71-75 15 IENDT Ending time of contamination event, min. 10 APPLICATIONS Figure 1 shows the base schematic of a small multilevel mine with an exhaust fan in airway 51 and a booster fan in air- way 6 as well as the airflow direction. (See figure 2 for identification of air- ways.) The computer program was used to perform both a steady-state and a real-time analysis following the occur- rence of a fuel-rich fire in passage- way 20, which is a descensionally venti- lated raise (downcast shaft). As a sec- ond application, ventilation calculations were made for the same network under LEGEND Vertical shaft Airway — ©— Junction © Surface junction ■■*■■■*.>&■-] Longwall face S9K Airflow, cfm — >— Airflow direction FIGURE 1. - Base schematic of small multilevel mine with an exhaust fan and booster fan., 11 the condition of a failure of the ex- haust fan. contaminant concentration for extended periods of time. In both applications the mine is slightly gassy with methane and there is buoyancy-driven natural ventilation. A steady-state calculation is made of meth- ane and smoke concentration, followed by a real-time calculation of smoke spread. The input parameter WRNSM is set to 0.001% as the threshold for critical fume concentration, and the threshold for wave generation, CRITSM, is set to 0.001%. Figure 1 shows the base schema tic- flow rates and direction before the fire and with both fans operational. FUEL-RICH FIRE IN A DOWNCAST SHAFT The fuel-rich fire in passageway 20 is characterized by a production of 1 cu ft of fumes and 300 Btu per cubic foot of delivered oxygen. The input data are listed in appendix B. A. steady-state ventilation network and temperature cal- culation was made with the program for a time of 1 hr after the fire occurred. During this 1-hr period thermal exchange between the ventilation air and the wall surface and thermal diffusion into the mine wall occurred, thereby altering the ventilation flows. The results of this calculation are listed in appendix C. The steady-state ventilation calcula- tion is followed by a real-time calcula- tion. The airflow reversal that occurred in airways 20 and 21 as a result of the fire provides a direct path via air- ways 11, 49, and 51 to the surface for the fumes generated by the fire, thereby precluding the occurrence of contamina- tion in the remainder of the mine. The output from the real-time analysis in ap- pendix C covers a period of 10 rain with output at 2-min increments. Only one wave is generated, and it reaches the surface via airway 51 at 8.68 min, at which time a steady-state fume concentra- tion is established in the mine network. Based on the steady-state increase in the total exposure, evaluated as parts per million per hour the junctions, the user can make linear projections of the total FUEL-RICH FIRE IN A DOWNCAST SHAFT WITH A FAN FAILURE An additional hazard that could occur in a mine following a fire would be a fan failure. The above example will be re- evaluated with the additional constraint of an operational failure of the exhaust fan in airway 51. Those airways that un- dergo a flow reversal as a result of the fan failure that differ from flow rever- sals that occur in the above example 1 hr after the occurrence of the fire are in- dicated by arrows in figure 2. Appen- dix D lists the input data for the calcu- lation, and appendix E contains the out- put for the steady-state and real-time analysis. A comparison of appendixes E and C shows that the number of airways with a critically high fume (smoke) con- centration has increased from 4 to 44. The complexity of the fume spread in this latter case is analyzed with the real- time position of the program. The real- time results are tabulated in appendix E at 60-min increments for a duration of 360 min. A steady-state real-time "fume concentration is not achieved until 174 min has elapsed. After 120 min has elapsed, the number of waves in airway 48 exceeds five. When this occurs, these waves are replaced internally by the pro- gram to permit the generation of new waves. The wave generation process is only suspended when the difference be- tween successive waves becomes less than CRITSM, which equals 0.001% in these examples. Since the methane production in an air- way is determined from the concentrations at the airway ends and the volumetric flow rate, which may be positive or nega- tive depending upon the flow direction, it is possible to have a negative methane production, as the output shows. This is a computational artifice. As the output shows for the temperatures and concentra- tions of smoke and methane in junctions 1 hr after the fire occurs, the methane 12 O KEY Vertical shaft Airway Junction Surface junction 3 Longwall face •* Airways with airflow reversal after fan failure in airway 51 FIGURE 2, - Schematic of flow reversal in small multilevel mine with failure of exhaust fan* concentrations are positive quantities at junctions. The real-time analysis of the mine net- work shows that the failure of the ex- haust fan produced a recirculation of contaminated air. The recirculated air occurs through airways 5, 46, 48, 26, 25, 23, 21, 20, 10, 8, 7, and 6. The comput- er output identifies airways 5 and 26 as closing the recirculation path through flow reversal. The list of temperatures and concentrations at the airway ends shown that junctions 2 and 17 have a neg- ative sign. This is used to indicate that it is the flow into these junctions that closes the recirculation path. The program can be used to evaluate fume concentrations from more than one fire by increasing the number NACC of 13 contamination cards. Each fire may be specified by its start and completion time. The program could be used to predict the restoration of the mine to < fresh air condition following the sup- pression of contaminant fume production. CONCLUSION The computer program listed in the ap- pendix can be used to describe the real- time spread of smoke from one or more fires throughout a multilevel mine that is ventilated by fans and temperature- induced natural ventilation. Paths of recirculation are identified as part of the program output. Each airway of the mine can be a regular airway, can be a regulated airway, or can contain a fan. The program can be used for planning ven- tilation control measures, as well as miner escape and rescue in case of a haz- ardous event such as a fire. 14 EXPLANATION OF APPENDIXES The computer program is divided into a main program and subroutines. The subrou- tines and their purpose are enumerated below: Subroutines Purpose NETWRK. Initializes network and forms meshes. ITT Solves for flow rates using Hardy-Cross method. RESIST Calculates resistance of regulators. RDCONC Reads concentration and temperature data and initializes for selected mine scenarios. FLOWSK Checks for airflow reversals. ROADWY Computes temperature and concentration for airways due to temper- ature change. NATVP1 Calculates natural ventilation pressure and adjusts resistance due to temperature change. SQRS Used for least squares representation of fan data. MINV Used for least squares representation of fan data. WRITR Writes output results. RTIME1 Reads input data for real-time fume spread calculation and se- lects time interval. RTIME2 Performs real-time calculation of fume spread. CTPAM.COM Defines array sizes. CTC0NN.COM Common block for subroutines. The program automatically represents the fan characteristic data by a Lagrange interpolation. If the user wishes to represent the data by a least squares approxi- mation, the parameter IFAN in the main program should be set to any nonzero integer value. References to page numbers in the program refer to Gruer's "Study of Mine Fires and Mine Ventilation." 1 'Work cited in text footnote 4 15 APPENDIX A.— LISTING OF COMPUTER PROGRAM 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 4950 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 CALCULATIONS AND REAL TIME CONCENTRATION SPREAD C 111111111 122222222223333333333444444444445555555556666666666777 C234567890 1 234567890 1 234567890 1 234567890 1 234567890 1 234567890 1234567890 1 2 C C COMBINED PROGRAMS FOR NETWORK, CONCENTRATION, AND TEMPERATURE C C C C C C C DATA DIVISION. C COMMON SECTION. C INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tli ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl« MADJ, MBEGW, 9 I TRUE, I FALSE COMMON /NETWK/KNUM, UBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF COMMON/RESCOM/NWRN COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI, WRNHT, WRNPR, WRNSM, 1WRNSUM. WRNGS COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1UN0X, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF COMMON/FLOCOM/MM COMMON/NATCOM/E, B, G, GX, GXX, TMRD, TMSQR, TRA C0MM0N/CNNGE1/Q0(IAR) COMMON/LEAST/ATAO, 3), ATY ( 3 ) , CL<40, 6), LK(5), MQ(5), IFAN COMMON/RTNCOM/NACC, IDUR, INC, EPX, REP, SNRW, JSURF 1 , MULT, XI NT 2 , ISCOB( IAR), IENDT(20), RTAC ( IAR, 240, 4), RTJC( IAR, 2) COMMON/RTMCOM/MRKL C0MM0N/RTSC/EXP0(8), MINER(8), JMST(8), ARSJ(B), DEPSJ(S), 1 NJR(8), N0TR(8), JREST(8, 10), RESTT(8, 10), NESC(8, 2 10), VESCC8, 10), SPFCT(8, 10), JFESCC8, 10), EXRTA(8, 3 10),EXRTJ(8, 10, 2), NEXPO, MINO COMMON/CHECKK/ JTMP ( 300 ) WORKING-STORAGE SECTION LOGICAL LGT020 PROCEDURE DIVISION. INITIALIZATION SECTION. INITIALIZATION-OPERATIONS. IST=1 IFAN=0 16 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 8950 9000 9050 9175 9200 9300 9400 9500 9525 9550 9562 9568 9575 9587 9590 9591 9593 9595 9598 9599 9625 9650 9662 9668 9675 9681 9687 9693 9696 9700 9800 9900 10000 10100 10200 10300 10400 10500 182 202 C IFALSE=0 ITRUE=1 LP=2 10=1 NSNVP=IFALSE NSFL0W=IFALSE DO 182 1 = 1, IAR NREV(I)=0 DO 202 1 = 1, 10 RGRAD(I)=0. C READ- INPUT-DATA. C C READ NETWORK CONTROL CARD OPEN(UNIT=IO, FILE='MRTIM2. DAT', TYPE='OLD' ) OPEN(UNIT=LP, FILE='MRTAM2. LST ' , TYPE= 'UNKNOWN ' ) READ( 10, 241 ) NB, NJ, NFNUM, NADBC, NVPN, NETW, NCONC, NTEMP, MADJ, ITN, ; DR, TR, IRTCC 241 FORMAT ( 1015, 2F10. 5, 15 > IF (IRTCC . NE. 1) IRTCC=0 IF(NVPN. NE. IFALSE)NVPN=ITRUE IF (NETW. NE. IFALSE)NETW=ITRUE IF(NCONC.NE. IFALSE)NCONC=ITRUE IF(NTEMP.NE. IFALSE>NTEMP = ITRUE C READ NETWORK AIRWAY CARDS DO 1234 K=1,NB READ (10, 301) NO(K), JS(K), JF(K), NWTYP < K ) , R (K ) , Q(K) . KF (K) , LA (K ) , 1 A(K),0(K) 1234 CONTINUE 301 FORMAT ( 41 5, F10. 3, F10. 0, 21 10, 2F10. 1 ) DO 355 1=1, NB QO(I)=G 355 CONTINUE C CHECK IF CORRECT NO. BRANCHES/ JUNCTIONS K=0 MXJ=-1 MAXSF=1 DO 352 J=l, NJ DO 354 1=1, NB IF(JS(I>. GT. MAXSF) MAXSF=JS(I) IF(JF(I). GT. MAXSF) MAXSF=JF(I) IF(JSd). EQ. J. OR. JF(I). EQ. J) GO TO 352 354 CONTINUE K=K+1 JTMP(K)=J MXJ=K 352 CONTINUE IF(MXJ. GT. 0) WRITE(2, 4323) 4323 FORMAT (5X, 'INCORRECT NO AIRWAYS/ JUNCTIONS ' ) IF(MXJ. GT. 0) WRITE(2, 4321) ( JTMP (K) , K=l , MXJ) IF(MXJ. GT. 0) WRITE(2, 4322) MXJ, MAXSF 4321 F0RMAT(5(4X, 14) ) 4322 F0RMAT(4X, 'MXJ=', 14, 3X, 'MAXSF=', 14) C IF(NVPN) READ NETWORK JUNCTION CARDS IF(NVPN. EQ. ITRUE)READ(IO, 321) ( JNO(K ) , T ( K ) , PROP (K ) , PRCH4(K ) , ; K=1,NJ) 321 FORMAT ( 15, Tl 1 , F5. 1 , T20, F6. O, F5. 2 ) IF ( NFNUM. LE. 0)GOTO 410 DO 400 K=l, NFNUM C READ FAN CARDS READ( 10, 361 )NOF(K), MPTS(K) 361 FORMAT (215) INDEX=MPTS(K) 17 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000 12100 12200 12300 12400 12500 12600 12700 12800 12900 13000 13100 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700 16800 C READ FAN-CHARACTERISTIC CARDS READ (10,391) (QF(K, I),PF(K, I), 1 = 1, INDEX) 391 FORMAT < 5 (F8. 0, F6. 2) ) 400 CONTINUE C C FINISH-READING- INPUT-DATA C 410 IF(NADBC. LE. 0>GOTO 580 L=0 DO 550 I = 1,NADBC C READ ADDITIONAL NETWORK AIRWAY CARDS READ (10.451) NOX, KX, LX, AX, OX 451 FORMAT ( I 5, T41 , 21 10, 2F10. 1 ) DO 480 J=1,NB IF(NOX. EQ. NO(J) )GOTO 500 480 CONTINUE GO TO 548 500 L=L+1 KF(J)=KX LA(J)=LX A(J)=AX 0(J)=OX 548 CONTINUE 550 CONTINUE IF(NADBC. NE. L)WRITE(LP, 571 ) 571 FORMAT (/////, ' MISTAKE IN ADDITIONAL NETWORK AIRWAY CARDS"/. 1 /, ' INVALID AIRWAY NUMBER IN _.NOX_ ON SOME CARDS, ', 2 /, ' OR WRONG NUMBER OF CARDS. ') 580 CONTINUE MARKD=IFALSE IF(NETW. NE. I TRUE) GOTO 720 DO 700 1=1, NB IF(NWTYPd). NE. OR. R(I) GT. 0)GOTO 690 IF ( A ( I ) . GT. 0.0) GOTO 680 WRITE (LP, 651) NO(I) 651 FORMAT (/////, ' NO RESISTANCE OR DIMENSIONS WERE ', 1 'STATED FOR AIRWAY NO', 110) MARKD=ITRUE GO TO 688 C _R+460 _Z0_ IS _ZS_ IN EQUATION ON BOTTOM OF PAGE 21. ZO=PROP(L) IF(JF(NX). NE. JNO(L) )GOTO 1078 _T1_ IS _TF_ IN EQUATION ON BOTTOM OF PAGE 21 Tl=T(L)+460. _Z1_ IS _ZF_ IN EQUATION ON BOTTOM OF PAGE 21. Zl=PROP(L) CONTINUE CONTINUE H=T0*Z1-T1*Z0 IF(N. LT. 0)H=-H _FNVP_ IS _HN_ IN EQUATION ON BOTTOM OF PAGE 21. FNVP(K)=FNVP(K)+H TSU=TSU+T0+T1 NT=NT-»-l CONTINUE 19 23200 23300 23400 235O0 23600 23700 23800 23900 24000 24100 24200 24300 24400 24500 24600 24700 24800 24900 25OO0 25100 25200 25300 25400 25500 25600 25700 258O0 25900 26000 26100 26200 26300 26400 26500 26600 26700 26800 26900 27000 27100 27200 27300 27400 27500 27600 27700 27800 27900 28000 28100 28200 28300 28400 28500 28600 28700 28800 28900 29000 29100 29200 29300 29400 1180 C C ITERATION C TM=TSU/NT _FNVP_ IS _HN_ IN EQUATION ON BOTTOM OF PAGE 21 FNVP ( K ) =FNVP ( K ) #DR / ( 5. 2*TM ) MBEGW=MENDW+1 CONTINUE 1184 1186 1188 1190 C C C1231 CONTINUE CONTINUE CONTINUE CONTINUE CALL ITT(LGT020) IF(LGT020)G0T0 820 WRITE (LP, 1231 )NSNVP, NSFLOW FORMAT (IX, 'DRIVER, LI 23 1% NSNVP, NSFLOW= IF(NSNVP. NE. ITRUE)GOTO 1350 DETECT- INST ABLE-AIRWAYS. 1300 1310 C 1350 C NOTEX THE ONLY PLACE IN THIS ENTIRE SUBSYSTEM WHERE FLAG _NSFLOW_ MAY BE SET TO _ITRUE_ IS THE FIRST STATEMENT IN PARAGRAPH _CHECK-FOR-AIRFLOW-REVERSALS_ IN SUBROUTINE _FLOWSK_, FOR REASONS OF SAFETY AND RELIABILITY"/. IF IN DOUBT AS TO AIRFLOW-REVERSALS. CALL _FLOWSK_. _NSFLOW_ IS TRUE ONLY AFTER SUBROUTINE _FLOWSK_ CHECKS ALL AIRWAYS FOR AIRFLOW-REVERSAL AND FINDS NONE. DO 1310 1=1, NB IF(Q(I).GT. 0. 0)GOTO 1300 IF(MADJC. GE. MADJ)WRITE(LP, 1281 )N0( I ) FORMAT (//,T20, ' AIRWAY NO', 17, ' IS AN UNSTABLE ', 'AIRWAY WITH CHANGING AIRFLOW DIRECTIONS') NSFLOW=IFALSE G(I)=G(I)»100000. CONTINUE ITCT=0 IF (NSFLOW. EG. GOTO 1420 CONTINUE TRUE) GOTO 1430 CALCULATE-RESISTANCE-OF-REGULATORS. CALL RESIST CONCENTRATION SECTION. C c c c C CHECK-FOR-CONCENTRATION C 1370 OR. NTEMP. EQ. ITRUE)GOTO 1410 IF (NCONC. EQ. I TRUE WRITE (LP, 1391) 1391 FORMAT (/////, ' NO TEMPERATURE OR CONCENTRATION ; 'CALCULATIONS WERE DEMANDED') GO TO 2098 1410 CALL RDCONC C C CALL-FLOWSK. C 1420 CALL FLOWSK C 20 29500 C CALL-ROADWY. 29600 C 29700 1430 CALL ROADWY 29800 IF ( NTEMP. NE. ITRUE .OR. NETW. NE. ITRUE)GOTO 2090 29900 C CALCULATION OF NATURAL VENTILATION PRESSURE 30OO0 CALL NATVP1 30100 IF ( NSFLOW. NE. ITRUE) GOTO 1930 30200 C 30300 1470 CONTINUE 30400 C 30500 C NATURAL-VENT I LAT I 0N-PRES5URE-2. 30600 C 30700 C COMPUTE _FNVP_ FOR EACH MESH USING CONCENTRATION 30800 C i INPUT DATA 30900 C WRITE(LP. 1491) 31000 C1491 FORMAT (IX, 'DRIVER, LI 4707. ENTER NATVP2 ' ) 31100 MBEGW=1 31200 DNVP=0. 31300 DO 1850 K=1,MN0 31400 0NVP=FNVP(K) 31500 MENDW=MEND(K) 31600 FNVP(K)=0. 31700 ZUP=0. 31800 ZDOWN=0. 31900 HSU=0. 32000 TSU=0. 32100 DO 1740 J=MBEGW, MENDW 32200 N=MSL ( J ) 32300 IF(N. GE. 0)GOT0 1660 32400 FACT=-1. 32500 NX=-N 32600 GO TO 1680 32700 1660 FACT=1. 32800 NX=N 32900 1680 HSU=HSU+FACT*FRNVP (NX ) 33000 TSU=TSU+ABS(FRNVP(NX) ) 33100 IF (DZRD(NX)*FACT) 1730, 1736, 1710 33200 1710 ZUP=ZUP+DZRD (NX ) *FACT 33300 GO TO 1738 33400 1730 ZD0WN=ZD0WN+DZRD ( NX ) #FACT 33500 1736 CONTINUE 33600 1738 CONTINUE 33700 1740 CONTINUE 33800 IF(ZDOWN+ZUP. EQ. 0)GOTO 1780 33900 HSU=HSU- ( ZUP+ZDOWN ) *TR 34000 TSU=TSU+ABS( ( ZUP+ZDOWN )*TR) 34100 1780 IF(TSU. GT. 0. 0)GOTO 1810 34200 FNVP(K)=0. 34300 GO TO 1830 34400 1810 FNTM=TSU/ ( ZUP -ZDOWN ) 34500 FNVP(K)=HSU*DR/(5. 2* (FNTM+460. ) ) 34600 1830 DNVP=DNVP+ABS ( ONVP-FNVP ( K ) ) 34700 MBEGW=MENDW+1 34800 1850 CONTINUE 34900 C WRITE(LP, 1871) NNVP 35000 C1871 FORMATdX, 'DRIVER, LI 8507. LEAVE NATVP2 WITH NNVP= ' , 15) 35100 IF(NNVP. NE. ITRUE)G0T0 1920 35200 NNVP=IFALSE 35300 ITCT=0 35400 GO TO 1186 35500 C 35600 C CHECK-FOR-END-OF-RUN. 35700 C 21 35800 35900 36000 36100 36200 36300 36400 36500 36600 36700 36800 36900 37000 37100 37200 37300 37400 37500 37600 37700 378O0 37900 38000 38100 38200 38300 38400 38500 38600 38700 38800 38900 39000 39100 39200 39300 39400 39500 39600 39700 39800 39900 40000 40100 40200 40300 40400 40500 40600 40700 40800 40900 41000 41100 41200 41300 41400 41500 41600 41700 41800 41900 42000 C1920 IF(DNVP/MN0. LE. 0. 001 ) GOTO 2070 1920 CONTINUE IFCIST. EQ. 1) GO TO 1935 ITFLG=0 IF(DNVP/MN0. GT. 0. 