T S 250 Oh i i XXth Century Sheet Metal Worker H, E, OS3SOJUME THE AMERICAN ARTiSAN C H r C A C O 1 D1 fa :^ W* 1 i Mi m EiiSlilSliiaiffllMIBiaBiSBIllSil No. 27 Full L Lonptl Class Book. x^'ZJ O COPYRIGHT DEPOSIT. 11 9' ' i' 2i" LOO each / S.&H.CO. V N.Y. U.S.A. (finmltiHatiou DROP FORQED STEEL. HANDY TINNERS' SNIPS. This Snip is adapted for cornice makers and is an all around combination tool, cutting circular, straiKli# and irregular shapes. No. 274 "Red Devil" 1" 18 19 110 Full Length 14" 13" 12" 11 Length or Cut ~.^L r~^-2K'' -2!!—- ^ PriccTjKSOeach Price, $ 1 .00 eacli Cash with order SMITH & HEMENVVAY CO. 108=110 Duane Street, NEW YORK CITY Send for Sample Copy of THE AMERICAN ARTISAN AND HARDWARE RECORD THE TINNERS HELPER AND FRIEND We know you will be interested and want to show you how very valuable a trade journal can be. Practical Tinshop conducted by expert tinners who "know" from experience. Don't worry about a job that does not work out properly — let our Tinshop Department show you how to do it — that's how we demonstrate our value to you. Notes and Queries — a storehouse of valuable information tells where to buy wares and materials of all kinds, or if you have only the brand name, can put you in touch with the manufacturer of any tool or machine. You want RELIABLE information about the metal market, to know all about the newest patents and inven- tions, — in fact all the news and doings of the Sheet Metal World, and each issue of THE AMERICAN ARTISAN AND HARDWARE RECORD gives it. Send for Free Sample Copy and Special Offer To-day. THE AMERICAN ARTISAN AND HARDWARE RECORD DANIEL STERN, Publisher and Proprietor $2.00 per year, 52 Issues 355 Dearborn Street - - CHICAGO, ILL. Warm Air Furnaces OF THE HIGHEST CLASS Established Reputation for RELIABILITY, ECONOMY and GENERAL EFFICIENCY The Fault- less Scienti- fic Heater is the acme of furnace con- struction. Furnace experts ac- knowledge its superior- ity- It will take the lead in all cases. Our General Line of Furnaces is Unsurpassed. HARD OR SOFT COAL HEAVY and MEDIUM WEIGHT SEND FOR CATALOGUE L THE GRAFF FURNACE CO. 208 WATER STREET, NEW YORK XXth Century Sheet Metal W^jrker A Modern Treatise on Modern Sheet Metal Work BY H. E. OSBORNE THE AMERICAN ARTISAN CHICAGO 1910 ^0 Entered according to Act of Congress in the Year 1908 by H. E. Osborne In the Office of the Librarian of Congress at Washington, D. C. CCI.A27S675 TO MY OLD TIME TEACHER AND FRIEND GRIFFETH L. JACKSON THIS LITTLE BOOK IS AFFECTIONATELY DEDICATED PREFACE "Waste no time worrying over a mistake, but try to correct it to the best of your ability, with as httle loss of time and material as possible." — G. L. Jackson. And if this book shall prove to be of as- much help to just one struggling' "tinker" as the above quotation from my old teacher has been to me. then the time spent in its preparation has been well spent. I have endeavored to give in this work short, con- cise explanations, which should be easily understood by the young apprentice, and at the same time, suffi- ciently scientific for the practical use of the journey- man. Some of the items are of so simple a character as to seem to be almost unnecessary, but I have re- membered that even the most simple things have to be learned. H. E. Osborne. XXth Century Sheet Metal Worker. Having; a e^^^ii circle, to find the Bide of an equivalent square. Multiply the diameter by the decimal .8862, or, mul- tiply the circumference by the decimal .2821. Either method gives the length of one side of an equivalent square. Having a gk'oi circle, to find tJic side of an in- scribed square. Multiply the diameter by the decimal .7071, or, mul- tiply the circumference by the deciuidl .2251. The first method may also be applied to find the length of the chord of an arc of 90 degrees, a quad- rant. Find the radius and multiply it by 2 and then 2 XXTH CENTURY SHEET METAL WORKER. by .7071. Because the side of an inscribed square is the chord of the quadrant. To i)iscribe a square in a circle. Draw the two diameters BD and AC at right angles to each other, and connect the extremities of the dia- meters by straight lines drawn from A to B, B to C, etc. To find the radius of an arc. To the square of the sine AC, add the square of the versed sine CD, and divide the result by twice the versed sine. To make this plain, and dispense with the geomet- rical terms. Square the length from A to C, and add to it the square of the distance C to D and divide the XXTH CENTURY SHEET METAL WORKER. 3 result by twice C D. The quotient will be the length of radius to produce the arc ABD. To and the center from ivhich a given arc is pro- duced. Draw any two chords AB and CD, and bisect them, and from the points thus found draw lines perpendi- cular to the chords, and extending until they meet. The point of meeting will be the center of the circle of which the arc is a portion. To describe a circle cutting any three points, ar- ranged in any position other than a straight line. Connect the points by straight lines; then lines drawn perpendicular from the centers of these lines will meet at the center of the required circle. To find the length of an arc, zvhen the number of de- grees it contains and the radius are knozvn. Multiply the number of degrees by the decimal .01745, and that product by the radius. To find the area of a sector zvhen the number of de- grees and radius arc knoion. 4 XXTH CENTURY SHEET METAL WORKER. Find the length of the arc by the preceding rule, and multiply this length by one-half the radius. To find the area of an oral or ellipse. Multiply the two axes together, and their product by the decimal .7854 and the result will be the required area. To find th« area of a clroalar ring. 1st. When the circumference and diameter are both known, multiply the circumference by one-half the radius (one-fourth the diameter), or multiply one- half the circumference by one-half the diameter. 2d. When the diameter only is known, square the diameter and multiply by the decimal .7854. To find the area of a circular ring. The space between two circles of unequal size., and having a common center. Square the diameter of each circle, and subtract the square of the lesser from the square of the greater, and multiply the difference by the decimal .7854. XXTH CKNTURY SHEET METAL WORKER. To inscribe an equilateral triangle in a circle. With any point (as A) as center, and radius equal to radius of the circle, describe arc cutting the circum- ference in B and then in C. Then bisect the arc B D C, and connect the points B, C, and D. To inscribe a hexagon in a circle. Describe the eciuilateral triangle as before. Then XXTH CENTURY SHEET METAL WORKER. bisect the arc C D in F, and the arc B D in G, and drew AC, CF, FD, DG, GB, and BA. Or it may be inscribed by applying the radius six times around the circumference. This is the most common method. To inscribe a regular pentagon in a circle. Draw the diameters AP and MN at right angles to each other, and bisect the radius ON at E. From A N as center, and EA as radius, describe the arc SB. Join the points A and B, and the hne AB being applied five times around the circle will form the pentagon. To draiv squares rvhose areas shall be proportionate to the areas of given squares. Fig. I. To draw a square % the area of a given square. Bisect one side of the given square, and con- struct a square upon half its length. Fig. 2. To draw a square J/2 the area of a given square. Draw diagonal lines from corner to corner XXTH CENTURY SHEET METAL WORKER. Fig, !• Fig. 2, of the given square, and construct a square upon half the length of one of the diagonals. Fig. 3. To draw a square twice the area of a given Fig. 3. square. Draw a diagonal line from corner to corner of the square, and construct a square upon the diag- onal. This is simply the reverse of Fig. 2. Fig. 4. To draw a square three times the area of a given square. Extend the side of the given square to a length equal to its diagonal, A to B, and from 8 XXTll CENTURY SHEET METAL WORKER. the extremity of the extension, draw a hne to the op- posite corner of tiie square (B to C), upon which construct a square. Fig. I. To draw a square four times the area of a given square. Construct a square on a Vme twice the Fig. 4. length of one side tlie given square. Just the reverse of finding one of one-fourth the area. Fig. 5. To draw a square five times the area of a given square. Extend one side of the square to twice its original length, A to B, and from the extremity of the extension draw a line to the opposite corner of the square (B to C), upon which construct a square. XXTii CENTL'RV SllKliT METAL WORKER. 9 Pig. 5. To describe an i\i:^g-sliapC(i oz'al. Describe a circle the size desired for the round end of the figure, and draw two diameters at right angles, as shown in cut. Then draw a straight line from each end of one of the diameters through the ex- tremity of the other diameter and extending indefi- nitely. With each enfl of the first diameter for center, and radius equal to the diameter, strike an arc from tlie opposite end of the diameter just to the diagonal line. Then with the intersection of the diagonal lines with the other diameter for center, and radius to just 10 XXTH CENTURY SHEET METAL WORKER. meet the previous arcs, or side arcs, draw the small end arc, which completes the fig;urc. To draw an arc throngJi three points ■without locat- ing the center. Let A B and C be the points. Then with A and C as centers, and radius from A to C make arcs from A and C indefinitely towards D. Draw a straight line from A through B intersecting the arc C D at F. And another straight line from C through B intersecting the arc A D at G. XXTH CENTURY SHEET METAL WORKER. n Space the arcs between A and G. and between C and F into the same number of equal spaces, continuing one or two of the spaces beyond G and F towards D. Connect the points marked on A D with the point C, and the points marked on C D with the point A, and draw a freehand line through the intersections of these lines. To draiv any number of concentric circles, the area of each circular ring thus formed being equal to the area of each of the others and to the circle in the center. Draw a straight line A B. and space it into the num- ber of equal spaces desired. Bisect A B and draw upon it a semicircle, and draw a line perpendicular to A B from each of the points to the circumference of 12 XXTH CENTURY SHEET METAL WORKER. the semicircle, as c, d, c, and f. Then with A as center and rachus A c describe the inner circle. The next with radius A d, &c., as shown in cut. To draw a line from a gircii point in a straight line, perpendicular to the gii'en line. B Let A be the given point, and R C the given line. Place one point of the dividers at A and set off B and C equal to each other. Tlien with B and C as centers, and with radius greater than A B, describe two arcs intersecting at D. Draw A D and it will be perpendicular to the line B C. Or, if the point A is near the end of the giz'en line. Place one foot of the dividers at anv reasonable point, as P. and extend the other foot to A. Then with XXTH CENTURY SHKET METAL WORKER. 