4* Book_^^5___ Copyright N? . COFVRICHT DEPOSIT. HANDBOOK OF THERMODYNAMIC TABLES AND DIAGRAMS McGraw-Hill BookCompai^ Puj6^is/iers c^3oo£§/br ElGCtrical World TheEtiginoGi-in^ andMining Journal EngkieGring Rj9Cord Engineering News Kailway Age Gazette American Machinist Signal Engineer American Engineer Electric liailway Journal Coal Age Metallurgical and Chemical Engineering P o we r HANDBOOK OF THEEMODYNAMIC TABLES AND DIAGRAMS A SELECTION OF TABLES AND DIAGRAMS FROM ENGINEEHING THERMODYNAMICS BY CHARLES EDWARD LUCKE, Ph. D. PROFESSOR OP MECHANICAL ENGINEERING IN COLUMBIA UNIVERSITY NEW YORK CITY ARRANGED AND AMPLIFIED BY JOHN J.^lBtATHER, Ph. B., M. M. E. PROFESSOR OF MECHANICAL ENGINEERING IN UNIVERSITY OF MINNESOTA, MINNEAPOLIS First Edition McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET, NEW YORK 6 BOUVERIE STREET, LONDON, E. C. 1915 Jo i'^^-^ V Copyright, 1915, by the McGraw-Hill Book Company, Inc. e- Xo D THE. MAPLE. PRES3.YOKK. PA JUL 2 1915 ©CI,A401613 PREFACE While the following tables and diagrams have been arranged primarily for use with the authors' Textbook of Engineering Thermodynamics it is thought that they will be of considerable value to all students of engineering as well as practicing engineers or others who may have occasion to undertake thermo- dynamic computations. Most of the tables have been taken from Dr. Lucke's larger work on Engi- neering Thermodynamics, but some new ones have been added, among which are the very convenient four place hyperbolic and common logarithms, the plates for which were kindly loaned by Professor E. V. Huntington. The authors desire to acknowledge their obligations to the various sources of information utilized in the preparation of the tables and diagrams. Special mention is due Professors Marks and Davis, for the use of material from their Steam Tables (Longmans, Green & Co.) ; to Mr. E. D. Thurston, Jr., whose invaluable help is gratefully acknowledged, and to Mr. T. M. Gunn for aid on part of the work. C. E. L. June. 1915. J- J- F. CONTENTS PAQB Preface v List of Tables ix List of Charts and Diagrams xi Part I Introduction 1-4 Tables 5-137 Part II Construction and Use of the Diagrams 139-150 Charts 151-230 Index 231-238 VU LIST OF TABLES No. Paqb 1. Conversion table of units of distance 5 2. Conversion table of units of surface 5 3. Conversion table of units of volume 5 4. Conversion table of units of weights and force 5 5. Conversion table of units of pressure 6 6. Conversion table of units of work 6 7. Conversion table of units of power 7 8. Units of velocity 7 9. Heat and power conversion table 7 10. Barometric heights, altitudes and pressures 8 11. Conversion table inches of mercury to pounds per square inch 10 12. Piston positions for any crank angle 11 13. Horse-power per pound mean effective pressure 12 14. Constants for the curve PF" = K.... 13 15. Values of s for adiabatic expansion of steam 14 16. Valuesof sin the equation FF = constant for various substances and conditions. . 15 17. Fixed temperatures 15 18. Temperatures, Centigrade and Fahrenheit 16 19. Values of x for use in Heck's formula for missing water 18 20. Baume-specific gravity scale 19 21. Freezing-point of calcium chloride brine 19 22. Specific heats of solids 20-21 23. Specific heats of gases 22-23 24. Specific heats of liquids 24 25. Specific heat of sodium chloride brine 25 26. Coefficient of linear expansion of solids 25 27. Coefficient of cubical expansion of liquids 26 28. Coefficient of volumetric expansion of gases and vapors at constant pressure 26 29. Coefficient of pressure rise of gases and vapors at constant volume 27 30. Compressibility of gases by their isothermals 28 31. Values of the gas constant R 28 32. Density of gases 29 33. Ignition temperatures 30 34. The critical point 30 35. Latent heats of vaporization 31 36. Latent heats of fusion 31 37. Boiling-points 32 38. International atomic weights 34 39. Melting- or freezing-points 34 40. Properties of saturated steam 36 41. Properties of superheated steam 40 42. Properties of saturated ammonia vapor 41 43. Properties of saturated carbon dioxide vapor 50 44. Relation between pressure, temperature and per cent. NHs in solution 54 ix X LIST OF TABLES No. Page 45. Values of partial pressure of ammonia and water vapors for various temperatures and per cents, of ammonia in solution 58 46. Absorption of gases by liquids 60 47. Absorption of air in water 60 48. Air required for combustion of various substances. 61 49. Radiation coefficients 61 50. Coefficients of heat transfer 62 51. Heats of combustion of fuel elements and chemical compounds 63 52. Internal thermal conductivity 65 53. Relative thermal conductivity. 68 54. Comparison of cellulose and average wood composition 69 55. Composition and calorific power of characteristic coals 70 56. Combustible and volatile of coals, lignites and peats 78 57. Classification of coals by gas and coke qualities 87 58. Paraffines from Pennsylvania petroleums 88 59. Calorific power of mineral oils by calorimeter and calculation by density formula of Sherman and Kropff 89 60. Properties of oil-gas 90 61. Composition of natural gases 91 62. Properties of mineral oils 92 63. Composition of coke oven and retort coal gas 94 64. Composition of U. S. coke 98 65. Products of bituminous coal distillation 99 66. Average distillation products of crude mineral oils 99 67. Fractionation tests of kerosenes and petroleums 100 68. Fractionation tests of gasolenes 102 69. Composition of blast-furnace gas and air gas 104 70. Rate of formation of CO from CO2 and carbon 106 71. Composition of producer gas 108 72. Composition of water gas 113 73. Composition of oil producer gas 113 74. Gas producer tests 114 75. Composition of powdered coal producer gas 116 76. Composition of boiler-flue gases 116 77. Calorific powers of best air-gas mixtures 117 78. Limits of proportions of explosive air-gas mixtures 118 79. Rate of combustion of coal 119 80. Diagram factors for Otto cycle gas engines 122 81. Heat balances of gas and oil engines 123 82. Mean effective pressure factors for Otto cycle engines 124 83. Values of C for air flow (Weisbach) 125 84. Flow change resistance factors Fr (Reitschel) 125 85. Efficiency factors for reciprocating steam engines and turbines 126 86. Chimney capacities (Kent) 130 87. Chimney draft 131 88. Common logarithms, 1 .0 to 1 .999 132 89. Common logarithms, 1 . to 9 . 99 134 90. Hyperbolic logarithms, 1.0 to 10.0 136 LIST OF CHARTS Chart i«age 1. Work and horse-power for single-stage compressors 151 2. Work and horse-power for two-stage compressors 152 3. Work and horse-power for three-stage compressors 153 4. Mean effective pressure of compressors, one-, two-, and three-stages 154 5. Value of supply pressure in maximum work and mean effective pressure 156 6. Relative work of two- and three-stage compressors compared to single stage 157 7. Diagram to give economy of exponential cycles referred to isothermal as standard . 158 8. Compressor cylinder displacement for given capacity '. 159 9. Graphical determination of mean effective pressure for single cylinder engines 160 10. Relations for equal distribution of work in compound engine 161 11. Specific heats of gases 162 12. Specific heat of superheated steam 163 13. Equivalent gas densities at different pressures and temperatures 164 14. Ammonia pressure-temperature relations, for saturated vapor 165 15. Carbon dioxide pressure-temperature relations for saturated vapor 166 16. Steam, pressure-temperature (Table XL) 167 17. Steam, heat of the Hquid (Table XL) 168 18. Steam, latent heat (Table XL) 169 19. Steam, total heat (Table XL) 170 20. Steam, specific volume and density of the liquid (Table XL) 171 21. Steam, specific volume and density of the vapor (Table XL) 172 22. Vapor pressure of hydrocarbons and light petroleum distillates of the gasolene class . 173 23. Vapor pressure of heavy petroleum distillates of the kerosene class 174 24. Vapor pressure of the alcohols ' 175 25. Relation between wet and dry bulb psychrometer readings and dew point for air and water vapor 176 26. Relation between humidity and weight of moisture per cubic foot of saturated air. 177 27. Ammonia-water solutions, relation between total pressure and temperature 178 28. Ammonia-water solutions, relation between total pressure and per cent. NH3 in solution 179 29. Ammonia-water solutions, relation between temperature and per cent. NH3 in solution 180 30. Fractional distillation of kerosene and petroleums 181 31. Fractional distillation of gasolenes 182 32. Composition of hypothetical producer gas from fixed carbon 183 33. Heats of reaction for hypothetical producer gas from fixed carbon, B.T.U 184 34. Relation between temperatures and heat for gases according to the constant and variable specific heat 185 35. Rate of combustion of coal with draft 186 36. Heat per pound of steam above feed temperature. Evaporation per hour per boiler horse-power. Factor of evaporation 187 37. Heat balance for locomotive boiler 188 38. Lifluence of various factors on boiler efficiency 189 39. Influence of various factors on boiler efficiency 190 xi xii LIST OF CHARTS CHART PAGB 40. Constant volume lines for steam on the temperature-entropy diagram 191 41. Exponential gas changes. Small pressure ratios 192 42. Exponential gas changes. Larger pressure ratios 192 43. Exponential gas changes. Relation between initial and final ratios of pressures, volumes, temperatures, and entropies 193 44. Temperature-entropy diagram with lines of constant pressure and constant quality for steam 194 45. The MoUier total heat entropy diagram for steam 195 46. Rankine cycle. Thermal efficiency. Steam initially dry and saturated 196 47. Rankine cycle. Thermal efficiency. Steam initially of any quality 197 48. Rankine cycle. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially dry saturated 198 49. Rankine cycle. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially of any quality 199 50. Carnot steam cycle and derivatives. Thermal efficiency. Steam initially dry saturated 200 51. Carnot steam cycle and derivatives. Thermal efficiency. Steam initially of any quality 201 52. Carnot steam cycle and derivatives. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially dry and saturated 202 53. Carnot steam cycle and derivatives. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially of any quality '. 203 54. Thermal efficiency. Non-compression gas cycles, Brown, Lenoir, and Otto and Langen 204 55. Work per lb. of gases and (m.e.p.). Non-compression gas cycles, Brown, Lenoir, and Otto and Langen " 205 56. Stirling gas cycle. Thermal' efficiency. Heat of regeneration, plotted against heat from the fire 206 57. Ericsson gas cycle. Thermal efficiency. Heat of regeneration plotted against heat from the fire 207 58. Stirling gas cycle. Thermal efficiency. Heat of regeneration plotted against com- pression pressure 208 59. Ericsson gas cycle. Thermal efficiency. Heat of regeneration plotted against compression pressure 209 60. Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Thermal efficiency, with heat supplied 210 61. Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Thermal efficiency, with compression 211 62. Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Work and (m.e.p.) with heat supplied 212 63. Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Work and (m.e.p.) with compression 213 64. Otto gas cycle. Work and (m.e.p.) for heat added after compression 214 65. Diesel gas cycle. Work and (m.e.p.) for heat added after compression 215 66. Comparison of rational and empiric formulas for air and steam flow. Any initial pressure 216 67. Comparison of rational and empiric formulas for air and steam flow. Any back pressure 217 68. Harter's values of Napier's coefficient and weight of flow for superheated steam 218 69. Velocity of air in pipes in terms of pitot tube readings 219 70. Coefficients of friction for air in ducts 220 71. Diagram to determine chimney diameters 221 LIST OF CHARTS xiii CHART PAGE 72. Diagram to determine refrigerating effect per pound of ammonia 222 73. Diagram to determine refrigerating effect per pound of carbon dioxide 223 74. Density and specific volume of ammonia-water solutions 224 75. Temperature-entropy diagram for ammonia 225 76. MoUier diagram for ammonia 226 77. Temperature-entropy diagram for carbon dioxide 227 78. MoUier diagram for carbon dioxide 228 79. Work in B.T.U., by ammonia vaporizing to dry saturated vapor 229 80. Work in B.T.U., by ammonia vaporizing to any quality or superheat at 15 pounds 229 81. Work in B.T.U., by carbon dioxide vaporizing to dry saturated vapor 230 82. Work in B.T.U., by carbon dioxide vaporizing to any quality or superheat 230 TABLE OF SYMBOLS A = area in square feet. a = area in square inches. = coefl&cient of linear expansion. Be. = Baume. B.H.P. = brake horse-power; also boiler horse-power. (bk. pr.) = back pressure in pounds per square inch. C = Centigrade. = coefficient for air flow. = specific heat. Cp = specific heat at constant pressure. Cv = specific heat at constant volume. Ci = clearance expressed in cubic feet. c = clearance expressed as a fraction of the displacement. = constant. D = displacement in cubic feet. (del. pr.) = delivery pressure in pounds per square inch. Ev = volumetric efficiency (apparent). F = constant in equation for pipe flow. = Fahrenheit. Fr = resistance factor, Fr X velocity head = loss due to resistances. g — acceleration due to gravity, 32.2 (approx.) feet per second, per second. H = as a subscript to denote high-pressure cylinder. H.P. = horse-power. h = height in inches. K = coefficient of thermal conductivity = constant. „ • . , Lan . . <. 1 aS ^ Ke = engme constant = ^^ ^^^ m expression for horse-power = ^o r>QQ L = as a subscript to denote low-pressure cylinder. = latent heat. = length of stroke in feet. (L.P. Cap.) = low-pressure capacity. I = length. (M.E.P.) = mean effective pressure, pounds per square foot, (m.b.p.) = mean back pressure in pounds per square inch, (m.e.p.) = mean effective pressure in pounds per square inch, (m.f.p.) = mean forward pressure in pounds per square inch. N = revolutions per minute =R. P.M. or R.p.m. P = pressure in pounds per square foot. p = pressure in pounds per square inch. Q = quantity of heat or energy in B.T.U. gained by a body passing from one state to another. R = gas constant. Rc = ratio of cylinder sizes in two-stage air compressor or compound engine. Rp = ratio of delivery to supply pressure. XV xvi TABLE OF SYMBOLS (rec. pr.) = receiver pressure in pounds per square inch. S = piston speed. = pounds of steam per pound of air in producer blast. s = general exponent of V in expansion or compression of gases. sp. gr. = specific gravity. sp. ht. = specific heat, (sup. pr.) = supply pressure, in pounds per square inch. T = temperature, degrees absolute. t = temperature in degrees scale. T = temperature-entropy. V = volume in cubic feet. V = volume. W = work in foot-pounds. w = weight in pounds. Wt. = weight. X = constant in the expression for missing water. = fraction of total weight liquified from the solid, or vaporized from the liquid = quality. If the vapor be superheated, the number of degrees of superheat also = quality. y = ratio of the volume of receiver to that of the high-pressure cylinder of the compound engine. Z = fraction of the stroke of the steam engine completed at cut-off. z = ratio of R.P.M. to cycles per minute. a, (alpha) = coefficient of cubical expansion. dv = constant in equation for variable specific heat at constant volume. ap = constant in equation for variable specific heat at constant pressure. 7, (gamma) = special value for s for adiabatic expansion or compression = specific heat at constant pressure specific heat at constant volume 5, (delta) = density in pounds per cubic foot, f , (zeta) = coefficient of friction. S, (sigma) = summation. $ = 0, (phi) = entropy. Note. A small letter when used as a subscript to a capital in general refers to a point on a diagram, e.g.. Pa designates pressure at the point A. Two small letters used as subscripts together, refer in general to a quantity between two points, e.g., Wab designates work done from point A to point B. HANDBOOK OF THERMODYNAMIC TABLES AND DIAGRAMS PART I INTRODUCTION The province of Engineering Thermodynamics is to guide numerical thermal computations deahng with actual substances and apparatus in accordance with the laws of thermodynamic philosophy. In order to do this, numerical values for heat effects must be available for the various substances and materials used in engineering under the varying conditions of practice, and in such units as may readily be applied ; these include especially that class of units known as physical constants which embrace, for example, such quantities as the coeffi- cients of expansion, the specific heats, latent heats of fusion and vaporization, the ratio of the pressure-volume product to absolute temperature, the expo- nent ''«" in adiabatic expansion of gases and vapors, and various other quanti- ties. In addition to the physical constants which are necessary in the work of thermodynamic computation, the solution of numerical problems is greatly facilitated by the use of other correlated tables and diagrams many of which are given in the present book of tables, but to correctly use such aids there should be no ambiguity in regard to the units employed. It should be noted that true pressures are always absolute, that is, measured above a perfect vacuum or counted from zero, while most pressure gages and other devices for measuring pressure, such as indicators, give results measured above or below atmospheric pressure. In all problems involving work of gases and vapors, the absolute values of the pressures must be used ; hence, if a gage or indicator measurement is being considered, the pressure of the atmos- phere found by means of the barometer must be added to the pressure above atmosphere in order to obtain the absolute or true pressures. When the pres- sures are below atmosphere the combination with the barometric reading will depend on the record; if the record be taken by an indicator it will be in pounds per square inch below atmosphere and must be subtracted from the baro- metric equivalent in the same units to give the absolute pressure in pounds per square inch. When, however, a vacuum gage reads in inches of mercury below atmosphere, as such gages do, the difference between its reading and the baro- metric gives the absolute pressure in inches of mercury directly, which can be converted to the desired units by the proper factors. In general, steam pressures are most commonly stated in pounds per square 1 2 HANDBOOK OF THERMODYNAMIC inch and are designated as either gage or absolute. Pressures of compressed air are commonly expressed in the same units as steam, either gage or absolute, though sometimes in atmospheres. Steam pressures below atmosphere are con- veniently stated as a vacuum of so many inches of mercury, or they may be given as a pressure of so many inches of mercury absolute or so many pounds per square inch absolute. The pressures of gases stored in tanks under high pressure are frequently recorded in atmospheres due to the convenience of computation of quantities on this basis. Pressures of air obtained by blowers or fans are sometimes given in ounces per square inch above atmosphere, but such pressures, and also differences of pressure of air due to chimney draught, or forced draught, and the pressure of illuminating gas in city mains are com- monly stated in inches of water. In many cases the data are given in other units which must be converted by the use of tables, diagrams or otherwise, before the results can be properly interpreted or intelligently compared. Time is an important item in all engineering work and none the less so in computations, so that convenient tables and diagrams are most essential to the solution of such problems. In some cases graphic methods are the only means of solution; in others the problems may be solved directly without the use of formulas, and in still others certain steps may be shortened. In many engineering calculations no one is justified in using a complicated mathematical formula; if too much time be required to make the calculation in commercial work it will not be made, therefore indirect and often approximate methods are substituted. In such cases the nearest tabular or chart value must be used, and generally the result will be as accurate as the work requires. In the following tables and charts the accompanying title usually indi- cates the character of each table or diagram and little explanation is necessary. The tables for dry saturated steam, and properties of superheated steam are those of Marks and Davis. From the investigation made by Ma.rks and Davis it is believed that the properties of saturated steam given in the tables are correct to within one-tenth of 1 per cent, for pressures within the range of ordinary engineering practice. The unit of heat and of energy in these tables is a mean B.T.U. or YsJ ^^ ^^^ heat required to raise 1 lb. of water from 32° to 212°. The value of one mean B.T.U. as used in these tables is equivalent to 777.52 ft.