THE "HOW-TO-DO-IT" BOOKS Carpentry for Boys A book which treats, in a most practical and fascinating manner all subjects pertaining to the " King of Trades "; showing the care and use of tools; drawing; designing, and the laying out of work; the principles involved in the building of various kinds of struc- tures, and the rudiments of architecture. It contains over two hundred and fifty illustrations made especially for this work, and includes also a complete glossary of the technical terms used in the art. The most comprehensive volume on this subject ever pub- lished for boys. Electricity for Boys The author has adopted the unique plan of setting forth the funda- mental principles in each phase of the science, and practically applying the work in the successive stages. It shows how the knowledge has been developed, and the reasons for the various phenomena, without using technical words so as to bring it within the compass of every boy. It has a complete glossary of terms, and is illustrated with two hundred original drawings. Practical Mechanics for Boys This book takes the beginner through a comprehensive series of practical shop work, in which the uses of tools, and the structure and handling of shop machinery are set forth; how they are utilized to perform the work, and the manner in which all dimensional work is carried out. Every subject is illustrated, and model building explained. It contains a glossary which comprises a new system of cross references, a feature that will prove a welcome departure in explaining subjects. Fully illustrated. Price 60 cents per volume THE NEW YORK BOOK COMPANY 147 Fourth Avenue New York The "How-to-do-it" Books CARPENTRY FOR BOYS THE "HOW-TO-DO-IT" BOOKS CARPENTRY FOR BOYS in simple language, including chapters on drawing, laying out work, designing and architecture WITH 250 ORIGINAL ILLUSTRATIONS By J. S. ZERBE, M.E. AUTHOR OP ELECTRICITY FOR BOYS PRACTICAL MECHANICS FOR BOYS THE NEW YORK BOOK COMPANY New York TH5607 .2^ Copyright, 1914, by THE NEW YORK BOOK COMPANY /»4 M -5 J9I4 ©CI,A3T6'28 3 CONTENTS Introductory I. Tools and Their Uses Page 5 Knowledge of Tools. A Full Kit of Tools. The Hatchet. The Claw Hammer. About Saws — Cross-cut, Eip Saw, Back Saw. Planes — ^Jack Plane, Smoothing Plane, Fore Plane. Gages. Chisels — Firmer Chisel. Trusses. Saw Clamps. The Grindstone. Oilstone. Miter Box. The Work Bench. II. How TO Grind and Sharpen Tools Page 16 Care of Tools — First Requisites. Saws — How to Set. Saw-set Errors. Saw Setting Block. Filing. The An- gle of Filing. Filing Pitch. Saw Clamps. Filing Sug- gestions. The File, Using the File. The Grindstone. In the Use of Grindstones. Correct Way of Holding Tool in Grinding. Care of Stone. Incorrect Way to Hold Tool. Way to Revolve or Turn Grindstone. The Plane. The Gage. Chisels. General Observations. III. How TO Hold and Handle Tools Page 29 On the Holding of Tools. The Saw. How to Start a Saw. Sawing on a Line. The First Stroke. The Start- ing Cut for Cross-cutting. Forcing a Saw. The Stroke. The Chinese Saw. Things to Avoid. The Plane. Angle for Holding Planes. Errors to be Avoided. The Gage. Holding the Gage. The Draw-knife. ii CONTENTS IV. How TO Design Articles Page 39 Fundamentals of Designing. The Commercial Instinct. First Requirements of Designing. Conventional Styles. The Mission Style. Cabinets. Harmony of Parts. Har- mony of Wood. V. How Work is Laid Out Page 43 Concrete Examples of Work. Dimensions. Laying Out a Table. The Top. The Mortises. The Facing Boards. The Tenons. Tools Used. Chamfered Tenons. The Frame. The Drawer Support. The Table Frame. The Top. The Drawer. How Any Structure is Built Up. Observations About Making a Box. Points. Beveling and Mitering. Proper Terms. Picture Frames. Dovetail Points. Box Points. First Steps in Dovetailing. Cut- ting Out the Spaces. Tools Used in Laying Out Mor- tises and Tenons. VL The Uses of the Compass and the Square Page 59 The Compass. Determining Angles. Definition of De- grees. Degrees Without a Compass. How Degrees are Calculated by the Dividers. VIL How the Different Structural Parts are Desig- nated Page 65 Importance of Proper Designation. How to Explain Mechanical Forms. Defining Segment and Sector. Ar- cade, Arch, Buttress, Flying Buttress, Chamfer, Cotter, Crenelated, Crosses, Curb Roof, Cupola, Crown Post, Corbels, Dormer, Dowel, Drip, Detent, Extrados, En- grailed, Facet, Fret, Fretwork, Frontal, Frustrums, Fyl- fot, Gambrel Roof, Gargoyle, Gudgeon, Guilloche. Half Timbered, Hammer Beam, Header, Hip Roof, Hood CONTENTS iii Molding, Inclave, Interlacing Arch, Inverted, Inverted Arch, Key Stone, King Post, Label, Louver, Lintel, Lug, M-Roof, Mansard Roof, Newel, Parquetry, Peen, Pend- ant, Pendastyle, Pedestal, Plinth, Portico, Plate, Queen Post, Quirk Molding, Re-entering Angle, Rafter, Scarf- ing, Scotia Molding, Sill, Skewback, Spandrel, Strut, Stud, Stile, Tie Beam, Timber, Trammel, Turret, Tran- som, Valley Roof. VIII. Drawing and Its Utility Page 73 Fundamentals in Drawing. Representing Objects. Forming Lines and Shadows. Analysis of Lines and Shadings. How to Show Plain Surfaces. Concave Sur- faces. Convex Surfaces. Shadows from a Beam. Flat Effects. The Direction of Light. Raised Surfaces. De- pressed Surfaces. Full Shading. Illustrating Cube Shading. Shading Effect. Heavy Lines. Perspectives. True Perspective of a Cube. Isometric Cube. Flat- tened Perspective. Technical Designations. Sector and Segment. Terms of Angles. Circles and Curves. Ir- regular Curves. Ellipses and Ovals. Focal Points. Pro- duced Line. Spirals, Perpendicular and Vertical. Signs to Indicate Measurement. Dejfinitions. Abscissa. Angle. Apothegm. Apsides or Apsis. Chord. Cycloid. Conoid. Conic Section. Ellipsoid. Epicycloid. Evolute. Flying Buttress. Focus. Gnomes. Hexagon. Hyperbola. Hy- pothenuse. Incidental. Isosceles. Triangle. Parabola. Parallelogram. Pelecoid. Polygons. Pyramid. Rhomb. Sector. Segment. Sinusoid. Tangent. Tetrahedron. Vertex. IX. Moldings, with Practical Illustrations in Embel- lishing Work Page 93 Moldings. The Basis of Moldings. The Simplest Mold- iv CONTENTS ings. The Astragal. The Cavetto. The Ovolo. The Torus. The Apothegm. The Cymatium. The Ogee. Ogee Recta. Ogee Reversa. The Reedy. The Casement. The Roman-Doric Column. Lesson from the Doric Column. Applying Molding. Base. Embellishments. Straight-faced Molding. Plain Molding. Base. Diversi- fied Uses. Shadows Cast by Moldings. X. An Analysis of Tenoning, Mortising, Rabbeting and Beading Page 104 Where Mortises Should be Used. Depth of Mortises. Rule for Mortises. True Mortise Work. Steps in Cut- ting Mortises. Things to Avoid in Mortising. Lap-and- Butt Joints. Scarfing. The Tongue and Groove. Bead- ing. Ornamental Bead Finish. The Bead and Rabbet. Shading with Beads and Rabbets. XI. House Building Page 113 House Building. The Home and Embellishments. Beau- ty Not Ornamentation. Plain Structures. Colonial Type. The Roof the Keynote. Bungalow Types. Gen- eral House Building. Building Plans. The Plain Square-Floor Plan. The Rectangular Plan. Room Meas- urements. Front and Side Lines. The Roof. Roof Pitch. The Foundation. The Sills. The Flooring Joist. The Studding. Setting Up. The Plate. Intermediate Stud- ding. Wall Headers. Ceiling Joist. Braces. The Raft- ers. The Gutter. Setting Door and Window Frames. Plastering and Finish Work. XII. Bridges, Trussed Work and Like Structures. .Page 130 Bridges. Self-supporting Roofs. Common Trusses. The Vertical Upright Truss. The Warren Girder. The Bow- string Girder. Fundamental Truss Forms. CONTENTS V XIII. The Best Woods for the Beginner Page 134 The Best Woods. Soft Woods. Hard Woods. The Most Difficult Woods. The Hard-ribbed Grain in Wood. The Easiest Working Woods. Differences in the Working of Woods. Forcing Saws in Wood. XIV. Wood Turning Page 138 Advantages of Wood Turning. Simple Turning Lathe. The Rails. The Legs. Centering Blocks. The Tail- stock. The Tool Rest. Materials. The Mandrel. Fly- wheel. The Tools Required. XV. On the Use of Stains Page 147 Soft Wood. Use of Stains. Stains as Imitations. Good Taste in Staining. Great Contrasts Bad. Staining Contrasting Woods. Hard Wood Imitations. Natural Effects. Natural Wood Stains. Polishing Stained Sur- faces. XVI. The Carpenter and the Architect .Page 152 XVII. Useful Articles to Make Page 155 Common Bench. Its Proportions. Square Top Stool. Folding Blacking Box. Convenient Easel. Hanging Bookrack. Sad Iron Holder. Bookcase. Wood-box. Parallel Bars for Boys' Use. Mission Writing Desk. Screen Frame. Mission Chair. Grandfather's Clock. Knockdown and Adjustable Bookcase. Coal Scuttle Frame or Case. Mission Arm Chair. Dog-house. Settle, With Convenient Shelves. Towel Rack. Sofa Framework. XVIII. Special Tools and Their Uses Page 170 Bit and Level Adjuster. Miter Boxes. Swivel Arm Up- rights. Movable Stops. Angle Dividers. "Odd Job" vi CONTENTS Tool. Bit Braces. Ratchet Mechanism. Interlocking Jaws. Steel Frame Breast Drills. Horizontal Boring. 3-Jaw Chuck. Planes. Rabbeting, Beading and Match- ing. Cutter Adjustment. Depth Gage. Slitting Gage. Dovetail Tongue and Groove Plane. Router Planes. Bottom Surfacing. Door Trim Plane. XIX. Roofing Trusses Page 185 Characteristics of Trusses. Tie Beams. Ornamenta- tion. Objects of Beams, Struts and Braces. Utilizing Space. Types of Structures. Gambrel Roof. Purlin Roof. The Princess Truss. Arched, or Cambered, "He Beam Truss. The Mansard. Scissors Beam. Braced Collar Beam. Rib and Collar Truss. Hammer-beam Truss. Flying Buttress. XX. On the Construction of Joints Page 197 Definition and Uses. DijQferent Types. Bridle Joint. Spur Tenon. Saddle Joints. Joggle Joint. Heel Joints. Stub Tenon. Tusk Tenon. Double Tusk Tenon. Cogged Joints. Anchor Joints. Deep Anchor Joints. XXL Some Mistakes and a Little Advice in Carpen- try Page 205 Lessons From Mistakes. Planing the Edge of a Board Straight. Planing it Square. Planing to Dimensions. Holding the Plane. How it Should be Run on the Edge of the Board. Truing With the Weight of the Plane. A Steady Grasp. In Smoothing Boards. Correct Sand- papering. Gluing. Removing Surplus Glue. Work Edge and Work Side. The Scribing and Marking Line. Finishing Surfaces. Sawing a Board Square. The Stroke of the Saw. Sawing Out of True. LIST OF ILLUSTRATIONS FIG. 1. A typical work bench Frontispiece PAGE 2. Hatchet 6 3. Hammer 7 4. Common saw 7 5. Plane 8 6. Jack plane bit 9 6a. Fore plane bit 10 7. Firmer chisel 11 7a. Mortising chisel 12 8. Trestle 12 9. Miter box 13 10. Incorrect saw setting 17 10a. Correct saw setting 17 11. Saw setting device 17 12. Filing angle 18 13. Rip saw teeth 19 14. Cross cut saw teeth 20 15. Filing clamp 21 16. Grindstone 23 17. Correct manner of holding tool 24 18. Incorrect way of holding tool 24 19. Gage 26 20. Starting a saw 31 21. Wrong sawing angle 32 22. Correct sawing angle 33 23. Thrust cut 34 24. Chinese saw 34 25. Moving angle for plane 35 26. Holding gage 36 27. Laying out table leg 43 28. The first marking line 44 29. Scribing mortise line 44 2 vii viii LIST OF ILLUSTEATIONS FIG. PAGE 30. The corner mortises 44 31. The side rail 46 32. Scribing the tenons 46 33. Cross scoring 47 34. The tenon 47 35. Finishing the tenon 47 36. The tenon and mortise 48 37. The drawer support 48 38. Drawer cleats 49 39. Assembled table frame 50 40. The top 51 41. The drawer 52 42. Bevel joint 53 43. Miter joint 53 44. Picture frame joint 54 45. Initial marks for dovetails 55 46. End marks for dovetails 55 47. Angles for dovetails 55 48. Cutting out recesses for dovetails 56 49. Tongues for dovetails 56 50. Recess for dovetails 56 51. Determining angles 61 52. Marking degrees 63 53. Angles from base lines 63 54. Stepping off spaces 63 55. Arcade 67 56. Arch 67 57. Buttress 67 58. Chamfer 67 59. Cooter 67 60. Crenelated 67 61. Crosses 67 62. Curb roof 67 63. Cupola 67 64. Console 67 65. Corbels 67 66. Dormer 67 67. Dowel 67 68. Drips 67 LIST OF ILLUSTRATIONS ix FIG. PAGE 69. Detail 68 70. Extrados 68 71. Engrailed 68 72. Facet 68 73. Fret 68 74. Frontal 68 75. Frustrums 68 76. Fylfat 68 77. Gambrel 68 78. Gargoyle 68 79. Gudgeon 68 80. Guilloche 68 81. Half timbered 68 82. Hammer beam 68 83. Haunches 69 84. Header 69 85. Hip roof 69 86. Hood molding 69 87. Inclave 69 88. Interlacing arch 69 89. Invected 69 90. Inverted arch 69 91. Keystone 69 92. King post 69 93. Label 69 94. Louver 69 95. Lintel 70 96. Lug 70 97. M-roof 70 98. Mansard roof 70 99. Newel post 70 100. Parquetry 70 101. Peen, or pein 70 102. Pendant 70 103. Pentastyle 70 104. Pedestal 70 105. Pintle 70 106. Portico 70 107. Plate 70 X LIST OF ILLUSTRATIONS FIG. PAGE 108. Queen post 71 109. Quirk molding 71 110. Re-entering 71 111. Rafter 71 112. Scarfing 71 113. Scotia molding 71 114. Sill 71 115. Skew back 71 116. Spandrel 71 117. Strut 71 118. Stud, studding 71 119. Stile 72 120. Trammel 72 121. Turret 72 122. Transom 72 123. Valley roof 72 125. Plain line 74 126. Concave shading 74 i 127. Convex shading 74 128. Wave shading 75 ' 129. Light past concave surface 75 I 130. Light past convex surface 75 \ 131. Plain surface 75 132. Outlines 76 133. Raised surface 77 134. Depressed surface 77 135. Shading raised surfaces 78 136. Shading depressed surfaces 78 137. Plain cubical outline 79 138. Indicating cube 79 139. Confused lines 79 140. Heavy horizontal lines 80 141. Heavy vertical lines 80 142. Isometric cube 81 143. Cube and circle 81 144. Flattened perspective 82 145. Angles in isometric cube 83 146. Plain circle 84 147. Sphere shading 84 LIST OF ILLUSTEATIONS xi FIG. PAGE 148. Drawing regular ellipse 86 149. Drawing irregular ellipse 88 150. Drawing spiral 89 151. Abscissa 90 152. Angle 91 153. Apothegm 91 154. Apsides, or apsis 91 155. Chord 91 156. Convolute 91 157. Conic sections 91 158. Conoid 91 159. Cycloid 91 160. Ellipsoid 91 161. Epicycloid 91 162. Evolute 91 163. Focus 91 164. Gnome 91 165. Hyperbola 91 167. Hypothenuse 91 168. Incidence 92 169. Isosceles triangle 92 170. Parabola 92 171. Parallelogram 92 172. Pel^coid 92 173. Polygons 92 174. Pyramid 92 175. Quadrant 92 176. Quadrilateral 92 177. Khomb 92 178. Sector 92 179. Segment 92 180. Sinusoid 92 181. Tangent 92 182. Tetrahedron 92 183. Vertex 92 184. Volute 92 185. Band (molding) 94 186. Astragal (molding) 94 187. Cavetto (molding) 94 xii LIST OF ILLUSTRATIONS MG. PAGE 188. Ovolo (molding) 94 189. Torus (molding) 95 190. Apophyges (molding) 95 191. Cymatium (molding) 95 192. Ogee-recta (molding) 95 193. Ogee-reversa (molding) 96 194. Bead (molding) • 96 195. Casement (molding) 97 196. The Doric column 98 197. Front of cabinet 100 198. Facia board 100 199. Molding on facia board 100 200. Ogee-recta on facia 101 201. Trim below facia 101 202. Trim below ogee 101 203. Trim above base 102 204. Trim above base molding 102 205. Shadows cast by plain moldings 103 206. Mortise and tenon joint 105 207. Incorrect mortising 105 208. Steps in mortising 106 209. The shoulders of tenons 108 210. Lap-and-butt joint 108 211. Panel joint 109 212. Scarfing 109 213. Tongue and groove 110 214. Beading 110 215. Outside beading finish 110 216. Edge beading 11 217. Corner beading 11 218. Point beading 11 219. Round edge beading 11 220. Beading and molding 11 221. First square house plan 11 222. First rectangular house plan 118 223. Square house to scale 119 224. Rectangular house to scale 120 225. Front elevation of square house 121 226. Elevation of rectangular house 121 LIST OF ILLUSTEATIONS xiii FIG. PAGE 227. Illustrating one-third pitch 122 228. Illustrating half pitch ^ 122 229. The sills at the corner 123 230. The joist and sills 123 231. The plate splice 124 232. The rafters 125 233. The gutter 126 234. The cornice 127 234a. The finish without gutter 128 235. Common truss 130 236. Upright truss 131 237. Vertical upright truss 131 238. Warren girder 132 239. Extended Warren girder 132 240. Bowstring girder 132 241. Frame details of wood turning lathe 139 242. Tail stock details 133 243. Tool rest details 142 244. Section of mandrel 143 245. View of turning lathe 145 246. Turning tools 146 247. Bench 155 248. Stool 156 249. Blacking box 156 250. Easel 157 251. Hanging book rack 158 252. Book shelf 159 253. Wood box 160 254. Horizontal bars 161 255. Mission desk 161 256. Screen frame 162 257. Mission chair 162 258. Grandfather's clock 163 259. Frame for bookcase 164 260. Coal scuttle case 165 261. Mission arm chair 165 262. Dog house 166 263. Settle 167 264. Towel rack 168 xiv LIST OF ILLUSTEATIONS FIG. PAGE 265. Mission sofa frame 168 266. Bit and square level 170 267. Metal miter box 171 268. Parts of metal miter box 172 269. Angle dividers 173 270. An "odd job" tool 174 271. Universal- jaw brace 176 272. Taper-shank bit brace 176 273. Alligator-jaw brace 176 274. Steel frame breast drill 177 275. Steel frame breast drill 177 276. Steel frame dreast drill 177 277. Details of metal plane 179 278. Rabbet, matching and dado plane 180 279. Molding and beading plane 181 280. Dovetail tongue and groove plane 182 281. Router planes 183 282. Router planes 183 283. Door trim plane 184 284. Gambrel roof 187 285. Purlin roof 188 286. Princess truss 189 287. Arched, or cambered, tie beam 190 288. The mansard 191 289. Scissors beam 192 290. Braced collar beam 193 291. Rib and collar truss 194 291i. Hammer-beam truss 195 292. Bridle joints 197 293. Spur tenons 198 294. Saddle joints 198 295. Joggle joints 199 296. Framing joints 199 297. Heel joints 200 298. Stub tenon 200 299. Tusk tenon 201 300. Double tusk tenon 202 301. Cogged joints 203 302. Anchor joint 203 303. Deep anchor joint 204 CARPENTRY A PRACTICAL COURSE, WHICH TELLS IN CONCISE AND SIMPLE FORM "HOW TO DO IT" INTRODUCTORY Caepentby is the oldest of the arts, and it has been said that the knowledge necessary to make a good carpenter fits one for almost any trade or occupation requiring the use of tools. The hatchet, the saw, and the plane are the three primal implements of the carpenter. The value is in knowing how to use them. The institution of Manual Training Schools everywhere is but a tardy recognition of the value of systematic training in the use of tools. There is no branch of industry which needs such diversi- fication, in order to become ejfficient. The skill of the blacksmith is centered in his ability to forge, to weld, and to temper ; that of the machinist depends upon the callipered dimensions of his product; the painter in his taste for har- mony; the mason on his ability to cut the stone accurately; and the plasterer to produce a uni- form surface. But the carpenter must, in order to be an expert, combine all these qualifications, 2 CAEPENTEY FOE BOYS in a greater or less degree, and his vocation may justly be called the King of Trades. Eightly, therefore, it should be cultivated in order to learn the essentials of manual training work. But there is another feature of the utmost im- portance and value, which is generally overlooked, and on which there is placed too little stress, even in many of the manual training schools. The training of the mind has been systematized so as to bring into operation the energies of all the brain cells. Manual training to be efficient should, at the same time, be directed into such channels as will most widely stimulate the muscular devel- opment of the child, while at the same time cul- tivating his mind. There is no trade which offers such a useful field as carpentry. It may be said that the vari- ous manual operations bring into play every muscle of the body. The saw, the plane, the hammer, the chisel, each requires its special muscular energy. The car- penter, unlike the blacksmith, does not put all his brawn into his shoulders, nor develop his torso at the expense of his other muscles, like the mason. It may also be said that, unlike most other occupations, the carpenter has both out-of- door and indoor exercise, so that he is at all times able to follow his occupation, summer or INTEODUCTORT 3 winter, rain or shine; and this also further illus- trates the value of this branch of endeavor as a healthful recreation. It is the aim of this book to teach boys the primary requirements — not to generalize — ^but to show how to prepare and how to do the work; what tools and materials to use ; and in what man- ner the tools used may be made most serviceable, and used most advantageously. It would be of no value to describe and illustrate how a bracket is made; or how the framework of a structure is provided with mortises and tenons in order to hold it together. The boy must have something as a base which will enable him to design his own creations, and not be an imitator; his mind must develop with his body. It is the principal aim of this book to give the boy some- thing to think about while he is learning how to bring each individual part to perfection. If the boy understands that there is a principle underlying each structural device ; that there is a reason for making certain things a definite way, he is imbued with an incentive which will sooner or later develop into an initiative of his own. It is this phase in the artisan's life which deter- mines whether he will be merely a machine or an intelligent organism. This work puts together in a simple, concise 4 CAEPENTEY FOE BOYS form, not only the fundamentals which every mechanic should learn to know, but it defines every structural form used in this art, and illustrates all terms it is necessary to use in the employment of carpentry. A full chapter is devoted to drawings practically applied. All terms are diagrammed and defined, so that the mind may readily grasp the ideas involved. Finally, it will be observed that every illustra- tion has been specially drawn for this book. We have not adopted the plan usually followed in books of this class, of taking stock illustrations of manufacturers' tools and devices, nor have we thought it advisable to take a picture of a tool or a machine and then write a description around it. We have illustrated the book to explain ^^how to do the work'^; also, to teach the boy what the trade requires, and to give him the means whereby he may readily find the form of every device, tool, and structure used in the art. CARPENTRY FOR BOYS CHAPTER I TOOLS AISTD THEIR USES Knowledge of Tools. — A knowledge of tools and their uses is the first and most important require- ment. The saw, the plane, the hatchet and the hammer are well known to all boys; but how to use them, and where to use the different varieties of each kind of tool, mnst be learned, because each tool grew out of some particular require- ment in the art. These uses will now be explained. A Full Kit of Tools. — A kit of tools necessary for doing any plain work should embrace the fol- lowing: 1. A Hatchet. 