13 P as center and radius from P to A, describe a semi- circle, or a complete circle would be better, perhaps. Through C. where the circle cuts the line B A, and the point P, draw the line C P D. Then draw A D, and it will be perpendicular to the line B A. To draw from a i^ic'cii point outside a given straight line, a perpendicular to that line. Let A be the given point, and B D the given line. Then from the point A as a center, and with a radius greater than the distance from the line to A, describe 14 XXTH CENTURY SHEET METAL WORKER. an arc cutting the line B D in the points B and D ; then mark the point E, equally distant from B and D, and draw A E, and it will be perpendicular to B D. Or if the point A is nearly opposite one end of the given line. Draw the line A C to any point on the line B D, as C. Bisect A C at F. Then with F as center, and F C or F A as radius, describe the semicircle C D A, and draw A D and it will be perpendicular to B D. Triangle 2nd posi- tion. Triepi 1st pQS tion. XXTH CENTURY SHEET METAL WORKER. 15 To draiv a line to a gkrn p.oint, and pcrf^cndicidar to a i^h'cn line, iisini^ only a rule and trianij^le. Let AB be the given line, and C the given point. Place the long edge of the triangle against the rule v^ath the other long edge resting on the line AB. Then holding the rule firmly, slide the triangle along until the short side touches the point C. Then draw CD and it will be perpendicular to the line AB. Of course, only a right-angled triangle, as shown, can be used. With the same tools, to draiv a line to a given point, and parallel to a gii'en line. "" 'TrlangTe I 2nd position, jy i6 XXTH CENTURY SHEET METAL WORKER. Let C be the given point, and AB the given line. Place the rule and triangle the same as in the pre- vious example, and slide the triangle until the top edge just reaches the point C. Then draw a line along the top edge from C towards D, and it will be parallel to the line AB. To draiu a straight line equal to a given arc, an arc equal to a gii'en straight line, or an arc of different curvature equal to a gii'en arc. 1^ Pig. 1. Space the given arc, Figure i, into 4 equal spaces by the intermediate points i, 2, 3. Draw AC tangent to the arc at A, and with A as center and radius A i mark D (the chord of yi the arcj. Then with D as center and radius D B strike the arc B E, and A K will be the same length as A B. Or, if the straight line be given, space it into 4 XXTH CENTURY SHEET METAL WORKER. 17 equal spaces, and with the first point of division D as center, strike the arc E B, and A B will equal A E. Also, let A B be the given arc, and A F an arc of unequal curvature. Space A B, as in the first proposi- tion, and set off D on the straight line tangent to both arcs at A, and with D as center and radius D B, draw the arc B to F. Then A F will equal A B. To develop, by the latter proposition, the pattern for the envelope of a cone, the slant height and size of base being known. Fig. 2. On any straight line, Fig. 2, set off the required slant height C D, and with D as center and radius C D, describe the indefinite arc X X. Set off from C, i8 XXTH CENTURY SHEET METAL WORKER. on line A B, the radius of the desired base C to E, and with E as center describe the complete circle. Draw a radius E F perpendicular to A B and space the quarter circle into 4 equal spaces. Erect a per- pendicular at C which will be tangent to the circle and to the long arc at that point, and on it set off one of the 4 equal spaces of the quarter circle, marked o. With o as center and radius o F describe the arc from F to the long arc at G. Then C G equals C F, or % the circumference of the base. Now span the dividers from C to G, and step this distance from G to H, and two steps from C to I, and connect H and I with D. Allow edges for lock and pattern is complete. The Octagon. To lay off an octagon ziithout a circle, or a cfttier, and with no internal lines whatever. Use the steel square, and after drawing a line the length desired for one side of the octagon, place the square on the line at 12 and 12, or 6 and 6, or any convenient numbers, using the same figure on the blade as on the tongue, and with one of these num- bers just at the end of the line, draw the next side along the blade of the square. Continue this process, being caYeful to make the sides exactly the same length, and to place the square so that the line last drawn crosses it just at the figures selected. The accompanying cut fully shows the manner of using the square. Here A B is the first side drawn, say 14 inches long, and the square is then placed on A B as shown, with 8 and 8 on the line and the edge of the blade (long side) at the end B of the line. Then XXTH CENTURY SHEET METAL WORKER. 19 draw B C 14 inches long, which would be just to 22 on the blade. Swing the square around onto B C as shown bv the dotted outline and draw the next side. ' ' V S. B ■/ / -V ^v. k<- The Octagon, If the work is done accurately the resulting figure will be a perfect octagon. In the cut the square is shown a little off from the line B C in order to show that line. But if the square was placed so that the 8 inch mark just coincides with end B of the line A B, then B C would just reach the 22 inch mark on the blade. Of course anv size of octagon may be made in this 20 XXTH CENTURY SHEET METAL WORKER. manner, by using smaller numbers on the square for drawing those with shorter sides. Diam. Area. Cir. Diam. Area. Cir. i 0.0123 .3927 16 201.06 50.26 i 0.0491 .7854 213.82 51.83 1 0.1104 1.178 17 226.93 53.40 i 0.1963 1.571 240.53 54.98 f 0.3068 1.963 18 254.47 56.65 i 0.4418 2.356 268.80 58.12 i 0.6013 2.741 19 283 . 53 59.69 I 0.7854 3.142 29S . 65 61.26 i O.9940 3.534 20 314.16 62.83 i 1.227 3.927 330.06 64 . 40 i 1.485 4.319 21 346.36 65.97 it 1.767 4.712 363.05 67.54 i 2.074 5.105 22 380.13 69.11 i 2.405 5.498 397.61 70.68 i 2.761 5.890 23 415.48 72.25 2 3.142 6.283 433.73 73.83 i 3.976 7.068 24 452 . 39 75.40 ^ 4.909 7.854 471.43 76.97 i 5.939 8.639 25 490 . 87 78.54 3 7.068 9.425 26 530 . 93 81.68 i S.29^ 10.21 27 572.56 84.82 i 9.621 10.99 28 • 615.75 87. 9P i 11.044 12.566 11.78 29 660.52 91.10 4 12.56 30 706 . 86 94.25 i 15.904 14.14 31 754 . 77 97.39 5 19.635 15.71 32 804 . 25 100.5 i 23.758 17.27 33 855 . 30 103.6 6 28.274 18.85 34 907.92 106.8 i 32,183 20.42 35 962 U 109.9 7 38.484 21.99 36 1017.9 113,1 i 44.179 23.56 37 1075.2 116.2 S 50 . 265 25.13 38 1134.1 119.4 i 56.745 26.70 39 1194.6 122.5. 9 63.617 28.27 40 1256.6 125.6 A 70.882 29.84 41 1320.2 128.8 i6 78.54 31.41 42 1385.4 131.9 i 86.59 32.98 43 1452.2 135.1 11 95.03 34.55 44. 1520.5 138.2 i^ 103.87 36.13 45 1590.4 141.4 12 113.10 37.70 46 1661.9 144.5 • i 122.72 39.27 47 1734.9 147.6 13 132.73 40.84 48 1809.6 150.8 * 143.14 42.41 49 1885.7 153.9 14 153.94 43.98 50 1963.5 157.1 if 165.13 45.55 51 2042.8 160.2 15' 176.71 47.12 52 2123.7 163.3 ^ 188.69 48.69 53 2206.2 166.5 XXTH CENTURY SHEET METAL WORKER. 21 Diameters and Circumferences of Circles. To find the circumference of any circle greater than any given in the table, multiply by 2, 3, 4, 10 or any number of times. For instance : The circumference of 28 is 2 times that of 14. And the circumference of 140 is 10 times that of 14. The circumference of 14 is 43.98. and to find the circum- ference of 140 multiply 43.98 by 10. which is done by removing the decimal point one place to the right, making 439.8. A Short Method of Finding Circumferences Without Figures Draw a line 12 inches long, as A B in Fig. i. Span dividers to 3 13/16 inches, and with one point at B strike an arc C D. Set ofi' on this arc from C, the given diameter, as C E or C F. Then draw from B through E or F, another line 12 inches long, and the 22 XXTH CENTURY SHEET METAL WORKER. distance from A to G will be the circumference of the diameter C E, or from A to H will be the circum- ference of the diameter C F. This rule is good for all small circles up to yy^ inches diameter which, being just 2 times 3 13/16, 12" would make the arc C D a complete semi-circle, and the line B G would be swung around to form a con- tinuation of A B. thus making the distance from A to G 24 inches, which is just a little more than the true circumference of 7^, which is 23.955. A very convenient way of applying this method is XXTH CENTURY SHEET METAL WORKER. 23 to mark across both legs of a two-foot folding rule, 3 13/16 inches from the center c f the rivet in the mid- dle joint, which would be at 8 3/16 on one leg, and at 15 13/16 on the other. Then by opening the two end joints of the rule and spreading the legs so that the marked points at the inside edges will be just the dis- tance apart of the given diameter, the inside corners will be the distance apart equal to the required cir- cumference. Fig. 2 shows the application of the rule to the same principle. B is the hinged joint, and the lines from B to 12" are the inside edges of the legs of the rule. It is here shown spread to 3>^ inches diameter, and measures 11 inches circumference. Some Remarkable Facts About Circles. We are taught from our > outh up, that the diameter of a circle multiplied by 3.1416 equals the circumfer- ence, and that the square of the diameter multiplied by .7854 equals the area. Some of the following facts, however, have not been so generally taught: That the diameter divided by .3183 equals the cir- cumference. That the circumference multiplied by .3183 equals the diameter. That one-half the circumference multiplied by one- half the diameter equals the area. And that the square of the circumference multiplied by .07958 equals the area. That the area of a circle is greater than that of an) other plain figure bounded by an outline of equal length. That in any circle whose diameter is less than 4 24 XXTH CENTURY SHEET METAL WORKER, the area is less than the circumference ; i. e., the num- ber of square units of area is less than the number of lineal units of the circumference. That if the diameter is 4 the circumference and area are represented by the same number, each being 12.5664, while in all circles whose diameters are more than 4 the areas exceed the circumferences, and the proportions of one to the other advance by a regular ratio, or progression, as will be seen by the following table: Diameter. Table. .1 area equals circnm. divided by 40. .4 area equals circum. divided by 10. .5 area equals circum. divided by 8. 1 area equals circum. divided by 4. 