001 ) ITFLG=1 DO 1925 J=1.NB TEST=ABS KJS(NJ-1 )=JS(IND) IF (JS(IND) LT. 0), JS(IND)=-JS(IND) KJF(NJ-1 )=JF(IND) KN0(NJ-1)=IND KNUM=NJ-1 IND" COVERS AIRWAY NUMBERS WITH ASCENDING "RQ" THEN LOOK UP "KNO" LIST TO FIND "IND" C C BASE-SYSTEM-HUNT C 540 550 CONTINUE DO 690 NUC=2, NB IND=INU(NUC) SUBSCRIPT "IND" COVERS AIRWAY NUMBERS WITH ASCENDING '/. "RQ" IS "JS" OR "JF" IF (JS(IND). LT. 0) GOTO 688 N1=IFALSE N0=IFALSE DO 630 K=KNUM, NJ HUNT FOR "JS(IND)" AND "JF(IND)" IN (KJF (K ) , K=KNUM, NJ) SUBSCRIPT "KNUM" COVERS JUNCTIONS IN ASC. "RQ" ORDER 7. FOR LISTS "KJS" AND "KJF" "KJS" AND "KJF" ARE JUNCTIONS FOR SECONDARY AIRWAYS: 7. "KNO (KNUM)" IS THE SECONDARY AIRWAY WITH THE V. HIGHEST "RQ" CONNECTED TO THE PRIMARY AIRWAY 7. "NO(IND)": IF " (KNO(KNUM) . LT. 0) ", THEN "JF" OF 25 12900 13000 13100 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700 16800 16900 17000 17100 17200 17300 17400 17500 17600 17700 17800 17900 18000 18100 18200 18300 18400 18500 18600 18700 18800 18900 19000 19100 630 680 688 690 C C C C C c c c c c 731 740 760 C C 771 i THIS AIRWAY CONNECTS TO "JS OF THE PRIMARY AIRWAY IF (JS(IND). EG. KJF(K) ) NO=ITRUE IF (JF(IND). EG. KJF(K) > N1 = ITRUE CONTINUE IF(N1. NE. NOGOTO 760 IF(N1. NE. ITRUE .AND. NO. NE. ITRUE)G0T0 680 JS(IND)=-JS(IND> JF IF THIS MESSAGE GETS PRINTED AND THE AIRWAY IS NOT REALLY A DEAD-END, THEN REFER TO THE NEWTORK AIRWAY INPUT DATA CARD FOR THIS AIRWAY AND MAKE SURE THAT "JS" AND "JF" (STARTING AND ENDING JUNCTIONS) FOR THIS AIRWAY ARE WHAT YOUR MINE-NETWORK DIAGRAM SAYS THEY ARE: IF NO MISTAKES ARE FOUND ON THIS CARD, CHECK NETWORK AIRWAY CARDS FOR ALL AIRWAYS WHICH CONNECT TO THIS AIRWAY FOR GOOD "JS" AND "JF". THEN RE-SUBMIT YOUR CORRECTED DATA FOR THE NEXT RUN. FORMAT(/////, 7H AIRWAY, 15, ' IS ISOLATED FROM NETWORK') CONTINUE GO TO 900 IF (NWTYP(IND). LT. 0) WRITE ( LP, 771 )N0( IND) IF YOU GET THIS MESSAGE, SCREAM H-E-L-P TO THE SOFTWARE MAINTENANCE PEOPLE: THIS SHOULD NEVER HAPPEN FORMAT(/////, 'ERROR: REGULATOR '. 15, ' IN BASE SYSTEM') KNUM=KNUM-1 IF (NO. EG. ITRUE) GOTO 850 C BASE-SYSTEM- I NSERT-FOR-JF. C C HERE FOR ( Nl . EQ. 1 . AND. NO. EQ. ) C V. K=KNUM, NJ KJS ( KNUM )=JF( IND) KJF ( KNUM )=JS( IND) KNO ( KNUM >=- IND JS(IND)=-JS(IND) GO TO 550 C C BASE-SYSTEM-INSERT-FOR-JS. C C HERE FOR (NO. EQ. ITRUE. AND. Nl. EQ. IFALSE) C 7. K JF ( K > , K=KNUM , N J ) 850 KJS ( KNUM )=JS( IND) KJF < KNUM )=JF( IND) KNO < KNUM >= IND JS(IND)=-JS(IND) GO TO 540 C C BASE-SYSTEM-EXIT. C 900 CONTINUE 910 CONTINUE DO 920 K=l, NB 920 JS(K)=IABS(JS(K) ) C C FORM-MESHES-SECTION. C JF(IND)IS IN KJF(K) JS(IND)IS IN 26 19200 C FORM-MESHES. 19300 C 19400 C AT LAST: MAKE "MSL" LIST AND "MEND" INDEX 19500 MESC=0 19600 MNO=0 19700 DO 1240 K=1,NB 19800 IF (JF(K).GE. 0) GOTO 1230 19900 JF(K)=-JF(K) 20000 MN0=MN0+1 20100 JBM=JS(K> 20200 JEM= JF ( K ) 20300 NK=K 20400 1020 CONTINUE 20500 1030 CONTINUE 20600 C REPEAT UNTIL (KB. EQ. KE ) ; 20700 MESC=MESC+1 20800 C "MEND(MNO)" CONTAINS LAST "MSL" SUBSCRIPT 20900 C FOR THIS AIRWAY 21000 MEND ( MNO ) =MESC 21100 C "MSL" GETS ALL AIRWAYS IN THIS MESH 21200 MSL(MESC)=NK 21300 DO 1090 KC0=1, NJ 21400 IF (JBM. EQ. KJF(KCO) ) GOTO 1100 21500 1090 CONTINUE 21600 1100 KB=KC0 21700 DO 1130 KC0=1, NJ 21800 IF (JEM. EQ. KJF(KCO) ) GOTO 1140 21900 1130 CONTINUE 22000 1140 KE=KC0 22100 IF (KB-KE) 1160,1220,1190 22200 1160 NK=KN0(KB) 22300 JBM=KJS(KB) 22400 GO TO 1030 22500 1190 NK=-KNO(KE) 22600 JEM=KJS(KE) 22700 GO TO 1020 22800 1220 CONTINUE 22900 C END REPEAT (KB. EQ. KE > ; 23000 1230 CONTINUE 23100 1240 CONTINUE 23200 C 23300 C SAT I SF Y- JUNC T I ON-EQUAT I ONS-SEC T I ON . 23400 C SATISFY-JUNCTION-EQUATIONS. 23500 C 23600 MBEGW=2 23700 DO 1320 K=1,MN0 23800 MENDW=MEND(K) 23900 DO 1300 J=MBEGW, MENDW 24000 N=IABS(MSL(J) ) 24100 Q(N)=0. 24200 1300 CONTINUE 24300 MBEGW=MENDW+2 24400 1320 CONTINUE 24500 MBEGW=1 24600 DO 1490 K=l, MNO 24700 MENDW=MEND(K) 24800 N=IABS(MSL(MBEGW) ) 24900 Q1=Q(N) 25000 M=MBEGW+1 25100 DO 1470 J=M, MENDW 25200 N=MSL ( J ) 25300 FACT=1. 25400 IF (N. GE. 0) GOTO 1450 27 25500 N=-N 25600 FACT=-1. 25700 1450 CONTINUE 25800 Q(N)=Q C 11111111 1 122222222223333333333444444444455555555556666666666777 C2345678901 2345678901234567890123456789012345678901234567890123456789012 C "ITT" ADJUSTS "Q" (AIRFLOW) WITHIN THE MINE NETWORK FOR THE INFLUENCE OF MESHES AND COMPUTED AIRFLOW OF FANS, COMPUTES AIRFLOW OF FANS AFTER ACCOUNTING FOR INFLUENCE OF AIRFLOW OF OTHER AIRWAYS, AND THEN REPEATS THIS COMPUTATION FOR AIRFLOWS AND FANS UNTIL CONVERGENCE IS REACHED OR MAXIMUM NUMBER OF ITERATIONS IS EXCEEDED. DATA DIVISION. COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI, COR, DIFCH4, FRO, I. ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, ^*2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9 I TRUE, IFALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0- MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ ITTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP- 1NBDR. RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF C0MM0N/LEAST/ATA(3, 3), ATY(3), CL(40, 6), LK(5), MQ(5), IFAN LINKAGE SECTION. LOGICAL LGT020 PROCEDURE DIVISION USING LGT020 WITH ENTRY POINT ITERATION-ITT. C c c c C ITERATION-ITT C C C101 WRITE(LP, 101) FORMAT (IX, 'ENTERING ITT') LGT020=. FALSE. IT=0 C ITERATION-MASSAGE-Q. C CONTINUE DQSUM=0. MBEGW=1 DO 530 K=l, MNO MASSAGE "Q" FOR MESHES AND COMPUTE "DQSUM" 7. IN ACCORDANCE WITH EQUATION AT TOP OF PAGE 22 7. (4.1.8, "CROSS CORRECTION" FORMULA). MENDW=MEND ( K ) DPSUM=0. RQSUM=0. N=IABS(MSL(MBEGW) ) IF (NWTYP(N). EQ. -1) GOTO 520 DO 410 J=MBEGW, MENDW COMPUTE "RQSUM", "DPSUM", AND "DQ" FOR ONE MESH N=MSL ( J ) 110 120 29 6500 6600 6700 6800 6900 260 7000 270 7100 7200 7300 C 7400 C 7. 7500 7600 7700 320 7800 C 7900 C 7. 8000 8100 8200 350 8300 8400 C 8500 C 8600 C 7. 8700 370 8800 380 8900 390 9000 400 9100 410 9200 C 9300 C 7. 9400 C 7. 9500 9600 9700 C 9800 C 7. 9900 10000 10100 10200 10300 10400 490 10500 500 10600 C 10700 C 7. 10800 10900 520 11000 530 11100 C 11200 C FANCI 11300 C 11400 ] 11500 11600 11700 C 11800 11900 580 12000 12100 C 12200 600 12300 12400 12500 12600 640 12700 FACT=1. IF #2 RGSUM=RQSUM+RQ2 DP=R(N>*Q(N)*ABS(G(N) ) "DPSUM" GOES TO NUMERATOR IN EQUATION AT TOP OF PAGE 22. DPSUM=DPSUM+FACT#DP GO TO 390 DPSUM=DPSUM-FACT*R ( N ) "R" AND "RGRAD" FOR FANS GETS COMPUTED IN PARA- GRAPH "FANCHARACTERISTICS" IN THIS SUBROUTINE DO 350 L=1,NFNUM IF (NFREG(L). EQ. N) GOTO 370 CONTINUE GO TO 380 "RGRAD" IS DH>" IN EQUATION AT TOP OF PAGE 22. RQSUM=RQSUM-RGR AD ( L ) CONTINUE CONTINUE CONTINUE CONTINUE "FNVP" IS "HN" IN EQUATION AT TOP OF PAGE 22. "RQSUM" GOES TO DENOMINATOR IN EQUATION AT TOP OF PAGE 22. DQ= ( DPSUM-FNVP ( K ) ) /RQSUM DO 500 J=MBEGW, MENDW MASSAGE "Q" FOR AIRWAYS IN THIS MESH AND ACCUMULATE "DQSUM" N=MSL(J) FACT=1. IF (N. GE. 0)GOTO 490 N=-N FACT=-1. Q. EQ. NO(K> > GOTO 600 CONTINUE GO TO 1080 NPTS=MPTS(J) IF(NVPN. EQ. ITRUE. OR. MADJC. GT. 0)GOT0 640 TABF=TR GO TO 720 NABF=JS(K) DO 700 L=1,NJ 30 12SO0 C 12900 C 13000 13100 13200 13300 690 13400 700 13500 710 13600 720 13700 13800 13900 14000 C 14100 14200 14300 14400 14500 C 14600 800 14700 14800 14900 15000 C 15100 840 15200 15300 15400 C 15500 C 7. 15600 C 7. 15700 15800 15900 16000 16100 16200 16300 920 16400 930 16500 16600 16700 960 16800 16900 C 17000 C 7. 17100 17200 17300 17400 17500 17600 1020 17700 1030 17800 1040 17900 C 18000 1050 18100 18200 1055 18300 18400 18500 18600 1060 18700 1070 18800 1080 18900 1090 19000 FOR FAN "J" IN AIRWAY "K" T(D" FOR "FANQ" HUNT FOR JUNCTION "L GET TEMPERATURE FROM IF (NABF. NE. JNO(L) ) GOTO 690 TABF=T(L) GO TO 710 CONTINUE CONTINUE CONTINUE FANQ=Q NFCW(J)=ITRUE GO TO 1070 IF (FANQ. LE. QBR) GOTO 840 R(K)=PF+CL(J, 2)*Q(K)+CL(J,3)*Q(K)*Q(K) R(K)=FANP RGRAD(J)=CL(J, 2)+2. *CL(3, J)*Q(K) CONTINUE CONTINUE CONTINUE CONTINUE IT=IT+1 31 19100 19200 19300 19400 19500 19600 19700 19800 19900 200O0 20100 20200 20300 20400 20500 20600 20700 20800 20900 21000 21100 21200 21300 21400 21500 21600 21700 21800 21900 ITCT=ITCT+1 ROUTE-TO-APPROPRIATE-PROGRAM-SECTION. IF (IT. LE. 1) GOTO 120 IF ( DGSUM. LT. 0.002) GOTO 1260 IF (ITCT. GT. ITN) GOTO 1220 IF (IT. LE. 20) GOTO 110 RETURN FOR FAILURE TO CONVERGE USING LOCAL COUNTER "IT" NSW=ITRUE NSFLOW=IFALSE GO TO 20 LGT020=. TRUE. WRITE(LP, 1201) FORMATdX, 'LGT020=. TRUE. RETURN FROM ITT') RETURN C C1201 C 1220 C C1241 C 1260 C C1281 MARKN=ITRUE WRITE(LP. 1241) FORMATdX, RETURN 'MARKN=1 RETURN FROM ITT') CONTINUE WRITE(LP, 1281) FORMATdX, 'DQSUM. LT. RETURN 0.002 RETURN FROM ITT') END 32 100 200 300 400 500 600 700 800 900 10O0 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 SUBROUTINE RESIST C 1 1 1 1 1 1 1 1 1 1 22222222223333333333444444444455555555556666666666777 C234567890 1 234567890 12345678901 234567890 1 234567890 1 234567890 1 234567890 1 2 C "RESIST" CALCULATES RESISTANCE OF REGULATORS X AND WRITES NETWORK DATA AFTER ONE X PASS THRU THE NETWORK SECTION. DATA DIVISION. COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BX. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY. M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD. NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9ITRUE, IFALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANG, NPTS, NABF COMMON/RESCOM/NWRN COMMON/LEAST/ATA (3, 3), ATY(3), CLC40, 6), LK(5), MG(5), IFAN C C C C RESIST C C C101 C PROCEDURE DIVISION WITH ENTRY POINT RESIST. WRITE(LP, 101) FORMATdX, 'ENTERING RESIST') C CALCULATE-RESISTANCE-OF-REGULATORS. C MBEGW=1 DO 330 K=l, MNO DPSUM=0. MENDW=MEND ( K ) NX=IABS(MSL( MBEGW) ) IF (NWTYP(NX). GE. 0) GOTO 320 M=MBEGW+1 DO 270 J=M, MENDW C MASSAGE "R" FOR MESH AROUND "STATIC-Q" AIRWAY: C X A STATIC-G AIRWAY IS CALLED A REGULATOR N=MSL ) GO TO 390 RQ(L)=R*100000 WRITE (LP, 651) NO(K), JS(K), JF(K>, Q(K), RQ(K) FORMAT (15, 17, 17, F13. 0, F13. 3) CONTINUE CONTINUE IF (NFNUM. LE. O) GOTO 760 WRITE (LP, 701) (NOF(K), K=l, NFNUM) FORMAT(////, ' THESE CHARACTERISTICS WERE STORED FOR FANS', 1016) DO 750 K=l, NFNUM L=MPTS(K) WRITE (LP, 741) (QF(K, I), PF(K, I), 1=1, L) FORMAT (//5(F10 0, F6. 2)/5(F10. 0, F6. 2) ) CONTINUE IFdFAN. EQ. 0) GO TO 2300 WRITE(LP, 2000) FORMAT (//10X, 'LINEAR LEAST SQUARES FIT TO FAN DATA') DO 752 K=l, NFNUM WRITE (LP, 754) K, (CL(K, IK), IK=1,3) FORMAT (/10X, 'K=', 14, 7X, 'CL(K, IK ) = ' , 5 (4X, E12. 5) ) IF IF 34 12700 12800 12900 13000 13100 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400 14500 14600 752 CONTINUE 2300 CONTINUE 760 770 781 821 CONTINUE WRITE (LP, 781) NB,NJ FORMAT (////' THE STATED NUMBER OF AIRWAYS WAS', 17, ' THE' 7. ' STATED NUMBER OF JUNCTIONS WAS', 17) DO 830 K-li NFNUM NWRN=NFCW(K) IF (NWRN. EQ. ITRUE) WRITE (LP, 821 )NOF(K) FORMAT(////' THE FAN CHARACTERISTIC IS EXCEEDED FOR FAN NO 7. 15) CONTINUE 830 C C RESIST-EXIT. C C WRITE(LP, 851) C851 FORMATdX RETURN C END 'RETURN FROM RESIST') 35 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 ieoo 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 SUBROUTINE RDCONC C 111111111 122222222223333333333444444444455555555556666666666777 C234567890 1 234567890 1234567890 1 234567890 1 234567890 1 234567890 1 234567890 1 2 C C _RDCONC_ READS DATA FOR THE SCENARIO FOR THIS PARTICULAR MINE C NETWORK AND INITIALIZES THE CURRENT SCENARIO. C C c C DATA DIVISION. C COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI, COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tli ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP,KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADU, MBEGW, 9ITRUE, IFALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl. KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANG, NPTS, NABF COMMON/RESCOM/NWRN COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI, WRNHT, WRNPR, WRNSM, 1WRNSUM, WRNGS COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1UN0X, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF COMMON/RTMCOM/MRKL PROCEDURE DIVISION WITH ENTRY POINT RDCONC. CONCENTRATION PART OF PROGRAM ENTERING RDCONC ' ) C c c c c c c C RDCONC. C C WRITE(LP, 101) C101 FORMATdX, PI=3. 141593 NSFLOW=IFALSE ITCT=0 C C READ-AND-CDMPLETE-INPUT-DATA C C READ ONE CONCENTRATION-CONTROL CARD READdO, 151 ) NDIM, NCH4C, NAV, MAXJ, INFLOW, JSTART, TSTART, TIME, CRITSM, i CRITGS, CRITHT, WRNPR, WRNSM, WRNGS, WRNHT 151 FORMAT (615, F5. 1 , F8. 2, F7. 5, F5. 3, F6. 3, F4. 2, F6. 4, F4. 1, F5. 0) IF (NAV. NE. IFALSE )NAV=ITRUE C IF(NAV)READ ONE CONCENTRATION AVERAGE-VALUE CARD IF(NAV. EQ. ITRUE)READ (10,181) TAVR, HAAVR, HKAVR, KFAVR, ; LAAVR, AAVR, OAVR 181 FORMAT (3F10. 5, 2110, 2F10. 2) IF (NDIM. LE. 0) GOTO 430 L=0 DO 370 1=1, NDIM 36 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000 12100 12200 12300 12400 12500 12600 C IF(NDIM. GT. OREAD CONCENTRATION AIRWAY CARDS READ (10,231) NOX, CH4VX, CH4PAX, TROCKX, HAX, HKX, DZRDX 231 FORMAT ( 15, F10. 2, 4F10. 5, F10. 1 ) DO 260 J=1,NB IF (NOX. EQ. NO(J> > GOTO 280 260 CONTINUE GO TO 360 280 L=L+1 CH4V(J)=CH4VX RDCH4(J)=CH4PAX TROCK(U)=TROCKX HA(J)=HAX HK(J)=HKX DZRD(J)=DZRDX NO ( J ) =-N0 ( J ) 360 CONTINUE 370 CONTINUE IF (NDIM. EQ. L> GOTO 420 WRITE (LP, 401) C HERE"/. WRONG NUMBER OF CONCENTRATION AIRWAY CARDS OR C i AT LEAST ONE _NOX_ IS NOT (REPEAT'/ NOT ) C ; INCLUDED IN (NO ( I ) , 1=1 , NB ) 401 FORMAT (/////, ' MISTAKE IN CONCENTRATION AIRWAY CARDS'/.', ; /, ' INVALID AIRWAY NUMBER OR WRONG NUMBER OF ', ; 'AIRWAY CONCENTRATION CARDS. ' /, 10X, 'RUN ABORTED. ', //, 10X, 'END OF RUN. ') STOP C 420 CONTINUE MRKL=0 430 DO 720 1=1. NB C THIS DO-LOOP STICKS AVERAGE VALUES IN AIRWAY DATA C i NOT GREATER THAN IF(NO(I). LT. 0) GOTO 550 IF(NETW. EQ. ITRUE. AND. NTEMP EQ. ITRUE. AND. NCONC. EQ. ITRUE) ; GOTO 470 IF(NCONC.EQ. ITRUE)GOTO 710 470 IF (NAV. EQ. ITRUE) GOTO 510 WRITE (LP, 491) 491 FORMAT( //////, ' INSUFFICIENT DESCRIPTION OF AIRWAY 1 ' PROPERTIES'/, 6X, '(AVERAGE-VALUE CARD ', 2 'REQUIRED FOR AIRWAYS NOT ON CONCENTRATION' 3 ' AIRWAY CARDS) ',/, 10X, 'RUN ABORTED. ', 4 //, 10X, 'END OF RUN. '/) C 510 STOP NO(I)=-NO(I) HA( I >=HAAVR HK ( I ) =HKAVR GO TO 580 IF (NAV. NE. I TRUE) GOTO 620 IF (HA(I). LE. 0. O) HA(I)=HAAVR IF (HK(Z).LE. 0. 0) HK(I)=HKAVR IF (KF(I).LE. 0) KF(I)=KFAVR IF (LA(I).LE. 0) LA(I)=LAAVR IF (LA(I).LE. 0) MRKL=MRKL+1 IF (A(I).LE. 0) MRKL=MRKL+1 IF (A(I). LE. 0. 0) A(I)=AAVR IF (0(1). LE. O. 0) 0(I)=OAVR IF (TROCK(I). GT. 0. 0) GOTO 700 IF (NVPN. EQ. ITRUE) GOTO 670 IF (NAV. NE. ITRUE) GOTO 690 TR0CK(I)=TAVR 37 12700 GO TO 680 12800 670 NO(I)=-NO(I) 12900 680 CONTINUE 13000 690 CONTINUE 13100 700 CONTINUE 13200 710 CONTINUE 13300 720 CONTINUE 13400 DO 1040 J=1,NB 13500 C THIS DO-LOOP COMPUTES _TROCK_S NOT ON YOUR CONCENTRATION 13600 C ; AIRWAY CARDS FROM JUNCTION DATA7. IF JUNCTION DTAT IS 13700 C ; NOT AVAILABLE, THEN AVERAGE _TROCK_ FROM 13800 C ; _TAVR_ IS USED 13900 IF (NO(J).GT. 0) GOTO 770 14000 NO(J)=-NO. NE. JNO(I) ) GOTO 890 15000 ES=PROP ( I ) 15100 TRS=T ( I ) 15200 L=ITRUE 15300 GO TO 940 15400 890 IF (JF(J). NE. JNO( I) ) GOTO 930 15500 EF=PROP ( I ) 15600 TRF=T(I) 15700 M=ITRUE 15800 930 CONTINUE 15900 940 IF (L. EG.. ITRUE. AND. M. EG. ITRUE) GOTO 970 16000 950 CONTINUE 16100 C 16200 C END D0( (I), 1 = 1, NJ); 16300 GO TO 1010 16400 970 IF (DZRD(J). EQ. 0. 0) DZRD( J)=EF-ES 16500 C _X_ EQUATION* MIDDLE OF PAGE 29. 16600 X=0. 014*0( J)/( AC J)**0. 8*(ABS(G(J) ) )#»0. 2) 16700 C _TROCK_ EQUATION*/. BOTTOM OF PAGE 297. 16800 C » _TRF_ IS _T2_; _TRS_ IS _Ti_. 16900 C TROCK(J)=(TRF-TRS*EXP(-X*LA< J) )+DZRD( J) 7 187 )/(l. -EXP 17000 C ; (-X#LA(J> ) )-DZRD(J)/(2. *187. ) 17100 XLA=X*FLOAT(LA WRITE<2, 1235) ( JNO( J ) , J=l , LM1 ) WRITE(5, 1235) ( JNO ( J > , J=l , LM1 > ALL JUNCTION NUMBERS MUST BE ( JNO. LE. MAXJ ) , OR YOU WILL GET THIS MESSAGE ALSO, JUST AS IF YOU HAD ENTERED THE WRONG NUMBER IN _NJ_7. IN THIS CASE, ANY (JNO. GT. MAXJ) WILL NOT BE USED FORMAT(/////, ' STATED NUMBER OF JUNCTIONS IS WRONG AND ', 'HAS BEEN CORRECTED') NJ=L-1 C ALCULATE-METHANE-EVOLUT I ON. CONTINUE IF (NCH4C.LE. 0) GOTO 1360 L=0 DO 1330 I=1,NCH4C IF(NCH4C. GT. OREAD CONCENTRATION JUNCTION CARDS READ (10,1251) JN0X,CH4CX FORMAT (15, T26, F5. 2) DO 1280 J=1,NJ IF (JNOX. EQ. JNO(J) ) GOTO 1300 CONTINUE GO TO 1320 PRCH4(J)=CH4CX L=L+1 CONTINUE CONTINUE IF (NCH4C.NE. L) WRITE(LP, 1351 ) FORMAT (/////, ' MISTAKE IN CONCENTRATION JUNCTION CARDS /,6X, '(CHECK FOR VALID _JNO_ IN EACH CARD AND', ' FOR RIGHT NUMBER OF CARDS) ') DO 1580 1=1, NB IF (CH4VCI). GT. 0. 0) GOTO 1570 IF(CH4V( I ). LE. 0) COMPUTE DEFAULT METHANE VOLUME PRODUCTION FOR THIS AIRWAY CH4V ( I ) =RDCH4 ( I ) *LA ( I ) #0 ( I ) CH4V ( I ) =RDCH4 ( I ) h-FLOAT ( LA ( I > ) *0 ( I ) IF (CH4V(I). GT. 0. 0)GOTO 1560 M=IFALSE N= I FALSE DO 1500 L=1,NJ IF ( JS( I). NE. JNO(L) ) GOTO 1460 CH4S=PRCH4(L) M=ITRUE IF (JF(I). NE. JNO(L) )GOTO 1490 CH4F=PRCH4(L) N=ITRUE IF (M. EQ. ITRUE. AND. N EQ. ITRUE) GOTO 1530 CONTINUE CH4V(I)=0. GO TO 1550 IF (CH4F. LE. CH4S) GOTO 1510 39 25300 25400 25500 25600 25700 25800 25900 26000 26100 26200 26300 26400 26500 26600 26700 26800 26900 27000 27100 27200 27300 27400 27500 27600 27700 27800 27900 28000 28100 28200 28300 28400 28500 28600 28700 28800 28900 29000 29100 29200 29300 29400 29500 29600 29700 29800 29900 30000 1550 1560 1570 1580 C DATA FOR AIRWAY METHANE CONCENTRATION AND TEMPERATURE FROM TO ELEVATION DIFF PROD. CONDUCTIVITY CH4V(I) = (CH4F-CH4S)*Q(I)/100. O CONTINUE CONTINUE CONTINUE CONTINUE NRCT=0 C IF( INFLOW. GT. 0) READ CONTAMINATION CARDS IF (INFLOW. GT. 0)READ(IO, 1611) (NCENT(I), CONT(I), CONC(I), HEAT ( I ), ; 02MIN(I), SMP02(I),HTP02(I), 1 = 1, INFLOW) 1611 FORMAT (15, F10. 