2. A Claw Hammer — two sizes preferred. 3. Cross-cut Saw, 20 inches long. 4. Rip Saw, 24 inches long. 5. Wooden Mallet. 6. Jack Plane. 7. Smoothing Plane. 8. Compass Saw. 9. Brace. 10. Bits for Brace, ranging from 14 inch to 1 inch diameter. 11. Several small Gimlets. 12. Square. 13. Compass. 14. Draw-knife. 15. Rule. 16. Two Gages. 17. Set of Firmer Chisels. 18. Two Mortising Chisels. 19. Small Back Saw. 20. Saw Clamps. 21. Miter Box. 22. Bevel Square. 23. Small Hand Square. 24. Pliers. 25. Pair of Awls. 26. Hand Clamps. 27. Set Files. 28. Glue Pot. 29. Oil Stone. 30. Grindstone. 31. Trusses. 32. Work Bench. 33. Plumb Bob. 34. Spirit Level. 6 CAEPENTEY FOE BOYS The Hatchet. — The hatchet should be ground with a bevel on each side, and not on one side only, as is customary with a plasterer's lathing hatchet, because the blade of the hatchet is used for trimming off the edges of boards. Unless ground off with a bevel on both sides it cannot be controlled to cut accurately. A light hatchet is preferable to a heavy one. It should never be used for nailing purposes, except in emergencies. The pole of the hammer — that part which is gen- erally used to strike the nail with — is required in order to properly balance the hatchet when used for trimming material. The Claw Hammer. — This is the proper tool for driving nails and for drawing them out. Habits should be formed with the beginner, which will be of great service as the education proceeds. TOOLS AND THEIR USES 7 One of these habits is to persist in using the tool for the purpose for which it was made. The expert workman (and he becomes expert because of it) makes the hammer do its proper work; and so with every other tool. jrtg.6. About Saws. — There are four well-defined kinds. First, a long, flat saw, for cross-cutting. Second, a slightly larger saw for ripping pur- poses. Third, a back saw, with a rib on the rear edge to hold the blade rigid, used for making tenons ; and, fourth, a compass or keyhole saw. 8 CARPENTRY FOR BOYS Cross-cuts. — The difference between a cross- cut and a rip saw is, that in the latter the teeth have less pitch and are usually larger than in the cross-cut saw. The illustrations (Figs. 13 and 14) will distinctly show the difference in the teeth. When a cross-cut saw is used for ripping along the grain of the wood, the teeth, if disposed at an angle, will ride over the grain or fiber of the JT'z^.a. wood, and refuse to take hold or bite into the wood. On the other hand, if the rip saw is used for cross-cutting purposes, the saw kerf will be rough and jagged. The back saw is used almost exclusively for making tenons, and has uniformly fine teeth so as to give a smooth finish to the wood. Planes. — The plane may be called the aesthetic tool in the carpenter's kit. It is the most difficult tool to handle and the most satisfactory when thoroughly mastered. How to care for and TOOLS AND THEIR USES 9 handle it will be referred to in a subsequent chap- ter. We are now concerned with its uses only. Each complete kit must have three distinct planes, namely, the jack plane, which is for taking off the rough saw print surface of the board. The short smoothing plane, which is designed to even up the inequalities made by the jack plane; and the long finishing plane, or fore plane, which is in- tended to straighten the edges of boards or of finished surfaces. jE^tt/,C ^Si^a^'^Mi^Uts The Jack Plane.— This plane has the cutting edge of its blade ground so it is slightly curved (Fig. 6), because, as the bit must be driven out so it will take a deep bite into the rough surface of the wood, the curved cutting edge prevents the corner edges of the bit from digging into the planed surface. On the other hand, the bits of the smoothing and finishing planes are ground straight across their cutting edges. In the foregoing we have not enumerated the different special planes, designed 3 10 CAEPENTRY FOE BOYS to make beads, rabbets, tongues and grooves, but each type is fully illustrated, so that an idea may be obtained of their characteristics. (Fig. 6a). Gages. — One of the most valuable tools in the whole set is the gage, but it is, in fact, the least known. This is simply a straight bar, with a sharpened point projecting out on one side near I^-^9' JTareL-p^an^ Alf ^. its end, and having an adjustable sliding head or cheekpiece. This tool is indispensable in making mortises or tenons, because the sharpened steel point which projects from the side of the bar, serves to outline and define the edges of the mor- tises or tenons, so that the cutting line may readily be followed. This is the most difficult tool to hold when in use, but that will be fully explained under its proper head. Each kit should have two, as in making mortises and tenons one gage is required for each side of the mortise or tenon. Chisels. — Two kinds are found in every kit — TOOLS AND THEIR USES 11 one called the firmer (Fig. 7) and the mortising chisel. The firmer has a flat body or blade, and a full set ranges in width from three-eighths of an inch to two inches. The sizes most desirable and useful are the one-half inch, the inch and the inch-and-a-half widths. These are used for trim- ming out cross grains or rebates for setting door Jig.?. locks and hinges and for numerous other uses where sharp-end tools are required. The Mortising Chisel. — The mortising chisel (Fig. 7a), on the other hand, is very narrow and thick, with a long taper down to the cutting edge. They are usually in such widths as to make them stock sizes for mortises. Never, under any cir- cumstances, use a hammer or hatchet for driving chisels. The mallet should be used invariably. Trusses. — There should be at least two, each three feet in length and twenty inches in height. Saw Clamps. — These are necessary adjuncts, and should be made of hard wood, perfectly 12 CARPENTEY FOE BOYS straight and just wide enough to take in the nar- row back saw. The illustration shows their shape and form. The GRiNDSTo:tTEs. — ^It is better to get a first- class stone, which may be small and rigged up ji;g.7fi jF^tSM. with a foot treadle. A soft, fine-grained stone is most serviceable, and it should have a water tray, and never be used excepting with plenty of water. An Oil Stone is as essential as a grindstone. For giving a good edge to tools it is superior to a water stone. It should be provided with a top, and covered when not in use, to keep out dust TOOLS AND THEIE USES 13 and grit. These are the little things that con- tribute to success and should be carefully ob- served. The Miter Box. — This should be 14 inches long and 3" by 3" inside, made of hard wood f " thick. The sides should be nailed to the bottom, as shown. The Work Bench. — In its proper place we show in detail the most approved form of work bench, fitted with a tool rack to hold all the tools, con- Jp^tg.9. veniently arranged. In this chapter we are more particularly concerned with the uses of tools than their construction; and we impress on boys the necessity of having a place for everything, and that every tool should be kept in its proper place. A carpenter's shop filled with chips, shavings and other refuse is not a desirable place for the in- discriminate placing of tools. If correct habits are formed at the outset, by carefully putting each tool in its place after using, it will save many an hour of useless hunting and annoyance. One of the most important things in laying off 14 CAEPENTRY FOR BOYS work, for instance, on trusses, is the disposition of the saw and square. Our illustration shows each truss with side cleats, which will permit the user temporarily to deposit the saw or the square so that it will be handy, and at the same time be out of the way of the work and prevent either of the tools from being thrown to the floor. In the same way, and for the same purpose, the work bench has temporary holding cleats at the end and a shelf in front, which are particularly desirable, because either a saw or a square is an encumbrance on a work bench while the work is being assembled, and tools of this kind should not be laid flat on a working surface, nor should they be stood in a leaning position against a truss or work bench. Strictly ob&erve these fundamentals — Never place a tool with the cutting edge toward you. Always have the racks or receptacles so made that the handle may be seized. Don^t put a tool with an exposed cutting edge above or below an- other tool in such a manner that the hand or the tool you are handling can come into contact with the edge. Never keep the nail or screw boxes above the work bench. They should always be kept to one side, to prevent, as much as possible, the bench from becoming a depository for nails. Keep the top of the bench free from t/)ols. Al- TOOLS AND THEIE USES 15 ways keep the planes on a narrow sub-shelf at the rear of the bench. If order was Heaven's first law, it is a good principle to apply it in a workman's shop, and its observance will form a habit that will soon be- come a pleasure to follow. CHAPTER II HOW TO GRIND AND SHARPEN TOOLS Care of Tools. — Dull tools indicate the charac- ter of the workman. In an experience of over forty years, I have never known a good work- man to keep poorly sharpened tools. While it is true that the capacity to sharpen tools can be acquired only by practice, correct habits at the start will materially assist. In doing this part of the artisan's work, it should be understood that there is a right as well as a wrong way. There is a principle involved in the sharpening of every tool, which should be observed. A skilled artisan knows that there is a particular way to grind the bits of each plane; that the manner of setting a saw not only contributes to its useful- ness, but will materially add to the life of the saw ; that a chisel cannot be made to do good work un- less its cutting edge is square and at the right working angle. First Requisite. — A beginner should never at- tempt a piece of work until he learns how the dif- ferent tools should be sharpened, or at least learn the principle involved. Practice will make per- fect. 16 GRINDING AND SHAEPENING TOOLS 17 Saws. — As the saw is such an important part of the kit, I shall devote some space to the sub- ject. First, as to setting the saw. The object of this is to make the teeth cut a wider kerf than the thickness of the blade, and thereby cause the saw to travel freely. A great many so-called "saw sets" are found in the market, many of them built jrtffjo. Ty^iOQ ^ jb\ > ^ \ on wrong principles, as will be shown, and these are incapable of setting accurately. How TO Set. — To set a saw accurately, that is, to drive out each tooth the same distance, is the first requirement, and the second is to bend out the whole tooth, and not the point only. In the illustration (Fig. 10), the point is merely bent out. This is wrong. The right way is shown 18 CAEPENTRY FOE BOYS in Fig. 10a. The whole tooth is bent, showing the correct way of setting. The reasons for avoiding one way and following the other are: First, that if the point projects to one side, each point or tooth will dig into the wood, and produce tooth prints in the wood, which make a roughened surface. Second, that if there are inequalities in setting the teeth (as is sure to be the case when only the points are bent out), the most exposed points will first wear out, and thereby cause saw deterioration. Third, a saw with the points sticking out causes a heavy, dragging cut, and means additional labor. Where the whole body of the tooth is bent, the saw will run smoothly and easily through the kerf and produce a smooth-cut surface. Our illustration (Fig. 11) shows a very simple setting block, the principal merit of which is that any boy can make it, and in the use of which he cannot go wrong in setting a tooth. Simple Saw Setter. — Take a block of wood, a 4 by 4 inch studding, four inches long. Get a GEINDING AND SHAEPENING TOOLS 19 piece of metal one-lialf inch thick and two inches square. Have a blacksmith or machinist bore a quarter-inch hole through it in the center and countersink the upper side so it may be securely fastened in a mortise in the block, with its upper side flush with the upper surface of the block. Now, with a file, finish off one edge, going back for a quarter of an inch, the angle at A to be about 12 degrees. JF^y, /?. StZp'it^S:^' FiLiKG Angles. — In its proper place will be shown how you may easily calculate and measure degrees in work of this kind. Fig. 12 shows an approximation to the right angle. B, B (Fig. 11) should be a pair of wooden pegs, driven into the wooden block on each side of the metal piece. The teeth of the saw rest against the pegs so that they serve as a guide or a gage, and the teeth of the saw, therefore, project over the in- clined part (B) of the metal block. Now, with 20 CAEPENTET FOE BOYS an ordinary punch and a hammer, each alter- nate tooth may be driven down until it rests flat on the inclined face (A), so that it is impossi- ble to set the teeth wrongly. When you glance down the end of a properly set saw, you will see a V-shaped channel, and if you will place a needle in the groove and hold the saw at an angle, the needle will travel down without falling out. Filing. — The next step is the filing. Two things must be observed : the pitch and the angle. By pitch is meant the inclination of the teeth. Note the illustration (Fig. 13), which shows the teeth of a rip saw. You will see at A that the pitch of the tooth is at right angles to the edge of the saw. In Fig. 14, which shows the teeth of a cross-cut saw, the pitch (B) is about 10 degrees off. The teeth of the rip saw are also larger than those of the cross-cut. The Angle of Filing. — By angle is meant the cutting position of the file. In Fig. 12, the lines GEINDING AND SHAEPENING TOOLS 21 B represent the file disposed at an angle of 12 degrees, not more, for a rip saw. For a cross- cut the angle of the file may be less. Saw Clamps. — Yon may easily make a pair of saw clamps as follows : Take two pieces of hard wood, each three inches wide, seven-eighths of an inch thick, and equal in length to the longest saw. Bevel one edge of o each as shown in A (Fig. 15), so as to leave an edge (B) about one-eighth of an inch thick. At one end cut away the corner on the side opposite the bevel, as shown at C, so the clamps will fit on the saw around the saw handle. When the saw is placed between these clamps and held together by the jaws of the vise, you are ready for the filing operation. Observe the following filing suggestions: Always hold the file horizontal or level. In filing, use the whole length of the file. Do the work by a slow, firm sweep. Do not file all of the teeth along the saw at one operation, but only the alternate teeth, so as to 22 CARPENTEY FOE BOYS keep the file at the same angle, and thus insure accuracy ; then turn the saw and keep the file con- stantly at one angle for the alternate set of teeth. Give the same number of strokes, and exert the same pressure on the file for each tooth, to insure uniformity. Learn also to make a free, easy and straight movement back and forth with the file. The File. — In order to experiment with the fil- ing motion, take two blocks of wood, and try sur- facing them off with a file. When you place the two filed surfaces together after the first trial both will be convex, because the hands, in filing, unless you exert the utmost vigilance, will assume a crank-like movement. The filing test is so to file the two blocks that they will fit tightly together without rolling on each other. Before shaping and planing machines were invented, machinists were compelled to plane down and accurately fin- ish off surfaces with a file. In using the files on saws, however small the file may be, one hand should hold the handle and the other hand the tip of the file. A file brush should always be kept on hand, as it pays to preserve files by cleaning them. The Grindstone. — As most of the tools require a grindstone for sharpening purposes, an illustra- tion is given as a guide, with a diagram to show the proper grinding angle. In Fig. 16 the up- GEINDING AND SHAEPENING TOOLS 23 right (A) of the frame serves as a line for the eye, so that if the point of the tool is brought to the sight line, and the tool (C) held level, you will always be able to maintain the correct angle. There is no objection to providing a rest, T^i^je. for instance, like the cross bars (D, D), but the artisan disdains such contrivances, and he usually avoids them for two reasons: First, because habit enables him to hold the tool horizontally; and, second, by holding the tool firmly in the hand he has better control of it. There is only one thing which can be said in favor of a rest, and 24 CAEPENTRY FOE BOYS that is, the stone may be kept truer circumferen- tially, as all stones have soft spots or sides. In the Use of Grindstones. — There are certain things to avoid and to observe in the nse of stones. Never nse one spot on the stone, however narrow the tool may be. Always move the tool from side to side. Never grind a set of narrow tools suc- 4Ftff.t7.Qs££SSii: cessively. If yon have chisels to grind intersperse their grinding with plane bits, hatchet or other broad cutting tools, so as to prevent the stone from having grooves therein. Never nse a tool on a stone unless you have water in the tray. Correct Way to Hold Tool for Grinding. — There is a correct way to hold each tool ; see illus- tration (Fig. 17). The left hand should grasp the tool firmly, near the sharp edge, as shown, and the right hand should loosely hold the tool behind GEINDING AND SHARPENINa TOOLS 25 the left hand. There is a reason for this which will be apparent after you grind a few tools. The firm grasp of the left hand gives you absolute control of the blade, so it cannot turn, and when inequalities appear in the grindstone, the rigid hold will prevent the blade from turning, and thus enable you to correct the inequalities of the stone. Bear in mind, the stone should be taken care of just as much as the tools. An experienced workman is known