2 area equals circum. divided by 2. 3 area equals circum. divided by i^. 4 area equals circum.. 5 area equals circum. multiplied by l54- 6 area equals circum. multiplied by ij^. 7 area equals circum. multiplied by i^. 8 area equals circum. multiplied by 2. 10 area equals circum. multiplied by 2^. 12 area equals circum. multiplied by 3. 14 area equals circum. multiplied by 3^. 16 area equals circum. multiplied by 4. 18 area equals circum. multiplied by 4^2. 20 area equals circum. multiplied by 5. 24 area equals circum. multiplied by 6. 28 area equals circum. multiplied by 7. 32 area equals circum. multiplied by 8. 36 area equals circum. multiplied by g. 40 area equals circum. multiplied by 10. 44 area equals circum. multiplied by 11. 48 area equals circum. multiplied by 12. XXTH CENTURY SHEET METAL WORKER. 25 To use the table: Find the circumference by ref- erence to the table of diameters and circumferences given in another chapter, or by any rule, and divide or multiply by the number given in this table opposite the chosen diameter. For example: Diam. 2, the circum. of which is 6.2832, which divide by 2 and the area is found to be 3.1416. Again, diam. 12, circum. of which is 37.6991, which this table shows is to be multiphed by 3. 37-6991 X3=ii3-0973- the required area. The ratio of increase of the multipliers continues the same indefinitely, increasing ,^ for each unit of increase of diameter, so that this table may be used for finding the area of circles of other diameters than those given. If the diameter is 9 multiply the circum. by ^Ya. If 49 multiply by 12^4. If 50. by I2>4. H 51, by 12^, and if 52, by 13. The multiplier con- tinuing to increase one unit for each 4 units of di- ameter. Hence, to find the area of a circle whose diam. is 400, multiply the circumference by 100. Thus, diam. 400, circum. 1256.64X100=125664. In other words, multiply the circumference by one- fourth the diameter to find the area of any circle. Scale of Hundredths. It frequently happens in making particularly accur- ate measurements that it is desired to measure a cer- tain number of hundredths of an inch. And some- times the required number is such that considerable time, and much figuring would be necessary, to re- duce it to a common fraction. A scale of hundredths is a great convenience in 26 XXTH CENTURY SHEET METAL WORKER. such cases, and if the shop square does not contain one, it may be made very accurately, by any one, with a few minutes careful work. Near one end of a strip of tin, lay off a square inch, and space horizontally into ten equal spaces by paral- lel lines, and it is a good plan to continue these lines several inches along the tin. Space it the other way into equal spaces, and draw parallel lines having a slant of one space. That is, draw the first line from one corner of the square to the first space mark on opposite side, thus forming e triangle with one inch perpendicular, and one-tenth inch base. Draw the remainder of the lines exactly parallel to the first, and you will have a similar tri- angle at the opposite side only reversed. To use the scale extend dividers the required num- ber of whole inches and place both points on the re- quired line, .01, .02, etc., according to the number of hundredths to be added, with one point exactly on line A B. Then hold the other point firmly and extend the one resting on line A B to the intersection of the diagonal line with the one on which the dividers rest. XXTH CENTURY SHEET METAL WORKER. 2- For example, to find 2.06", extend the dividers two inches, and place one point on the intersection of the line .06 with the line A B, and holding the other point on line .06, extend the point on A B to the intersection of the first diasfonal line. With this scale any number of hundredths may be readily found. To find 1.99" extend dividers from X to X. Or for 1.92, from v to v, etc. 28 XXTH CENTURY SHEET METAL WORKER. Measuring Degrees on the Steel Square. It sometimes happens that it is desirable to find a certain number 'of degrees when there is no protractor at hand. In such cases the steel square and the fol- lowing table will be found to answer the purpose with a reasonable degree of accuracy. Table. No. I No. 2 Inches. Deg. Deg. 1-2 45 45 lo i/i6 40 50 8 13/32 ;. -35 55 6 15/16 30 60 5 19/32 25 65 5 22'{. (,r/2 AVs 20 70 3 7/32 15 75 2 3/32 10 80 I 1/16 5 85 o o 90 EXPL.\N.\TI0N OF T.^BLE. A line drawn from 12" on the blade to 12" on the tongue is 45° to either edge of the square. And a line drawn from 12" on either edge to any number in the column of inches, on the other edge, will be, at the 12". the number of degrees indicated in the column of degrees marked "No. i." And where it intersects the outer edge of the other arm of the square, it will be the number of degrees indicated in the column marked "No. 2." As the cut shows, the angles given in column No. I of Degrees are those at C, and the ones given in column No. 2 are those between A and B. XXTII CF.NTURY SHI'.F.T METAT. WORKER. 29 Chimney Tops. An article of very general use throughout the coun- try, and yet one which seems to be quite difficult for many tinners to quickly draw patterns for, is the gal- vanized iron chimney top base. Really this is a tran- sition piece, being an article hav a square or rec- tangular base, and round top. The pattern for this article may e so quickly drawn that it is better to lay it off on the sheet to be used, and if made in two pieces, one only need be drawn, and the other cut by it. For the purpose of explaining the process we will take definite dimensions, say I3"xi7" with 4* perpen- dicular base, and tapered to fit a f pipe, the height to be just what will cut from 30-inch iron. The seams to he in the middle of the narrow sides. At a distance of 17 inches from one end of the ^ect scribe at right angles across it, a line, as A B, letting the line extend indefinitely to A on the floor or bench after reaching the edge of the iron. This line is the center "\t« t tl' c half pattein. Set off from center line at B W2 to E, and the same distance to F. Then with the square scribe up from F to D 4^*, and from E to C 4^^", and connect C and D. From the center line at K set off a little less than ^ the circumference of top each way to G and H. For 7* pipe about 5 inches each way, making 10 inches for the chord G H. For other sizes of top use about the same proportion — 10 to 22, or 5 to 11 — which would be about 85^ for 6-inch pipe, and about 11^ for 8- inch. 30 XXTH CENTURY SHEET METAL WORKER. Next place the blade of square at G and 6J/2 inches on the tongue at C, as shown in drawing, and scribe from G to I, and from I to C, then slide the square down 4^ inches, keeping the blade to the line G I, and mark from J to E 63/2 inches, and connect E and C. Continue the line J G to A where it intersects with the center line. Mark the other side the same from H around to D, etc., and continue the line from H to A. XXTH CENTURY SHKKT MI'TAL WORKER. 31 With A as center and radius A G strike the arc G H. Tlien draw lines from D to H, and from D to K, also from C to G and C to K. Lay off the allowance for lock along- each edge as shown by dotted lines, and cut out. The top should be cut on the arc G K H so the bends can be the more easily made on the lines C K and D K. Notch in from F to D and from E to C, leaving an allowance to rivet. Mark the other half by this, being careful to prick the points K, C, and D. Fold the bottom edge y\ inch over flat, and then straight out, to make a good stiff edge at bottom. Fig. 1. 32 XXTH CENTURY SHEET METAL WORKER. Now fold the edg^e locks, one out and the other in, the same as for stove pipe, and then brake over stake, or in the brake if you have one, on the lines G C, K C, H D and K D, forming about square at C and D, and running out to round at top end G K H. Lock the two halves together and groove down the seams, after which bend on lines I C, C D, etc., to bring the 4-inch base strip to perpendicular, and rivet the corners. Chimney Saddles. The chimney saddle is a very important article, and is much better than a plain flashing behind the chim- ney, because being sloped both ways, it allows the water to all run off quickly, while the flashing usually remains wet for some time, and soon rusts through. Fig. 2. Fig. I shows the saddle in place behind a chimney on a 1/3 pitch shingled roof. A, B, C, D and E being a side elevation. To develop the pattern, draw X X, Fig 2, the pitch of roof, A E the perpendicular line of chimney, B C XXTH CENTURY SHEET METAL WORKER. 33 the width desired for high point of saddle, and E the width of ends at low point. Suppose, for example, the roof is 1/3 pitch, and the chimney is 26 inches wide, and the saddle to be 6 inches wide at high point. Make B C. at right angles to A E, and 6 inches long. And E, i inch long, par- allel to B C. Next cut a piece of galvanized iron 16x28 inches and lay it off as shown in Fig. 3. A to B is 4 inches, [') to C 6 inches and C to D 6 inches. Cut straight in from A to B, and from D to C. Then bend at right angles on line E E, and to about 1/3 pitch on lines C E and C E. Bend at B C until the line B C is as high Pig. 3. above the ends at E as the distance B E in Fig. 2. Rest it on the bench in this position and solder a gore over the V-shaped opening A B. Turn the wide side E D E down flat on bench and solder a gore over the opening D C. These gores should also l)c riveted to prevent the solder breaking, and they should both be 34 XXTII CENTURY SHEET .METAL WORKER. put on the inner side, as they will not leak quite so badlv in case the solder does become broken. Fig, 4, Fig. 4 shows the completed article with the riveted gores. Gutter and Gutter Aliters— Octagon and Half Round. In Figures i and 2 are shown square miter patterns for octagon and half round gutter, the inside and out- "^ide of miter of each, and each taking the same width of stock, in this case Q inches. In Fig. 1 the dimensions are as follows, tht^ugh these XXTIl CENTURY SHEET METAL WORKER. 