-lbs. when the gravitational constant is 980.665 cm. sec.^ which corresponds to 32.174 lbs. and is the value for latitude between 45° and 46°. For many years it has been most common to use in engineering calculations, the round number 778; for most problems this round number is still the best available figure, but where special accuracy is needed it is likely that no closer value can be relied upon than anything between 777.5 and 777.6 for the above latitude. Investigations, particularly by Knobloch and Jacob, by Thomas and by Henning, show that the specific heat of superheated steam is not constant, but is a function of both pressure and temperature. The curves derived by Marks TABLES AND DIAGRAMS 3 and Davis for specific heat of superheated steam from a critical examination of the material available are given in the charts. As the method used in the derivation of the steam tables is so rational and scientific it has been adopted for a new determination of the relations between pressure and temperature for ammonia and carbon dioxide, both important substances in refrigeration. The tables of properties for ammonia and carbon dioxide thus determined give the final values of total heat, heat of liquid, latent heat, specific volume and density of dry saturated vapor based upon large scale plottings, without equations beyond those for the pressure-temperature rela- tions for saturated vapor. The results are believed to be as reliable as it is possible to have them without more experimental data. The Mollier total heat-entropy diagram for steam makes possible the solution of many problems involving both saturated and superheated steam. Since this chart is so convenient for turbine work, a scale of corresponding steam- jet velocities has been added to the diagram. Temperature-entropy and Mollier diagrams have also been plotted for ammonia and carbon dioxide, from which the work may readily be obtained. The analyses of gases, oils, coals, and other fuels given in the tables will be found of great value to the engineer. These values have been selected from the most reliable sources available, but it is worth noting that in the analyses of oil gas there is quite a probability of uncertainty in the hydrocarbons reported. There is also some doubt, at least for gases, in the values given in the table of ignition temperatures (Table XXXIII). The ignition of a combustible is not by any means a simple operation especially when the fuel is in the form of an explosive gas mixture. With the latter the ignition temperature, true or appar- ent, is different for different proportions of air and fuel, and likewise still different when neutrals are present. For this reason there may be various ig- nition temperatures for the same substance; this is known to be true for gases. The values given in the tables therefore must be considered as ignition tem- peratures not the ignition temperature. Attention is called to the general coal tables (No. LV and LVI), the first of which gives the proximate and ultimate analysis of upward of 200 different coals covering the range from peat to anthracite. For each fuel the calorific power is also given. Table LVI constitutes a new table derived from No. LV in which the chemical and thermal properties have been re-determined as ash and moisture free. In this table the calorific power of the combustible is re- ported, total and as divided between the fixed carbon and the volatile parts, and finally the calorific power of the volatile itself per pound is found. The prod- uct of the fractional weight of the fixed carbon and 14,544, its known calorific power, gives the heat due to the combustion of the fixed carbon part of the combustible, and this subtracted from the B.T.U. per pound of combustible gives the heat per pound of combustible derived from its volatile. The heat per pound of combustible derived from its volatile only, when divided by the fractional weight of volatile in the combustible gives the B.T.U. per pound of 4 HANDBOOK OF THERMODYNAMIC volatile itself. Thus the character of heating power of the volatile of the coals furnishes a new basis of classification with direct reference to availability as fuels, and makes possible the calculation of the calorific power of a coal with fair accuracy, from its easily found proximate analysis. In general, the charts presented in this book have been drawn to a sufficiently large scale to permit direct solution of most problems with a reasonable degree of accuracy. However, in certain cases it is advisable to plot new diagrams to a larger scale in order to ensure still greater accuracy of result. Where it has been deemed advisable the derivation and use of the chart has been given in the text; but where this description would involve a lengthy ex- planation it has been omitted ; in such cases the reader is referred to the authors' Textbook of Engineering Thermodynamics for a complete discussion of the con- struction of the diagrams. It will be understood that the numbers of equations given in the descriptive matter refer to the textbook quoted. In some of the charts the curves have been plotted from tabular values derived from experi- ment or calculated from formulas; under these conditions the method of deri- vation is obvious and will not be referred to in the text. TABLES AND DIAGRAMS Table I CONVERSION TABLE OF UNITS OF DISTANCE Meters. 1 Kilometers. Inches. i Feet. Statute Miles. Nautical Miles. 1 1000 0.0254 0.304801 1609.35 1853.27 0.001 1 0.0000254 0.0003048 1.60935 1.85327 39.37 39370.1 1 12 63360 72963.2 3.28083 3280.83 0.083333 1 5280 6080.27 0.000621370 0.62137 0.0000157828 0.000189394 1. 1.15157 0.000539587 0.539587 0000137055 0.000164466 0.868382 1. * In accordance with U. S. Standards (see Smithsonian Tables). Table II CONVERSION TABLE OF UNITS OF SURFACE Sq. Meters. Sq. Inches. Sq. Feet. Sq. Yards. Acres. Sq. Miles. 1 .000645 .0929 .8361 4046.87 1550.00 1 144 1296 10.76387 .00694 1 9 43560 27878400 1.19599 .111 1 4840 3097600 .000247 .000206 1 640 001562 2589999 1 Table III CONVERSION TABLE OF UNITS OF VOLUME Cu. Meters. Cu. Inches. Cu. Feet. Cu. Yards. Lities (1000 Cu. Cm.) Gallons (U.S.) 1 61023.4 1 1728 46656 61.023 231 35.3145 .000578 1 27 .035314 .13368 1.3079 1000 .016387 28.317 264.170 00433 .028317 .76456 .03704 1 .001308 .004951 7.4805 201 . 974 .001 .003785 1 3.7854 .26417 1 Table IV CONVERSION TABLE OF UNITS OF WEIGHT AND FORCE Kilogrammes. Metric Tons. Pounds. U. S. or Short Tons. British or Long Tons. 1. 1000. 0.453593 907.186 1016.05 0.001 1. 0.000453593 0.907186 1.01605 2.20462 2204.62 1. 2000. 2240. 0.00110231 1.10231 0.0005 1. 1.12000 0.000984205 0.984205 0.000446429 0.892957 1. HANDBOOK OF THERMODYNAMIC Table V CONVERSION TABLE OF UNITS OF PRESSURE Pounds per Square Foot. Pounds per Square Inch. Inches of Mercury at 32° F. Atmospheres (Standard at Sea Level). One lb. per sq. ft One lb. per sq. in One ounce per sq. in One atmosphere (standard at sea level) One kilogramme per square meter . . One gramme per square millimeter . One kilogramme per square centi- meter FLUID PRESSURES One ft. of water at 39.1° F. (max. dens.) One ft. of water at 62° F One in. of water at 62° F One in. of mercury at 32° F. (stand- ard) ^ One centimeter of mercury at 0° C. . One ft. of air at 32° F., one atmos. press Oneft. of air, 62° F 1 144. 9. 2116.1 20.4817 204.817 2048.17 62.425 62.355 5.196 70.7290 27.8461 0.08071 0.07607 0.006944 1. 0.0625 14.696 0.142234 1.42234 14.2234 0.43350 0.43302 0.036085 0.491174 0.193376 0.0005604 0.0005282 0.014139 2.03594 0.127246 29.924 0.289579 2.89579 28.9579 0.88225 0.88080 0.07340 1. 0.393701 0.0011412 0.0010755 0.0004724 0.06802 0.004252 1. 0.009678 0.09678 0.9678 0.029492 0.029460 0.002455 0.033416 0.013158 0.00003813 0.00003594 1 Pressubes Measured by the Mercury Column. For temperatures other than 32° F., the density of mercury, pounds per cubic inch, and hence the pressure, pounds per square inch, due to a column of mercury 1 inch high, is given with sufficient accuracy by the following formula: p = 0.4912- («- 32) XO.OOOl. The mercurial barometer is commonly made with a brass scale which has its standard or correct length at 62° F, and a linear coefficient of expansion of about 0.000001 for each degree Fahrenheit. Hence, to correct the standard mercury at 32° F., the corrected reading will be <-28.6 Hsz^H^-H UX where Hi is the observed height at a temperature of t° F. 11000 Table VI CONVERSION TABLE OF UNITS OF WORK Kilogrammeters, Foot-pounds. Foot Tons (Short Tons). Foot Tons (Long Tons). 1. 0.138255 276.510 309.691 7.23300 1. 2000. 2240. 0.00361650 0.000500 1. 1 . 12000 0.00322902 0.000446429 0.892857 1. TABLES AND DIAGRAMS Table VII CONVERSION TABLE OF UNITS OF POWER Foot-pounds per Second. Foot-pounds per Minute. Horse-power. Cheval-Vapeur. Kilogrammeters per Minute. 1. 0.0166667 550.000 542.475 0.120550 60. 1. 33000. 32548.5 7.23327 0.00181818 0.000030303 1. 0.986319 0.000219182 0.00184340 0.0000307241 1.01387 1. 0.000222222 8.29531 0.138252 4562.42 4500.00 1. Table VIII UNITS OF VELOCITY One foot per second One foot per minute One statute mile per hour One nautical mile per hour = 1 knot One kUometer per hour One meter per minute One centimeter per second Feet per Minute. 60. 1. 88. 101.338 54.6806 3.28084 2.00848 Feet per Second. 0.016667 1.4667 1.6890 0.911344 0.0.54581 0.032808 Table IX HEAT AND POWER CONVERSION TABLE Calorie KUo °C. B.T.U. Lb. "F. Lb. ° C. Kilo *>F. Calorie per Lb. B.T.U. per Lb. B.T.U. per Kilo. Calorie per Kilo. 1. 3.9683 2.2046 1.8 1. 3.9683 8.7483 2.2046 .252 1. .5556 .4536 .252 1. 2.2046 .5807 .4536 1.8 1. .8165 .1143 .4536 1 .252 .5556 2.2046 1.2261 1. .4536 1.8 3.9683 1. Calorie per Cu. Ft. B.T.U. per Cu. Ft. Calorie per Liter. B.T.U. per Liter. 1. .252 28.317 7.136 3.9683 1. 112.37 28.317 .0353 .0089 1. .252 .1402 .0353 3.9683 1. Ft.-Lb. B.T.U. Calorie. Cent. Heat Unit, At. H.P. Sec. H.P. Min. H.P. Hour. 1 777.5 3086 1399.5 650 3.3X10* 1.98X108 1. 286X10-' 1 3.9683 1.8 .7074 42.44 2545 .324X10-' .252 1 .4536 .1783 10.695 641 .18X10-' .5556 2.2046 1 .3931 23.578 1.413X10' 1. 818X10-' 1.414 5.61 2.545 1 60 3600 .303X10-* 2.356X10-2 9.35 XlO-2 4.24 XlO-2 1.67 XlO-« 1 60 5.05 XlO-7 3. 927X10-* 1. 558X10-' .707X10-' 2.777X10-* 1.67 XlO-2 1 8 HANDBOOK OF THERMODYNAMIC Table X TABLE OF BAROMETRIC HEIGHTS, ALTITUDES, AND PRESSURES (Adapted from Smithsonian Tables) Barometric heights are given in inches and milhmeters of mercury at its standard density (32° F.). Altitudes are heights above mean sea level in feet, at which this barometric height is standard. (See Smithsonian Tables for corrections for latitude and temperature.) Pressures given are the equivalent of the barometric height in lbs. per sq. in. and per sq. ft. Standard Barometer. Pressure, Pounds per Altitude, Feet above Sea Level. Inches. Centimeters. Square Inch. Square Foot. 17.0 43.18 15379 8.350 1202.3 17.2 43.69 15061 8.448 1216.6 17.4 44.20 14746 8.546 1230.7 17.6 44.70 14435 8.645 1244.8 17.8 45.21 14128 8.742 1259.0 18.0 45.72 13824 8.840 1273.2 18.2 46.23 13523 8.940 1287.3 18.4 46.73 13226 9.038 1301.4 18.6 47.24 12931 9.136 1315.6 18.8 47.75 12640 9.234 1329.7 19.0 48.26 12352 9.332 1343.8 19.2 48.77 12068 9.430 1357.9 19.4 49.28 11786 9.529 1372.1 19.6 49.78 11507 9.627 1386.3 19.8 50.29 11230 9.726 1400.4 20.0 50.80 10957 9.825 1414.6 20.2 51.31 10686 9.922 1428.7 20.4 51.82 10418 10.020 1442.9 20.6 52.32 10153 10.118 1457.0 20.8 52.83 9890 10.217 1471.2 21.0 53.34 9629 10.315 1485.3 21.2 53.85 9372 10.414 1499.4 21.4 54.36 9116 10.511 1513.6 21.6 54.87 8863 10.609 1527.7 21.8 55.37 8612 10.707 1541.8 22.0 55.88 8364 10.806 1556.0 22.2 56.39 8118 10.904 1570.1 22.4 56.90 7874 11.002 1584.3 22.6 57.40 7632 11.100 1598.4 22.8 57.91 7392 11.198 1612.6 23.0 58.42 7155 11.297 1626.7 23.2 58.92 6919 11.395 1640.8 23.4 59.44 6686 11.493 1655.0 23.6 59.95 6454 11.592 1669.3 23.8 60.45 6225 11.690 1683.3 24.0 60.96 5997 11.788 1697.4 24.2 61.47 5771 11.886 1711.6 24.4 61.98 5547 11.984 1725.7 24.6 62.48 5325 12.083 1739.9 24.8 62.99 5105 12.182 1754.0 25.0 63.50 4886 12.280 1768.2 25.2 64.01 4670 12.377 1782.3 25.4 64.52 4455 12.475 1796.5 25.6 65.02 4241 12.573 1810.7 25.8 65.53 4030 12.671 1824.8 TABLES AND DIAGRAMS 9 Table X — Continued Standard Barometer. Altitude, Feet above Sea Level. Pressure, Pounds per Inches. Centimeters. Square Inch. Square Foot. 26.0 26.1 26.2 26.3 26.4 65.04 66.30 66; 55 66.80 67.06 3820 3715 3611 3508 3404 12.770 12.819 12.868 12.918 12.967 1838.9 1846.0 1853.1 1860.2 1867.3 26.5 26.6 2'6.7 26.8 26.9 67.31 67.57 67.82 68.08 68.33 3301 3199 3097 2995 2894 13.016 13.065 13.113 13 163 13.212 1874.3 1881.4 1888.5 1895.5 1902.6 27.0 27.1 27.2 27.3 27.4 68.58 68.84 69.09 69.34 69.60 2793 2692 2592 2493 2393 13.261 13.310 13.359 13.408 13.457 1909.7 1916.7 1923 . 8 1930.9 1938.0 27.5 27.6 27.7 27.8 27.9 69.85 70.10 70.35 70.61 70.87 2294 2195 2097 1999 1901 13.507 13.556 13.605 13.654 13.704 1945.1 1952.1 1959.2 1966.3 1973.3 28.0 28.1 28.2 28.3 28.4 71.12 71.38 71.63 71.88 72.14 1804 1707 1610 1514 1418 13.753 13.802 13.850 13.899 13.948 1980.4 1987.5 1994.5 2001 . 6 2008.7 28.5 28.6 28.7 28.8 28.9 72.39 72.64 72.90 73.15 73.40 1322 1227 1132 1038 . 943 13.998 14.047 14.096 14.145 14.194 2015.7 2022 . 8 2030.0 2037.0 2044.1 29.0 29.1 29.2 29.3 29.4 73.66 73.92 74.16 74.42 74.68 849 756 663 570 477 14.243 14.293 14.342 14.392 14.441 2051 . 2 2058 . 2 2065.3 2072.4 2079.4 29.5 29.6 29.7 29.8 29.9 74.94 75.18 75.44 75.69 75.95 384 292 261 109 +18 14.490 14.539 14.588 14.637 14.686 2086.5 2093.6 2100.7 2107.7 2114.7 29.92 76.00 14.696 2116.1 30.0 30.1 30.2 , 30.3 30.4 76.20 76.46 76.71 76.96 77.22 . - 73 -163 -253 -343 -433 14.734 14.783 14.833 14.882 14.931 2121.7 2128.8 2135.9 2143.0 2150.1 30.5 30.6 30.7 30.8 30.9 77.47 77.72 77.98 78.23 78.48 -522 -611 -700 -788 -877 14.980 15.030 15.078 15.127 15.176 2157.2 2164.2 2171.3 2178.4 2185.5 31.0 78.74 -965 15.226 2192.6 10 HANDBOOK OF THERMODYNAMIC Table XI CONVERSION TABLE INCHES OF MERCURY TO POUNDS PER SQUARE INCH (Calculated for a Temperature of 32° F.) To correct for other temperatures see footnote Table V In. Hg 1 2 3 4 5 6 7 8 9 0.0491 0.0982 0.1473 0.1964 0.2456 0.2947 0.3438 0.3929 0.4421 1 0.4912 0.5403 0.5894 0.6385 . 6877 0.7368 0.7859 0.8350 0.8841 0.9333 2 0.9824 1.0315 1.0806 1.1297 1 . 1788 1.2280 1.2771 1 . 3262 1.3753 1.4244 3 1.4736 1.5227 1.5718 1.6209 1.6701 1.7192 1.7683 1.8174 1.8665 1.9157 4 1.9648 2.0139 2.0630 2.1121 2.1613 2.2104 2.2595 2.3086 2.3577 2.4069 5 2.4560 2.5051 2 . 5542 2 . 6033 2 . 6525 2.7016 2.7507 2.7998 2.8489 2.8981 6 2.9472 2 . 9963 3.0454 3.0945 3.1437 3.1928 3.2419 3.2910 3.3401 3 . 3893 7 3.4384 3.4875 3 . 5366 3.5857 3.6349 3.6840 3.7331 3.7822 3.8313 3.8809 8 3.9296 3.9787 4.0278 4.0769 4.1261 4.1752 4.2243 4.2734 4.3225 4.3717 9 4.4208 4.4699 4.5190 4.5681 4.6173 4.6664 4.7155 4.7646 4.8137 4.8629 10 4.912 4.9611 5.0102 5.0593 5 . 1085 5 . 1576 5.2067 5.2558 5 . 3049 5.3541 11 5.4032 5.4523 5.5014 5 . 5505 5.5997 5.6488 5.6979 5.7470 5.7961 5 . 8453 12 5.894 5.9435 5 . 9926 6.0417 6.0909 6 . 1400 6.1891 6.2382 6.2873 6 . 3365 13 6.3856 6.4347 6 . 4838 6.5329 6.5821 6.6312 6 . 6803 6 . 7294 6.7785 6.8277 14 6 . 8768 6.9259 6.9750 7.0241 7.0733 7.1224 7.1715 7 . 2206 7.2697 7.3189 15 7.3680 7.4171 7.4662 7.5153 7.5645 7.6136 7.6627 7.7118 7.7609 7.8101 16 7.8592 7.9083 7.9574 8.0065 8.0557 8.1048 8.1539 8 . 2030 8.2521 8.3013 17 8.3504 8.3995 8.4486 8 . 4977 8.5469 8.5960 8.6451 8.6942 8.7433 8.7925 18 8.8416 8.8907 8.9398 8.9889 9.0381 9.0872 9.1363 9 . 1854 9.2345 9.2837 19 9.3328 9.3819 9.4310 9 . 4801 9 . 5293 9.5784 9 . 6275 9.6766 9.7257 9 . 7788 20 9 . 8240 9.8731 9.9222 9.9713 10.020 10.069 10.118 10.168 10.217 10.266 21 10.315 10.364 10.413 10.462 10.511 10.561 10.610 10.659 10.708 10.757 22 10.806 10.855 10.904 10.953 11.003 11.052 11.101 11.150 11.199 11.248 23 11.297 11.346 11.396 11.445 11.494 11.543 11.592 11.641 11.690 11.739 24 11.789 11.838 11.887 11.936 11.985 12.034 12.083 12.132 12.181 12.231 25 12.280 12.329 12.378 12 . 427 12.476 12.525 12.574 12.624 12.673 12.722 26 12.771 12.820 12.869 12.918 12.967 13.017 13.066 13.115 13.164 13.213 27 13.262 13.311 13.360 13.409 13.459 13.508 13.557 13.606 13.655 13.704 28 13 . 753 13.802 13.852 13.901 13.950 13.999 14.048 14.097 14.146 14.195 29 14.245 14.294 14.343 14.392 14.441 14.490 14.539 14 . 588 14.637 14.689 30 14.736 14.785 14.834 14.883 14.932 14.981 15 . 030 15.080 15.129 15.178 31 15.227 15.276 15.325 15.374 15.423 15.473 15.530 15.571 15 . 620 15 . 669 TABLES AND DIAGRAMS Table XII PISTON POSITIONS FOR ANY CRANK ANGLE 11 From Bsginning of Stroke Away from Crank Shaft to Find Piston Position from Dead-Center Multiply Stroke by Tabular Quantity Crank Angle. ^=4 r ^ = 4,5 r r r r I - = 7 r I - = 8 r I -=9 r 5 .0014 .0015 .0015 .0016 .0016 .0016 .0017 .0019 10 .0057 .0059 .0061 .0062 .0063 .0065 .0067 .0076 15 .0128 .0133 .0137 .0140 .0142 .0146 .0149 .0170 20 .0228 .0237 .0243 .0248 .0253 .0260 .0265 .0302 25 .0357 .0368 .0379 .0388 .0394 .0405 .0413 .0468 30 .0513 .0531 .0545 .0556 .0565 .0581 .0592 .0670 35 .0698 .0721 .0740 .0754 .0767 .0787 .0801 .0904 40 .0910 .0939 .0962 .0981 .0997 .1022 .1041 .1170 45 .1152 .1187 .1215 .1237 .1256 .1286 .1308 .1468 50 .1416 .1458 .1491 .1518 .1541 .1576 .1607 .1786 55 .1713 .1759 .1828 .1827 .1853 .1892 .1922 .2132 60 .2026 .2079 .2122 .2157 .2186 .2231 .2295 .2500 65 .2374 .2431 .2477 .2514 .2545 .2594 .2630 .2886 70 .2730 .2794 .2844 .2885 .2929 .2973 .3013 .3290 75 .3123 .3187 .3239 .3282 .3317 .3372 .3414 .3705 80 .3516 .3586 .3642 .3687 .3725 .3784 .3828 .4132 85 .3944 .4013 .4068 .4113 .4151 .4210 .4254 .4564 90 .4365 .4437 .4495 .4547 .4580 .4641 .4686 .5000 95 .4816 .4885 .4940 .4985 .5022 .5081 .5126 .5436 100 .5253 .5323 .5378 .5424 .5461 .5520 .5564 .5868 105 .5711 .5775 .5828 .5870 .5905 .5961 .6002 .6294 110 .6150 .6214 .6265 .6306 .6340 .6393 .6530 .6710 115 .6600 .6657 .6703 .6740 .6771 .6820 .6856 .7113 120 .7026 .7080 .7122 .7157 .7186 .7231 .7265 .7500 125 .7449 .7495 .7533 .7563 .7588 .7628 .7658 .7868 130 .7844 .7885 .7920 .7947 .7969 .8004 .8030 .8214 135 .8223 .8258 .8286 .8308 .8327 .8357 .8379 .8535 140 .8570 .8600 .8623 .8642 .8658 .8682 .8703 .8830 145 .8889 .8913 .8931 .8946 .8958 .8978 .8993 .9096 150 .9173 .9191 .9204 .9216 .9226 .9241 .9252 .9330 155 .9420 .9432 .9452 .9451 .9457 .9468 .9476 .9531 160 .9625 .9633 .9640 .9645 .9650 .9656 .9661 .9698 165 .9787 .9792 .9796 .9799 .9802 .9805 .9809 .9829 170 .9905 .9908 .9909 .9911 .9912 .9913 .9915 .9924 175 .9976 .9977 .9977 .9977 .9978 .9978 .9979 .9981 180 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Z = length of connecting rod. T = radius of crank. 12 HANDBOOK OF THERMODYNAMIC Table XIII HORSE-POWER PER POUND MEAN EFFECTIVE PRESSURE aS Area n"X speed in ft. p.m. VALUE OF Ke = 33000 33000 Diameter nf Speed of Piston in Feet per Minute. UI Cylinder, Inches. 