by the condition of his tools, and the grindstone is the best friend he has among his tools. Incokeect Way to Hold Tool foe Geinding. — The incorrect way of holding a tool is shown in Fig. 18. This, I presume, is the universal way in which the novice takes the tool. It is wrong for the reason that the thumbs of both hands are on top of the blade, and they serve as pivots on which the tool may turn. The result is that the corners of the tool will dig into the stone to a greater or less degree, particularly if it has a narrow blade, like a chisel. Try the experiment of grinding a quarter-inch chisel by holding it the incorrect way; and then grasp it firmly with the left hand, and you will at once see the difference. The left hand serves both as a vise and as a 4 26 CAEPENTEY FOE BOYS fulcrum, whereas the right hand controls the angle of the tool. These remarks apply to all chisels, plane bits and tools of that character, bnt it is obvious that a drawknif e, which is always held by the handles in grinding, and hatchets, axes and the like, cannot be held in the same manner. A too common error is to press the tool too hard on the stone. This is wrong. Do not try to force the grinding. Then, again, it is the practice of some to turn the stone away from the tool. The stone should always move toward the tool, so as to prevent forming a feather edge. GEINDING AND SHAEPENING TOOLS 27 The Plane. — Indiscriminate use of planes should be avoided. Never use the fore or smooth- ing planes on rough surfaces. The jack plane is the proper tool for this work. On the other hand, the fore plane should invariably be used for straightening the edges of boards, or for fine surfacing purposes. As the jack plane has its bit ground with a curved edge, it is admirably adapted for taking off the rough saw print sur- face. The Gage. — The illustration (Fig. 19) shows one of the most useful tools in the kit. It is used to scribe the thickness of the material which is to be dressed down, or for imprinting the edges of tenons and mortises. Two should be provided in every kit, for convenience. The scribing point should be sharpened with a file, the point being filed to form a blade, which is at right angles to the bar, or parallel with the movable cheekpiece. Chisels. — I have already pointed out, in gen- eral, how to hold tools for grinding purposes, this description applying particularly to chisels, but several additional things may be added. Always be careful to grind the chisel so its cut- ting edge is square with the side edge. This will be difficult at first, but you will see the value of this as you use the tool. For instance, in mak- 28 CAEPENTEY FOE BOYS ing rebates for hinges, or recesses and mortises for locks, the tool will invariably run crooked, unless it is ground square. The chisel should never be struck with a ham- mer or metal instrument, as the metal pole or peon of the hammer will sliver the handle. The wooden mallet should invariably be used. Gejstekal Observations. — ^If the workman will carefully observe the foregoing requirements he will have taken the most important steps in the knowledge of the art. If he permits himself to commence work without having his tools in first- class condition, he is trying to do work under cir- cumstances where even a skilled workman is liable to fail. Avoid making for yourself a lot of unnecessary work. The best artisans are those who try to find out and know which is the best tool, or how to make a tool for each requirement, but that tool, to be serviceable, must be properly made, and that means it must be rightly sharpened. CHAPTER III HOW TO HOLD AND HANDLE TOOLS Observation may form part of each boy^s lesson, but wben it comes to the handling of tools, prac- tice becomes the only available means of making a workman. Fifty years of observation would never make an observer an archer or a marksman, nor would it enable him to shoe a horse or to build a table. It sometimes happens that an apprentice will, with little observation, seize a saw in the proper way, or hold a plane in the correct manner, and, in time, the watchful boy will acquire fairly cor- rect habits. But why put in useless time and labor in order to gain that which a few well- directed hints and examples will convey? Tools are made and are used as short cuts to- ward a desired end. Before the saw was in- vented the knife was used laboriously to sever and shape the materials. Before planes were in- vented a broad, flat sharpened blade was used to smooth off surfaces. Holes were dug out by means of small chisels requiring infinite patience and time. Each succeeding tool proclaimed a shorter and an easier way to do a certain thing. 29 30 CAEPENTEY FOE BOYS The man or boy wlio can make a new labor-saving tool is worthy of as much praise as the man who makes two blades of grass grow where one grew before. Let us now thoroughly understand how to hold and use each tool. That is half the value of the tool itself. The Saw. — ^With such a commonplace article as the saw, it might be assumed that the ordinary apprentice would look upon instruction with a smile of derision. How TO Start a Saw.— If the untried apprentice has such an opinion set him to work at the task of cutting off a board accurately on a line. He will generally make a failure of the attempt to start the saw true to the line, to say nothing of following the line so the kerf is true and square with the board. How TO Start on a Line. — The first mistake he makes is to saw on the line. This should never be done. The work should be so laid out that the saw kerf is on the discarded side of the material. The saw should cut alongside the line, and the line should not be obliterated in the cutting. Mate- rial must be left for trimming and finishing. The First Stroke. — Now, to hold the saw in starting is the difficult task to the beginner. Once mastered it is simple and easy. The only time in TO HOLD AND HANDLE TOOLS 31 which the saw should be firmly held by the hand is during the initial cut or two ; afterwards always hold the handle loosely. There is nothing so tir- ing as a tightly grasped saw. The saw has but one handle, hence it is designed to be used with one hand. Sometimes, with long and tiresome Tlg.^0 jobs, in ripping, two hands may be used, but one hand can always control a saw better than two hands. The Starting Cut. — ^In order to make our un- derstanding of the starting cut more explicit, we refer to Fig. 20, in which the thumb of the left hand is shown in the position of a guide — the end of the thumb being held up a suflScient distance to 32 CAEPENTRY FOR BOYS clear the teeth. In this position yon need not fear that the teeth of the saw (A) will ride np over the thumb if yon have a firm grasp of the saw handle. The first stroke should be upwardly, not down- wardly. While in the act of drawing up the saw you can judge whether the saw blade is held by the thumb gage in the proper position to cut along the mark, and when the saw moves downwardly for the first cut, you may be assured that the cut is ^ -^ accurate, or at the right place, and the thumb should be kept in its position until two or three cuts are made, and the work is then fairly started. For Cross-cutting. — For ordinary cross-cutting the angle of the saw should be at 45 degrees. For ripping, the best results are found at less than 45 degrees, but you should avoid flattening down the angle. An incorrect as well as a correct angle are shown in Figs. 21 and 22. Forcing a Saw. — Forcing a saw through the wood means a crooked kerf. The more nearly the saw is held at right angles to a board, the greater TO HOLD AND HANDLE TOOLS 33 is the force which must be applied to it by the hand to cause it to bite into the wood ; and, on the other hand, if the saw is laid down too far, as shown in the incorrect way, it is a very difficult matter to follow the working line. Furthermore, it is a hard matter to control the saw so that it will cut squarely along the board, particularly when ripping. The eye must be the only guide in the disposition of the saw. Some boys make the saw run in one direction, and others cause it to lean yi z__ the opposite way. After you have had some ex- perience and know which way you lean, correct your habits by disposing the saw in the opposite direction. The Steoke. — Make a long stroke, using the full blade of the saw. Don't acquire the "jerky'' style of sawing. If the handle is held loosely, and the saw is at the proper angle, the weight of the saw, together with the placement of the handle on the saw blade, will be found sufficient to make the requisite cut at each stroke. 34 CAEPENTEY FOE BOYS You will notice that the handle of every saw is mounted nearest the back edge. (See Fig. 23.) The reason for so mounting it is, that as the cut- ting stroke is downward, the line of thrust is above the tooth line, and as this line is at an Ttg. ^3. Cor; Ohin€S€ SaW« ICg.S4. angle to the line of thrust, the tendency is to cause the saw teeth to dig into the wood. The Chinese Saw. — This saw is designed to saw with an upward cut, and the illustration (Fig. 24) shows the handle jutting out below the tooth line, in order to cause the teeth to dig into the material as the handle is drawn upwardly. Eef er- ence is made to these features to impress upon beginners the value of observation, and to demon- strate the reason for making each tool a particu- lar way. TO HOLD AND HANDLE TOOLS 35 Things to Avoid. — Do not oscillate the saw as you draw it back and forth. This is unnecessary work, and shows impatience in the use of the tool. There is such an infinite variety of use for the different tools that there is no necessity for ren- dering the work of any particular tool, or tools, burdensome. Each in its proper place, handled intelligently, will become a pleasure, as well as a source of profit. The Plane. — The jack plane and the fore plane are handled with both hands, and the smoothing plane with one hand, but only when used for dressing the ends of boards. For other uses both hands are required. Angles for Holding Planes. — Before commenc- ing to plane a board, always observe the direc- tion in which the grain of the wood runs. This precaution will save many a piece of material, be- cause if the jack plane is set deep it will run into the wood and cause a rough surface, which can 36 CAEPENTEY FOE BOYS be cured only by an extra amount of labor in planing down. Never move the jack plane or the smoothing plane over the work so that the body of the tool is in a direct line with the movement of the plane. It should be held at an angle of about 12 T-'ig. or 15 degrees (see Fig. 25). The fore plane should always be held straight with the move- ment of the plane, because the length of the fore plane body is used as a straightener for the sur- face to be finished. Eeeors to Be Avoided. — Never draw back the plane with the bit resting on the board. This TO HOLD AND HANDLE TOOLS 37 simply wears out the tool, and if there should be any grit on the board it will be sure to ruin the bit. This applies particularly to the jack plane, but is bad practice with the others as well. A work bench is a receptacle for all kinds of dirt. Provide a special ledge or shelf for the planes, and be sure to put each plane there imme- diately after using. The Gage. — A man, who professed to be a car- penter, once told me that he never used a gage because he could not make it run straight. A few moments' practice convinced him that he never knew how to hold it. The illustration shows how properly to hold it, and the reason why it should so be held follows. You will observe (Fig. 26) that the hand grasps the stem of the gage behind the cheekpiece, so that the thumb is free to press against the side of the stem to the front of the cheekpiece. Holding the Gage. — The hand serves to keep the cheekpiece against the board, while the thumb pushes the gage forward. The hand must not, un- der any circumstances, be used to move the gage along. In fact, it is not necessary for the fingers to be clasped around the gage stem, if the fore- finger presses tightly against the cheekpiece, since the thumb performs all the operation of moving it along. Naturally, the hand grasps the tool in 38 CARPENTEY FOR BOYS order to hold it down against the material, and to bring it back for a new cut. The Drawknife. — It is diflficult for the appren- tice to become accustomed to handle this useful tool. It is much more serviceable than a hatchet for trimming and paring work. In applying it to the wood always have the tool at an angle with the board, so as to make a slicing cut. This is specially desirable in working close to a line, other- wise there is a liability of cutting over it. This knife requires a firm grasp — firmness of hold is more important than strength in using. The flat side is used wholly for straight edges, and the beveled side for concave surfaces. It is the intermediate tool between the hatchet and the plane, as it has the characteristics of both those tools. It is an ugly, dangerous tool, more to be feared when lying around than when in use. Put it religiously on a rack which protects the entire cutting edge. Keep it ojf the bench. CHAPTEE IV HOW TO DESIGN ARTICLES Fundamentals of Designing. — A great deal of the pleasure in making articles consists in creative work. This means, not that yon shall design some entirely new article, bnt that its gen- eral form, or arrangement of parts, shall have some new or striking feature. A new design in any art does not require a change in all its parts. It is sufficient that there shall be an improvement, either in some particu- lar point, as a matter of utility, or some change in an artistic direction. A manufacturer in put- ting out a new chair, or a plow, or an automobile, adds some striking characteristic. This becomes his talking point in selling the article. The Commercial Instinct. — It is not enough that the boy should learn to make things correctly, and as a matter of pastime and pleasure. The commercial instinct is, after all, the great incenr tive, and should be given due consideration. It would be impossible, in a book of this kind, to do more than to give the fundamental princi- ples necessary in designing, and to direct the mind 39 40 CAEPENTRY FOE BOYS solely to essentials, leaving tlie individual to build up for himself. First Eequirements for Designing. — First, then, let us see what is necessary to do when you intend to set about making an article. Suppose we fix our minds upon a table as the article selected. Three things are necessary to know: First, the use to which it is to be put; second, the dimen- sions ; and, third, the material required. Assuming it to be the ordinary table, and the dimensions fixed, we may conclude to use soft pine, birch or poplar, because of ease in working. There are no regulation dimensions for tables, ex- cept as to height, which is generally uniform, and usually 30 inches. As to the length and width, you will be governed by the place where it is to be used. If the table top is to have dimensions, say, of 36"x48", you may lay out the framework six inches less each way, thus giving you a top over- hang of three inches, which is the usual prac- tice. Conventional Styles. — Now, if you wish to de- part from the conventional style of making a table you may make variations in the design. For in- stance, the Chippendale style means slender legs and thin top. It involves some fanciful designs in the curved outlines of the top, and in the crook HOW TO DESIGN ARTICLES 41 of the legs. Or if, on tlie other hand, the Mission type is preferred, the overhang of the top is very narrow; the legs are straight and heavy, and of even size from top to bottom; and the table top is thick and nearly as broad as it is long. Such furniture has the appearance of massiveness ; it is easily made and most serviceable. Mission Style. — The Mission style of architec- ture also lends itself to the making of chairs and other articles of furniture. A chair is, probably, the most difficult piece of household furniture to make, because strength is required. In this type soft wood may be used, as the large legs and back pieces are easily provided with mortises and tenons, affording great rigidity when completed. In designing, therefore, you may see how the material itself becomes an important factor. Cabinets. — In the making of cabinets, side- boards, dressers and like articles, the ingenious boy will find a wonderful field for designing abil- ity, because in these articles fancy alone dictates the sizes and the dimensions of the parts. Not so with chairs and tables. The imagination plays an important part even in the making of drawers, to say nothing of placing them with an eye to convenience and artistic effect. Habmony of Parts. — But one thing should be observed in the making of furniture, namely, har- 42 CAEPENTEY FOE BOYS mony between the parts. For instance, a table with thin legs and a thick top gives the appear- ance of a top-heavy structure; or the wrong use of two different styles is bad from an artistic standpoint; moreover, it is the height of refined education if, in the use of contrasting woods, they are properly blended to form a harmonious whole. Hakmoistizing Wood. — Imagine a chiffonier with the base of dark wood, like walnut, and the top of pine or maple, or a like light-colored wood. On the other hand, both walnut and maple, for in- stance, may be used in the same article, if they are interspersed throughout the entire article. The body may be made of dark wood and trimmed throughout with a light wood to produce a fine effect. CHAPTER V HOW WOEK IS LAID OUT CoNCKETE Examples of Wobk. — A concrete ex- ample of doing any work is more valuable than an abstract statement. For this purpose I shall di- rect the building of a common table with a drawer in it and show how the work is done in detail. For convenience let us adopt the Mission style, with a top 36" x 42" and the height 30". The legs q K X ^ t^ -A ^ should be 2" x 2" and the top 1", dressed. The material should be of hard wood with natural finish, or, what is better still, a soft wood, Jike birch, which may be stained a dark brown, as the Mission style is more effective in dark than in light woods. Framewobk. — As we now know the sizes, the first thing is to build the framework. The legs should be dressed square and smoothed down with the fore plane to make them perfectly straight. Now, lay out two mortises at the upper end of each 43 44 CAEPENTEY FOE BOYS leg. Follow the illustrations to see how this is done. Laying Out the Legs. — Fig. 27 shows a leg with square cross marks (A) at each end. These marks indicate the finished length of the leg. You will also see crosses on two sides. These indicate what is called the "work sides." The work sides are selected because they are the finest surfaces on the leg. ^ J^i^.&8. q K ^ :2^6^,M X The Length or the Moktises. — Then take a small try square (Fig. 28) and add two cross lines (B, C) on each of the inner surfaces, the second line (B) one-half inch from the finish line (A), and the other line (C) seven inches down from the line (A). The side facing boards, hereafter described, are seven inches wide. "When this has been done for all the legs, pre- pare your gage (Fig. 29) to make the mortise scribe, and, for convenience in illustrating, the leg HOW WOEK IS LAID OUT 45 is reversed. the tenons are intended to be i" If the facing boards are 1" thick, and thick, the first scribe line (E) should be i" from the work side, because the shoulder on the facing board pro- jects out i", and the outer surface of the facing board should not be flush with the outer surface of the leg. The second gage line (F) should be 1" from the work side. :7^.5a The Mortises. — ^^Tien the mortises have been made they will appear as shown in the enlarged cross section of the leg (Fig. 30), the total depth of each mortise being 1|". The depth of this mor- tise determines for us the length of the tenons on the facing boards. The Facing Boards. — These boards are each 1 inch thick and 7 inches wide. As the top of the table is 42 inches long, and we must provide an overhang, say of 2 inches, we will first take off 4 inches for the overhang and 4 inches for the 46 CAEPENTEY FOE BOYS legs, so that the length of two of the facing boards, from shoulder to shoulder, must be 34 inches ; and the other two facing boards 28 inches. Then, as we must add 1^ inches for each tenon, two of the boards will be 37 inches long and two of them 31 inches long. ^^ — ^s. > -_^ > jB- ,^^y^ :7^^.