0, F10. 5, F10 2, 3F10. 5) C C WRITE-CONC-INPUT-DATA. C WRITE (LP, 1631) F0RMAT(1H1,T21, 'INPUT 1 ' CALCULATIONS'// 2 '. ROCK TEMP. 3 'DIFFUSIVITY') WRITE (LP, 1651) (NO(I)i JS(I)i JF(I)i DZRD( I ), TROCK(I), CH4V(I), HK(I ) ; HA(I), 1 = 1, NB) FORMAT (15, 217, T25.F10. 1, T40, F10. 1, T56, F10. 1, 772, F10. 1, T89, ; F10. 4) WRITE (LP, 1671) TIME FORMAT (////, T20, ' TIME AFTER BEGINNING OF EVENT', F7. 2, ' ; 'HOURS') WRITE (LP, 1691) TSTART, JSTART FORMAT (////, T20, ' A TEMPERATURE OF ' JUNCTION NO', 17 > IF (INFLOW. LE. O) GOTO 1760 WRITE (LP, 1721) F0RMAT(////,T25, ' THE FOLLOWING 1 //. T18, 'CONTAMINATION', T43 2 'PRODUCTION PER CU FT OXYGEN' 3 'CONCENTRAT. HEAT 4 'SMOKE HEAT') WRITE (LP, 1741 ) (NCENT( I ), CONT ( I ), CONC ( I ), HEAT ( I ), 02MIN( I ), ; SMP02(I),HTP02(I), 1 = 1, INFLOW) FORMAT (16, Fll. 3, Fll. 3, F12. 3, 9X, F6. 2, 10X, F8. 3, 7X, F8. 3) GO TO 1780 WRITE (LP. 1771) FORMAT (/////, T20, ' NO CONTAMINATION WAS SPECIFIED') CONTINUE WRITE(LP, 1801) FORMAT (IX, 'RETURN FROM RDCONC ' ) RETURN END 1631 1651 1671 1691 1721 F6. 1 WAS ASSIGNED TO CONTAMINATION WAS ASSUMED', 'OXYGEN CONCENTRATION', T67, /, ' AIRWAY FLOWRATE ', BEHIND FIRE 1741 1760 1771 1780 C C1801 40 200 300 400 500 600 700 800 900 lOOO 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 SUBROUTINE FLOWSK C 1 1 1 1 1 1 1 1 1 122222222223333333333444444444455555555556666666666777 C23456789012345678901234 5678901234 56789012345678901234567890123456789012 C "FLOWSK" RECORDS AIRFLOW-REVERSALS IN "NRCT" VECTOR X GENERATES FLOWSCHEME IN "INU", "KJS", "KJF", "KNO", 7. AND "JNOL" LISTS, AND SELECTS INITIAL X JUNCTION FROM "JSTART". DATA DIVISION. COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM. NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tli ZDOWN. FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP. KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9 I TRUE, I FALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl , KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANG, NPTS, NABF COMMON/RESCOM/NWRN COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI, WRNHT, WRNPR, WRNSM, 1WRNSUM, WRNGS COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1 JNOX, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF C OMMON /FLOC OM /MM PROCEDURE DIVISION WITH ENTRY POINT FLOWSCHEME. FLOWSCHEME. WRITE(LP, 111) FORMAT (IX, 'ENTERING FLOWSK') Clll C C CHECK-FOR-AIRFLOW-REVERSALS. C NSFLOW=ITRUE DO 320 1=1, NB IF (Q, INU(L) ', CONTINUE CONTINUE "KJS(N)" GETS LAST "L" IN "INU" LIST J FOR AIRWAYS LEAVING JUNCTION "I" KJS(N)=L WRITE (2, 1235) N, KJS(N) F0RMAT(4X, 'N, KJS(N) ', 2(3X, 14) ) MM=M DO 600 J=1,NB IF (JF(J).NE. I) GOTO 590 AIRWAY "J" ENTERS JUNCTION "I 1 M=M+1 KJF" ("N" IS THE SAME SUBSCRIPT FOR "KJS" AND "KNO") GETS AIRWAY NUMBER FROM "I" JNOL(N)=I N=N+1 CONTINUE CONTINUE C CI 234 510 520 C C i C CI 235 C CI 236 590 600 C STICK IN "KJF" LIST X 650 660 C C RELATE- JNO-AND-JNOL-L I STS. C C WRITE<2,889) < JNO( IK ) , IK=1 , NJ) C WRITE<2,889) ( JNOL< IK) , IK=1 , NJ) C889 F0RMAT(5(3X, 14)) 42 12800 12900 13000 13100 13200 13300 720 13400 C 13500 C 13600 730 13700 740 13800 C 13900 C INI 14000 C 14100 C 14200 C 14300 C 14400 C 14500 14600 14700 770 14800 C 14900 C 15000 780 15100 15200 15300 C 15400 C805 15500 C 15600 C 15700 C821 15800 15900 DO 740 1=1, NJ PROP(I)=0. O PRCH4(I)=0. DO 720 J=1,NJ IF (JNOL(I). EQ. JNO > GOTO 730 CONTINUE "JLR" CONTAINS THE "JNO" SUBSCRIPT FOR THE CURRENT "JNOL" JLR < I ) = J CONTINUE >ICES-OF-STARTING-JUNCTION. GENERATE "MSTART" AND RELATED VARIABLES NOTE: PROPOSED CHANGES FOR DEFAULT "JSTART" HAVE BEEN 7. COMMENTED-OUT BECAUSE THERE WAS NO TIME TO TEST THEM LSTART=ITRUE DO 770 1=1. NJ IF (JNOL( I ). EQ. JSTART) GOTO 780 CONTINUE 1 = 1 LSTART=IFALSE MSTART=I ISTART=JLR(I) T(ISTART)=TSTART IF(LSTART. NE. I TRUE) WRITE (LP, 805) JNOL( I ) FORMATOX, 'INVALID JUNCTION NUMBER IN "JSTART": ', X 'DEFAULT IS', 14) WRITE(LP,821> FORMAT < IX, 'RETURN FROM FLOWSK ' ) RETURN END 43 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 SUBROUTINE ROADWY C 111111111 122222222223333333333444444444455555555556666666666777 C 234567890 1 234567890 1 234 567890 1 234567890 1 234567890 1 234567890 1 234 567890 1 2 C "ROADWY" DOES THE ITERATIONS FOR WHAT HAPPENS AT THE ROADWAY JUNCTIONS DURING OUR DISASTER SCENE DATA DIVISION. COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI, COR, DIFCH4, FRO, I. ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART. JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ» OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9 I TRUE, I FALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF WORKING-STORAGE SECTION. INTEGER LTEMP, IKJS REAL XDUM, C0NTM1, DENOM, DEN0M1, DEN0M2 LABEL ICKY PROCEDURE DIVISION WITH ENTRY POINT ROADWY. C C C C C ROADWY. C MRC=0 MARKC=IFALSE C C CONDITIONS-AT-ALL-ROADWAY-ENDS. C 100 L= I START NSTART=MSTART C C CONDITIONS-SELECTED-ROAD-ENDS. C 120 CONTINUE 130 PROPJS=PROP(L) JX=L CH4JS=PRCH4(L) JNO(L)=-JNO(L) JY=1 C "JY" IS SUBSCRIPT FOR THE FIRST AIRWAY C 7. (IN "INU(JY)" ) LEAVING THE JUNCTION IN IF (NSTART. GT. 1 ) JY=KJS < NSTART- 1 ) + l C "JZ" IS SUBSCRIPT FOR THE LAST AIRWAY C 7. (IN "INU(JZ)") LEAVING THE JUNCTION IN "JNOL (NSTART ) " JZ=KJS( NSTART) C WRITE(LP,211) JY, JZ, NSTART, MSTART, L, (KJS( IKJS), IKJS=1, 80) C211 FORMAT( IX, 'R0ADWYL211: JY, JZ, NSTART, MSTART, L, K JS= ' , 513, 2(/40I3) ) C WRITE(LP, 231) ( JLR ( IKJS) , IKJS=1 , 80 ) C231 F0RMAT(5X, 'JLR ='2(/40I3) ) DO 280 K=JY, JZ 'JNOL (NSTART) 44 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000 12100 12200 12300 12400 12500 12600 12700 C C C C C C C CI 234 C 270 280 C PERFORM CK-CONC-CHANGE-AND-ADDED-HEAT THRU AIRWAY-BOOGIE 7. VARYING K FROM JY BY 1 UNTIL K > JZ. THIS "PERFORM" LOOP CRUNCHES TEMPERATURES AND 7. CONCENTRATION CHANGES FOR ALL AIRWAYS LEAVING 7. JUNCTION "JNOL(NSTART)" IF(JY. EQ. JZ) WRITE(5, 1234) JY, JZ, NSTART, INU(JY) 1 , JNOL( NSTART) FORMAT (5(4X, 14)) IF(JY. EG.. JZ) STOP ASSIGN 270 TO ICKY GOTO 1660 CONTINUE CONTINUE CONDITIONS- IN- JUNCTIONS. 460 C C C C C c c c C531 COMPUTE "PROP", "PRCH4", AND "T" FOR NEXT JUNCTION FROM AIRWAYS ENTERING JUNCTION. CHOOSE NEXT JUNCTION FOR TEMPERATURE AND CONC. CHANGES ON AIRWAYS LEAVING IT DO 570 1=1* NJ L= JLR ( I ) IF (JNO(L). LT. 0)GOTO 560 "JNO" GETS FLAGGED NEGATIVE JUST BEFORE THE "PERFORM" LOOP TO COMPUTE TEMPERATURE AND CONC. CHANGES ON AIRWAYS LEAVING IT JY=1 IF(I. NE. 1 )JY=KN0(I-1) + 1 JZ=KNO(I) SUMAIR=0. SUMPR=0. SUMCH4=0. SUMHT=0. O DO 460 K=JY, JZ "KJF" IS AIRWAY TEMPERATURE ENTERING JUNCTION: HUNT FOR AND CONC. CHANGES FOR ALL AIRWAYS ENTERING THIS JUNCTION J=KJF(K) IF(JF(J) GE. 'JF' 0)GOTO 550 1 GETS FLAGGED NEGATIVE IN "AIRWAY-BOOGIE" AT THE TAIL END OF THE "PERFORM" LOOP TO COMPUTE TEMPERATURE AND CONC. CHANGES FOR AIRWAYS SUMAIR=SUMAIR+G(J) SUMPR=SUMPR+RDPROP ( J ) »Q ( J ) SUMCH4=SUMCH4+RDCH4 ( J ) *Q ( J ) SUMHT=SUMHT+TRD( J)*Q( J)#<0. 2376+0. 000024#TRD( J ) ) CONTINUE IF YOU FALL THRU TO HERE, YOU HAVE FOUND A JUNCTION WHICH HAS TEMPERATURE AND CONC. COMPUTED FOR ALL AIRWAYS ENTERING (BUT NOT ALL AIRWAYS LEAVING) IT: GET "PROP", "PRCH4", AND "T" FOR THIS JUNCTION AND THEN GO BACK TO "CONDITIONS-SELECTED- ROAD-ENDS" FOR THE NEXT JUNCTION NSTART=I PROP ( L ) =SUMPR /SUMAIR PRCH4 ( L ) =SUMCH4/SUMA IR RTC0NT=4950. **2. +SUMHT/ (SUMAIR*0. 000024) T(L)=-4950. +SQRT(RTCONT) WRITE(LP, 531) L, JNO(L) FORMATdX, 'R0ADWYL531: HERE FROM JNO(L ) . GE. 0. L, JNO( L )= ' , 215) GO TO 130 45 12800 550 12900 560 13000 570 13100 C 13200 C 7. 13300 C "/. 13400 C ■/. 13500 C 7. 13600 r 13700 C 13800 C RECIF 13900 C 14000 590 < 14100 C F 14200 i 14300 i 14400 14500 14600 14700 640 14800 C 14900 C X 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 C 16000 c 7. 16100 16200 16300 16400 16500 16600 16700 790 16800 C 16900 C 7. 17000 17100 17200 17300 830 17400 840 17500 850 17600 17700 17800 17900 18000 C 18100 C 7. 18200 C 7. 18300 C 7. 18400 C 7. 18500 18600 C 18700 910 18800 920 18900 930 19000 C CONTINUE CONTINUE CONTINUE ONCE YOU GET HERE, EACH JUNCTION HAS: (1) TEMPERATURE AND CONC. CHANGES COMPUTED FOR ALL AIRWAYS LEAVING IT, .OR. (2) TEMPERATURE AND CONC. CHANGES COMPUTED FOR NOT ALL AIRWAYS ENTERING IT NREC=1 IRCULATION-FIRST-APPROXIMATION. CONTINUE REPEAT UNTIL (L. GE. NJ); L=0 DO 930 1=1, NJ IF(JNOd). GT. 0)G0T0 640 L=L+1 GO TO 920 CONTINUE THIS JUNCTION DID NOT GET TEMPERATURE AND CONC. CHANGES COMPUTED FOR ITS EXITING AIRWAYS N=0 M=0 SRPR=0. SRCH4=0. STRD=0. O QIN=0. QREC=0. DO 850 J=1,NB IF QIN=QIN+Q(J) GO TO 840 IF(JNOd). NE. JF(J) )GOTO 830 HERE: AIRWAY "J" DID NOT GET ITS TEMPERATURE AND CONC. CHANGE COMPUTED: STICK IT IN "MEMREC" M=M+1 MEMREC (M)=J QREC=QREC+G(J> CONTINUE CONTINUE CONTINUE IF(N. LE. 0)GOTO 910 AVRPR=SRPR/QIN AVRCH4=SRCH4/N AVTRD=STRD/N COOL IT! "QREC/QIN" GETS LARGER FOR CONVERGENCE AND SMALLER FOR DIVERGENCE (NO, THIS IS NOT A TYPO!): JUST IN CASE "QREC/QIN" IS TOO SMALL, THIS COMPUTES "AVRPR", "AVRCH4", AND "AVTRD" FOR A RECIRCULATION TRY IF(QREC«2. O/QIN LT. NREOGOTO 950 CONTINUE CONTINUE CONTINUE IF(L. GE. NJ), ALL JUNCTIONS GOT TEMPERATURE AND CONC. 46 19100 C % CHANGES COMPUTED FOR THEIR EXITING AIRWAYS 19200 IF", AND "TRD(K)" 20600 DO 1060 L=1,M 20700 MRC=MRC+1 20800 K=MEMREC(L) 20900 C MOVE DELINQUENT AIRWAYS (I.E., AIRWAYS WHICH DID NOT 21000 C 7. GET TEMPERATURE AND CONC. CHANGES COMPUTED) FROM 21100 C 7. "MEMREC" TO "NOREC" 21200 NOREC ( MRC )=K 21300 ESTPR ( MRC )=AVRPR 21400 RDPROP(K)=ESTPR(MRC) 21500 ESTCH4(MRC)=AVRCH4 21600 RDCH4(K)=ESTCH4(MRC) 21700 ESTTR ( MRC )=AVTRD 21800 TRD(K)=ESTTR(MRC> 21900 JF(K)=-JF(K) 22000 1060 CONTINUE 22100 C HERE: GENERATE "NSTART" AND RELATED VARIABLES PERTINENT TO 22200 C 7. THE NEW JUNCTION BEFORE GOING BACK TO 22300 C 7. "CONDITIONS-SELECTED-ROAD-ENDS" 22400 DO 1090 J=1,NJ 22500 C IF "JNO(I). GT. 0", THEN THIS JUNCTION DID NOT GET 22600 C 7. TEMPERATURE AND CONC. CHANGES COMPUTED FOR ITS 22700 C 7. EXITING AIRWAYS: SHAME, SHAME! "I" IS LEFT-OVER 22800 C 7. FROM "REC IRCULATION-FIRST-APPROX IMATION", WHERE 22900 C 7. THIS DELINQUENT JUNCTION WAS FOUND 23000 IF(JNO(I ). EQ. JNOL(J) )GOTO 1100 23100 1090 CONTINUE 23200 1100 JY=1 23300 IF(J. NE. 1)JY=KN0< J-D + l 23400 JZ=KNO(J) 23500 SUMAIR=0. O 23600 SUMPR=0. O 23700 SUMCH4=0. 23800 SUMHT=0. 23900 DO 1250 K=JY, JZ 24000 C GET "SUMAIR", ETC. FROM AIRWAYS ENTERING "JNOL 24300 SUMPR=SUMPR+RDPROP(M)*Q(M) 24400 SUMCH4=SUMCH4+RDCH4 ( M ) *Q ( M ) 24500 SUMHT=SUMHT+TRD(M)*Q(M)*(0. 2376+0. 000024*TRD , CONT (L > , CONC ( L ) , C 7. HEAT(L),02MIN(L),SMP02(L),HTP02(L), L=l, INFLOW), C 7. ALL IN ONE WHACK IN ONE STATEMENT: THESE ARE COMPANION C 7. VARIABLES ALL WITH THE SAME SUBSCRIPT C ALL VALUES SUBSCRIPTED "L" FROM HERE THRU "AIRWAY-BOOGIE" C 7. ARE CHOSEN BY THIS " IF (NCENT(L > . EQ. N0( J ) ) " IF (NCENT(L). EQ. NO(I) )GOTO 1790 1730 CONTINUE CONTAM=0. CONTQ=0. O HEATAD=0. TFS=0. GO TO 2020 C C CONC-CHANGE-AND-ADDED-HEAT. C 1790 CONTINUE C COMPUTE CONCENTRATION CHANGES, ADDED CONTAMINATION, C 7. AND ADDED HEAT NM=ITRUE IF (CONT(L). EQ. 0. 0)GOTO 1870 C EQUATIONS FOR "CONTAM", "CONTQ", "HEATAD": C 7. SEE 4.2.8.2, SECTION 1, PAGE 36 C0NTM1=C0NT(L)*C0NC(L> C0NTAM=C0NTM1/100, C WRITE(LP, 1841) CONTAM, C0NTM1 C1841 FORMATdX, 25HR0ADWY1841 : C0NTM1, CONTAM=, 2F13. 3) CONTQ=CONT(L) GO TO 1890 1870 CONTAM=0. O CONTQ=0. O 1890 IF (HEAT(L).EQ. 0. 0)GOTO 1920 HEATAD=HEAT(L) GO TO 1930 1920 HEATAD=0. 1930 IF (02MIN(L).LE. 0. O ) GOTO 1970 C EQUATIONS FOR "CONTAM", CONTQ", "HEATAD": C 7. SEE 4. 2. 8. 2, SECTION 2, PAGE 36 CONTAM=(0. 21-PR0PJS-02MIN(L)/100 )*Q( I ) CONTQ=0. O HEATAD=C0NTAM*437. 1970 IF (SMP02(L). LE. 0. 0)GOTO 2010 C EQUATIONS FOR "CONTAM", "CONTQ", "HEATAD": C 7. SEE 4. 2. 8. 2, SECTION 3, PAGE 36 CONTAM= (0.21 -PROP JS > *Q ( I > *SMP02 ( L ) CONTQ=0. O HEATAD= (0.21 -PROP JS ) *Q ( I ) *HTP02 ( L ) 2010 CONTINUE C C MAKE-CHANGES-IN-EXIT-AIRWAYS. C 2020 CONTINUE XDUM=10 O C WRITE(LP, 2041) XDUM C2041 FORMATdX, 17HR0ADWY, L2041: XDUM=, F13. 3) C EQUATIONS FOR "RDCH4", "RDPROP": C 7. SEE 4. 2. 8. 2, SECTION 3, PAGE 37 49 38000 38100 38200 38300 38400 38500 38600 38700 38800 38900 39000 39100 39200 39300 39400 39500 39600 39700 39800 39900 40000 40100 40200 40300 40400 40500 40600 40700 40800 40900 41000 41100 41200 41300 41400 41500 41600 41700 41800 41900 42000 42100 42200 42300 42400 42500 42600 42700 42800 42900 43000 43100 43200 43300 43400 43500 43600 43700 43800 43900 44000 44100 44200 DEN0M=Q ( I ) +CH4V ( I ) C WRITE (LP, 2071) K. I. Q( I ) , CH4V( I ) , DENQM C2071 FORMAT ( IX, 34HR0ADWY2071: K, I, Q( I ) , CH4V( I ) , DENOM= , 213, 3F13. 3) RDCH4 ( I ) = ( CH4 JS*Q ( I ) +CH4V ( I ) ) /DENOM C WRITE (LP, 2071) K, I. Q( I ) , CH4V( I ) , DENOM RDPROP ( I ) =PROP JS* ( Q ( I ) -CONTQ ) /Q ( I ) +CONTAM/G ( I ) C WRITE (LP, 2071) K, I,Q(I) IF (NTEMP. EQ. I TRUE) GOTO 2150 TRD(I)=0. O GO TO 2850 C C TEMPERATURE-CALC-FOR-AIRWAY-I. C C SEE 4. 2. 8. 3 FOR EQUATIONS FROM HERE THRU "AIRWAY-BOOGIE" 2150 CONTINUE TJS=T(JX) IF (NM. NE. ITRUE)GOTO 2250 IF (HEATAD. NE. 0. 0)G0T0 2220 TFSI(L)=TJS GO TO 2240 2220 VART=(4950. -TJS/2. )**2+9900. *TJS+HEATAD/ (Q( I )*0. 000024#DR> C "TFS" EQUATIONS (NOTE: "TFS" IS "T" IN THE BOOK) C 7. LAST TWO ON PAGE 37 IN 4. 2. 8. 3 TFS=-4950. -TJS/2. +SQRT( VART)+TJS TJS=TFS TFSI(L)=TFS 2240 CONTINUE 2250 IF (ICFTM. EQ. ITRUE)GOTO 2280 TM= ( TJS+TROCK ( I ) ) /2. GO TO 2370 2280 2290 C IN BOOK) C TEMPERATURE-ITERATE-TDM-GRT-50. C CONTINUE CONTINUE EQUATIONS FOR "TM": TOP OF PAGE 38 ("TM" IS ARGMT= ( T JS-TROCK ( I ) ) / ( TRD ( I ) -TROCK ( I ) ) IF (ARGMT. GT. l.OGOTO 2340 TM=(TJS+TRD(I) )/2. GO TO 2360 C "X" EQUATION: JUST BELOW MIDDLE OF PAGE 41. C2340 X=ALOG(ARGMT)/LA(I> 2340 X=ALOG( ARGMT) /FLOAT (LA(I> ) C THIS "TM" EQUATION: JUST BELOW MIDDLE OF PAGE 41 C TM=TROCK ( I ) + ( T JS-TROCK ( I ) > * ( 1 . O-EXP < -X*LA ( I ) ) ) / C 7. (X*LA(I>> XLA=X*FLOAT(LA(I) ) TM=TROCK(I)+(TJS-TROCK(I >)*(1. O-EXP <-XLA) )/ V. XLA C C TEMPERATURE-MAIN-TDM-ITERATION. C 2360 CONTINUE C "VISC", "WT" EQUATIONS: CLOSE TO BOTTOM OF PAGE 40 2370 WT=DR*(TR+460. )/(TM+460. ) VISC=0. 000145*((460. +TM>/492. )#*1. 75 C "CP" IS USED IN THE MIDDLE OF PAGE 37 CP=0. 2376+0. 000024*TM C "HKA" EQUATION: JUST BELOW MIDDLE OF PAGE 40 HKA=0. 014*( (460. +TM)/492. >**0. 81 DEN0M1=15. *WT*0(I)*VISC C "RN" EQUATION: TOP OF PAGE 41 RN=Q(I)*DR/(15. #WT*0(I)*VISC) 50 44300 44400 44500 44600 44700 44800 44900 45000 45100 45200 45300 45400 45500 45600 45700 45800 45900 46000 46100 46200 46300 46400 46500 46600 46700 46800 46900 47000 47100 47200 47300 47400 47500 47600 47700 47800 47900 48000 48100 48200 48300 48400 48500 48600 48700 48800 48900 49000 49100 49200 49300 49400 49500 49600 49700 49800 49900 50000 50100 50200 50300 50400 50500 C C2451 C 2570 C C C DEN0M2=RN**0. 237 WRITE(LP,2451) WT, 0( I ) , VISC, DEN0M1 , RN, DEN0M2 FORMAT (IX. 41HR0ADWY2451: WT, 0(1), VISC, DEN0M1,RN, DEN0M2=, 6F13. 3) "FRO" EQUATION: MIDDLE OF PAGE 40 FRO=0. 0032+0. 221/RN**0. 237 "COR" EQUATION: SECOND GROUP ON PAGE 40 P0T=(100. /RN>**0. 125 COR= ( ( FLOAT ( KF ( I ) ) *0. 075 ) / ( 809*DR*FR0 ) ) *#P0T "HC" EQUATION: TOP OF PAGE 40 HC=0. 005*HKA#0( I )*RN»*0. 8*C0R/A( I ) "FO", "BI" EQUATIONS: TOP OF PAGE 39 FO=T IME»HA ( I ) *0 ( I ) #*2/ ( 4. #A (' I ) **2 ) BI=HC*2. *A(I)/(0(I)*HK(I>) "X" EQUATION: MIDDLE OF PAGE 39 X= ( O. 375+B I ) *SQRT ( FO ) IF (X. GE. 2. 5)G0T0 2630 N=0 SUMT=0. ADDT=X CONTINUE REPEAT UNTIL ( ABS( ADDT ) . LT. "SUMT" EQUATION: 0. 00001); NEXT-TO-LAST ON PAGE 39 2630 C 2660 C ("SUMT" IS "PHI(X)" IN BOOK) (FOR " X " . LE 2.5) SUMT=SUMT+ADDT N=N+1 ADDT=-ADDT*X**2* ( 2*N- 1 ) / ( N# ( 2*N+ 1 ) ) X1N=FL0AT(N) X2N=(2. *X1N-1. )/(XlN*(2. *X1N+1. )) ADDT=-ADDT#X**2*X2N IF (ABS(ADDT). GE. 0. 00001 )GOTO 2570 END REPEAT ( ABS( ADDT) . LT. 0.00001); FX = 1. 0-(EXP(X»*2) >*<1. 0-(2. 0/SQRT(PI>)*SUMT) GO TO 2730 N=0 SUMT=0. ADDT=1. O CONTINUE REPEAT WHILE (ABS (ADDT ). GE. 0. 00001 C 7. AND. ABS ( OLADDT). GT. ABS (ADDT) >; SUMT=SUMT+ADDT C "SUMT" EQUATIONS ("X".GT. 2.5): BOTTOM OF PAGE 39 N=N+1 OLADDT=ADDT X1N=FL0AT(N) ADDT=-ADDT* ( 2*X 1 N- 1 ) / ( 2. 0*X#*2 ) IF ( ABS ( ADDT ). GE. 0. 00001 AND. 7. ABS ( OLADDT >. GT. ABS (ADDT) ) GOTO 2660 C END REPEAT (ABS( ADDT ). GE. O. 00001 C 7. AND. ABS< OLADDT). GT. ABS (ADDT) ); C FX=1. 0-1. 0*SUMT/(SQRT(PI )*X> C C TEMPERATURE-FINISH-TDM-ITERAT. C 2730 CONTINUE C WHEN THIS ITERATION ON "TDM" IS FINISHED, A FAIRLY CONVERGENT C 7. "TRD(I)" FOR AIRWAY "I" WILL HAVE BEEN COMPUTED C0AGE=BI-FX#BI#*2/(0. 