35 may be varied at will: o to i. I2 in.; i to 2. -ji in..; 2 to 3, }i in. ; 3 to 4, i in. ; 4 to 5, i in. ; 5 to 6, 2/2 in. ; 6 to 7, I in. ; 7 to 8, i>^ in. This takes jnst inches width of stock, and is a Pig. 1. very convenient size of gutter to make, as a 3()-inch sheet of iron will cut 4 pieces without waste. To develop the pattern, draw profile as shown, then draw a stretch-out 9 inches from o to 8, and any de- sired len.Qth. Space the stretch-out 0123. etc.. the same measurements as o i 2 3, etc., in profile. Draw 36 XXTH CENTURY SHEET METAL WORKER. lines from the points of bend in profile to intersect the space lines in stretch-out as shown, and connect these intersections by straight lines. Cut on the miter line, and prick both end? of each piece on the space lines, ai complete, by which any nu d the two patterns are nber of pieces may be marked and pricked for bending. In cutting out by these patterns one piece of each pair should be cut a half inch longer and notched in at each point of bend, to form a lap, as a much stronger job is made by so doing, than by butting them together. For marking the long pieces which are to have no XXTH CENTURY SHEET METAL WORKER. i7 miters cut on them, a narrow strip of iron may be prick marked i 2 3, etc., and cut 9 inches long. Prick each end of the piece by this pattern, and it is then ready to form up in the brake. In forming up, put the 0123 edge of piece into the brake to the third dot (dot 3). Bend square up. Reverse and put the same edge in, the other side up, to dot 2, and bend square up. Pull back to dot i, and also bend square, this finishes the bead. Turn it around and put in to dot 4, and bend up to 45°, pull back to 5 and bend to 45°, then 6 and 7 each 45°. It is a good plan to cut a. stay the exact shape of profile, and form the gutter to the shape of the stay, as nearly as possible. In Fig. 2 is shown a very similar development of the half round gutter miter. The bead pattern is a complete two-piece elbow pattern, and the half round part is just half of an elbow pattern, and each part may be laid out by any method of elbow with which the workman is familiar. The bead in Fig. 2 is shown somewhat out of pro* portion, but the principle of development is the sami regardless of the size. Box Gutter. I used to dread a job of box gutter. It seemed to be a hard matter for me to put it in properly, and not spend too much time on the job. For the benefit of others who may be troubled in the same manner, I will describe my present method. And, by the way, I rather like the work. We will suppose we have a box gutter job which is 38 XXTH CENTURY SHEET METAL WORKER. to finish over the edge of crown mould with a bead, which is a common style of finish at the present time. Make up the bead in 28-inch lengths (or in 20-inch if you have only a 20-inch header in the shop), and of sufficient width to cover the flat or slightly sloped sur- face between the gutter and outer edge of cornice, and a ^-inch allowance to turn up to lock the edge of gutter to. For instance, if the deck strip is 2^ inches, and you have a 30-inch header which turns a ^-inch bead, cut the tin in 5-inch strips, and cut in with the snips }i of an inch deep in each end of each piece, 2 inches from one edge, as shown at A, Fig. i. Notch Box Gutter Fig. 1. r ^ ---- ---A ? the other two corners, being careful to take off corner enough to allow for a 34 -inch fold across the end and along the side also. Next fold both ends the same as for valley, i. e., in opposite directions, one up and one down, turning clear down so as to lock them together, and fold the edge C D up square, or a little more. Then straighten out the 2 inches of end folds which was previously cut, XXTH CENTURY SHEET xMETAL WORKER. 39 as shown by dotted lines B A at each end of cut Y in Fig. I. Hammer these ends down pretty flat with the mallet, so they will slip into the header readily. Then bead the edge B B, turning the bead on the side oppo- site to the bend of edge C D. An end section of the finished- piece is shown in Fig. 2, which clearly shows the bead turned down, the op- posite edge turned up, and the up fold of one end, but does not show the down fold of the other end. Get out enough of these pieces to cover the deck strip, and enough valley (14-inch is wide enough for o Pig. 2. most ordinary gutters) being careful that it is well soldered. Put on the bead first, by putting one in place, then slip the bead of the next over that, and pushing them together far enough to let the fold A C catch over the fold A D, and then pulling back till they lock together. Nail close to the fold C D, so the heads will be cov- ered when it is hammered down, and put an occasional slim nail through the bead into the edge of crown mould as shown at A in Fig. 3. When the bead is all in place, measure from bottom of gutter at B to a point about J4 inch above the turned up edge at C, Fig. 3. Take this measure at the low point of gutter, and again at the high point, and trans- fer these measurements to the edge of the strip of valley, and bend up with tongs or straight edge and mallet. Then measure the width of gutter B to D, at 40 XXTH CENTURY SHEET METAL WORKER. both ends, as the width often varies as well as the depth, and bend square up. Next set the tin into the gutter and get into it with one knee, or one foot, to hold it down, and start the edge C over with tongs or plyers, and hammer it down to an angle, and then clinch it tight with cleating tongs Fig. 3. or plyers, and finish down flat with the mallet. Then, still keeping the weight in the gutter, bend the back at E down onto the roof boards, and put in an occasional nail if the roof is to be shingled, but if it is to be tinned, turn up the back edge at F and blind nail, thus leaving it ready to lock the roofing on. This same method of bead finish may also be used without gutter, if so desired. I have often put on porch roofs with this kind of finish. Using, however, full sheets instead of the narrow strips. Slit each end of the sheets, and, after folding the two ends and one side, straighten out the narrow part of the end folds, just as described, and turn the bead the same as shown on the narrow strips. XXTll CEX'IURV SIIF.ET METAL WORKER. 41 In connection with the box c;ntter it might be well to mention my way of making the ends. Tinners differ in their manner of doing things, and I do not claim to have the only right way. But I mention these mat- ters, hoping to help some workman who has met with the same difificulties that have hindered me so many times. I usually cut the tin enough longer than the gutter to equal the greatest depth of both ends, and a little to spare. Then slash straight in at the ends, at each bend, B, D and E, about as far as the height of D E. Bend C B and D E in towards each other, and the bottom, BD, up. ^^rim off the surplus tin and solder the edges well. An end may be cut to fit and soldered in, but in most cases this is no advantage, and takes much longer. And in these days of competition, time is quite an object, and the workman who can do things quickly and well, stands a better show than the one who does them ever so well, but works slowly. Tlie ElUpse or Oval. A perfectly true ellipse can not be drawn with the dividers and two radii. But there are several methods of drawing them in this manner, which so nearly approximates the true ellipse as to answer the purpose for most tin shop work. A very accurate method, however, is by the string and nail process. Fig. i is drawn in this manner. Draw A B the length of the major axis and bi- secting it at right angles draw C D the length of the minor axis. With C or D as center and one-half the 42 XXTH CENTURY SHEET METAL WORKER. major axis as radius, mark the points E and F on the major axis. Drive nails at E. F and C, and tie a string tightly around the three nails. Remove the nail at C and with a pencil or scriber draw the ellipse, keeping the string tight. / -. \ / "~\ 1 / / / / f / V ' / / / / 1 / / / / \ « p / Fig. 1. If the pencil is held in an upright position and the string is not allowed to slip up or down on it, and does not stretch more in some directions than in others, the result will be a perfect ellipse. In fact, it is in strict accord with the scientific definition of an ellipse — "A XXTH CKNTURY SHEET METAL WORKER. 43 figure bounded 1 y a curved line, every point of which is equally distant from two points within, called foci." In this figure, E and F are the foci, and the distance from any point in the curve to F plus the distance from 44 XXTH CENTURY SHRET METAL WORKER. the same point to E is the same as the combined dis- tances from these two ])oints to any other point in the curve, and is just equal to the lenj::^th of the major axis. In Fig". 2 is shown a very near approximate to an elHpse, composed of arcs of circles, having three dif- ferent radii and eight centers, hence it is called the "eight centered oval." To draw an oval by this method, draw A B the length of major axis, and bisect it at right angles by C D indefinitely. Mark points O P on C D the length of minor axis. Now to determine the radii to be used, draw X Y and X Z, Fig. 3, forming any convenient angle at X. With X as center and radius equal to half the short axis strike the arc V W. With same center and radius half the long axis draw the arc S T. Connect W and S, and parallel to W S draw \' U and R T. Then X U w^ill be the radius to use for the arcs at the ex- tremities of the major axis, and X R will be the radius for the side arcs at the extremities of the minor axis. For the radius of the arcs to connect the side arcs with the end arcs take the length of the semi-minor axis plus half the difference between the semi-axes, which is (in Fig. 3) the distance X V plus half the distance V S, hence X O. On A B of Fig. 2 set oft" -\ E and B F, each equal to X U. And .\ G and B H each equal to X O. Lay off from O to D and from P to C, each equal to X R and from O to J and P to I each equal to X O. With C as center and radius C I draw the arc i 2, XXTH CENTURY SHEET METAL WORKER. 45 and with D as center and same radius draw the arc 3 4. With E and F as centers and radius E G or F H strike the arcs through G and H intersecting the arcs I 2 and 3 4 at the points i 3 and 2 4. Draw a hne FiG. 4. • through E from i to 5 equal in length to X Q, and from 3 to 6 same length, and the same through F from 2 to 7 and from 4 to 8. From C through i and 2 draw lines the length of X R, and from D through 3 and 4 same length, end- ing at 9, 10, II and 12. 46 XXTH CENTURY SHEET METAL WORKER. With C as center and radius C P (or X R) draw the arc 9 10, and with D as center and same radius draw II 12. With E and F as centers and radius E A (or X U ) draw 5 6 and 7 8. Then with i, 2, 3 and 4 B Pig, 5. respectively as centers and radius I to 5 (or X Q) draw the four connecting arcs 5 to 9, 7 to 10, 8 to 12 and 6 to II. This completes the eight centered ellipse, which is a very near approach to the shape of that in Fig. I, constructed with the string and nails. Figures 4 and 5 are of the four centered kind, using XXTH CENTURY SHEET METAL WORKER. 