100 200 300 400 500 600 700 800 900 4 0.0381 0.0762 0.1142 0.1523 0.1904 0.2285 0.2666 0.3046 0.3427 4^ 0.0482 0.0964 0.1446 0.1928 0.2410 0.2892 0.3374 0.3856 0.4338 5 0.0592 0.1190 0.1785 0.2380 0.2975 0.3570 0.4165 0.4760 0.5355 5h 0.0720 0.1440 0.2160 0.2880 0.3600 0.4320 0.5040 0.5760 0.6480 6 0.0857 0.1714 0.2570 0.3427 0.4284 0.5141 0.5998 0.6854 0.7711 61 0.1006 0.2011 0.3017 0.4022 0.5028 0.6033 0.7039 0.8044 0.9050 7 0.1166 0.2332 0.3499 0.4665 0.5831 0.6997 0.8163 0.9330 1.0490 7i 0.1339 0.2678 0.4016 0.5355 0.6694 0.8033 0.9371 1.0710 1.2049 8 0.1523 0.3046 0.4570 0.6093 0.7616 0.9139 1.0662 1.2186 1.3709 81 0.1720 0.2439 0.5159 0.6878 0.8598 1.0317 1.2037 1.3756 1.5476 9 0.1928 0.3856 0.5783 0.7711 0.9639 1.1567 1.3495 1.5422 1.7350 91 0.2148 0.4296 0.6444 0.8592 1.0740 1.2888 1.5036 1.7184 1.9532 10 0.2380 0.4760 0.7140 0.9520 1.1900 1.4280 1.6660 1.9040 2.1420 11 0.2880 0.5760 0.8639 1.1519 1.4399 1.7279 2.0159 2.3038 2.5818 12 0.3427 0.6854 1.0282 1.3709 1.7136 2.0563 2.3990 2.7418 3.0845 13 0.4022 0.8044 1.2067 1.6089 2.0111 2.4133 2.8155 3.2178 3.6200 14 0.4665 0.9330 1.3994 1.8659 2.3324 2.7989 3.2654 3.7318 4.1983 15 0.5355 1.0710 1.6065 2.1420 2.6775 3.2130 3.7485 4.2840 4.8195 16 0.6093 1.2186 1.8278 2.4371 3.0464 3.6557 4.2650 4.8742 5.4835 17 0.6878 1.2756 1.9635 2.6513 3.3391 4.0269 4.6147 5.4026 6.1904 18 0.7711 1.5422 2.3134 3.0845 3.8556 4.6267 5.3987 6.1690 6.4901 19 0.8592 1.7184 2.5775 3.4367 4.2858 5.1551 6.0143 6.8734 7.7326 20 0.9520 1.9040 2.8560 3.8080 4.7600 5.7120 6.6640 7.6160 8.5680 21 1.0496 2.0992 3.1488 4.1983 5.2475 6.2975 7.3471 8.3966 9.4462 22 1.1519 2.3038 3.4558 4.6077 5.7596 6.9115 8.0643 9.2154 10.367 23 1.2590 2.5180 3.7771 5.0361 6.2951 7.5541 8.8131 10.072 11.331 24 1.3709 2.7418 4.1126 5.4835 6.8544 8.2253 9.5962 10.967 12.338 25 1.4875 2.9750 4.4625 5.9500 7.4375 8.9250 10.413 11.900 13.388 26 1.6089 3.2178 4.8266 6.4355 8.0444 9.6534 11.262 12.871 14.480 27 1.7350 3.4700 5.2051 6.9401 8.6751 10.410 12.145 13.880 15.615 28 1.8659 3.7318 5.5978 7.4637 9.3296 11.196 13.061 14.927 16.793 29 2.0016 4.0032 6.0047 8.0063 10.008 12.009 14.011 16.013 18.014 30 2.1420 4.2840 6.4260 8.5680 10.710 12.852 14.994 17.136 19.278 31 2.2872 4.5744 6.8615 9.1487 11.436 13.723 16.010 18.287 20.585 32 2.4371 4.8742 7.3114 9.7485 12.186 14.623 17.060 19.497 21.934 33 2.5918 5.1836 7.7755 10.367 12.959 15.551 18.143 20.735 23.326 34 2.7513 5.5026 8.2538 11.005 13.756 16.508 19.259 22.010 24.762 35 2.9155 5.8310 8.7465 11.662 14.578 17.493 20.409 23.224 26.240 36 3.0845 6.1690 9.2534 12.338 15.422 18.507 21.591 24.676 27.760 37 3.2582 6.5164 9.7747 13.033 16.291 19.549 22.808 26.066 29.324 38 3.4367 6.8734 10.310 13.747 17.184 20.620 24.057 27.494 30.930 39 3.6200 7.2400 10.860 14.480 18.100 21.720 25.340 28.960 32.580 40 3.8080 7.6160 11.424 15.232 19.040 22.848 26.656 30.464 34.272 TABLES AND DIAGRAMS 13 Table XIV CONSTANTS FOR THE CURVE PV = K (Modified from Klein and Heck) /VA" The tabular value under "Exp." is equal to ( ^^ I corresponding to the given ratio of the assumed increasing volume V2 to initial volume Vi; the tabular value under "Comp." is /P2\- equal to(p-)s corresponding to the given ratio of the assumed increasing pressure Pi to the initial pressure P2. Logarithmic expansion s = 1 Constant steam weight Adiabatic of satu- rated steam for x = 0.7 0.9 1.0 Compression curve with steam jacketed cylinder Adiabatic of superheated steam Adiabatic of air Ratio s = 1.065 1.105 1.125 1.135 s = 1.250 s = 1.33 s = 1.406 Exp. Comp. Exp. Exp. Exp. Exp. Comp. Exp. Comp. Exp. Comp. 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.50 4.00 4.50 5.0 6.0 7.0 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0 25.0 30.0 0.8000 0.6667 0.5714 0.5000 0.4444 . 4000 0.3636 0.3333 . 2857 . 2500 0.2222 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0833 0.0714 0.0625 0.0556 0.0500 0.0400 0.0333 0.7885 0.6493 0.5510 0.4780 0.4216 0.3769 0.3405 0.3104 0.2634 0.2285 0.2015 0.1801 0.1483 0.1259 0.1092 0.0963 0.0861 0.0709 0.0602 0.0522 0.0460 0.0412 0.0324 0.0267 0.8110 0.6843 0.5913 0.5216 0.4670 0.4230 0.3868 0.3565 0.3084 0.2721 0.2436 0.2206 0.1859 0.1609 0.1419 0.1271 0.1151 0.0970 0.0839 0.0740 0.0663 0.0600 0.0487 0.0410 0.7815 0.6389 0.5388 . 4649 0.4082 0.3633 0.3270 0.2970 0.2505 0.2161 0.1898 0.1689 0.1381 0.1165 0.1005 0.0882 0.0785 0.0642 0.0541 0.0467 0.0410 0.0365 0.0285 0.0233 0.7780 0.6337 0.5328 0.4585 0.4016 0.3567 0.3204 0.2906 0.2443 0.2102 0.1841 0.1636 0.1332 0.1120 0.0964 0.0844 0.0750 0.0611 0.0514 0.0442 0.0387 0.0345 0.0268 0.0218 0.7763 0.6312 0.5299 0.4553 0.3984 0.3535 0.3172 0.2874 0.2413 0.2073 0.1814 0.1609 0.1309 0.1099 0.0944 0.0826 0.0733 0.0596 0.0500 0.0430 0.0376 0.0334 0.0259 0.0211 . 7569 0.6024 0.4968 0.4265 0.3629 0.3121 0.2824 0.2533 0.2089 0.1768 0.1526 0.1337 0.1065 0.0878 0.0743 0.0642 0.0562 0.0450 0.0369 0.0313 0.0270 0.0236 0.0179 0.0142 0.8365 0.7230 0.6391 0.5743 0.5226 0.4804 0.4451 0.4152 0.3671 0.3299 0.3002 0.2760 0.2385 0.2158 0.1895 0.1724 0.1585 0.1369 0.1210 0.1088 0.0991 0.0910 0.0759 0.0658 0.7427 0.5824 0.4742 0.3969 0.3393 0.2947 0.2596 0.2311 0.1882 0.1575 0.1346 0.1170 0.0917 0.0747 0.0625 0.0534 0.0464 0.0364 0.0296 0.0248 0.0212 0.0184 0.0137 0.0107 0.8459 0.7378 0.6572 0.5946 0.5443 0.5030 0.4683 0.4387 0.3908 0.3536 0.3237 0.2991 0.2609 0.2324 0.2102 0.1925 0.1778 0.1551 0.1382 0.1250 0.1144 0.1057 0.0894 0.0780 0.7307 0.5655 0.4553 0.3774 0.3198 0.2757 0.2412 0.2134 0.1718 0.1424 0.1207 0.1041 0.0805 0.0448 0.0537 0.0455 0.0393 0.0304 0.0245 0.Q203 0.0172 0.0148 0.0108 0.0084 0.8533 0.7495 0.6716 0.6108 0.5617 0.5212 . 4870 0.4578 0.4102 0.3731 0.3431 0.3183 0.2796 0.2506 0.2274 0.2096 0.1944 0.1708 0.1531 0.1392 0.1280 0.1188 0.1013 0.0890 14 HANDBOOK OF THERMODYNAMIC Table XV A. Expansion of Water from 200 Lbs. Abs. B. Expansion of Dry Saturated Steam from 200 Lbs. Abs. Values of s for 10-lb. Values of s for Whole Values of s for 10-lb. Values of s for Whole | Intervals Range. Intervals. Range. Pressure. Calcu- Cor- 200 Lbs. Calcu- Cor- Range. ^ Calcu- Cor- 200 Lbs. Calcu- Cor- lated. rected. to lated. rected. lated. rected. to lated. rected, 200-190 .0987 .1 190 .0987 .100 200-190 1.132 1.145 190 1.132 1.143 190-180 .1435 .141 180 .1175 .118 190-180 1.153 1.145 180 1.143 1.143 180-170 .1847 .182 170 .1348 .135 180-170 1.142 1.145 170 1.143 1.143 170-160 .2304 .223 160 .1519 .153 170-160 1.148 1.145 160 1.144 1.143 160-150 .2671 .264 150 .1682 .168 160-150 1.138 1.144 150 1.143 1.143 150-140 .3069 .305 140 .1843 .184 150-140 1.128 1.144 140 1.140 1.143 140-130 .3509 .346 130 .2007 .202 140-130 1.150 1.143 130 1.142 1.142 130-120 .3911 .387 120 .2172 .218 130-120 1.130 1.143 120 1.140 1.142 120-110 .4304 .428 110 .2341 .235 120-110 1.135 1.142 110 1.139 1.142 110-100 .4738 .470 100 .2517 .252 110-100 1.137 1.141 100 1.139 1.141 100- 90 .5166 .510 90 .2699 .270 100- 90 1.148 1.140 90 1.140 1.140 90- 80 .5512 .551 80 .2889 .290 90- 80 1.126 1.138 80 1.138 1.139 80- 70 .5897 .592 70 .3089 .310 80- 70 1.144 1.137 70 1.139 1.139 70- 60 .6320 .633 60 .3306 .332 70- 60 1.138 1.136 60 1.138 1.138 60- 50 .6790 .674 50 .3547 .356 60- 50 1.125 1.135 50 1.137 1.137 50- 40 .7147 .716 40 .3811 .382 50- 40 1.143 1 . 133 40 1.138 1.136 40- 30 .7658 .760 30 .4125 .412 40- 30 1.131 1.131 30 1.136 1.135 30- 20 .8150 .808 20 .4518 .448 30- 20 1.131 1.130 20 1.135 1.134 20- 10 .8718 ,870 10 .5085 .504 20- 10 1.125 1.128 10 1.133 1.131 10- 1 1.0557 1.042 1 .6381 .638 10- 1 1.124 1.126 1 1.124 1.127 I C. Expansion of Steam. Superheated throughout D. Expansion op Steam Initially Superheated Expansion, from 200 Lbs. Abs. and 540° Super- and Finally Wet, from 203 Lbs. Abs. and 150° heat. Superheat. (Note. — Crosses saturation line at 70 lbs. abs.) Values of S for 10-lb. Values of s for Whole Values of s for 10-lb. Values of s for Whole Intervals. Range. Intervals Range. Calcu- Cor- 200 Lbs. Calcu- Cor- Range. Calcu- Cor- 200 Lbs. Calcu- Cor- Pressure. lated. rected. to lated. rected. lated. rected. to lated. rected. 200-190 1.354 1.342 190 1.354 1.342 200-190 1.249 1.334 190 1.249 1.339 190-180 1.314 1.342 180 1.333 1.342 190-180 1.365 1.332 180 1.306 1.338 180-170 1.455 1.342 170 1.374 1.342 180-170 1.396 1.330 170 1.336 1.337 170-160 1 . 257 1.342 160 1.340 1.342 170-160 1.333 1.327 160 1.336 1.336 160-150 1.403 1.341 150 1.354 1.341 160-150 1.314 1.324 150 1.331 1 . 335 150-140 1.213 1.341 140 1.323 1.341 150-140 1.325 1.321 140 1.330 1.333 140-130 1.422 1.341 130 1.340 1.341 140-130 1.357 1.316 130 1.334 1.332 130-120 1.343 1.340 120 1.340 1.340 130-120 1.302 1.312 120 1.329 1.330 120-110 1.329 1.340 110 1.339 1.339 120-110 1.303 1.306 110 1.325 1.328 110-100 1.332 1.339 100 1.338 1.339 110-100 1.270 1.300 100 1.317 1.326 100- 90 1.338 1.338 90 1.338 1.338 100- 90 1.396 1.292 90 1.328 1.323 90- 80 1.287 1.336 80 1.331 1.336 90- 80 1.311 1.283 80 1.325 1.320 80- 70 1.331 1.335 70 1.331 1.335 80- 70 1.337 1,272 70 1.327 1.316 70- 60 1.340 1.334 60 1.332 1.334 70- 60 1.230 1.156 60 1.314 1.304 60- 50 1.315 1.332 50 1.330 1.332 60- 50 1.150 1.150 50 1.290 1.289 50- 40 1.327 1.330 40 1.329 1.330 50- 40 1.144 1.146 40 1.268 1.270 40- 30 1.318 1.327 30 1.328 1.327 40- 30 1.138 1.140 30 1.246 1.250 30- 20 1.328 1.325 20 1.328 1.325 30- 20 1.093 1.134 20 1.216 1.226 20- 10 1.323 1.322 10 1.327 1.322 20- 10 1.157 1.127 10 1.202 1.200 10- 1 1.116 1.120 1 1.163 1.176 Note. Irregularities in values of 5 have been corrected by plotting a smooth curve through calculated values, and taking corrected values from this curve. TABLES AND DIAGRAMS 15 Table XVI VALUES OF s IN THE EQUATION PV = CONSTANT FOR VARIOUS SUBSTANCES AND CONDITIONS Substance. s Remarks or Authority. All gases Isothermal 1 1 All gases and vapors . . Constant pressure Accepted thermody- All saturated vapors . . Isothermal namic law All gases and vapors . . Constant volume 00 Air Adiabatic 1 4066 Smith son inn Tnlilptj Air Compressed in cylinder Adiabatic, wet 1 4 Experience Average Ammonia (NH3) 1.1 Ammonia (NH3) Adiabatic, superheated 1.3 Thermodynamics Bromine Adiabatic 1.293 Strecker Carbon dioxide (CO2) . Adiabatic 1.300 Rontgen, Wullner Carbon monoxide (CO) Adiabatic 1.403 Cazin, Wullner Carbon disulphide (CS2) Adiabatic 1.200 Beyne Strecker Chlorine (CI) Adiabatic 1.323 Chloroform (CCl3CH(OH)2).... Adiabatic 1.106 Beyne, Wullner Ether (C2H6OC2H5)... Adiabatic 1.029 Miiller Hydrogen (H2) Adiabatic 1.410 Cazin Hydrogen sulph . (H2S) Adiabatic 1.276 Miiller Methane (CH4) Adiabatic 1.316 MuUer Nitrogen (N2) Adiabatic 1.410 Cazin Nitrous oxide (NO2) . . Adiabatic 1.291 Wullner Pintsch gas Adiabatic Adiabatic 1.24 1.26 Pintsch Co. Sulphide diox (SO2) .. . Cazin, Miiller Steam, superheated . .. Adiabatic 1.300 Smithsonian Tables Steam, wet Adiabatic Variable (From less than 1 to more than 1.2) Steam^ wet Adiabatic Adiabatic 1.111 1+.14X% moist. Rankine Steam, wet Perry Steam, wet Adiabatic 1.035 + 1.0 X% moist. Gray Steam, wet Expanding in cylinder 1. Average from practice Steam, dry Saturation law 1.0646 Regnault Table XVII FIXED TEMPERATURES U. S. BUREAU OF STANDARDS Temperature, °C. Temperature, Y, Determined by the Point at which 232 449 Liquid tin solidifies 327 621 Liquid lead solidifies 419.4 787 Liquid zinc solidifies 444.7 832.5 Liquid sulphur boils 630.5 1167 Liquid antimony solidifies 658 1216 Liquid aluminum, 97.7% pure, solidifies 1064 1947 SoHd gold melts 1084 1983 Liquid copper solidifies 1435 2615 SoHd nickel melts 1546 2815 Solid palladium melts 1753 3187 Solid platinum melts 16 HANDBOOK OF THERMODYNAMIC Table XVni TEMPERATURES, CENTIGRADE AND FAHRENHEIT c. F. C. F. C. F. C. F. C. F. C. F. C. F. -40 -40. 26 78.8 92 197.6 158 316.4 224 435.2 290 554 950 1742 -39 -38.2 27 80.6 93 199.4 159 318.2 225 437. 300 572 960 1760 -38 -36.4 28 82.4 94 201.2 160 320. 226 438.8 310 590 970 1778 -37 -34.6 29 84.2 95 203. 161 321.8 227 440.6 320 608 980 1796 -36 -32.8 30 86. 96 204.8 162 323.6 228 442.4 330 626 990 1814 -35 -31. 31 87.8 97 206.6 163 325.4 229 444.2 340 644 1000 1832 -34 -29.2 32 89.6 98 208.4 164 327.2 230 446. 350 662 1010 1850 -33 -27.4 33 91.4 99 210.2 165 329. 231 447.8 360 680 1020 1868 -32 -25.6 34 93.2 100 212. 166 330.8 232 449.6 370 698 1030 1886 -31 -23.8 35 95. 101 213.8 167 332.6 233 451.4 380 716 1040 1904 -30 -22. 36 96.8 102 215.6 168 334.4 234 453.2 390 734 1050 1922 -29 -20.2 37 98.6 103 217.4 169 336.2 235 455. 400 752 1060 1940 -28 -18.4 38 100.4 104 219.2 170 338. 236 456.8 410 770 1070 1958 -27 -16.6 39 102.2 105 221. 171 339.8 237 458.6 420 788 1080 1976 -26 -14.8 40 104. 106 222.8 172 341.6 238 460.4 430 806 1090 1994 -25 -13. 41 105.8 107 224.6 173 343.4 239 462.2 440 824 1100 2012 -24 -11.2 42 107.6 108 226.4 174 345.2 240 464. 450 842 1110 2030 -23 - 9.4 43 109.4 109 228.2 175 347. 241 465.8 460 860 1120 2048 -22 - 7.6 44 111.2 110 230. 176 348.8 242 467.6 470 878 1130 2066 -21 - 5.8 45 113. 111 231.8 177 350.6 243 469.4 480 896 1140 2084 -20 - 4. 46 114.8 112 233.6 178 352.4 244 471.2 490 914 1150 2102 -19 - 2.2 47 116.6 113 235.4 179 354.2 245 473. 500 932 1160 2120 -18 - 0.4 48 118.4 114 237.2 180 356. 246 474.8 510 950 1170 2138 -17 + 1.4 49 120.2 115 239. 181 357.8 247 476.6 520 968 1180 2156 -16 3.2 50 122. 116 240.8 182 359.6 248 478.4 530 986 1190 2174 -15 5. 51 123.8 117 242.6 183 361.4 249 480.2 540 1004 1200 2192 -14 6.8 52 125.6 118 244.4 184 363.2 250 482. 550 1022 1210 2210 -13 8.6 53 127.4 119 246.2 185 365. 251 483.8 560 1040 1220 2228 -12 10.4 54 129.2 120 248. 186 366.8 252 485.6 570 1058 1230 2246 -11 12.2 55 131. 121 249.8 187 368.6 253 487.4 580 1076 1240 2264 -10 14. 56 132.8 122 251.6 188 370 4 254 489.2 590 1094 1250 2282 - 9 15.8 57 134.6 123 253.4 189 372.2 255 491. 600 1112 1260 2300 - 8 17.6 58 136.4 124 255.2 190 374. 256 492.8 610 1130 1270 2318 - 7 19.4 59 138.2 125 257. 191 375.8 257 494.6 620 1148 1280 2336 - 6 21.2 60 140. 126 258.8 192 377.6 258 496.4 630 1166 1290 2354 - 5 23. 61 141.8 127 260.6 193 379.4 259 408.2 640 1184 1300 2372 - 4 24.8 62 143.6 128 262.4 194 381.2 260 500. 650 1202 1310 2390 - 3 26.6 63 145.4 129 264.2 195 383. 261 501.8 660 1220 1320 2408 - 2 28.4 64 147.2 130 266. 196 384.8 262 503.6 670 1238 1330 2426 - 1 30.2 65 149. 131 267.8 197 386.6 263 505.4 680 1256 1340 2444 32. 66 150.8 132 269.6 198 388.4 264 507.2 690 1274 1350 2462 + 1 33.8 67 152.6 133 271.4 199 390.2 265 509. 700 1292 1360 2480 2 35.6 68 154.4 134 273.2 200 392. 266 510.8 710 1310 1370 2498 3 37.4 69 156.2 135 275. 201 393.8 267 512.6 720 1328 1380 2516 4 39.2 70 158. 136 276.8 202 395.6 268 514.4 730 1346 1390 2534 6 41. 71 159.8 137 278.6 203 397.4 269 516.2 740 1364 1400 2552 6 42.8 72 161.6 138 280.4 204 399.2 270 518. 750 1382 1410 2570 7 44.6 73 163.4 139 282.2 205 401. 271 519.8 760 1400 1420 2588 8 46.4 74 165.2 140 284. 206 402.8 272 521.6 770 1418 1430 2606 9 48.2 75 167. 141 285.8 207 404.6 273 523.4 780 1436 1440 2624 10 50. 76 168.8 142 287.6 208 406.4 274 525.2 790 1454 1450 2642 11 51.8 77 170.6 143 289.4 209 408.2 275 527. 800 1472 1460 2660 12 53.6 78 172.4 144 291.2 210 410. 276 528.8 810 1490 1470 2678 13 55.4 79 174.2 145 293. 211 411.8 277 530.6 820 1508 1480 2696 14 57.2 80 176. 146 294.8 212 413.6 278 532.4 830 1526 1490 2714 15 59. 81 177.8 147 296.6 213 415.4 279 534.2 840 1544 1500 2732 16 60.8 82 179.6 148 298.4 214 417.2 280 536. 850 1562 1510 2750 17 62.6 83 181.4 149 300.2 215 419. 281 537.8 860 1580 1520 2768 IS 64.4 84 183.2 150 302. 216 420.8 282 539.6 870 1598 1530 2786 19 66.2 85 185. 151 303.8 217 422.6 283 541.4 880 1616 1540 2804 20 68. 86 186.8 152 305.6 218 424.4 284 543.2 890 1634 1550 2822 21 69.8 87 188.6 153 307.4 219 426.2 285 545. 900 1652 1600 2912 22 71.6 88 190.4 154 309.2 220 428. 286 546.8 910 1670 1650 3002 23 73.4 89 192.2 155 311. 221 429.8 287 548.6 920 1688 1700 3092 24 75.2 90 194. 156 312.8 222 431.6 288 550.4 930 1706 1750 3182 25 77. 91 195.8 157 314.6 223 433.4 289 552.2 940 1724 1800 3272 TABLES AND DIAGRAMS Table XVIH — Continued TEMPERATURES, FAHRENHEIT AND CENTIGRADE 17 F. C. F. C. F. C. F. C. F. C. F. C. F. c. -40 -40. 26 - 3.3 92 33.3 158 70. 224 106.7 290 143.3 360 182.2 -39 -39.4 27 - 2.8 93 33.9 159 70.6 225 107.2 291 143.9 370 187.8 -38 -38.9 28 - 2.2 94 34.4 160 71.1 226 107.8 292 144.4 380 193.3 -37 -38.3 29 - 1.7 95 35. 161 71.7 227 108.3 293 145. 390 198.9 -36 -37.8 30 - 1.1 96 35.6 162 72.2 228 108.9 294 145.6 400 204.4 -35 -37.2 31 - 0.6 97 36.1 163 72.8 229 109.4 295 146.1 410 210. -34 -36.7 32 0. 98 36.7 164 73.3 230 110. 296 146.7 420 215.6 -33 -36. 1 33 + 0.6 99 37.2 165 73.9 231 110.6 297 147.2 430 221.1 -32 -35.6 34 1.1 100 37.8 166 74.4 232 111.1 298 147.8 440 226.7 -31 -35. 35 1.7 101 38.3 167 75. 233 111.7 299 148.3 450 232.2 -30 -34.4 36 2.2 102 38.9 168 75.6 234 112.2 300 148.9 460 237.8 -29 -33.9 37 2.8 103 39.4 169 76.1 235 112.8 301 149.4 470 243.3 -28 -33.3 38 3.3 104 40. 170 76.7 236 113.3 302 150. 480 248.9 -27 -32.8 39 3.9 105 40.6 171 77.2 237 113.9 303 150.6 490 254.4 -26 -32.2 40 4.4 106 41.1 172 77.8 238 114.4 304 151.1 500 260. -25 -31.7 41 5. 107 41.7 173 78.3 239 115. 305 151.7 510 265.6 -24 -31.1 42 5.6 108 42.2 174 78.9 240 115.6 306 152.2 520 271.1 -23 -30.6 43 6.1 109 42.8 175 79.4 241 116.1 307 152.8 530 276.7 -22 -30. 44 6.7 110 43.3 176 80. 242 116.7 308 153.3 540 282.2 -21 -29.4 45 7.2 111 43.9 177 80.6 243 117.2 309 153.9 550 287.8 -20 -28.9 46 7.8 112 44.4 178 81.1 244 117.8 310 154.4 560 293.3 -19 -28.3 47 8.3 113 45. 179 81.7 245 118.3 311 155. 570 298.9 -18 -27.8 48 8.9 114 45.6 180 82.2 246 118.9 312 155.6 580 304.4 -17 -27.2 49 9.4 115 46.1 181 82.8 247 119.4 313 156.1 590 310. -16 -26.7 50 10. 116 46.7 182 83.3 248 120. 314 156.7 600 315.6 -15 -26.1 51 10.6 117 47.2 183 83.9 249 120.6 315 157.2 610 321.1 -14 -25.6 52 11.1 118 47.8 184 84.4 250 121.1 316 157.8 620 326.7 -13 -25. 53 11.7 119 48.3 185 85. 251 121.7 317 158.3 630 332.2 -12 -24.4 54 12.2 120 48.9 186 85.6 252 122.2 318 158.9 640 337.8 -11 -23.9 55 12.8 121 49.4 187 86.1 253 122.8 319 159.4 650 343.3 -10 -23.3 56 13.3 122 50. 188 86.7 254 123.3 320 160. 660 348.9 - 9 -22.8 57 13.9 123 50.6 189 87.2 255 123.9 321 160.6 670 354.4 - 8 -22.2 58 14.4 124 51.1 190 87.8 256 124.4 322 161.1 680 360. - 7 -21.7 59 15. 125 51.7 191 88.3 257 125. 323 161.7 690 365.6 - 6 -21.1 60 15.6 126 52.2 192 88.9 258 125.6 324 162.2 700 371.1 - 5 -20.6 61 16.1 127 52.8 193 89.4 259 126.1 325 162.8 710 376.7 - 4 -20. 62 16.7 128 53.3 194 90. 260 126.7 326 163.3 720 382.2 - 3 -19.4 63 17.2 129 53.9 195 90.6 261 1?7.2 327 163.9 730 387.8 - 2 -18.9 64 17.8 130 54.4 196 91.1 262 127.8 328 164.4 740 393.3 - 1 -18.3 65 18.3 131 55. 197 91.7 263. 128.3 329 165. 750 398.9 -17.8 66 18.9 132 55.6 198 92.2 264 128.9 330 165.6 760 404.4 + 1 -17.2 67 19.4 133 56.1 199 92.8 265 129.4 331 166.1 770 410. 2 -16.7 68 20. 134 56.7 200 93.3 266 130. 332 166.7 780 415.6 3 -16.1 69 20.6 135 57.2 201 93.9 267 130.6 333 167.2 790 421.1 4 -15.6 70 21.1 136 57.8 202 94.4 268 131.1 334 167.8 800 426.7 5 -15. 71 21.7 137 58.3 203 95. 269 131.7 335 168.3 810 432.2 6 -14.4 72 22.2 138 58.9 204 95.6 270 132.2 336 168.9 820 437.8 7 -13.9 73 22.8 139 59.4 205 96.1 271 132.8 337 169.4 830 443.3 8 -13.3 74 23.3 140 60. 206 96.7 272 133.3 338 170. 840 448.9 9 -12.8 75 23.9 141 60.6 207 97.2 273 133.9 339 170.6 850 454.4 10 -12.2 76 24.4 142 61.1 208 97.8 274 134.4 340 171.1 860 460. 11 -11.7 77 25. 143 61.7 209 98.3 275 135. 341 171.7 870 465.6 12 -11.1 78 25.6 144 62.2 210 98.9 276 135.6 342 172.2 880 471.1 13 -10.6 79 26.1 145 62.8 211 99.4 277 136.1 343 172.8 890 476.7 14 -10. 80 26.7 146 63.3 212 100. 278 136.7 344 173.3 900 482.2 15 - 9.4 81 27.2 147 63.9 213 100.6 279 137.2 345 173.9 910 487.8 16 - 8.9 82 27.8 148 64.4 214 101.1 280 137.8 346 174.4 920 493.3 17 - 8.3 83 28.3 149 65. 215 101.7 281 138.3 347 175. 930 498.9 18 - 7.8 84 28.9 150 65.6 216 102.2 282 138.9 348 175.6 940 504.4 19 - 7.2 85 29.4 151 66.1 217 102.8 283 139.4 349 176.1 950 510. 20 - 6.7 86 30. 152 66.7 218 103.3 284 140. 350 176.7 960 515.6 21 - 6.1 87 30.6 153 67.2 219 103.9 285 140.6 351 177.2 970 521. 22 - 5.6 88 31.1 154 67.8 220 104.4 286 141.1 352 177.8 980 526.7 23 - 5. 89 31.7 155 68.3 221 105. 287 141.7 353 178.3 990 532.2 24 - 4.4 90 32.2 156 68.9 222 105.6 288 142.2 354 178.9 1000 537.8 25 - 3.9 91 32.8 157 69.4 223 106.1 289 142.8 355 179.4 1010 543.3 18 HANDBOOK OF THERMODYNAMIC The missing water, or difference between the actual steam consumption of an engine and that shown by the indicator cards is given by Prof. Heck as: Missing water Indicated steam 027 L S{x2 — xi) PiZ in which ;S=the ratio of cylinder-displacement surface in sq. ft. to displace- ment in cu. ft., or 2 d iS=v+2^; Z=fraction of card length completed at cut-off; — iV=R.P.M. of engine; d = dia. cyl. in in.; L = stroke in ft. The term (0^2— a? i) is to be supplied from Table XIX and is the difference between the x for the high pressure and that for the low pressure, both absolute. Table XIX VALUES OF X FOR USE IN HECK'S FORMULA FOR MISSING WATER Absolute Absolute Absolute Steam Preasure. X Steam Pressure. X Steam Pressure. X 170 70 297.5 165 393 1 175 75 304 170 397 2 179 80 310 180 405 3 183 85 316 185 409 4 186 90 321.5 190 413 6 191 95 327 195 416.5 8 196 100 332.5 200 420 10 200 105 338 210 427 15 210 110 343 220 431 20 220 115 348 230 441 25 229 120 353 240 447.5 30 238 125 358 250 454 35 246 130 362.5 260 460.5 40 254 135 367 270 467 45 262 140 371.5 280 473 60 269.5 145 376 290 479 55 277 150 380.5 300 485 60 284 155 385 65 291 160 389 TABLES AND DIAGRAMS 19 Table XX BAUME SPECIFIC GRAVITY SCALE Specific gravities are for 60° F. referred to water at same temperature as unity, at which temperature it weighs 62.34 lbs. per cubic foot. Tabular results are calculated from: Degrees Baum6 • 145 145 specific gravity 140 )for liquids heavier than water. 130 1 for liquids lighter than water. ^specific gravity Relation between Specific Gravity and Baume .