375+BI) C "XNEW" EQUATION: BOTTOM OF PAGE 41 AND TOP OF PAGE 42 C 7. (RIGHT SIDE OF EQUATION MENTIONED JUST BELOW C 7. MIDDLE OF PAGE 38) XNEW(I)=HK(I)*FLOAT(LA(I) )*0(I)**2. #COAGE/ ( 120. *DR*Q( I >#CP*A ( I ) ) 51 50600 50700 50800 50900 51000 51100 51200 51300 51400 51500 51600 51700 51800 51900 52000 52100 52200 52300 52400 52500 52600 52700 52800 IF (ICFTM. EQ. ITRUE>G0T0 2780 T0LD=TR0CK(I) GO TO 2790 2780 TOLD=TRD(I) C "TRD" EQUATION: MIDDLE OF PAGE 41 C 7. (ALSO MENTIONED ON BOTTOM OF PAGE 38) 2790 TRD ( I ) =TROCK ( I ) + ( T JS-TROCK ( I ) ) *EXP ( -XNEW ( I ) ) - ( DZRD ( 7. 778. 26*CP>)*(1. +EXP(-XNEW(I) >> TDM=ABS ( TOLD-TRD ( I ) ) IF (TDM. LE. 50. O) GOTO 2840 ICFTM=ITRUE GO TO 2290 C C C AIRWAY-BOOGIE. C 2840 2850 CONTINUE CONTINUE JF(I)=-IABS(JF(I)> C WRITE(5,4321) I,JF(I>, C4321 F0RMAT(2(4X« I4)/2(4X, GOTO ICKY END TDM, TRD(I) E12. 5) ) 52 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 SUBROUTINE NATVP1 "NATVP1" COMPUTES "FRNVP" FOR USE 7. PRESSURE-2" IN PROGRAM DRIVER, X REGULAR AIRWAYS AND "STATIC-Q' IN "NATURAL-VENTILATION- AND ^ADJUSTS "R" FOR ALL AIRWAYS DATA DIVISION. COMMON SECTION. INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT. H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9 I TRUE, I FALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF C OMMON / R ESC OM / NWR N COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI, WRNHT, WRNPR, WRNSM, 1WRNSUM, WRNGS COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1 JNOX, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR. CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF COMMON/FLOCOM/MM COMMON/NATCOM/E, B, G, GX, GXX, TMRD, TMSQR, TRA PROCEDURE DIVISION WITH ENTRY POINT NATVP1 NATVP1 140 150 180 200 210 C CALCULATION OF NATURAL VENTILATION PRESSURE DO 320 1=1, NB DO 140 J=1,NJ IF (JS(I). EQ. JNO(J) ) GO TO 150 CONTINUE T1=T(J) DO 180 K=l, INFLOW IF . EQ. NO(I) ) GO TO 200 CONTINUE GO TO 210 T1=TFSI(K) CP=0. 2376+0. 000012*(TRD(I)+T1 ) "E" EQUATION: TOP OF PAGE 46. E=DZRD< I ) / (2. *778. 26#CP ) B=T1-TR0CK(I) G=XNEW(I) GX=EXP(-G> GXX=EXP(-2. *G> TRA=TROCK( I )+460. +E "TMRD" IS "T" IN EQUATION IN MIDDLE OF PAGE 46. TMRD=TROCK( I )-=TMRD*DZRD( I ) TMSQR=(TRA-E)»*2. +E**2. /3. -(B-E)*(GXX-1 . )/(2. *G>-2. *TRA» '/. /G»*2. 53 6500 IF (NWTYP(I). LE. 0) R ( I )=RSTD( I)*TMSQR/ (460. +TR )**2. 6600 320 CONTINUE 6700 RETURN 6800 END 54 200 300 400 500 800 850 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 SUBROUTINE SGRS=0. ATA(1, 1)=FL0AT(NP) DO 403 1=1, NP QF(LY, I)=QF(LY, D/100000 ATA (1,2) =ATA (1,2) +QF ( LY, I ) ATAd, 3)=ATA(1, 3)+QF(LY, I)*QF(LY, I) ATA (2, 2>=ATA(1, 3) ATA(2, 3)=ATA(2, 3)+QF(LY, I )*QF(LY, I )*QF(LY, I ) ATA (3, 3>=ATA<3, 3>+QF(LY, I)*QF(LY, I)*QF(LY, I)*QF(LY, I) ATA (2, 1)=ATA(1, 2) ATA (3, 1)=ATA(1, 3) ATA (3, 2)=ATA(2, 3) QF(LY, I) =100000. *QF(LY, I) CONTINUE RETURN ENTRY SQRSS(LY. NP ) DO 404 1 = 1, 3 ATY(I)=0. DO 405 1=1, NP QF(LY, I)=QF(LY, D/100000. ATY(1)=ATY(1)+PF(LY, I) ATY(2)=ATY(2)+QF(LY, I)«PF(LY, I) ATY(3)=ATY(3)+GF(LY, I)*QF(LY, I)#PF(LY, I) QF(LY, I) = 100000. #QF(LY, I) 55 6600 6700 6800 6900 7000 7100 405 CONTINUE DO 406 1 = 1,3 DO 406 J=1.3 406 CL(LY, I)=CL(LY, I)+ATA(I, J)#ATY(J) RETURN END 56 200 300 400 500 800 850 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 SUBROUTINE MINV(AAX,NV) C 11111111 1 122222222223333333333444444444455555555556666666666777 C234567S901234 5678901234567890123456789012345678901234567890123456789012 C C C c c c c c LEAST SQUARES FIT OF FAN 20 30 35 DATA DIVISION. COMMON SECTION. IMPLICIT DOUBLE PREC ISI0N( A-H, 0-Z ) INCLUDE 'CTPAM.COM' DIMENSION AAX(20) INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10. NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP. INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9ITRUE, IFALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF COMMON/RESCOM/NWRN COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI. WRNHT, WRNPR, WRNSM, 1WRNSUM, WRNGS COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX. KFAVR, CH4F, 1 JNOX, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF COMMON/LEAST/ATA (3, 3), ATY(3>, CL(40, 6 ) , LK( 5) , MQ( 5) , IFAN DD-1. NKK=-NV DO 80 K*l. NV NKK=NKK+NV LK ( K > =K MQ ( K ) =K KK=NKK+K BIGA=AAX(KK) DO 20 J=K, NV IZ=NV*(J-1) DO 20 I=K, NV IJ=IZ+I IF(ABS(BIGA)-ABS(AAX(IJ>) ) 15,20,20 BIGA=AAX(IJ) LK(K)=I MQ(K)=J CONTINUE J=LK JI=KI-K+J AAX(KI)=AAX(JI) AAX(JI)=HOLD I=MQ(K) 57 6600 IF(I-K) 45,45,38 6700 38 JP=NV* 6800 DO 40 J=1.NV 6700 JK=NKK+J 7000 JI=JP+J 7100 HOLD=-AAX(JK) 7200 AAX(JK)=AAX(JI) 7300 40 AAX(JI>=HOLD 7400 45 IF(BIGA) 48,46.48 7500 46 DD=0. 7600 RETURN 7700 48 DO 55 1=1, NV 7800 IF(I-K) 50,55,50 7900 50 IK=NKK+I 8000 AAX(IK)=AAX(IK)/(-BIGA) 8100 55 CONTINUE 8200 DO 65 1 = 1, NV 8300 IK=NKK+I 8400 HOLD=AAX(IK) 8500 IJ=I-NV 8600 DO 65 J=1,NV 8700 IJ=IJ+NV 8800 IF(I-K) 60,65,60 8900 60 IF(J-K) 62,65,62 9000 62 KJ=IJ-I+K 9100 AAX(IJ)=HOLD»AAX(KJ)+AAX(IJ) 9200 65 CONTINUE 9300 KJ=K-NV 9400 DO 75 J=1,NV 9500 KJ=KJ+NV 9600 IF(J-K) 70,75,70 9700 70 AAX ( K J ) =AAX ( KJ > /B IGA 9800 75 CONTINUE 9900 DD=DD#BIGA 10000 AAX(KK)=1. /BIGA 10100 80 CONTINUE 10200 K=NV 10300 100 K=K-1 10400 IF(K) 150, 150, 105 10500 105 I=LK(K) 10600 IF(I-K) 120, 120, 108 10700 108 JQ=NV*(K-1) 10800 JR=NV*(I-1) 10900 DO 110 J=1,NV 11000 JK=JQ+J 11100 H0LD=AAX(JK) 11200 JI=UR+J 11300 AAX(JK)=-AAX(JI) 11400 110 AAX(JI)=H0LD 11500 120 J=MQ(K) 11600 IF(J-K) 100, 100, 125 11700 125 KI=K-NV 11800 DO 130 1=1, NV 11900 KI=KI+NV 12000 HOLD=AAX(KI) 12100 JI=KI-K+J 12200 AAX(KI)=-AAX(JI) 12300 130 AAX(JI)=HOLD 12400 GO TO 100 12500 150 RETURN 12600 END 58 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 SUBROUTINE WRITR C 11111111 1 122222222223333333333444444444455555555556666666666777 C2345678901234 5678901234567890123456789012345678901234567890 123456789012 C C "WRITR" WRITES OUTPUT OF RESULTS C C DATA DIVISION. C COMMON SECTION. C INCLUDE 'CTPAM.COM' INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4. FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tii ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9ITRUE, IFALSE COMMON/NETWK/KNUM, JBM, NBL, JEM, KB, NBU, NK, NRETU, NO, Ql, IND, 1KC0, MESC, Nl, KE, NMIN, NUC, MMIN COMMON/ I TTCOM/DQSUM, QBL, ADEN, IT, PART, QBR, RQSUM, ANUM, DP, 1NBDR, RQ2, TABF, DPSUM, FANP, LL, DQ, FANQ, NPTS, NABF COMMON/RESCOM/NWRN COMMON/WRTCOM/MINREV, JFF, NRCT, MEMI, WRNHT, WRNPR, WRNSM, 1WRNSUM, WRNGS WORKING-STORAGE SECTION INTEGER LRCIRC PROCEDURE DIVISION WITH ENTRY POINTS WRITR WRITS. WR I TR . OUTPUT OF RESULTS DO 120 L=1,NB RQ(L)=R(L) IF(NWTYP(L>. LE. 0) RQ (L >=R (L >*( Q(L ) /100000. )**2. 120 CONTINUE C C WRITS. C ENTRY WRITS IFCMARKN. EQ. ITRUE) WRITE (LP, 151 ) 151 FORMAT , TRD( I ) , RDPROP ( I ) , RDCH4 ( I ) , 7. RG(I). 1 = 1, NB) 21 1 FORMAT ( ' ',15, 217, T30, 0PF8. 0, T46, 0PF7. 2, T60, 2PF8. 4, T77, 7. 2PF6. 2, T93, 0PF6. 3) WRITE (LP, 231) 231 FORMAT (/////, T18, 'TEMPERATURES AND CONCENTRATIONS OF SMOKE ', 59 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7700 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10O00 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000 12100 12200 12300 12400 12500 12600 12700 251 271 331 350 360 421 1 'AND METHANE IN JUNCTIONS',//, ' JUNCTION ', T13, 'TEMPERA', 2 'TURE',T28, 'SMOKE', T37, 'METHANE '. T58, 'JUNCTION ', T69, 3 'TEMPERATURE', T82, 'SMOKE ',T92, 'METHANE'/) WRITE (LP, 251) (JNO(I), T ( I ) , PROP ( I ) , PRCH4( I ) , 1 = 1, NJ> FORMAT( 15, T15, 0PF7. 2, T25, 2PF8. 4, T36, 2PF8. 4, T57, 15, T71, 0PF7. 2, X T79, 2PF8. 4, T91,2PF8. 4) WRITE (LP, 271) MADJC FORMAT (////, T22, 'NUMBER OF ITERATIONS ', 1 10) LRCIRC=IFALSE DO 360 1=1, NB IF(JF(I). GE. 0)GOTO 350 JFF=IABS(JF(I) ) WRITE (LP, 331) N0(I),JFF FORMAT (' ',T18, 'WITH AIRWAY NO', 17, ' INTO JUNCTION NO' X 15) LRCIRC=ITRUE CONTINUE CONTINUE IF(LRCIRC. EQ. ITRUE) WRITE(LP, 381) FORMAT (//,T18, 'A RECIRCULATION PATH IS BEING CLOSED') WRNSUM=WRNPR+WRNGS+WRNSM+WRNHT IF (WRNSUM. GT. 0)GOTO 440 WRITE (LP, 421) FORMAT (/////, ' NO THRESHOLD LIMITS FOR CRITICAL STATES', 7. ' WERE SPECIFIED') GO TO 850 C C WRITE-CRITICAL-AIRWAYS C 440 J=IFALSE DO 630 1=1, NB K= I FALSE L=IFALSE M= I FALSE N= I FALSE IF (100. *RDCH4(I ). GE. WRNGS) K=ITRUE IF (100. *RDPROP(I). GE. WRNSM) L=ITRUE IF (TRD(I). GE. WRNHT) M=ITRUE IF (RQ(I). LT. WRNPR) N=ITRUE IFUK+L+M+N) . LT. I TRUE) GOTO 620 IF (J. EQ. I TRUE) GOTO 590 WRITE (LP, 571) WRNGS, WRNSM, WRNHT, WRNPR 571 FORMAT (/////, T23, 'IN THE FOLLOWING AIRWAYS EXIST ', 'CRITICAL CONDITIONS', /, T27, '(THE STATED NUMBERS ', 'REFER TO AIRWAY ENDS)',/, ' AIRWAY FROM TO ', 'METHANE CONCENTRATION SMOKE CONCENTRATION TEMPE', 'RATURE LOW VENTILAT. PRESSURE ',/, T27, 'HIGHER THAN' , T48, 'HIGHER THAN',T66, 'HIGHER THAN',T85, 'LOWER THAN', /, T26, F4. 1, ' PERCENT ', T46, F6. 3, ' PERC, 'ENT', T65, F5. 0, ' DEGREES ', T82, F5. 3, ' INCHES WG ',// ) J=ITRUE 590 JFF=IABS(JF(I) ) WRITE (LP, 611) NO(I), JS(I), JFF, RDCH4 ( I ) , RDPROP ( I ) , TRD(I), RQ(I) 611 FORMAT (15, 17, 17, T29, 2PF6. 2, T50, 2PF8. 4, T67, 0PF7. 1, T87, 7. 0PF6. 3) 620 CONTINUE 630 CONTINUE IF (J. EQ. I TRUE) GOTO 680 WRITE (LP, 661) 661 FORMAT (/////, ' NO CRITICAL CONDITIONS AT AIRWAY ENDS OR', 7. ' IN JUNCTIONS WERE DETECTED') GO TO 860 60 12800 C WRIT! 12900 C 13000 680 13100 ] 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 791 14200 1 14300 2 14400 3 14500 4 14600 5 14700 14800 810 14900 821 15000 830 15100 840 15200 C 15300 C WRIT 15400 C 15500 850 15600 860 15700 C 15800 15900 880 16000 C 16100 16200 16300 16400 16500 16600 C 16700 930 16800 C 16900 17000 17100 C 17200 950 17300 C 17400 C 17500 17600 17700 17800 17900 18000 18100 1010 18200 1020 18300 18400 C 18500 18600 18700 18800 C 18900 C 7. 19000 TE-CRITICAL-JUNCTIONS. J= I FALSE DO 840 1 = 1. NJ K= I FALSE L= I FALSE M= I FALSE IF (100. *PRCH4(I). GE. WRNGS) K=ITRUE IF (100. ♦PROP(I). GE. WRNSM) L=ITRUE IF (T(I). GE. WRNHT) M=ITRUE IF (K+L+M . LT. ITRUE)GOTO 830 IF (J. EG. ITRUE)GOTO 810 WRITE (LP, 791) WRNGS, WRNSM, WRNHT FORMAT (////, T24, ' IN THE FOLLOWING JUNCTIONS EXIST ' 'CRITICAL CONDITIONS',/,' JUNCTION METHANE ' 'CONCENTRATION SMOKE CONCENTRATIONS ', 16X 'TEMPERATURE', /, T 15, 'HIGHER THAN',F4. 1, ' PERCENT' HIGHER THAN',F6. 3, ' PERCENT MORE ' 'THAN', F6. 1, ' DEGREES',//) J=ITRUE WRITE (LP, 821) JNO(I), PRCH4(I), PROP(I), T(I) FORMAT ( I 5, T23, 2PF5. 1 , T52, 2PF8. 4, T86, 0PF7. 1 ) CONTINUE CONTINUE TE-A I RFLOW-REVERSALS . CONTINUE CONTINUE "NRCT" IS NUMBER OF REVERSED AIRWAYS ( COMPUTED IN "FLOWSK" ) IF(NRCT-l) 1090,880,930 CONTINUE HERE IF ONLY ONE AIRWAY HAS AIRFLOW REVERSAL. WRITE(LP, 1131) K=NREV(1) JFF=IABS(JF(K) ) WRITE(LP, 1141) NO(K>, JS(K>, JFF GO TO 1100 CONTINUE HERE FOR MORE THAN ONE AIRWAY WITH AIRFLOW REVERSAL WRITE (LP, 1131) L=0 CONTINUE REPEAT UNTIL (L. GT NRCT); PICK LOWEST REMAINING AIRWAY NUMBER FOR NEXT WRITE MINREV=NREV(1 ) MEMI=1 DO 1020 1=2, NRCT IF (MINREV. LE. NREV(I) )GOTO 1010 MINREV=NREV(I) MEMI=I CONTINUE CONTINUE L=L+1 "L. GT. NRCT" TESTS FOR ALL AIRFLOW-REVERSALS WRITTEN IF (L. GT. NRCT) GOTO 1110 JFF= I ABS(JF( MINREV) ) WRITE (LP, 1141) NO(MINREV), JS(MINREV), JFF STICK "NB+1" INTO CURRENT "NREV" TO MAKE IT TOO HIGH TO BE SELECTED FOR ANOTHER WRITE NREV(MEMI)=NB+1 61 19100 19200 19300 19400 19500 19600 19700 19800 19900 20000 20100 20200 20300 20400 20500 20600 20700 20800 20900 21000 21100 21200 21300 C C C WRITER-BOOGIE C 1090 1100 1110 GO TO 950 END REPEAT (L. GT. CONTINUE CONTINUE CONTINUE RETURN C c c c#**####*##****#********#****#»**###*####*##*#*##***^ c C GLOBAL FORMATS C C C C 1131 MAIN-LINE CODE FOR "WRITR" ENDS HERE NOTE: THESE FORMAT STATEMENTS ARE HERE BECAUSE THEY ARE EACH REFERENCED BY MORE THAN ONE "WRITE" STATEMENT. FORMAT (/////, T18, 'REVERSAL OF AIRFLOW HAS OCCURRED IN THE FOLLOWI 1NG PLACES', //> 1141 FORMAT (T18, 'AIRWAY', 16 END IS NOW CARRYING AIR FROM'. 16, 62 100 150 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 SUBROUTINE RTIME1 REAL TIME FUME SPREAD INCLUDE 'CTPAM.COM' DIMENSION NW(IAR),NWAR(IAR), NWAL(IAR), VEL( I AR > , ISTT(20) 1, T0TEX(IJP),T0WEX(IJP), NGOUT ( I 2AR), LOUT(IAR),NGIN(IAR), MIN(IAR) INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI, COR, DIFCH4, FRO, I, ITN, K, MRC, NM, P I, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM. CRITHT, DR, 4HEATAD, ISTART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM, FO, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tii ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9ITRUE, IFALSE COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1JN0X, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX, TAVR, TRS, EF COMMON/RTNCOM/NACC, IDUR, INC, EPX, REP, SNRW, JSURF 1 , MULT, X INT 2 , ISCOB(IAR), IENDT(20), RTACdAR, 240, 4), RTJCdAR, 2) COMMON/RTMCOM/MRKL EQUIVALENCE ( INU, NGOUT), (KJS, LOUT), (KJF, NGIN), (KNO, MIN) EQUIVALENCE (PROP, TOWEX ) , (T, TOTEX), (NWTYP.NW), (NREV, NWAR), (KF.NWAL 1), (TROCK, VEL), (NOF, ISTT) REAL TIME CALCULATION C **■) ******* SUBROUTINE FOR READING IN CONTAMINATION CARDS AND DETERM- INING INTERNAL TIME INCREMENT FOR REAL TIME SIMULATION NWM=240 INITIALIZATION OF JUNCTIONS DO 2145 1=1, NJ *** TOTAL EXPOSURE TOTEX(I)=0. O *** CURRENT FUME CONCENTRATION IN AIRWAY I RTJCCI, 1)=0. *** TIME OF FIRST CONTAMINATION IN AIRWAY I RTJC(I,2)=0. CONTINUE L=0 C *** IF AIRWAY LENGTH AND AREA NOT SPECIFIED, SET EQUAL TO AVG VALUE DO 2175 1=1, NB IF (A(D) 2150,2150,2160 IF (AAVR) 2180,2180,2155 A(I)=AAVR L=L+1 IF (LA(D) 2165,2165,2175 IF (LAAVR) 2180,2180,2170 LA(I)=LAAVR L=L+1 CONTINUE GO TO 2185 WRITE (LP, 3105) GO TO 2800 C *** READ INFORMATION FOR ADDITIONAL CONTAMINATION CARDS 2185 ICOR=0 READ (10.3115) NACC, IDUR, INC, EPX, REP, WRNSM, JSURF, CR I TSM 2145 2150 2155 2160 2165 2170 2175 2180 63 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000 12100 12200 12300 12400 12500 CRITSM=CRITSM/100. WRNSM=WRNSM/100. IF (NACC. GT. 0) GO TO 2200 IF( INFLOW) 2135,2135,2190 2135 WRITE (LP, 3100) GO TO 2800 2190 DO 2195 1=1, INFLOW ISTT(I)=0 IENDT(I)=IDUR 2195 CONTINUE GO TO 2285 C *** READ ADDITIONAL CONTAMINATION CARDS 2200 DO 2265 1=1, NACC J=I+INFLOW-ICOR READ (10, 3125) NCENT(J), CONT(J), CONC(J), HEAT(J), 02MIN(J>, SMP02(J), H 1TP02(J), ISTT(J), IENDT(J) IF( (IENDT(J). LE. 0). OR. (IENDT(J). GT. IDUR). OR. (IENDT(J). LE. ISTT(J) ) ) 1IENDT(J)=IDUR IF( (ISTT(J). LT. 0). OR. (ISTT(J). GT IDUR). OR. (ISTT(J). GE . IENDT(J) ) )IS 1TT(J)=0 SUMC1=0. SUMC2=0. IJ=J-1 IF (IJ. GT. O) GO TO 2205 NCENT ( J ) =-NCENT ( J ) GO TO 2265 C *** CHECK IJ=J-1=I+INFL0W-IC0R-1 CARDS FOR DUPLICATION ( ICOR=# OF CHECKS) 2205 DO 2260 K=l, I J C *** IF DUPLICATION OF AIRWAY NOS, THEN COMPARE CARDS IF (ABS(NCENT(K) )-NCENT(J) ) 2260,2210,2260 2210 IF (NCENT(K)) 2235,2260,2215 C *#* IF AIRWAY NO < GO TO 2235 221 5 SUMC 1 =CONT ( J ) +CONC ( J ) +02M IN ( J ) +SMP02 ( J ) SUMC2=C0NT ( K ) +CONC ( K ) +02M I N ( K ) +SMP02 ( K ) IF (SUMC1-SUMC2) 2225,2220,2225 C *** IF CONTAMINANT FROM TWO SOURCES IS DIFFERENT, THEN GO TO 2235 C *** IF 2 CARDS WITH SAME AIRWAY NO. HAVE SAME TYPE AND SIZE OF CONTAM- C INANT SOURCE, DISREGARD FIRST CARD 2220 ISTT(K)=ISTT(J) IENDT(K)=IENDT(J) IC0R=IC0R+1 NCENT ( K > =-NCENT ( K ) GO TO 2265 2225 IF ( (IENDT(K)-IENDT(J) ) + ( ISTT(K)-ISTT( J ) ),) 2265,2230,2265 C *** IF DIFFERENT CONTAMINANT SOURCES ACT ON SAME AIRWAY AT SAME TIME, C DISREGARD FIRST CARD 2230 CONT(K)=CONT(U) CONC(K)=CONC(J) 02MIN(K)=02MIN(J) SMP02(K)=SMP02(J) HEAT(K)=HEAT(J) HTP02(K)=HTP02(J) ISTT(K)=ISTT(J) IENDT(K)=IENDT(J) IC0R=IC0R+1 NCENT(K)=-NCENT(K) GO TO 2265 2235 SUMC 1 =CONT ( U ) +CONC ( J ) +02M I N ( J ) +SMP02 ( J ) SUMC2=C0NT ( K ) +CONC ( K ) +02MIN ( K ) +SMP02 ( K ) C *♦* IF CONTAMINANT DIFFERENT, GO TO 2250 AND COMPARE START AND FINISH C TIME IF (SUMC1-SUMC2) 2250,2240,2250 2240 IF ( (ISTT(K). EQ. ISTT(J) ). AND. (IENDT(K). EQ. IENDT(J) ) > GO TO 2245 64 12600 12700 12800 12900 13000 13100 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700 16800 16900 17000 17100 17200 17300 17400 17500 17600 17700 17800 17900 18000 18100 18200 18300 18400 18500 18600 18700 18800 C *** IF TWO CARDS WITH SAME AIRWAY # HAVE SAME TYPE AND SIZE C OF CONTAMAMINANTSOURCE, AND TIMES ARE C DIFFERENT, DISREGARD FIRST CARD ISTT(K)=ISTT(J) IENDT(K)=IENDT(J> 2245 IC0R=IC0R+1 GO TO 2265 2250 IF ( (ISTT(K). EQ. ISTT(J) ). AND. (IENDT(K). EQ. IENDT(J) )) GO TO 2255 GO TO 2265 C **» IF DIFFERENT CONTAMINANT SOURCES ACT ON SAME AIRWAY AT SAME C TIME, DISREGARD FIRST CARD 2255 C0NT(K)=CONT(J) CONC(K)=CONC(J) 02MIN(K)=02MIN(J) SMP02(K)=SMP02(J) HEAT(K>=HEAT(J) HTP02(K)=HTP02(J) IC0R=IC0R+1 2260 2265 GO TO 2265 CONTINUE CONTINUE DO 2280 1=1 INFLOW IF ( NCENT ( I ) > 2275, 2270, 2270 C *** IF AN AIRWAY IN INFLOW CARDS DID NOT REAPPEAR IN NACC CARDS, THEN C 2270 2275 2280 SOURCE ACTS FOR ENTIRE REAL TIME CALCULATION ISTT(I)=0. IENDT(I)=IDUR GO TO 2280 NCENT(I)=-NCENT(I) CONTINUE C *** ICOR=# OF DELETIONS I NFLOW=N AC C + 1 NFLOW- 1 C OR 2285 WRITE (LP, 3120) IF ( (L. GT. O). DR. (MRKL GT. 0) > WRITE (LP, 3310) LAAVR, AAVR WRITE (LP, 3130) WRITE (LP, 3135) (NCENT(I), CONT(I), CONC ( I ) , 02MIN(I), SMP02(I), ISTT(I) 1, IENDT(I), 1 = 1, INFLOW) C CALCULATE INTERNAL INCREMENT (XINT) AND MULTIPLIER (MULT) TL=0 C *** CALCULATE AIR VELOCITY AND TRAVEL TIME FOR EACH