47 only two radii. Eitlier of these will answer very well for small articles. ¥\g. 4 is, however, slightly nearer to the perfect ellipse than Fig. 5. To draw Fig. 4 make A B the length of major axis, and bisect it with the indefinite line C D at right angles to it on which mark x x length of minor axis. From A set off the length of required minor axis, marked E, and divide E B into 4 equal spaces. With 3 of these spaces, (which is ^ the difference of the two axes) as radius, and F as center, mark G and H and describe circles with radius A M or B G. Take the distance from F to the nearest ei\s:;e of one of the circles and set off from x x marking the points I and J. From I and J draw lines through H and G re- spectively, as J to I and 2. and I to 3 and 4. With I and J as centers and radius I to opposite x draw the arc 3 4. And with J as center and same radius strike the arc i 2, completing the figure. For Fig. 5, draw A 15 and C D, the length and width desired. From A set off the width, A to E, then E B is the difference of the axis. Take half this difference, which is E V, for radius, and with G as center strike the arc H I. Draw the chord H I and bisect it at J. With I as center and radius I J draw the arc J K. With G as center and radius G K mark L, M and N. Draw lines from L and N both ways through K and M, and use K, L, M and N respec- tively for the centers from which to draw the four arcs to form the oval. These four figures are all drawn to the same dimen- sions, i.e, the same lengths of axes, and the different 48 XXTH CENTURY SHEET METAL WORKER. degrees of variation from the nearest perfect form (Fig. i) are readily detected. Oval Flaring: Pan. Having described several methods of drawing ellip- tical and oval figures, and knowing that many work- men have their own rules for drawing the oval, I will omit that part here, and give an easy short rule for pattern for the body of flaring oval pans. Around the corner of the square draw indefinitely ABC. Fig. I. From B mark D the perpendicular depth of pan desired. From D draw D E parallel to A B, and make the distance from D to E the same as the radius I x of the side arc of the oval, Fig. 4. On A B mark F as far from B as the side radius plus the required flare of one side of pan, i. e., make B F just once the flare longer than D E. Then draw from F a line through E, continued to intersect B C at C. The distance from C to E is the radius of curvature of the bottom of the portion of the body to fit a side arc (as I X 2) of the oval. Next, on D E mark e, the length of end radius of oval (A H of Fig. 4). and from B mark f the same distance plus the flare, and draw fee, which will be parallel to F E C, and gives the radii for end portion of body. Now draw a center line G H^ Fig. 2. and with H as center and radius C E of Fig. i. describe the arc I J equal in length to i x 2 of the oval, measured with a bent strip or by stepping with dividers. With same center and radius C F draw the arc K L limited by lines drawn from H through I and J. Then K I J L XXTH CENTURY SHEET METAL WORKER. 49 is the pattern for one side of pan. No-.v we will sup- pose the body is to be made in two pieces, with the Fig,, 1. seams at the ends. To complete the pattern we must add half the end pattern to each end of K I J L. Set so XXTH CENTURY SHEET METAL WORKER, off from K and L. towards H, the distance c f of Fig. I, here marked h h and with these points as centers and radius c e draw tlie arcs I i and J j each equal in length to one-half the end arc of oval^ as A i or A 4 of Fig. 4. From h and h draw lines through i and j to k and 1. With same centers and radius c f draw arcs K k and L 1. Add allowance for wire, burr and locks, and the pattern is complete for one-half the body. If the body is to be in four pieces, make lock allow- XXTH CENTURY SHEET METAL WORKER. 51 ance at K I and L J, and draw the two end halves in one piece, and add locks to both ends of it. Figs. I and 2 are drawn to a smaller scale than the ovals in the other chapter, and the measurements do not exactly correspond with them. For this reason F'\g. 4 is here reproduced of a size and shape suitable to illustrate Figs, i and 2 of this chapter. 0-- — i) Fig. 4. Above all things do not use C D and c D of Fig. i for radii, as is often done by some, they are not the correct radii, being only the perpendiculars of the triangles the hypothenuse of which are the true radii. Pan Corners. There are several ways of cutting a pan corner so that the folded corner will come up true under the wire. And there are many workmen who only guess at it, and make a poor corner in consequence. In this chapter I will mention three methods, by 52 XXTH CENTURY SHEET METAL WORKER. any one of which the corner may be so quickly laid out that it would not be profitable to use guess work, and thev are all accurate methods. Fig. 1. The first is the: one I most often use, although I do not know that it is any better or quicker than either of the others. On a perfectly square corner of the sheet to be used, lay off the allowance for wire ABC Fig. i. Parallel to these lines and far enough in from them for the slant depth of the pan, make D E F. From the points G and E set off towards B the desired flare, one-half the difference between the size of the top and bottom. Draw lines from the points thus found at H and I, to J. Next place the handle of a bevel against the edge of sheet, and adjust the blade until it coincides with XXTH CENTURY SHEET METAL WORKER. 53 the line H J. Then swing the bevel around till the handle is on H J as shown in Fig. 2, with the inner angle of blade and handle at H, and scribe along the blade from H to the center line J B. Reverse the FiS. 2. bevel, placing the handle on line I J, and scribe from I to the same point on center line as before. Cut across the wire allowance at any desired angle, or square in to H and I, then through on the lines drawn, being careful to cut accurately when the piece may be used for a pattern by which to cut the other three corners, when you have them located. To do this measure from H along line A B the distance re- quired for width of top, inside of wire. And from I along line B C the length of top, inside of wire. Then place the little corner pattern on with one of its straight edges coinciding with the edge of the iron, 54 XXTH CENTURY SHEET METAL WORKER, and the point H or I at the point found by measure. Mark the cut line and along the farther edge of pat- tern which will give the point at which to square off the sheet. Square from both the corners thus found, which will locate the fourth corner. 1 3 ^" T/ *• Vo^^r' T- K0 ? Q r^ "P 0^ ^J Jf Fig. 3, J K D The second method is by means of rule or square, and dividers. Lay off A B C, D E and F G, and locate H and I the same as described in the first method. Then with dividers set at J, Fig. 3, strike a long arc, or semi- circle. Span dividers from intersection of arc with line B J to intersection with line H J and swing around to point X. Draw a line from J to X and the point where this line intersects the line of wire allow- ance is the right height from J for the center line B J, XXTH CENTURY SHEET METAL WORKER. 55 because the line J X is in the position B J will occupy when folded around against end of pan. Span dividers from J to o and swing around and mark B J at o'. Scribe from H to o' and from I to o', and cut out, E Si Nb 1/ n \^^\ \f Ik Pig, 4, D p cutting wire allowance at any desired angle, thus com- pleting the corner. The third method is on nearly the same principle as the first, except that the angles are found by means of the dividers instead of a bevel. After laying ofif A B C, D E and F G, and locat- ing H and I as before, span dividers from H to a point nearly, but not quite to B. on line A B, and strike on arc downward as shown in Fig. 4. With dividers un- 56 XXTH CENTURY SHEET METAL WORKER. changed set one foot at J and strike an arc cutting H J and G J at K and L. Then span dividers from K to L, and starting at M step off twice that distance (two steps) to N. Draw by the straight edge from H to N, and from I to the point of intersection with B J, and cut out as before. In the first method we obtained the angle of H J by means of the bevel and by applying this angle again we produced the line H N (or the line corresponding to H N) at twice that angle with the line A B, and in this case, by stepping twice the distance K to L on an equal arc, we produce H N at just twice the angle of H J. As before stated, the corner may be cut out and used as a pattern for the other three corners, but in practice I prefer to lay out all the corners first except the lines of cut, and then complete one, and use the piece for pattern for the others. Because the lineJ H J, B J and I J are needed as guides for making the bends when forming up. A Deflected Snap Bottom. A snap bottom may often be used on small articles of tinware, instead of a double seamed bottom, and given a deflection in the "setting down machine." Cups, dippers, small basins and other small vessels may be made in this manner, quickly and neatly. Burr the bottom of body out nearly as much as for a double steam, and perhaps just slightly wider. Not too wide, however. Cut and burr the bottom so it will po on pretty snug, and run it in the setting down machine, holding the XXTH CENTURY SHEET METAL WORKER. 57 article up enough to begin to just start a deflect in the bottom, and continue to raise gradually until the seam is at an angle of about 45 degrees, as shown in the sec- tion of bottom underneath the cup, in drawing. With very little practice, and a good setting down Section of Bottom. —4 machine, this can be done very quickly, and makes a neat job. A double seamed bottom can also be deflected in the setting down machine, if it is a very small seam, and pretty smoothly finished, and not too tight. If the 58 XXTH CENTURY SHEET METAL WORKER. seam is small enough to allow of starting it between the wheels of the machine, and care is used in handling the work, quite a neat looking deflect may be made. Farnac* Pipe Boot by Trlsngulation. As triangulation is a more simple and accurate method of obtaining patterns for some of the more irregular and complicated shapes, this second chap- ter is given for the benefit of those unfamiliar with the process. And I believe, if the reader will carefully study this and the chapter on the "Transition Piece," he will be able to develop the pattern for almost any desired article, by this very useful and simple process. Figure i is a perspective view of a common shape Fig. 1. of boot for furnace pipe, and is a transition piece, or more strictly speaking, the body between the straight collars is a transition piece, and is the portion for which we will develop the pattern. This boot is to fit a round pipe at one end lo inches in diameter, and to fit a "riser" or wall pipe at the other 2x14 inches. In practice it is unnecessary to draw the perspec- tive. And even the elevations may be omitted, if the workman has the idea, or the picture of the article in his mind, and the work done entirely with the plan XXTH CENTURY SHEET METAE WORKER. SO shown at the bottom of Fig-. 