^/ 1 y J3- The illustration (Fig. 31) shows a board marked with the cross lines (B) at each end for the end of the tenons, or the extreme ends of the boards. The Tenok^s. — Do not neglect first to select the work side and the working edge of the board. The outer surface and the upper edges are the sides to work from. The cheekpiece (A) of the gage must always rest against the working side. HOW VVOEK IS LAID OUT 47 The cross marks (B, C) should be made with the point of a sharp knife, and before the small back saw is used on the cross-cuts the lines (B), which indicate the shoulders, should be scored with a >, J^iffM \ -?^.^. :i^^3Si. sharp knife, as shown in Fig. 33. This furnishes a guide for the saw, and makes a neat finish for the shoulder. Tools Used. — The back saw is used for cutting the tenon, and the end of the board appears as 48 CAEPENTEY FOE BOYS shown in the enlarged Fig. 34. Two things are now necessary to complete the tenons. On the np- per or work edge of each board nse the gage to mark off a half -inch slice, and then cnt away the flat side of the tenon at the end, on its inner sur- face, so it will appear as shown in Fig. 35. 2^t^.3€. JTt^.d?. Chamfered Tenons. — The object of these cham- fered or beveled tenons is to permit the ends to approach each other closely within the mortise, as shown in the assembled parts (Fig. 36). The Frame Assembled. — The frame is now ready to assemble, but before doing so a drawer opening and supports should be made. The ends HOW WOEK IS LAID OUT 49 of the supports may be mortised into the side pieces or secured by means of gains. Mortises and tenons are better. The Dkawer Supports. — Take one of the side- facing boards (Fig. 37) and cut a rectangular opening in it. This opening should be 4 inches wide and 18 inches long, so placed that there is 1 c jry^. sa inch of stock at the upper margin and 2 inches of stock at the lower margin of the board. At each lower corner make a mortise (A), so that one side of the mortise is on a line with the margin of the opening, and so that it extends a half inch past the vertical margin of the opening. You can easily cut a gaiu (B) in a strip, or, as in Fig. 38, you may use two strips, one (C) an inch wide and a half inch thick, and on this nail a strip (D) along one margin. This forms the guide and rest for the drawer. At the upper margin of the opening is a rebate or gain (E) at each corner, extending down to the top line of the drawer opening, into which are fitted the ends of the upper cross guides. 50 CARPENTEY FOR BOYS The Table Frame. — ^When the entire table frame is assembled it will have the appearance shown in Fig. 39, and it is now ready for the top. The Top. — The top should be made of three boards, either tongued and grooved, or doweled and glued together. In order to give a massive appearance, and also to prevent the end grain of the boards from being exposed, beveled strips may be used to encase the edges. These marginal cleats are | inch thick and 2 inches wide, and joined by beveled ends at the comers, as shown in Fig. 40. The Drawer.— The drawer (Fig. 41) shown in cross section, has its front (A) provided with an overlapping flange (B). HOW WOEK IS LAID OUT 51 It is not our object in this chapter to show how each particular article is made, but simply to point out the underlying principles, and to il- lustrate how the fastening elements, the tenons and mortises, are formed, so that the boy will know the proper steps in their natural order. JTlff^^o. How Any Structure Is Built Up. — ^It should be observed that each structure, however small, is usually built from the base up. Just the same as the more pretentious buildings are erected: First, the sill, then the floor supports, then the posts and top plates, with their connecting girders, and, finally, the roof. The chapter on House Building will give more detailed illustrations of large structures, and how they are framed and braced. At this point we are more concerned in knowing how to proceed in or- der to lay out the simple structural details, and if one subject of this kind is fully mastered the com- 52 CAEPENTEY FOE BOYS plicated character of the article will not be diffi- cult to master. OssEEVATioisrs About A Box. — As simple a little article as a box frequently becomes a burden to a beginner. Try it. Simply keep in mind one thing ; each box has six sides. Now, suppose you want a box with six equal sides — that is, a cubical form — it is necessary to make only three pairs of sides ; WffTfUffffUfMfieirfiiLU :r^.^/. two for the ends, two for the sides and two for the top and bottom. Each set has dimensions dif- ferent from the other sets. Both pieces of the set, representing the ends, are square; the side pieces are of the same width as the end pieces, and slightly longer; and the top and bottom are longer and wider than the end pieces. A box equal in all its dimensions may be made out of six boards, properly cut. Make an attempt in order to see if you can get the right dimensions. Joints. — For joining together boards at right angles to each other, such as box comers, drawers and like articles, tenons and mortises should never be resorted to. In order to make fine work the joints should be made by means of dovetails, rab- HOW WOEK IS LAID OUT 53 bets or rebates, or by beveling or mitering the ends. BsvELiiirG AND MiTERiNG. — There is a difference in the terms ^^beveling" and "mitering," as used in the art. In Fig\ 42 the joint A is beveledy and in Fig. 43 the joint B is miteredy the dif- ference being that a bevel is applied to an angle jri^s^ jTig.'^s, joint like a box corner, while a miter has refer- ence to a joint such as is illustrated in Fig. 43, such as the comer of a picture frame. Proper Terms. — It is the application of the cor- rect terms to things that lays the foundation for accurate thinking and proper expressions in de- scribing work. A wise man once said that the basis of true science consists in correct defini- tions. Picture Frames. — In picture frames the mi- tered comers may have a saw kerf (C) cut across the corners, as shown in Fig. 44, and a thin blade 54 CARPENTRY FOR BOYS of hard wood driven in, the whole being glued together. Dovetail Joints. — It is in the laying out of the more complicated dovetail joints that the highest skill is required, because exactness is of more importance in this work than in any other article in joinery. In order to do this work accurately JF^.^^. follow out the examples given, and you will soon be able to make a beautiful dovetail corner, and do it quickly. Peepaetng a Box Joint. — In order to match a box joint for the inner end of a table drawer, the first step is to select two work sides. One work side will be the edge of the board, and the other the side surface of the board, and on those sur- faces we will put crosses, as heretofore suggested. First Steps. — Now lap together the inner sur- faces of these boards (Y, Z), so the ends are to- ward you, as shown in Fig. 45. Then, after meas- HOW WOKK IS LAID OUT 55 uring the thickness of the boards to be joined (the thinnest, if they are of different thicknesses), set your compasses, or dividers, for I inch, provid- jr^z^.46^ :^ig.^6. T^tg.^r ing the boards are \ inch thick, and, commencing at the work edge of the board, step off and point, as at A, the whole width of the board, and with a square make the two cross marks (B), using 56 CARPENTRY FOR BOYS the two first compass points (A), then skipping one, using the next two, and so on. When this is done, tnm np the board Z (Fig. 46), so that it is at right angles to the board Y, and :z^^.-^<5. :rYg,-f9, ZT'tg.^O. so the onter surface of the board Z is flush with the end of the board X, and with a sharp knife point extend the lines B along with the grain of the wood on board Z, up to the cross mark C. This cross mark should have been previously made HOW WOEK IS LAID OUT 57 and is located as far from the end of the board Z as the thickness of the board Y. We now have the marks for the outer surface of the board Z, and the end marks of board Y. For the purpose of getting the angles of the end of the board Z and the outer side of board Y, a cross line (D, Fig. 47) is drawn across the board X near the end, this line being as far from the end as the thickness of the board Z, and a vertical line (E) is drawn midway between the two first cross marks (A). Now, with your compass, which, in the meantime, has not been changed, make a mark (F), and draw down the line (G), which will give you the working angle at which you may set the bevel gage. Then draw down an angle from each alternate cross line (A), and turn the bevel and draw down the lines (H). These lines should all be produced on the opposite side of the board, so as to assure accu- racy, and to this end the edges of the board also should be scribed. Cutting Out the Spaces. — ^In cutting out the intervening spaces, which should be done with a sharp chisel, care should be observed not to cut over the shoulder lines. To prevent mistakes you should put some distinctive mark on each part to be cut away. In this instance E, H show the parts 58 CARPENTRY FOR BOYS to be removed, and in Fig. 48 two of the cutaway- portions are indicated. When the end of the board Z is turned up (Fig. 49), it has merely the longitudinal parallel lines B. The bevel square may now be used in the same manner as on the side of the board Y, and the fitting angles will then be accurately true. This is shown in Fig. 50, in which, also, two of the cutaway parts are removed. Tools Used in Laying Out Tenons and Mor- tises. — A sharp-pointed knife must always be used for making all marks. Never employ an awl for this work, as the fiber of the wood will be torn up by it. A small try square should always be used (not the large iron square), and this with a sharp- pointed compass and bevel square will enable you to turn out a satisfactory piece of work. The foregoing examples, carefully studied, will enable you to gather the principles involved in lay- ing off any work. If you can once make a pre- sentable box joint, so that all the dovetails will accurately fit together, you will have accomplished one of the most difficult phases of the work, and it is an exercise which will amply repay you, be- cause you will learn to appreciate what accuracy means. CHAPTER VI THE USES OF THE COMPASS AND THE SQUARE The Square. — The square is, probably, the old- est of all tools, and that, together with the com- pass, or dividers, with whicL the square is always associated, has constituted the craftsman's em- blem from the earliest historical times. So far as we now know, the plain flat form, which has at least one right angle and two or more straight edges, was the only form of square used by the workman. But modem uses, and the development of joinery and cabinet making, as well as the more advanced forms of machinery practice, necessi- tated new structural forms in the square, so that the bevel square, in which there is an adjustable blade set in a handle, was found necessary. The Try Square. — In the use of the ordinary large metal square it is necessary to lay the short limb of the square on the face of the work, and the long limb must, therefore, rest against the work side or edge of the timber, so that the scrib- ing edge of the short limb does not rest flat against the work. As such a tool is defective in work requiring accuracy, it brought into existence 59 60 CAEPENTEY FOE BOYS what is called the try square, which has a rectan- gular handle, usually of wood, into which is fitted at one end a metal blade, which is at right angles to the edge of the handle. The handle, therefore, always serves as a guide for the blade in scribing work, because it lies flat down on the work. The T-Squake is another modification of the try square, its principal use being for draughting purposes. The Compass. — The compass is one of the origi- nal carpenter's tools. The difference between compass and dividers is that compasses have ad- justable pen or pencil points, whereas dividers are without adjustable points. Modern work has brought refinements in the character of the com- pass and dividers, so that we now have the bow- compass, which is, usually, a small tool, one leg of which carries a pen or pencil point, the two legs being secured together, usually, by a spring bow, or by a hinged joint with a spring attach- ment. Peopoktiokal Divideks. — A useful tool is called the proportional dividers, the legs of which are hinged together intermediate the ends, so that the pivotal joint is adjustable. By means of this tool the scale of work may be changed, although its widest field of usefulness is work laid off on a COMPASS AND THE SQUAEE 61 scale which you intend to reduce or enlarge pro- portionally. Determixing Angles. — ^Now, in order to lay out work the boy should know quickly and accu- rately how to determine various angles used or required in his work. The quickest way in which to learn this is to become familiar with the degree in its various relations. JTcff.Sf. Definition of Degree. — A degree is not a meas- ure, as we would designate a foot or a pound to determine distance or quantity. It is used to denote a division, space, interval or position. To illustrate, look at the circle. Fig. 51. The four car- dinal points are formed by the cross lines (A, B), and in each one of the quadrants thus formed the circle is divided into 90 degrees. Look at the radial lines (C, D), and you will find that the dis- tance between these lines is different along the 62 CAEPENTEY FOE BOYS curved line (E) tlian along the curved line (F). The degree is, therefore, to indicate only the space, division or interval in the circle. The Most Impoetant Angle. — Most important for one to know at a glance is that of 45 degrees, because the one can the more readily calculate the other degrees, approximately, by having 45 de- grees once fixed in the mind, and impressed on the visual image. With a square and a compass it is a comparatively easy matter accurately to step off 45 degrees, as it is the line C, midway between A and B, and the other degrees may be calcu- lated from the line C and the cardinal lines A or B. Degkees Without a Compass. — But in the ab- sence of a compass and when you do not wish to step off a circle, you will in such case lay down the square, and mark off at the outer margin of the limbs two equal dimensions. Suppose we take 2 inches on each limb of the square. The angle thus formed by the angle square blade is 45 degrees. To find 30 degrees allow the blade of the angle square to run from 2 inches on one limb to 3J inches on the other limb, and it will be found that for 15 degrees the blade runs from 2 inches on one limb to 7^ inches on the other limb. It would be well to fix firmly these three points, at least, in your mind, as they will be of the utmost value to you. It is a comparatively easy matter now to COMPASS AND THE SQUAEE 63 find 10 degrees or 25 degrees, or any intermediate line. What Degrees Are Calculated From. — The question that now arises is what line one may nse from which to calculate degrees, or at what point I , I » Ill III i w r i> . T^iff.QS. y i- j^€^. 6d. -^ v^C ^fH — v—^ jr€^. S^. in the circle zero is placed. Degrees may be cal- culated either from the horizontal or from the vertical line. Examine Fig. 53. The working margin indicated by the cross mark is your base line, and in specifybig an angle you calculate it from the work edge. Thus, the line A indicates an angle of 30 degrees. The dotted line is 45 degrees. 64 CAEPENTEY FOE BOYS The Dividees. — The dividers are used not only for scribing circles, but also for stepping and di- viding spaces equally. There is a knack in the use of the dividers, where accuracy is wanted, and where the surface is of wood. Unless the utmost care is observed, the spaces will be unequal, for the reason that the point of the dividers will sink more deeply into the wood at some places than at others, due to the uneven texture of the wood grain. It will be better to make a line lengthwise, and a cross line (A) for starting (see Fig. 54). You may then insert one point of the dividers at the initial mark (B), and describe a small arc (C). Then move the dividers over to the intersection of the arc (C) on the line, and make the next mark, and so on. Some useful hints along this same line will be found under the chapter on Drawing, which should be carefully studied. CHAPTEE VII HOW THE DIFFERENT STRUCTURAL PARTS ARE DESIG- NATED The Eight Name for Everything. — Always make it a point to apply the right term to each article or portion of a structure. Your explana- tion, to those who do know the proper technical terms, will render much easier a thorough under- standing; and to those who do not know, your lan- guage will be in the nature of an education. Proper Designations. — Every part in mechan- ism, every point, curve and angle has its peculiar designation. A knowledge of terms is an indica tion of thoroughness in education, and, as hereto- fore stated, becomes really the basis of art, as well as of the sciences. When you wish to impart in- formation to another you must do it in terms un- derstood by both. Furthermore, and for this very reason, you should study to find out how to explain or to de- fine the terms. You may have a mental picture of the structure in your mind, but when asked to explain it you are lost. Learning Mechanical Forms. — Suppose, for example, we take the words segment and sector. 65 66 CAEPENTRY FOR BOYS Without a thorough understanding in your own mind you are likely to confuse tliese terms by taking one for the other. But let us assume you are to be called upon to explain a sector to some one who has no idea of terms and their definitions. How would you describe it? While it is true it is wedge-shaped, you will see by examining the draw- ing that it is not like a wedge. The sector has two sides running from a point like a wedge, but the large end of the sector is curved. If you were called upon to define a segment you might say it had one straight line and one curve, but this would not define it very lucidly. There- fore, in going over the designations given, not only fix in your mind the particular form, but try to remember some particular manner in which you can clearly express the form, the shape or the relation of the parts. For your guidance, therefore, I have given, as far as possible, simple figures to aid you in becom- ing acquainted with structures and their desig- nations, without repeating the more simple forms which I have used in the preceding chapters. 55. Arcade. — A series of arches with the col- umns or piers which support them, the spandrels above, and other parts. STEUCTUEAL PAETS 67 56. Arch. — A curved member made up, usually, of separate wedge-shaped solids, A. K, Key- stone ; S, Springers ; C, Chord, or span. 57. Buttress, — A projecting mass of masonry. A, used for resisting the thrust of an arch, or for ornamentation; B, a flying buttress. 58. Chamfer, — The surface A formed by cutting away the arris or angle formed by two faces, B, C, of material. 59. Cotter or Cotter Pin. — A pin. A, either flat, square or round, driven through a projecting tongue to hold it in position. 60. Crenelated. — A form of molding indented or notched, either regularly or irregularly. 61. Crosses. — 1. Latin cross, in the Church of Rome carried before Bishops. 2. Double cross, carried before Cardinals and Bishops. 3. Triple or Papal cross. 4. St. Andrew's and St. Peter's cross. 5. Maltese cross. 6. St. Anthony or Egyptian cross. 7. Cross of Jerusalem. 8. A cross patt^ or f erme ( head or first ) . 9. A cross patonce (that is, growing larger at the ends). 10. Greek cross. 62. Curh Roof. — A roof having a double slope, or composed on each side of two parts which have unequal inclinations ; a gambrel roof. 63. Cupola. — So called on account of its re- semblance to a cup. A roof having a rounded form. When on a large scale it is called a dome. Crown Post. — See King Post. 64. Console. — A bracket with a projection not more than half its height. 65. Corbels. — A mass of brackets to support a shelf or structure. Largely employed in Gothic architecture. 