AIRWAY DO 2290 1=1, NB VEL(I)=Q(I)/A(I) TL=TL+LA(I)/VEL(I) 2290 CONTINUE C *** CALCULATE AVERAGE TRAVEL TIME AVL=TL/NB C *** XL5PC=LARGEST VALUE OF CONTAMINANT TRAVEL TIME THAT CAN BE EXCLUDED C NAD=# OF AIRWAYS THAT CAN BE EXCLUDED XL5PC=AVL*EPX/100. NAD=IFIX( (NB*REP/100. )) IF (NAD. EQ. O) GO TO 2305 DO 2300 1=1, NAD AMIN=1. E10 C **# AMIN=MINIMUM TRAVEL TIME IN AIRWAYS NOT EXCLUDED C TEMPORARILY SET 0(J)=-0(J) FOR EXCLUDED AIRWAYS DO 2295 J=1,NB IF (O(J).LT. 0. ) GO TO 2295 IF ((LA(J)/VEL(J)). GT. AMIN) GO TO 2295 AMIN=LA(J)/VEL(J) K=J CONTINUE IF (AMIN GT. XL5PC) GO TO 2305 0(K)=-0(K) 2295 65 18900 19000 19100 19200 19300 19400 19500 19600 19700 19800 19900 20000 20100 20200 20300 20400 20500 20600 20700 20800 20900 21000 21100 21200 21300 21400 21500 21600 21700 21800 21900 22000 22100 22200 22300 22400 22500 22600 22700 22800 22900 23000 23100 23200 23300 23400 23500 23600 23700 23800 23900 24000 24100 24200 243O0 'MULT' SUCH THAT XINT=INC/MULT INC 2300 CONTINUE 2305 AMIN=1.E10 C **# CALC MIN TRAVEL TIME IN AIRWAYS OTHER THAN EXCLUDED AIRWAYS DO 2310 1=1, NB IF (O(I).LT. O. ) GO TO 2310 TRTM=LA(I)/VEL FORMAT (1H , 134 ( '*') ) FORMAT (1H0, 'AIRWAY CONC 7. LOCATION START ARRIVAL ') FORMAT (1H0, ///, T30, 'AT', 15, ' MIN. AFTER THE START OF CONTAMINATIO IN THE TOTAL EXPOSURE T0',/,T30, 'THE CONTAMINANT MEASURED IN PPM#HO 2URS WAS IN THE FOLLOWING JUNCTIONS') FORMAT (////, T30, 'AVERAGE VALUES OF', 18, ' FT AND'.FIO. 1, ' SOFT 1 WERE INTRODUCED, WHERE ',/, T30, 'AIRWAY LENGTH AND CROSS SECTIONA 2L AREA HAD NOT BEEN SPECIFIED') 2800 CONTINUE SNRW=WRNSM RETURN END 2310 C *#* C 2315 2320 C ### 2325 2330 C 2335 C 3100 3105 3115 3120 3125 3130 3135 3140 3145 3185 3295 3310 66 100 150 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 C 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 SUBROUTINE RTIME2 REAL TIME FUME SPREAD INCLUDE 'CTPAM.COM' DIMENSION NW(IAR), NWAR(IAR), NWAL(IAR), VEL< IAR ) , ISTT(20 ) 1, TOTEX(IJP), TOWEX(IJP), NGOUTd 2AR), LOUT(IAR), NGIN(IAR), MIN(IAR) INCLUDE 'CTC0NN.COM' C0MM0N/SCLR1/ADDT, BI. COR, DIFCH4, FRO, I, ITN, K, MRC, NM, PI, RN, SUMAIR, 1TDM, TOLD, X, ARGMT, CH4JS, CP, DIFPR, FX, ICFTM, J, L, MSTART, NREC, POT, 2RTC0NT, SUMCH4, TFS, TR, AVRCH4, COAGE, CRITGS, DIFTRD, HC, INFLOW, JX, LP, 3N, NSTART, PROPJS, SRCH4, SUMHT, TIME, VART, AVRPR, CONTAM, CRITHT, DR, 4HEATAD, 1ST ART, JY, M, NB, NTEMP, QIN, SRPR, SUMPR, TJS, VISC, AVTRD, CONTQ, 5CRITSM. FG, HKA, ITCT, JZ, MARKC, NJ, OLADDT, QREC, STRD, SUMT, TM, WT, 6AX, HSU, 10, NFNUM, NT, ONVP, TO, FACT, H, MADJC, MENDW, NADBC, NSFLOW, 70X, Tl, ZDOWN, FNTM, MNO, NSNVP, NVPN, ZUP, INDEX, LX, MARKD, NCONC, 8NNVP, NX, ZO, DNVP, KX, MARKN, NETW, NOX, NSW, TSU, Zl, MADJ, MBEGW, 9ITRUE, IFALSE COMMON/RDCCOM/AAVR, CH4CX, CH4VX, ES, HAX, HKX, KFAVR, CH4F, 1 JNOX, NAV, NCH4C, JSTART, CH4PAX, DZRDX, NDIM, OAVR, CH4S, 2HAAVR, HKAVR, LAAVR, MAXJ, TSTART, TRF, TROCKX. TAVR, TRS, EF COMMON/RTNCOM/NACC, IDUR, INC, EPX, REP, SNRW. JSURF 1 , MULT, XI NT 2 , ISCOB(IAR), IENDTC20), RTAC( IAR, 240, 4), RTJCdAR, 2) COMMON/RTMCOM/MRKL EQUIVALENCE (INU, NGOUT), (KJS, LOUT), (KJF, NGIN), (KNO.MIN) EQUIVALENCE (PROP, TOWEX ) , (T,TOTEX>, (NWTYP,NW), , (KF, NWAL 1), (TROCK, VEL), (NOF, ISTT) REAL TIME CALCULATION NWM=240 WRNSM=SNRW REAL TIME CONCENTRATION AND FUME POSITION CALCULATION. DO 2795 I=INC, IDUR, INC DO 2695 J=1,MULT DO 2650 K=1,NB CHECK AIRWAY CONDITION IF 2650,2650,2340 CALCULATE CONCENTRATION OF FUMES DO 2350 M=l, NJ IF (ABS(JS(K) )-ABS(JNOL(M>) ) 2350,2345,2350 M1=M GO TO 2355 CONTINUE DO 2405 L=l, INFLOW IF (NCENT(L)-ABS(NO(K) ) ) 2405,2360.2405 IF ( (I-INC. LT. ISTT(L) ). OR. (I. GT. IENDT(L) )) GO TO 2405 IF (CONT(D) 2370,2375,2370 CONTAM=CONT ( L ) *CONC ( L ) / 1 00. CONTQ=CONT(L) GO TO 2380 CONTAM=0. CONTQ=0. IF <02MIN(L>> 2390,2390,2385 CONTAM=(. 21-RTJC) 2400, 2400,2395 CONTAM=(. 21-RTJC(M1, 1 ) ) #Q(K)*SMP02(L) 67 6300 6400 2400 6500 6600 6700 C 6800 6900 7000 2405 7100 7200 7300 7400 7500 2410 7600 7700 7800 7900 8000 8100 2415 8200 2420 8300 8400 C 8500 2425 8600 8700 8800 8900 9000 9100 2430 9200 C 9300 C 9400 9500 9600 2435 9700 9800 9900 10000 10100 10200 10300 10400 10500 2440 10600 10700 10800 C- 10900 11000 11100 2445 11200 11300 11400 11500 11600 11700 11800 11900 2450 12000 2455 12100 2460 12200 2465 12300 12400 12500 C0NTQ=0. TEMPRC= ( RTJC (Ml » 1 )* ( Q (K ) -C0NTQ ) /Q < K > +CONTAM/Q ( K > > JY=NW(K> IFCJY. EQ. 0)JY=1 CHECK CONCENTRATION & START NEW WAVE IF NECESSARY. IF (ABS. LE. CRITSM) GO TO 2415 GO TO 2410 CONTINUE JY=NW(K) IF(JY. EQ. 0)JY=1 IF (ABS(RTAC(K. JY, 1)-RTJC(M1, 1) ). LE. CRITSM) GO TO 2415 TEMPRC=RTJC(M1, 1) NW ( K ) =NW ( K > + 1 JY=NW(K> RTAC(K, JY, 3>=I-INC+=0. IF(ISCOB(K). NE. -1)ISC0B(K)=-1 IF (ISCOB(K)) 2425,2420,2420 N0(K)=-N0(K> GO TO 2650 CALCULATE FUME ADVANCE FOR EACH WAVE IN AIRWAY. JY=NW(K)-NWAL(K) IS=1+NWAR(K) IF ( ( JY. LE. O). OR. ( IS. LE. 0). OR. ( JY. LT. IS) ) GO TO 2420 XSMOK=VEL(K)*XINT DO 2430 L=IS, JY RTAC(K, L, 2)=RTAC(K, L, 2J+XSM0K CONTINUE CHECK IF ANY WAVES HAVE ARRIVED AT JF AND CALCULATE ARRIVAL TIME. K2=K ITR=0 DO 2440 L=IS, JY IF (RTAC(K2, L, 2). LT LA(K2) ) GO TO 2440 0VTM=(RTAC(K2, L, 2)-LA(K2> )/VEL(K2) RTAC(K2, L, 2)=LA(K2) RTAC(K2, L, 4> = I-INC + XINT*J-0VTM RTAC(K2, L, 4)=-RTAC(K2, L, 4) NW AR ( K2 ) =NWAR < K2 ) + 1 ITR=-1 CONTINUE IF (ABS ) 2475,2450,2475 IF (ISC0B(M3)> 2455,2480,2480 IF (N0(M3)) 2480,2460,2460 IF (JF(M3)) 2480,2465,2465 JF(M3)=-JF(M3) XSMOK=VEL ( M3 ) *X INT JY2=NW ( M3 ) -NWAL ( M3 ) IS=1+NWAR(M3) 68 12600 12700 12800 12900 13000 13100 13200 13300 13400 13500 13600 13700 13800 13900 14000 14100 14200 14300 14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700 16800 16900 17000 17100 17200 17300 17400 17500 17600 17700 17800 17900 18000 18100 18200 18300 18400 18500 18600 18700 18800 2470 2475 2480 C 2485 2490 2495 IF GO TO 2480 0VTM=(RTAC(M3, IY, 2 )+XSM0K-LA/VEL(M3> RTAC RTAC(M3. IY, 4>=I-INC+XINT*J-0VTM RTAC(M3, IY, 4)=-RTAC(M3, IY, 4) NWAR ( M3 ) =NWAR ( M3 ) + 1 CONTINUE CONTINUE CONTINUE FIND FIRST WAVE TO ARRIVE OF ALL WAVES ARRIVING. HIGH=-1. E+10 NOH=0 NWH=0 DO 2510 M=M1,M2 IA=NGIN(M) DO 2505 M3=1,NB IF (ABS(N0(M3) )-ABS(NO(IA) ) ) 2505,2495,2505 JY2=NW ( M3 ) -NWAL ( M3 ) IF (JY2. LE. 0) GO TO 2510 DO 2500 M4=l, JY2 IF (RTAC(M3, M4, 4). GE. 0. ) GO TO 2500 IF (RTACCM3, M4, 4). LT. HIGH) GO TO 2500 HIGH=RTAC(M3, M4, 4) N0H=M3 NWH=M4 2500 CONTINUE 2505 CONTINUE 2510 CONTINUE IF (HIGH. EG. -1. E+10) GO TO 2620 IF(RTAC(NOH, NWH, 4). LT. 0)RTAC(NOH, NWH, 4 )=~RTAC ( NOH, NWH, 4) SUMAIR=0. SUMPR=0. C CALCULATE JUNCTION CONDITIONS DO 2550 M=M1,M2 IA=NGIN(M> DO 2545 M3=1,NB IF GO TO 2550 CONTINUE CONTINUE EXPCN=RTJC(L, 1) EXPT=RTJC(L, 2) RTJC(L, 1)=SUMPR/SUMAIR RT JC ( L, 2 ) =ABS ( RTAC ( NOH, NWH, 4 ) ) TOTEX(L)=TOTEX(L)+EXPCN#(RTJC(L, 2 >-EXPT )*1000000. /60. C ADVANCE WAVE BY REMANING TIME INTO ALL OUTGOING AIRWAYS C AND CALCULATE AIRWAY CONCENTRATIONS. M5=L0UT(L-1>+1 M6=L0UT(L) 2515 2520 2525 2530 2535 2540 2545 2550 69 18900 19000 19100 19200 19300 19400 19500 19600 19700 19800 19900 20000 20100 20200 20300 20400 20500 20600 20700 20800 20900 21000 21100 21200 21300 21400 21500 21600 21700 21800 21900 22000 22100 22200 22300 22400 22500 22600 22700 22800 22900 23000 23100 23200 23300 23400 23500 23600 23700 23800 23900 24000 24100 24200 24300 24400 24500 24600 24700 24800 24900 25000 25100 IF(L. EQ. 1)M5=1 RT=( I-INC+XINT*J)-ABS(HIGH> DO 2615 M4=M5,M6 IA=NG0UT(M4) DO 2610 M=1,NB IF (ABS(NO(M))-ABS(NO(IA)>) 2610.2555,2610 2555 JY=NW> 2565,2570,2565 2565 CONTAM=CONT ( M3 ) *C0NC ( M3 ) / 100. C0NTQ=C0NT(M3) GO TO 2575 2570 CONTAM=0. C0NTQ=0. 2575 IF <02MIN(M3>> 2585,2585,2580 2580 CONTAM=<. 21-RTJC(L, 1 )-02MIN(M3) / 100. >*G(M) CONTQ=0. 2585 IF > 2595,2595,2590 2590 C0NTAM=(. 21-RTJC(L, 1) >*Q /Q ( M > +CONTAM/Q < M ) > IF (ABS(TEMPRC-RTAC(M, JY, 1) ). LE. CRITSM) GO TO 2615 NW(M)=NW(M>+1 JY=NW(M> RTAC(M, JY, 1>=TEMPRC GO TO 2605 2600 CONTINUE IF (ABS). LE. CRITSM) GO TO 2615 NW+1 JY=NW(M> RTAC(M, JY, 1 )=RTJC(L, 1 ) 2605 ISC0B(M>=-1 NWAL(M)=NWAL(M)+1 RTAC(M, JY, 2)=VEL(M)*RT RTAC (M, JY, 3>=ABS(RTAC(N0H, NWH, 4) ) GO TO 2615 CONTINUE CONTINUE GO TO 2485 CALCULATE IF FUMES REACHES MORE THAN ONE JUNCTION IN ONE XINT. DO 2640 M4=M5, M6 IA=NG0UT(M4) DO 2635 M=l, NB IF (ABS(NO. LT. LA(M>) GO TO 2640 IF =RTAC(IU, IW, 3) RTACdU, IW-M1 + 1,4)=RTAC(IU, IW, 4) RTACdU, IW. 1)=0. RTACdU, IW, 2)=0. RTACdU, IW, 3)=0. RTACdU, IW, 4)=0. CONTINUE NWAR(IU)=0 NW(IU)=NW(IU)-M WRITE (LP, 3275) M, NO(IU) IF (NW(IU). EQ. O) GO TO 2690 JY=NW(IU) IF (RTACdU, 1, 4). LT 0. ) RTACdU, 1, 4)=-RTAC(IU, 1,4) IF ( (NW(IU). EQ. 1). AND. (RTACdU, 1,2). EQ. LA(IU>) ) GO TO 2685 IF (NW(IU). EQ. 1) GO TO 2690 DO 2680 ID=2, JY IF (RTACdU, ID, 4). LT. 0. )RTAC(IU, ID, 4)=-RTAC(IU. ID. 4) IF (RTACdU. ID, 2). EQ. LAdU)) GO TO 2680 GO TO 2690 CONTINUE ISC0B(IU)=1 CONTINUE CONTINUE OUTPUT WRITE (LP, 3140) WRITE (LP, 3145) WRITE (LP, 3145) NWMAX=0 DO 2705 M=1.NB JY=NW(M) NWE=NW(M) IF (NW(M).EQ. 0) GO TO 2705 DO 2700 Ml=l, JY 71 31500 31600 31700 31800 31900 32000 32100 32200 32300 32400 32500 32600 32700 32800 32900 33000 33100 33200 33300 33400 33500 33600 33700 33800 33900 34000 34100 34200 34300 34400 34500 34600 34700 34800 34900 35000 35100 35200 35300 35400 35500 35600 35700 35800 35900 36000 36100 36200 36300 36400 36500 36600 36700 36800 36900 37000 37100 37200 37300 37400 37500 37600 37700 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 IF(RTAC(M, Ml, 1>. LT. WRNSM)NWE=NWE-1 CONTINUE IF(NWE. GE. NWMAX )NWMAX=NWE CONTINUE IF (NWMAX.GT. 0) GO TO 2710 WRITE (LP, 3155) I, WRNSM GO TO 2795 WRITE (LP, 3150) I.WRNBM WRITE (LP, 3160) DO 2720 M=1,NB IF(0(M). LT. 0)0(M)=0(M)*-1 JY=NW ( M ) DO 2715 M2=l, JY IF (RTAC(M, M2, 1). LT. WRNSM) GO TO 2715 IF(0(M). GT. 0)0(M)=0(M>*-1 MM=NW(M) WRITE (LP, 3165) NO(M) , JS(M) , JF(M) , LA(M) , NW(M) , RTAC(M, MM, 1), RTAC(M, M 1M, 3), RTAC(M, MM, 2) GO TO 2720 CONTINUE CONTINUE WRITE (LP, 3170) IF (NWMAX.GE. 2) WRITE (LP, 3175) IF (NWMAX.GE. 3) WRITE (LP. 3180) WRITE (LP, 3185) IF (NWMAX.GE. 2) WRITE (LP, 3190) IF (NWMAX.GE. 3) WRITE (LP, 3195) WRITE (LP, 3200) IF (NWMAX.GE. 2) WRITE (LP, 3205) IF (NWMAX.GE. 3) WRITE (LP, 3210) DO 2745 M=1,NB IF (O(M).GT. 0) GO TO 2745 IF (NWMAX.GT. 6) GO TO 2735 GO TO (2725,2730,2735,2735,2735,2735), NWMAX WRITE (LP, 3260) GO TO 2740 WRITE (LP, 3265) GO TO 2740 WRITE (LP, 3270) IF (NW(M).GT. 0) WRITE (LP, 3290) NO(M) IF(RTAC(M, 1, 1). GT. WRNSM) WRITE (LP, 3215) RTAC (M, 1 , 1 ) , RTAC (M, 1 , 2) , R 1TAC(M, 1, 3), RTAC (M, 1,4) IF(RTAC(M, 2, 1). GT. WRNSM) WRITE (LP, 3220) RTAC (M, 2, 1 > , RTAC (M, 2, 2 ) , R 1TAC(M, 2,3),RTAC(M,2, 4) IF(RTAC(M, 3, 1). GT. WRNSM) WRITE (LP, 3225) RTAC (M, 3, 1 ) , RTAC (M, 3, 2 ) , R 1TAC(M, 3, 3), RTAC(M, 3, 4) IF(NWMAX. LE. 3)0(M)=-0(M) CONTINUE IF (NWMAX. LE. 3) GO TO 2780 WRITE (LP, 3230) IF (NWMAX.GE. 5) WRITE (LP, 3235) IF (NWMAX.GE. 6) WRITE (LP, 3240) WRITE (LP, 3185) IF (NWMAX. GE. 5) WRITE (LP, 3190) IF (NWMAX. GE. 6) WRITE (LP, 3195) WRITE (LP, 3200) IF (NWMAX. GE. 5) WRITE (LP, 3205) IF (NWMAX. GE. 6) WRITE (LP, 3210) DO 2770 M=1,NB IF (O(M).GT. O. ) GO TO 2770 IF (NW(M).LT. 4) GO TO 2770 IF (NWMAX.GT. 6) GO TO 2760 GO TO (2770,2770,2770,2750,2755,2760), NWMAX 72 37800 2750 37900 38000 2755 38100 38200 2760 38300 2765 38400 38500 38600 38700 38800 38900 39000 39100 2770 39200 39300 39400 39500 39600 2775 39700 2780 39800 39900 40000 40100 2785 40200 40300 40400 40500 40600 2790 40700 40800 2795 40900 2800 41000 C 41100 C 41200 3140 41300 3145 41400 3150 41500 41600 41700 3155 41800 41900 3160 42000 42100 3165 42200 42300 3170 42400 3175 42500 3180 42600 3185 42700 3190 42800 3195 42900 3200 43000 3205 43100 3210 43200 3215 43300 3220 43400 3225 43500 3230 43600 3235 43700 3240 43800 3245 43900 44000 WRITE (LP. 3260) GO TO 2765 WRITE (LP, 3265) GO TO 2765 WRITE (LP, 3270) IF (NW(M).GT. 3) WRITE (LP, 3290) NO(M) IF(RTAC(M,4, 1). GT. WRNSM) WRITE (LP, 3215) RTAC (M, 4, 1 ) , RTAC (M, 4, 2) , R 1TAC(M, 4, 3), RTAC(M, 4, 4) IF ( RTAC (M, 5, 1). GT. WRNSM) WRITE (LP, 3220) RTAC (M, 5, 1 ) , RTAC (M, 5, 2 ) , R 1TAC(M, 5, 3), RTAC(M, 5, 4) IF(RTAC(M, 6, 1). GT. WRNSM) WRITE (LP, 3225) RTAC (M, 6, 1 ) , RTAC (M, 6, 2) , R 1TAC(M, 6, 3), RTAC(M, 6, 4) O ( M ) =-0 ( M > CONTINUE DO 2775 M=1,NB IF (NW(M).LE. 6) GO TO 2775 IBUF=NW(M)-6 WRITE (LP, 3280) IBUF, NO(M) CONTINUE WR I TE ( LP , 3245 ) I , WRNSM WRITE (LP, 3250) DO 2785 M=1,NJ IF ( RTJC ( M, 1). GT. WRNSM) WRITE (LP, 3255) JNOL(M) , RTJC (M, 1 ) , RTJC (M, 2 ) CONTINUE WRITE (LP, 3295) I WRITE (LP, 3300) DO 2790 K=1,NJ TOWEX(K)=TOTEX(K)+(RTJC(K, 1 ) * ( I-RTJC (K, 2 ) ) ) #1000000. /60. CONTINUE WRITE (LP, 3305) ( JNOL(K ) , TOWEX (K > , K=l, NJ ) CONTINUE RETURN FORMATS FORMAT (1H0, ////, 120( '*')) FORMAT (1H , 120( '*' ) ) FORMAT (1H0, ///, T39, 'AT ',15, ' MIN. AFTER THE START OF ', 'CONTAMIN 1ATI0N CRITICAL', /, T39, ' FUME CONCENTRATIONS ', '(FUMES > ',2PF8:4, ' 2 "/.) NOW EXIST IN THE',/,T57, 'FOLLOWING', ' AIRWAYS') FORMAT (1H , 'AT ',15, ' MIN. AFTER THE START OF ', 'CONTAMINATION NO 1 CRITICAL FUME CONDITIONS (FUMES > ',2PF8. 4, ' "/.) NOW EXIST') FORMAT (1H0, ///, T32, 'AIRWAY', T92, 'WAVE', //, T15, 'NUMBER FROM 1 TO LENGTH FT',T73, 'NUMBER CONC 7. START TIME LENGTH FT') FORMAT ( 1H , T16, 15, 18, 17, T42, 17, T74, 15, 2PF9. 4, T92, 0PF7. 2, T105, 0PF7 1. 1) FORMAT (1H0, ///, T30, 'WAVE 1') FORMAT (1H+, T60, 'WAVE 2') FORMAT (1H+.T90, 'WAVE 3') FORMAT (1H0, 'AIRWAY CONC FORMAT ( 1H+, T46, FORMAT ( 1H+, T82, FORMAT (1H , T9, FORMAT (1H+.T58, LOCATION START ARRIVAL CONC 7. LOCATION START ARRIVAL ') CONC 7. LOCATION START ARRIVAL ') ',T23, 'FT',T29, 'TIME',T37, 'TIME',T45, ' 'FT T72, 'TIME',T81, ' . T108, 'TIME', T117, T64, 'TIME' FORMAT (1H+, T95, 'FT', T101. 'TIME FORMAT (1H+. Til, 2PF8. 4, T20, 0PF7. 1, T29, F7. 2, T37, F7. 2) FORMAT ( 1H+, T47, 2PF8. 4, T57, 0PF7. 1, T66, F7. 2, T74, F7. 2) FORMAT (1H+, T83, 2PF8 4, T93, 0PF7 1. T102, F7. 2, T110, F7. 2) FORMAT (1H0, ///, T30, 'WAVE 4') FORMAT (1H+, T60, 'WAVE 5') FORMAT ( 1H+, T90, 'WAVE 6 ' ) FORMAT (1H0, ///, T39, 'AT ',15, ' MIN. AFTER THE START OF 1ATI0N CRITICAL', /, T39, ' FUME CONCENTRATIONS ', '(FUMES 2) 7. NOW EXIST IN THE',/,T57, 'FOLLOWING ', 'JUNCTIONS') ' ) CONTAMIN 2PF7. 3, ' 73 44100 44200 44300 44400 44500 44600 44700 44800 44900 45000 45100 45200 45300 45400 45500 45600 45700 45800 45900 46000 46100 46200 3250 3255 3260 3265 3270 FORMAT <1H0, 'JUNCTION ', T15, 'CURRENT FUME CONCENTRATION'. T50, 'TIME 1 OF FIRST CONTAMINATION') FORMAT (1H , T3, 15, T25, 2PF8. 4, T63, 0PF7. 2) T9, ' ', T45, ' ') T9, ' ',T45, ' ', T81, ' ') T9, ' ',T45, ' '.T81,' ',T117, ' ') '♦♦WARNING** THE FIRST ', II, ' WAVES OF ', 'AIRWAY', 15. ' 1 ARE BEING REMOVED TO ALLOW FOR ', 'ADDITIONAL WAVES') FORMAT (1HO, ///, ' '. 15, ' WAVES OF AIRWAY ', 15. ' ARE BEING BUFFERD (1H (1H (1H FORMAT FORMAT FORMAT C3275 FORMAT ( 1H C 3280 3285 3290 3295 3300 3305 1UNTIL PRINTING SPACE IS AVALABLE ' ) FORMAT (1H0, ///, ' PROGRAM EXECUTION TERMINATED DUE TO AN ', 'EXCESS 1IVE NUMBER OF CONTAMINATION WAVES IN AIRWAY ',15, '. ', /, ' TO RECEIV 2E ', 'MORE DETAILED INFORMATION INTERNAL PROGRAM MODIFICATION IS ' 3, 'NESSARY. ') FORMAT (1H+, 15) FORMAT (1H0, ///, T30, 'AT', 15, ' MIN. AFTER THE START OF CONTAMINATIO IN THE TOTAL EXPOSURE T0',/,T30, 'THE CONTAMINANT MEASURED IN PPM*HO 2URS WAS IN THE FOLLOWING JUNCTIONS') FORMAT (1H0, 'JUNCTION ', T14, 'TOTAL EXPOSURE ', T40, 'JUNCTION ', T54, 'TO 1TAL EXPOSURE', T80, 'JUNCTION ', T94, 'TOTAL EXPOSURE') FORMAT (1H , 18, T16, F10. 2, T40, 18, T56, F10. 2, T80, 18, T96, FIO. 2) END 74 50 C CTPAM.COM 100 PARAMETER IAR=300, IJP=300, J5=300, IFIN=300. IMSL=9000 75 50 CTCONN. COM 100 COMMON NO(IAR), JS(IAR), JF(IAR), Q(IAR), 200 UNOL(IJP), JNO(IJP), JLR(IJP), PROP(IJP), RDPROP(IAR), 300 2MEMREC < J5 ) , NOREC (J5), ESTPR < J5 ) , ESTCH4 ( J5 ) , ESTTR < J5 ) , HEAT < 20 ) , TR 400 3D(IAR),LA(IAR), A(IAR), O(IAR), KF(IAR), CH4VCIAR), 500 4T< UP), NCENT<20>, C0NT<20), C0NC(20), TROCK< IAR), HA(IAR), HK( 600 5IAR), DZRD(IAR),PRCH4(IJP), RDCH4( I JP ) , 02MIN(20) , SMP02(20), HTP02(20) 700 6, TFSK20), XNEW(IAR), R(IAR), MEND< IFIN) , MSL < IMSL) , RSTD(IAR), 800 7 FRNVPdAR 700 8), QF<10, 10), PF(10, 10), RGRAD(IO), NFCW<10), NFREG< 10) . MPTSC 10) , 1000 9FNVP ( IFIN ),NWTYP< IAR), RQ(IAR), INU(IAR), KJS(IAR), KJF(IAR), KNO 1100 * 0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS LENGTH FT 31 4500 14 524 NUMBER CONC 7. START TIME LENGTH FT 1 14. 6862 1 45 421. 9 1 21. 0000 00 524. WAVE CONC 7. LOCATION START ARRIVAL FT TIME TIME 14 6862 421. 9 1 45 0. 00 21 0000 524.0 00 1 45 !\T 2 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION 14 FUME CONCENTRATION 14. 6862 OF FIRST CONTAMINATION 1. 45 86 AT 2 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS JUNCTION 1 4 7 10 13 16 19 22 25 28 31 TOTAL EXPOSURE TOTAL EXPOSURE 0. 00 oo 00 00 00 0. 00 00 00 0. 00 o oo 0. 00 0. 00 00 )6 13 00 00 00 00 00 00 JUNCTION TOTAL EXPOSURE 3 0. 00 6 0. 00 9 0. 00 12 0. 00 15 0. 00 18 0. 00 21 0. 00 24 0. 