2. the circle and the parallelogram. Space the circle into any desired nnmher of eqnal parts, here 10 are used. Construct a diagram of tri- angles as shown at the right of "side elevation." Make Pig. ' 2. the j)erpen(Iicular E P> equal to the vertical height of the body of the article, and the base exactly at right angles to it, and of indefinite length. With the divid- ers measure each of the distances from the corner D 6o XXTH CENTURY SHEET METAL WORKER. to E, I. 2, 3, 4 and 5 and set each one as found, off to the right from E on tlie base Hne of the diagram of triangles, marking each one for future references. Then take the distances from X to 5, 6, 7, 8, 9 and 10. being careful to number each one. Now to develop the pattern, draw the right angle BED, making B E equal to the vertical height (BE of the diagram of triangles) and E D equal to E D of the plan (one-half the length of one side of the par- allelogram) and with one pair of dividers take the distance from B to i on the D of T and place one foot at D on pattern, and with another pair of dividers set to one of the spaces on circle place one foot of these at B on pattern describe a short arc to intersect an arc made by the other spanned from D, thus lo- cating the point i of the irregular curve of pattern. Keep the one pair of dividers set the length of one of the spaces and continue in rotation, setting the other pair from B to 2 on the D of T and span from D to meet the space dividers at 2, and continue the meas- urements thus until 5 is located on the curve line of pattern. Then take the distance from 5-X from B on the D of T and span downward from 5 on the pat- tern and meet it with a measurement from D equal to D X on the plan (the width of the parallelogram)- Then proceed with the remaining distances the same as with the first quarter of the circle, except we span from X instead of D to locate 6, 7, 8, 9 and 10. It was necessary for us to take the measurement from 5 to X as well as from 5 to D on plan and trans- XXTH CENTURY SHEET METAL WORKER. 6i fcr it to the D of T in order to locate the point X of the pattern. Now to locate the point G of pattern take the dis- tance lo to G shown in "end elevation" and span it downward from lO on pattern and meet it with the Fig. 3. distance X G of plan (half the length of parallelo- gram) spanned out from X. Connect the points thus found by straight lines from D to X, from X to G and from G to lo, and by drawing a free hand curve through B, 1,2, 3, 4, 5, 6 7, 8. 9 and 10, which com- pletes one-half the pattern. The other half may be drawn in the same manner, or by cutting out this half and scribing around it. The end elevation was referred to once in the above description, and a measurement from that elevation was used in locating G on the pattern, but we could have located it without the end elevation, by measur- ing across from 10 to G on the plan and transferring the distance to the base line of the D of T, then from that point to B is equal to 10 G of the eleva- tion, and of the pattern as well. 62 XXTH CENTURY SHEET ^lETAL WORKER. Of course, an allowance must be made all around this pattern, to lock the ends of pattern together, and to lock the collars on. Tee on a Tapered Pipe. For convenience in describing we will use definite dimensions- — viz.: A tapered pipe (frustrum of a cone) 8 inches in diameter at base, 3 inches at top and 8 inches i)erpendicular height, about S^i inches slant height, intersected by a straight pipe 2 inches in diameter, at an angle of 30 degrees to the axis of the tapered pipe. To develop the patterns for the above descril^ed article : Draw a center line A B and with C on this line as center construct the plan of the tapered pipe, C(jn- sisting of a circle of 3 inches diameter surrounded by a concentric circle 8 inches in diameter. Then draw an 8-inch diameter through C at right angles to A B, and from the ends of this diameter extend dotted linos upward any convenient distance to the points D and E. Connect D and E by a straight line parallel to the diameter drawn in plan, and at right angles to A B, thus forming the base of an elevation of the article. On the center line 8 inches above the point X. where it intersects the base line D E, mark Y. and through L draw G F 3 inches long, being careful to make it just i>^ inches each side of Y and parallel to D E. Connect E F and D G and continue the lines until they meet on the center line at A. Next draw the 2-inch pipe projecting from the side XXTH CENTURY SHEET METAL WORKER. 63 F F of elevation and at an angle of 30 degrees to the center line A B, represented by the straight lines H I J K. This completes the elevation. Now drop dotted lines from H and K down to the transverse diameter of plan, and using for center a point midway between these lines on this diameter, describe a 2-inch circle and space it into any number of equal spaces, here 12. From center C draw radial lines through tliese space points just to the outer circle (base of tapered pipe), and from tliose inter- sections above and including- the diameter line, draw 64 XXTH CENTURY SHEET METAL WORKER. parallel dotted lines upward to D E, and radial lines from A to meet these on D E. Find the center of the line I J representing the up- per end of the 2-inch pipe, and draw a semi-circle upon it as shown, and space it into six equal spaces, and from these points draw parallel lines to intersect each in turn of the radial lines, and draw a free hand curve through the points of intersection, which gives us the true elevation view of the shape of the base of the small pipe, shown by the heavy curve line H to K. To develop the pattern for this pipe draw the stretchout ^Nl X O P equal to 12 of the spaces on the semi-circle I J and space it into 12 equal spaces as shown and placed exactly parallel with the pipe. Then draw lines at right angles to the pipe and stretchout, from the points of intersection on curve H K to inter- sect with the space lines on stretchout, and through these points of intersection draw the curve the same as in making an elbow pattern. To develop the pattern for the tapered pipe, set the dividers at A and with radius A D draw the arc O R and with radius A G the arc S T. Step off one-quar- ter of the large circle in plan into any desired number of equal spaces and, if only half the pattern is desired in a piece as here shown, step twice the number found in the quarter circle on the arc O R, and con- nect R T and O S by drawing radial lines towards A. This will then be the pattern for half the tapered pipe. If, however, it is desired to make the pattern in one piece, step off four times the number of spaces found XXTH CENTURY SHEET METAL WORKER. 65 in the quarter circle of plan, onto the continued arc OR. To cut the opening in this pattern for the small pipe to fit, draw the radial line A U wherever desired — here shown in the middle of the half pattern — and from it space off each way the spaces obtained in plan by drawing the radial lines through the space points in small circle to the circumference of tlie base. The line A U of pattern is the same line as C L' in plan, hence we space on O R each way from U the same distances as shown in plan each side of U. Then draw radial lines from A to all these points on O R. Next draw parallel lines across the elevation from the 66 XXTH CENTURY SHEET METAL WORKER. intersecting points on curve H K at right angles to A B and intersecting the side D G and with the di- viders draw curves from the points where the hori- zontal Hues meet D G, using A as center to intersect the radial lines drawn from A to O R, and through the points of intersection draw the irregular egg shaped oval which will be the shape of the opening. All locks and laps must be allowed outside of the pattern lines. To develop patterns for the same article by trian- gulation. Draw plan and elevation the 'same in outline as for projection, and the semi-circle T J on end of small pipe and space it the same as in the previous example. Drop dotted lines from the points H and K to the transverse diameter of plan and space the portion be- tween them into 6 equal spaces, and with C as center draw short concentric arcs through these space marks. Draw a dotted outline of the small pipe projecting as far as the point I in elevation and on its diameter X Y dfaw a semi-circle spacing it the same as the one in elevation. Draw lines from the semi-circle X Y to intersect the arcs and through the points of intersection draw the irregular curve as shown, which represents the top view of the small pipe intersecting the tapering pipe. Now through the intersections above the diameter draw 3 radial lines to the large circumference of plan and project lines from these points up to base line D E of elevation, and draw radial lines from A to meet them. Draw parallel lines from the semi-circle XXTII CENTURY SHEET METAL WORKER. 67 I J to intersect the radial lines and mark the curve HK. Space one quarter of the large circle of plan into 6 equal spaces, and make lines towards the center C and just to the small circumference, thus spacing the small circle into the same number of equal spaces as the large one. Number the points on the inner circle 1 to 7. and those on the outer circle 8 to 14. Draw a diagonal line from i to 13 and set off its length on base line of elevation as shown from 14 to 13, then the distance from the center of the line F G and i. to the point marked 13 on the base line, will be the true length of the diagonal line i to 13. And the side G D or F E is the true length of i to 14. 2 to 13, etc. Now draw one side of pattern T R. the length of D G and mark one end i and the other 14. With a pair of dividers spanned to the length of the line i to 13 in elevation set one point at i at the top end of the line T R. and with a second pair of dividers spanned one of the spaces of the large circle of plan, measure out from 14 at the lower end of the line T R and mark a short arc across one made by the dividers reaching from i, thus locating 13. Next take the dis- tance D G of elevation and with one foot of dividers at the newly found point 13 measure upward and locate 2 just the distance of one of the spaces of small circle out from i. It is a great convenience to have a third pair of dividers and keep them set to this dis- tance. And as i to 13, and D to G happen, in this instance, to be the same length, they can be used with- out change for both measurements. Now mark from 2 to 12 measuring out from 13 with the dividers which 68 XXTH CENTURY SHEET METAL WORKER. are set to the large circle spaces. Then from 12 to 3 measuring out with those set to the short spaces, and so on until one-half, or if so desired, the whole pat- tern is completed. To get the opening for small pipe mark down on center line of pattern tl.