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 Specific Gravity Degrees Baume. .60 103.33 99.51 95.81 92.22 88.75 85.38 82.12 78.95 75.88 72.901 .70 70.00 67.18 64.44 61.78 59.19 56.67 54.21 51.82 49.49 47.221 .80 45.00 42.84 40.73 36.68 36.67 34.71 32.79 30.92 29.09 27.301 .90 25.56 23.85 22.17 20.54 18.94 17.37 15.83 14.33 12.86 11.411 1.00 10.00 1.00 0.00 1.44 2.84 4.22 5.58 6.91 8.21 9.49 10.74 11.97« 1.10 13.18 14.37 15.54 16.68 17.81 18.91 20.00 21.07 22.12 23.15» 1.20 24.17 25.16 26.15 27.11 28.06 29.00 29.92 30.83 31.72 32.60« 1.30 33.46 34.41 35.15 35.98 36.79 37.50 38.38 39.16 39.93 40.68 « 1.40 41.43 42.16 42.89 43.60 44.31 45.00 45.68 41.36 47.03 47.68 » 1.50 48.33 48.97 49.60 50.23 50.84 51.45 52.05 52.62 53.23 53.80» Adapted from Smithsonian Tables No. 65. 1 Specific gravity less than 1.00 particularly useful for Hquids fuel, oils, and alcohols. ' Specific gravities greater than 1.00 particularly useful for non-freezing brines. TABT.T5 XXT FREEZING-POINT OF CALCIUM CHLORIDE U. S. Bureau of Standards Density of Solution. Per cent CaCU by Wt. Freezing-point, °C. Freezing-point. o p 1.12 14.88 - 9 15.8 1.14 16.97 -13 8.6 1.16 19.07 -16 3.2 1.18 21.13 -20 - 4.0 1.20 23.03 -24 -11.2 1.22 24.89 -29 -20.2 1.24 26.77 -34 -29.2 1.26 28.55 -40 -40.0 20 HANDBOOK OF THERMODYNAMIC Table SPECIFIC HEATS Class. Substance. Atomic Weight H=l. Specific Gravity. Authority. Elements. Common Bubstances Aluminum Carbon (amorphous) Carbon graph. Copper (cast) Iron (pure) Iron (pure) Lead (cast) Mercury Nickel Tin (cast) Zinc (cast) Bronze Brass Brick work, Masonry Butter Clay Coal Wood Glass Ice Cast Iron Wrought Iron Marble Steel Sand Stone 26.9 11.99 11.99 63.07 55.41 55.41 205.46 198.5 58.21 118.1 64.88 2.57 Mallet 2.10-2.32 8.8-8.95 7.85 7.85 11.37 14.18 8.65 7.29 7.05 8.75-9 7.8-8.6 1.84-2.3 .865 1.80-2.6 1.2-1.5 .4-1.2 2.4-2.8 .9 6.8-7.5 7.4-7.9 2.5-2.8 7.7-7.9 1.45-1.6 2.1-3.4 Smithsonian Tables Smithsonian Tables Smithsonian Tables Smithsonian Tables Reich Mallet Smithsonian Tables Mathiessen Smithsonian Tables Smithsonian Smithsonian Smithsonian Smithsonian Smithsonian Smithsonian Smithsonian Smithsonian Smithsonian Tables Tables Tables Tables Tables Tables Tables Tables Tables Smithsonian Tables Smithsonian Tables * Kent's Mechanical Engineers' Pocketbook. TABLES AND DIAGRAMS 21 XXII OF SOLIDS Specific Heat. At Temperature. Specific Heat Calculated from Atomic Weights. Authority. C. F. .2089 .2226 20-100 500 -50 +11 977 16-1000 17 300 15 300 500 720-1000 1000-1200 15 200 -78 to -40 21-99 500 1000 0-100 16-197 18 200 0-100 15-98 32 68-212 932 32 -58 52 1795 61-1832 62 572 32 69 572 392 1328-1832 1832-2192 59 392 -108 to -40 69-210 932 1832 32-212 69-387 64 392 32-212 59-208 .238 Bontschew Bontschew .2739 Bontschew .241 Olsen .1138 Weber .1605 Weber .467 Weber .310 Dewar .0924 .0985 .102 Naccari Naccari .1162 .1091 .1376 .117 Olsen Naccari Naccari .1765 218 .117 Pionchon Pionchon .1989 Pionchon .0299 .0324 .031 Naccari Naccari .0319 .1084 1233 .0323 .11 Regnault Voigt Tilden 1608 Pionchon .0545 0538 .052 Bunsen Spring Naccari Naccari .0915 0996 .099 0935 Bunsen 0858 Regnault 0939 Regnault About 2 * 55 Siebel 197 Regnault 2- 241 Regnault 45- 65 * 16- 18 Regnault 504 Regnault 1298 Regnault 1138 Regnault 21 Regnault llfi.'i- 117.^ Regnault 1Q5 . . . * 2- 22 ♦ * Kent's Mechanical Engineers' Pocketbook. 22 HANDBOOK OF THERMODYNAMIC Table SPECIFIC HEATS OF GASES; Substance. Cv At Temperature. Authority. c. °C. -p. Hydrogen, H2. 3.3996 3.409 3.410 -28-+9 12-198 21-100 -18.4-15.8 53.6-388.4 70-212 Regnault Regnault Wiedeman 2 4219 Oxvcen. O2 .2175 .2240 .2300 13-207 20-440 20-630 55-405 68-824 68-166 Regnault Holborn-Austin Holborn-Austin 1603 Nitroffpn N»> .2438 .2419 .2464 .2497 0-200 20-440 20-630 20-800 22-392 68-824 68-1166 68-1472 Regnault Holborn-Austin Holborn-Austin Holborn-Austin 1715 Air .2377 .2374 .2375 .2366 .2429 .2430 .2389 -30-+10 0-100 0-200 20-440 20-630 20-800 20-100 32-50 32-212 32-392 68-824 68-1166 68-1472 68-212 Regnault Regnault Regnault Holborn-Austin Holborn-Austin Holborn-Austin Wiedeman .1703 Ammonia, NHa .5202 .5356 .5125 23-100 27-200 24-216 73-212 80-392 75-421 Wiedeman Wiedeman Regnault .4011 Carbon diox., CO2 .1843 .2025 .2169 -28- +7 15-100 11-214 —18-45 59-212 52-417 Regnault Regnault Regnault .1558 Carbon monoxide .2425 .2426 23-99 26-198 74-210 79-388 Wiedeman Wiedeman .1734 Methane, CH4 .5929 18-208 64-406 Regnault .4505 Benzole, CeHe .2990 .3325 .3754 34-115 35-180 116-218 93-239 95-356 241-424 Wiedeman Wiedeman Regnault .2131 Ethylene, C2H4 .4040 10-202 60-396 Regnault .3404 TABLES AND DIAGRAMS 23 XXIII RATIOS AND DIFFERENCES Determined from Cv-Cv 777.52(ep-Co) - ( y, ) m ft.-lbs. Cp-i-Cv = T Wiedeman Cp = 3 .4 1 and n -^ = 1.408 at 4" -16"' C. by Lummer and Pringsheim Co .9881 768.267 1.408 Holborn and Austin Cp = .2240 and ^ = 1.3977 at 5Uo 14° C. .0637 49.528 1.3977 Holborn and Austin Cp = .2419 and ^ = 1.41by Cazin .0704 54.737 1.4105 Wiedeman Cp = .2389 and n — = 1.4025 at 5° to 14° C. by Lummer and Pringsheim .0686 53.338 1.4028 Wiedeman Cp = .5202 and mean of (^ = 1.3172 at 0° C. and ^ = 1.2770 at 100° C. ) \Cv Cv 1 = 1.2971 by Wiillner ,1191 92.603 1.2969 Regnault Cp = .2025 and Cp — = 1.2995 by Lummer and Pringsheim .0467 36.310 1.2997 Wiedeman Cp = .2425 and mean of (^ = 1.4032 at 0° C. and ^ = 1.3946 at 100° C. ) = 1.3989 by WiiUner .0691 53.726 1.3985 Regnault C2, = .5929 ~= 1.316 at 30° C. by Miifler .1424 110.719 1.316 Wiedeman Cp = .2990 and -^ = 1.403 at 60° C. by Pagliani .0859 66.789 1.4031 Q Regnault Cj,=:.4040 and "7 = 1.1870 at 100° C. by Wiillner .0636 49.450 1.1867 24 HANDBOOK OF THERMODYNAMIC S ►H P O" HH 1-1 > P^ X u X s w < .-; s hd u o OQ •c o fl fl 45 45 ;i5 d o "^ '^ ^ (V fl ^ § § I 0^ o « fl cj pj pq bD bO la -♦J a -a a a 0) 0 CO CO CO 00 CO 00 00 tH CO Oi CO OS ^c[>oL iO CO lO CO lO U3 U3 CO CO CO CO CO CO o 00 CO 00 o o tH CO CO CO o o CO o (M I _ o o O JO tH 7* tH rJH Js d) 00 o o o o ^ (N CO t^ COCO XOl>00C0O5 (NCO (O lo T-< cocour:>ioi>oococo C0C0TtHC0c01:^OTt*05">*(MI>. OOOOOOiOCOiQCOTjHlO o CO 1> lO CO 05 t^ lO !>. 05 CO lO TjH Tt< O »0 »o rlc)^ 1 ^ Tt" O CO CO l> 05 CO o 00 CO 00 CO o Oi 05 05 T^ rji lO lO 73 O O a a 9Q el a -t-) -M fl fl O) !> •4-3 1 s a ^ ^ 03 a H H d d c3 > bC O !> Is c6 o o3 •f-< d o § fH »4 M a a 9i l£)<©O»OTt^TJ^'g^c0C0(NST-^TH ■^TtC0(MO00C0C0i-iOC0-^M cooiou^iooTt<'^TjHrtHcococoeoeoc<>c.^^couoTJ^co(N'-Hooiosool>colo lOl0»O^>OlOK5u^lOu:>Tt^Tt^TJ^■TtlTJ^TJ^Tt^TtlTJ^Tt^Tt^C0C0C0C0(:0C0 0349 . s ''i "S -*^ o3m 00TtO(NC0»OX>00Oi-tC0'*CC>l>05OCQC0TjiiOI>000iO io>ooiOiOcococoi:ococoi>i>t^i>i>i>i>.ooooooo6ooooo6o6o> ^^ ^^ ^^ ^^ ^^ ^d^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ '^ ^^ Tt* ^^ tJ^ ^^ ^^ ^^ ^^ ^^ o > o Q o I— I o Ph •53 o-sO Q ^ft l>.rHi-IOOiO(N05COCOOCDCOOt^Ttl><©i:C>COiOiO»Orfi (N (N (m' (N (N (M* (N (N* (m' (M (N t-I ,-H ,-i ,-1 r-I t-I r-J ,-1 ,-1 ,-H rH T-i tH* ,-1 ,-1 i-i ^^ ^^ ^^ ^^ ^^t^ ^^ ^^ ^^ ^^ ^f ^i^ ^^ ^^ ^^ ^^ ^J^ ^^ ^i^ Tt^ ^^ ^^ "^^ T}^ ^^ '^H T^ ^JH O 3 ftT3 ft" M/P lOOO i-l(NC0"rt00T-lC0TH<:0C0OT-ie0CO00Oi-0ii-i CDcOt^-t^t^t^t^t^t^t^CX^OOGOOOOOOSOSOSOSOJOOOOOOi-* COCOCO(^^COCOCOCOCOCOCOCOeOCOCOCOCOCOCOCOTt^Tt^Tt^Tt^■rt^T^lTt^ (^^c^c<^cqc<^(^^c^c^c^(^^(N(^^(^^(^^c^(^^(N(N(^^(^^(^^(^^(^^(^^(N(^^(^^ ooooooooooooooooooooooooooo Q ft 00C01>0iTH(NOOT-l"^l>«O'<#0iC01>C000l>Tt<(£iCDI>O(MTtH|> OOOT-HCQ-^iOcOOOOJOi-HCOTtHiOt^OOOi-HCOiOi^OOi-HCOTt^COOO OOOOOOOOOOOOOOOOOOOOOOOOOOO o o ft-O (NOOOOOOi:OOOcO-^COCOOOC^CD(Mt^(MOCOcDTtOOOCO<:DTHrt(NOOiOOb-C001> lO Tji r}^ M (N C CO CO u:) lO rJH Tti rJH CO M CO C^^ (M(N(M(N(N(M (M iO lO "^cOt^'-H'>*cO00COCOOS(MCOO5 050505000i-i^T-i(Nc^cq(NeocococoTti'<*i'^THuo^»ocococo C0'^l>0'<*t>- cocooso-^t^osocococo Tt< t^ CO CO OS CO(MC0'<*iCOC.COiOTt^CO(MrH00500 |>.l>.t>l>.l>.CO(:OcOCOcOCOCOCOCOCO»OiO»OiO'0»OiOiOiO»0"^"^ I I I I i I I I I I I I i M I I I I I I I I I I I 1 0) 0000 lOO lOO OOCOCOi-iOO«Oi-it>"^OCOOOe005-^05-^05iOTH rt< TjJ '^' TtJ eo' CO CO (N (M (N T-H rH o" o' O* O rH i-l (N* (N (N CO CO rji rt^ lO Co' I I 1 I I I I I I I I I I I + - tH »o Ti< 00 1> (M 00 CO lO O 1-1 CO 1— 1 CO r--' CO 1> i—H 1— t 1-1 00 1—1 00 1—1 05 05 1-1 O O (O ft • 005001>COiO'<^CO(Ni-l00500b*COiOrt^CO(N»-i00500t^cO^'^ TfCOCOCOCOCOCOCOCOCOCOn ^^ ^^ ^^ 42 • HANDBOOK OF THERMODYNAMIC i X o > o H <1 P^ P H <1 02 O w W I— I H p:? fin O P^ Entropy of Vapor. N(NOOC005".C005rt.(NOOrtHO»0»HbN.cO OO0505Q00000l:^J>ir»C0»OiOTHTt<^C0C0CCOcOcOCD»OiOiOiLO»OTj0005O(Ne0"^iOiO iO"^CO(Ni-<000500l>.CO»OTtiTj-CDiO'<*'CO(N External Latent Heat. O'-l(Nrt<'<:t00050i-l(MCO'*iOCOt^00050i- 05 05 as C5 oi C5 05 aJ O O O O O O O O O O rH T-^ 1-H ,4 tH rH i-J ,-1 ,-1 Density of Liquid, Pounds per Cu.ft. '*T-ll>.TjH01r^COOCD(N05iOi-100'<^01^COOiiOi-lt^rtCO(©iO»OTt< Sp. Vol. of Liquid, Cu.ft. per Pound. co^r^05THcoi:ot^O(McocooiOC.050eo«ooocj5 c^(^^(^^(^^c^c<^c^c^c^c^(N(^^(N(N0(MCD05C50iC)000'-ii-Hi--i'-H(N(NCiOCO{N005 cq(Mi-HTH,-H,-iOOOOCi05G5050iOOOOOOOOOOI>l>l>l>l>i>CO Total Heat. Above 32° F. (^^l005r4co<:oo5(^^looOl-^c^^looo(^qTt^t^C5(^^Tt^cDoo^-^cocoooo5 ^^^^^^(X)OOooooo505050000r-lrHT-l,--^(^q(^^(^l(^^cocococoeo -*3 . CI 43 (N'OOOOCOcOOSOq-^CDOlOCOCO C^-^CDOO (N-^CDOO (NCO TjHCOC^OqTH0050iOOt^cOO>-0'<*TjHCOC-.i:DCDiOThi Heat of Liquid Above 32° F. ^'CD'd^(^0(^t)(^<^l-HOool^colo-^co(^^rHOC50ot^cDlOrt^co<^^r-^o Tt^Tl^Tl^Tt^r^TtlT^^rt^co(^^o:)(^:)co'>0(^o<^ococ^c<^c^(^^(^^(^^<^^(^^(N(N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pressure, Pounds per Sq.in. Gage. N.C0CS»Ot-I00tJHO1>-C0O1>"^O00»OC<)OQ0c0"^C0C<1t-IO 05 <:Ot>.|>00050iOi-Hi-l(MC0C0'*iOi0Ot^00000iOTH(MC0TtTtii-Hl>.iO(M05I>>OC0i-l Oi CO t> t^ to T-H C^ (N CO M r}H u:) u^ CD r^ b-' 00 05 oi O ^' rH (^q W T^^ lO CO O b» 00 Oi o c^c^(^^(^^(N(N(Nc<^c^(^^c<^c^c^c<^(X)cccocococococococococoTt^ Scale, Temp. . °F. CO(Mi-IOOi001>COWO-<*COCOOC»OTH(NCO T— ItHt-Ht— ( tHi— li—lrH 1 i 1 1 1 1 1 1 1 1 1 1 1 ,„• ft • C0rHiOcOb'00<5P'-HC-t>-t>. TABLES AND DIAGRAMS 43 ^ Hi X C Ah O Q m O CQ H P5 O A4 Entropy of Vapor. GOooQOt-.t-.cocoiooiOTtH^Mcococ^cqiiHi5^oo^SSwoo .....'"I'^. .'~I'~I'~I'~!'~!'~I'-I'-^. '-;'-|'-^'-;'-;^ooooo- Entropy of Liquid. CO CO CO 00 CO £3 (M (N (M rH ,-H ^ rH r-l O O O O O O O O ^ r2 S ^^ ooooooooooooooooooooooooooo Internal Latent Heat. External Latent Heat. OOGOOiOr-ir-icqcOCO->^iO«DC01>000005050T-irHCSCqcO^-^iO ,-^^rH(^^(^q(^^(^q(^^(^l(^^(^^(^^.coo5lOOcO(^^oocoo:>looo(^^^^coooT}^ Tfir)HCOCO(NC^C^i-lr-l00050i05C0001>l>CO'X>CO»OiO'*TtiCOCO Sp. Vol. of Liquid, Cu.ft. per Pound. (N»O00OC0>Ol>.C5C0i000OC0c00ii-iC0c000C.O'^00(Ni00iC0I>.rHi005C01>.(NC0(M<:0i-i Tt^iOiOiOcOOcOt^t^OOOOOOOiOiOJOOi-ii-ii-itNC^jCOeOTtiTfiiO THrHT-HTHrHrHi-HTHT-HT-HrHT-HrHrH,-HC^CqCqC^Cc0iO'rt^TtiC0(MT-iO05 OCOOCOCOCOiO»Oi0^iOiO»0»J^»OrtO"r}HC0.COLO'*CO(Ni-ia3001>--00 1— li— li— (i— (i— li— (i— 1,-Hr-l 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 ++ + Pressure, Pounds per Sq.in. Gage. CSi0i0i05C505OOOiHCi-HCO»-i <:Ot>.OOOiOi-iCO'=tiiLOcOt^00050rH(^0'^iOi:OOOC50t>.t>.C0C5 i-ieOiOOO»-.C0050i-iC.00050i-<(MCOTfiiOcOb-OOOiO rHi-tr-HTHi-lTH(N»OOOiO'-i(NCO'*iOcOt^00050'-iC-t^t^COlOlOiOTtHTtHCOCO(N(N(NrH,-4000050050000t--^ OOOOOOOOOOOOOOOOOOOO05050i050i0505 Entropy of Liquid. OO(N(M(NC0(N00OOtHtJHi0<;000cD00O O(M'^C000OC^"^C00iOC0»OJ>a>T-(C0CC)00O(MTtl>t^CO<;0^»0»0'<*lTt^T^Tt.OCO»0000i>ooooa50505000i-iT-iT-iG\iC^i(N(Mcococococoeoco Density of Liquid, Pounds per Cu.ft. 05iOOCOi-HN.cqoOCOOir}HO^O»00»OOiOOiOOiLOCJCD»-l>OTtOC0c0OTtl>.l>00000005C3i05000i-iT-iTH(N(MeOi0cDc01:^CC00OiO'— 1 c.^'*00(NC0T-HiLO00f01>T-tC0Ol>.(Nl>-C000C0a>Tji Oi001>>I>0»0»0'stt>.COCO«OiOTjH-^ l^oeococooococo(^^(^ococo(^0(^^M(^^cOOCiOTH(NCOiOcDb-00050i-lCSICO-^»Ot^CO ,-^,-^I-^r^l-^T-^l-^^-(l-^(^^c^C^(^^C^C^lC^(^l(^^cocococoC0COC0C0• Pressure, Pounds per Sq.in. Gage. ^0005>ON05«3CO 00CDr}.GOOC.Oii-iCOiON.CiTHCOTtli:0000<:OCC>l>-l>J>l>-l>-t>-OOOOOOOOOOOia)05050iOOOO i-H r-l 1— 1 T-H Pressure, Pounds per Sq.in. Absolute. C-»0C0T-« O5Oi00000000CO>O»OiO^CD00 "^lOt^OOOT-icO'ON.OOOCqrHCDt^Oir-ieOiOt^OiT-iCOiOt^OS'-i l>.I>l>.i>.0000G0000000050505050i05OOOOOi-HT-irHT-4TH(N Scale, Temp. °F. TH(NC0'^i0OI>000iOTH(NC0rJ4iOC0l>.000>Oi- O Q H < H O (—1 H O Entropy of Vapor. OI>eOOiWDi-IOOTHOCOC<100iLOTHt>.COOcOC<10SiOi-Hts.WOCDC00000000 i>050coiot>05i-icoiot>.05i-(co»oooo(NTricooooc<'^coooo t>J>.OOOOOOOOCXD05050505050000i-ii-ii-ii-iT-i(MC.0005050i-i(M'^i01:^000(N"<^oC30 001>-OCO^»0-^CO(NT-i005QOCDTt.cOTt0>0'*CO(M'-i005001>iOThiCO(MT-l0051>.COiO'>!^eO(Ni-l0500 External Latent Heat. O'-^C^C^C0CCT}HTtH-<*i-^c0C0(NTH,--(O0500cDiOC0(NO00c0T*'(Nt>-(Mc0i-iiOO^OTt<05C000C 0050500001>l>COCC>iLOiO'*TlHcOCO(M(Mi-iT-i00050000t^l>CO 00l>-I>»t>-t-l>Wl>l>"l>-N'l>t>l>l:^t>-l:^l>-l>>t^t^cOcOcOcOcOcO Sp. Vol. of Liquid, Cu.ft. per Pound. r-.cO(^^ooo^eoc<^^-loo^<.lOxor}^(NT-l005oooooloco^lOl:^^^ i-l(MC0Tj.C0OC0(M00i0t-I00'^t-<00i0(N05c0(NO00iO{NOI>'^ Tt^COCOC^(NCqT-li-(000050505000000t>-l>l>l>COCOCOCOiOiO (N (N (M* C.i:OlOTt0'^COT-l 001>"3C0r-4O5 (N tH O 05* 00 CO »0 ^' (^5 (N tH O 05' 00 O* »0 T}^ CO C.00050rH(MOO'^»OC000050T-i(MCOiOCDl>.00 C0'^-^'*'<*'Tt<'<#riiTlOiOiOcC)CDC0c0c0CC)C0c0 Pressure, Pounds per Sq.in. Gage. C^rfit>.rHi005COOOeOOOrhiOi005COCOTHTHXO"3rfiCOeOi-HTHCOO 05i-lPOCOOOOeOiOOOOOOcDOOOeOc005(N'«*!:^OeOc005(NiOOO OTHT-HrHT-HC^C^(N(NCOCOCOCOTt*rHTtiT:tCOCOt^b--l> Pressure, Pounds per Sq.in. Absolute. O5,-lrt<00(NCO »0 iOi-ll>OiOcOcOcOcDl>.l:^l^0000000505 Scale, Temp. °F. 0005OTH(Me0r}HiOCDI>.00O5OT-4(MC0THiOcDI>0005O^23C0:3J CO CO''l> t>.t>.t>.t>.t>t>.|>t^l>00000000000000000000O5O5O5O5O> ..; a . 00050TH(NCOTjC005CO(MOOCOTHl>COOcO(N05»Oi-.T}iO?OC-t>. OOOOCX)GOOOOOGOC30CXDOOGOOOGOOOOOOOOO(X)C01>.l>l>l>t>.|>l>.l> (MTtHCDOii— iCOiOt^OiT-ICOiOt^ClrHCOiOt^Oii-lCOiOt^Oii— ICOIO oco»ocorHeocoo5(M>ooocOTt.o-^GOTH>oo5coc?7— iu:)OTt0(N05b»'^T-iOOiOC^05COCOOCO(MasiOT-lt^C005iOOcOi-t (MrHTHT-i000005C5CiOOQ000001>-t^cOOcOiOiOTtiTti-^COCO T-i»OO'*0>C0I:^CO'^0SC0N«C.i-i OlOiOTt^l^:lco(^^(^^1-ll-^ooiOoooo^>.l>o»OK3Tt^Tl^co(^^(^^r-lr-l McOl^3col^5cocococococol^ococococococO(^ococooocococococo (MiOOiCOt^COcOT-iiOO^iiJiCOt'-T-tcDiMCOOiOCsrHoOCOOiCOOO l^:)cocoTJ^THlOlOcocol:^^^^^ooQOOi0500l-l'-lr-l(^^(^^coco•rt^'T^^ t^t^i^l:^l:>-l>l:^t>l>i>l^i:^l>l>l>r^cooocooooooOGOoooOGOoo c^c<^c<^(N(^q(^lc^c^c^c^(^^(^^(^^c^(^^c^c^(^^(^^<^l(^l(^^(^^(^^(^^(^^(^^ 000000000000000000000000000 G0G0OTHT-lTtHTt-.C0C0N.OiO lOtrJcioosoT-iccjcoTfiiocociociOc^co'^cDt^oooi-iC'i'^iot^co CDcOCOOt^I>l>.l>.|>t^l>.l>.l>QOOOOOOOOOOOOOCi0505C505Cia) ; h (D ■^ 53^i g ^^^ m SOfJ o3 )t^Tt<(MO00cDT}<(MO00i:O-^(NO00C0'^C0i-'^'^CO(M(MTH0500<:O^CO(M0500^'rffOOi i-lT-ii-li-ii-iOOOOOOOOOOOiCi050iC30JOOOOOOC0001^ lO'0»0>OiOOiOiOiOiOiOiOiOiOiO'^-^'^-^Tt*rtHTtiTt*'*TH t^lOCOiHCXJiOCOr-tOiCO-^rHOOCOCO l>"<*li-<00»OrH00'* CO CO r-i005COCOiO'*COT-tOOiOOOiO'rHCOT-iOC!51>.O^CO(NTHOioO ^^ "^1 "^^ ^Ji ^*t^ ^7* ^^ ^T^ ^P ^^ ^^ ^^ ^T' ^r ^T* ^T" ^T* ^^J* ^^ "^^ ^^ ^^ ^^ ^^ ^M^ ^t^ ^^ t>.00OO(MC0'^<:00000O(Nrt00OTHC0TH<:0 03 O COt^l>t>l>.t>l>.t>-l>.l>COOOOOOOOOOOOOOOOiOi02C505050i050? COCOt>-O5CO00CO00CO00CO00COCOCOCOCOCOCOCOCOCO00COCOCOCO 1-1 rji b>i O 'Tti N.' O* Co" b^ o" TjH t>i 1-1 T^' 06 C^ OOOOOOOiOi05000r-i,-iTHC^(M(MCOeO-rf<'^'^iOiLOcOCOCOt^t^ THT-iT-iTHrHi-iC<>C^C^C^C^C^(NC^C^(NCO0SC0I^r-liOOrt<00(M Oi05000i-ii-lT-lC^(M(MCOCOCO'*-rt-OOOiOr-iCqcOTtiiOCDN.OOOiOrHC.OOOiOTH(NeO-^»OcOI>-000>Oi-l(MCOT)-COOiOi-i iOiOiOiO>OCDCOCOcDCOCOcOCOCOCOt-l>l>.l>t>-l^l^I>-l>-t^0000 I0i0i0i0i0i0i0i0i0i0i0"0i0i0^^^»0i0i0i0i0i0i0i0^i0 TABLES AND DIAGRAMS 47 c < > 15 o Q < P H Pm O H P^ Ph O P^ Entropy of Vapor. 05»0.-HOOrt050000t-.b- Entropy of Liquid. 00000i0505C505OOOOO'-Hi— ir-ir-ii— i(N(NCl(NCNeOCOCOC0CO T-^.-^r^THlHl-^l-^c<^c^t^r^i>.i>.ococDcocococoio l^ocO(^^cO(^3eoMcocow(^5coeoco(^5(^0(^:)(^ocococO(^^(^^M(^:>c^ External Latent Heat. cDi-Hl>.cqcOT-iiOOK005COOOeOt^OC1iOOOOCOCOOOOC.l>.OCOiO'^'^CO(M'-ii-i0050000I>.OiO (^o CO M CO CO (>o (N (N c^' (^^ (N c^' (N (N (N (N (m' (N (m' (m (N i-t th ,-1 t-h r-i rH Density of Liquid, Pounds per Cu.ft. iOOiCOI^i-ixoa>COI:^0"^00(M»005(NcOO'^OOC<>iOCftCOCOOCO oc5a5ooooi>»coco>oiO'*cocococoioiO'<*t Sp. Vol. of Liquid, Cu.ft. per Pound. C01>.f01>.COt^T-il>COOOC (Nc^c^(^^c^ca)OCOTl.<:D'^CO(Mi-iC5001>'tOTtt>-i>.t^i:^t^i>.i>t>.i>cc) tH Total Heat Above 32° F. OOiOCO(Mi-ia)OOiOT}HTHa>l>CD'^TH001>iLOCOOOOiO(NrHl>cOCO r^^^^^^>.^^C0C0cOc0';0lOlO»Ot0^rt^rJ^rHTt^■^C0C0C0C0(N(N(^^ ^^ ^^J' ^^ "M* ^^ x] ' "Sj' vj^ vjt xj' "'^ ^^^ ^^ ^^ "vP ■SJ* xj' ^^ ^n ^^^ XJi TJ' ^J^ ^^ T^ ^^ ^5^ +5 , ':0C0Ot^C0O»O(M00»Oi-l00"^O<:OC0Oi>OOc0T-l(r)(MI>C000 l>iO'*C0i-iOO5r^cOTtiC0(MOCi00cO»OC0(MT-HOi00C0iOC0(MO TjHTt0000050500 (M(M(M(M(MC0C0C0P0COCOC0C0C0COCOCOC0C0COCOCOC0C0CO'^'^ Pressure, Pounds per Sq.in. Absolute. CD05C01^(McOOiOO»OOiOO»OQ»OOK3dcOi-0500'^rH(N(NCOCO'*'*iOioScOt^l^0000050500'-iT-i(N (M(MCOC0C0COCOCOCOCOCOCOCOCOC0COCOCOCOC0COCO'^'^Tt<"^Tl< Scale, Temp. °F. C00050i-i(NCOTHiOcOI^OO 0000000000000000050505Ci0i0i05050305OOOOOOOOO 48 HANDBOOK OF THERMODYNAMIC .1 O o Q H P4 H o a H P5 O Entropy of Vapor. (MOO»OTHOOrtCOOCOC005COC t^cOcOcOiOiOiOrt^-^TjicOcOCOC^C^i-irMi-iOOOOiOSOSOOOOt^ Entropy of Liquid. (N(NOOOT-.t>.I:^l>t>.000000000000O5 c^(^^(^^c.000(MTtC005'^OCOT-iiOT-il>.C<|(£)i-iiOO»00'<*iOO(NI>i-i»005 l>0»OeO(NOOOOcO^CO(M005I>.COTtCOTttCOC^r-i0001>0 i-ii-iT-HT-ii-ii-i00000000005050iOOia>050S05o6o6o6 Density of Liquid, Pounds per Cu.ft. l>-OC01:^OC0t>'OC0c005(Mi000OC0cD00r-lTtco<:oiOTi^Ttlco(^^rHl--^oo5Cioo^-coco»o CO CO CO CO CO CO (N CC0C0C0i0C*iOOI> 05000000000000000i-o>oioioco(:ocococoi>i>i>r>oooooooia50505000i-ii-i lr^THl-lT-^THTHTHl-^^-^lHlr^THTHr^lHrH,H,-^,HT-^TH,-^(^ic^(^^^ Sp. Vol. of Vapor, Cu.ft. per Pound. THC.i> Total Heat Above 32° F. (Ni-ir-iT-li-lOOOOiOiOOOOOOGOt>-t^COi:Di:DiOiLOTtirtiCOCO(M(N TttTti'^-^rJHTti'^THCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO 43 . C000C005'*0iC000C01>O^O'^I>THTj<00THlOC0THrlHl>OC0<:0 05r^c0'Tt-t^l>CDCO Tjl-^TjH^'-^rilTtlCOCOCOCOCOCOCOCOCQCOCOCOCOCOCOCOCOCOCOCO Heat of Liquid Above 32° F. 000(NCOi:0000(NTt000-OOOi-l(NCOTj<(©N.OOOiT-l(MCO"^COl>00050(NCOTj< COCOCOCOCOCO'*-<^"'*'^-^TtHTtl"<^Ttl)OiO»OiOlO»OlO»Oi©COCOCO Pressure, Pounds per Sq.in. Gage. cocococoeococococococococoeocoeocococococococococococo 'TtHO^COt>.(MOO'>#OcDi-.b-.000005OOT-ICq(NC0Tt<-^iOCDCDt>. Pressure, Pounds per Sq.in. Absolute. 05>0000(Mb-COOiOi-HCDC.00000iO5OrHi-i(M(NC0TtH'<#)L0c0l>-l>000i Scale, Temp. °F. 0iOTH(MC0rf000iOi-lCoio»oioio>oioioiococococOi:oco<:ocococot^i>-t>-i>i>i^ m a . C3iOT-H(MCOTt<»OCOl>OOOiO'-H(NCOrtHiOi:ON.OOOiOTH(NCOTf o p < Pm O t— ( H P5 Pi O P^ Ph Entropy of Vapor. i0C00i»O(M00C0O«0CQ00Tj-l>COCOOtOiOr^'.^^eOCOCO(NOt^05i-iC0»Ot^00OCX)Oi-lC0ThiOi0i:0^iO0000SSS 1— 1,-iTHrHT— i0000005050iOi050iOOOOOOOOOOt^l>l:^l:^ cocococococo(^oco(^5co<^l(^l(^^(^^(N(^^c^(^^c^c^^(^^(N<^^(^^(^l. External Latent Heat. O<:0C0OC0C.(Mt^i-(iO iOCO(MT-l0500CO»0'^(NrHC5001>>0'^C.l>.l^t^l>-b-l>-COCDCOCDcOCDcO^iO»O»OiOiO»O •^1 Tji ^T* ^T^ ^p ^^ ^^ ^r "^p ^n ^^ ^^ ^7^ ^^ ^T* ^4^ *^ "'st^ ^^ ^^ ^^ ^^ ^^ *^ ^4^ Density of Liquid Pounds per Cu.ft. iOOOO(MiOr^OCOOOi-tCO"^«OI>OOOOOSO ■^eOCO(MrHOOC500t^cDcOK3TtiCOCO(Mr-iOOiOOI>COiO»0 Sp. Vol. of Liquid, Cu.ft. per Pound. 05l^i0C0O00c0rt050iOOOO t^OOC550r-li-H(NCOrHxOiOCDI>.00050T-li-H(NCO-^':Dt^0005 ,-^T-^rHc^(^^(^l(^^(^^(N(^qc^(^^(N(^^(^^cocoeocoeocococoeoco cocO(^ocO(^:)cO(^:l(^5(^5(^oeo(^5(^5CO(^:)COcocococococoeoeoco ooooooooooooooooooooooooo Density of Vapor, Pounds per Cu.ft. COOOO(M'^N.OCOOOO»005COtON.COt^O»OOOC.C0iOi0T}COC0iO">*C0 Oi-COiOTt.V0C0r-t^t>.ooooooooooooooooooooo505C505a>050500500 r-lT-Hi-li-li-lT-Hr-li-Hi-Hi-li-li-lTHTHi-li-ti-Hi-HT-lT-Hi-li-l'-H'-'GM COt^OOOiOi-H(NCOTtHiOCOt>-OOOiOTH(NCO:*,^50t;-Q0 050 50 HANDBOOK OF THERMODYNAMIC 1-^ 5 o > o o o p^ ^ O t— t p^ o p^ Ph Entropy of Vapor. CO»-liOOiOO«:)0»005COi-lCOl^C005iOOr)»O^(NrHa500C0'*C0C^O00l>.i0TtiC0.-(O00t>iO'<^(NTH Entropy of Liquid. 0500(MeOcOTHl>COOI>OOT-HOOOrHOOCOCC (M(©»OOOC00500003rH05C^O. i-iOOiOOI>.COiOtOCOCOT-(i-i00500l>'COiO'*iCO(NT-i00500l>. oooooooooooooooooooooooooo Internal Latent Heat. rH(MTt»00 (N05<©00'^OCD00 l>05iOT-H|>cCir}< CO 00'^0<0(MOO'*'-lt>-(MOOiOOcO(NOOiOO':DC^OOCOa5iOTHCO l>t^l>.COCO»OiO^'Tt<'<#C0C0C0(N(NrHTHT-(OOC5Oi000000t>. OOOOOOOOOOOOOOOOOOOO0505Ci0i050i External Latent Heat. OOiOOCO"*CO(NOOOrtOiOTj4 "^M^ ^^ ^^ ''^ ''T' '^T' ^^ ^^ ^T* ^7^ ^T" ^^ ^^ ^^ ^^ ^r ^r ^7^ ^T^ ^^ ^^ ^t^ ^^ ^J^ '^^ ^^ Density of Vapor, Pounds per Cu.ft. Tt(N00TtC0t^O»O ■*03-^0<:Oi-il>-COGOTHOiOi-icO(Mt^COOi'^0»Oi-fl>-COOCD <:OCOt^000005C5OOTH(MC4C0C0rtl>.000005OO (Mt^C000TjHOcDCq00'^OO |>.l>.OiO'<^-^COCO(Mi-iTHOOa)OiOOOOt^lr^I>COOiO»OiOTt« COC0COC0C0COC0C0COCOC0C0C0(M(M(N(NC0^Tt.0(M>OOOTHTticO<35(NiLOOOi-iTri l>t^OOOOC000050500000rHTHrH,-l(M(N(M(NCOCOCOr^TtH iO»OU^^>OiO»OiO»O^COCDCOCOCOCOcOcOCOCOCOCOCDCOCOi;0 r-ti— It— li— IrHrHr—lT— It-HtHtHi— li— IrHrHTHT-HTHrHrHT— li— ItHt— IrHrH OOOOOOOOOOOOOOOOOOOOOOOOOO Total Heat Above 32° F. to ^ lO^ O lOiOiO 0000000000000000000000000000000000000000000000000000 lO I00i0i0>0 oio »o o>oo ?0.COOOTj(0»OT-i (NC.l>CDCOCOlOlOTt<-^COCOCO(M^O»OOOi-lt>^^H^<^Co'o5TJ^cil005CO^^THlOO•^05rt^OOTt^OiTt^05Tt^ OOrHrH(M(MC0C0Tt00 (Mt^(M00b»iOt^00 »0 OiCO^'C5'l>.