00 ****»***»< ***»#»»»* AT 4 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS LENGTH FT 31 4500 14 524 NUMBER CONC 7. START TIME LENGTH FT 1 14. 6862 1 45 1967. 7 1 21. 0000 0. 00 524. WAVE CONC X LOCATION START ARRIVAL FT TIME TIME 14 6862 1967.7 1.45 0.00 21 0000 524 00 1 45 AT 4 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION 14 FUME CONCENTRATION 14. 6862 TIME OF FIRST CONTAMINATION 1. 45 87 AT 4 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS TOTAL EXPOSURE 0. 00 0. 00 0. 00 O. 00 0. oo O. 00 O. 00 O. 00 O. 00 0. 00 0. 00 JUNCTION 2 5 8 11 14 17 20 23 26 29 32 TOTAL EXPOSURE O. 00 0. 00 0. 00 O. 00 6231. 53 O. 00 O. 00 O. OO O. 00 O. 00 0. 00 TOTAL EXPOSURE O. 00 0. 00 0. 00 O. 00 O. 00 O. 00 o. oo o. oo O. 00 o. oo AT 6 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0. 0010 X) NOW EXIST IN THE FOLLOWING AIRWAYS FROM TO 14 13 LENGTH FT 31 4500 14 524 CONC 7. START TIME LENGTH FT 14. 6862 1. 45 3513. 6 21. OOOO 0. 00 524. WAVE 1 CONC 7. LOCATION START ARRIVAL FT TIME TIME 14.6862 3513.6 1.45 0.00 21.0000 524.0 0.00 1.45 VT 6 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION 14 FUME CONCENTRATION 14. 6862 TIME OF FIRST CONTAMINATION 1. 45 88 AT 6 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS TOTAL EXPOSURE 0. 00 00 0. 00 0. 00 0. 00 00 0. 00 00 00 00 O. 00 ON TOTAL EXPOSURE 2 0. 00 5 0. 00 8 0. 00 11 0. oo 14 11126. 93 17 00 20 O 00 23 0. 00 26 0. 00 29 0. oo 32 00 JUNCTION TOTAL EXPOSURE 3 0. 00 6 0.00 9 0. 00 12 0. 00 15 0. OO 18 0. 00 21 0. 00 24 0. 00 27 0. 00 30 o oo ^T 8 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS < FUMES > 0.0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS AIRWAY FROM TO LENGTH FT 14 31 4500 13 14 524 31 32 2031 CONC 7. START TIME LENGTH FT .4. 6862 1 45 4500. ! 1 . 0000 O. 00 524. 3. 0867 7. 28 1064. 6 (WAY CONC V. LOCATION STAR- r ARRIVAL FT TIME TIME 11 14. 6862 4500. 1. 45 7. 28 20 21 0000 524. 00 1. 45 49 3. 0867 1064. 6 7. 28 00 *T 8 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > O 001) V. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION CURRENT FUME CONCENTRATION TIME OF FIRST CONTAMINATION 14 14. 6862 1. 45 31 3. 0867 7. 28 89 AT 8 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS TOTAL EXPOSURE 0. 00 00 0. 00 00 00 00 0. 00 TOTAL EXPOSURE O. 00 O 00 0. 00 o. oo 16022. 34 O. OO O. 00 0. 00 0. 00 0. 00 0. 00 TOTAL EXPOSURE O. 00 O. 00 O. 00 0. 00 AT 10 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > O. OO10 7.) NOW EXIST IN THE FOLLOWING AIRWAYS AIRWAY NUMBER FROM TO LENGTH FT 11 14 31 4500 20 13 14 524 49 31 32 2031 51 32 1 100 CONC 7. START TIME LENGTH FT .4. 6862 1. 45 4500. >1. 0000 0. 00 524. 3. 0867 7. 28 2031. 2 9178 8. 66 100. AIRWAY CONC 7. LOCATION START ARRIVAL FT TIME TIME 1 1 14. 6862 4500. 1. 45 7. 28 20 21. 0000 524. 0. 00 1. 45 49 3. 0867 2031. 7. 28 8 66 51 2. 9178 100 8 66 8. 68 *T 10 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS :tion CURRENT FUME CONCENTRATION 14 14. 6862 31 3. 0867 32 2. 9178 TIME OF FIRST CONTAMINATION 90 AT 10 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM-»HOURS WAS IN THE FOLLOWING JUNCTIONS TOTAL EXPOSURE 1 0. 00 4 0. 00 7 0.00 10 0. 00 13 0. 00 16 0. 00 19 0. OO 22 0. 00 25 0. 00 28 0. 00 31 1401. 23 ION TOTAL EXPOSUF 2 0. 00 5 0. 00 8 0. OO 11 O. 00 14 20917. 74 17 0. 00 20 0. OO 23 0. OO 26 0. 00 29 O. OO 32 653 10 TOTAL EXPOSURE O. 00 O. OO 0. 00 0. 00 O. OO END OF RUN APPENDIX D.— INPUT DATA FOR FUEL-RICH FIRE IN A DOWNCAST SHAFT CALCULATION WITH FAN FAILURE 91 NETWORK CONTROL NB NJ NFUM NADBC 51 32 1 3 CARD NVPN NETW NCONC NTEMP MADJ In 1 1 1 1 10 AIRWAY CARDS NO JS JF NWTYP R Q 1 1 2 0. 156 200000 2 2 3 0. 048 60000 3 1 4 0. 479 100000 4 1 23 0. 995 30000 5 2 4 2. 400 35000 6 4 5 1 4. 000 60000 7 5 6 2. 307 60000 8 6 7 1888. 233 5000 9 6 7 9. 923 60000 10 7 14 3. 239 70000 11 14 31 20. 002 70000 12 3 8 0. 360 53600 13 8 19 41. 490 20000 14 8 9 0. 821 50000 15 9 10 1. 437 35000 16 10 11 124. 385 6000 17 10 11 5. 500 30000 18 11 12 3. 900 35000 19 12 13 3. 772 35000 20 14 13 4. 000 6000 21 13 15 1. 108 35000 22 9 15 474. 065 6000 23 15 16 2. 047 30000 24 2 16 77. 702 14800 25 16 17 2. 285 60000 26 17 18 2. 966 60000 27 20 17 3. 500 2000 28 20 18 4. 931 50000 29 19 20 4. 565 50000 30 21 19 0. 475 31300 31 22 21 13. 375 40000 32 22 21 1234. 019 3000 33 23 22 14. 500 20000 34 23 22 14. 500 20000 35 4 24 4. 324 110000 36 24 25 5. 572 45000 37 24 27 5. 450 20000 38 27 28 1. 066 100000 39 28 31 14. 000 40000 40 25 26 18. 360 45000 41 26 30 3. 630 38000 42 26 29 1. 385 5000 43 2 27 65. 065 35449 44 28 29 1. 260 73000 45 29 30 0. 854 80000 46 2 30 46. 882 44000 47 30 31 0. 072 203000 48 18 30 6. 265 100000 50 1 32 441. 000 20000 49 31 32 0. 610 288350 51 32 1 10. 000 450000 >J ITN DR TR IRTCC 30 075 70. 00 1 KF LA A 250 2597 200. 50. 250 325 200. O 50. 250 2577 200. 50. 250 2580 200. 50. 100 2900 80. 35. 100 100 80. 35. 100 2700 80. 35. 350 524 120. 44. 100 1700 80. 35. 100 1650 80. 35. 100 4500 SO. 35. 100 2700 80. 35. 100 2050 80. 35. 100 600 80. 35. 100 600 80. 35. 100 600 80. 30. 100 1100 80. 35. 350 319 120. 44. 100 600 80 35. 350 524 120. 44. 100 550 80. 35. 350 318 120. 44. 100 600 80. 35. 100 2600 80. 35. 100 1050 80. 35. 350 228 120. 44. 100 800 80. 35. 100 1217 80. 35. 350 333 120. 44. 100 1100 80. 35. 100 1313 80. 35. 350 313 120. 44. 100 1800 80. 35. 100 1800 80. 35. 100 2400 80. 35. 100 2600 80. 35. 100 3200 80. 35. 350 230 120. 44. 100 2292 80. 35. 100 2000 80. 35. 100 1700 80. 35. 100 1050 80. 35. 100 1650 80. 35. 100 750 80. 35. 100 250 100 4100 30 80. 200. 80. 35. 35. 50. 35. O 92 JUNCTION C ARDS JNO T Z CH4 1 50. 114 2 65. 06 -2465 3 67. 32 -2790 4 64. 39 -2463 5 64. 51 -2462 0. 12 6 69. 88 -2462 0. 20 7 75. 60 -1938 0. 80 8 72. 54 -2787 0. 12 9 75. 67 -2785 0. 25 10 77. 09 -2785 0. 30 11 78. 82 -2787 0. 90 12 79. 31 -2468 0. 95 13 82. 42 -2465 0. 90 14 81. 62 -1942 0. 85 15 83. 25 -2467 0. 90 16 78. 56 -2466 0. 90 17 77. 92 -2463 18 78. 39 -2235 19 82. 54 -2785 0. 8 20 80 90 -2452 21 82. 87 -2786 0. 85 22 73. 28 -2473 0. 70 23 65. 27 -2466 24 69. 95 -2462 0. 15 25 80. 65 -2245 0. 90 26 86. 57 -2247 0. 95 27 70. 59 -2465 28 68. 59 -2235 29 72. 08 -2239 30 76. 80 -2240 31 76. 44 -1943 32 65. 70 88 FAN CHARACTERISTIC CARDS NOF MPTS 6 10 QF PF QF PF QF PF QF PF QF PF 20000 3. 60 25000 4. 30 30000 4. 60 40000 4. 78 55000 4. 58 70000 4. 29 85000 3.96 100000 3.70 150000 3. 00 200000 2. 52 ADDITIONAL AIRWAY CARDS NO KF LA A 45 100 300 80. 35. 47 250 297 200. 50. 49 250 2031 200. 50. CONCENTRATION CONTROL CARD NDIM NCH4C NAV MAX J INFLOW JSTART TSTART TIME CRITSM CRITGS CRITHT WRNPR WRNSM WRNGS WRNHT 6 2 1 32 1 1 50. 00 1. 00 . 005 0. 10 20 . 01 . 05 1. 95. AVERAGE VALUE CARD TAVR HAAVR ! HKAVR KFAVR LAAVR AAVR OAVR 70. 0. 10 3. 100 1000 100.0 100.0 ADDITIONAL CONCENTRATION AIRWAY CARDS NOX CH4VX DZRDX 9 320. 17 90. 33 120. 34 20. 36 250 50 50. 00 93 CONCENTRATION JUNCTION CH4CX O. 60 O. 60 CARD ADDITIONAL JNOX 27 28 CONTAMINATION NCENT 20 REAL TIME CONTROL NACC IDUR INC EXP REP 1 360 60 2. 00 2. 00 CONTAMINATION CARD NCENT 20 SMP02 1. 00 CARD WRNSM JSURF CRITSM 0.001 1.001 SMP02 1. 00 HTP02 300. 00 HTP02 300. 00 ISTT IENDT 360 94 APPENDIX E.- •OUTPUT DATA FOR FUEL-RICH FIRE IN A DOWNCAST SHAFT CALCULATION WITH FAN FAILURE ORDINARY AIRFLOW AND PRESSURE DISTRIBUTION BEFORE EVENT (BASED ON THE LISTED INPUT DATA) REGULAR AIRWAYS AIRWAY 1 2 FROM 1 13 8 19 14 8 9 15 9 10 16 10 1 1 17 10 11 IB 11 12 19 12 13 20 14 13 21 13 15 22 9 15 23 15 16 24 2 16 25 16 17 26 17 18 27 20 17 28 20 18 29 19 20 30 21 19 31 22 21 32 22 21 33 23 22 34 23 22 35 4 24 36 24 25 37 24 27 38 27 28 39 28 31 40 25 26 41 26 30 42 26 29 43 2 27 44 28 29 45 29 30 46 2 30 47 30 31 48 18 30 50 1 32 IRFLOW PRESSURE LOSS 3709 0. 000 -7929 0. 000 359 lO 0. 062 -5216 -0. 003 12405 0. 037 51860 0. 620 3505 2. 320 48355 2 320 51860 0. 871 20109 0. 809 -7929 -0. 002 4077 0. 069 12006 -0. 012 10616 -0. 016 -1840 -0. 042 -8776 -0. 042 -10616 -0. 044 -10616 -0. 043 31751 0. 403 21135 049 -1390 -0. 092 19745 0. 080 -4256 -0. 141 15489 0. 055 8744 0. 023 -6745 -0. 016 5606 0. 015 -1139 -0. 001 -5216 -0. 001 -4722 -0. 030 -494 -0. 030 -2608 -0. 010 -2608 -0. 010 -3545 -0. 005 2386 003 -5931 -0 019 -4518 -0. 002 -4689 -0. 031 2386 0. 010 1305 0. 001 1081 0. 000 1413 013 171 0. 000 1252 000 2075 0. 020 18982 0. 003 14350 0. 129 -4502 -0 894 34402 0. 072 29900 0. 894 LENGTH AREA RESISTANCE K. PER I METER 2597 200 000 156 250 50. 000 325 200 000 048 250 50. 000 2577 200 000 479 250 50. 000 2580 200 000 995 250 50. 000 2900 80 000 2 400 100 35. 000 2700 80 000 2 307 100 35. 000 524 120 000 1888 233 350 44 000 1700 80 000 9 923 100 35. OOO 1650 80 000 3 239 100 35. 000 4500 80 000 20 002 100 35. 000 2700 80 000 360 100 35. 000 2050 80 000 41 490 100 35. 000 600 80 000 821 100 35. 000 600 80 000 1 437 100 35. 000 600 80 000 124 385 100 30. 000 1100 BO 000 5 500 100 35. 000 319 120 000 3 900 350 44. 000 600 80 000 3 772 100 35. 000 524 120 000 4 000 350 44. 000 550 80 000 1 108 100 35. 000 318 120 000 474 065 350 44. 000 600 80 000 2 047 100 35. 000 2600 80 000 77 702 100 35. 000 1050 80 000 2 285 100 35. 000 228 120 000 2 966 350 44. 000 800 80 000 3 500 100 35. 000 1217 80 000 4 931 100 35. 000 333 120 000 4 565 350 44. 000 1100 80 000 475 100 35. 000 1313 80 000 13 375 100 35. 000 313 120 000 1234 019 350 44. 000 1800 80 000 14 500 100 35. 000 1800 80 000 14 500 100 35. 000 2400 80 000 4 324 100 35. 000 2600 80 000 5 572 100 35. 000 3200 80 ooo 5 450 100 35. 000 230 120 000 1 066 350 44. 000 2292 80 000 14 OOO 100 35 000 2000 80 000 18 360 100 35. 000 1700 80 000 3 630 100 35. 000 1050 80 000 1 385 100 35. 000 1650 80 000 65 065 100 35. 000 750 80 000 1 260 100 35. 000 300 80 000 854 100 35. 000 525 80 000 46 882 100 35. 000 297 200 000 072 250 50. 000 4100 80 000 6 265 100 35. 000 30 200 000 441 000 250 50. 000 2031 200 000 610 250 50. 000 100 80 000 10 000 100 35. 000 AIRWAY FROM 6 4 AIRFLOW 51860. FAN PRESSURE 4. 658 95 THESE CHARACTERISTICS WERE STORED FOR FANS 6 20000. 3. 60 25000. 4. 30 30000. 4. 60 40000 4. 78 55000. 4. 58 70000. 4.29 85000. 3.96 100000 3.70 150000. 3.00 200000. 2.52 THE STATED NUMBER OF AIRWAYS WAS 51 THE STATED NUMBER OF JUNCTIONS WAS 96 INPUT DATA FOR CONCENTRATION AND TEMPERATURE CALCULATIONS RWAY FROM TO ELEVATION DIFF. ROCK TEMP 1 1 2 -2579 58 1 2 2 3 -325 67 2 3 1 4 -2577 57 4 4 1 23 -2580 58 3 5 2 4 2 64 3 6 4 5 1 65 6 7 5 6 69 9 8 6 7 524 79 9 9 6 7 524 77 5 10 7 14 -4 82 11 14 31 -1 76 4 12 3 8 3 72 5 13 8 19 2 82 5 14 8 9 2 76 7 15 9 10 77 5 16 10 11 -2 79 2 17 10 11 -2 78 9 18 11 12 319 82 5 19 12 13 3 83 5 20 14 13 -523 79 6 21 13 15 -2 83 6 22 9 15 318 89 5 23 15 16 1 76 5 24 2 16 -1 78 5 25 16 17 3 77 8 26 17 18 228 81 4 27 20 17 -11 77 4 28 20 18 217 78 8 29 19 20 333 81 9 30 21 19 1 82 5 31 22 21 -313 82 2 32 22 21 -313 85 3 33 23 22 -7 73 2 34 23 22 -7 73 2 35 4 24 1 69 9 36 24 25 217 81 2 37 24 27 -3 70 5 38 27 28 230 68 1 39 28 31 292 77 2 40 25 26 -2 86 5 41 26 30 7 76 8 42 26 29 8 71 7 43 2 27 70 5 44 28 29 -4 72 1 45 29 30 -1 79 3 46 2 30 225 80 4 47 30 31 297 79 5 48 18 30 -5 76 8 50 1 32 50 49 31 32 2031 71 1 51 32 1 26 70 METHANE PROD. O 0. 0. O 0. 62. 2 41. 5 21.0 320. O -0. 120. CONDUCTIVITY DIFFUSIVn 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 1000 3. 0. 1000 3. O 0. lOOO 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 1000 3. 0. 1000 3.0 0. 1000 3. 0. lOOO 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 1000 3. 0. 1000 3. 0. 1000 3 0. 1000 3. O 0. 1000 3. 0. lOOO 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 1000 3. 0. 1000 3. 1000 3 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. 1000 3. 0. lOOO 3. 0. 1000 3. 0. 1000 3. 0. 1000 TIME AFTER BEGINNING OF EVENT 97 A TEMPERATURE OF 50.0 WAS ASSIGNED TO JUNCTION NO THE FOLLOWING CONTAMINATION WAS ASSUMED CONTAMINATION FLOWRATE CONCENTRAT. 0. 000 0. OOO HEAT O. 000 OXYGEN CONCENTRATION BEHIND FIRE 0. 00 PRODUCTION PER CU FT OXYGEN SMOKE HEAT 1. 000 300. 000 TEMPERATURES AND CONCENTRATIONS AT AIRWAY ENDS, PRESSURES IN AIRWAYS AIRWAY FROM TEMPERATURE 1 1 2 47403 65 01 0000 0. 00 0. 033 2 2 3 33371 67 24 1 7453 0. 13 0. 005 3 4 1 26392 50 58 21 0000 1. 56 0. 032 4 1 23 9466 65 25 0000 0. 00 0. 009 5 4 -2 4297 64 31 21 OOOO 1. 56 0. 004 6 5 4 46504 69 60 21 0000 1. 56 4. 739 7 6 5 46504 70 20 21 0000 1. 43 0. 506 8 7 6 3161 86 02 21 0000 1. 28 2. 151 9 7 6 43343 85 67 21 OOOO 1. 35 2. 134 10 14 7 46504 159 11 21 0000 0. 62 1. 640 11 14 31 8097 76 40 21 OOOO O. 56 0. 170 12 3 8 33371 72 44 1 7453 0. 10 0. 040 13 8 19 7011 82 49 1 7453 0. 49 0. 212 14 8 9 26360 75 23 1 7453 0. 04 0. 058 15 9 10 22869 76 74 1 7453 0. 02 0. 077 16 10 11 3973 78 70 1 7453 -0. 26 0. 202 17 10 11 18896 78 70 1 7453 0. 49 0. 202 18 11 12 22869 79 61 1 7453 0. 34 0. 211 19 12 13 22869 82 20 1 7453 0. 34 0. 206 20 13 14 54601 984 32 21 OOOO 0. 56 8. 418 21 15 13 31732 Bl 36 2 8587 0. 68 0. 116 22 9 15 3491 85 71 1 7453 -0. 22 0. 604 23 16 15 28241 77 1 1 2 9963 0. 79 0. 168 24 2 16 7071 78 50 1 7453 -0. 42 O. 398 25 17 16 21170 78 03 3 4142 1. 19 0. 106 26 18 -17 10002 80 62 6 3972 1. 42 0. 031 27 20 17 11168 77 96 7426 0. 99 0.045 28 20 18 5309 78 28 7426 0. 99 0.014 29 19 20 16477 80 89 7426 0. 99 0. 129 30 21 19 9466 82 51 OOOO 1. 37 004 31 22 21 8622 82 75 OOOO 1. 37 103 32 22 21 845 85 23 OOOO 1. 36 0. 092 33 23 22 4733 73 20 OOOO 2. 47 033 34 23 22 4733 73 20 OOOO 0. 42 0. 033 35 4 24 15815 69 90 21 OOOO 1. 53 0. 108 36 24 25 7193 80 59 21 OOOO 4. 84 0. 030 37 24 27 8622 70 50 21 OOOO 1. 22 0. 041 38 27 28 13343 68 33 14 1881 0. 90 0. 019 39 28 31 3854 76 41 14 1881 0.90 0. 021 40 25 26 7193 86 48 21 OOOO 4. 85 0. 101 41 26 30 5576 76 85 21 OOOO 4. 85 0. 012 42 26 29 1617 71 93 21 OOOO 4. 85 0. 000 43 2 27 4720 70 48 1 7453 0. 31 0. 145 44 28 29 9488 71 49 14 1881 0. 90 0. Oil 45 29 30 11105 75 53 15 1797 1. 47 0. on 46 2 30 6537 76 02 1 7453 0. 13 0. 202 47 30 31 18526 76 25 12 7951 1. 91 0. O03 48 30 18 4693 76 77 12 7951 1. 91 0. 014 50 32 1 4002 64 32 15 1512 1. 42 0. 693 49 31 32 30478 65 68 15 1512 1. 42 0. 057 51 32 1 26476 66 26 15 1512 1. 42 0. 690 98 TEMPERATURES AND CONCENTRATIONS OF SMOKE AND METHANE IN JUNCTIONS JUNCTION TEMPERATURE SMOKE METHANE ! 50 00 0. 0000 OOOO 3 67 24 1 7453 1278 5 70 20 21 OOOO 1 4307 7 159 11 21 0000 6192 9 75 23 1. 7453 0401 11 78 70 1 7453 3601 13 81 71 2. 3924 5349 15 78 06 2. 8587 6775 17 79 22 3. 4142 1 1907 19 82 51 0. 7426 9940 21 82 97 0. OOOO 1 3652 23 65 25 0. OOOO OOOO 25 80 59 21 OOOO 4 8368 27 70 49 14. 1881 8992 29 71 56 15 1797 1 4747 31 76 31 15. 1512 1 4225 TEMPERATURE SMOKE 64 95 1 7453 69 60 21 OOOO 85 69 21 OOOO 72 44 1 7453 76 74 1 7453 79 61 1 7453 984 32 21 OOOO 78 15 2 9963 77 57 6 3972 80 89 7426 73 20 OOOO 69 90 21 OOOO 86 48 21 OOOO 68 33 14 1881 75 98 12 7951 65 68 15 1512 0. 1278 1. 5624 1 . 3427 0. 0993 0. 0169 O. 3370 0. 3638 0. 7884 1 . 4222 0. 9940 1 . 4467 1. 5293 4. 8525 0. 8992 1 . 9068 1 4225 NUMBER OF ITERATIONS 8 WITH AIRWAY NO 5 INTO JUNCTION NO WITH AIRWAY NO 26 INTO JUNCTION NO A RECIRCULATION PATH IS BEING CLOSED 99 AIRWAY FROM IN THE FOLLOWING AIRWAYS EXIST CRITICAL CONDITIONS (THE STATED NUMBERS REFER TO AIRWAY ENDS) METHANE CONCENTRATION SMOKE CONCENTRATION TEMPERATURE LOW VENTILAT. PRESSURE HIGHER THAN HIGHER THAN HIGHER THAN LOWER THAN 1.0 PERCENT 0.050 PERCENT 95. DEGREES 0.010 INCHES WG 2 2 3 0. 13 3 4 1 1. 56 4 1 23 0. 00 5 4 2 1. 56 6 5 4 1. 56 7 6 5 1. 43 0. 10 0. 49 O. 04 IS 11 12 0. 34 19 12 13 0. 34 20 13 14 0. 56 21 15 13 0. 68 22 9 15 -0. 22 23 16 15 O. 79 24 2 16 -0. 42 25 17 16 1. 19 26 18 17 1. 42 27 20 17 0. 99 28 20 18 0. 99 29 19 20 0. 99 30 21 19 1. 37 31 22 21 1. 37 32 22 21 1. 36 33 23 22 2. 47 35 4 24 1. 53 39 28 31 0. 90 40 25 26 4. 85 41 26 30 4. 85 42 26 29 4. 85 43 2 27 0. 31 44 28 29 0.90 45 29 30 1. 47 46 2 30 0. 13 47 30 31 1. 91 48 30 18 1. 91 50 32 1 1. 42 49 31 32 1. 42 51 32 1 1 42 1. 7453 21 OOOO 0. 0000 21. 0000 21. 0000 21 0000 21. 0000 21. 0000 21 0000 21 0000 1. 7453 1. 7453 1. 7453 1. 7453 1. 7433 1. 7453 1. 7453 1. 7433 21 OOOO 2. 8587 1. 7453 2. 9963 1. 7453 3. 4142 6. 3972 0. 7426 0. 7426 0. 7426 0. OOOO 0. OOOO OOOO 0. OOOO 21 OOOO 21 OOOO 21 OOOO 14 1881 14 1881 21 OOOO 21 OOOO 21 OOOO 1. 7453 14 1881 15 1797 1. 7453 12 7931 12 7951 15 1512 15 1512 15 1512 67. 2 50. 6 65. 2 64. 3 69. 6 70. 2 86. O 85. 7 78. 78. 3 80 9 82 5 82 8 85 2 73. 2 69 9 80. 6 70 5 68 3 76. 4 86 5 76. 8 71. 9 70. 5 71 5 75. 5 76 76. 2 76 8 64 3 65 7 66. 3 0. 005 0. 032 0. 009 0. 004 4. 739 0. 506 2. 151 2. 134 1. 640 0. 170 0. 040 0. 212 0. 058 0. 077 0. 202 O. 202 O. 211 O. 206 8. 418 O. 116 0. 604 0. 168 0. 398 0. 106 0. 031 0. 045 0.014 0. 129 0. 004 0. 103 0. 092 0. 033 0. 108 O. 030 0. 041 0. 019 0. 021 0. 101 0. 012 O. 000 0. 145 0.011 O. Oil 0. 202 0. 003 0. 014 O. 693 0. 057 0. 690 100 IN THE FOLLOWING JUNCTIONS EXIST CRITICAL CONDITIONS JUNCTION METHANE CONCENTRATION SMOKE CONCENTRATIONS TEMPERATURE HIGHER THAN 1.0 PERCENT HIGHER THAN 0.050 PERCENT MORE THAN 95.0 DEGREES 2 0. 