^ distance from F to K (eleva- tion) and up from 8 the distance from E to H, and locate the center * where the side lines of pattern would cross, and using center * draw short arcs through the points marked. (T\y the way, if the work has been correctly done, the distance from O or R to * will be the same as from D or E to A of eleva- tion.) Next measure from point F to each in turn of the intersection points in curve between K and H and transfer them to the center line of pattern, meas- uring down from 7 each time, and draw an arc through each using * as center. Now take the distance from the center line, or rather the transverse diameter of plan, to the intersection point on each of the arcs and transfer each measurement to the corresponding arc on pattern, and through these points draw the curve for the opening. For pattern for small pipe, draw AI N the length required for circumference of pipe, in this case about 6 5/16 inches, and M P and N O each equal to J K of elevation. Space M N into 12 equal spaces and draw the center line V W equal to H I, then draw lines from the space points parallel to V W of indefinite length but not longer than V W, and measure the distance from each of the points on the straight line I J to each corresponding point on the curved line H K and transfer each in turn to each side of the pattern. XXTH CENTURY SHEET METAL WORKER. 69 These measurements may be verified by a diagonal measurement from each point as found, back to the last preceding" point as sliown by the diagonal dotted lines on both pattern and elevation. Fruit Jar Filler. A very convenient and ready selling fruit jar filler and dipper combined is here shown. The article is made in two pieces, which are shown in Figs. I and 2. Fig. i is the dipper portion, and should be raised slightly with the hammer. The edge A, of Fig. I, is to be double-seamed to the edge B, of Fig. 2, between the points marked e and e. The edges C and D are locked together forming the top side of 70 XXTH CENTURY SHEET METAL WORKER. the funnel portion. And those edges marked a a a a are simply hemmed and flattened down in the burring machine. A wire makes the edge too thick to dip into the fruit. Fig. 3 shows the finished article, with the exception of the handle, which may be a dipper handle, soldered and well bossed, or a large saucepan handle riveted and soldered at the point marked E. This dipper and filler, when once tried, becomes a favorite with the ladies of the house, and will sell readily when its many uses become known in a neigh- borhood. Elbozi's, angles, tecs, roof saddles, chimney thiinhles, etc., all cut ill the same manner. We will first consider a square two-piece elbow, and a very convenient method of cutting it. By a square elbow I mean one of 90 degrees Lay cut the blank of sufficient length to make a pipe of the desired size, 18^8 inches for 6-inch pipe, or 22 inches for 7-inch. Then allow as much on each side as will be required for locks, or lap if to rivet. We will now suppose we are to cut a 7-inch 90- degree elbow in two pieces. We will take a piece of sheet iron about 23 x 14 inches arid mark tlie lines XY and OZ 22 inches apart and parallel. This will XXTH CENTURY SHEET METAL WORKER. 71 leave a half -inch for lock on each edge if we have previously cut it 27, inches long. On the line XY, about 3 i'.iches clown from X mark A: 3>< inches from A mark C, a' id 7 inches from A mark B. In the same manner, and at the same dis- tances mark on line OZ the points D, F and E. A and P,. and D and E are each 7 inches apart on their re- X £ A 1 Ur^ -^ X / r' \ ^' 5- C 1.\ \ ^ \ /, 3 :i — d- 4)^ /I <^ / \ ^a — -^ A \ y ^ B ^i^XX 1 • 1 1^=^ F=^=-4 1 1 1 H r-^"*" ' E Elbows Fig. !• spective lines XY and QZ. This is tlie correct dis- tance, because the rise or backset of a 7-inch elbow is 7 inches, or just equal to the diameter of the pipe. This is the same in any other size, that is, the rise for any size of 90-degree two-piece elbow is just the diameter of the pipe. Now span the dividers 3J^ inches, the radius of the pipe, and with one foot at C, describe the semi-circle A to B. And with one foot at F describe one from 72 XXTH CENTURY SHEET METAL WORKER. D to E. Next draw the center line from C to F, and with the dividers unchanged place one foot at 3 where the center line crosses the semi-circle, and mark short arcs at i and 5. From A. same span, mark 2, and from B mark 4. Proceed the same at the other end of pattern, thus dividing each semi-circle into 6 equal spaces. Draw parallel lines from XY to OZ rnrough these Elbows Fig. 2, points, dividing the pattern into 6 unequal spaces, as chown in Fig. i of Elbows. Snace any one of the parallel lines, or the bottom edge of sheet into 12 equal spaces, and draw lines from the points perpendicularly, crossing the hori- zontal lines as shown, and draw a freehand line through the alternate points of intersection, from B to 5, to 8, to 7, to 10, to 5 and ending at E. This XXTH CENTURY SHEET METAL WORKER. 72> line is clearly shown by the heavy curved line in Fig. I. Cut on this line, and we have the two pieces A and B shown in Fig. 2, which, when formed up and locked will make a two-piece 90-degree elbow with one seam in the throat, and one on top. B Elbows Fig, 3» To make a roof saddle for the side of a half-pitch roof, cut on same line. But if for comb of roof, cut from B to 8, then down to 9, up to 10 and down to E, and use the lower piece shown by B of Fig. 3. The other piece resulting from this cut is a tee pattern, but without allowance for lap. 74 XXTH CENTURY SHEET METAL WORKER. which may be added as desired, as shown bv dotted lines in A of Fig'. 3. It is, however, tlie true intersec- tion Hne of the Tee. A Fig. 3 is also the pattern for a stove-pipe thimlile to fit in a corner. And the other piece, B, is a thimble to fit the projecting corner of a chimney. Thus far we have only been working with angles of 90 degrees. To make patterns for other angles it is only required to get the rise of the miter line, and span the dividers to equal one-half of it, after which the process is the same. The semi-circles must be of a diameter equal to the required rise. To Find the Rise of Miter Line for 90 Degree Elbow of Any Number of Pieces. An easy manner of finding the rise of miter line for 90 degree elbows of an\- number of pieces, is as fol- lows: Draw a square having each side equal to the diame- ter of the pipe, as shown by A, B, C and D of Figs. I, 3 and 5 of Miters. Draw the diagonal line from A to C, and with the dividers set the length of one side of the square, and one foot at C, draw a quadrant from B to D, and divide one half of it into i less equal spaces than the number of pieces desired in the elbow. Miters, Fig. i, shows method of getting the miter line for a three piece elbow. Fig. 3 a four piece, and Fig. 5 a five piece. And Figs. 2, 4 and 6 show the pattern developed. In all cases the spacing on the quadrant must be done accurately, and the miter line extended through XXTH CKNTURY SHEET METAL WORKER. 75 the point to the side of the square, and the true rise of the miter hne is the distance from B to the point where the miter Hne cuts the side of square, marked E in Fig. r. To prove that this mnhod gets the true rise, it is only necessary to refer to Fig. 7, which shows the out- I m Fig. 2. Fig. 3. Fig, 4. ^ifi« 5« Fig. 6. Hne of the long, or outer, side of a three piece elbow drawn within the square, and drawn to a larger scale. This drawing also clearly shows the reason for spac- ing half the quadrant into one less than the number of pieces desired. .\ three piece elbow only has two miter lines. A four piece, three, etc. 76 XXTH CENTURY SHEET METAL WORKER. The foregoing methods may also be appliKl to the cutting of patterns for angles of an}' shape ai well as 90 degrees. It is only necessary to find th? rise of the Pig. 7. miter line, and draw the pattern as described by using semi-circles whose diameter is the rise required. Elbows of Less Than 90 Degrees, Called Angles. As before stated, these patterns may be obtained in the same manner as those we have been studying, after we obtain the rise of the miter line. We will now suppose we have found the required pitch of an angle to fit a certain place, by setting a bevel, or with two pieces of iron riveted together, or with two pieces of lath or shingle, as H and I of Fig. I. Draw AB and BC along the two blades of HI, and bisect the angle thus formed. This may be done by spanning the dividers an equal distance each way from XXTH CENTURY SHEET METAL WORKER. 17 B and marking points as A and C, then with these points as centers and radius greater than A to B, strike rig. 2 the intersecting arcs at D. Draw BF indefinitely through the intersection, and on this Hue locate a 78 XXTH CENTURY SHEET METAL WORKER. point F just the diameter of the pipe distant from the nearest point on AB, which may be done by spanning the dividers to the diameter of pipe and striking the arc AC. Then draw EF at right angles to AB by means of one of the elementary rules for drawing a line from a given point to a given line, perpendicu- lar to the given line. When E is accurately located, BF will be the miter Fifi. 3. line, and the distance E to B is the required rise, and hence is the diameter of the semi-circles from which we develop the pattern. In other words, span the di- viders one-half the distance E to B for the radius, and proceed as in the development of elbows as before given. The angle shown in Fig. i, the complete elevation of which is shown in Fig. 2, is 45°. But it is not neces- sary that we should know the number of degrees. If, however, the required degrees are known, and we have a protractor, the process is even more simple. Draw AD, Fig. 3, equal in length to the diameter XXTH CENTURY SHEET METAL WORKER. 79 of pipe, and by the protractor, draw DB at one-half the required angle. For instance, for a 30° angle, we draw DB at an angle of 15° to AD. Then one-half the distance A to B is the radius for our semi-circles. Pig, 4. The elevation of the finished 30° angle is shown in Fig. 4. To Draw Pattern for Any Regalar Tapering or Flaring Article The method here described will apply in drafting patterns for any of the round flaring and tapered arti- cles made in a tin shop, whether basins, pans, coffee pots or "Sibley stoves." Provided the bottom and top are parallel, and the sides a regular taper. Draw an elevation of the article, full size, as A, B, 8o XXTH CENTURY SHEET METAL WORKER. C, D, of Fig. I, and extend the side lines until they meet, as at E. Then with E as center, and E D as radius, describe an arc cutting D and C, and if the pattern is to be in one piece, continue indefinitely to F. And with the same center, and radius E to A, Pig. !