66. Dormer. — A window pierced in a roof and so set as to be vertical, while the roof slopes away from it. Also called a Gahlet. 67. Dowel. A pin or stud in one block, or body, designed to engage with holes in another body to hold them together in alignment. 68. Drip. — That part of a cornice or sill course A, or other horizontal member which projects beyond the rest, so as to divert water. Q f=\ . 55 69 ^s,„ \jKlL 68 CARPENTRY FOR BOYS 67 fid -r 68 7/ ^gHEEEE "T" ^ 7S m 75 hFEfi 76 m 77 69. Detents. — Recesses to lock or to serve as a stop or holding place. 70. Extrados. — The exterior curve of an arch, especially the upper curved face A. B is the Intrados or Soffit, 71. Engrailed. — Indented with small concave curves, as the edge of a bordure, bend, or the like. 72. Facet. — The narrow plain surface, as A, between the fluting of a column. 73. Fret J Fretwork, — Ornamental work consist- ing of small fillets, or slats, intersecting each other or bent at right angles. Openwork in re- lief, when elaborated and minute in all its parts. Hence any minute play of light and shade. A, Japanese fretwork. B, Green fret. 74. Frontal, also called Pediment. — ^The tri- angular space. A, above a door or window. 75. Frustums. — ^That part of a solid next the base, formed by cutting off the top; or the part of any solid, as of a cone, pyramid, etc., between two planes, which may either be parallel or in- clined to each other. 76. Fylfat, — A rebated cross used as a secret emblem and worn as an ornament. It is also called Gam^madium, and more commonly known as Swastika. 77. Gamhrel Roof. — A curb roof having the same section in all its parts, with a lower, steeper and longer part. See Curb Roof and distinguish difference. 78. Gargoyle. — ^A spout projecting from the roof gutter of a building, often carved gro- tesquely. 79. Gudgeon. — A wooden shaft, A, with a socket, B, into which is fitted a casting, C. The casting has a gudgeon, D. 80. Guilloche. — An ornament in the form of two or more bands or strings twisted together or over or through each other. 81. Half Timtered. — Constructed of a timber frame, having the spaces filled in with masonry. 82. Hammer Beam. — A member of one descrip- tion of roof truss, called hammer-beam truss, which is so framed as not to have a tie beam STEUCTUEAL PAETS 69 at the top of the wall. A is the hammer beam, and C the pendant post. 83. Haunches, — The parts A, A, on each side of the crown of an arch. Each haunch is from one-half to two-thirds of the half arch. 84. Header. — A piece of timber, A, fitted be- tween two trimmers, B, B, to hold the ends of the tail beams, C, C. 85. Hip Roof, — ^The external angle formed by the meeting of two sloping sides or skirts of a roof which have their wall plates running in different directions. 86. Hood Molding, — A projecting molding over the head of an arch, as at A, forming the outer- most member of the archivolt. 87. Inclave. — The border, or borders, having a series of dovetails. One variation of molding or ornamentation. 88. Interlacing Arch, — ^Arches, usually circu- lar, so constructed that their archivolts. A, in- tersect and seem to be interlaced. 89. Invected, — Having a border or outline com- posed of semicircles or arches, with the con- vexity outward. The opposite of engrailed. 90. Inverted ArcK — An arch placed with the crown downward; used in foundation work.' 91. Keystone. — ^The central or topmost stone, A, of an arch, sometimes decorated with a carv- ing. 92. King Post. — A member, A, of a common form of truss for roofs. It is strictly a tie in- tended to prevent the sagging of the tie beam, B, in the middle. If there are struts, C, supporting the rafters, D, they extend down to the foot of the King Post, 93. Lahel. — The name given to the projecting molding, A, around the top of the door opening. A form of medieval architecture. 94. Louver. — The sloping boards, A, set to shed rain water outward in an opening of a frame, as in belfry windows. [^ f^ at as 65 86 hjsrunszststJ 67 69 I ^ I ^ I 90 ^9^ 9/ 70 CAEPENTKY FOE BOYS 9^ 95 97 99 WO /02 103 95. Lintel. — A horizontal member. A spanning or opening of a frame, and designed to carry the wall above it. 96. Lug. — A projecting piece, as A, to which anything is attached, or against which another part3 like B, is held. 97. M-Roof. — A kind of roof formed by the junction of two common roofs with a valley be- tween them, so the section resembles the letter M. 98. Mansard Roof. — ^A hipped curb roof, that is, a roof having on all sides two slopes, the lower one. A, being steeper than the upper portion or deck. 99. ISIewel Post. — The upright post at the foot of a stairway, to which the railing is attached. 100. Parquetry. — A species of joinery or cabi- net work, consisting of an inlay of geometric or other patterns, generally of different colored woods, used particularly for floors. 101. Peen, also Pein. — The round, rowwc^-edged or hemispherical end, as at A, of a hammer. 102. Pendant. — ^A hanging ornament on roofs^ ceilings, etc., and much used in the later styles of Gothic architecture where it is of stone. Imi- tated largely in wood and plaster work. 103. Pentastyle. — A pillar. A portico having ^YQ pillars. A, is called the Pentastyle in tem- ples of classical construction. 104. Pedestal. — An upright architectural mem- ber, A, right-angled in plan, constructionally a pier, but resemblng a column, having a capital, shaft and base to agree with the columns in the structure. 105. Pintle. — An upright pivot pin, or the pin of a hinge; A represents the pintle of a rudder, 106. Portico. — A colonnade or covered struc- ture, especially in classical style, of architecture, and usually at the entrance of a building. 107. Plate. — A horizontal timber, A, used as a top or header for supporting timbers, roofs and the like. STEUCTUEAL PAETS 71 108. Queen Post, — One of two suspending posts in a roof truss, or other framed truss of simple form. Compare with King Post, A, B, tie beam ; C, C, queen posts; D, straining piece; E, prin- cipal rafter; F, rafter. 109. Quirk Molding. — A small channel, deeply recessed, in proportion to its width, used to in- sulate and give relief to a convex rounded mold- ing. An excellent corner post for furniture. 110. Re-entering. — The figure shows an irregu- lar polygon (that is, many-sided figure) and is a re-entering polygon. The recess A is a re- entering angle. 111. Rafter. — Originally any rough and heavy piece of timber, but in modern carpentry used to designate the main roof support, as at A. See Queen Post, 112. Scarfing. — Cutting timber at an angle along its length, as the line A. Scarfing joints are variously made. The overlapping joints may be straight or recessed and provided with a key block B. When fitted together they are securely held by plates and bolts. 113. Scotia Molding. — ^A sunken molding in the base of a pillar, so called from the dark shadow which it casts. 114. Sill. — In carpentry the base piece, or pieces. A, on which the posts of a structure are set. 115. Skew-Back. — The course of masonry, such as a stone. A, with an inclined face, which forms the abutment for the voussoirs, B, or wedge- shaped stones comprising the arch. 116. Spandrel. — The irregular, triangular space, A, between the curve of an arch and the enclosing right angle. 117. Strut. — In general, any piece of a frame, such as a timber A, or a brace B, whch resists pressure or thrust in the direction of its length. 118. Stud, Studding. — ^The vertical timber or scantling, A, which is one of the small uprights of a building to which the boarding or plaster- ing lath are nailed. -ji /07 ^o r/o 7 m m :^ ^ m 72 CARPENTRY FOR BOYS //a ji -B -2> ff9 120 121 ■VB oJ /B2 ^^m 119. ^tile, — ^The main uprights of a door, as A, A; B, B, B, rails; C, C, mullions; D, D, pan- els. Tie Beam, — See Queen Post, 120. Trammel. — ^A very useful tool for drawing ellipses. It comprises a cross, A, with grooves and a bar, B, with pins, G, attached to sliding blocks in the grooves, and a pen or stylus, D, at the projecting end of the bar to scribe the ellipse. 121. Turret. — ^A little tower, frequently only an ornamental structure at one of the angles of a larger structure. 122. Transom.- — A horizontal cross-bar. A, above a door or window or between a door and a window above it. Transom is the horizontal member, and if there is a vertical, like the dotted line B, it is called a Mullion. See Stile, 123. Valley Roof. — ^A place of meeting of two slopes of a roof which have their sides running in different directions and formed on the plan of a re-entrant angle. CHAPTEE VIII DKAWING AND ITS UTILITY A KNOWLEDGE of drawing, at least so far as the fundamentals are concerned, is of great service to the beginner. All work, after being conceived in the brain, should be transferred to paper. A habit of this kind becomes a pleasure, and, if car- ried out persistently, will prove a source of profit. The boy with a bow pen can easily draw circles, and with a drawing or ruling pen he can make straight lines. Eepresenting Objects. — But let him try to rep- resent some object, and the pens become useless. There is a vast difference in the use of drawing tools and free-hand drawing. "While the boy who is able to execute free-hand sketches may become the better artist, still that art would not be of much service to him as a carpenter. First, because the use of tools gives precision, and this is necessary to the builder; and, second, because the artist deals wholly with perspectives, whereas the build- er must execute from plane surfaces or eleva- tions. Forming Lines and Shadows. — It is not my in- tention to furnish a complete treatise on this sub- 7 73 74 CAEPENTEY FOE BOYS ject, but to do two things, one of wHcli will be to show, among other features, how simple lines form objects; how shading becomes an effective aid; how proportions are formed ; and, second, how to make irregular forms, and how they may readily be executed so that the boy may be able to grasp the ideas for all shapes and structural devices. jrig./^^. Analysis of Line Shading. — In the demonstra- tion of this work I shall give an analysis of the simple lines formed, showing the terms used to designate the lines, curves, and formations, so that when any work is laid out the beginner will be able, with this glossary before him, to describe architecturally, as well as mathematically, the an- gles and curves with which he is working. How TO Charactekize Surface. — Suppose we commence simply with straight lines. How shall DRAWING AND ITS UTILITY 75 we determine the character of the surface of the material between the two straight lines shown in Fig. 125? Is it flat, rounded, or concaved? Let us see how we may treat the surface by simple lines so as to indicate the configuration. jrt^,/&B^ l^i^, /SO. l^tgJ^I Concave Surfaces. — In Fig. 126 the shading lines commence at the upper margin, and are heaviest there, the lines gradually growing thinner and farther apart. Convex Surfaces. — In Fig. 127 the shading is very light along the upper margin, and heavy at the lower margin. The first shaded figure, there- fore, represents a concaved surface, and the sec- 76 CARPENTEY FOE BOYS end figure a convex surface. But why? Simply for the reason that in drawings, as well as in na- ture, light is projected downwardly, hence when a beam of light moves past the margin of an object, the contrast at the upper part, where the light is most intense, is strongest. The shading of the S-shaped surface (Fig. 128) is a compound of Figs. 126 and 127. :Z^lffJ32. Shadows Fkom a Solid Body. — ^We can under- stand this better by examining Fig. 129, which shows a vertical board, and a beam of light (A) passing downwardly beyond the upper margin of the board. Under these conditions the upper mar- gin of the board appears darker to the vision, by contrast, than the lower part. It should also be understood that, in general, the nearer the object the lighter it is, so that as the upper edge of the board is farthest from the eye the heavy shading there will at least give the appearance of dis- tance to that edge. DEAWING AND ITS UTILITY 77 But suppose that instead of having the surface of the board flat, it should be concaved, as in Fig. 130, it is obvious that the hollow, or the concaved, portion of the board must intensify the shadows or the darkness at the upper edge. This explains why the heavy shading in Fig. 126 is at that upper margin. Flat Effects. — If the board is flat it may be shaded, as shown in Fig, 131, in which the lines J''T^: raa. jTig./^^. are all of the same thickness, and are spaced far- ther and farther apart at regularly increasing in- tervals. The DiKECTioisr of Light. — Now, in drawing, we must observe another thing. Not only does the light always come from above, but it comes also from the left side. I show in Fig. 132 two squares, one within the other. All the lines are of the same thickness. Can you determine by means of such a drawing what the inner square represents? Is it a block, or raised surface, or is it a depression? 78 CAEPENTEY FOE BOYS Eaised Surfaces.^ — Fig. 133 shows it in the form of a block, simply by thickening the lower and the right-hand lines. Depressed Surfaces. — ^If , by chance, you should make the upper and the left-hand lines heavy, as in Fig. 134, it would, undoubtedly, appear de- pressed, and would need no further explanation. Full Shadii^g. — But, in order to furnish an ad- ditional example of the effect of shading, suppose jTi^j. /<3c5* ■ reg,/^e. we shade the surface of the large square, as shown in Fig. 135, and you will at once see that not only is the effect emphasized, but it all the more clearly expresses what you want to show. In like manner, in Fig. 136, we shade only the space within the inner square, and it is only too obvious how shad- ows give us surface conformation. Illustrating Cube Shadiitg. — In Fig. 137 1 show merely nine lines joined together, all lines being of equal thickness. As thus drawn it may represent, for instance. DEAWING AND ITS UTILITY 79 a cube, or it may show simply a square base (A) with two sides (B, B) of equal dimensions. Shading Effects. — ^Now, to examine it proper- ly so as to observe what the draughtsman wishes to express, look at Fig. 138, in which the three diverg- ing lines (A, B, C) are increased in thickness, "v T\ i X CL jTtg. /37 :F'tg./3Q. C \^ ^^^ \J) iE-^ -^k h NN. "^J ^c ^^ ^^If ^ c^ JF'i^ y./-f3 cube, is what determines the angle, or the relative angles of all the lines. A True Perspective of a Cube. — Fig. 142 shows a true perspective — that is, it is true from the meas- urement standpoint. It is what is called an iso- metrical view, or a figure in which all the lines not only are of equal length, but the parallel lines are 82 CAEPENTBY FOE BOYS all spaced apart the same distances from each other. Isometric Cube. — I enclose this cube within a circle, as in Fig. 143. To form this cube the circle (A) is drawn and bisected with a vertical line (B). This forms the starting point for stepping off the six points (C) in the circle, using the dividers with- -oj :F^ig.m. out resetting, after you have made the circle. Then connect each of the points (C) by straight lines (D). These lines are called chords. From the center draw two lines (E) at an angle and one line (F) vertically. These are the radial lines. You will see from the foregoing that the chords (D) form the outline of the cube — or the lines far- thest from the eye, and the radial lines (E, F) are the nearest to the eye. In this position we are looking at the block at a true diagonal — that is, from a corner at one side to the extreme comer on the opposite side. Let us contrast this, and particularly Fig. 142, DEAWING AND ITS UTILITY 83 with the cube which is placed higher up, viewed from the same standpoint. Flattened Peespective. — Fig. 144 shows the new perspective, in which the three vertical lines (A, A, A) are of equal length, and the six angularly- disposed lines (B, C) are of equal length, but shorter than the lines A. The only change which has been made is to shorten the distance across the corner from D to D, but the vertical lines (A) are the same in length as the corresponding lines in Fig. 143. Notwithstanding this change the cubes in both figures appear to be of the same size, as, in fact, they really are. In forming a perspective, therefore, it would be a good idea for the boy to have a cube of wood always at hand, which, if laid down on a horizontal support, alongside, or within range of the object to 84 CAEPENTEY FOR BOYS be drawn, will serve as a guide to the perspec- tive. Technical Desigitations. — As all geometrical lines have designations, I have incorporated such figures as will be most serviceable to the boy, each figure being accompanied by its proper definition. Before passing to that subject I can better show some of the simple forms by means of suitable dia- grams. Eef erring to Fig. 145, let us direct our attention to the body (G), formed by the line (D) across the circle. This body is called a segment. A chord (D) and a curve comprise a segment. Sectoe and Segment. — Now examine the shape of the body formed by two of the radial lines (E, E) and that part of the circle which extends from one radial line to the other. The body thus formed is a sector, and it is made by two radiating lines and a curved line. Learn to distinguish readily, in your mind, the difference between the two figures. DEAWING AND ITS UTILITY 85 Terms of Angles. — The relation of the lines to each other, the manner in which they are joined together, and their comparative angles, all have special terms and meanings. Thns, referring to the isometric cube, in Fig. 145, the angle formed at the center by the lines (B, E) is different from the angle formed at the margin by the lines (E, F). The angle formed by B, E is called an exterior angle ; and that formed by E, F is an interior angle. If you will draw a line (G) from the center to the circle line, so it intersects it at C, the lines B, D, G form an equilateral or isosceles triangle; if you draw a chord (A) from C to C, the lines H, E, F will form an obtuse triangle, and B, F, H a right- angled triangle. Circles and Curves. — Circles, and, in fact, all forms of curved work, are the most difficult for beginners. The simplest figure is the circle, which, if it represents a raised surface, is provided with a heavy line on the lower right-hand side, as in Fig. 146; but the proper artistic expression is shown in Fig. 147, in which the lower right-hand side is shaded in rings running only a part of the way around, gradually diminishing in length, and spaced farther and farther apart as you approach the center, thus giving the appearance of a sphere. Irregular Curves. — But the irregular curves re- quire the most care to form properly. Let us try 86 CARPENTEY FOE BOYS first tlie elliptical curve (Fig. 148). The proper thing is, first, to draw a line (A), which is called the "major axis.'' On this axis we mark for our guidance two points (B, B). "With the dividers find a point (C) exactly midway, and draw a cross line (D). This is called the "minor axis.'' If we I^tig.Ua. choose to do so we may indicate two points (E, E) on the minor axis, which, in this case, for con- venience, are so spaced that the distance along the major axis, between B, B, is twice the length across the minor axis (D), along E, E. Now find one-quarter of the distance from B to G, as at F, and with a compass pencil make a half circle (G). If, now, you will set the compass point on the center mark (C), and the pencil point of the compass on B, and measure along the minor axis (D) on both DEAWING AND ITS UTILITY 87 sides of the major axis, you will make two points, as at H. These points are your centers for scrib- ing the long sides of the ellipse. Before proceed- ing to strike the curved lines (J), draw a diagonal line (K) from H to each marking point (F). Do this on both sides of the major axis, and pro- duce these lines so they cross the curved lines (G). When you ink in your ellipse do not allow the cir- cle pen to cross the lines (K), and you will have a mechanical ellipse. Ellipses and Ovals. — It is not necessary to measure the centering points (F) at certain speci- fied distances from the intersection of the horizon- tal and vertical lines. We may take any point along the major axis, as shown, for instance, in Fig. 149. Let B be this point, taken at random. Then describe the half circle (C). We may, alsO; arbitrarily, take any point, as, for instance, D on the minor axis E, and by drawing the diagonal lines (F) we find marks on the circle (C), which are the meeting lines for the large curve (H), with the small curve (C). In this case we have formed an ovate or an oval form. Experience will soon make perfect in following out these directions! Focal Points. — The focal point of a circle is its center, and is called the focus. But an ellipse has two focal points, called foci^ represented by F, F in Fig. 148, and by B, B in Fig. 149. 