1 1. 7453 3 0. 1 1. 7453 4 1.6 21.OOO0 5 1.4 21.0000 6 1.3 21.0000 7 0.6 21.OOO0 8 0. 1 1. 7453 9 0.0 1.7453 10 0.0 1.7453 11 0.4 1.7453 12 0.3 1.7453 13 0. 5 2. 3924 14 0.6 21.0000 15 0.7 2. B587 16 O. 8 2. 9963 17 1.2 3.4142 18 1. 4 19 1. O 20 1. O 21 1 4 22 1. 4 24 1. 5 25 4. 8 26 4.9 27 O. 9 28 O. 9 29 15 30 1.9 31 1. 4 32 1.4 REVERSAL OF AIRFLOW HAS OCCURRED IN THE FOLLOWING PLACES 6 3972 0. 7426 0. 7426 0. OOOO 0. OOOO 21. 0000 21 OOOO 21. OOOO 14 1881 14 1881 15. 1797 12. 7951 15. 1512 15. 1512 65. 67. 2 69. 6 70. 2 85. 7 159 i 72. 4 75. 2 76. 7 78 7 79. 6 81 7 984 3 78 1 78 1 79. 2 77. 6 82. 5 80. 9 83. 73. 2 69 9 80. 6 86 5 70. 5 68 3 71. 6 76. 76 3 65. 7 AIRWAY 3 IS NOW CARRYING AIR FROM 4 TO 1 AIRWAY 5 IS NOW CARRYING AIR FROM 4 TO 2 AIRWAY 6 IS NOW CARRYING AIR FROM 5 TO 4 AIRWAY 7 IS NOW CARRYING AIR FROM 6 TO 5 AIRWAY 8 IS NOW CARRYING AIR FROM 7 TO 6 AIRWAY 9 IS NOW CARRYING AIR FROM 7 TO 6 AIRWAY 10 IS NOW CARRYING AIR FROM 14 TO 7 AIRWAY 20 IS NOW CARRYING AIR FROM 13 TO 14 AIRWAY 21 IS NOW CARRYING AIR FROM 15 TO 13 AIRWAY 23 IS NOW CARRYING AIR FROM 16 TO 15 AIRWAY 25 IS NOW CARRYING AIR FROM 17 TO 16 AIRWAY 26 IS NOW CARRYING AIR FROM 18 TO 17 AIRWAY 48 IS NOW CARRYING AIR FROM 30 TO 18 AIRWAY 50 IS NOW CARRYING AIR FROM 32 TO 1 101 THE FOLLOWING CONTAMINATION ISTORY WAS ASSUMED FOR THE REAL TIME ANALYSIS CONTAMINATION FLOWRATE CONCENTRAT. 0. O OXYGENCONCENTRATION BEHIND FIRE O. 00 PRODUCTION PER 7. OXYGEN FUMES 1. 00 TIME HISTORY OFEVENT START END O 360 \T 60 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 7.1 NOW EXIST IN THE FOLLOWING AIRWAYS A IRWAY FROM TO LENGTH FT 4 1 2577 4 2 2900 5 4 100 6 5 2700 7 6 524 7 6 1700 14 7 1650 14 31 4500 13 14 524 4 24 2400 24 25 2600 24 27 3200 27 28 230 28 31 2292 25 26 2000 28 29 750 32 1 30 31 32 2031 32 1 100 CONC 7. START TIME LENGTH FT 21 0000 28 70 2577. 21. 0000 28 70 1681. 1 21 OOOO 28 53 100. 21. 0000 23 88 2700. 21. 0000 3 99 524. 21. 0000 3 99 1700. 21 0000 1 15 1650. 21. 0000 1 15 4500. 21. 0000 00 524. 21 0000 28 70 2400. 21. 0000 40 84 1722. 8 21. 0000 40 84 2065. 1 12. 6482 53 78 230. 12. 6482 55 84 200. 3 19. 5726 53 00 629. 3 12. 6482 55 84 493. 5 5793 58 94 21 3 5. 5793 45 61 2031. 5. 5793 58 94 100. WAVE 1 WAVE 2 WAY CONC 7. LOCAT ON START ARRIVAL CONC 7. LOCATION START ARRIVAL FT TIME TIME FT TIME TIME 3 19 5726 2577 o 11 94 31 47 21 0000 2577 28 70 48. 23 5 19 5726 2581 11 94 00 21 0000 1681. 1 28 70 0. 00 6 19 5726 100 11 77 11 94 21 0000 100 28 53 28. 70 7 19 5726 2700 7 13 11 77 21 0000 2700. 23 88 28. 53 8 21 0000 524 3 99 23 88 9 21 0000 1700 3 99 7 13 10 21 0000 1650 1 15 3 99 11 21 0000 4500 1 15 45 61 20 21 0000 524 00 1 15 35 19 5726 2400 11 94 24 08 21 0000 2400 28 70 40. 84 36 19 5726 2600 24 08 53 00 21 OOOO 1722 8 40 84 0. 00 37 19 5726 3200 24 08 53 78 21 0000 2065 1 40 84 00 38 12 6482 230 o 53 78 55 84 39 12 6482 200 3 55 84 00 40 19 5726 629 3 53 00 OO 44 12 6482 493 55 84 OO 50 5 5793 21 3 58 94 00 49 5 5793 2031 45 61 58 94 51 5 5793 100 58 94 59 24 102 XT 60 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS :tion CURRENT FUME CONCENTRATION TIME OF FIRST CONTAMINATION 4 21. 0000 28. 70 5 21 OOOO 28. 53 6 21 0000 23. 88 7 21 0000 3. 99 14 21 OOOO 1. 15 24 21. OOOO 40. 84 25 19 5726 53. 00 27 12. 6482 53. 78 28 12. 6482 55. 84 31 5. 5793 45. 61 32 5. 5793 58. 94 ON TOTAL EXPOSURE 1 0. 00 4 164207 64 7 196034. 67 10 0. 00 13 00 16 00 19 00 22 00 25 22829. 84 28 8761. 85 31 13381 06 JUNCTION TOTAL EXPOSURE 2 0. 00 5 164809. 73 8 0. 00 11 0. 00 14 205969. 33 17 OO 20 00 23 O. 00 26 0. 00 29 0. 00 32 987 75 :tion TOTAL EXPOSUF 3 0. 00 6 18 1066 45 9 0. 00 12 0. 00 15 00 18 0. 00 21 0. 00 24 121717. 37 27 i; 3122. 41 AT 120 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS 103 AIRWAY FROM TO LENGTH FT 2 3 325 4 1 2577 4 2 2900 5 4 100 6 5 2700 7 6 524 7 6 1700 14 7 1650 14 31 4500 3 8 2700 8 19 2050 8 9 600 9 10 600 10 11 600 10 11 1100 11 12 319 12 13 600 13 14 524 15 13 550 9 15 318 16 15 600 2 16 2600 17 16 1050 18 17 228 20 17 800 20 18 1217 19 20 333 4 24 2400 24 25 2600 24 27 3200 27 28 230 28 31 2292 25 26 2000 26 30 1700 26 29 1050 2 27 1650 28 29 750 29 30 300 2 30 525 30 31 297 30 IB 4100 32 1 30 31 32 2031 32 1 100 :r CONC 7. START TIME LENGTH FT 2 1. 7453 82 69 325. 2 21 0000 28. 70 2577. 2 21 0000 28 70 2900. 2 21 OOOO 28. 53 10O. 2 21 0000 23. 88 2700. 1 21 0000 3. 99 524. 1 21 0000 3. 99 1700. 1 21 0000 1. 15 1650. 1 21. 0000 1. 15 4500. 2- 1. 7453 84. 64 2700. 2 1. 7453 91. 1 1 2050. 2 1. 7453 91 11 600. 2 1. 7453 92 93 600. 2 1. 7453 95. 03 600. 2 1. 7453 95. 03 1100. 4 1. 7453 107. 11 319. 4 1. 7453 108. 79 600. 1 21 0000 00 524. 5 O. 8245 113. 81 550. 2 1. 7453 92 93 318. 3 o. 7107 112. 1 1 600. 2 1. 7453 82 69 2600. 1 3651 105 91 1050. 1 0. 3674 118 51 124. 2 7426 116. 93 428. 6 2 7426 116. 93 203. 8 2 7426 114. 50 333. 2 21 0000 28. 70 2400. 2 21. 0000 40 84 2600. 2 21. 0000 40. 84 3200. 4 14 1881 110. 66 230. 4 14 1881 112. 73 350. 5 2 21 0000 69 76 2000. 2 21. 0000 92. 00 1700. 2 21 0000 92. 00 565. 8 2 1 7453 82 69 1650. 4 14 1881 112. 73 750. 4 12. 1226 119. 05 132. 2 1. 7453 82 69 525. 2 11 3158 116 39 297. 7 11. 3158 116 39 211. 8 2 13 7059 116 74 30. 5 14 0572 119. 59 61. 8 2 13 7059 116. 74 100. 104 WAY CDNC V. LOCAT ON START ARRIVAL CONC 7. LOCATION START ARR IVAL CONC V. LOCATION START ARRIVAL FT TIME TIME FT T [ME TIME FT TIME TI ME 2 1 6267 325. 65 94 67 89 1 7453 325 82. 69 84. 64 3 19 5726 2577 11 94 31 47 21 0000 2577. 28. 70 48 23 5 19 5726 2900 11 94 65. 94 21 0000 2900 28 70 82. 69 6 19 5726 100 11 77 11. 94 21 0000 100 28. 53 28. 70 7 19 5726 2700 7 13 1 1. 77 21 0000 2700 23 88 28. 53 8 21 0000 524 o 3 99 23 88 9 21 0000 1700 o 3 99 7 13 10 21 0000 1650 1 13 3 99 11 21 0000 4500 o 1 15 45 61 12 1 6267 2700 67 89 74 36 1 7453 2700 o 84 64 91 11 13 1 6267 2050 74 36 97 75 1 7453 2030 91 11 114. 50 14 1 6267 600 74 36 76 18 1 7453 600 91 11 92. 93 15 1 6267 600 76 IB 78 28 1 7453 600 92 93 93. 03 16 1 6267 600 78 28 90 36 1 7453 600 95 03 107 11 17 1 6267 1100 78 28 82 94 1 7453 1100 95 03 99. 69 18 1 3441 319 o 82 94 84 61 1 6267 319 90 36 92 03 1 7247 319 99 69 101 3b 19 1 3441 600 84 61 86 71 1 6267 600 92 03 94 13 1 7247 600 101 36 103 46 20 21 0000 524 o 00 1 15 21 1790 550 87 11 88 50 5414 550 97 05 98. 44 5545 350 103 87 105 25 22 1 6267 318 76 18 87 11 1 7453 318 92 93 103 87 23 4073 600 o 95 35 97 05 6810 600 109 87 111 57 7107 600 112 11 113 81 24 1 6267 2600 65 94 95 35 1 7453 2600 o 82 69 112. 11 25 3651 1050 105 91 109 87 26 3674 124 118 51 00 27 6922 800 lOO 18 105 91 7426 428 6 116 93 00 28 6922 1217 100 18 118 51 7426 203 8 116 93 0. 00 29 6922 333 97 75 100 18 7426 333 114 50 116. 93 35 19 5726 2400 o 11 94 24 08 21 0000 2400 28 70 40. 84 36 19 5726 2600 24 08 53 00 21 0000 2600 40 84 69. 76 37 19 5726 3200 24 08 53 78 21 0000 3200 40 84 70. 53 38 12 6482 230 53 78 55 84 13 5706 230 70 53 72. 60 14 1461 230 93 90 95 97 39 12 6482 2292 55 84 103 42 13 5706 2283 8 72 60 00 14 1461 1157 7 95 97 00 40 19 5726 2OO0 53 00 75 25 21 0000 2000 69 76 92. 00 41 19 5726 1700 75 25 99 63 21 OOOO 1700 92 00 116. 39 42 19 5726 904 4 75 25 00 21 0000 565 8 92 00 00 43 1 6267 1650 65 94 93 90 1 7453 1650 B2 69 110 66 44 12 6482 750 55 84 62 17 13 5706 750 72 60 78. 92 14 1461 750 95 97 102 29 45 10 8069 300 62 17 64 33 11 5950 300 78 92 81 08 12 0868 300 102 29 104 46 46 1 6267 525 65 94 72 36 1 7453 525 82 69 89. 12 47 10 9730 297 104 46 107 66 11 3158 297 116 39 119. 59 48 5 1687 3265 5 64 33 00 5 6267 2794 2 72 36 00 6 0036 2282 8 81 08 00 50 12 1063 30 116 17 117 67 13 7059 30 116 74 118. 24 49 9 2490 2031 92 32 105 65 12 1063 2031 102 84 116. 17 13 7059 2031 103 42 116 74 51 12 1063 100 116 17 116 47 13 7059 100 116 74 117. 05 C 7. LOCATION START ARRIVAL CONC V. FT TIME TIME 7453 319 107. 11 108 79 7453 600. 108. 79 110. 89 7981 550 111. 57 112. 96 8245 1881 230 110. 66 112. 73 1881 350. 5 112. 73 00 1881 750. 112. 73 119. 05 1226 132. 119. 05 0. 00 0370 1811. 4 89 12 00 10 7378 8488 1880 2 107 66 00 14. 0572 WAVES OF AIRWAY 48 ARE BEING BUFFERDUNTIL PRINTING 'ACE IS AVALABLE 105 VT 120 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > O 001 ) % NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION CURRENT FUME CONCENTRATION TIME OF FIRST CONTAMINATION 2 1. 7453 82. 69 3 1. 7453 84. 64 4 21. OOOO 28. 70 5 21. OOOO 28. 53 6 21. 0000 23. 88 7 21. OOOO 3. 99 8 1. 7453 91. 11 9 1. 7453 92. 93 10 1 7453 95. 03 11 1. 7453 107. 11 12 1. 7453 108. 79 13 1. 2102 115. 20 14 21. OOOO 1. 15 15 0. 8245 113. 81 16 0. 7107 112. 11 17 0. 3651 105. 91 18 0. 3674 118. 51 19 0. 7426 114. 50 20 0. 7426 116. 93 24 21. OOOO 40. 84 25 21. OOOO 69. 76 26 21. OOOO 92. 00 27 14. 1881 110. 66 28 14. 1881 112. 73 29 12. 1226 119. 05 30 11. 3158 116. 39 31 14. 0572 119. 59 32 13. 7059 116. 74 AT 120 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS JUNCTION TOTAL EXPOSURE 1 0. 00 4 374207. 59 7 406034. 66 10 11804. 78 13 5260. 23 16 2174. 04 19 2613. 00 22 0. 00 25 230508. 75 28 144886. 92 31 113067. 57 ION TOTAL EXPOSURE 2 15394. 34 5 374809. 72 8 12944. 99 11 10074. 94 14 415969. 31 17 857. 74 20 2312. 83 23 0. 00 26 152655. 94 29 111018. 19 32 82314. 81 JUNCTION TOTAL EXPOSUF 3 14827. 77 6 391066. 44 9 12415. 31 12 9588. 04 15 2771. 73 18 91. 10 21 0.00 24 331717. 38 27 149778. 38 30 70983. 38 106 AT 180 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS A IRWAY FROM TO LENGTH FT 2 3 325 4 1 2577 4 2 2900 5 4 100 6 5 2700 7 6 524 7 6 1700 14 7 1650 14 31 4500 3 8 2700 8 19 2050 8 9 600 9 10 600 10 11 600 10 11 llOO 1 1 12 319 12 13 600 13 14 524 15 13 550 9 15 318 16 15 600 2 16 2600 17 16 1050 18 17 228 20 17 800 20 18 1217 19 20 333 4 24 2400 24 25 2600 24 27 3200 27 28 230 28 31 2292 25 26 2000 26 30 1700 26 29 1050 2 27 1650 28 29 750 29 30 300 2 30 525 30 31 297 30 18 4100 32 1 30 31 32 2031 32 1 100 :r CONC X START TIME LENGTH FT 2 1. 7453 82. 69 325. 2 21 0000 28. 70 2577. 2 21 0000 28. 70 2900. 2 21. 0000 28. 53 100. 2 21 0000 23. 88 2700. 1 21. 0000 3. 99 324. 1 21 0000 3. 99 1700. 1 21 0000 1. 15 1630. 1 21 0000 1. 15 4500. 2 1. 7453 84. 64 2700. 2 1. 7453 91 11 2050. 2 1. 7453 91. 11 600. 2 1. 7453 92. 93 600. 2 1. 7453 95. 03 600. 2 1. 7453 95 03 1100. 4 1. 7453 107. 11 319. 4 1. 7433 108. 79 600. 1 21. 0000 0. 00 524. 3 2. 5545 177. 93 550. 2 1. 7453 92. 93 318. 1 2. 6545 176 23 600. 2 1, 7453 82. 69 2600. 5 3. 0103 177 09 770. 4 3 5. 5424 174. 35 228. 2 0. 7426 116. 93 800. 2 0. 7426 116. 93 1217. 2 0. 7426 114. 50 333. 2 21. 0000 28. 70 2400. 2 21. 0000 40. 84 2600. 2 21. 0000 40. 84 3200. 4 14 1881 110. 66 230. 4 14 1881 112. 73 2292. 2 21 0000 69. 76 2000. 2 21. 0000 92 00 1700. 2 21 0000 92 00 1050. 2 1. 7453 82. 69 1650. 4 14. 1881 112. 73 750. 1 15. 1797 143. 96 300 2 1. 7453 82. 69 525. 5 12. 7951 146. 12 297. 5 12. 7951 146 12 1987. 3 5 15. 1512 173. 63 30. 4 15. 1512 160 30 2031. 5 15. 1512 173. 63 100. 107 WAY CONC 7. LOCATION START ARRIVAL CONC 7. LOCATION START ARRIVAL CONC 7. LOCATION START ARRIVAL FT TIME TIME FT TIME TI ME FT T I ME TI ME 2 1 6267 325 65 94 67 89 1 7453 32S B2 67 84. 64 3 19 5726 2577 o 11 94 31 47 21 0000 2577 28 70 48. 23 5 19 5726 2900 11 94 65 94 21 0000 2900 28 70 82. 69 6 19 5726 lOO 11. 77 11 94 21 0000 100 28 53 28. 70 7 19 5726 2700 7 13 11 77 21 0000 2700 23 88 28. 53 8 21 0000 524 3 99 23 88 9 21 0000 1700 3 99 7 13 10 21 0000 1650 1 15 3 99 11 21 0000 4500 1. 15 45 61 12 1 6267 2700 67. 89 74 36 1 7453 2700 84 64 91 1 1 13 1 6267 2050 74 36 97 75 1 7453 2050 91 11 114 50 14 1 6267 600 74 36 76 18 1 7453 600 91 11 92 93 15 1 6267 600 76 18 78 28 1 7453 600 92,93 95 03 16 1 6267 600 78 28 90 36 1 7453 600 95 03 107 1 1 17 1 6267 1100 78 28 82 94 1 7453 1100 95 03 99 69 18 1 3441 319 82. 94 84 61 1 6267 319 90 36 92 03 1 7247 319 99 69 101 36 19 1 3441 600 84 61 86 71 1 6267 600 92 03 94 13 1 7247 600 lOl 36 103 46 20 21 0000 524 00 1 15 21 1 8544 550 159 38 160 77 1 8593 550 167 42 168 81 2 5545 550 177 93 179 32 22 1 6267 318 76. 18 87 11 1 7453 318 92 93 103 87 23 2 6545 600 176. 23 177 93 24 1 6267 2600 65 94 95 35 1 7453 2600 82 69 112 11 25 1 8252 1050 145. 00 148 96 1 9088 1050 153 72 157 68 1 9162 1050 o 161 75 165 72 26 3 2266 228 159. 02 161 75 5 4320 228 169 53 172 27 5 5424 228 174 35 177 09 27 6922 800 100 18 105 91 7426 800 o 116 93 122 66 28 6922 1217 100 IB 118 51 7426 1217 116 93 135 27 29 6922 333 97 75 100 18 7426 333 114 50 116 93 35 19 5726 2400 11 94 24 08 21 0000 2400 28 70 40 84 36 19 5726 2600 24 08 53 00 21 0000 2600 40 84 69 76 37 19 5726 3200 24 08 53 78 21 0000 3200 40 84 70 53 38 12 6482 230 53 78 55 84 13 5706 230 70 53 72 60 14 1461 230 93 90 95 97 39 12 6482 2292 55 84 103 42 13 5706 2292 72 60 120 17 14 1461 2292 95 97 143 54 40 19 5726 2000 53 00 75 25 21 0000 2000 69 76 92 00 41 19 5726 1700 75 25 99 63 21 0000 1700 92 00 116 39 42 19 5726 1050 75 25 127 21 21 0000 1050 92 00 143 96 43 1 6267 1650 65 94 93 90 1 7453 1650 82 69 110 66 44 12 6482 750 55 84 62 17 13 5706 750 72 60 78 92 14 1461 750 95 97 102 29 45 15 1797 300 143 96 146 12 46 1 6267 525 65 94 72 36 1 7453 525 82 69 89 12 47 10 9730 297 104 46 107 66 11 3158 297 116 39 119 59 11 3330 297 121 21 124 42 48 10 9730 4100 o 104 46 174 35 1 1 3158 3731 3 116 39 00 11 3330 3448 4 121 21 00 50 14 1843 30 137 74 139 24 15 0127 30 145 90 147 40 15 0855 30 156 87 158 37 49 15 0127 2031 132 57 145 90 15 0855 2031 143 54 156 87 15 1459 2031 149 33 162 66 51 14 1843 100 137 74 138 05 15 0127 100 145 90 146 20 15 0855 100 156 87 157 17 WAY CONC 7. LOCATION START ARRIVAL FT TIME TIME 18 1 . 7453 319 107. 11 108. 79 19 1. 7453 600 O 108 79 110. 89 25 2. 9582 1050 172 27 176. 23 38 14 1881 230 110 66 112. 73 39 14 1881 2292 112 73 160 30 44 14 1881 750 112 73 119. 05 47 12. 6957 297 129 37 132. 57 48 12. 6957 2970 129 37 0. 00 50 15 1459 30 162 66 164. 15 49 15. 1512 2031 160 30 173. 63 51 15. 1459 100 162 66 162. 96 12.7951 297.0 146.12 149.33 12. 7951 1987. 3 146. 12 00 15.1512 30.0 173.63 175.12 108 VT 180 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION CURRENT FUME CONCENTRATION T IME OF FIRST CONTAMINATION 2 1. 7453 82. 69 3 1. 7453 84. 64 4 21 0000 28. 70 5 21. 0000 28. 53 6 21. 0000 23. 88 7 21. 0000 3. 99 8 1. 7453 91. 11 9 1. 7453 92 93 10 1. 7453 95. 03 11 1. 7453 107. 11 12 1. 7453 108. 79 13 2. 2156 179. 32 14 21. 0000 1. 15 15 2. 5545 177. 93 16 2. 6545 176. 23 17 3. 0103 177. 09 18 5. 5424 174. 35 19 0. 7426 114. 50 20 0. 7426 116. 93 24 21. 0000 40. 84 25 21. 0000 69. 76 26 21. 0000 92. 00 27 14. 1881 110. 66 28 14. 1881 112. 73 29 15. 1797 143. 96 30 12. 7951 146. 12 31 15. 1512 160. 30 32 15 1512 173. 63 AT 1B0 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS JUNCTION TOTAL EXPOSURE 1 0. 00 4 584207. 63 7 616034 69 10 29257. 82 13 20541. 75 16 16428. 53 19 10039. 38 22 0. 00 25 440508. 72 28 286767. 78 31 262216. 09 ITION TOTAL EXPOSURE 2 32847 38 5 584809. 69 8 30398. 04 11 27527. 98 14 625969 31 17 15783 96 20 9739. 21 23 00 26 362655. 94 29 258564 30 32 228561 02 ITION TOTAL EXPOSUF 3 32280. 81 6 601066. 44 9 29868. 35 12 27041. 08 15 16888. 05 18 23852 22 21 0. 00 24 541717. 38 27 291639. 19 30 196371. 08 VT 240 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 7.1 NOW EXIST IN THE FOLLOWING AIRWAYS 109 AIRWAY NUMBER FROM TO LENGTH FT 2 2 3 325 3 4 1 2577 5 4 2 2900 6 5 4 100 7 6 5 2700 8 7 6 524 9 7 6 1700 10 14 7 1650 11 14 31 4500 12 3 8 2700 13 8 19 2050 14 8 9 600 15 9 10 600 16 10 11 600 17 10 11 1100 18 11 12 319 19 12 13 600 20 13 14 524 21 15 13 550 22 9 15 318 23 16 15 600 24 2 16 2600 25 17 16 1050 26 18 17 228 27 20 17 800 28 20 18 1217 29 19 20 333 35 4 24 2400 36 24 25 2600 37 24 27 3200 38 27 28 230 39 28 31 2292 40 25 26 2000 41 26 30 1700 42 26 29 1050 43 2 27 1650 44 28 29 750 45 29 30 300 46 2 30 525 47 30 31 297 48 30 18 4100 50 32 1 30 49 31 32 2031 51 32 1 100 :r CONC "/. START TIME LENGTH FT 2 1. 7453 82. 69 325. 2 21 0000 28. 70 2577. 2 21 0000 28. 70 2900. 2 21 0000 28 53 100. 2 21 0000 23. 88 2700. 1 21 0000 3. 99 524. 1 21 0000 3. 99 1700 1 21 0000 1. 15 1650. 1 21 0000 1 15 4500. 2 1. 7453 84. 64 2700. 2 1. 7453 91. 11 2050. 2 1. 7453 91. 11 600. 2 1. 7453 92. 93 600. 2 1. 7453 95. 03 600. 2 1. 7453 95. 03 1100. 4 1. 7453 107. 1 1 319. 4 1. 7453 108. 79 600. 1 21. 0000 0. 00 524 3 2. B587 224. 42 550. 2 1. 7453 92. 93 318. 1 2. 9963 222. 72 600. 2 1. 7453 82. 69 2600. 4 3. 4142 218. 75 1050. 2 6. 3972 216 02 228. 2 0. 7426 116. 93 800. 2 0. 7426 116 93 1217. 2 0. 7426 114. 50 333. 2 21 0000 28. 70 2400. 2 21 0000 40. 84 2600. 2 21 0000 40. 84 3200. 4 14 1881 110 66 230. 4 14 1881 112 73 2292. 2 21. 0000 69. 76 2000. 2 21 0000 92. 00 1700. 2 21 0000 92. 00 1050. 2 1. 7453 82. 69 1650. 4 14 1881 112. 73 750. 1 15 1797 143. 96 300. 2 1 7453 82. 69 525. 5 12 7951 146. 12 297. 5 12 7951 146. 12 4100. 5 15 1512 173 63 30. 4 15 1512 160. 30 2031. 5 15 1512 173 63 100. 110 AIRWAY CONC 7. LOCAT ON 5TART ARRIVAL CONC 7. LOCATION START ARRIVAL CONC 7. LOCATION START ARRIVAL FT TIME TIME FT T I ME TIME FT TIME TIME 2 1 6267 325. 