(^^OOCOOi■^'oT}^^>'^-^cDo'Ti^oicOOOCOOOcoOi■^05 THC^(NC0C0-<^Ttt^000005Oi0iOOrH,-l(N(MC0C0 (N.C0i0Tt<©i0'^C0(NTHOi-HC^C0"*»C 77777777777 i i i i i i i i i Oi-i(NC0-*>OCDt^0005OT-H(MC0Tt-000JOi-HCqc0rtTHiOOiOO(MCDOrt<»005(Nc005M 05ooco»oco(NOO>i>.coTticoi-ioa)i>iococ^ooocoioeO'-HO COCOCOeoeOCOCO(M(N(NCS(M.C0»O001>tHO CDtOCOOOCOOOi-lTt<"<^cOCO'^(MOCOi-iCO GOa5COl^0005C01>.a)0005»OiOcOc01>.l:^C^(N(M(M(N(NrHi-<0 COtO'^fOC^r-i00500t^cOiOTfieO(M.-iOOiGOI>CDiO-<^COC^rH (N(NC^(M(NCO5 (Mt^(Mt>COOOTti-l>005TjioOC'*(NOOOOTt ^^1 ^ijl Tjl tJi TJI ^sJ* ^^ ^^ ^^ ^^ ^^' ^sP ^T* ^^P ^^ ^^p ^yi TJI ^^ ^m" ^4' ^^ ^^ Density of Vapor, Pounds per Cu.ft. (^^a>lOT--loo■*T-^ooTtll-loo>ocoT--lOl>•'*cO'-^Oi^>.colOTJ^coco i-HrHC<>e0C0rtli0^i:Dl>l>00aiOOT-i(MC0'^TtHi0C0r>0005O Sp. Vol. of Vapor, Cu.ft. per Pound. rtHt^i-HCOC^Ot^-^lMr-iOOOilr^^COiOcOOOOCOiOOOT-HiOOO (NCOiOi-HOO»OT-HOO>OC^OiCDC^05CO(rOOb-rtiC^05COeOT--(00»0 rhiC0C0C0Cq(M(MT-(>-iT-iOOO05C5050i0000001>.I>I>I>i:DC0 c<^c^c^^c^c^cs^(^^(^^(^^(^l(^^c^^(^^^T--^r-^I-lT-lT--lT--^T-l,-lT--l1--ll--l.--l Density of Liquid, Pounds per Cu.ft. i-l0000t>.i:O(NO00^C0OiC0C000(NOcO(Mt^C0a)rfiu0r-liOO t>.iO'^CO(Mi-<0001>-cO-*CO(N00500cOiOCOC^OOil:^':0'^CO OOOOOOOOi05a50i0505O3000000000000001:^t^l>>t^t^ CO(:OcOcOcDcOcD>OiO^^»OiO'OiO>OiO»0^»0^i0^iO»0»0 Sp. Vol. of Liquid, Cu.ft. per Pound. (NTt^(MC0T^00^OC0C<100Tt<'^T:HrtHT}HTtiTt<00C^C0O'^00'*O l>OeOc005(McOOCOI>-OTtiOOOacDO'^00(Ml:^i-icOrH»00>0 ■-*iOiO»Oi0Oc0I:^l:^l>000000Ci0iOOOrHT-icq(NC0e0-<*iTt4 OcOOcOcOcOcDcOCOCDcOcOcOcOCDl>"l>«l>"l>«t^JS"t>l>»t^l>»l>» 1— ti— Ii-HtHi— (i— li— ItHt— It— It— It— li— It— (rHrHTHr-lT— (T-Hi— .t>.|>t>»COiOiOTHC0CLOIOIO COi-(t>.(M00C0OiCOC5'<^O5-^a5'^O5C0I>T-tcO C01>.T-iiOO5C0 T-Ii-Jo0050500G01>^t^Oi:DvOiO-^'^COCOCt>cOCD»O^Tj<'<^COCOC.C0050i-il>-^01>TjHOt>'^T-HOOiO(NOil>."^i-HOOiO cocorj^T+iio>ocoi>'i>oooiC50THT-i(MeocoTtiioiocr)b-oooooi Pressure, Pounds per Sq.in. Absolute. CO oo^^^^^ loioio iOo'cO(MOOCOOCO(N05»0(NOOiOCTt;0020rHg^eo^oor^oo^OjH ^ 0. . 52 HANDBOOK OF THERMODYNAMIC • •to O O o o o !2^ o pq O Q P^ Eh OQ o rji H-l H PL( O P^ Pk Entropy of Vapor. N.THc.OT-tcq(Neoc.»OC0i-HO500C0'<#(MO00C0'*(M0it>.iOC0T-(0iC0Tt<(MOt^ O5O5O5C5O5000000000000l>l>t>t^COi:OCOCOCOiOiOiOiOtOTt< Entropy of Liquid. i>,iocooOt-hc^'>^ioo iooiThieoTHooa5t^ooococooOTjC0Tt.Ci00iT--i(NC0TtiiO<:Dl>CT)O'-iC(N^CSOT-iCC»OC0l>.t>. External Latent Heat. 050iOi00001>.i;OcD»0'*cO(MT-i00500i>.CO»Ort<(MT-iC5001>iO (^0(^^cococol^^co(^^cow(^:)cococo(^^(Nc<^(N(^^c^(N(^^l-^T-l,-^,-t Density of Vapor, Pounds per Cu.ft. C0(MI>Tt''^0irtO C^(Mi-i^(M(M(M^'*c00005(MiOaiC^COi-iiOOcO'-iOOiO»-H05 T-^(^^cO'*iOco^>•oooiO^H(^^"^^occ>ooo5r^(^^T}^lo^>ooo(^^co <£)l>l>l>l>t^l>.0000000000C»O5O5OS Sp. Vol. of Vapor, Cu.ft. per Pound. eot>.cooiTt."^rHooioeoi-ioooi>.co»o»oio COOOOiOeOi-iOOCO'^i-ia5t^'>*i(MOI:^»OCOi-<05CDTti(MOOOCD i;DC0i0i0i0>O'^->*rfiTt4C0C0C0e0C0CK5Tj<(MOOOcOTtH(N051>.0(NOOO»OCOT-'* ^,cDcococoocOl0^u:)>o■^rt^Tt^Tt^T^co(^:)coco(^l(^^(^^^--ll--(TH Sp. Vol. of Liquid, Cu.ft. per Pound. OiOCNOO-^Tfi'^OO'^OC^J'^cO'^cOOcOCOOOOOOcOCDCOOO i>t^i>i:^i>i>i>.i>.t>ooooooooooooooooooooooooo50i05050 ,— ItHi— ItHt— It— IrHi— ii— IrHrHT— It— (1— li— li— It— li— IrHi— ItHi— ii— (t— (t-Ht—I oooooooooooooooooooooooooo Total Heat Above 32° F. t^b-t^lr^l^l>COcOcOcOcDiOiOiOiOTtH-^THCOCOCOCT-iTf. t^OCOCOOOi-.cO»OiOTtHcO(M(Mr-iOOiOOOOt^CD»OTiHCO(MT-i00500l:^CO O5OiO5O5OiO5a5OiO5C5O500000000CX)0000000000001>.|>i>t^ Heat of Liquid Above 32° F. 0^0<0(Nt>COOO'<*00(MOO'>*OCO(NOOrtOOOOa30iOTHrHCq(NeOTji'.:^ Pressure, Pounds per Sq.in. Gage. iocoococococoo»ococoooiocooooocooeocoeocooooocooo CO>-i05l>.TfH(MOOOiOCOT-0'^ Or-HT-l(NCOrtiiOtOC01:^OOOOClOr-lCq(MCO->*iOC01>l:^00050 Pressure, Pounds per Sq.in. Absolute. (Ml>. t^(M iO(Mu:)iOt>- lOiOiO Scale, Temp. °F. (NC0r)H»OC01>.00OlOTH(MCC-^iOc0t^0005Oi-l(MC0rt<»OC0b' -00050i-iC<>CO'<^iO«Ot>» TABLES AND DIAGRAMS 53 tf o pL. < > H Q H- 1 X o l-H ^ Q Qi ;3 ^ s O ^ PQ s Ph o o COOiiOa>CQCOO ■rtHTjHTtiCOeOCO(Mcoco«oi>ooeot^coi> cjicoTtHoOr-ioooocO'^ OCOl>0-^00(McOi-ii:0'-iOOCOOcOTfiiOT-ioa)OiO'-i i-H(MC0>OC0l>CiO(NC0>OCD00O'-(e0'^l>a5O(NiOI:^ COCOCOCOCOCOfOTt<-^-^Tti^oo ooooooco(Mi>(Mt>.i-icoo(roeo(N Oii>iocoi-ioocDeoi-ioococoot^ 1— li— li— IrHOOOOO a)0soi05o:>oooooooot>.i>i>t>.o Density of Vapor, Pounds per Cu.ft. ot^ocq(MT-io5oot^ l^TtirJOiC000 Tt^<^^oo(^^oolO(^^OioOl-^t^co lO00r-lTt(M OSOSOiOOOOT-Hi-i i-lr-l(M(N(MCOCOCO-*TtiOCO'-H OOOOOOo01:^l>.t:^t^I>cOcOcOcDcO oooooooooooooo Density of Liquid, Pounds per Cu.ft. (MCOfNOr^t^OOCDt^ i-i00iOC^00iy3(M00»O OOiOiOOOOOOt^iOOOOOOOTlHI> T-iOOTtt^COCO>OiO'*TjHTtC005>i0i-IC0OTti00(Ni000O(MC0Tt<<£> >OTt<(Mi-lOOir>.COTti CO.>OC0i-iO5t>.COiOrt<"^'^rtOcOi:Ol:^0005050i-i rHr-l,-lr-li-l,-l,-l(M(M (MC0C0-^»OC0l>00C3OTH(NC0Tt^ (Ml>000i0iO O'-iC^C0^»Oc01>00CiO'-H(MTfi OOOOOOOOOOOOOOOOOOOOOSOSOSOi • Pressure, Pounds per Sq.in. Absolute. 05o6oOOOOOOOOOo6o50 0i-O'-H(Me0'*iOC01>000iOi-H(MC0rJHiOCOt:^0005O i0»0<:0c0c0c0c0cC'C0c0Occ>l>t>.t>-l>l>l>l>l>t*t^00 000iOi-H(NC0Tt<»Oc0r^00O5OT-i(MC0'^»OcDt^000iO 54 HANDBOOK OF THERMODYNAMIC Table SOLUTIONS OF RELATION BETWEEN PRESSURE, TEMPERATURE, Upper figures are Starr values, 0^ 0) C3 Q. *H Pounds peb Square Inch Gage PerC NH3I Weig] 5 10 15 20 25 30 35 40 45 50 55 1 206.3 223.6 234.9 247.4 256.2 263.8 270.4 277.1 282.8 288.1 292.9 297.5 • • • 204 219 232 242 251 260 267 274 280 286 291.5 297 1.84 11 .993 201.4 219.3 231.5 243.3 251.7 259.4 266.4 272.7 278.4 283.7 288.5 293.1 198.5 214 226 236.5 245.5 254 261.5 269.5 274.5 281 286.5 292 2 201.1 218.5 230.8 242.1 250.9 258.6 265.5 271.9 277.6 282.8 287.7 292.2 . . . 194 212.5 225 235.5 244.5 253 260.5 267.5 273.5 280 285.5 291 3 195.8 213.2 225.5 236.6 245.6 253.3 260.2 266.8 272.3 277.5 282.4 286.9 . . . 191 206 219 229 238 246.5 254 261.5 267 274.5 280 285 3.80 12 .986 191.5 208.8 221 232.3 241 248.7 255.7 262 267.7 272.9 277.8 282.4 186.5 200.5 214 224.5 233 241.5 249.5 256 262.5 269.5 274.5 280.5 4 190.5 207.7 220 231.2 240 247.6 254.7 260.9 266.7 271.8 276.1 281.4 . • • 185 200 213 223 232 240.5 248 255 261 268 273.5 279.5 5 185.2 202.4 214.6 225.8 234.6 242.2 249.3 255.6 261.4 266.5 271.4 276.1 • • • • • • 180 195 207.5 217.5 226.5 235 242 249 255 262.5 268 273.5 5.30 13 .979 183.5 200.7 212.8 224.1 232.8 240.5 247.5 253.8 259.6 264.8 270.2 274.1 178 192.5 206 216 225 234 240.5 252.5 254 261 266 272 6 180 197.1 209.2 220.5 229.2 237 243.9 250.2 256.1 261.2 266.7 271.2 ... . . . 175 189.5 202 212.5 221 229.5 237 248.5 249.5 257 262.5 268 6.80 14 .972 175.8 193 205 216.2 224.9 232.6 239.6 246.0 251.8 257 262.1 266.7 171 185.5 198.5 208.5 217 225 232.5 239.5 245.5 252.5 258 263.5 7 170 192.1 204 215.3 223.9 231.7 238.6 245.1 250.8 256.1 261.1 265.8 . . . • • • 170 184.5 197.5 207.5 216 224 231.5 238.5 244.5 251.5 257 262.5 8 168.8 187.2 199.1 210.3 218.9 226.9 233.7 240.1 245.9 251.2 266.2 260.8 . • . ' • • 165.5 180 193 203 211.5 219.5 227 233.5 239.5 246 252 257.5 8.22 15 .966 165.4 164.5 185.8 179 197.8 191.5 209 202 217.7 210.5 225.4 218.5 232.4 226 238.6 232.5 244.2 239 249.3 245 254.1 250.5 258.7 256.5 160.8 182.5 194.5 205 214.3 222 229 235.2 240.8 245.9 2.50.7 255.3 . . . 161 175.5 188.5 198.5 207 215 222.5 229 235 241.5 247 252.5 10 16 .960 156 177.7 189.6 200.6 209.2 216.9 223.9 230.1 235.5 240.6 245.4 250 156.5 171.5 184.5 194.0 203 211 218 225 230.5 237 242.5 247.5 11 156.4 173.2 185.1 196.1 204.7 212.4 219.4 225.6 231 236.1 240.9 244.5 • • • 152.5 167.5 179.5 190 198.5 206.5 213.5 220 226 232.5 237.5 242.5 12 151.9 168.9 180.6 191.9 199.6 208.3 214.8 221 226.4 231.5 236.4 240.0 . . . . . . 149 163 175.5 185.5 194.5 202.5 209.5 216 222 228 233 238 12.17 17 .953 151 168 179.9 191.0 199.6 207.3 213.6 219.6 225.0 230.3 234.4 239.0 147.5 162 174.5 184.5 192.5 201.5 208.5 215 221 227 232.5 237 13 147.5 164.4 176.4 187.4 196.1 203.7 210.1 216.1 221.4 226.8 230.8 235.5 144.5 159 171 181.5 190 198 205 211.5 217.5 223.5 228.5 233.5 13.88 18 .946 143.7 160.5 172.3 183.4 192 199.7 206 212.1 217.6 222.7 227.2 231.8 141 155 167.5 178 186.5 194.5 201.5 207.5 214 219.5 224.5 230.0 14 143.2 160 171.8 182.9 191.5 199.2 205.5 211.6 217.1 222.2 226.7 231.3 . . . ... 140.5 154.5 167 177.5 186 193.5 201 207 213.5 219 224 228.5 15 139 155.8 167.6 178.7 187.3 195.0 201.3 207.4 212.9 218.0 222.5 227.1 • • • . . . 137 151 163 173.5 182 190 197 203 209.5 215 220.0 225 16 134.8 151.6 163.4 174.5 183.1 190.8 197.1 203.2 208.7 213.8 218.3 222.9 • • " • • *, 132.5 147 159 169.5 178 186 192.5 199 205 211 215.5 220.5 16.22 19 .94 133.8 150.6 162.3 173.3 181.4 189.5 196 201.8 207.1 212.3 217.1 221.7 131.5 146 157.5 168.5 177 185 192 198 204.5 210 215.0 220.0 17 130.6 147.4 159.1 170.1 178.2 186.3 192.8 198.6 203.9 209.1 213.9 218.5 . . . . . . 129 143 155 165.5 174 182 188 195 201 207 211.5 216.5 18.03 20 .935 126.2 142.9 154.6 165.6 174.2 181.9 188.9 195.1 200.7 205.7 209.5 214.1 125 139 151 161.5 170 177.5 184.5 191 197 202.5 207.5 212.5 19 122.3 138.9 150.7 161.6 170.3 177.9 185.0 191.1 196.8 201.7 205.6 210.1 121.5 135.5 147.5 157.5 166.5 173.5 180.5 187 193 198.5 203.0 208.5 XLIV AMMONIA IN WATER AND PER CENT NH3 IN SOLUTION lower figures are new. TABLES AND DIAGRAMS 55 Above One Standabd Atmosphere 0. "^ MS V 83 Per Cent NHjby Weight. 60 65 70 75 80 85 90 95 100 105 110 115 301.9 306.3 310.4 314.4 318.2 321.8 325.2 328.5 331.7 334.8 337.8 340.7 301.5 306 310 315 318.5 322 325.5 329 307.5 335.5 339 341.6 1 297.5 301.8 306 310 313.8 317.4 320.8 324.1 327.3 330.4 333.4 336.3 296.5 301 305.5 310 313.5 317.5 321 324.5 330.5 331 334 337 .993 11 1.84 296.7 300.9 305.2 309.2 312.9 316.6 320 323.2 326.5 329.6 332.6 335.4 295.5 300 304.5 309 312.5 316 320 323.5 327 330 333 336 2 291.4 295.6 300 303.9 307.6 311.3 314.7 317.9 321.2 324.3 327.3 330.1 289.5 294.5 299 303 307 311 314.5 317.5 320.5 324 327.5 330 3 286.8 291.1 295.3 299.3 303.1 306.7 310.1 313.4 316.6 319.7 322.7 325.6 .986 284.5 290 294 298.5 302 306.5 310 313 316 320 323 325.6 12 3.80 285.7 290.1 294.2 298.3 302.1 305.6 309.1 312.4 315.5 318.7 321.6 324.5 4 284 289 293 297.5 301 305.5 309 312 315 318.5 326.5 324.5 280.4 284.8 288.9 293 296.3 300.3 303.8 307.1 310.2 313.4 316.3 319.2 5 278.5 283 287.5 292 295.5 299.5 303 306 310 313 316.5 319 279.2 283.5 287.1 291.7 295.5 299.1 302.5 305*. 8 309 312.1 315.1 318 .979 13 5.30 276.5 281.5 285.5 290 294 298 801 304.5 307.5 311 315 317.5 275.6 280 284.1 288.2 291.9 295.5 299 302.2 305.5 308.5 311.6 314.4 6 273 277.5 281.5 286 290 294 302 300.5 304 307 310.5 313.5 • • ' 271.1 275.4 279.6 283.6 287.4 291 294.4 297.1 300.9 304 307 309,9 .972 14 6.80 269 278.5 277.5 281.5 285.5 289.5 303 296 300.5 303 306.5 309 270.1 274.5 278.6 282.7 286.4 290.1 293.5 296.7 300 303 306.1 308.9 7 267.5 277.5 276.5 281 284.5 288.5 302 295 299.5 302 305 308 . . . 265.2 269.6 273.7 281.7 281.5 285.2 288.6 291.7 295.1 298.1 301.2 303.9 8 262 267 271.5 275.5 279.5 283.5 287 290 293 296.5 300 303 ■ ■ * 263.1 267.4 271.6 275.6 279.4 283 286.4 289.7 292.4 296 299 301.9 .966 15 8.22 261 266 270 274.5 278 282.5 286 289 292 295.5 296.5 301.5 259.7 264 268.2 272.2 276 279.6 283 286.3 289.6 292.6 295.6 308.6 9 257 262 266.5 270.5 274.5 278 282 285 282 291.5 294.6 297.6 . . . . . . 254.4 258.7 262.9 266.9 270.7 274.3 277.7 281 264.2 287.3 230.3 293.2 .960 16 10 252.5 257.5 261.5 265.5 269.5 274 277 280 277 287 290 293 249.9 254.2 258.4 262.4 266.2 268.8 273.2 276.5 279.7 282.8 285.8 288.7 11 247.5 252.5 256.5 260.5 264.5 268.5 272.5 275 272 282 285 288 . . . 245.4 249.8 253.9 257.9 261.7 264.3 268.7 272 275.2 278.3 281.3 289.2 12 242.5 247.6 251.5 256 259.5 264 267.5 270 267 277 280 283 . . . . . . 243.4 247.7 251.9 255.4 259,7 263.3 266.7 270 273.2 276.3 279.3 282.2 .963 17 12.17 242 246.5 251 255 253.5 263 266.5 269 266.5 276 279 282 239.9 244.2 248.4 251.8 256.2 259.8 263.1 266.5 269.6 272.8 275.7 278.6 13 238 243 247 251 255 258 263 266 262.5 272.5 275.6 278.5 • * • 236.2 240.5 244 248.7 252.5 256.1 259.8 262.8 266 269.1 272.1 276 .946 18 13.88 234.5 239 243.5 247 250.5 255 259.0 261.5 258 268.5 271.5 274.6 235.7 240 243.5 248.2 252 255.6 259 262.3 265.5 268.6 271.6 274.6 14 234 238.5 242.5 246.5 250 254.5 258.5 261 257.5 268 271 274 • • • 231.5 235.8 239.4 244 247.8 251.4 254.8 258.1 261.3 264.4 267.4 270.3 15 229.5 234 238.6 242.5 246 250 254 256.5 260 263.5 266.5 270 ■ • * ■ " • 227.3 231.6 235.1 239.8 243.6 247.2 250.6 253.7 257.1 260.2 263.2 266.1 16 225 230 234 237.5 241.5 246 249.5 252 255.5 259 262 265 • • • • • • 226.1 230.4 234.6 238.6 242.4 246 249.4 252.7 255.9 259 262 264.9 .94 19 16.22 224.5 229 233.5 237 241 245 248.5 251.5 254.5 258 261 264 222.9 227.2 231.4 235.4 239.2 242.8 246.2 249.5 252.7 255.8 258.8 261.7 17 221 225.5 230 233 237.5 241.5 245 248 251 254.5 257.6 260.5 • • • • • « 218.5 222.8 227 231 234.8 238.4 241.8 245.1 248.3 251.4 254.4 257.3 .935 20 18.03 217 221.5 225.5 229.5 233 237.5 241 243.5 247 250 263 256.6 214.6 218.8 223.1 227 230.9 234.4 237.9 241.1 244.4 247.4 250.5 253.4 19 213 217.5 221.5 225 229 233 237 239.5 243 246 249 262 56 HANDBOOK OF THERMODYNAMIC Table SOLUTIONS OF RELATION BETWEEN PRESSURE, TEMPERATURE, Cent I by ght. Qpq Pounds peb Square Inch Gaqh 5 10 15 20 25 30 35 40 45 50 55 19.87 21 .928 119.4 135.9 147.6 158.6 167.2 174.4 181.5 187.2 192.5 197.5 202.3 206.9 118 132 144 154 163 170.5 177 184 189.5 195.5 200.5 205 20 118.9 135.5 147.1 158,2 166.7 174.4 181.1 186.7 192.1 197 201.9 206.4 ' • • • • • 117.5 131.5 143.5 153.5 162.5 170 176.5 183.5 189 195 200 204.5 21 115.2 131.8 143.4 154.5 163.0 170.7 177.4 183.0 188.4 193.3 198.2 202.7 • • • * • • 114 128 140 150 158.5 166 173 179.5 185 191 195.5 200 21.75 22 .921 112.9 129.4 141 151.9 160.5 168.2 174.6 180.1 185.3 190.3 195.1 199.7 111.5 125.5 137.5 147 155.5 163.5 170 176.5 182.5 188 193.0 197.5 22 112 128.5 140.1 151.0 159.6 167.3 173.7 179.2 184.4 189.4 194.2 198.8 • « • " * * 110.5 124 136.5 146 154.5 162.5 169 175.5 181.5 187 191.5 196 23.03 23 .915 108 124.5 136.1 147 155.6 163.3 170.0 175.4 180.2 185.2 190.0 194.6 107 120.5 132.5 142.5 150.5 158.5 165 171.5 177.5 183 187.5 192.5 24 114.8 121.3 132.9 143.8 152.4 160.1 166.8 172.2 177.0 182 186.8 191.4 * * * • " • 103.5 117 129 138 147 154.5 161.5 168 174 179 184 188.3 24.99 24 .909 101.5 117.8 129.3 140.1 148.6 156.3 163 168.4 173.6 178.6 183.2 187.8 99 113.5 125.5 135 143.5 151 158 164.5 170 175.5 180 185 26 98.3 114.6 126.2 136.9 145.5 153.1 159.8 165.3 170.4 175.5 179.9 184.7 • • * • • • 95.5 110.0 122.0 131.5 140 147 154 160.5 166.5 171.5 176.5 181 27 95.1 111.4 123.1 133.7 142.3 150.0 156.6 162.1 167.2 172.4 176.7 181.3 • • • • ' • 92.5 106.5 118.5 128 136.5 143.5 150.5 157 162.5 168 172 177.5 27.66 25 .904 93.0 109.4 121.0 131.7 140.1 147.9 154.5 159.9 165.1 170.3 174.4 178.9 90.0 104.0 116.5 126 134 141.5 148.5 154.5 160.5 165.5 171 175 28 92. C 108.3 120.0 130.6 139.1 146.8 153.4 158.9 164.0 169.3 173.3 177.9 • • • ... 89.0 103 115 124.5 132.5 140 147 153.5 159 163 169.5 173.5 29 88.9 105.2 117.0 127.5 136 143.8 150.3 155.8 161 166.2 170.2 174.8 • • • ... 86.0 99.5 111.5 121 129 136.5 143 149.5 155 160.5 165 170 29.60 26 .898 87 103.3 114.7 125.4 133.9 141.6 148.2 153.8 159 164.3 168.1 172.7 83.5 97.5 109.5 119 127 134.5 141 147 152.5 158 163.5 167.5 30 85.8 102.1 113.5 124.2 132.7 140.4 147 152.6 157.8 163.1 166.9 171.6 • • • . . . 82.5 96.5 108 117.5 125.5 133 139.5 146 152 157 162 166 31.05 27 .891 82.6 98.8 110.2 120.9 129.4 137.1 143.5 149.2 154.5 159.8 163.6 168.3 79.0 93.0 104.5 114 122 129.5 136 142 148 153 158.5 162.5 32 80.1 96.2 107.6 118.3 126.8 134.5 140.9 146.6 151.9 157.2 161.0 165.7 • • ' • • • 76.0 89.5 101 110.5 118.5 126 132.5 138.5 144.5 149.5 154.5 159 33 77.4 93.5 104.9 115.6 124.1 131.8 138.7 143.9 149.2 154.5 158.3 163.0 " • • • • • 73.0 86.5 98 107 115.0 122.0 129 135 140.5 146 151.5 155.5 33.25 28 .886 76.5 92.6 103.9 114.6 123.1 130.8 137.8 143 148.3 153.6 157.4 162.1 72.0 85.5 97 106.5 114.5 121.5 128 134 140 145 150.0 154.3 34 74.6 90.7 102 112.7 121.2 128.9 135.9 141.1 146.4 151.7 155.5 160.2 • • • • • • 69.5 83.0 94.5 104.0 111.5 119 125.5 131.5 137.5 142.5 147.5 152 35 72 88.1 99.4 110.1 118.6 126.3 133.3 138.5 143.8 149.1 152.9 157.6 • • • . . . 67.5 80.0 91.5 100.5 108.5 115.5 122 128 134.0 139 144 148.5 35.60 29 .881 70.4 86.5 97.8 108.5 117 124.7 131.7 137.9 142.2 147.5 151.3 156.0 64.5 78.0 89 98.5 106 113.5 120 126 132 136.5 142 146 36 60.5 85.6 96.9 107.5 116.1 123.8 130.8 137.0 141.7 147.2 151.0 155.7 ... • • • 63.5 77 88 97 105 112.5 118.5 124.5 130 135 140 145 37 67.2 83.3 94.6 105.2 113.8 121.5 128.5 134.7 140.7 146.8 150.2 154.9 ... • • • 60.5 73.3 85.0 94 101.5 108.5 115.0 121.5 127 132 137 141 38 . 65.0 81.0 92.3 104.9 111.5 119.2 126.2 132.5 138.4 143.9 149.4 154.0 • . . • • • 57.5 70.5 81.5 90.5 98.5 105.5 112 117.5 123.5 138.5 133.5 137.5 38.20 30 .875 64.5 80.5 91.8 102.5 111.0 118.7 125.7 132 138.1 143.6 149.3 153,9 66.5 70.0 81.0 90 97.5 105 111.5 117.0 123.0 127.5 133 137.0 TABLES AND DIAGRAMS XLIV — Continued AMMONIA IN WATER AND PER CENT NH3 IN SOLUTION 57 Above One Standard Atmosphere >> 0.2 00 . 00:3 Per Cent NHjby Weight. 60 65 70 75 80 85 90 95 100 105 1 110 115 211.3 209.5 215.6 214 219.8 218 223.8 221.5 227.6 225 231.2 229.5 234.6 233 237.9 236 241.1 239 244.2 242 247.2 245.5 250.1 248 .928 21 19.87 210,8 215.2 219.3 223,4 227.1 230.7 234.1 237.4 240.7 243.8 246.7 249.6 209 213.5 217.5 221 224.5 229 232,5 235.5 238.5 241,5 245 247.5 20 207.1 211.5 215.6 219.7 223.3 227 230,4 233.7 237 240,1 243 245.9 21 205 209.5 213.5 217.5 221 224.5 227.5 231 234.5 237.5 240.5 243.5 204.1 208.4 212.6 216.6 220.4 224 227.4 230.7 233.9 237 240 242.9 202 206.5 210.5 214 218 221.5 225.5 228.5 232 234.5 237.5 240.5 .921 22 21.73 203.2 207.5 211.7 215.7 219.5 223.1 226.5 229.8 233 236.1 239.1 242 22 201 205.5 209.5 213 215 220.5 224.5 227 230.5 233 236.5 239.5 199 203.3 207.5 211.5 215.3 218.9 222.3 225.6 228.8 231.9 234.9 237.8 .915 23 23.03 196.5 201.5 205 209 211 216.5 220 223 226,5 229 232.5 235 195.8 200.1 204.2 208.3 212.1 215.7 219.1 222.4 225.6 228.7 231.7 234.6 24 193 197.5 201.5 205 207 212.5 216 219 222.5 225 228.5 231 . . . 192.2 196.5 200.7 204.7 208.5 212,1 215.5 218.8 222 225.1 228.1 231 .909 24 24.99 188.5 193 197.5 201.5 205 208,5 212 215.0 218.5 221.5 224.5 227 189.1 193.3 197.5 201.6 205.3 208.9 212.2 215.6 218.9 221.9 225 237.8 26 185.5 190 194 197.5 201.5 205 208 211.5 214.5 271.5 220.5 223.5 . . . . . . 185.9 190.2 194.3 198.4 202.2 205.7 209 212.5 215.8 218.7 221.8 234.7 27 181.5 186 190 194 197.5 201 204.5 207.5 210.5 213.5 216.5 219.5 183.3 187.6 191.8 195.8 199.6 203.2 206.6 209.9 213.1 216.2 219.2 222.1 .904 25 27.66 179 183.5 187.5 191.5 195 198.5 202 205.5 208.5 211 214.5 217 183.2 186.6 190.7 194.8 198.5 202.2 205.6 208.8 212.1 215.1 218.2 221.0 28 177.5 182 186.5 190 193.5 197.5 200.5 204 207 210 212.5 215.5 • • • 180.2 183.5 187.6 191.8 195.4 199.1 202.6 205.7 209.0 212.1 215.1 217.9 29 174 178 182.5 186 190 193.5 196.5 200 203 206 209 211.5 ... • • • 178.1 181.4 185.6 189.6 193.4 197.0 200.4 203.7 206.9 210 213.0 215.9 .898 26 29.60 171.5 176 180 184 187.5 191 194.5 198 201 203.5 207 209.5 176.9 180.2 184.4 188.4 192.2 195.8 199.2 202.5 205.7 208,8 211.8 214.7 30 170 174.5 179 182.5 186 189.5 192.5 196.5 199,5 202.0 205 208 . . . . . . 173.5 177.0 181.2 185.2 189.0 192.6 196 199.3 202.5 206.6 209.6 212,5 .891 27 31.05 166.5 171 174.5 178.5 182,5 185.5 189 192.5 195.0 198.0 201 204.5 170.9 174.4 178.6 182.6 186.4 190 193.4 196.7 199.9 204 207 209,9 32 163 167 167.5 175 178.5 182 185.5 188.5 192 194.5 197,5 200,5 • • • • • « 168.2 171.7 175.9 179.9 183.7 187.3 190.7 194.0 197.2 201.3 204.3 207.2 33 159.5 163.5 163.5 171.5 175 178.5 181.5 185 188 191.0 194 196.5 • • • 157.3 170.8 175 179 182.8 186.4 189.8 193.1 196.3 200.4 203.4 206.3 .886 28 33.25 169.0 163 162.5 170.5 174.5 177.5 180.5 184 187.5 190 193 196.0 165.4 168.9 173.1 177.1 180.9 184.5 187.9 191.2 195.4 198.5 201.5 204.4 34 156 160 160 168 171.5 175.5 178 181.5 184.5 187.5 190 193.0 • • " • ' * 162.8 166.3 170.5 174.5 178.3 181.9 185.3 188.6 192.8 195.9 198.9 201.8 35 152.5 156.5 156.5 164 168 171.0 174 177.5 180.5 183.5 187 189.5 " • • > • • 161.2 164.7 168.9 172.9 176.7 180.3 183.7 187.0 191.2 194.3 197.3 200.2 .881 29 35.60 150.5 154.5 154.5 163 165.5 169 172 175.5 178.5 181.0 184.5 187 160.8 164.5 168.7 172.7 176.5 180.1 183,5 186.8 191 193.9 196,9 199.8 36 149.0 153 153.0 160.5 160.5 167.5 170,5 174 177.0 179.5 182.5 185.5 ... • • • 159.7 163.7 167.9 171.9 175.8 179.3 182,7 186.0 190.2 192.8 195.8 198.7 37 145.5 149.5 149.5 157 153 164.0 167 170.5 173 176.0 179.5 182.0 • • . • • • 158.6 162.9 167.1 171.1 175 178.5 181.9 185,2 189.4 191.7 194.7 197.6 33 142 146 146 153.5 150 160.5 163,5 166,5 170 172.5 175.5 178.5 ... 