• strike an arc through A and B and extending in- definitely to G. Next draw a circle the size the large end of the finished article is to be, as Fig. 2, and divide it into quarters, as shown. (Or if more convenient, draw only a quarter circle.) Space the quarter circle into XXTH CENTURY SHEET METAL WORKER. 8i 4, 5, or 6 spaces, or any convenient number, (here 5) as D to X, Fi,q-. 2, and step these onto the Hne D F, as shown from D to X in Fig. i. Then span dividers from D to X and step off three more times, 2, 3, F, thus locating- the point F, and making the arc D F almost equal in length to the circumference in Fig. 2. Draw an arc outside of, and parallel to D C F, as an allowance for burr or wire, according to whether the large end is to be the top or bottom of the finished Fig* 2. job. And another arc inside of, and parallel to A B G. Also, allow edges for lock or lap. parallel to A D, and G F, as shown by dotted lines in Fig. i. If it is desired to make the pattern in two pieces, use only twice the distance D X as shown at 2 in Fig. i. And if it is to be in three pieces get one-third the circle, Fig. 2, by stepping twice the radius, as O to P, and divide this into a number of equal spaces (here 7), which step on arc D F of Fig. i, from D to Y. It is a mistake sometimes made by tinners, to step 6 times the radius of the required circle, on D F, to locate F, as this will make the pattern too short. While 82 XXTH CENTURY SHEET METAL WORKER. 6 times the radius just measures around inside its own circumference, yet it will not measure the same length of line when applied to the arc of a circle of a differ- ent size. This is illustrated in Fig. 3, where the circle shown is the same size as that in Fig. 2, and the radius Pig. 3. is shown stepped around it in six steps. Also, D F is made the same as DF in Fig. i, and the six steps shown only reaching to f, showing how much too short the pattern would be if measured in this manner. Even the method I have described is a little short of the true length but will be found near enough for most cases. If greater accuracy is desired I would recommend cutting a narrow strip of light sheet metal just the required length, and bending it to the proper curve, measure from D to locate F. XXTH CENTl'RV SHEET METAL WORKER. 83 Some Convenient DimensioBi of Tinware. In the following dimensions the locks, burrs, wire locks, etc.. have all been allowed. That is for small neat seams. Don't put a pint cup together with a "stove pipe lock." There are two regular sizes of No. 8 wash boilers. The No. 8-18, and the small No. 8. For the No. 8-18 cut 3 pieces 14 x 19, or i piece 56 X 14. For the No. 8 small cut 3 pieces 13^ x 18, or i piece 53-^ I3K'- For No. 9 boiler cut 3 pieces 14 x 20, or i piece 59 X 14- Covered Buckets. 2 quart . . .• 2 pieces 10 x 5^ 3 quart . 2 pieces 10^ x 6 4 quart 2 pieces 12 x 7 6 quart 2 pieces 12^ x 8>^ 8 quart 2 pieces 13^ x 9^ Flaring Pails. (Net Sizes ) 2 quart, 6yi in. diam. top, 43^ diam. hot., 4 deep 4 quart, 7>4 in. diam. top, 5 diam. bot., 5 '4 deep 6 quart, 9I4 in. diam. top, 5>4 diam. bot., 6y2 deep 8 quart, io'< in. diam. top, 6 diam. bot., 7J/< deep 10 quart, UV2 in. diam. top, 7 diam. bot., 8 deep 14 quart, 13 in. diam. top, 9 diam. bot., 9 deep Pans. (Net Sizes.) 2 quart, 9 in. top, 6 in. bot., 3^)4 i"- fleep 6 quart, 12^ in. top, 9 in. bot., 4 in. deep 84 XXTH CENTURY SHEET METAL WORKER. 10 quart. 14 in. top, 11 in. bot., 4^4 iii- deep 14 quart, I5>:| in. top, 10 in. bot., 6 in. deep 16 quart, 18 in. top, n iii. bot., 6^/ in. deep 20 quart, 19^^ in. top, 13 in. bot., 8 in. deep Cans. (Cut to Bent Advantage.) To Hold. Size to Cut Sheet. 1 gallon 7 X 21 inches 2 gallons 10 X 25 inches 3 gallons 103/2 X 30 inches 4 gallons . 12 X 32 inches 5 gallons 12 X 36 inches 6 gallons 13 x 40 inches 8 gallons 14 x 42 inches 10 gallons 16 X 46 inches 15 gallons 20 X48 inches 20 gallons 20 X 57 inches 25 gallons 22 X 60 inches 40 gallons .26 X 70 inches 50 gallons 26 X 76 inches 75 gallons 30 X 86 inches fr>o gallons 36 X 96 inches To find the contents of cylindrical vessels. Multiply the square of the diameter in inches by the height in inches, and this product by the decimal .0034. The result will be the gallons, and decimal fraction of a gallon. This is a shorter method than finding the cubic inches and dividing by 231, and the result is exactly the same. XXTH CENTURY SHEET METAL WORKER. 85 Practical Suggestions. To Clean Water Backs When Filled Up With Lime or Alkali. Pour slowly into the casting, muriatic (hydro- chloric) acid. This must be done carefully, as it will boil over and waste the acid unless care is taken. When the lime has all been removed, wash thor- oughly, and replace. To Cut Heavy Iron With the Stock Shears. When very heav\- iron is to be cut by hand, it will often be found a great help to turn the shears wrong side up and slip a piece of i-inch gas pipe, or larger if necessary, onto the tang, thus making a long leverage, and the pipe stands so nearly perpendicular that the workman can stand almost erect, and yet has a good leverage on the work. To Lock the Edges of a Pitched Cover, or Can Top. Often when making a cover or can top with only a slight pitch, it is desirable to lock the seam, but dif- ficult to do so in the folder. Try sli])ping each edge in the slot of the rod of gutter header, and turning the rod just enough to break the aV^c up a little more than sciuare, when the seam may be grooved down ver}' nicely. Teiitporarx Handles for Soldering Coppers. These may l)e (|uickly made by wrapping around the shank several thicknesses of asbestos paper. Draw it snug with a wire, and it will be found to answer the purpose very well, 86 XXTH CENTURY SHEET METAL WORKER. To Tin Black Iron Rivets, or Other Small Articles. Put them in a bowl of raw acid (hydrochloric) until the black scale is well eaten off. Rinse with water and place in "killed" acid ; i. e., acid which has had all the zinc it will eat, and then without rinsing, drop into a pot of melted solder. Remove with a strainer. 'V^/^T T cannot afford to place your ^ ^^ vJ order for Stoves or Ranges of any kind without writing to the MONITOR STOVE AND RANGE CO. CINCINNATI FOR THEIR NEW CATALOG Makers of the MONITOR RADIATOR The Greatest and Best Hard Coal Base Burner Stoves and Ranges for all kinds of fuel MIONITOR STOVES & RANGES The Sheet Metal Worker With Ambition To Get Ahead Needs THE AMERICAN ARTISAN AND HARDWARE RECORD In His Business PUBLISHED EVERY SATURDAY Slieet metal workers, tinners and roofers wlio knf)\v, consider it the most authoritative and valuable pul)li1etal Work, Heating and Ventilation, Plumbing and Drain= age. Advertising and the Workshop. Some Books and Patterns for the Sheet Metal Worker 100 TINNERS' PATTERNS -Full sized patterns tor complete hne ot tniware— on lieavy manila i)aper ready tor use— nowhere can so complete a set be obtained a't the very Iom- price of ^1 ^^^ Gray's PERFECT ELBOW PATTERNS — absolutelv on'^'r^% ro'J'' -°" <^0 Pattt-rns 2, 8. 4, T, pieces) $1.50 20 to 40" (SO patterns 5, 6, 7, 8 pieces) | so C'oinplete set of 1" to 4()" (2 to S pieces, 160 patterns) with angle chart 3 qq (hay's PERFECT SKYLIGHT PATTERNS -for sinHe pitch, hip and gal)le skyliglits. "" 24" bar::;: ;:;::: ::::;;:::::: '^aH . CORNICE WORK /VlANUAL-240 pages (]S4'engn; v- mg.s) of important information for cornice worker $3.50 TIN, SHEET IRON and COPPER PLATE WORKER ''•X,,^^- •^- '^'""'' ''qiially valual)le for beginner and skilled artisan S;^ SO TINNERS' HELPER and PATTERN BOOK by II K Vosburgh — valuable rules, diagrams and tabl(\s— p,„ke1 edition «1 00 SHEET METAL WORKERS' QUIDE-with rulcs.md ihagrams for describing most useful patterns ordinarily used— al.so chapter on Sheet Metal Work, soldering and geometry «q ^q MANUAL OF RECEIPTS-' 241 pages', 1718 usefulre- ceipts tor the worksliop $3 SO Send for our complete list and prices. We prepay express on all orders. No books exchanged. DANIFI ^TFPIM 353-357 Dearborn St. 1-^.n.l lULiLi O I ILiIxl^ CHICAGO, ILLINOIS 29 \^IQ 100 TINNERS' PATTERNS THE AMERICAN ARTISAN FULL SIZE PATTERNS Comprise patterns for a full line of tinware, in numerous sizes, square and round elbows, cut-offs, etc. These full size patterns, numbering upward 100, are printed on inanila paper, from which they are readily transferred fo heavy sheets and cut out ready for use. The list contains the following patterns; Tea Steeper Fourteeii-quart Milk Pail Breast Two-pint Tea Pot Two-inch Four-piece Round Elbow Three-pint Tea Pot Three-inch Four-piece Round Elbow Four-pint Tea Pot Four-inch Four-piece Round Elbow Five-pint Tea Pot Five-inch Four-piece Round Elbow One-quart Coffee Pot Five-and-a-half-inch Round Elbow Two-quart Coffee Pot Six-and-a-half-inch Round Elbow Three-quart Coffee Pot Seven-and-a-half-inch Round Elbow Small Grocers' Scoop Medium Grocers' Scoop Large Grocers' Scoop Four-quart Coffee Pot Five-quart Coffee Pot No. 1 Coffee Boiler No. 2 Coffee Boiler No. 3 Coffee Boiler Lamp Filler One-Pint Dipper One-quart Dipper Two-quart Dipper Four-quart Flaring Pail Six-quart Flaring Pail Eight-quart Flaring I'ail Ten-quart Flaring Pail Twelve-quart Flaring Pail Fourteen-quart Flaring Pai Ten-quart Dish Pan Twelve-quart Dish Pan Fourteen-quart Dish Pan Sixteen-quart Dish Pai\ Dinner Bucket I'^ive-inch T-Joint Six-inch T-Joint Eave Trough Mitre .Joint "Snap" 2-inch Conductor Elbow Cullender Two-inch Square Elbow Two-and-a-half inch Square Elbow Three-and-a-half-inch Square Elbow Four-and-a-half-inch Square Elliow Five-and-a-half-inch Square Elbow Six-and-a-half-inch Square Elbow Seven-and-a-half-inch Square Elbow One-pint Funnel Two-pint Funnel Three-jiint Funnel Four-pint Funnel Small Milk Strainer f^arge Milk Strainer Ten-(iuavt Milk Pail Breast Apple Corer Oval Foot Bath Oval Pudding Pan Half-gallon Can Breast One-gallon Can Breast Two-gallon Can Breast Three-gallon Can Breast Half-i)int Measure One-pint Measiue One-quart Measure Half-gallon Measure One-i)int Basin T wo-pint Basin Three-pint Basin Four-T)int Pan Six-quart pan Ten-(iuart Pan Small Cuke Pan Medium Cake I'an Large Cake Pan Small Wash Basin Large Wash Basin Sprinkler Breast Four-gallon Churn Five-gallon Churn Small Dust Pan Large Dust Pan Five Sizes Funnel Patrns. Oval Dinner Bucket Rain Water Cut-off No. 7 Boiler Cover No. 8 Boiler Cover No. 9 Boiler Cover No. 7 Boiler Bottoms No. 8 Boiler Bottoms No. 9 Boiler Bottoms THE AMERICAN ARTISAN full size patterns are a great convenience, and in no other way can they be obtained at so small a cost. Price, sent postpaid for the FULL SET OF 100 PATTERNS $1.00 355 DEARBORN ST. CHICAGO, ILL. DANIEL STERN, REGISTERS and VENTILATORS » «■«■■■■■■■■ ■■BBBBBBBHH CAST IRON or SEMI-STEEL or WROUGHT STEEL 500,000 in Stock lY MFG. CO. One copy del. to Cat. Div. ) boston 9tr:: 29 1910