88 CAEPENTRY FOR BOYS A produced line is one which extends out be- yond the marking point. Thus in Fig. 148 that part of the line K between F and G represents the produced portion of line K, Spirals. — There is no more difficult figure to make with a bow or a circle pen than a spiral. In T^l^. /4J. Fig. 150 a horizontal and a vertical line (A, B), respectively, are drawn, and at their intersection a small circle (C) is formed. This now provides for four centering points for the circle pen, on the two lines (A, B). Intermediate these points indicate a second set of marks halfway between the marks on the lines. If you will now set the point of the compass at, say, the mark 3, and the pencil point of the compass at D, and make a curved mark one-eighth of the way around, say, to the radial line (E), then put the point of the DEAWING AND ITS UTILITY 89 compass to 4, and extend the pencil point of the compass so it coincides with the curved line just drawn, and then again make another curve, one- eighth of a complete circle, and so on around the entire circle of marking points, successively^ you will produce a spiral, which, although not abso- lutely accurate, is the nearest approach with a cir- j^t^y^o cle pen. To make this neatly requires care and patience. Perpet^dicular and Vertical. — A few words now as to terms. The boy is often confused in de- termining the difference between perpendicular and vertical. There is a pronounced difference. Vertical means up and down. It is on a line in the direction a ball takes when it falls straight toward the center of the earth. The word perpen- dicular^ as usually employed in astronomy, means the same thing, but in geometry, or in drafting, or in its use in the arts it means that a perpendicular 90 CARPENTEY FOR BOYS line is at right angles to some other line. Suppose you put a square upon a roof so that one leg of the square extends up and down on the roof, and the other leg projects outwardly from the roof. In this case the projecting leg is perpendicular to the roof. Never use the word vertical in this connec- tion. Signs to Indicate Measukements. — The small circle (°) is always used to designate degree. Thus 10^ means ten degrees. Feet are indicated by the single mark ' ; and two closely allied marks " are for inches. Thus five feet ten inches should be written 5' 10". A large cross (X) indicates the word ^'by," and in express- ing the term six feet by three feet two inches, it should be written & X 3' 2". The foregoing figures give some of the funda- mentals necessary to be acquired, and it may be said that if the boy will learn the principles in- volved in the drawings he will have no difficulty in producing intelligible work; but as this is not a treatise on drawing we cannot go into the more refined phases of the subject. Definitions. — The following figures show the various geometrical forms and their definitions : 151. Abscissa, — The point in a curve, A, which is referred to by certain lines, such as B, which extend out from an axis, X, or the ordinate line Z. DEAWING AND ITS UTILITY 91 152. Angle. — The inclosed space near the point where two lines meet. 153. Apothegm. — The perpendicular line A from the center to one side of a regular polygon. It represents the radial line of a polygon the same as the radius represents half the diameter of a circle. 154. Apsides or Apsis. — One of two points, A, A, of an orbit, oval or ellipse^ farthest from the axis, or the two small dots. 155. Chord. — A right line, as A, uniting the extremities of the arc of a circle or a curve. 156. Convolute (see also Involute). — Usually employed to designate a wave or folds in op- posite directions. A double involute. 157. Conic Section. — Having the form of or re- sembling a cone. Formed by cutting off a cone at any angle. See line A. 158. Conoid. — Anything that has a form re- sembling that of a cone. 159. Cycloid. — A curve, A, generated by a point, B, in the plane of a circle or wheel, C, when the wheel is rolled along a straight line. 160. Ellipsoid. — A solid, all plane sections of which are ellipses or circles. 161. Epicycloid. — A curve, A, traced by a point, B, in the circumference of a wheel, C, which rolls on the convex side of a fixed circle, D. 162. E volute. — A curve, A, from which another curve, like B, on each of the inner ends of the lines C is made. D is a spool, and the lines C represent a thread at different positions. The thread has a marker, E, so that w^hen the thread is wound on the spool the marker E makes the evolute line A. 163. Focus. — The center. A, of a circle; also one of the two centering points, B, of an ellipse or an oval. 164. Gnome. — The space included between the boundary lines of two similar parallelograms, the one within the other, with an angle in common. 165. Hyperbola. — A curve. A, formed by the sec- tion of ^ cone. If the cone is cut off vertically on the dotted line. A, the curve is a hyperbola. See Parabola. 167. Hypothenuse. — The side, A, of a right- angled triangle which is opposite to the right angle B, C. A, regular triangle; C, irregular tri- angle. X/5/ /63 755 /6e /67 OsCl /6d /60 /e>z '63 ^^9« 92 CAEPENTEY FOE BOYS •^c^.. iM 170 'fW - w /Z8 ooo m 4k\ r76 L /7e m 777 ^1 776 ^ 17S 760 ^^^ ?32 783 /64 168. Incidence. — The angle, A, which is the same angle as, for instance, a raj of light, B, which falls on a mirror, C. The line D is the perpendicular. 169. Isosceles Triangle. — Having +wo sides or legs. A, A, that are equal. 170. Parabola. — One of the conic sections formed by cutting of a cone so that the cut line, A, is not vertical. See Hyperbola where the cut line is vertical. 171. Parallelogram. — A right-lined quadilateral figure, whose opposite sides. A, A, or B, B, are parallel and consequently equal. 172. Pelecoid. — A figure, somewhat hatchet- shaped, bounded by a semicircle. A, and two in- verted quadrants, and equal to a square, C. 173. Polygons. — Many-sided and many with angles. 174. Pyramid. — ^A solid structure generally with a square base and having its sides meeting in an apex or peak. The peak is the vertex. 175. Quadrant. — The quarter of a circle or of the circumference of a circle. A horizontal line, A, and a vertical line, B, make the four quad- rants, like C. 176. Quadrilateral. — A plane figure having four sides, and consequently four angles. Any figure formed by four lines. 177. Rhomb. — An equilateral parallelogram or a quadrilateral figure whose sides are equal and the opposite sides, B, B, parallel. 178. Sector. — A part. A, of a circle formed by two radial lines, B, B, and bounded at the end by a curve. 179. Segment. — A part. A, cut from a circle by a straight line, B. The straight line, B, is the chord or the segmental line. 180. Sinusoid. — A wave-like form. It may be regular or irregular. 181. Tangent. — A line, A, running out from the curve at right angles from a radial line. 182. Tetrahedron. — A solid figure enclosed or bounded by four triangles, like A or B. A plain pyramid is bounded by five triangles. 183. Vertex. — The meeting point, A, of two or more lines. 184. Volute. — A spiral scroll, used largely in architecture, which forms one of the chief fea- tures of the Ionic capital. CHAPTER IX MOLDINGS, WITH PKACTICAL ILLUSTRATIONS IN EMBEL- LISHING WORK Moldings. — The use of moldings was early re- sorted to by the nations of antiquity, and we mar- vel to-day at many of the beautiful designs which the Phoenecians, the Greeks and the Romans pro- duced. If you analyze the lines used you will be surprised to learn how few are the designs which go to make up the wonderful columns, spires, mina- rets and domes which are represented in the vari- ous types of architecture. The Basis of Moldings. — Suppose we take the base type of moldings, and see how simple they are and then, by using these forms, try to build up or ornament some article of furniture, as an example of their utility. The Simplest Molding. — In Fig. 185 we show a molding of the most elementary character known, being simply in the form of a band (A) placed below the cap. Such a molding gives to the article on which it is placed three distinct lines, C, D and E, If you stop to consider you will note that the molding, while it may add to the strength of the article, is primarily of service 93 94 CAEPENTEY FOE BOYS because the lines and surfaces produce shadows, and therefore become valuable in an artistic sense. The Asteagai.. — Fig. 186 shows the ankle-bone molding, technically called the Astragal. This form is round, and properly placed produces a good effect, as it throws the darkest shadow of any form of molding. I W^. A:^ >^ :P^tqJaa Ban^. tenon will be exposed; and usually, if a smooth finish is required, the mortise should not go through the member. In a door, however, the tenons are exposed at the edges of the door, and are, therefore, seen, so that we must apply some other rule. The one universally adopted is, that where, as in a door stile, it is broad and compara- tively thin, or where the member having the mor- 106 CAEPENTRY FOR BOYS tise in its edge is much thinner than its width, the mortise should go through from edge to edge. The reason for this lies in the inability to sink the mortises through the stile (A, Fig. 207) per- fectly true, and usually the job is turned out something like the illustration shows. The side of the rail (B) must be straight with the side of the stile. If the work is done by machinery it results in accuracy unattainable in hand work. Tkue Mortise Woek. — The essense of good join- ing work is the ability to sink the chisel true with the side of the member. More uneven work is produced by haste than by inability. The ten- TENONING, MORTISING, ETC. 107 dency of all beginners is to strike the chisel too hard, in order the more qnickly to get down to the bottom of the mortise. Hence, bad work follows. Steps iiq- Cutting Moetises. — Examine Fig. 208, which, for convenience, gives six successive steps in making the mortise. The marks a^ h designate the limits, or the length, of the mortise. The chisel (C) is not started at the marking line {A)y but at least an eighth of an inch from it. The first cut, as at B, gives a starting point for the next cut or placement of the chisel. When the sec- ond cut (B) has thus been made, the chisel should be turned around, as in dotted line d, position C, thereby making a finish cut down to the bottom of the mortise, line e, so that when the fourth cut has been made along line f, we are ready for the fifth cut, position C; then the sixth cut, position D, which leaves the mortise as shown at E. Then turn the chisel to the position shown at F, and cut down the last end of the mortise square, as shown in G, and clean out the mortise well before making the finishing cuts on the marking lines {a, b). The particular reason for cleaning out the mortise before making the finish cuts is, that the corners of the mortise are used as fulcrums for the chisels, and the eighth of an inch stock still remaining protects the corners. 108 CARPENTRY FOE BOYS Things to Avoid in Moetising. — You must be careful to refrain from undercutting as your chisel goes down at tlie lines a, h, because if you com- mit this error you will make a bad joint. As much care should be exercised in producing the tenon, although the most common error is apt to occur in making the shoulder. This should be a trifle undercut. jr^.^09. > See the lines (A, Fig. 209), which illustrate this. Lap-and-Butt Joint. — The lap-and-butt is the form of uniting members which is most generally used to splice together timbers, where they join each other end to end. X=L Bolts are used to secure the laps. But the lap-and-butt form is also used in doors and in other cabinet work. It is of great service in paneling. TENONING, MORTISING, ETC. 109 A rabbet is formed to receive the edge of the panel, and a molding is then secured to the other side on the panel, to hold the latter in place. ScAKFiNG. — This method of securing members together is the most rigid, and when properly per- JTig.< formed makes the joint the strongest part of the timber. Each member (A, Fig. 212) has a step diagonally cut (B), the two steps being on differ- ent planes, so they form a hook joint, as at C, and as each point or terminal has a blunt end, the members are so constructed as to withstand a longitudinal strain in either direction. The overlapping plates (D) and the bolts (E) hold the joint rigidly. The Tongue and Groove. — This form of uniting members has only a limited application. It is 110 CARPENTEY FOR BOYS serviceable for floors, table tops, paneling, etc. In Fig. 213, a door panel is shown, and tbe door mullions (B) are also so secured to the rail (C). jris.^ta. The tongne-and-groove method is never used by itself. It must always have some support or re- inforcing means. w J=^tff.AU. > 2^^,A/^. Beading. — This part of the work pertains to surface finishings, and may or may not be used in connection with rabbeting. Figs. 214 and 215 show the simplest and most generally adopted forms in which it is made and used in connection with rabbeting, or with the tongue and groove. The bead is placed on one or both sides of that margin of the board (Fig. 214) which has the tongue, and the adjoining board has the usual flooring groove to butt against and receive the tongue. It is frequently the case that a blind bead, as in Fig. 215, runs through TENONING, MORTISING, ETC. Ill the middle of tlie board, so as to give the appear- ance of narrow strips when used for wainscoting, or for ceilings. The beads also serve to hide the joints of the boards. CZD^CD CD Ornamental Bead Finish. — These figures show how the bead may be used for finishing comers, edges and projections. Fig. 216 has a bead at each corner of a stile (A), and a finishing strip of half-round material (B) is nailed to the flat edge. Fig. 217 has simply the corners themselves beaded, and it makes a most serviceable finish for the edges of projecting members. Fig. 218, used for wider members, has the cor- ners beaded and a fancy molding (C) ; or the re- duced edge of the stile itself is rounded off. ao The Bead and Eabbet.— A more amplified form of work is available where the rabbet plane is used with the header. These two planes together 112 CAEPENTEY FOE BOYS will, if properly used, offer a strong substitute for molding and molding effects. Fig. 219 has both sides first rabbeted, as at A, and the corners then beaded, as at B, with the reduced part of the member rounded off, as at C. Or, as in Fig. 220, the reduced edge of the member may have the corners beaded, as at D, and the rabbeted corners filled in with a round or con- caved moulding (E). Shading with Beads and Eabbets. — ^You will see from the foregoing, that these embellishments are serviceable because they provide the article with a large number of angles and surfaces to cast lights and shadows ; and for this reason the boy should strive to produce the effects which this class of work requires. CHAPTEE XI HOUSE BUILDING House Building is the carpenter's craft; cab- inet-making the joiner's trade, yet both are so in- timately associated, that it is difficult to draw a line. The same tools, the same methods and the same materials are employed. There is no trade more ennobling than home building. It is a vocation which touches every man and woman, and to make it really an art is, or should be, the true aspiration of every crafts- man. The House and Embellishments. — The refined arts, such as sculpture and painting, merely em- bellish the home or the castle, so that when we build the structure it should be made with an eye not only to comfort and convenience, but fitting in an artistic and aesthetic sense. It is just as easy to build a beautiful home as an ugly, ungainly, illy proportioned structure. Beauty Not Oknamentation. — The boy, in his early training, should learn this fundamental truth, that beauty, architecturally, does not de- pend upon ornamentation. Some of the most beautiful structures in the world are very plain. 113 114 CARPENTEY FOE BOYS Beauty consists in proportions, in proper corela- tion of parts, and in adaptation for the uses to which the structure is to be put. Plaiit Structukes. — A house with a plain fagade, having a roof properly pitched and with a simple cornice, if joined to a wing which is not ungainly or out of proper proportions, is infinitely more beautiful than a rambling structure, in which one part suggests one order of architecture and the other part some other type or no type at all, and in which the embellishments are out of keep- ing with the size or pretensions of the house. Colonial Type. — For real beauty, on a larger scale, there is nothing to-day which equals the old Colonial type with the Corinthian columns and entablature. The Lee mansion, now the National Cemetery, at Washington, is a fine example. Such houses are usually square or rectangular in plan, severely plain, with the whole ornamentation consisting of the columns and the portico. This type presents an appearance of massiveness and grandeur and is an excellent illustration of a form wherein the main characteristic of the struc- ture is concentrated or massed at one point. The Church of the Madelaine, Paris, is another striking example of this period of architecture. Of course, it would be out of place with cottages and small houses, but it is well to study and to HOUSE BUILDING- 115 know what forms are most available and desirable to adopt, and particularly to know something of the art in which you are interested. The Eoof the Keynote. — Now, there is one thing which should, and does, distinguish the resi- dence from other types of buildings, excepting churches. It is the roof. A house is dominated by its covering. I refer to the modern home. It is not true with the Colonial or the Grecian types. In those the fagade or the columns and cornices predominate over everything else. Bungalow Types. — If you will take up any book on bungalow work and note the outlines of the views you will see that the roof forms the main element or theme. In fact, in most buildings of this kind everything is submerged but the roof and roof details. They are made exceedingly flat, with different pitches with dormers and gables in- termingled and indiscriminately placed, with cor- nices illy assorted and of different kinds, so that the multiplicity of diversified details gives an ap- pearance of great elaboration. Many of those designs are monstrosities and should, if possible, be legally prohibited. I cannot attempt to give even so much as an outline of what constitutes art in its relation to building, but my object is to call attention to this phase of the question, and as you proceed in 116 CAEPENTEY FOE BOYS your studies and your work you will realize the value and truthfulness of the foregoing observa- tions. General House Buildin-g. — ^We are to treat, generally, on the subject of house building, how the work is laid out, and how built, and in doing so I shall take a concrete example of the work. This can be made more effectual for the purpose if it is on simple lines. Building Plans. — We must first have a plan; and the real carpenter must have the ability to plan as well as to do the work. We want a five- room house, comprising a parlor, dining room, two bedrooms, a kitchen and a bathroom. Just a mod- est little home, to which we can devote our spare hours, and which will be neat and comfortable when finished. It must be a one-story house, and that fact at once settles the roof question. We can make the house perfectly square in plan, or rectangular, and divide up the space into the proper divisions. The Plain Squaee Floor Plan will first be taken up, as it is such an easy roof to build. Of course, it is severely plain. Fig. 221 shows our proposed plan, drawn in the rough, without any attempts to measure the differ- ent apartments, and with the floor plan exactly square. Supposing we run a hall (A) through HOUSE BUILDING 117 "I" ' "I J9cz^ ^ TTtfcheTt / ± ChiMTiezi €lc JH»(n^iioofM, 2^^.