158.3 162.6 167 171.0 174,8 178.4 181,8 185.1 188,3 191.4 194.4 197.3 .875 30 38.20 141.5 145.5 145.5 153 149,5 160 163 166 169.5 172 175 178 58 HANDBOOK OF THERMODYNAMIC Table XLV AMMONIA— WATER SOLUTIONS VALUES OF PARTIAL PRESSURES OF AMMONIA AND WATER VAPOR FOR VARIOUS TEMPERATURES AND PER CENTS OF AMMONIA IN SOLUTION per cent NHa 2. 5 5.0 7.5 0) o o CO 2 a a 2 53 ««-t S «3 o a OQ a 2 a •3 a CQ 0> a 2 . o ^ a " 2 fa 03 o Co DO O DQ Q, Si S3 u 03 m O Si S.2 1 o .2 S Ah -sew iHa i;a If =5 _ o !?a 1° Press. Inc bes Hg Press. Inches Hg Press. Inches Hg 32. .236 .177 .413 .512 .158 .670 .788 .158 .946 35.6 .256 .197 .453 .571 .197 .768 .867 .197 1.064 39.2 .276 .236 .512 , .591 .236 .827 .945 .216 1.161 42.8 .295 .276 .571 . .650 .276 .926 1.041 .256 1.297 46.4 .315 .315 .630 . .709 .315 1.024 1.16 .295 1.455 50.0 .354 .355 .709 . .788 .355 1.343 1.28 .335 1.615 1.6 53.6 .394 .413 .807 . .866 .394 1.260 1.415 .374 1.789 1.8 57.2 .434 .472 .906 . .965 .452 1.417 1.575 .433 2.008 2. 60.8 .492 .532 1.024 1.062 .511 1.573 'i'.i ) 1.75 .473 2.223 2.1 64.4 .552 .590 1.142 1.18 .590 1.770 lA ) 1.925 .552 2.477 2.5 68. .611 .670 1.281 1.3 1.319 .649 1.958 2. 2.125 .611 2.736 2.9 71.6 .670 .748 1.318 1.5 1.455 .728 2.183 2.^ } 2.34 .689 3.029 3.1 75.2 .729 .847 1.576 1.6 1.592 .826 2.418 2.e ) 2.58 .788 3.368 3.6 78.8 .807 .945 1.752 1.8 1.75 .925 2.675 2.5 \ 2.835 .866 3.701 3.9 82.4 .885 1.06 1.945 2. 1.925 1.043 2.968 3. 3.09 .985 4.075 4.1 86 .985 1.2 2.185 2.1 2.125 1.180 3.305 3.S 3.49 1.122 4.612 4.8 89.6 1.085 1.36 2.445 2.5 2.30 1.34 3.64 3.8 3.70 1.28 4.98 5.2 93.2 1.18 1.515 2.695 2.8 2.52 1.495 4.015 4.1 4.06 1.435 5.495 5.8 96.8 1.28 1.69 2.97 3 2.725 1.672 4.397 4.5 4.42 1.615 6.035 6 100.4 1.38 1.89 3.27 3.4 3.01 1.870 4.880 5 4.82 1.81 6.63 6.7 104.0 1.455 2.125 3.580 3.8 3.29 2.085 5.375 5.2 5.27 2.03 7.30 7.3 107.6 1.655 2.36 4.015 4 3.58 2.30 5.88 6 5.72 2.245 7.965 8 111.2 1.811 2.62 4.431 4.6 3.90 2.56 6.46 6.5 6.18 2.50 8.68 8.8 114.8 1.970 2.95 4.920 5 4.23 2.815 7.045 7 6.78 2.76 9.54 9.4 118.4 2.15 3.21 5.36 5.2 4.58 3.11 7.69 7.8 7.33 3.05 10.38 10.2 122.0 2.320 3.54 5.860 5.9 4.96 3.44 8.40 8.5 7.89 3.37 11.26 11.3 125.6 2.520 3.88 6.400 6.4 5.35 3.80 9.15 9 8.55 3.70 12.25 12. 129.2 2.740 4.29 7.030 7 5.80 4.22 10.02 10. 9.25 4.07 13.32 13.2 132.8 2.955 4.73 7.685 7.8 6.25 4.65 10.90 11 9.89 4.5 14.39 14.4 136.4 3.15 5.21 8.36 8.2 6.72 5.12 11.84 12 10.06 4.98 15.04 15.8 140 3.37 5.77 9.14 9 7.2 5.63 12.83 12.9 11.45 5.49 16.94 16.9 10 12.5 15 32 1.21 .158 1.368 1 1.58 .138 1.718 1.5 2.11 .138 2.248 2 35.6 1.24 .177 1.417 1.5 1.72 .157 1.877 1.8 2.3 .157 2.457 2.5 39.2 1.36 .197 1.557 1.5 1.89 .177 2.067 2.1 2.54 .177 2.717 2.8 42.8 1.495 .236 1.731 1.7 2.09 .217 2.307 2.5 2.79 .217 3.007 3 46.4 1.67 .276 1.946 1.9 2.31 .256 2.566 2.8 3.07 .256 3.326 3.2 50 1.87 .315 2.185 2 2.56 .295 2.855 3 3.41 .295 3.705 3.8 63.6 2.05 .355 2.405 2.4 2.82 .335 3.155 3.3 3.76 .335 4.095 4.1 67.2 2.28 .413 2.693 2.9 3.12 .394 3.514 3.7 4.14 .374 4.514 4.7 60.8 2.52 .472 2.992 3 3.45 .453 3.903 4 4.55 .433 4.983 5 64.4 2.79 .532 3.322 3.4 3.82 .512 4.332 4.5 6.02 .492 6.512 6.5 TABLES AND DIAGRAMS Table XLV — Continued 59 Per cent NHi 10 12 .5 15 £ . a a iH a a 3 fc- V a> y* 00> 2 2 S> M U 09 And si* 00 cJ g5 £«s Si S.2 2"^ «5 Ah> Si 2'^ «5 1 a as. _ O 3a ^a a3^ O HH ^ H ;^ f/i KH P w « H o oj O Pm PQ O w H -< W W 1 p=: T.U. per t. at 32° id 29.92 na. Hg. ^ 53^ 1-1 00 CD » CD U9 CO WW CO ec CO O OS pq'S ''"' o aj s 3 o > O u-> ^ C >> ,bfi X o O § a .a < 1 1 o u^i^ CO o S° 05 bJi 05 05 O OS 8 CO • 03-73 2 1> (N ' tH tn > tn C O oj o 1 g 2 > a-^ a s^ . . "+3 3 'O o "S o o t^^i^ <3 o3 rfl ^ (U c3 03 p^pqpqp^pq P^pqO b^ ei OS 1-1 O IN t^ OS 05 T— t Tt< T-H -^ «© »« O (N O T- ^^ Tt^ CO (M GO -^ «© 00 I:^ CO ffO CO CD 00 00 00 O O "sH ^^ "^ ^^ tH O 1— 1 O r-l T— 1 T^ r*< "«^ CO CO »o CO -^ CO iH P^ ft tH iH tH tH r- o <;o «;£i ;e kO LQ (N (N (N ei p^ o (M (M tJ< Tj< ,-( T-H CO CO (M (N < TS "O fe! •-H o rfi • • • pc^ [Jh P-< TO '3 =5. ^ a 3 o - - - - O^ -. rH HH Hn o q o o o C^ (M (N 0-. faD ;r5 -3 O u o- - Tfl O Tfl T-H T— 1 1— 1 CO 05 CO (N (N • o o ©31 Hi -* OS OS i>. ©8 CO OS o ■>■ OS OS 00 1720 1570 a > o 'm O < c3 hC O > < - - - - - Cu.ft. per Lb. at32°F. and 29.92 ins. Hg. 00 o CO CO CO r-4 r-t CO H o <1 ;2 f^ f^' s g s 03 U U c3 ^ o3 a a mm d a a mOU ^^ o o o ^ . . "£ rS r2 fflOO d 1=1 03 03 a a I— 1 I— 1 SB m m P3 a a ^ c5 d to 02 a a o o CQ ^ 43 «C o -£^45 rd S 03 03 H WOO 03 to a a o o sSss a '^ • • o -S^^ rC3 o o3 03 HPQOO Tjl «0 00 JO. iH » CO »« (N O O OS (M (yi th »o O i« Tt< iH 05 J:^ «0 r-l O O OS (N (N tH tH 5© ifl C5 i>. O O OS 00 00 !>• I>- T-l tH iH 1-1 o o Tt^ ^ CO 1> «D (N O © OS (M (N tH O CO CO CO to 05 O T-H (N lO (N rH O CS O OS r-t tH lO GO 50 O . • s* ^ o o o a 02 o o 1 Ph 03 W •o o "o N to O q o 1 J q o 'o 1 tlO .2 3 «CT3 .— > d *3 o a CO o3 id o o 02 o o d C3 3 -fc3 a ^ 00 (N ^-^ lO --^ ■^ (M 00 t^ (M •+^ ,. (M (M T-t CO 05 (N 00 (M 05 TjH to CO Oi 05 ■<*' 00 t-iM T-i 00 o 00 lo r- • 8 o 8 8 o piH* ? O !>• t^ 1-1 00 lO CO 00 (N O CO cy.S O O O 1-1 O O T-l O mxi O O O O O O o o O O O mH O O O O O o C5 O O O O O O O O a • o i' r r i' i' s ?^ + + + r r r + + +i r 3h5 Q T-H tH 1—1 i-H rH -U -U T— 1 rH tH tH 1—1 T-H ^J=l o O lO J=11oZi W O O O O O O CO CO i-H t^ !>• CO (M 00 O CO 00 lO lO (M CO O (N 05 CO (M CO CO 00 u 00 O l^ o r^ rti t^ O O 1-1 05 00 (N 05 1-1 00 (M l> CO rfi ""^i TtH !>. 1-1 ft T^ CO »o »o »o "^ "^ (M tH CO (N Ci (M Tji Tji t>. CO tJ H w ft SH ft . i g^ ^-^ OQ ft C^ t^ (M -Cr^ t^ r ^ "^ O -^ O lO 00 ^ o O 1—1 O 1-* (N o O O O O Q O 00 O io c5 lO 1-1 i>. '^ CO CO 00 fed TO (U o ^ CO T-i lo O O 2] '-I Cq T-l 1-1 O o o o o o O o *^ "^ '^ "^^ d^ 1-1 o o o o d o lO 00 CO ^ • , • o o o O O o o o ° ° . . . »0 QO • P p O O (M r-t ' 1 1 1 1 -f^ +3 + + + J1 l' l' + + i : + 11:: T-l H-3 tH • 1 1 ' o3 o3 l-< rH o3 rH T-H 1—1 0; o3 Q V_.^ v_-^ lO ^ ^-^ -— ^ --^ 00 !>. ^ X_^ v_^ ^_X -^ N_^ 1-1 o c O ^ 10 CO 00 00 CO 3 CO OS t^ lO 05 (M (TQ 00 i> CO -* CO (M 1-1 CO CO CO (N (N 10 CO cd CO O Oi !>. Oi >0 CO 1-1 1-H 00 (N 00 (M O TjH CO 1—1 o: '^ 00 10 10 CO 05 a 1— 1 CQ 1— H 1—1 r-( tH T— 1 1> t^ O O 05 tH (N Cq C 1-1 O CO 1— 1 tH c^ 1-1 1-1 1-1 tH '^ a <4-l (S t- p -** 0. ^ g £ +3 02 3 Ill's b 1 t5* a 1 bC i <0 OQ 1 -03 j3 o3 c rd 0) -d > .i: c > 1 PQ CC I <; M Eh N N o5 66 HANDBOOK OF THERMODYNAMIC i o 1^ o Q .11 w *< - pp •r* *^ "a a CO 03 S ^ d fl d O (U o o o fe ^ f-l *-< o .— r o o o ,.j" ^-- -d a)aj^^^ ^ ^j o) > Ji^ a> S S 0) ro m GQ GO a> u (u o -Q ,Q ^ X5 ^ b '-I ^-i o ^O o o d S o S SO _0 _0 t^ CO CO &b CQ 2 u 03 r-l CO (N o 03 00 00 Tjl 05 lO CO (M (N ot^io6dco;::;coS^:^^^o5bo^^^?^^§ i-iiO»0»0(N»0»000 00 (N CO CO -D 0) 0) ^t^ I o ■43 *3 d d §3 S3 ^^^^6 Winkplmann Graetz Schwarze Schleiermacher Schwarze Winkelmann Winkelmann Eckerlein Winkelman Winkelmann Winkelmann Winkelmann Winkelmann 00 Tt< "* CO >o ^ 05 t> CO lO TjH «3 cq CO (N (N t^ CO "^ (M CO Oi O (M CO I CD O rH o o o + to O ^ 05 CO "^ CO o 1— I T-l 1— I C^ (N (N CO CO CO I "^ 00 I>- Tj< Tt^ 05 ^ (M O Q O O O O O + + + lO i-H COrJH CO(NC000»OO5 i-ii-liO(NiOCO00rJH00 THi-IOiOJi— lr-li—lT-HO CO CO CO CO ''ii CO rH T-H (M 1-4 C • o an So « . CO OS CQ iO O lO lO o o -1-3 -f.3 W3 00 00 o%o •^ o o ■+a R -IJ ci •Xh as O CO 05 c^ CO C^l tH 1— i 1-1 O o O o o o o 00 o 03 O o 00 tH 03 c3 a So a CO c3 O O lO CO o o o o o o ii CO lO CO lO 00 CO CO o o o o o o o o o .8 S CO -^ !>. ^ Vj rH 8 £3 ^ ^ o o 888d*-^ oo + i +++°o i i o o •4-3 -4^ 1-1 jH th ^ ^ t^u ^a 05 lO "^ Tt< CO 03 03 00 Tj^ OS r^ 05 l> CO 00 CO (N 00 Oi 1> CTS (N CO T*H Oi o »0 T^ lO t^ CO CO (N i-H lO lO CO TjH CO o O O CO CO o o o o (^ o ^^ o o o o o o <*^ f^ g"*> ^^ ^^ (**1 f^ o o o o o o ^^ t^ (O o o o o o o o o o o o o o O o o o 03 d o3 O O c3 JJ _o •th o3 *"* rd >j 03 ^ ^ W « A^ 1^ 03 •a o a a o d o a d o _ _^-i d d d bD bc 0) fl d Q^ O O bD 53 03 o o 68 HANDBOOK OF THERMODYNAMIC Table LIII RELATIVE THERMAL CONDUCTIVITY Conductivities Carbon Dioxide ) AND [ = 1 at 32° F. Resistances Silver J Substance. Conductivity Carbon Dioxide =1. Resistance = Conductivity Silver =1. Iron Iron (Wiederman and Franz) . , Copper Copper (Wiederman and Franz) Steel Steel (Wiederman and Franz) . . Aluminum Lead Lead (Wiederman and Franz) . . Tin Tin (Wiederman and Franz) . . . Zinc Zinc (Wiederman and Franz) . . Silver Slate Granite and sandstone Marble, limestone, etc Portland cement Plaster of Paris Son Sand, white dry Chalk Firebrick Carbon Glass Diatomic earth ParaflGine Ice Sawdust Snow, packed Woods Strawboard Pasteboard Asbestos paper Blotting paper Felt Cotton wool 5700 4165 23000 25760 3600 4165 11000 2700 2975 6000 5320 5000 9835 35000 5.23 8.60 1.52 1.36 9.74 8.60 3.18 12.95 11.75 7 6.58 7 3.56, 1 117 300 176 199 153-182 228-192 23.2 1511 22.8 1531 10.7 dry; 52.2 wet 3270 dry; 6700 wet 30.4 1150 6.52 6370 9.12 3840 13.2 2650 35.8 to 75 978 to 467 4.24 8260 7.50at 0°C. to 4670 at 32° F. to 637 at 212 55.0 at 100° C. 72.7; 18.5 481; 189.0 3.92 8940 16.6 2110 9.8 w.g.; 2.94 a.g. 3570 with grain; 11900 ac.g 9.8 3570 14.7 2380 14.0 2500 4.9 7150 2.84 12300 1.4 25000 TABLES AND DIAGRAMS 69 Table LIII — Continued RELATIVE THERMAL CONDUCTIVITY Substance. Conductivity Carbon Dioxide =1. Resistance = Conductivity Silver =1. Cotton wool, pressed Flannel Haircloth Cork Leather, cowhide Water Methyl alcohol Methyl alcohol (De Heen) Ethyl alcohol Ethyl alcohol (Henneberg) Ethyl alcohol 90% (Henneberg) Ethyl alcohol (Henneberg) . Benzole Benzole (Weber) Petroleum Air Ammonia Ammonia (Plank) Ethylene Ethylene Hydrogen Hydrogen (Stefan) Hydrogen (Kindt and Warberg) Nitrogen Oxygen Oxygen (Stefan) Methane Methane (Stefan) Carbon monoxide Carbon monoxide (Kindt and Warberg) Carbon dioxide Carbon dioxide (Stefan) Carbon dioxide (Kindt and Warberg) . . Illuminating gas (Plank) 1.08 3.92 1.37 2.34 13.7 32400 8930 25600 1495 2560 39.09 16.12 10.70 13.78 12.07 12.53 21.22 10.83 11.25 11.56 896 2170 3270 2540 2900 2990 1650 3240 3100 3030 1.85 1.27 1.7 1.28 1.37 10.65 12.97 13.14 1.71 1.83 1.89 2.30 2.57 1.62 81 00 15 09 94 18900 27600 20600 27400 2960 3280 2960 7100 20450 19100 25500 15200 18500 21600 19300 35000 30400 32100 13600 Table LIV COMPARISON OF CELLULOSE AND AVERAGE WOOD (Dry and Ash Free) Constituent. Carbon Hydrogen Oxygen Oxygen and nitrogen , Cellulose. 44.44% 6.17% 49.39%, Wood, Average of Maple, Oak, Pine, Willow. 49.2% 6.1% "44!7%o Spores of Club Moss. 63.0% 8.6% 28.4% 70 HANDBOOK OF THERMODYNAMIC ^ =^ f' ^ w ^^ O 0^^>•CD"«^rt^rt^lOCOOOO^•CO^•051-^r}^^0^•^>•05(M(^^OJC<^00 (MCOOOCOCOC^OOt^C^CQCOOOl^OOOSThiOOOtMcOt^fNi-tCO Tt^(MI>.lr^OT-lTH00CD(MTtl>.Ot^05»OT-H05 Cq>Oi-iOir- lOO'-HC^t^OOOOJCOCO'-tOOOOrJ^fNcOCqOOiCOTti TjHO"^»OOiO'— lOS-^THrHr^lOrHTtli— (COO'— I»0t^i00irf(0»0 CO OOiO C0i0»0"<:t^00 1-1 t>.OOOiOO'^TjHCOCO'*CqOOOil>(M CO'OCOtOO'— io»o 00CD(McO(NiO'*00t-( ■«f<£»VOTt<<:ClXO^CO<©T-HI>05C0TH(MrtlOt»i-l|>.TjHC0 05 05 >Ot^l>.l>.C005(NCO (N Oil>(M'*CDI>0(MOt>-(M C0(M(M7-l CO^a> • ••••••• •••■St'Sf^ ,,,,jt ••••••# (N (^lT^lC <1 o o 00 • . • 05 •«* CO TjH CO • lO iO lO Tfi CO »o (N000000OC000'.itOcO»0,-lOiI>'OOC01>-0505COC01>'>OCO»0(NC»000 lO^>Oi^>(^^cooocort^(^^coo5r-^(^^^:^Tt^^>1-l05TJ^1-l coococob-iOTtHcqiooi-^oiooot^^iot^OJCouocoosi-iioio 00O50000CXD(Xl00COl:^(XlC0CO(X)CX)b-.C00000000000001>000000 J>»COOOt^COG5(MT-lcOCOOOTt. l>.i-ICOiOC^C000500 C01>00'*l>'000500COCOCOOi-it^i-iC0005OOTtl01>1-^l>•rJ^c0 COiOCO»00'-HOiO O0CO(NCO(NiOTt^C0r-l CO(N (M051>(N(M»Orh(M05C005C0050>OiO(MK:)005»Ot^ •^COC500l>i>00TjCOO5T-HCO(MOi00iOCOrHCO00COt^Oi 00»Ob>.05CO<:D05COTHCDiOCO-r-(-^CO(N'cO(NCOCO»OCOOiO»OCO CXDQ0Q0C»0K:>Q0O0tOl>Q0Q0t^0000t^Q0Q00OQ01>-t^l>t^t:^t^t^ l:^(N'^OOCXll:^(Nt^OcO^C005Cq050005(NO(NOOOOTt^ iOCOI>(NOI>05»0(Mr-ii-iOOOCOCOt''HCOcOC00500COO CO l-ll-lT-Hi-li-lT-ll-I^T-ii-lT-li-HT-tl-ll-lrH(M Tt<»OC0»O OOCOOO CO lOOO CO CO oto-^ '<*00'*(M(MCX)1>1>O00000000C0(MO5C0t-h1>00<00000tH00G0 T}.Tt< T-it^cocot>-iOTt o > o ^ • • CU • o cs3 >> (-1 Xi o3 M Q) c;> 6 M s m OQ g a a^- ^3 o _2 f4 f4 Oj fl a 03 •^ o ,CJ -^^^ o fl ••o 01 ri ,tH c; (-1 tH p^ O < .03 o o O pL, c3 ^ =1 a a a Ph Ph CC CO CC o3 o a tH 13 i-H O d r rO (S tT a o3 .^ ■^.s CU S Cs3 <*^ ■9 -^ a a-g a a a 02 02 Ph CO CO CO tH 02 O C a CO PQ tH 0) a a o3 o3 ^-^ fSp^ o 12; i-H(NCOTti»OCOI>.00050'-H(NCO'*»OCOI>00050'-i(NCOTjHiOCO i-Hr-(rHT-(TH,H^rHi-Hr-HCv)(M(MC<|(MC><(N TABLES AND DIAGRAMS 71 o Tt^ciM CO 051-HO ^»ccc<^o?o^^lONoo d COrJHOO Cq C0050 O5COC0COI>.O5i>.iO(N C.CQO t>.iOi— i00{Ne0Tt-iOrtO00t>-0000COi-i"<*iTti|>.Ot>- lO'^»OTtrH(NCOCC01>-OOOC005 TjH»OTt(-<^TH'^'^eo(Ncococoi-iT-i CO OS 05 00 00 o 00 05 O O O CO lO CO CO lO CO 05 i-H T-H O O lO C5 C5 COCOTt^(^^,-^oOCOOT-^Ot^a> O 00O500cOTHC^i-iCO00'^t>t^ CO iO (N lO CO ^COOi^tJOt^-rtirHOO ^TjH-^OI>CO^COOcOi>.OOcO o 05 CO o CO O tH O CO (N C5 u:) o CO CO O 05 CO t^ CO CO O tH XO »0 05 CO CO O 00 (M ^ 00 CO »0 T-H 00 o CO CO CO O O i^ l> CO »0 Tl< r-H l> CO Tt< 05 C35 Oi 00 O (M CO O »0 • •# • ••••'K'-K'-X'-Sf tH lOt^^ C0»OiO(McO(N O CO CO CO 1-1 CO CO T^i t^ 05 CO o CO O CO o Tj< ri< ""ii CO l> Tji o lOCOCOCOCOOO -iO^COOcO CO o o 00 CO lO 00 CO l> CO CO rH O -^ r}< CO t>. 1-i -^ o lo CO -^ 05CO.COCOcO(N(N051>.cOiOI:^Ci C0»OC0C0C00500l>C01>l>>(NOrtH CO CO lO 00 00 t^ CO (M Oi l> 00 t^ 00 loiooscoosi-tcquooo oooot^oor^ooooooi:^ COi-HCOC<)i-li-(i-iOC00505^C50i oooooooooooooooooor^i:^t--coco CO a> o CO CO o 1> o OO CO 00 CO (N CO 00C0i-liOC0O>O(Nl:^ lOcOCOI>COTtHiOi>CO Ot^t^05C0i— llOOCO^t^TtlrHCO t^t>-r>.l>l>000000O5l>l>»O(N(M CO Tt« T}< ^ TJ< "«*< ^^ TJ^ ^t^ ^?J^ ^J^ ^P ^7^ ^T* ^^ ^M^ ^r ^r ^r ^r ^^ ^T^ ^J^ ^^ ^^ ^^ ^^ ^t^ ^^ ^^ ^^ ^^ CO 05 00 00 CO »0 (M o OO 05 O O O CO lO CO CO lO CO 05 T-{ tH O O lO Oi o CO CO M^ (M 00 CJi 00 CO 00 CO O 1-1 O t^ Oi (N i-H CO 00 '"^ t^ C5 lO CO TtTtO"*TjC0l0C0OC0t^OOc0 CO CO CO 00 O • 1-1 CO i-( 1> lO CO CO Tt< (MOSCiiOCOOOOCi O5l>COi>O5I>i-4O500 CO CDCOCO(M'^COCOCO»OOCOi-< 0i»0Tt^C5OTl^00O^>^0S1-^ -^ CO 00 t^ t^ CO CO CO »0 00 t^ t^ t^ iOC000Oi-Hi-lC.t>-t>.t>.l^cOJ>-t>-OCOCOcOiO>0 CO CO »0 CJ5 00 O 1-H CO 00 O !>• 1— t (N 1-1 05 U5 CO O CO C?5 (M 1-1 tH OCOO (N05C0O(M 0000t>. C0O5(Ni-iTlH Ttii005-*T-100OC0(M05OC0 l>t>.i-H'^i001>(Nt>OiOiOTjiOO 00i-lOC0t^05(Ni-il>. i-icqc^T-ii-ii-icNcqi-i i-(O5OO0000C0t0i-l»Oi-l'rJ. COC0(N. Tt. COC^05i- o CO O 1> CO i> "^ CO 1— 1 G l^ iO (M 1-H 1-1 O 05 OC0C00iO(M00C0i-i05i-lO(Mi-l 00t^'*i-liHO000000J>t^COTt.t^t^i^i>.t^cocococococococo d 02 P a a o « a o bC P w a ^ a a o a 2 cd .- c3 ^ 8 PQf=^ o -1-3 ^ c3 SSfc o3 ^-^^3 TO r P^ P^ CQ o "T d § 02 P^ •^ c3 ;^ . S^ ^ 2 '^ .a ao 03 - f^ a 03 "H PtHpq PI ^PQ cj ri ^-1-3 § ^ 9 fc^ a . •« c3 ^ fl rd d ^ Pd 03 rrl TO ^-^ c3 ^ -^ ^ Si fc>D 9 o ^ p^ J TO c3 ^".-H^^- a c3 c3 O O o o ;-( »-i ^ rd 8 ^ d c3 PhP=^ 9 ^ -CO ^ 9 I. 1=1 i3 I o fl "3 1^ -^ K :o2W_^ ;^^8 'mm ^ fep^ pq >^ 03 03 PQO « ^ qTPQ o fl ^^ 5h oj 1^ 9 W 03 W flj H ^t^ § 02 t> bC ^ o . *- TO 9-^ o3 o 03 (1) 0) o3 rd o o -2i^ § 9 dPQ PQpq >. ■ - ,, c 9 9 S 2 c3 5-1 S d ^2 O 0.20 S, > ^ a — o3 O Jh ^ ^ o3 000 w c? o ^ ^ ^ rd ^ 43 ^ ^ :2 PhPhPh ' O o *-' d^ 25 d ^ d d^ u o3 '■ a a> d ^ ^1 ^H M ,d ^ d d d .t^ PhPhPQ ^ ^ c3 000 O C3 O ^ H ^ rd pd .d :i :i ::i P^PhPh + dQrt l^ M 00 Ci O 1-1 N CO CO CO CO rt< 10 CO CO CO COt^OOOSOi-lC^COrJH COC0COC0'^"^"^Tt» 72 HANDBOOK OF THERMODYNAMIC 1^ Eh o o o Eh m t— ( P^ H O <^ P^ <1 <4i l-H s i=i k< •^ o K O rt O w ^ > o Ph o l-H Pi o o o m O Ph o ^* ^ h a >-l >lO o mirt ■*-> 0) o o3 u. p , <1) a ^ M ^ d ^ ^ ^ O ^ w Ph S-s CO f=H ^11 a COO'^U7)CXD l>T^iOJ>. rt< COCO CO 05COCOOOIOCO(M t^C55CO(N05 COCOGOO l> OC75 CO Ot^icOC^COCOCOUJ lOCOi— (>J0G0 Oil— itQlO 00 OOGO r-\ COOCS1« COrHCOt^ 10 (NCO t^ C01>CO(NCOCOOOO a30C005I>. rHi— lOJ-Tfl r~\ CO 1-^ CO t^OiCOOlOTt^OSlO CO-^»Or-lTt< TtliOCOCO Tjl CO-^ "^ COCOCO^ttr-lCOCOCO CO CO T^l CO 05 00 Tt< tH tH CO 00 05 05 00 00 1-i TJH 05 1> I> CO 1:^ (N O t^ C0O5Thi0000'^iOt>. ''^ COcOiO cq 10 CD rH CO • O o 05 r-l 00 -<* CO 05 CO o 00 o CO CO O CO CO !>• I> (M 1-1 OS Tt^ »0 05 CO (N r-( 10 1—1 00 CO (N b» • • * * CO l> t^ K5 (N Oi CO 00 05 • * CO (N CO Oi CO CO 05 CO o o 1:^ 00 00 C0^C005C0OC0t~>- CO ->* 05 10 CO 00 -05 • 00 10 Oi o 00 • •<^ CO CO CO l> !>. '^ 00 05 05 (M TfH (M 10 'vtl CO CO Tt< 1— I CO !>• "^ C 05 (N 00 CO CO (M CO c^ CO (NOOt^i-iOOOcO i-IC0. 00 00 CO O (M r^ 00 00 00 05 1> CD l-H 1> 00 Oi CD001:^COcDt^0000 l:^t^t^l>cOt^l>t^ TtH 05 Ttl 10 05 05 03 l> TJI O »0 (M 10 CO 00 (M O i-< 05 00 1-1 1> tH o i-lcOCO(MOCO'^i-i X>Ot— iT-lCOOi— ItH TjlTjHiOTt<»0 rJHiO^iO TH IlQ »o rtiiO»0»0"^iO»0»0 CO CO Tt< 05 00 -^ CO 00 05 1> (N 05 00 00 1-i -rH t^ CO 1:^ (N o «>• C0Oi'<*l0000-<*iOl> 'sH (N Oi ^ 00 CO (M CO O '^ CO 00(NTt(l^^(£)COiO (M CO 1-t CO rj< o Oi t^ o 00 TfH Tt^ t^ o 05 1> CO 00 CO CO 00 O (N 05 CO tH 1>- 10 »0 CO CO CO »0 10 o r-l CO CD CO OS CO JO CO CO 00 10 CO Tt< rH 05 »0 10 to ilO 00 i-< OS CO 00 "^ o 00 to 00 OS o 00 (N 1-1 CO to to !>. 1— I O OS CO (M O rH 00 OS CO • to CO (M CO CO CO Ttl CO !>. to 1> CO (N 00 to (M OS OS O ^ iO OS CO to "* CO "^ o 00 OS o cq OCOi-1CO»OOStJ1CO (M "* (M CO cq 1-1 to 1-1 CO CO CO OOOtO(MOt^tOi-l io-^-^"*-<^cococo O CO CO CO CO CO CD CD CO to to to 10 totototototototo p; s • « 05(1)0! S 13 o OP5^^ I—H :a Ph p; c3 TO -+J "a "So •rl -Q rS ^ r oT CQ TO ;3 o "J CJ 3 a § . fH Pi o r— t c3 o U tJ P5 3 o3 O gPH 'rj S CO ^' O a; -P^ 11 rd 03 o ^ o • Pi a oO s ■ Pip5 T3 Fh 03 c;) u O ft CD a> a OS ftco o p o CO S cc d'od CZi ;; CO -^ c3 ffl O .a o3 O ^ : § . -(-3 tj PI d r. W« cT ^ ^ o3 a 'o ^ P^ o3 -^ a ^_^ o3 5^ 9 Si (^ pi .^ OPii^PiMP5 o3 O o ;-! PI P3 >^ fl 03 a o 0) O Q o3 + 8 S %^ * c3 o3 02 00 OS O rH (M CO to to CO CO CO CO Tfi to CO t^ CO CO CO CO 00 CO OS O co^• (N CO T}i to CO t^ 00 ^- t>- t>- 1> t>- 1> t>. TABLES AND DIAGRAMS 73 00'^COCOT-H»OTtHOOOCOCoo<:ocoGOO»o CDCXDOT-iOCiOt^COcOO Tti'- (M CD 1> i-H b- O 1— I CXD O lO ^ t^ C<1 CO Oi GO Tt^ (M (M Tt< ^ CO CO 00 lO O '-H ^ Oi 00 TjH lO O ^ Oi -^ CO CO CO 00 ^ CO 05 05 t~^ O) CO TjH CO TtH -^ CO ^5 lo 'r}< T-i rtn CO Tt< 00 CO '<*l CO Tfl CO o cocoot^'^oocoo-^'-Hoo lOcOOSi— iC0-^l>'Tf(T^i:O00 i-(i-hcO CO t^ CO CO CO CO CO CD O iOcOUOCOiOCO COtJHcD'* 1>'*005000 lO t^ CO lO 00 (M o 05 CD (M OS O 00 i> io 00 o to CO (M 1> O to to CO 1> l> OS CO to 1> to CO 1—1 OS to 00 t^COCOCDCOOO(NOOiOCOiO 1—1 T:t< OS i-( 1> CD 1> Tj< ""^i CD 00 OS 00 CD to CD CD OS t^ (N 1-1 COOOCOfMOt^ OS • -tH 'O51>00rt*'^CO lO 1:^ O CO Tti LO CO CO 00 CD 1> Tj< o t^ OS 00 O to CO CO CO CO O (M OS 1-1 '"^ O OS 00 OS o 1-1 00 CD • . • tH • t-1 tH t-I 1-1 1-1 C t^ CO 1—4 1— ( C000000005CDi-il>t^t^O (N CO 1-H 1> O O CD 00 CD 00 ^-^ 00 O 00 • O • TJ^ 00 O CO CO • -OS •'<^05(NCDTj.Ol:^ ost^ 0(M l>i-i(M(M(NCD(MtO(Nrt OS OS to CO to to CO CO 00 00 00 to 1> TjH O CjS O CO CO (M CO 1— I to CO 00 T-H to OOOi-iCOi— l-^OCOb^OOOS t^0000t>-00t^l>.t^t^l>O N. CD 00 CD CD Tti to t^ CO o t^ t^ i^ r^ 1> O CO '^ l:^ t^ t^ t^ ^ CO I:^ t^ 1^ t^ 00 1> CD CO CD t>- t^ t^ CO COtOOOOCOOS-^CDOOS i-i(MCOOSCO00CDO0i-li-iCD 1> (M t^ O CO 00 to tH -rfH to 1— I 1— I OS 00 OS O CO O CO O (M (N CO CM 00 (M CM OS CM iOtOtOTjHtO-^'«f'^tOtO"<*i to "^ -^ to to Tt< "^ to rfi T^ to to to to to to Tt< to to CD CO Tt< o CD "=*< to CO to CO to CO Jt>. -"^t^ O OS O 00 to t^ CO to 00 C-1 o OS CO CM OS O 00 t^ to CO o >o CO CM t^ O to to CO 1> J> OS CO to r^ to CD 1—1 OS to 00 l> CO CO CD CO 00 CM 00 to CD to 1—1 rtH OS 1-1 1> CD t^ ^ 1—1 TjH O 00 OS 00 CD to CD CD c:s i> CM OS • CO CM CO to CM • '!i^ 1-H 00 CM CM CO t^ TjH CM OS CO ^ C^l J> to t^ to O CO o to o o CO CO to o CM C^l O tH CO CM CO CO to 00 o 00 00 to • 00 • to to • to CD CO CD CD O »o to to to to to to OS CO CD to CO OS to rH to to to to to !>. O CO CO to to to to to TjH CD to to to to to to O CO to to to CM ■^ CO f^ CM to CO 1-i • CO 1—1 CO '^ CO 1—1 CO Tti CM 00 OS OS t^ to rH 1-1 CO t> CM CD O OS o o ''^ '^ 1-1 CM CO CM CM CO t^ '^ CM OS O CM 00 CO i> Tt< CM CO 1> CO 1— I OS to CD CO N- CO CM CO CO CO CO 00 Tt< 1-1 -^ 1^ 1:^ CM CO CO CO CO CO CO CO CD rt* to CD CO CO CO CO rt^ t^ CO CO CO CO CD CO CD 00 '^ CO CO CO o CD COCO"^ -^tOtOtOCM CMOOOtOCMtOT^COt^ to to CO 00 1-^ to 1—1 1> CD OS O O to CD O 00 O to CO OS t^ t^ O 1-1 to to CM ^ to CO O CO 00 t- CM O CO CM CM CM CD CD CO tH tH 1— < CO 00 CM to CO OOOt^cDtoOSTttCOOOS COCOCOCMCMCMt-Ii— ItHi-IO 1> '^ CM O CO CO C^l O O O O OS OS crs 1— I O CO to OS 00 1> t^ Tfi xfi o 1> t^ 1> o o o t^ 1> CO CO tototototototototototo to to to to "^ "<*• rti ^^ T^f Tt^ "^ Tt^ Tfl '^ ^ ^^ Tt^ ^^ CD Tt< > OS •—1 03 - o3 ^ 03 - a a o 00 c3 S o3 ^j" fH t3 CD ^'^ a CD c^ Ah 03 p-j w § o >> a a. 2 !-t --rt C Q o3 o3 o rO OQ (-, M (H ^ o • -.