63. 94 67 89 1 7433 323. 82. 69 84. 64 3 19 5726 2577 11 94 31 47 21 OOOO 2377. 28 70 48. 23 5 19 5726 2900. 11. 94 65 94 21 OOOO 2900. 28 70 82. 69 6 19 5726 100 o 11. 77 11 94 21 OOOO 100. 28 33 28. 70 7 19 5726 2700 7. 13 1 1 77 21 OOOO 2700 23 88 28. 33 8 21 0000 524 o 3. 99 23 88 9 21 OOOO 1700 3. 99 7 13 10 21 0000 1650 1. 15 3 99 11 21 OOOO 4500 1. 15 45 61 12 1 6267 2700 67. 89 74 36 1 7453 2700. 84 64 91. 11 13 1 6267 2050 74. 36 97 75 1 7453 2050. 91 11 114. 50 14 1 6267 600 74. 36 76 IB 1 7453 600. 91 11 92. 93 15 1 6267 600 76. IB 78 28 1 7453 600. 92 93 95. 03 16 1 6267 600 78. 28 90 36 1 7453 600. 95 03 107. 11 17 1 6267 1100 78. 28 82 94 1 7453 1100. 95 03 99. 69 18 1 3441 319 82. 94 84 61 1 6267 319. 90 36 92. 03 1 7247 319 99 69 101 36 19 1 3441 600 84. 61 86 71 1 6267 600. 92 03 94. 13 1 7247 600 101 36 103 46 20 21 OOOO 524 0. 00 1 15 21 2 6425 550 199. 51 200 90 2 B440 550. 207 67 209. 05 2 8587 550 224 42 223 81 22 1 6267 318 76. 18 87 11 1 7453 318. 92 93 103 87 23 2 9963 600 222. 72 224 42 24 1 6267 2600 65. 94 95 35 1 7453 2600 82 69 112. 11 25 3 0863 1050 189. 02 192 99 3 0901 1050. 193 84 197 81 3 3922 1050 o 202 00 203 97 26 6 3506 228 199. 26 202 00 6 3972 228. 216 02 218. 75 27 6922 800 100. 18 105 91 7426 800 116 93 122. 66 28 6922 1217 100. IB 118 51 7426 1217. 116 93 135 27 29 6922 333 97. 75 100 18 7426 333. 114 50 116. 93 35 19 5726 2400 11. 94 24 08 21 OOOO 2400. 28 70 40 84 36 19 5726 2600 24. 08 53 00 21 OOOO 2600. 40 84 69 76 37 19 5726 3200 24 08 53 78 21 OOOO 3200. 40 84 70 53 38 12 6482 230 53. 78 55 84 13 5706 230. 70 53 72 60 14 1461 230 93 90 95 97 39 12 6482 2292 55. 84 103 42 13 5706 2292. 72 60 120 17 14 1461 2292 95 97 143 54 40 19 5726 2000 o 53. 00 75 25 21 OOOO 2000. 69 76 92 00 41 19 5726 1700 75. 25 99 63 21 OOOO 1700. 92 00 116 39 42 19 5726 1050 75. 25 127 21 21 OOOO 1050. 92 00 143 96 43 1 6267 1650 65. 94 93 90 1 7453 1650. 82 69 HO 66 44 12 6482 750 55. 84 62 17 13 5706 750. 72 60 78 92 14 1461 750 o 93 97 102 29 45 15 1797 300 143. 96 146 12 46 1 6267 525 65. 94 72 36 1 7453 525. 82 69 89 12 47 10 9730 297 104. 46 107 66 11 3158 297. 116 39 119 59 11 3330 297 121 21 124 42 48 10 9730 4100 104. 46 174 35 11 3158 4100 116 39 186 29 11 3330 4100 121 21 191 11 50 14 1843 30 137. 74 139 24 15 0127 30. 145 90 147 40 15 0855 30 156 87 158 37 49 15 0127 2031 132. 57 145 90 15 0855 2031. 143 54 156 87 15 1459 2031 149 33 162 66 51 14 1843 100 137. 74 138 05 15 0127 100. 145 90 146 20 15 0855 100 156 87 157 17 C 7. LOCATION START ARRIVAL FT TIME TIME 7453 319 107 11 108 79 7453 600 108 79 110. 89 4142 1050 o 218 75 222. 72 1881 230 110 66 112. 73 1881 2292 112 73 160 30 1881 750 o 112 73 119. 03 6957 297 129 37 132. 37 6957 4100 129 37 199 26 1459 30 162 66 164. 15 1512 2031 160 30 173. 63 1459 100 162 66 162. 96 LOCATION START FT TIME ARRIVAL TIME 12. 7931 297 12 7951 410O. 13 1312 30 146. 12 149. 33 146. 12 216. 02 173. 63 173 12 173. 63 173. 93 Ill VT 240 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS FUME CONCENTRATION 1. 7453 1. 7453 21. OOOO 21. 0000 21 0000 21. OOOO t. 7453 1. 7453 1. 7453 1. 7453 1. 7453 2. 3924 21. OOOO 2. 8587 2. 9963 3. 4142 6. 3972 0. 7426 O 7426 21 OOOO 21 OOOO 21. OOOO 14. 1881 14. 188) 15. 1797 12. 7951 15. 1512 15. 1512 TIME OF FIRST CONTAMINATION 82. 69 84. 64 28. 70 28. 53 23. 88 3. 99 91. 11 92. 93 95. 03 107. 11 108. 79 225. 81 1. 15 224. 42 222. 72 218 75 216. 02 114. 50 116. 93 40. 84 69. 76 92. 00 110. 66 112. 73 143. 96 146. 12 160. 30 173. 63 TOTAL EXPOSURE 0. OO 794207. 63 826034. 63 46710. 87 43735. 12 45155. 75 17465. 75 0. 00 650508. 75 428648. 63 413727. 88 JUNCTION TOTAL EXPOSURE 2 50300. 42 5 794809. 69 8 47851. 08 11 44981. 03 14 835969. 25 17 48553. 21 20 17165. 59 23 00 26 572655. 94 29 410361. 78 32 380072 84 ITION TOTAL EXPOSURE 3 49733 85 6 811066. 38 9 47321. 40 12 44494. 12 15 44288. 78 18 87308. 57 21 0. 00 24 751717. 31 27 433540. 09 30 324322. 25 12 AT 300 MIN AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > O 0010 7.) NOW EXIST IN THE FOLLOWING AIRWAYS LENGTH FT 19 20 4 24 24 25 24 27 27 28 28 31 25 26 26 30 26 29 2 27 28 29 29 30 2 30 30 31 30 18 32 1 31 32 32 1 325 2577 2900 100 2700 524 1700 1650 4500 2700 2050 600 600 600 1100 319 600 524 550 318 600 2600 1050 228 800 1217 333 2400 2600 3200 230 2292 2000 1700 1050 1650 750 300 525 297 4100 30 2031 100 :r CONC •/. START TIME LENGTH FT 2 1. 7453 82. 69 325. 2 21 0000 28 70 2577. 2 21 0000 28. 70 2900. 2 21. 0000 28. 53 10O. 2 21. 0000 23. 88 2700. 1 21 0000 3. 99 524. 1 21. 0000 3. 99 1700. 1 21. 0000 1. 15 1650. 1 21. 0000 1. 15 4500. 2 1. 7453 84. 64 2700. 2 1. 7453 91. 11 2050. 2 1. 7453 91 11 600. 2 1. 7453 92 93 600. 2 1. 7453 95 03 600. 2 1. 7453 95. 03 1100. 4 1. 7453 107 1 1 319. 4 1. 7453 108. 79 600. 1 21. 0000 0. 00 524. 3 2. 8587 224. 42 550. 2 1, 7453 92. 93 318. 1 2. 9963 222. 72 600. 2 1. 7453 82. 69 2600. 4 3. 4142 218. 75 1050. 2 6. 3972 216. 02 228. 2 0. 7426 116. 93 800. 2 0. 7426 116. 93 1217. 2 0. 7426 114. 50 333. 2 21. 0000 28. 70 2400. 2 21. 0000 40 84 2600. 2 21. 0000 40. 84 3200. 4 14. 1881 110. 66 230. 4 14. 1881 112. 73 2292. 2 21 0000 69. 76 2000. 2 21. 0000 92. 00 1700. 2 21. 0000 92. 00 1050. 2 1. 7453 82. 69 1650. 4 14 1881 112 73 750. 1 15 1797 143. 96 300. 2 1. 7453 82. 69 525. 5 12 7951 146. 12 297. 5 12. 7951 146. 12 4100. 5 15 1512 173. 63 30. O 4 15 1512 160. 30 2031. 5 15. 1312 173. 63 100. 113 WAY CONC V. LOCAT ON START ARRIVAL CONC 7. LOCATION START ARRIVAL CONC 7. LOCATION START ARRIVAL FT TIME TIME FT T [ME TI ME FT T I ME TI ME 2 1 6267 325 65 94 67. 89 1 7453 325. 82. 69 84. 64 3 19 5726 2577 11 94 31. 47 21 OOOO 2577. 28. 70 48. 23 5 19 5726 2900 11 94 65 94 21 OOOO 2900. 28. 70 82. 69 6 19 5726 lOO o 11 77 11. 94 21 OOOO 100. 28 53 28. 70 7 19 5726 2700 7 13 1 1 77 21 OOOO 2700. 23. 88 28 53 8 21 OOOO 524 3 99 23 88 9 21 OOOO 1700 3 99 7 13 10 21 0000 1650 1 15 3 99 11 21 OOOO 4500 1 15 45 61 12 1 6267 2700 67 89 74 36 1 7453 2700. 84. 64 91 11 13 1 6267 2050 74 36 97 75 1 7453 2050. 91. 11 114 50 14 1 6267 600 74 36 76 18 1 7453 600. 91. 11 92 93 15 1 6267 600 76 18 78 28 1 7453 600 92. 93 95 03 16 1 6267 600 78 28 90 36 1 7453 600. 95. 03 107 11 17 1 6267 1100 78 28 82. 94 1 7453 1100. 95. 03 99 69 18 1 3441 319 o 82 94 84 61 1 6267 319. 90. 36 92 03 1 7247 319. 99 69 101. 36 19 1 3441 600 84 61 86 71 1 6267 600. 92. 03 94 13 1 7247 600. 101 36 103. 46 20 21 OOOO 524 00 1 15 21 2 6425 550 199 51 200 90 2 8440 550. 207. 67 209 05 2 8587 550 224 42 225. 81 22 1 6267 318 76 18 87 11 1 7453 318. 92. 93 103 87 23 2 9963 600 222 72 224 42 24 1 6267 2600 65 94 95 35 1 7453 2600. 82. 69 112 11 25 3 0863 1050 189 02 192 99 3 0901 1050. 193. 84 197 81 3 3922 1050 202 00 205. 97 26 6 3506 228 199 26 202 00 6 3972 228. 216. 02 218 75 27 6922 800 100 18 105 91 7426 800. 116 93 122 66 28 6922 1217 100 18 118 51 7426 1217. 116. 93 135 27 29 6922 333 97 75 100 18 7426 333. 114. 50 116 93 35 19 5726 2400 11 94 24 08 21 OOOO 2400. 28. 70 40 84 36 19 5726 2600 24 08 53 00 21 OOOO 2600. 40 84 69 76 37 19 5726 3200 24 08 53 78 21 OOOO 3200. 40. 84 70 53 38 12 6482 230 53 78 55 84 13 5706 230. 70. 53 72 60 14 1461 230 93 90 95 97 39 12 6482 2292 55 84 103 42 13 5706 2292. 72. 60 120 17 14 1461 2292 95 97 143 54 40 19 5726 2000 53 00 75 25 21 OOOO 2000. 69. 76 92 00 41 19 5726 1700 75 25 99 63 21 OOOO 1700. 92. 00 116 39 42 19 5726 1050 75 25 127 21 21 OOOO 1050. 92. 00 143 96 43 1 6267 1650 65 94 93 90 1 7453 1650 82. 69 110 66 44 12 6482 750 55 84 62 17 13 5706 750. 72. 60 78 92 14 1461 750 95 97 102 29 45 15 1797 300 143 96 146 12 46 1 6267 525 65 94 72 36 1 7453 525. 82. 69 89 12 47 10 9730 297 104 46 107 66 11 3158 297. 116. 39 119 59 1 1 3330 297 121 21 124 42 48 10 9730 4100 104 46 174 35 11 3158 4100. 116. 39 186 29 11 3330 4100 121 21 191 11 50 14 1843 30 137 74 139 24 15 0127 30. 145 90 147 40 15 0855 30 156 87 158 37 49 15 0127 2031 132 57 145 90 15 0855 2031. 143. 54 156 87 15 1459 2031 149 33 162 66 51 14 1843 100 137 74 138 05 15 0127 100. 145 90 146 20 15 0855 100 156 87 157 17 WAY CONC ■/. LOCATION START ARRIVAL CONC V. FT TIME TIME 18 1 7453 319. 107. 11 108 79 19 1 7453 600. 108. 79 110 89 25 3 4142 1050. 218 75 222 72 38 14 1881 230. 110. 66 112 73 39 14 1881 2292. 112. 73 160 30 44 14 1881 750. O 112 73 119 05 47 12 6957 297 129. 37 132 37 12. 7951 48 12 6957 4100. 129. 37 199 26 12. 7931 50 15 1459 30. 162. 66 164 15 13. 1312 49 15 1512 2031. 160 30 173 63 51 15 1459 100 162 66 162 96 13. 1312 LOCATION START ARRIVAL FT TIME TIME 114 VT 300 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.001) 7. NOW EXIST IN THE FOLLOWING JUNCTIONS JUNCTION CURRENT FUME CONCENTRATION TIME OF FIRST CONTAMINATION 2 1 . 7453 82. 69 3 1 . 7453 84. 64 4 21. 0000 28. 70 5 21. OOOO 28. 53 6 21. OOOO 23. 88 7 21. OOOO 3. 99 8 1 . 7453 91. 11 9 1. 7453 92. 93 10 1. 7453 95. 03 11 1. 7453 107 11 12 I. 7453 108. 79 13 2. 3924 225. 81 14 21. OOOO 1. 15 15 2. 8587 224. 42 16 2. 9963 222. 72 17 3. 4142 218. 75 18 6. 3972 216. 02 19 0. 7426 114. 50 20 0. 7426 116. 93 24 21. OOOO 40. 84 25 21. OOOO 69. 76 26 21. OOOO 92. 00 27 14. 1881 HO. 66 28 14. 1881 112. 73 29 15. 1797 143. 96 30 12. 7951 146. 12 31 15. 1512 160. 30 32 15. 1512 173. 63 AT 300 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS WAS IN THE FOLLOWING JUNCTIONS JUNCTION TOTAL EXPOSURE 1 0. 00 4 1004207 56 7 1036034. 75 10 64163. 91 13 67658. 85 16 75119. 23 19 24892 13 22 0. 00 25 860508. 69 28 570529. 50 31 565239 69 ITION TOTAL EXPOSURE 2 67753. 47 5 1004809. 63 8 65304. 12 11 62434. 07 14 1045969. 31 17 82695 36 20 24591. 96 23 O. OO 26 782655. 94 29 562159. 25 32 531584 69 JUNCTION TOTAL EXPOSUF 3 67186. 89 6 1021066. 31 9 64774. 44 12 61947. 17 15 72875 94 18 151281 02 21 O. OO 24 961717 25 27 573420. 88 30 452273. 47 <\T 360 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > 0.0010 X) NOW EXIST IN THE FOLLOWING AIRWAYS 115 NUMBER FROM TO LENGTH FT 2 2 3 325 3 4 1 2577 5 4 2 2900 6 5 4 100 7 6 5 2700 8 7 6 524 9 7 6 1700 10 14 7 1650 11 14 31 4500 12 3 8 2700 13 8 19 2050 14 8 9 600 15 9 10 600 16 10 11 600 17 10 11 1100 18 11 12 319 19 12 13 600 20 13 14 524 21 15 13 550 22 9 15 318 23 16 15 600 24 2 16 2600 25 17 16 1050 26 18 17 228 27 20 17 800 28 20 18 1217 29 19 20 333 35 4 24 2400 36 24 25 2600 37 24 27 3200 38 27 28 230 39 28 31 2292 40 25 26 2000 41 26 30 1700 42 26 29 1050 43 2 27 1650 44 28 29 750 45 29 30 300 46 2 30 525 47 30 31 297 48 30 18 4100 50 32 1 30 49 31 32 2031 51 32 1 100 •H CONC X START TIME LENGTH F1 2 1. 7453 82. 69 325. 2 21 0000 28. 70 2577. 2 21. OOOO 28. 70 2900. 2 21. OOOO 28. 53 lOO. 2 21. OOOO 23. 88 2700. O 1 21. OOOO 3.99 524. 1 21. OOOO 3. 99 1700. 1 21. OOOO 1 15 1650. 1 21. OOOO 1. 15 4500. 2 1. 7453 84. 64 2700. 2 1. 7453 91. 11 2050. 2 1. 7453 91. 11 600. 2 1. 7453 92. 93 600. 2 1. 7453 95. 03 600. O 2 1. 7453 95. 03 1100. 4 1. 7453 107. 11 319. 4 1. 7453 108. 79 600. 1 21. OOOO 0. 00 524. 3 2. 8587 224. 42 550. 2 1. 7453 92. 93 318. 1 2. 9963 222. 72 600. 2 1. 7453 82. 69 2600 4 3. 4142 218. 75 1050. 2 6. 3972 216. 02 228 2 O. 7426 116. 93 BOO. 2 0. 7426 116. 93 1217. 2 O. 7426 114. 50 333. 2 21. OOOO 2B. 70 2400 2 21. OOOO 40. 84 2600. 2 21. OOOO 40. 84 3200 4 14. 1881 110. 66 230. 4 14. 1881 112. 73 2292. 2 21. OOOO 69. 76 2000. 2 21. OOOO 92. 00 1700. O 2 21 OOOO 92. 00 1030. O 2 1. 7453 82. 69 1630 4 14. 1881 112. 73 750. 1 15. 1797 143. 96 300. 2 1. 7453 82. 69 525. 5 12. 7951 146 12 297. 5 12. 7951 146. 12 4100. 5 13. 1512 173 63 30. 4 13. 1312 160. 30 2031. 5 13. 1312 173. 63 lOO. 116 IWAY CONC ■/. LOCATION START ARRIVAL CONC X LOCATION START ARRIVAL CONC X LOCATION START ARRIVAL FT TIME TIME FT TIME TI ME FT T I ME TIME 2 1 . 6267 325. 65. 94 67. 89 1 . 7453 325. 82 69 84. 64 3 19. 5726 2577. 1 1 . 94 31. 47 21. OOOO 2577. 28 70 48 23 5 19. 5726 2900. 11. 94 65. 94 21. OOOO 2900. 28. 70 82. 69 6 19. 5726 100. 11. 77 11. 94 21. OOOO 100. 28. 53 28. 70 7 19. 5726 2700. 7. 13 11. 77 21. OOOO 2700. 23. 88 28. 53 8 21. 0000 524. 3.99 23. 88 9 21. 0000 1700. 3. 99 7. 13 10 21. 0000 1650. 1 15 3. 99 11 21. 0000 4500. 1. 15 45 61 12 1. 6267 2700. 67 89 74. 36 1. 7453 2700. 84. 64 91. 11 13 1 . 6267 2050. 74. 36 97. 75 1. 7453 2050. 91. 11 114. 50 14 1. 6267 600. 74. 36 76. 18 1. 7453 600. 91. 11 92. 93 15 1 . 6267 600. 76. 18 78. 28 1. 7453 600. 92 93 95. 03 16 1 . 6267 600. 78. 28 90. 36 1. 7453 600. 95. 03 107. 11 17 1 . 6267 HOO. 78 28 82. 94 1 7453 1100. 95. 03 99. 69 18 1. 3441 319. 82. 94 84. 61 1 . 6267 319. 90. 36 92. 03 1. 7247 319. 99. 69 101. 36 19 1. 3441 600. 84.61 86. 71 1 . 6267 600. o 92. 03 94 13 1. 7247 600. 101. 36 103. 46 20 21. 0000 524. 0. OO 1. 15 21 2. 6425 550. 199. 51 200. 90 2. 8440 550. 207. 67 209. 05 2. 8587 550. 224. 42 223. 81 22 1. 6267 318. 76. 18 87. 1 1 1. 7453 318. 92. 93 103. 87 23 2. 9963 600. 222 72 224. 42 24 1. 6267 2600 65. 94 95. 35 1 . 7453 2600 82. 69 112. 11 25 3. 0863 1050. 189. 02 192. 99 3. 0901 1050. 193. 84 197. 81 3. 3922 1050. 202 00 205. 97 26 6. 3506 228. 199. 26 202. 00 6. 3972 228. 216. 02 218. 75 27 0. 6922 800. 100. 18 105. 91 0. 7426 800. 116. 93 122. 66 28 0. 6922 1217. lOO. 18 118. 51 0. 7426 1217. 116. 93 135. 27 29 0. 6922 333. 97. 75 100. 18 0. 7426 333. 114. 50 116. 93 35 19. 5726 2400. 11.94 24. 08 21. OOOO 2400. 28. 70 40. 84 36 19. 5726 2600 24. 08 53. 00 21. OOOO 2600 40. 84 69. 76 37 19. 5726 3200. 24 08 53. 78 21. OOOO 3200. 40. 84 70. 53 38 12. 6482 230. 53. 78 55. 84 13. 5706 230. 70. 53 72. 60 14 1461 230. 93. 90 95. 97 39 12. 6482 2292. 55. 84 103. 42 13. 5706 2292. 72. 60 120. 17 14. 1461 2292. 95. 97 143. 54 40 19 5726 2000. 53. OO 75. 25 21. OOOO 2000. 69. 76 92. 00 41 19. 5726 1700. 75. 25 99. 63 21. OOOO 1700 92. 00 116. 39 42 19. 5726 1050. 75. 25 127. 21 21. OOOO 1050. 92. 00 143. 96 43 1 . 6267 1650. 65. 94 93. 90 1. 7453 1650. 82. 69 110. 66 44 12. 6482 750. 55. 84 62. 17 13. 5706 750. 72. 60 78. 92 14. 1461 750. 95. 97 102. 29 45 15. 1797 300. 143. 96 146. 12 46 1. 6267 525. 63 94 72. 36 1. 7453 525. 82. 69 89. 12 47 10. 9730 297. 104. 46 107. 66 11. 3158 297. 116. 39 119. 59 11. 3330 297. 121. 21 124. 42 48 10. 9730 4100. o 104. 46 174. 35 11. 3158 4100. 116. 39 186. 29 11. 3330 4100. 121. 21 191. 11 50 14. 1843 30. 137. 74 139. 24 13. 0127 30. 143 90 147. 40 13. 0855 30. 156. 87 158. 37 49 15. 0127 2031. 132. 57 145 90 15. 0855 2031. 143. 54 156. 87 15 1459 2031. 149. 33 162. 66 51 14. 1843 100. 137 74 138. 05 15. 0127 100. 145 90 146 20 15 0855 100. 156. 87 157. 17 AIRWAY CONC 7. LOCATION START ARRIVAL CONC X I FT TIME TIME 18 1. 7453 319. 107. 11 108. 79 19 1. 7453 600. 108. 79 no 89 25 3. 4142 1050. 218 75 222. 72 38 14. 1881 230. 110. 66 112 73 39 14. 1881 2292. 112. 73 160. 30 44 14. 1881 750. 112. 73 119 05 47 12. 6957 297. 129. 37 132. 57 12. 7951 48 12. 6957 4100. 129. 37 199. 26 12. 7951 50 15. 1459 30. 162 66 164. 15 15. 1512 49 15. 1512 2031. 160. 30 173. 63 51 15. 1459 100. 162. 66 162. 96 15. 1512 LOCATION START 297. O 146. 12 149. 33 4100. 146 12 216. 02 30. O 173 63 175. 12 173. 63 173. 93 117 VT 360 MIN. AFTER THE START OF CONTAMINATION CRITICAL FUME CONCENTRATIONS (FUMES > O. OOl > X NOW EXIST IN THE FOLLOWING JUNCTIONS CURRENT FUME CONCENTRATION 1 . 7453 1. 7453 21.0000 21.0000 21. 0000 21. OOOO 1. 7453 1. 7453 1. 7453 1. 7453 1. 7453 2. 3924 21. 0000 2. 8587 2. 9963 3. 4142 6. 3972 O. 7426 0. 7426 21 OOOO 21.0000 21.0000 14. 1881 14. 1881 15. 1797 12. 7951 15. 1512 15. 1512 TIME OF FIRST CONTAMINATION 82. 69 84.64 28. 70 28. 53 23. 88 3.99 91. 11 92. 93 95.03 107. 11 108. 79 225. 81 1. 15 224. 42 222.72 218. 75 216. 02 114. SO 116. 93 40. 84 69. 76 92. OO 110 66 112. 73 143. 96 146. 12 160. 30 173. 63 AT 360 MIN. AFTER THE START OF CONTAMINATION THE TOTAL EXPOSURE TO THE CONTAMINANT MEASURED IN PPM*HOURS UAS IN THE FOLLOWING JUNCTIONS JUNCTION TOTAL EXPOSl 1 O. 00 4 1214207. 50 7 1246034. 63 10 81616. 95 13 91582. 59 16 105082 70 19 32318. 50 22 0. 00 25 1070508. 75 28 712410. 31 31 716751. 50 END OF RUN JUNCTION TOTAL EXPOS 2 85206 52 5 1214809. 75 8 82757. 16 11 79887. 11 14 1255969. 38 17 116837 52 20 32018. 34 23 0.00 26 992655. 88 29 713956. 75 32 683096 44 JUNCTION TOTAL EXPOS 3 B4639. 94 6 1231066. 25 9 82227. 48 12 79400. 20 15 101463. 10 18 215253. 45 21 0. 00 24 1171717. 25 27 717301. 69 30 580224. 63 6U.S GOVERNMENT PRINTING OFFICE: 1982 - 605 - 015/109 IT.-BU.OF MIN ES,PGH.,P A. 26455 fo ED-132 ;• ** v % y>, v <*►. * • < ■> ' .or /% -Sr.- /\ -.w* ** v \ • ,*" ..■ **«.* .^%: %/ .• Jfe-. \./ .-»£&•. %<* .0* . * ^ v : ^* 1 <* .. °* *••• ** v \ V X AA--°* A-'<0&'\ A'&kX ^*W ***** /iifef- ^ / ... ^ 4 " t% \^ ... \''°' i}, \o *<>/^*«»* ^'•••••*^* ^<,**^^*V* \ ^W- %>„ . C ° * k i^'. °° A 4 •c^^^ ' v-.£r-v* VWv Vwv* v-»b?.*v \ •■ywss"% ■ •— \*' V** -\iW- ^' ; ^ . • • • . •<>. 0* ,.\^._*< *0« *"**, V p ^ °y^w* ** ^ : « ^1* ^ _« C0 ^ !!);*!«! m i! !jr.r.H!;s:&; Ri?:;! :&:;;* tjii mm ^Mm^^V'r«"^^m