££/. / /\ jPorffco JBecl T^ooMt -Saiioi the middle. On one side of this let ns plan for a dining room and a kitchen, a portion of the kitchen space to be given over to a closet and a bathroom. The chimney (B) mnst be made accessible from both rooms. On the other side of the hallway the space is divided into a parlor and two bedrooms. 118 CAEPENTRY FOR BOYS The Rectangulae Plan. — In the rectangular floor plan (Fig. 222) a portion of the floor space is cnt out for a porch (A), so that we may use the end or the side for the entrance. Supposing we use the end of the house for this purpose. The entrance room (B) may be a bedroom, or a recep- jded^Jtoorn / JBedJioot^ Kt^chtn JBaffi 1 ^^ y I C 1 / Chimne^V' \ -r — 1 '-JSccPFp.^ ' 3 T^r^fe^ TaHcr j :?:mi2^:QoonL. J9 F 3 f JTi ■^.s^a. tion and living room, and to the rear of this room is the dining room, connected with the recep- tion room by a hall (C). This hall also leads to the kitchen and to the bathroom, as well as to the other bedroom. The parlor is connected with the entrance room (B), and also with the bedroom. All of this is optional, of course. There are also two chimneys, one chimney (D) HOUSE BUILDING 119 ^zff.JS^d. having two flues and the other chimney (E) hav- ing three flues, so that every room is accommo- dated. EooM Measurements. — We must now determine the dimensions of each room, and then how we shall build the roof. In Figs. 223 and 224, we have now drawn out 120 CAEPENTEY FOE BOYS in detail the sizes, the locations of the door and windows, the chimneys and the closets, as well as the bathroom. All this work may be changed or modified to snit conditions and the taste of the designer. 30'^" j^^.as4. Fkont and Side Lines. — From the floor diagram, and the door and window spaces, as marked out, we may now proceed to lay out rough front and side outlines of the building. The ceilings are to be 9 feet, and if we put a rather low-pitched roof on the square structure (Fig. 223) the front may look something like Fig. 225, and a greater pitch given to the rectangular plan (Fig. 224) will present a view as shown in Fig. 226. HOUSE BUILDING 121 :F-'ig. ^25. n y I, , .J 2^1^. >e^6. The Eoof.— The pitch of the roof (Fig. 225) is what is called ^^third pitch," and the roof (Fig. 226) has a half pitch. A "third'' pitch is deter- mined as follows: 10 122 GAEPENTRY FOE BOYS Roof Pitch. — In Fig. 227 draw a vertical line (A) and join it by a horizontal line (B). Then strike a circle (C) and step it off into three parts. The line (D), which intersects the first mark (E) and the angle of the lines (A, B), is the pitch. In Fig. 228 the line A is struck at 15 degrees, which is halfway between lines B and C, and it is, therefore, termed "half-pitch.'^ .7^./a?7 jrig.^d. Thns, we have made the ground plans, the ele- vations and the roofs as simple as possible. Let us proceed next with the details of the building. The Foundation. — This may be of brick, stone or concrete, and its dimensions should be at least \\ inches further out than the sill. The Sills. — ^We are going to build what is called a "balloon frame"; and, first, we put down the sills, which will be a course of 2" x 6", or 2" x 8" joists, as in Fig. 229. The Flooeing Joist. — The flooring joists (A) are then put down (Fig. 230). These should ex- HOUSE BUILDING 123 tend clear across the house from side to side, if possible, or, if the plan is too wide, they should be lapped at the middle wall and spiked together. The ends should extend out flush with the outer S ^^ ^-f '-^—U -±:.:rF^^^ fV "-"■ 1---:-"^^ ^=^'\- JF-ig.^SO margins of the sills, as shown, but in putting down the first and last sill, space must be left along the sides of the joist of sufficient width to place the studding. The Studding. — The next step is to put the studding into position. 4" x 4" must be used for corners and at the sides of door and window open- 124 CAEPENTRY FOE BOYS ings. 4" X 6" may be nsed at corners, if pre- ferred. Consult your plan and see where the openings are for doors and windows. Measure the widths of the door and window frames, and make a measuring stick for this purpose. You must leave at least one-half inch clearance for the window or door frame, so as to give sufficient room to plumb and set the frame. Setting Up. — First set up the corner posts, plumbing and bracing them. Cut a top plate for each side you are working on. ^ The Plate. — As it will be necessary in our job to use two or more lengths of 2" x 4" scantling for the plate, it will be necessary to join them to- gether. Do this with a lap-and-butt joint (Fig. 231). Then set up the 4" x 4" posts for the sides of the doors and windows, and for the partition walls. The plate should be laid down on the sill, and marked with a pencil for every scantling to corre- spond with the sill markings. The plate is then put on and spiked to the 4" x 4" posts. Intekmediate Studding. — It will then be an HOUSE BUILDING 125 easy matter to put in the intermediate 2" x 4" studding, placing them as nearly as possible 16 inches apart to accommodate the 48-inch plaster- ing lath. Wall Headers. — When all the studding are in you will need headers above and rails below the windows and headers above all the doors, so that you will have timbers to nail the siding to, as well as for the lathing. Ceiling Joists. — We are now ready for the ceil- ing joists, which are, usually, 2" x 6", unless there is an upper floor. These are laid 16 inches apart from center to center, preferably parallel with the floor joist. It should be borne in mind that the ceil- 126 CAEPENTEY FOE BOYS ing joist must always be put on with reference to the roof. Thus, in Fig. 232, the ceiling joists (A) have their ends resting on the plate (B), so that the rafters are in line with the joists. Bkaces. — It would also be well, in putting up the studding, to use plenty of braces, although for a JF^.;S53. one-story building this is not so essential as in two-story structures, because the weather board- ing serves as a system of bracing. The Eafters. — These may be made to provide for the gutter or not, as may be desired. They should be of 2" x 4" scantling. The Gutter. — In Fig. 233 1 show a most service- able way to provide for the gutter. A V-shaped notch is cut out of the upper side of the rafter, in which is placed the floor and a side. This HOUSE BUILDING 127 floor piece is raised at one end to provide an in- cline for the water. A face-board is then applied and nailed to the ends of the rafters. This face-board is sur- mounted by a cap, which has an overhang, be- neath which is a molding of any convenient pat- tern. The face-board projects down at least two inches below the angled cut of the rafter, so that when the base-board is applied, the lower margin -2^.^03^ 1 of the face-board will project one inch below the base. This base-board is horizontal, as you will see. The facia-board may be of any desired width, and a comer molding should be added. It is optional to use the brackets, but if added they should be spaced apart a distance not greater than twice the height of the bracket. A much simpler form of gutter is shown in Fig. 234, in which a V-shaped notch is also cut in the 128 CAEPENTEY FOE BOYS rafter, and the channel is made by the pieces. The end of the rafter is cut at right angles, so the face-board is at an angle. This is also sur- mounted by an overhanging cap and a molding. The base is nailed to the lower edges of the raf- ters, and the facia is then applied. WA ~1 ^^_ JTt^.^Si^ In Fig. 234a the roof has no gutter, so that the end of the rafter is cut off at an angle and a mold- ing applied on the face-board. The base is nailed to the rafters. This is the cheapest and simplest form of structure for the roof. Setting Dook and Window Frames. — The next step in order is to set the door and window frames preparatory to applying the weather boarding. It is then ready for the roof, which should be put on before the floor is laid. Plastering and Inside Finish. — Next in order is the plastering, then the base-boards and the HOUSE BUILDING 129 casing; and, finally, the door and windows should be fitted into position. Enough has been said here merely to give a general outline, with some details, how to proceed with the work. CHAPTEE XII BEIDGES, TRUSSED WORK AND LIKE STRUCTURES Bridges. — Bridge building is not, strictly, a part of the carpenter's education at tlie present day, because most structures of this kind are now built of steel; but there are certain principles involved in bridge construction which the carpenter should master. Self-supporting Eoofs. — In putting up, for in- stance, self-supporting roofs, or ceilings with wide spans, and steeples or towers, the bridge principle of trussed members should be understood. The most simple bridge or trussed form is the well-known A-shaped arch. 2^^. 235, CoMMOK Trusses. — One form is shown in Fig. 235, with a vertical king post. In Fig. 236 there are two vertical supporting members, called queen posts, used in longer structures. Both of these 130 BRIDGES, TRUSSED WORK 131 forms are equally well adapted for small bridges or for roof supports. The Vertical Upright Truss. — This form of truss naturally develops into a type of wooden bridge known all over the country, as its framing is simple, and calculations as to its capacity to sustain loads may readily be made. Figs. 237, 238 and 239 illustrate these forms. Jrtg,^36, 2^lp.£37, The Warreit Girder. — Out of this simple truss grew the Warren girder, a type of bridge partic- ularly adapted for iron and steel construction. This is the simplest form for metal bridge truss, or girder. It is now also largely used in steel buildings and for other work requiring strength with small weight. The Bowstring Girder. — Only one other form of 132 CAEPENTRY FOR BOYS e;' ^ BEIDGES, TEUSSED WOEK 133 bridge truss need be mentioned here, and that is the bowstring shown in Fig. 240. In this type the bow receives the entire compres- sion thrust, and the chords act merely as suspend- ing members. Fundamental Truss Form. — In every form of truss, whether for building or for bridge work, the principles of the famous A-truss must be em- ployed in some form or other ; and the boy who is experimentally inclined will readily evolve means to determine what degree of strength the upper and the lower, members must have for a given length of truss to sustain a specified weight. There are rules for all these problems, some of them very intricate, but all of them intensely in- teresting. It will be a valuable addition to your knowledge to give this subject earnest study. CHAPTEE XIII THE BEST WOODS FOR THE BEGi:NrNER li^ this place consideration will be given to some of the features relating to the materials to be em- ployed, particularly with reference to the manner in which they can be worked to the best advantage, rather than to their uses. The Best Woods. — The prime wood, and the one with which most boys are familiar, is white pine. It has an even texture throughout, is gen- erally straight grained, and is soft and easily worked. White pine is a wood requiring a very sharp tool. It is, therefore, the best material for the beginner, as it will at the outset teach him the important lesson of keeping the tools in a good, sharp condition. Soft Woods. — It is also well for the novice to do his initial work with a soft wood, because in join- ing the parts together inaccuracies may be easily corrected. If, for instance, in mortising and ten- oning, the edge of the mortised member is not true, or, rather, is not "square," the shoulder of the tenon on one side will abut before the other side does, and thus leave a crack, if the wood is hard. If the wood is soft there is always enough yield to 134 BEST WOODS FOE BEGINNERS 135 enable the workman to spring it together. There- fore, until you have learned how to make a true joint, use soft wood. Poplar is another good wood for the beginner, as well as redwood, a western product. Hard Woods. — Of the hard woods, cherry is the most desirable for the carpenter's tool. For work- ing purposes it has all the advantages of a soft wood, and none of its disadvantages. It is not apt to warp, like poplar or birch, and its shrinking unit is less than that of any other wood, excepting redwood. There is practically no shrinkage in red- wood. The Most Difficult Woods. — Ash is by far the most difficult wood to work. While not as hard as oak, it has the disadvantage that the entire board is seamed with growth ribs which are extremely hard, while the intervening layers between these ribs are soft, and have open pores, so that, for instance, in making a mortise, the chisel is liable to follow the hard ribs, if the grain runs at an angle to the course of the mortise. The Hard-ribbed Grain in" Wood. — This peculi- arity of the grain in ash makes it a beautiful wood when finished. Of the light-colored woods, oak only excels it, because in this latter wood each year's growth shows a wider band, and the inter- stices between the ribs have stronger contrasting 136 CARPENTEY FOE BOYS colors than ash; so that in filling the surface, be- fore finishing it, the grain of the wood is brought out with most effective clearness and with a beau- tifully blended contrast. The Easiest Working Woods. — The same thing may be said, relatively, concerning cherry and walnut. While cherry has a beautiful finishing surface, the blending contrasts of colors are not so effective as in walnut. Oregon pine is extremely hard to work, owing to the same difficulties experienced in handling ash; but the finished Oregon pine surface makes it a most desirable material for certain articles of fur- niture. Do not attempt to employ this nor ash until you have mastered the trade. Confine yourself to pine, poplar, cherry and walnut. These woods are all easily obtainable everywhere, and from them you can make a most creditable variety of useful arti- cles. Sugar and maple are two hard woods which may be added to the list. Sugar, particularly, is a' good-w^orking wood, but maple is more difficult* Spruce, on the other hand, is the strongest and toughest wood, considering its weight, which is but a little more than that of pine. Differences in the Working of Woods. — Dif- ferent woods are not worked with equal facility by BEST WOODS FOR BEGINNEES 137 all the tools. Oak is an easy wood to handle with a saw, but is, probably, aside from ash, the most difficult wood known to plane. Ash is hard for the saw or the plane. On the other hand, there is no wood so easy to manipulate with the saw or plane as cherry. Pine is easily worked with a plane, but difficult to saw; not on account of hardness, but because it is so soft that the saw is liable to tear it. FoECii^G Saws in Wood. — One of the reasons why the forcing of saws is such a bad practice will be observed in cutting white or yellow pine. For cross-cutting, the saw should have fine teeth, not heavily set, and evenly filed. To do a good job of cross-cutting, the saw must be held at a greater angle, or should lay down flatter than in ripping, as by so doing the lower side of the board will not break away as much as if the saw should be held more nearly vertical. These general observations are made in the hope that they will serve as a guide to enable you to select your lumber with some degree of intelli- gence before you commence work. 11 CHAPTER XIV WOOD TURNING Advantages of Wood Turning. — This is not, strictly, in the carpenter's domain; but a knowl- edge of its use will be of great service in the trade, and particularly in cabinet making. I urge the ingenious youth to rig up a wood-turning lathe, for the reason that it is a tool easily made and one which may be readily turned by foot, if other power is not available. Simple Turning Lathe. — A very simple turn- ing lathe may be made by following these instrac- tions : The Kails. — Procure two straight 2"x 4" scant- ling (A), four feet long, and planed on all sides. Bore four f-inch holes at each end, as shown, and 10 inches from one end four more holes. A plan of these holes is shown in B, where the exact spac- ing is indicated. Then prepare two pieces 2" x 4" scantling (C), planed, 42 inches long, one end of each being chamfered off, as at 2, and provided with four bolt holes. Ten inches down, and on the same side, with the chamfer (2) is a cross gain (3), the same angle as the chamfer. Midway between the cross gain (3) and the lower end of the leg is 138 WOOD TUENING 139 a gain (4) in the edge, at right angles to the cross gain (3). The Legs. — Now prepare two legs (D) for the tail end of the frame, each 32 inches long, with a chamfer (5) at one end, and provided with four bolt holes. At the lower end bore a bolt hole for the cross base piece. This piece (E) is 4" x 4", 21 n • • » ^ 3 // I Fig. 270. ''Odd Job'' Tool try-square, miter-square, bevel, scratch awl, depth gage, marking gage, miter gage, beam compass, and a one-foot rule. To the boy who wishes to economize in the purchase of tools this is an article which should be obtained. Figure 270 shows the simplicity of the tool, and how it is applied in use. Bit Braces. — These tools are now made with so SPECIAL TOOLS AND THEIR USES 175 many improved features that there is really no excuse for getting poor tools. The illustrations show merely the heads and the lower operating parts of the tools. Fig. 271 shows a metal-clad ball-bearing head, so called, as its under side is completely encased in metal securely screwed to the wood and revolving against the ball thrust bearing. D represents a concealed ratchet in which the cam ring governs the ratchet, and, being in line with the bit, makes it more convenient in handling than when it is at right angles. The ratchet parts are entirely enclosed, thus keeping out moisture and dirt, retaining lubrication and protecting the users' hands. The ratchet mechanism is interchangeable, and may be taken apart by removing one screw. The two-piece clutch, which is drop forged, is backed by a very strong spring, insuring a secure lock. When locked, ten teeth are in engagement, while five are employed while working at a ratchet. It has universal jaws (G) for both wood and metal workers. In Fig. 272, B represents a regular ball bearing head, with the wood screw on the large spindle and three small screws to prevent its working loose. This also has a ball thrust. E is the ratchet box, and this shows the gear teeth cut on the extra 176 CAEPENTRY FOR BOYS heavy spindle, and encased, so that the user's hands are protected from the teeth. The interlocking jaws (H), which are best for taper shanks, hold np to No. 2 Clark's expansion. Fig. 271 ^^1 ^^ ^^ W^ Fig. 272 Fig. 273 Types of Bit Braces. and are therefore particularly adapted for car- penter's use. In Fig. 273 the plain bearing head (C) has no ball thrust. The head is screwed on the spindle and SPECIAL TOOLS AND THEIB USES 177 held from tnrning off by two small screws. The open ratchet (F) shows the gear pinned to the spindle and exposed. This has alligator jaws (J), and will hold all ordinary size taper shank bits, Fig. 27 Jf, Fig, 275 Fig. 276 Steel Frame Breast Drills. also small and medium round shank bits or drills. Steel Frame Breast Drill. — These drills are made with both single and double speed, each speed having three varieties of jaws. The single speed is very high, the ratio being 4| to 1, which makes 178 CAEPENTEY FOE BOYS it desirable to use for small drills, or for use in wood. A level is firmly set in the frames of these tools to assist the user to maintain a horizontal position in boring. Each of the forms shown has a ball thrust bearing between the pinion and frame. The breast plate may be adjusted to suit and is locked by a set screw. The spindle is kept from turning while changing drills, by means of the latch mounted on the frame, and readily engaging with the pinion. The crank is pierced in three places so that the handle can be set for three different sweeps, depending on the character of the work. Figure 274 has a three jaw chuck, and has only single speed. Figure 275 has an interlocking jaw, and is provided with double speed