__rr-r ^ o ,— r O o oT t-i g o3 an 03 >s .a a ri4 S 03 03 o •2 <^ .W c=^ o o o O OJ 03 w o c3 § o3 O 03 hJ-l c3 W TO tn b m o3 cS 2 c3 OOccO -u 03 • 15 03 03 W CO P-i XJ^ P4pq o d o ^ .3 a "^ ^ • ■ o o3 • O c3 03 -^"•2 So CO ^ «« IS G 03 w CU o o3 tS5 o o3 i.a^ > 03 tH o tH 03 faC faC 03 H c:) o -O OS 73 o u t— 1 a ^^§ 0) .a a; -4-3 tH o3 -(J tH (U Fh '^ 'rt ^ o '^ o3 W^ -s O , a c3 S «.2^'S ^ fcCcQ go S O H-3 O • -I 1 Ph o3 P^ a'^ •p-H 03 I— t 'TO 73 r TO -tJ -e. a " c3 O P3Q be 03 03 03 o3 WW o o^og fe 73 73 tH tH O O 03 r r :=! O o3 O -*^ O c3 o .ti; o d > CD N c3 o cq (M 00 CO CO c^ »0 rH t>. iH 3 >> . CO 00 1:^ lO CO CO 1-1 1:^ rfi CO Oi 10 ft 0.5 CO T-l 1—1 (N CO CO 1-1 1-1 tH CO CO CO TjH Tt< ""^l CO 1-1 1-1 tH rH 1—1 1-1 1-1 -<*< CO CO CO (N rH rH 1—1 1— 1 r-{ • o 02 Tt< C<1 00 Oi Ci CO CO »* CO 00 C 05 ■'ti CO (M iO Tt< CO ^-^-s »n CO (M (N 05 Tti 1-1 t^ Tti Tti rfi 10 00 l> i>. rH 05 1—1 (N CO (N 1-1 tH r-l C^ CO (N CO CO CO (M 1—1 1—1 T-l 1—1 1— 1 1— 1 T— 1 CO (M (N CO (N 1-1 1-1 rH 1-1 1—1 JlO TtH CTi »0 rJH CO Oi Oi o TfH "^00 1> 00 CO t^ Oi 00 tH tH tH 1— 1 tH 1— I rH iH CO TtH 1^ T^ CO (N CO 10 TtH Oi CO 1— 1 CO CO 05 00 CO Tti • 00 Oi iO 00 00 ^ 02 . . • . . . . . . . . . QD tH Tjl (N tH CO CO CO • rH CO rH CO rH 1-I O CO t^ iO 1> 00 00 to CO t^ "^ rH 3 03 S ^ (5 CO 00 00 00 05 1> 00 TtH i> 00 00 d i> i> i> d t^ X> 05 tH 1-1 Oi i> d 06 d 06 o 00 tH tH CO 1—1 iO 00 '* CO JO 05 Ttl • 1> CO Tt* Tt< (N . d oc >0 00 Ttl CO rH !>. 05 m tH cc iO CO rH (N a> »0 CO (M '^ 05 r:t< rH CO "5 "^ 1— 1 ^ o • • • • • • > • • • ... . . O < rt CO oc CO CO (N 05 1-1 tH 10 ^ C<3 rt< rH CO y-< t^ t^ CO t^ t^ CO t^ t^ b- !>. !>. t^ t^ t^ 1> 1> t^ CO CO CO CO CO 05 CO 00 »0 Ttl 10 CO Oi 10 (M TtH ^ ^ o CO lO O 05 i> 05 00 rH rH rH <0 Oi Oi T-i >o o tH lO Tti rjl rfi Tti 10 lO ^ 10 10 "<*i Tt< 10 10 »o rt< C35 lO TtH CO 05 05 (N CO . 00 00 00 00 CO 05 C5 Tjl CO rt ^ ^ lO Tt< rh 00 (N (N iH !>. 1> 00 CO 1> Oi 00 tH ■^ o 1-1 1—1 tH 1— 1 rH rH y-i CO 00 05 O tH tH 1>. »0 Tti rfi 00 10 CO 5S o K3 o 1> j>. !> CO (N CO i> 05 CO CO • T-l 1-5 TfH cq CO • 1-4 CO* 10 05 CO 00 I> d d d CO d o rt '3 lO >o rt< lO lO lO »o 10 »o »o >o 10 10 »o ^ "^ • tH t>I • 06 TjH tH !>• iO tH d ^ i>^ »o N. o CO CO CO CO CO CO CO CO CO CO CO ''^t^ CO CO CO CO , »o c^ "^ lO lO 00 '^ (M 10 Oi «0 CO lO CO to Hi rt o t— ( "3 di o 05 i-< 10 00 00 10 i> r^^ C* 10 !>• tH CO (N (N* 1-^ S o w tH o o »o O CO uo »0 »0 CO t^ 10 y-i CO CO CO lO >o 10 »0 "TtH Tti rl^ Tt^ "^ TJH CO CO CO CO w rt -fj -*j -* TJH ^^ ^^ ^ ^^ ^sji ^sjl 'm' ^J) ^P ^^ ^^ ^^ ^^ ^7^ ^j" o < p o o Eh H tH tH 1— t tH 1— 1 1-1 tH 1— I rH 1— 1 rH rH rH rH rH r-i r-t o o o o 02 c3 PI Lord & Haas . se Creek, Ala., c3 < PI PI •i-i -t-3 m o' , Lord & Haas genie, France, TO 03 03 ■ rt a .a zc • i ■ o i-i 2 o o 0. -t- e > a: s a c -1-3 TO 03 o ^^ r c i OT CJ 03 r c rt coal, Palestine, Ohio, i nut, Warrior Field, Hor 0. 1 K -i-T « C rt pi TO P^ c -;^ P5 CC rt OT 03 H rt coal, Waterford, Ohio mg coal, Blanzy, Ste. Eu a c: c: tr -^ f- c C c £ a p rt > p 1 c I rt .1 rt^ •^ a: c 03 -^ •a 03 la 'if a 0: -H : t-H . oT I S : . uia . TO ■ ^ : W^ : oT I fl . 5z; c a^ a^ a|^ Bit. lump ano U.S.G.S. N Bit., lump an Kan., U.S.( Upper Freep ^a a 2rt Bit. r. of m. W. Va., U. Mahoney coa Ohio bit., Cai Darlington c Lord & Ha Bit., Hartsho . No. 2 c c, f- K CC a: rt Bit. r. of U.S.G.S Upper Fre Bit., lump U.S.G.S Upper Fre Lignitic fl Mahler. Pa. bit., C Saar onnl. a o 1-1 (N CO Ttl 10 CO t^ 00 OS c y-i (N CO rtH iO ^ c rH 1— I 1-1 1—1 T-l 1—1 1—1 i-< r-t 1-1 TH iH iH iH I— 1 1-1 iH tH iH tH lH 1-1 rH iH i-l TABLES AND DIAGRAMS 75 "^COi-lC0C^C0C0»O Tt<00 CO o (NtO00COCOO5-^T-H Oi-l O ■* »O00'-iO5O51>-O5>-i OOO (N (N (MCOrtHCOCOCOCO'* COCO (M Tt< CO Tt^ O t^ to O 00 to (N Tf< 03 Tfi 00 Tt< to CO Tt< (N (M CO •to 1-) »o 00 CO !>' CO -^ (M to 05 CO CO tH to CO CO CO O CO CO -^ CO oa 00 CO 1-H to CO CO 00 CO 05 to (N Oi t^ (N CO tOTtit^COt-^t^C^JCO Oi Oi o o> •r^OiOi— lC00i(N05 COCO 00 00 OOi-itOCO(NOCOTt< rJiCO 00 "^ COCOCOCOCOCOCOCO (NtO T-i CO 1> CO CO T-H 00 TjH (M O 1-H to rH . CO CO Tt< to CO 1> (M CO to to Tti to O CD 1> CO CO o Tt< CO 00 00 CO ooir^ososoooooo rH 00 r-i (N 00 00 i-H "^ Oi 1—1 O tH rH CD T-i i-< CO 1—1 1—1 rH to CO 1-i CO to CO 1-H TjO(M00 CO 05 CO O) o . to to t>- 1—1 (M T-i t>. • O o> OS .. o CO ■rt< cq 05 CO • . 00 c^ o l> CD CD t^ iH • t>. • CO • 05 t^ -"^i to • 1-1 • (M '. rH 00 CO CD to 1-t iH 05COCOOrHCqi>.tO to05COtO'* 00 CO rH 05 (N 00 O to rH 00 rH CO -^ CO to 00 lO to O l^ (M O to 00 t^ ^ 00 00 rH o cq o T-tCO'^C0CO(NC0'* 00 to CO CO CO CO [2 (M CO t^ to O t^ t^ CD CO t^ 05 CD CD 1-1 CO rH 05 CD Tfi t>. to 00 00 to CO CO 05 ^ CO t^ otocoo>tocooi>- to CO 00 to CO to CO to '^ C<> 00 O C^ to 05 l> rH 1-1 1-1 to t>» 1-1 o <© (M CO to (M ^ 00 to o CO to lOtOtOiOJOiOtOtO T}< (M T}1 to to to "^ t}< to to CD ■^ CO to Tt< CO TtH r}H to to lOOOCOiOtoOOcO TtllOCOC^OrHl>00 00 Oi (N 0> 00 O 0> to (N 00 • to !> tJI to CO l> (M CD to to rfi to o CO i> CO r-t CO ^ CO 00 00 CO OO5l>O5O5000000 rH tH 00 1-H (M 00 • rH rt< 05 CD tH 1-1 CO to 1— ( rH 1-1 CO CO 1-H to CO 0(M'^OiOOO'^ cq to 00 TJH CO CO • to CD CD 00 • rH -co to o • tH to O lO Tjl Tt< . CO O) o 05 CO o OrHrH(MC"<^(MCO(MC01>0) to CO Tjl CO 00 . O Oi Oi to • C<< • I> CO . CD Tt^ O 1> CD CO • CO 00 CO 1-1 05 CO 05 1-1 o CON-OSt^COcOcOOO COCOCOCOCOCOCOCO h- 00 CO (N 1-H CO • CO CO CO to CO • 1-1 00 T^ • CO CO CO T-t CO CO CO CO CO lOtOt^COOOOO) to CO r*< CO CO 00 to to CD rH CO 00 • 05 !> TtH 00 to O) rH lO to TtH TtH C^THi-HTH(M(N0 (M CO CO to (M 00 CO 1-H ir^ tH CO 00 CO(MrHCOCOlOtOrH OC^C^i— IrHT-lrHi— 1 O CO rH O o Oi 05 00 »o r^ o 00 rH 00 l> i> CO CO o CD 1—1 to O CO O Tji TH CO CO c^ o CO tH o T-i 00 to 05 O) ^^ Tp "^^ ^gH ^T^ Tjl T^ ^^ CO 1— 1 CO 1-1 CO CO CO CO CO r-i l-i T-t T—i ■!—{ CO 1-1 CO CO CO CO CO 1— 1 rH rH rH CO CO 1—i CO CJ CI 1-H r-i 03 e3 W eg O »^ o" IB O Ph c3 O u tH O ft TO W O .s"^ TO ^ n '^ r-i - O ^ C3^a1 ^H o3 o3 OOO -i rd O O O 2 -^ c3 d CO 1^ o 2 - 5 Ph o O fl ^^-^ 03,-^03 £ ;h o S-i rt P5 a <]->' c3 ,bf) ^ U i O ^ > CQ -u 0) -(J -o ^ >;^ a^^ o 1^ O a ft a P! o3 O o >^ s fl ^73 O IB o 6 O cl o TO t) o3 t-5 oir^oooiOrH(NcoTt< dcqcicacococococo to CD CO CO CO 00 CO 05 O rH Cl CO CO Tft Tf ^ Tt< tH to Tt< TtH CD t^ CO 05 O tM -^ Tti Tt< to to Cl to CO »o 76 HANDBOOK OF THERMODYNAMIC .a O CO ►J < O O O I— ( H CO HH H O <^ P^ <1 w U o p^ o (1. o I— I p^ o < o Q o 02 o PL| o o p^ Oi2 I " lo CO o TtH lO CO 00 lo i> (M CO 1-1 T'H 00 CO ^ »o CD 00 00 CO 00 t^ CO o (N CO CO tH CO 05 CO 00 00 00 CO tH rJH lO TtH lO O (M T-H (M (N T^ 00 05 CO O 00 iH CO (M »0 CT> r^ CO Tt^ CO O Tfl CO CO i-H (M (M tH CO »o 00 t^ CO ■<:*^ -^ CO 1> CO CO CO 1-1 O (N (N CO (N (N CO rt^ (N 00 rt< CO 05 (N CO T-i (N lO t^ 1-1 (M CO CO 00 "^ 00 00 00 00 CO ^ tH rH Cj5 CO* 1—1 CO 1—4 T— 1 CO 1-1 CO Tj^ CO CO 00 >o r^ (M to to CO CO TtH Oi CO 1> CO O lO CO lO CO lO lO Tjl tH rH a> rfH C5 O CO t^ l> 00 1^ (M CO O lO Tt< Oi CO lO 00 CO 00 05 o >o 00 CO (N CO CO «o O CO (M CO oq o Tt< 1—1 1—1 1—1 00 to CO o 05 1-1 Tt< CO to (N t^ 05 Oi O -"^ Oi CO -^ o CO Tj< to to T^l to 1— I CO to • O -^ t^ Oi CO CO to (M to O o o o O iH (N 05 to -"^ rH 1> 00 rt< r-< CO 00 to to 1-1 00 1> TjH Ttl 00 1:^ CO CO rH t^ to 05 to o o O 1> CO CO 1-1 O O CO t^ t^ t^ 00 CO 1> CO o CO o CO CO '^ CO Tt^ O -^ CO CO CO Ol to tH to Tt^ to CO CO CO CO t^ 1:^ l^ 05 O (M 1> (N CO 00 00 00 00 to to Tt< to to to to to to to to to CO CO ^ Tj< »o CO o 00 CO rH CO !> 00 OO'tO CO CO rti CO o to 00 CO C5 CO 00 CO (M (M O to o 03 05 CO 1-1 1> to (N "* O tH (M Oi . CO -"^ CO o a> t^ 00 ^ i> -<:iH (N (M O to (M 00 1-1 to o 1> CO CO I>- t^ 05 C5 Tt< (N 00 o 1^ CO CO CO CO o Tt< to -^ OS t^ O t^ Tj4 Tj4 to to 05 CO Oi CO Tfi CO CO rtH Tt< (M CO CO TtH O to to O tH CO Tti Thi CO to tH rJH CO !>• to o Oi 05 CM O rH 05 05 05 Oi CO 05 CO O 00 CO OS t^ to to CO CO CO Tj< 1> 1> t^ CO CO CO CO CO CO 00 CO 05 CO -^ CO CO CO -^ CO CO CO CO 1^ CO t^ CO O to (N »o to CO (M O CO CO o to o CO CO CO to 05 CO 00 00 CO (N 00 to CO CO OO CO CO (M 1> 00 CO to CO to to CO CO rH to CO o o o Oi Oi Oi 00 rH 1> to 00 00 1> 1> 1> o (N O O 00 CO CO CO to 00 o O CO o CO (N (M (M (N (N (M ^ .9 I la It o3 2 r^ 'X3 1^ i=l o •+3 bD r— t W «^ •?^ acd |p ;-! o3 bfi bC o3 >^ o bD • d • oi CO 6 S . ^ bD a; ■o (0 S-i ■■o q;> bD t-< o O a _o o3 QD ^ Cl > : fe '¥. : • a • o • bD c3 ! • d • o ^ : ■^ •* * • •^ . d > . . CO (M r-^ tH CO o t^ »o t^ CO (M O CO (N c o 05 CO (M 1-H T^ (N ">* lO ,— I 05 CO !>. "^ lO (N Oi »0 00 i-t 05 (N O t^ t> CO CO CO ''J^ CO l:^ O t^ CO »o 1— I >o O O 1-1 Oi CO Tti 05 t^ l> rH O 00 t>- O 1— I Oi t^ TtH lO 00 t^ CO Tt< 0:1 O TJH O O 10 ca CO o rH O 10 '!J^ 10 O 00 05 1— < Oi 1— I 05 O CO ) - o o O 10 05 1-1 t^ 10 00 Oi 00 10 10 "^ 1—1 CO CO Oi !>• O 05 CO to CM CO* 1—1 CO a (N CO 06 13.81 11.85 18.5 00 (M OS rH 10 (N 00 CO rH »0 1>- CO 1— ( 1— I 1— 1 rH (M i> d 00 to 1—1 00 d CO CO 1—1 OS d cq c to t^ 00 d to* rt^ TjH T— 1 '. • CO 00 10 t^ OS T-t iO "^ CO rH 00 10 (N* CO • CO tH* CO t^ (M J> 00 CO Ttl rH (M »0 CO CO CO CO r-i OS CO T-l 00 to CO CI cq CO rH CO CO CO CO Ttl T-l '. 01 CO to CO 1-1 1-1 CO 00 CO 1—1 OS i-H b- OS CO OS OS (M 00 to OS 00 T}H tH 1—1 CO 10 CO* OS t^ rH 10 10 10 CO C^ 10 1—1 rH rH t^ r-i d C^ 1-1 CO 00 to* to to OS rH ^ t^ l>i (N oq 01 00 OS OS OS d 00 d CO rH cq CO CO to cq OS T-l CO OS CO 05 • 00 • 1-1 1-1 1-1 T— 1 I OS CO • OS cq CO OS OS (N tH rH to 00 OS rH (M CO T-l oq cq T-l • T-l rH t^ cq • tH ' OS OS OS • cq • 1— 1 to OS 06 Tli CO tH (N CO OS to '^ (M* CO OS CO I> T-l rH* CO* CO tH 10 (M rH CO tH 10 OS "* 00 (M 00 00 CO OS CO c^ 10 »o Tfl rH CO t^ xH d CO to rH 1— 1 CO CO d i>I '^J^ to CO T-l tH CO CO CO t^ CO 06 oq* CO to CO CO rH rH OS TJ^ to to 06 to Tt< to CO cq' to CO oj 00 CO d 9 10 TJH CO 10 t^ TJH CO CO CO* 10 CO CO 10 CO 00 CO 1-t CO 10 10 "st^ CO to (N iO OS CO to (M* T}^ to CO to 1> CO to to 00 00 to to CO !> CO to CO cq cq to 1— 1 OS rH Tf rH CO 1> to rH r}1 to TjH CO to d d 1— 1 CO »o 10 CO* I— 1 CO OS (N* 1> (M 1-1 CO 00 00 co' 1—1 10 00 rH 1—1 »o 06 CO r-l rH (N OS rH to Cq 00 CO to 1-1 to !>. CO rH rH 1—1 1—1 cq r-l cq i> d 1— 1 00 to 1— 1 00 d CO d rH OS d cq cq T-l rH oq OS 1> to 1> d to tH to 00 1—1 • • OS 06 CO CO 1-1 rjH CO CO (N CO (N* CO '• cq T-l CO rH 05 (M rH to CO 00 d T)H* Ttl rH CO Tj^ CO OS CO d i>* Tt^ CO OS i-H to d CO CO OS CO cq* cq rH CO CO CO OS -rt< CO Tji CO to OS i>- OS CO cq CO d cq \ • d OS 06 CO 1-1 CO CO 00 N.' 10* CO CO 00 CO »o (N 00 ^^ !>.' tH * CO to CO rH l> CO to 1> d d th (M* CO (M CO CO T-l 00 to Tii CO CO 00 tN (N* d to CO 1—1 rH CO CO cq 1— 1 CO 06 CO 00 CO to rH 1> OS !>. i>^ cq N^ cq CO to CO rJ^ ; 00 CO CO t^ J> (M (N OS cq CO rH 1>* CO CO -^ 10 00 tH CO 1—i 1—1 CO d to to TtH (M CO rH (N OS OS OS CO CO 00 r-l d 06 T-l t^ CO d d T-l T-l OS ^. CO* T-l T-l d Ol cq to T— 1 CO o:> 1> CO "^ rH N. CO 1— 1 rH rH rH • \ CO 1-1 (M 1—1 t^ rH T-l 1—1 1— 1 OS tH 1—1 CO T-l OS to 1—1 T—i 10 T— 1 r-l Tt^ to CO CO cq 1— 1 tH rH 1— 1 r-l r-{ -i-i r-i rH rH rH rH OS rH d T-l T-l CO d T-l OS to d T-l T-l d r-l 00 00 I:^ CO T}< OS OS OS OS Tji Ol CO d i>^ CO ^ d § ^^ O t-l ^ o ^ |« Ph - o > o 'xi a sp 02 d m P 6 a O pR CQ ^ q acq >> . . a> iH . . -(J c3 . . el a • •m 0) • >i : ■U +3 • s ' "r CJ . Ol 02 •0 -e • ^ . a; • rn ^ ■ . 3 . •hJ ^ • . lU . : ^ :^ ; '^ 'c3 • . . c^ • fl el • • ts ^ : • . 1 n fe cp d 6 c3 d^ 02 d 02 of O o fl Ph o o d o3 fl^ plH oT =1 ^ ^. > P. 4-1 o p^ O O o3 o3 I—) el >-' p^ o -(-3 a « ^ bD O H^ e! a> pd xn e! ■ • ^ d *&^ •^d PQ ei 03 .a 2 o O o ao .02 p o -1-3 m 03 a o ^§ 02 '^ d«« CQ O 02 • cq r • • , • • . • • 02 "0 -f^ . f/; 0) . :p §> : "+-I 7* o3 yA . • H ^ . r rd • • gj :u s ; • • n 5r! • :^ 73 . * -t-3 d • • f^ • • WrH- ^ 02 id CQ f5 d r - o3 (^ c3 • ^ a^:s cu r^ HH O o3 -»-9 o3 ^1 ^-1 y^ ^H »H PP PPP cq fe o 1^ ^ ■ - 03 03 O O O <0 El w) o3 o3 O PPP el e) el el c3 c3 00 rH oq CO Tt< 10 CO t^ 00 OS i> r^ t^ r^ t-l T-l rH rH O 00 rH cq CO TjH 00 00 00 00 to CO 00 00 i>. 00 00 00 OS O rH 00 OS OS cq CO Tt^ to CO OS OS OS OS OS 78 HANDBOOK OF THERMODYNAMIC o O COOOCO»OCO(MCO<£»(N»OOil>-'i-irH l>r-(eOTtlGOOOOi-tt>0 uo co»OTt<'^TjH'^T^T}< •qmoo ai 'lOA ^q papiA -IP ^^e^-TX-qraoQ ni o 6S91 ••qmoo •qi "iixa = "PA 'mj •xij.a >i:)OOt>.t^coooi>-coo»oi>.co(M ioooot>.^t^cocoeoo5oo>ococo -^TtiCD00iOi-il>-»O»OO5(X>i-Hl>i:O eocococoioo»oi>(M-^coooo>o (N(M-l>i— IC0(NC0'-HC0O05t-« OiC005CO»Ot^rHt^l>.005 OCOiOCOr-iOOOT-i(MO Eh < PLH Q Eh h5 Q W « I-H H CQ P PQ O o + 73 a o Ah Tti050COCOCO'^>0000»OTtHO OSC0C-OcO (N(M(M(N(Nl-lT-(rHl-lCqT-( 050CDGOT-ll>>rHlOCO>0(M(M05TH oooii— iT-Ht^jocqc^jioeor^t^oo l>.i-IOOCD05CO(Nt^(MCOCOO(MTtl t-- 1-H T-HtrH CO (N CO l:^ OS 05CiOOCDiOOO'-<00(M-^05 COtHCOOStHOSOSCOiOCOOSCOCOOO (NC5r^O500C0C0001>C0»O(M00Ttl CO OT-HOiiOOiOOiO^CiO-<*iCOO>0^i-(005CO Cq-^C^JiOiOCOOCO'^O'OTti l>iOiOTtirtiTfirtOCO'^lOl>> »ooo»oc^-^eoT-ioo5C057-l(N(N COOOOCOi-lOTHlOlOrtlrH (Mco-^"^»o>o05»ou:)ioi:o THT-ICq(M(NCOCOCOCOCOCO'^"<^'<:iH ri^rJ^^TtlTt^TJ^TJ^rJ^rJ^Tl^T}^ p^ tOt^OCO Ot-i005C005 (N (NI>O00000000OOi0(NtJ<,-I05 00 O 1:^ (M tH O O CO lO TJH O CO CO 05 i-H i-l 1> 1> (N So 6? s t~-(MI>COt^TjHcO'^i-lO5C0^COiO O5O5O5O51OO5O5O5O500O5000000 lOCOOOCOtOOOOOCQO O0O0CX)00O000O0O0O0O0O0 iOCOOt>-00050T-iTtHi— I 00 t^(MOrH(N(MTH005THt^C0050 (NOcooo CO r^i>.rH 00O05C0iOO50005Cq(NI> COCO(M>OCOcOOOOCOTjHCOTtH TtlTjHT— ie0"^C35O5O5O5l>O5 i-hiOOOt}H(NO i-HiOiOOOt^ lOCOCOO^THCO-^t^THi-it^COCO l>00^Ot^^^'-lT}^OOlO l>.iOrti'*O'*'^C0C0(M(MC -^ d >-' o fin ptH .i .A .A H a i=i fl -q a a Ph OQ o c3 o o Pk o %i •I-H a § CQ OC! tH ^ d ^3 02 d 02 c3 m ^ d T (A ^ P" --(J -►J kT o la 3 ij3 --ix: dQ«P^ TH(Nco"^icicot>.ooo50rH(Nco-C003l0050500TtlOi eoooioa)cooit^i>(:oi^eot^ooo 00 1-I0510 C0THO>O(M05TfiC000 i-H (NC0»O Otr^rHCOl^i-iC^T-HO (M O»0i-l •(NOOI>-l>iOCOC50 1-1 (MT-t(M ."*O05O00N.W3t>.(N»O OiOiOcO>0(M»OCOOC005CO .OicqiocOCOTtiC01>>0 C. 1> CO OOrHCO COOO(N05i-i0005CO 05 O (Nt-i 05 »0 Ot^O t^rtHt-^OSCOOSi-iCOCO 0> CO (MO O t^ rtHt^(M COi>c01^Thi'^00'-iOO CO CO ■<^'<^ "^ (N' Tti(MTj4 T^-^TjiCOCO^COTtHCO OOi-iOOCOI:>-Tj.0500cOtOOOCOO COTt (M O CO OS t>. 1-1 tH 1-1 tH tH T-l l:^i-iiO00(M'^cOr-i00 io. THr-lTH(NrHrHrHrHTH OCO(M"OCOTtlTtl'<*COOOT-lCO osi-(coi-it^iocoocoooi-io i-llOTt CO OS iO rji lO T-l tH rH OrHlOOi-llOTt^Or-1 COCOCO(NCOCOTJ^»00 OOSOOCOi-iOOOSuocO co»oioco»oco-^io»o OCOCOCOOSr-HOOt^COOi-ICO i0TtC0(M»O(MiOT-i00 OOOSrHCOi-IOOOCOTjlOSCOt^ lOiOiOiOCOrtHiOTt^TtiTt^iOTH CO 1-i Ttl 1-1 »o o 00 CO !>. I> lO lO iH (NCOl^cOOiOCOOrH i-lCO(M^COOCOCOCO Tjit^00rt<'*(MCO00t^OS00(M OSTjicOfMl^COiOcO^r-iCO"^ »o !> lO CO 00 00 00 00 lO iOiOCO(MCOcOI>l>00 C0^C0i0"^00C0OC0001>05 rH I— 1 »o CO 00 (N 00 o 00 (M 00 OS CO CO CO 00 (N O oocoosco(Mk:)(M'^(m O»O00C000OiO00i0 iHCOCOiOCO^l^rHOlOOSCO rHfMiO^-^COCQCOC^COCOTtH 00 00 00 OS OS 00 00 CO 00 CO 00 CO CO O 00 00 OS oosooiMooosr^t^co osooooosoooooooooo 00OS00OsOScOl^TtO 000000000000000000000000 <=2 CO lO 00 t^ CO CO OS 1—1 CO 1-1 OS o CO »o 00 O'!t^"r}^0000O(^^l>r}^ oooooooooosoooooo »OCOt^i-lCOI^l>.i-l»OCOCOlO 0:iOOOiO»0»OiO o 00 (N OS t^ OS CO o OS O O rH O »0 lO »0 1> T}H lO 1-1 THrH|>rHC0(N>O(NI>. TjK CO O O OS O5rHCO00CO^t>-COTH00" 1— 1 00 O 00 00 t^ OS 1> 00 (N O 1> 00 00 Ob'COcOOOOCOOOO OOt>.l>00001>'X>!>00 COOSOOt^OSO'*COTt<(NcO(N i>i>t^i>t^i>i>i>coi>i>t^ 00 o 00 CO 1-1 lO lO OS 1-1 1-1 (M CO CO § (N* 00 o ^ 1-1 00 OS (N T-l 1-H iO >0 CO CO O iO OS oqoocqooTttooiot^c^ 2 ci co" I>^ (M(M(M(N(N OOScOr-(OI:^»OrtH(M t*'^CO(M(Mi-ir-lOOS OCOCOOSO^'-iTHO0000001>.t^CO OS tH OS 1—1 OS OS 1-1 T-l 00 1-1 00 00 00 00 1-1 rH 1-1 OOOOOOOOOOOOOOOON. t^t^t>.N.l>i>cocococococo M ^ t-l ^ ^ ^ ;=! 3 3 CO !>. C T— t Tji CO 0 I— I ifH r-H J— I rH (N (M O 00 CO T-l 05 to 00 -* !>. 00 05 Oi Ci o CO lO o o 00 lO CO t^ CO CO 1> CO rlH CO iO CO ^ 1-- 00 OiO (M 00 l-H t^ Tt< CO 05 rH 00 i-H CO'* Tt^ CO of o O o O I— H H »— I H O o CD o + a or:: rH00>OrH(N r-4 COrfi CO !> '<*'* O OOO COOt^rJH OOCOOOOCO 00 t^OO lO '^ COCO O T-i'.* t^CDCN'*! 0>COI>t^05 Tfi coco (N O I:^t>. !> CJiOO (NcOO'-i TlH^tiTtir^l^ lO 10»0 CO )0 to-"* iO iO>0 COTfiCOCO S 0) . CO 05 00 CO CO 00 t^ o o oq CO O T-H O T-l 00 O O O Oi i-H '*'* (M Tfl Oi-H CO 0(M COrHOiW (N coco CO 00 OOtJH 00 OOtJH lOCOCOi-H ir-t OO t^ 05 l^CO 00 lOOi T-HOOCOQ O C50 O 05 050 Oi 0505 OOiOOOT ^ 6>;' o^ W6? 1d^ "OS'S oUlM "* t^ CO t^ 00 CO i-H oi o 00 CO t^ 00 t^ O CO ^ ^ TjH 1> (M 1>00 00 tH "^lO CO 00(N COi-HCOi-l O OtH i-H CO tH1>. 00 O500 (NC^JCOCO CO COt^ O O lOO »0 Ttll> TtHlOCDr-H lO »OiO "* JO »oio >o 10»0 xo-^Tt^iO lO CO 02 O lO Ttl •>* 05 tH '*0000050'*1>. 051>0(M Oi 00 Oi 05 IQ 1— t O T-l 05 O lO to 05 00 C5 (N CO Ci 00 tH CO o to o C-l CO o -^ Tt< (M CO (M CO (N CO O CO CO CO t^ O to tH T-H 05 C5 to 1— I 05 I— I to CO o to CO to CO o r^ 00 00 00 00 05 00 00 to t^ Tji (M 00 00 00 00 00 to CO 00 00 to 00 ""^ 00 CO CO CO Tit^ Tt< 00 00 00 00 00 00 00 CO CO 00 CO o to t>. 05 (N (N (M CO Oi CO 05 tH 00 CO . CO CO '^i to Tj< to to to to to to to to 1> CO to 00 !>. to o o CO (M to CO to Oi t^ CO 00 CO CO O • OOO -^ o 05 05 05 00 (M to CO CO CO CO 05 CO 00 C5 CO CO 00 CO CO !>• CO to 00 CO CO (M t^ 05 (M CO CO to CO to CO i> to (M cq rt< o o t- 00 to CO to 1> 05 CO o CO tJH 1—1 CO 0(N CO O O O O 1-1 1^ • o r^ CO CO CO CO -co 1-1 o CO CO CO CO (N 00 CO (N CO rtH 1-1 CO CO I>(N O 00 CO CO Tt< CO O 00 to (N o i> to to TtH TjH T^ Tt* CO CO CO CO CO CO CO CO CO CO CO CO CO to to to to to to to to to »o to CO 3 o -t-3 a t-l o S pq c S Oh 03 > il^ o ft ^ o 3^ CO (U 02 ' o3 O O 3 at a; o faCHH c3 o o o CD pq -t-3 o ft o ft ft"^ ^«? 03 § « (U o3 O r O ;Sa^ o c;* o ■^ -+-3 (-> PhPQ o3 > o pq ft gco P 6 a^^ o q • I-l pq be a o (N CO Tt* to CO l> l> !>. l>. t>» t* i>. TABLES AND DIAGRAMS 81 o CO O . r>. o t>. »o »o ^ Hi CO o CO r^ "^ o 00 rN T— 1 OC) lO 1—1 1—1 CM CO iO Ui CO o CO (N 1—1 T-l Tt< 05 iO Tj^ CO CO I— 1 CO O 1> CM CM -* 05 lO o tH »o lO CM ^ 1-i CO 1—1 1— 1 1—1 1> 1—1 T-l CO 1—1 1-1 1—1 CO 1—1 CO tH 1—1 CO 1—1 CM CO 1—1 1—1 1—1 CO Ttl tH iH 1—1 1-1 rH CO tH JO iH tH iH CMCMTHOOOi>->OC005C0 lo C0O-^O000000Tt- JO coc0i0i0"0^"^^'©<©^ OCO'^OiOSiOOi lO Oi CO tHIOCO CO CM Tt< COCOiO-^O^O 00 CO Oi -"fCMCM CM r>. CO CMCOCOOrtiCMt^ Oi Oi CM t^CMi-l CO O !>. C0»O'^C0C0CO'*< K5 lO CO lOCOCO CO CO CO CM lO CO Oi COCMI>OOOTHOCM-^TtiOi i-lCO00COCO00I>^CMCOCO r^l>OOCO>OOiK31>OOOOCO O500O500O500O500000000 1— 1 O CO 00 »0 Ol CO O 1-t O rfi CM lO CO CO CO CM O CO »0 CO CC QC Oi Oi OO OO Oi lO 05 00 o 00 00 CM ■"^ CO 00 1— 1 1— I rfl 00 00 CM C?i lO 00 00 00 00 »o CM 00 CO 00 o CO CM 00 CO rH lOTt^i-iOOOi-it^t-^l^COiO Tt^COCOCO-^cOiOOSTHCJCO uOi— i'^'*"^l>-i— icOOSCMi— 1 1-1 CO O !>. tH rfi lO CO 1> CO Cl CO iH !>. 00 cTi 00 o o 00 o Tti CO CO »0 lO Tl^ -tH tH rH r-l r-l 1—1 rH rH Oi 05 1— 1 rH 00 CO a> CM CO I> CM O Tt< 1>. 00 05 ^^ ^ ^^ 1— 1 1— 1 rH 00 Ttl CO lO rH Ci CO 00 1-1 rti CJi C5 tH CM d CMCOCO'^-^COOOI>'=tiCOO rtit>.i-lC005'*i-iCMrHOC0 OSOOTHi-lCsOiCMCMTHTHiO 05 1-4 rH 1—1 1—1 1—1 rH r^ lO t^ CO rH CM O lO CM CO CM O Tji l> cm' CO co' d CO cm" cm 1— 1 rH rH rH 1— 1 i— 1 rH CO 1-i CO lO CM* rH O CO 1> o CM rH 1—1 tH CO d rH CM 1-i CM 00 OS CO 1-{ CO CM 00 i-lCOO5i-lCMCM00OiiO»O00 OCOCOCMiOi-ICOCMCO-^CO iL0>OiOCMTtHiOCMCMC0C005 000000000000000000001> C5 t^ tH CD CO 00 CM 05 rjl 05 rH »0 O Oi rH Ci O Tt< rH CM rH 00 t^ 00 00 00 00 00 CO 00 CM 00 05 00 y-i 00 lO CM 1> CO ^ CO 00 00 o cm" 00 lO CO JO 00 00 CM CM 00 d 00 o lO id 1^000»0'^»OTtH'^rHCMCO iQCO^-^'O'^-'^iTtiO^CM 10 10 1010>0)0»OK310^10 rJH 00 05 rH CO O 05 >* lO CM lO ^ »0 )0 lO lO >o CD lO rH CO 10 JO iO »0 JO lO CD »o »o Oi »o o* CO lo' CO »o* 00 -^ iO CO CO CM-^00 C0»OO0000»OrH i>ooiTiHi>i>ooT-icoi>":> "^Ot>.0:iU0i-iiOOOOt^ cooco»ococococococo»o Tt< O rH O ^ rH CM CO CM CO 00 Tt< OS ci co" CM oi 00 TjH JO »0 CO CO ^ ^ CO o CO T-i CO 00 CO d CD CM Tt4 d lO lO 00 |> CD CD irH 05 O CO lO CD 05 Oi d »o 00 CM d CO OS d iO 1:^ iO CO OOCOCM r^iOOCOCMOCO CM050COC<1CMCMOOCOCM'<* lOOJcMO-^OO-^OiOiCJiCM COCOCOtJH COCOCOCOCOCO"* CO O Oi O »0 00 00 1> I> t>- 1-1 CO O O CO t> O rH lO ''^ -^ CO CO -"^ T}H CO 00 CO CM CO d CO 00 iO d lO CM CM C) CO 00* rH 05 CO ^^ CO rH o d TJ4 d CO 1-H CM CO 1—1 CO OOOt^cOtQTtiTtiCOOOi COCOCOCMCMC<|i-lrHrHr-lO I0^»0i0i0i0i0^>0»0»0 1> Tti CM O CO CO CM O O O O 05 05 Oi lO lO JO >0 Thi tH "^ rH rH rH rH I— 1 1— 1 1— 1 rH O CO 00 i> tH i-{ lO rh" rH ^ '^ o t^ l> t^ Tjl T^ ^^ rH rH rH o r}i CO rf rH c3 'T3 03 a c3 o I ll ^ r c3 W O O 03 S o "^ O .^ r*^ kS CO o tJ o — O O M o CQ 5-H TO TO o3 • 03 •PL| la" ft a 03 P fl J^^ O ^ - PI 2 « o <^ Q ^ o »5 «« 03 H o 03 -4J c3 bC bD 03 H o TO Oi c3 -d o 03 P^ .i4 O 3 H 03 O rd bC 03 p^ « O) t-l > 03 « a •p-H a •p— I 1:3 TO u ^ P t-l o o bC"^ .a ^ J— I ^ c3 . •73 a l-l bC r a oJ «5 he oil - TO "4-1 f t-l c3 . a ft a 03 tn O 5 .O t-l o3 a a .g *S 03 •-H 'd .S TO t^ 03 ^^ d Ul O O .a ^ Uh o3 O Qi O) tH O o ft o tH ^ TO tH C^ O o3 00 OS OrHCMCOTt(iOCDl>»OOOSO OOOOOOOOOOOOOOOOOOOOOS rH CM CO Ttl »0 CD t>. OS OS OS Os OS Os OS 00 OS o OS OS o CM CO Ttl o o o JO o CO o 82 HANDBOOK OF THERMODYNAMIC T?t rp CO CO Tfl t^ CO rH CO OS »H rH CO o . CO iO 10 >o CO TJH CO K> l> »Ort< t^COCO (N S3 > tH tH T-i tH rH tH fH tH tH tHtH 1— IrHrH t— 1 •qraoo u •pA^qpapiA 00 CO 10 ^ 10 !