gearing. Fig- ure 276 has a universal jaw, and double speed. Planes. — The most serviceable planes are made in iron, and it might be well to show a few of the most important, to bring out the manner employed to make the adjustments of the bits. In order to familiarize the boy with the differ- ent terms used in a plane, examine Figure 277. The parts are designated as follows: lA is the double plane iron ; 1 single plane iron ; 2 plane iron cap ; 3 cap screw ; 4 lever cap ; 5 lever cap screw ; 6 frog complete ; 7 Y adjusting lever ; 8 adjusting nut; 9 lateral adjusting lever; 11 plane handle; SPECIAL TOOLS AND THEIR USES 179 12 plane knob; 13 handle bolt and nut; 14 knob bolt and nut ; 15 plane handle screw ; 16 plane bot- tom ; 44 frog pin ; 45 frog clamping screw ; 46 frog adjusting screw. Eabbeting, Matching and Dado Planes. — Fig- ure 278 shows a useful form of plane for the rea- Fig. 277. Details of Metal Plane. son that it is designed to receive a variety of irons, adapted to cut rabbets. The detached sections of Fig. 278 show the various parts, as well as the bits which belong to it. 1, 1 represent the single plane irons ; 4 the lever cap; 16 the plane bottom, 50 the fence; 51 the fence thumb screw; 61 the short arm; 70 the ad- 180 CAEPENTEY FOE BOYS jnstable depth gage ; 71 the depth gage which goes through the screw ; and 85 the spurs with screws. MoLDiisTG AND Beading Plane. — A plane of the character shown in Fig. 279 will do an immense variety of work in molding, beading and dado work, and is equally well adapted for rabbeting, for filletsters and for match planing. The regu- lar equipment with this tool comprises fifty-two cutters. Fig. 278. Rabbet, Matching and Dado Plane. As shown in Fig. 279, the plane has a main stock (A), which carries the cutter adjustment, a handle, a depth gage, a slitting gage, and a steel bottom forming a bearing for the other end of the cutter^ and slides on arms secured to the main stock. This bottom can be raised or lowered, so that, in addition to allowing the use of cutters of differ- SPECIAL TOOLS AND THEIE USES 181 ent widths, cutters can be used having one edge higher or lower than the edge supported in the main stock. Fig. 279, Molding and Beading Plane. The auxiliary center bottom (C), which can be adjusted for width or depth, fulfils the require- ment of preventing the plane from tilting and gouging the work. The fence D has a lateral ad- justment by means of a screw, for extra fine work. 182 CAEPENTRY FOE BOYS The four small cuts in the corners show how the bottoms should be set for different forms of cut- ters, and the great importance of having the fences adjusted so that the cutters will not run. The samples of work illustrated show some of ^tWSHH***-" .i,\^,kmi^\mhM, Fig. 280. Dovetail Tongue and Groove Plane. the moldings which can be turned out with the plane. Dovetail Tongue akd Groove Plane. — This is a very novel tool, and has many features to recom- mend it. Figure 280 shows its form, and how it is used. It is designed to make the dovetailed tongue as well as the groove. It will cut any size groove and tongues to fit with sides of twenty degrees flare, where the width SPECIAL TOOLS AND THEIE USES 183 of the neck is more than one-qnarter of an inch thick, and the depth of the groove not more than three-qnarters of an inch. The tongue and groove are cnt separately, and can be made with parallel or tapering sides. The operation of the plane is very simple. ?^^:D. Fig. 281. Fig. 282, Router Planes, EouTER Planes. — This is a type of plane used for surfacing the bottom of grooves or other de- pressions parallel with the general surface of the work. The planes are made in two types, one, like Fig. 281,* which has a closed throat, and the other. Fig. 282, with an open throat. Both are serviceable, but the latter is preferable. These planes will 184 CAEPENTEY FOE BOYS level off bottoms of depression, very accurately, and the tool is not an expensive one. DooE Trim Plane. — This is a tool for making mortises for bntts, face plates, strike plates, escntcheons, and the like, np to a depth of 5/16, and a width of 3 inches. The principal feature in the plane is the method of mounting the cutter, which can be instantly set to work from either end of the plane or across it. i IB w w w Fig. 283. Door Trim Plane. The cutter, as shown in Fig. 283, is cushioned by a spring which prevents taking a heavier chip than can be easily carried. A fence regulates the position of the cut and insures the sides of the cut being parallel. The depth of the cut is governed by a positive stop. By removing the fence and locking the cutter post with the thumb screw, in- stead of using the spring, a very superior router plane is obtained. CHAPTER XIX ROOFING TRUSSES The chapter on Bridge Building gives some suggestions as to form of trusses, the particular types there shown being principally for wide spans. Such trusses were made for one purpose only, namely, to take great weight, and they were, as a consequence, so constructed as to provide strength. But a roofing truss, while designed to hold the accumulated materials, such as snow and ice, likely to be deposited there, is of such a design, princi- pally, so as to afford means of ornamentation. This remark has reference to such types as dis- pense with the cross, or tie beam, which is the dis- tinguishing feature in bridge building. The tie beam is also an important element in many types of trusses, where ornamentation is not required, or in such structures as have the roofed portion of the buildings enclosed by ceiling walls, or where the space between the roofs is used for storage purposes. In England, and on the Continent of Europe, are thousands of trusses structured to support the roofs, which are marvels of beauty. Some of them 14 185 186 CAEPENTEY FOE BOYS are bewildering in their formation. The moldings, beaded surfaces, and the carved outlines of the soffits, of the arches, and of the purlins, are won- derful in detail. The wooden roof of Westminster Hall, while very simple in structure, as compared with many others, looks like an intricate maze of beams, struts and braces, but it is, nevertheless, so har- monized that the effect is most pleasing to the eye, and its very appearance gives the impression of grandeur and strength. Nearly all of the forms shown herein have come down to us from mediaeval times, when more stress was laid on wooden structures than at the present time, but most of the stone and metal build- ings grew out of the wooden prototypes. Now the prime object of nearly all the double- roofed trusses was to utilize the space between the rafters so as to give height and majesty to the interior. A large dome is grand, owing to its great sim- plicity, but the same plain outlines, or lack of orna- mentation, in the ceiling of a square or rectangular building would be painful to view, hence, the braces, beams, plates, and various supports of the roofed truss served as ornamental parts, and it is in this particular that the art of the designer finds his inspiration. EOOFING TEUSSES 187 Before proceeding to apply the matter of orna- mentation, it might be well to develop these roof forms, starting with the old type Barn Eoof , where the space between the rafters must be utilized for the storage of hay. jFYg.^di. GamdraRooe The Gambrel Roof, Fig. 284, requires a tie beam, (A), as shown, but the space above the beam is free of all obstructions, and gives a large storage space. The roof has two sets of rafters (B, C), and of different pitch, the lower rafters (B) hav- ing a pitch of about 30 degrees, and the upper ones (C), about 45 degrees. 188 CAEPENTEY FOR BOYS A tie bar (D) joins the middle portion of each of the rafters (B, C) and another tie bar (E) joins the middle part of the rafter (B), and the support- ing post (F). The cross tie beam (G) completes the span, and a little study will show the complete interdependence of one piece upon the other. 2^ ^66, Purlin Hoor. The Purlin Roof is a type of structure used very largely throughout the United States, for wide bams. (A) is the cross beam; (B, B) the purlin posts ; (C, C) the purlin plates ; (D, D) the rafters ; and (E, E) the supporting braces. The rafters (D) are in two sections, the distance from the eaves to the comb being too great for single length rafters, and the purlin plates are not designed to make what is called a "self-support- ing" roof, but merely to serve as supports for the regular rafters. EOOFING TEUSSES 189 The Princess Truss, on the other hand, is de- signed to act as a support for the different lengths of rafters (A, B, C), and as a means for holding the roof. It is adapted for low pitch and wide spans. The main truss is made up of the cross beam (D), rafters (E, E) and thrust beam (F). Purlin jr%g.^86. Trimeti^Tru^ posts (G, G) are placed at an angle intermediate the ends of the rafters, and the purlin plates (H, H) support the roof rafters (A, B, C) ; I, I are the vertical tie rods. This type is probably the oldest form of truss for building purposes, and it has been modified in many ways, the most usual modification being the substitution of posts for the tie rods (I, I). Following out the foregoing forms, we may 190 CAEPENTEY FOE BOYS call attention to one more type which permitted ornamentation to a considerable degree, although it still required the tie beam. In fact the tie beam itself was the feature on which the architect de- pended to make the greatest effect by elaborat- ing it. This is shown in Fig. 287, and is called the Arched, or Cambered, Tie Beam Truss. It is a 7^ig.S87. c3rcliecL,orCamd€r€a,7leBea?fL very old type, samples of which have been found which take it back to a very remote age. The tie beam A, in wide spans, was made in two sections, properly tied together, and sometimes the outer ends were very wide, and to add to the effect of the arch, it might also be raised in the middle, something in the form shown by the dotted line (B). The Mansard is what may be called a double- mounted roof, and it will be seen how it was EOOFING TEUSSES^ 191 evolved from the preceding types. It will be noted that the simple truss formed by the mem- bers (A, B, C) is merely superposed on the lean- ing posts, the tie beam also being necessary in this construction. /^. JS68. jTTie ??ian^arcL But the most elaborate formations are those which were intended to provide trusses for build- ings wherein the tie beams were dispensed with. The simplest form known is called the Scissors Beam, illustrated in Fig. 289. This has been util- ized for small spaces, and steep pitches. Each rafter (A) has an angled beam or brace (B), springing from its base, to the opposite rafter (A), 192 CAEPENTRY FOE BOYS to which it is joined, midway between its ends, as at C. Where the two braces (B) cross each other they are secured together, as at D. As a result, 2^tg.£d9. ^cu^onBcam, three trusses are formed, namely, 1, 2, 3, and it possesses remarkable strength. Beaced Collab Beam. — This is a modification of the last type, but is adapted for thick walls only. The tie rod braces (A, A) have to be brought down low to give a good bracing action, and this EOOFING TRUSSES 193 arrangement is capable of considerable ornamen- tation. The steeper the pitch the higher up wonld be the inner and lower brace posts (B, B) which were J!^,S90.S7aced Collar Beam. supported by the top of the wall. This form is not available for wide spans, and is shown to il- lustrate how the development was made into the succeeding types. The Eib and Collar Truss, Fig. 291, is the first 194 CARPENTRY FOR BOYS important structural arrangement which permitted the architect to give full sway to embellishment. The inwardly-projecting members (A, A) are called Hammer Beams, They were devised as a jFYg.SBl Rib and Collar Trut<>. substitute for the thick walls used in the Braced Collar Beam Truss, and small brackets (B, B) were placed beneath as supports. The short tie beam (C), near the apex, serves as the member to receive the thrust and stress of the curved ribs (D, D). It forms a most graceful type KOOFING TRUSSES 195 Fig. 291^. Hammer Beam Trms. of roof, and is capable of the most exquisite orna- mentation, but it is used for the high pitched roofs only. The acme of all constructions, in which strength, beauty, and capacity for ornamentation are blended, is the Hammer Beam Truss. Here the hammer beam projects inwardly farther than in the preceding figure, and has a deeper bracket (B), and this also extends down the pendant post (C) a greater distance. 196 CAEPENTEY FOE BOYS The curved supporting arch (D), on each side, is not ribbed, as in the Eib and Collar Truss, but instead, is provided with openwork (not shown herein), together with headings and moldings, and other ornamental characteristics, and some of the most beautiful architectural forms in existence are in this type of roof. What are called Flying Buttresses (E) are some- times used in connection with the Hammer Beam Truss, which, with heavy roofs and wide spans, is found to be absolutely necessary. CHAPTEE XX ON THE COlSrSTKUCTION OF JOINTS In uniting two or more elements, some particu- lar type of joint is necessary. In framing tim- bers, in making braces, in roof construction and supports, in floor beams, and in numerous other places, where strength is required, the workman should have at his command a knowledge of the most serviceable methods. Illustrations can most forcibly convey the dif- ferent types ; but the sizes must be determined by J^tg,^9£. Bridle croin^a^ the character of the material you are working with. Our aim is to give the idea involved, and the name by which each is known. Eeference has been made in Chapter X, to cer- tain forms of scarfing and lapping pieces. This chapter has to do with a variety of other structural 197 198 CAEPENTEY FOE BOYS forms, but principally with such as are used in heavy building work, and in cases where neither fish plates nor scarfing will answer the purpose. Bkidle Joints. — This is a form of joint where permanency is not desired, and where it is neces- JT'i^g. ^9d 4purTenopt. J^i/a,^9^, ^acldle Jbtnt^ sary to readily seat or unseat the vertical timber. It is also obvious that the socket for the upright is of such a character that it will not weaken it to any great extent. Spur Tenon. — This tenon can be used in many places where the regular one is not available. This, like the preceding, is used where the parts CONSTEUCTION OF JOINTS 199 are desired to be detachable, and the second form is one which is used in many structures. Saddle Joint. — This is still another manner in which a quickly detachable joint can be con- structed. The saddle may be mounted on the main base, or cut into the base piece. An infinite va- JTi^g 296. in addition to the interesting boy scout stories by CAPTAIN ALAN DOUGLAS, Scoutmaster, contain articles on nature lore, native animals and a fund of other information pertaining to out-of-door life, that will appeal to the boy's love of the open I. The Campfires of the Wolf Patrol Their first camping experience affords the scouts splendid opportunities to use their recently acquired knowledge in a practical way. Elmer Chenoweth, a lad from the northwest woods, astonishes everyone by his familiarity with camp life. A clean, wholesome story every boy should read. II. Woodcraft; or, How a Patrol Leader Made Good This tale presents many stirring situations in which some of the boys arc called upon to exercise all their ingenuity and unselfishness. A story filled with healthful excitement. III. Pathfinder; or, The Missing Tenderfoot Some mysteries are cleared up in a most unexpected way, greatly to the credit of our young friends. A variety of incidents follow fast, one after the other. IV. Fast Nine; or, a Challenge From Fairfield They show the same team-work here as when in camp. The description of the final game with the team of a rival town, and the outcome thereof, form a stirring narrative. One of the best baseball stories of recent years. V. Great Hike; or, The Pride of The Khaki Troop After weeks of preparation the scouts start out on their greatest undertaking. Their march takes them far from home, and the good-natured rivalry of the different patrols furnishes many interesting and amusing situations. VI. Endurance Test; or, How Clear Grit Won the Day Few stories **get" us more than illustrations of pluck in the face of apparent failure. Our heroes show the stuff they are made of and surprise their most ardent admirers. One of the best stories Captain Douglas has written. Boy Scout Nature Lore to be Found in The Hickory Ridge Boy Scout Series Wild Animals of the United States — Tracking — in Number I. Trees and Wild Flowers of the United States in Number il. Reptiles of the Un'' d States in Number III. Fishes of the United States in Number IV. Insects of the United States in Number V. Bird- of the United States in Number VI. Cloth Binding Cover IHuatrationa in Four Colors 40c. Per Volumm THE NEW YORK BOOK COMPANY 147 FOURTH AVENUE (near 14th St.) NEW YORK In Camp on the Big Sunflower. The Rivals of the Trail The Strange Cabin on Catamount Island. Lost in the Great Dismal Swamp. With Trapper Jim in the North Woods. Caught in a Forest Fire. By LAWRENCE J. LESLIE A series of wholesome stories for boys told in an interesting way and appealing to their love of the open. Each, l2mo. Cloth, 40 cents per volume THE NEW YORK BOOK COMPANY 147 FOURTH AVENUE NEW YORK Christy fflathewson's Book A Ripping Good Baseball Story by One Who Knows the Game This book has attained a larger sale than any baseball story ever published. The narrative deals with the students of a large university and their baseball team, the members of which have names which enable the reader to recognize them as some of the foremost baseball stars of the day before their entrance into the major leagues. One gains a very clear idea of "inside baseball" stripped of wearisome technicalities. The book is pro- fusely illustrated throughout and contains also a number of plates showing the manner in which Mathewson throws his deceptive curves, together with brief descrip- tion of each. Cloth hound 5M y VVi Thrice 60c. per volume THE NEW YORK BOOK COMPANY 147 FOURTH AVENUE NEW YORK ECONOMICAL COOKING Primrose Edition Planned for Two or More Persons By MISS WINIFRED S. GIBBS Dietitian and Teacher of Cooking of the New York Association for Improving the Condition of the Poor Printed on Fine Quality Book Paper. Cover Design in Colors MANY Cook Books have beeii published, from time to time, to meet various requirements, or to eluci- date certain theories, but very few have been written to meet the needs of the large proportion of our population who are acutely affected by the constantly increasing cost of food products. Notwithstanding that by its valuable suggestions this book helps to reduce the expense of supplying the table, the recipes are so planned that the economies effected thereby are not offset by any lessening in the attractiveness, variety or palatability of the dishes. Of equal importance are the sections of this work which deal with food values, the treatment of infants and invalids and the proper service of various dishes. The recipes are planned for two persons, but may readily be adapted for a larger number. The book is replete with illustrations and tables of food compositions — the latter taken from the latest Government statistics. Cloth Binding Illustrated 40c. per volume, postpaid THE NEW YORK BOOK COMPANY 147 FOURTH AVENUE (near 14th St.) NEW YORK CUT-OUT AND PAINT BOOKS SCISSORS BOOK An original Kne of art studies printed in full rich colors on high grade paper. This series introduces many novel features of interest, and as the subject matters have been selected with unusual care, the books make a strong appeal not only to the little ones but even to those of riper years. Post Cards . • Dolls of all Nations Our Army . . Children's Pets Painting Book Scissors Book Scissors Book Puzzle Book Size 8]/i X 1014: inches Price 15c. per copy Send for sample and trade discount THE NEW YORK BOOK COMPANY 147 FOURTH AVENUE NEW YORK Deacidified using the Bookkeeper proce Neutralizing agent: Magnesium Oxide Treatment Date: May 2004 PreservationTechnoloqii A WORLD LEADER IN PAPER PRESERVATI 1 1 1 Thomson Park Drive Cranberry Township. PA 16066 (724)779-2111 LIBRARY OF CONGRESS 012 205 327 1 ^v^Fr^f?:^