>. C^ tH (NOS OOSO 1-1 -IP ?^5^T X •qraoo 10 iO 05 CO T-l t^ CO (M OSOO 0»0(N CO ni o BB91 ••qraoo 05 10 OS ■«^ (N 1-1 OS l> COrH lOlOOO C CO T-4 lOlO O5C0O5 l> , o-S « T*< CO -^ ^ (N (N OS •'ll 10 CO^ Tt<(NiO 00 TS 1> 1-t CO (N OS "* 00(N lOt^OO tH p^^-*' CO «o 10 CO CO 10 10 10 lOCO "3CO'* t>» 6'S l>. CO CO >o (N (M CO 10 r-4 OOOS l>0(N Tj< 2.2d CO 1-1 00 CO 1-1 00 CO 10 coio cococo ft 00 t^ 00 (M 10 1-1 00 1-1 I>»0 CO(NO 1-1 ^^ P>h(^ OS 00 00 00 00 00 OS 00 OS 00 00 OS 00 OS 00 "^ J p PU m H OS i— 1 (M »0 CO rH (M CO-^ COCOiH iH -< la 00 rt< CO 0:1 CO iH OiH 00000s OS + « 10 OS (N 00 00 iH OS CO COOO OOOSOO (N o 10 Ti< CO 10 rt< Tt< 10 CO -<:*< r^rtH Tt CO 00 CO t>. iH CO CO CO s tH (N CO (N CO "^ iH 10 CO Tt^CO 1H1HCO CO w H )— 1 w OI^JCQ tH r-i 1-1 1-1 tH tH iH tH iH tHtH tHiHtH iH (U • t^ CO t^ Tjl COCOOCO l>.00OiCO )-) -t^ 1-H 10 CO O) 00 (M CO tH CO tHJ> iHCOI>- 00 ;z; c« fl O^ CO 1-1 7-i rH N. 00 00 t>. 00 00 00 00 00 00 00 H^l II P o t^ -<;t< l> (M (M 00 00 CO •<# OS (M (N TiO" ,Q W^ CO CO 10 CO CO io CO •* 10 1010 cot>co 10 ^-i (0 »o 16 16 »o 10 10 10 10 »0 100 lOOlO 10 g 3 rt< CO COrHOSlOC^OOlO OS'(N tS tH CO T}1 OS Ti< >0 OS OS 000 (M 1> iH t>. o o OS 1> OSiH »OC0t>^ -"l^ ;>-*^ CO CO CO CO Tj< ""^ CO CO CO CO-*^ COtJHCO ">* g t^ rj< tH »o OCOIOIOIOCOO O t— ( CO CO CO cc CO iO 10 10 10 ■^ ^ -^ "rt^ "^ ■* i (S c slolw rn' r}5 r}i tH* ^g" '^T' ^^ ^4^ ^J* ^^T" ^^ ^T" ^^J^ ^Jl '^T' Ph H tH T-i tH T-i tH iH iH tH r-^ 1-i y-i rHiHiH tH H> ««■ >> >> ^ c3 ■ ^'' «a jo p PQ 13 1 3 C! 0^ 1 ^3 a 13 . 1 ^ : 0) -t-a 1=^ 1 PQ O o >> •c o aT Eh b 1=1 > £ a 1 1 1 o3 a ft bC 1 :C • ^ T- ' Pi f^ • »> ^^ 11 1 cd s-i .— .0 TO >— ' C/J ■— 1 03 oS CD flS 03 • H ?3 J^tr a^ ^ J^p gW J^P J^ JM gw 1 Sf^ J^ § J^ « ;3 a W pq p pq m pq p colJ Wj»« 6 55 i> 00 0: iH 00 OSOiH »H C V r-( iH iH 1H iH iH iH tH iH 1— I iH iH »H rH TABLES AND DIAGRAMS 83 «c> CO '^ CO »o CO 00l>t-H00^iO(Mi-H coeococoTjiT^nHco CO CO 05 CO CO (N 05 CO t^ Oi CO O COOO (N O rt<0'^CO(Ml^iO'-l "<*C0 O O 1> O^HrH 00 OSOO 00 O lOOC^cOt-iairHcO CQi-i t^i os co t-Ii— I00rt< O5C0 Oi Tt< COCOCOCN'^OOOiiO J>.05 lO Tt< CO OCOCO 05 •»^rl< rt< lO ioiO»OiOiOTt<'^»0 rJH<© lO CO »0 Tti05rH tJH iO TjH l> >o CO no CO (N 05 Oi O CO t^ CO o Tt< 05 (M »o iO TtH CO r-l (N (M to rvi CO CO CO iO CO CO CO CO CO CO O CO CO CO CO CO lO <« IQ Tt< CO CO '"^ Tt^ iO CO (N05 c^ lo t-oooo-^acit^o C^O »0 (N COOtOCOrHi-lTtICO coco t^ CO --^TtHCNT^COCOtOfN 0000 00 00 0000000000000000 CO 00 iO CO 00 CO CO 00 00 00 CO 00 O CO o O (M O (M (M CO 05 1> 00 CO 00 "^ 00 CO tH (M O TjH t>. CO O »o o i> CO O tH T-H (N lO CO CO CO O l> CO !>. (N CO (N 05 T^ CO 00 i> CO O 05 (N 00 CO 00 l> t^ CO 05 1> O OCOi-HCOOOOOt^CO CO"^ CO 1-1 rHCOOO'^CJSOOOiOO (NCO Ttl oi O00000000C0C005 coi-1 a rt< 00 00 05 05 Tjl 1> o t^ CO 05 Tt< ""^i 1-1 rH (M uo O 05 t^ O -^ 00 CO 05 >0 1— I 05 (NO'*© 1—1 tH O CO 1-1 1-1 o co' tH i-lrHt^05t^C35(MCO 00COC0(MrHC0I>iO T}J CO* CO CO CO xo CO* (M* »0 (M CO '^ 1-H (M CO 1-1 CO lO 1-1 05 CO n^* 1-1 18.31 25.71 16.32 lO CO CO CO CO 05 1—1 IlO CO 00 CO ■^ rt< O CO O C5 CO 00 000000001>0000 CO 00 1> CO 00 05 CO 05 t>. 1> t^ CO !>. 1:^ CO 1> 00 rt^ CO O CO !>. CO 00 CO CO 00 lO >o OS lO CO CO 00 rH CO 05 00 )LOt^i>i>coior>.t>» TtH CO 00 to CO CO t>. CO to to O 1> CO t^ i> to (M C^ 00 rH to Oi o o «o to »o to totOtotototOtOtO to to to to to to to to to CO to Tji CO to 00 CO C^ 1-1 00 1— It— (OOOSCOCOCOOi oooi>.05(rq(Ni>t>. 00 O (M as t^ !> CO to CD CO CO (M CO 1-t to CO (N CO to r^ to 1> O iO to o CO to 00l^CON.O5O500CO toioiotototototo CO . CO Tt< to 00 to Oi -H 1— I O to '^ CO to (N t^ l> 00 00 CO 1> OiOiC^i— l"<*lTtl"«frH Oii-i(NOt^l>. ""^ to o "^l CO O (M CO to ■<* Tt< o 00 00 Oi rt^ to CO "^ l> to CO CO CO o CO COCli— iCOCOtOtOi— I C^C^• i> CO CO O 1-1 CO to O CO O rt< O ""^ CO CO (N (N -5JH Tf< Tt< ^7^ ^g^ ^7^ ^^ ^^ ^p ^^ ^gi TtH Tt< CO CO CO CO CO CO CO CO CO CO CO CO CO CO • o3 ^ : ^ «3 : ° lif c3 O T3 ^:2 8 ^ ^--^ O ^ 1^* ^ •-^ d u o M TO w «a o d o w C3 53 03 W fi} w P^ h-5 2 ^ ^ cf ^ >■ r^^ r:? ^ Qj Tj o3 o3 O 80^ go t-< o 2 • o o _ a • • a CJ o HJ . • o _ ^ -M • . tH bfl fcJO ,. . . . _ f^ .; . fa ^ ^ fa fa ^ 0) 03 QJ OJ-g-g OJ o-^ a -t-3 +3 Oh P< -(J t-l o O) (D ^ O) O rd tH tH bC fa 'd tH-^m o O tH 8 a* • CJ . -M (^ >^ :« tT • J* • (V fa • CSJ tT . cu a> •-0 ^ (N • 03 03 O . 1— H OQ o3 O o a o CO ..CO •^ CO a o B c3 tH H CD > N o3 c;i n '^ o o bC 'a 03 o3 fa B ft a 03 PI a *3 03 s a CO* ^^ fa . .Ul wq ^ \< t^ om fe bC c3 -^ 'd i^ -^ tH CJ 1^^:?^ w Ph O t». a tH r^ ?^ o3 ^ ■^ O M CO o o ^ ^-^ -(-3 o3 , .-;:? J:; 'm O o3 2 It' H 5^ (=3 02 03" : ^ . O • I-H • ^ . o I O • cu . r-H O • :S§- : • (=1 ^ • . c3 0) . . tH — 1 .f^ g . \.i^ : . 12 o3 . ::2^ : :^ ^_i' 03 "^ Ul ^ffl a c^pfafat^pfapq -i •S ^ ^ .i± tH fa 4-3 tH ■-H ■ o3 o >- bfl d r bC-e Ca CO T}< N (N (N >o CO t>-OOOiOi-tCqcO'^ C0 05 CO 05 CO »0 (M "<*l »0 CO lO I— I TJH (M CO lO CO CO 00 CM O l> OS O (M Oi OS CO -IP*i^5tX X -qnioo u| o ssai '"qtaoo •qi 'ifxa = 'ioA qi •His CM CO o o CO CO »0 CO CO tH lO ^ GO CO lO OS CO CO CO Tt^ CO o (M 00 >0 r-l rJH 00 t-l 00 1— I O CO CO CO o CO o CO CO o CO OS CO CO o t^ TfH O i-H CO 00 t^ CO "^ »o o o < p < Eh t— I CO o O O CO I— I H <1 1^ O > Q < >A cq t— I Eh m O o • o > + faf>-^ CO CO 00 CO !>. OS »0 00 OS CO O CO I> C^ CO CO xo ":> CO lo o 00 CO (M O t^ tH CO CO OS no CO '^ t^ (M lO ''^ lO ^ 00 CO O (M GO t^ T-( OS CO »0 00 CO CO !>. S I* • CO OS CO 00 OS CO CO O CO CQ 1—1 1—1 CO OS rH !>. 00 00 OO 00 o OS O CO tH to 1— I 1— I iO >o CD 1—1 CO I:^ 00 00 00 00 CO 00 CO 00 CO OS 00 CO lO CO t^ TjH CO CQ 1-1 (N 1> 00 !>. OS OS CO CO (N i-H 00 CO CD (M !>. 1— I i-H tv. O ^ '^ '^ ■^ O CD cq CO 00 CO i> t^ Tti o C3S lO 1— I O CO 0 tH CO y-i ^ OO T-\ O OS »0 OS o t>. 1— I lO CO o CO (N CO 00 l> "* (M (N C55 (M OS O 1-1 (M OS OS "# OS l> (N tH 1-1 tH O^ OS OS 00 oq lO -"^ (N -* o CD CO 00 00 OS lO t^ (M OS O CD CO iO CO CO rH »0 lO r^ Tj< CO cq (N (N Tfl rH 00 00 !>. GO (M CO rH rH 00 t>. 00 00 CO CO (N -^ CO l> 1> t> W^^ fa lO OS no tH lO l> (M CO CO t' CO CO CO lo CO CO 00 CO rH cq lO rji t^ TjH CO CO* lO CO CO 00 CO 28 iO lo i> OS 00 00 O lo' lo co' lO Tt^ KO OS >Oi CO 00 00 CO O 00 (M . "^^ C. lO CO no J>. 1-1 lO OS lO CO lO »o CO lO OS »0 t^ O lO »0 lO CO »o O CO OS lO »0 TjH lO lO CO CO 00 lO "^^ CO (M rH (N 00 r^^ d Tt< CO Tjl Tt< i O (N 00 00 (N »0 00 d T}^ (m' d Tl^ TtH Ttl CO CD CO CO vo 49.99 44.00 50.25 CO o •r-\ 00 lo o o OS OS OS OS o OS 00 TjH 1> lO 00 00 t^ t^ 1> o (N O O CD CO CO CO CO (M (M cq (M cq cq cq cq cq cq cq cq cq cq CO o OS iO 00 OS »o OO 00 cq 00 o CO 00 lO tH OS 00 OO »o cq o .a o M Si O (-1 O u CD a 03 M i CO d 02 CI bC pq c3 O CJ O o3 & O ei -o Oh a 3 o 6 "A m d CO d C! bfl 02 a 2S Ph 2^W P»i TO CU c3 !^ o3 9 '^ S o •> o ^ TO ^ o < d a ^ 1-^ »-5 «<-( o rt a *a o3 3 t3 a O 1—1 o3 O (D 03 03 M > ;5 O o3 c3 t>C|-H TO^H^ o "is ^ o . a o ^.:a «^ >a o "^ TO S4 *a o3 •+J a, .4J> o3 TO O 13 "" d aj a 2 ^ O P4 o3 o3 w c3 '^ UH OQ Ph o bD o3 w 'So? c3q ace ap ^ (1 o3 bD hO 03 H o TO CD >> o CI -a 03 cd • o • CQ • P • •s • o : : CO ^ : : o r : •02 • •d § • • • bD • • CO S^ • ;p:i ; : a^- : -(J •o § : • fH* J3 . :c^^ : . CO ^ . J rH r . a w 03 i° CO W a o .tH o tH a o X c3 CQ o o lO lO cq lO COrt^lOcO t^ OOOSOi— I Cq CO -^ lO iQiotQio io »o>ococo CD CO coco CD CO TABLES AND DIAGRAMS 85 CO 05 i-H i-H 05 to o a CO 05 i> CO (N CO 00 o CD O ^ CD !>. rH CO CO CO CO O Oi T— I CD lO 1— I lO CD 00 Oi-I ^ CDOO 00 COO COCOOOCO CD O CO'^ CO t--i-H (N 00t>. 00 050 CDt^CDOi CO i-H i-HCOOS C0»O 05(N i-iC^I !>. lO Oi O 1—100 (M O"^ 05i— il>-05 O (M "^Ot^ i-HCD t>-CO (NCO b* OCO CO rfiCO CO coo OOi-iCOO "^ CO t>»CDCO coco l>0 (NCD o i-H r-t T-l T-l tH 1-1 tH 1— 1 i-H 1-1 rH 1-1 r-i r-l 1— 1 tH 1-t 1—1 T-l T-l (N CO O 00 o CD lO CD 1—1 lO 1-1 1-1 00 1> iO 05 rtl CO 1:^ Oi tv l> 1-1 00 1—1 CO 1— 1 (M 1-1 CO CD r^ 00 CM (N O CD CO -^ (N Ttl (N ''^ o 1— 1 »o 00 CD T^l lO CO CD rH rti lO 00 1—1 O 00 00 CO CO CO »o 00 CO lO (M tH CD O !>. lO CO lO CO !>. CO CD ^ »o UJ iO K5 CO >o Ttl t^ lO lo CO iO »o lO Tt< lO t^ CO 05 00 O CD CO CO 00 05 CO "^ 05 t^ o CO 1> (N CO I> CO J>. lO HO Oi CO O Oi CD 1-1 O CO 00 CO 00 00 CO CO CO 05 -^ 00 1> rH CD "^ (N 1-t 00 O t^ CO CD !>. 00 1-1 CO CO »o 00 1> 05 CO (M CO 00 CO 00 CO O CO 00 1-1 CO 05 CD CO 1>. CO CO 1^ CO 00 o CD o CO CO CO lO 00 00 1—1 00 CO »o CM uo O Tt< (M t^ o CO 1—1 o 1—1 CO T— 1 t^ o 1—1 CO tH CM CO 00 CO »o CO ^ CM »o (N 05 CO CM 05 00 CM CO o CM CO CO lO CO CM CM Oi o o rH rH rM iO 1-1 1-1 CO i-H 1-1 CO 1—1 CO i-H CM 1—1 tH CO 1—1 CM 1—1 1—1 CO 1-1 O lO rH 1—1 1—1 T-l CO 1—1 rH 1— t o T-l CM rH CO 1-1 Oi CM 1-H lO iO (N 00 o CO ^ »o CM o lO LO T— 1 rH 00 Oi CO O CO »o o l:^ 1^ "0 00 rt< CO CM Ttl CM O »o '^ 00 00 o 00 o CO a> K5 CO CO CM CO lo CO O CO l-t CO 1—1 CM CM CO CM lO tH CO CO rt< CO 00 lO rH rH CM 1— < O 00 CO rH (N CM (M CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CO CO CM CO CO O (M CD 1—1 CD t^ CM r^ 05 t^ O 1—1 O Tfl 1—1 CO 00 CO Oi CM lO CTi 1—1 Oi lO t^ 05 00 1> 00 1—1 »o 00 1—1 1—1 o T-l o 00 O CM CO CM o lO CM CO Oi O CM O CM rH 1> 00 1> t^ 00 CM O 1-1 CD J> t- t^ Oi CO 00 CO IQ 00 Oi O CD CD Oi O CD t>. CO CO CD CO »o O CO CD Oi lo CO CO 00 CM 1-1 Tj< Oi 00 o Oi rH 00 00 00 »0 lO Oi CO lO rH CD O O Oi lO CD CO "0 O CO Oi tH O Oi 00 O i-i »o CO CO t^ CO 1-1 O CO 1> CO lO 1> 00 rH CM tH t^ CO id CO 00 00 CM CM 00 t^ CM 1> rH CO CO 00 »o rH CM CO CM O 1> CM O Oi T^ O ^ t^ o 1-1 00 rH CM rH Oi o CO lo CO Oi JO 00 CM rj< to Oi CO 00 lO '* lO Oi CO CM lO l^ t^ TjH lO lO rH CM lO CO »o 1-1 CO t>- rH »0 »0 Ir^ rH lO lO CO o CO lO CO lO lO CO CD CO CM iH 00 1> CM CO 1> CM CO CD rH lO O CD 00 t^ 00 Oi CM t^ O CO O to »o CO Oi CO CO CO 00 Oi O CD 00 lO iH O CO lO 1-1 1^ U3 T^ o rJH CD 1—1 Ttl lO 00 O CD t^ rH CM CM lO ^ "^ to rH CO 00 CO CM »0 "^ rH CM t^ ^ rH CO Oi CO "'^ CO rj< rH CO »o CO iQ 00 o o CO o o CO CO o CM o t^ CM 1-1 O O O Oi tH Oi CO lO o o Oi O O CO CO CM O O C—< )— 1 6 Ob m A § -^ i's S : a W) 133 'r! », d ' PLI ■-3' 1 1—1 <3J 0.^ ^ : '0 • ^^ qT S : £ : c3 d -^ t>- t>. l^ t> t^ t^ 1:^ 00 00 00 00 00 00 00 00 00 00 Oi r-l iH iH iH rH iH rH iH rH ?H iH tH rH r-i tH rH tH rH rH 1-i r-l r-i r-l rH 86 HANDBOOK OF THERMODYNAMIC o Hi pq < Q Eh I— I o < o o o w l-H H h^ W H pq O O o p . Pi CO (N ". O 00 Oi 05 C^ lO O 05 1— I 00 O lO (N 00 -* »o T-i t>. !> lO Oi CO lO (M CO Oi CO CO (N 00 CO O O O "^ Oi Tt^ CO 00 00 o CO CO »0 1-1 !t^ t>- CO CO (N CO CO CO CO CO Oi o CO 05 CO (M 05 CO 05 CO lO tH TjH CO (M 1-1 05 1>- tH !>. T-H io io CO ^ CO ''^i^ 00 rtH O O 1-4 Tt4 i- CO CO TjH s i> 00 CO ^ O5O5O5O5O5O50000t^l> d 2 • l-t o a ( a |! pq o d 02 §^ fl rv. -u -U M< O 0) o 't o o O a» a H a» ^ 03 a W^2^,?i^ 03 d o bC o3 3 'a «^ 55^-0 . pinCQPQpqOO o3 r O T3 o O - 9 5; o3 '^ ^--^ ?? 03 ^ O ^ a ^ O o3 a> Ci (MCOTt 00 •S § '^ I— ^ . -+j CO 00 -^J 1> 6 c5 CO o ^ o o • o o • lO O '-I lO Q lO "^ ^ iO 1-4 -t^ 05 1—1 rH -+J rt< tH lO •+^ tH lO -^^ CD 'o w Tl< ^ »0 -22 o9 Tj5 -^ »0 a • 03 ^ o CO o o o o o »o o o C5 o ^ rH o 00 03 a -^^ Oi CO -M t>. 00 -t^ 00 00 +^ 00 05 ->^ 00 ^ 02 1 (D -tJ 1 -»-> t "Xi rk XJ -O CI 3 03 irtly melts, residu mainly powder, res soft. S P a ^-< Jehavior of Powdere iample on Heating i: Crucible. Desnot melt, resid powder, same coal. elts, residue coi pact and hard b not puffed. o o 72, pact and ha somewhat puffed elts thoroughly, r* idue very hard a very much puffed .\ t- HVJ IQ 1 (S 1 s ;^ 1 s 1 88 HANDBOOK OF THERMODYNAMIC Table LVIII PARAFFINES (C„H2„+2) FROM PENNSYLVANIA PETROLEUM Boiling-point. Molec- Composition by Weight. Formula. Specific Gravity at 32° F. ular Weight Name. «C. -p Approx. %c. %H. Methane CH4 16 30 75 80.12 25 Gas Ethane .446 19.98 Propane -25 -13 .536 44 81.84 18.16 Butane C4H10 C6Hi2 38 32 100.4 .60 .627 at 57 58 72 82.76 83.33 17.24 . Pentane normal . . 16.67 .628 Pentane iso C5H12 30 , 86 .658 at 68 72 83.33 16.67 Hexane normal . . . CeHi* 69 156.2 .664 86 83.76 16.24 ' Hexane iso CeHu 61 141.8 .683 at 68 86 83.76 16.24 Heptane normal . . C7H16 97.5 207.5 .699 100 84.00 16.00 Heptane iso C7H16 91 195.8 .702 at 68 100 84.00 16.00 Octane normal. . . . CgHis 125 257 .703 114 84.21 15.79 Octane iso CgHis 118 224.4 .718 at 68 114 84.21 15.79 Nonane C9H20 C10H22 136 173 276.8 343.4 .741 .73 at 68 .757 128 142 84.38 84.51 15.62 1 Decane 15.49 Endecane C11H24 182 359.6 .774 at -15 156 84.62 15.38 Liquid .765 Dodecane C12H26 198 388.4 .773 at -10 .776 170 84.71 15.29 Tridecane C13H28 216 420.8 .792 184 84.78 15.22 Tetradecane C14H30 238 460.4 .775 at 39 198 84.85 15.15 Pentadecane Hexadecane C15H32 C16H34 258 280 496.4 536. 212 226 84.92 84.96 15.08 .775 at 64 15.04 Octodecane Eicosane CisHss C20H42 023H48 205 234 401. 453. 254 282 324 85.02 85.10 85.18 14.98 .778 at 99 .779 at 118 14.90 Tricosane 14.82 C25H62 C^27li66 352 380 85.23 85.26 14.77 r Paraffine (myricle) Solid < Paraffine (c.er^/\) . . 14.74 C30H62 370 698 422 85.31 14.69 ETHYLENES (C„H2„) AND NAPHTHALENES (C„H2„_6+H6) FROM RUSSIAN PETROLEUM Ethylenes Ethylene. . . Propylene. . Butylene. . . Amylene. . . Hexylene. . . Heptylene . Octylene. Naphthalenes , Oct. Naphthalene Nonylene . Diamylene Dodeca Naphthalene Triatoylene . . Tetraamylene C2H4 gas CsHs gas C4H8 1 33.8 C5H10 36 96.8 C6H12 70 158 C7H14 84 183.2 CgHie 119 246.2 CsHio+He 136 276.5 C9H18 .... C10H20 161 321.8 C11H22 180 356 C12H24 • • • • C12H18+H6 196 384.8 C14H28 240 464. CifiHso 248 478.4 C20H40 over over 390 734 .635 ,76 ,714 ,733 ,771 ,777 ,803 28 85.7 42 85.7 56 85.7 70 85.7 84 85.7 98 85.7 112 85.7 106+6 85.7 126 85.7 140 85.7 154 85.7 168 85.7 162+6 85.7 196 85.7 210 85.7 280 85.7 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14, 14 14, 14. TABLES AND DIAGRAMS Table LIX 89 CALORIFIC POWER OF MINERAL OILS BY CALORIMETER AND CALCULATION BY DENSITY FORMULA OF SHERMAN AND KROPFF Class of Oil. Sp.gr. at 15° C. Degree B6. B.T.U. per Pound. Calo- rimeter. Calcul. S.&K.Form. Error. % Gasolene Gasolene Gasolene Gasolene Kerosene California, refined. . . West Virginia, crude Kerosene Ohio, crude Pennsylvania, crude. California, refined . . . Kansas, refined West Virginia, crude , California, refined . . . West Virginia, crude . Pennsylvania, crude, Ohio Indian Territory. . . Indian Territory . . California, refined, Kansas, crude. . . . Kansas, crude, Illinois, crude. California, refined . . . , Pennsylvania, fuel oil , Pennsylvania, fuel oil , Indian Territory .... Kansas, crude , Pennsylvania, fuel oil . Kansas, crude .71 .7175 .72 .7709 .7830 .7850 .7945 .795 .7964 .8048 .8059 .8080 .8103 .8237 .8248 .8261 .8321 .8324 .8418 .8421 .8436 .8466 .8500 .8510 .8514 .8534 .8580 .8597 .8616 .8640 .8648 .8660 .8670 .8690 .8708 .8712 .8745 .8773 .8800 .8807 .8810 67.2 65.1 64.4 51.6 48.8 48.35 46.2 46.1 45.8 44.0 43.7 43.2 42.8 40.0 39.7 39.5 38.2 38.2 36.3 36.25 36.0 35.4 34.7 34.5 34.45 34.05 33.20 32.8 32.5 32.05 31.9 31.65 31.5 31.1 30.8 30.7 30.1 29.6 29.0 29.0 28.9 21120 20389 20527 20038 20018 20014 20030 20135 20236 20068 20057 19802 19963 19766 19827 20021 19757 19782 19710 19795 19924 19685 19715 19724 19701 19784 19389 19379 19741 19555 19656 19555 19530 19534 19654 19614 19354 19428 19447 19435 19435 20938 20854 20726 20314 20206 20194 20098 20094 20082 20010 19998 19979 19962 19850 19838 19830 19778 19778 19702 19698 19690 19666 19638 19630 19630 19610 19578 19562 19550 19530 19526 19516 19510 19494 19482 19478 19454 19434 19410 19410 19406 - .91 +2.33 + .99 +1.38 + .92 + .89 + .33 - .20 - .76 - .29 - .29 + .88 ± .00 + .42 + .05 - .05 + .11 - .02 - .04 - .48 -1.17 - .09 - .38 - .47 - .35 - .86 + .95 + .95 - .95 - .12 - .65 - .19 - .10 - .20 - .86 - .68 + .50 + .03 - .18 - .47 - .15 90 HANDBOOK OF THERMODYNAMIC Table LIX — Continued CALORIFIC POWER OF HYDROCARBON OILS BY CALORIMETER AND CALCULATION BY DENSITY FORMULA OF SHERMAN AND KROPFF No. 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Class of Oil. Kansas, crude. . , Indian Territory, Indian Territory, Texas, crude. . . . Kansas, crude, Kansas, crude. . . Texas, crude. . . . Texas, crude. . . . Texas, crude. . . . California, crude. Fuel oil California, crude. California, crude. Texas, crude. . . . California, crude, Sp.gr. at 15 °C. .8820 .8828 .8833 .8860 .8862 .8900 .8914 .8970 .9007 .9050 .9065 .9066 .9087 .9114 .9137 .9153 .9155 .9158 .9170 .9179 .9182 .9336 .9644 Degrees B6. 28.75 28.7 28.5 28.0 28.0 27.3 27.1 26.1 25.4 24.7 24.45 24.4 24.1 23.6 23.2 22.95 22.9 22.9 22.7 22.5 22.5 20.0 15.2 B.T.U. per Pound. Calo- rimeter. 19643 19249 19474 19454 19372 19418 19242 19355 19359 19228 19352 19089 19282 19303 19028 19246 19008 18572 19103 18779 18985 19080 18589 Calcul. S.&K. Form 19400 19396 19390 19370 19370 19342 19332 19294 19267 19238 19228 19226 19213 19194 19178 19168 19166 19166 19157 19150 19149 19048 18858 Error, % -1.22 + .73 - .42 - .42 - .01 - .39 + .45 - .31 - .47 + .05 - .63 + .69 - .35 - .55 + .76 - .39 + .80 +2.58 + .28 + 1.94 + .83 - .16 + 1.42 Table LX PROPERTIES OF OIL GAS Description. Volumetric Analysis. At 32° F. and 29.92" Hg Pressure. ' No. CH* H2 £6 CO. CO2. O2 N2 Lbs. Cu.Ft. Cu.Ft. per Lb. B.T.U.>per Cu. Ft. B.T.U. per Lb. High. Low. High. Low. 1 2 3 4 Thwaite oil gas. . . . Pintsch American oil Pintsch American oil Oil gas 63.19 63.1 61.2 58.3 58.0 54.9 53.7 52.5 48. 35.4 19. 31.61 5.6 6.4 24.3 24.3 5.6 4.8 18.5 32. 6.6 16.85 27'a 28.3 17.4 17. 28.9 41.2 23.5 16.5 49.4 44.83 .4 .4 .2 8.9 .2 1.0 1.5 .63 '.9 .9 .5 1.4 '.8 .7 .5 5.0 .3 .24 5.06 .1 3.5 3.0 1.15 .03427 .05142 .05109 .04313 .04081 .0591 .05726 .04777 .04318 .05972 .04670 29.18 19.45 19.6 23.2 24.5 16.92 17.46 17.32 23.16 16.750 21.41 893.5 1173. 1260.7 995,9 990.2 1126.8 1294.8 1157.5 901.3 1390.7 1043.1 818.0 1074. 1064. 803.9 898. 1034.8 1192.0 966.5 716. 1107. 966.0 26072 22815 24710 23096 24260 19065 22607 20060 20874 23282 22333 23869 20889 20854 18650 6 6 7 Pintsch gas from petroleum residue Pintsch gas from paraflSne oil American petroleum oil gas 22000 17509 20812 8 Pintsch gas, Moore- head 16940 q General 16583 10 Crude oil Retort gas, England 18542 11 English shale oil gas, Young and Bell. . . 20682 The hydrocarbon analyses in this table for oil gas are quite imcertain, but less so than the hydrocarbons equiva- lent to kerosene and gasolene. TABLES AND DIAGRAMS Table LXI COMPOSITION OF NATURAL GASES 91 Source. West Virginia Kansas Caucasus Caucasus Kokomo, Ind Kokomo, Ind St. Mary's, Ohio . . Marion, Ind Marion, Ind Findlay, Ohio Findlay, Ohio English Russian Caucasus Anderson, Ind. . . . Anderson, Ind. . . . Ohio Fostoria, Ohio. . . . Muncie, Ind Muncie, Ind Findlay, Ohio Caucasus Caucasus Leechburg, Pa. . . . Penna. & W. Va. . . West Virginia Butler County, Pa Butler County, Pa U. S Pittsburgh, Pa. . . . Penna Pittsburgh, Pa U. S U. S U. S U. S Authority Report Gas Eng. Com. N.E. L.A... Report Gas Eng. Com. N.E. L.A... Bunsen Bunsen Levin. Eng. & M. J Levin Lucke Eng. & M. J Levin Eng. & M. J Levin Lewes Lewes Bunsen Eng. & M.J Levin Lewes Eng. & M. J Levin Eng. & ]\I. J GiU Lucke Bunsen Bunsen Hoyle Allen & Burrell Report Gas Eng. Com. N.E. L.A... Hoyle Hoyle Ford Levin Jiiptner Hoyle Ford Ford Ford Ford Volumetric Analysis. O2 .25 .3 .3 .35 .35 .55 .55 .39 .39 CH4. C2H6. .42 .42 .35 .35 .35 .35 .3 .34 .15 1.1 .8 .78 2.1 99, 98, 97, 95 94, 94, 93, 93, 93, 93. 93. 93. 93. 93. 93. 93. 93. 92, 92. 92, 92. 92. 92. 92. 92. 89. 83. 81. 80. 75. 72, 72. 67, 67, 65, 60, 57, 49, 5 e 3 57 56 16 16 85 85 57 57 35 35 16 1 09 07 07 84 84 67 67 6 6 49 24 65 5 11 44 18 18 75 7 85 58 35 H2. CO. C2H4. N2. CO .7 .42 .74 .14 .2 .4 .64 .84 .98 .98 .86 .01 .89 .89 .5 .35 .3 .18 .94 4.79 .2 13.5 6.1 20.6 20. 22. 22. 26.12 29.03 9.64 35.92 .25 2.69 4.4 .55 .55 .44 .44 .6 .6 .41 .41 1.0 .73 .73 .55 .4 .45 .5 .5 .93 3.50 26 1. 1. .6 .6 .8 .58 1.0 .4 .3 .3 .2 .2 .15 .15 .35 .35 .47 .47 .20 .25 .25 ,3 .31 4.39 5.72 18.12 3.0 1.0 5.0 12.3 1.2 8 8 98 98 42 42 41 41 9 9 49 02 02 82 82 53 53 5 61 13 .29 .29 .3 .3 .25 2.18 2.18 .26 .26 .75 .20 .25 .3 2.6 .35 .6 .55 3.0 3.0 23.41 .66 .34 .8 .8 .6 .6 .6 92 HANDBOOK OF THERMODYNAMIC i-i o ^ < tf h- 1 d t— 1 f^ p>=^ ^ o n < w H H rt W Ph O « (1^ , o »n ro 10 >«* CO CO 00 o) o) O) ^ to ^^ i>.coo oioo5cd i>.cococoi>-2jgi 00005 OCNTt— li— ii-H TH(Nr-lT-l ,-lT-ti--tt-(r-l eocoo coeoooco c^ii-Hr-i?— ithi>co a M 3 COCX)(M I>.(NO0^ iOCOOcOiOt>-rt< 3 too505 asi>'^co ot^t^t^coosos O p. Wf^ COOOGO GO rH 0505- O O5O5O5O500Oi ,-li-lr-l t-I(N>-1tH Ot>.i-li:OrHTtOTt.rHeOT-ICOGOOOCOO(M05 p • o C5CO'^cOc01>-0500i-t(N(N(Ml>-C»a:iOO(MCOOOOOOOOr-ir-l Wf^ «Ot^GOOOOOOOG00505050iOi05050i050000000'— iTHr-l H >> • (XlOOGOCOOOaDGOOOOOOOOOOOOOOOOOGOCi050iOiOi05050i0505 rt «M S ^ •COt^OOcO -OOcOO •t^TtHTt0 10 • t^COrJi •t^t^t^(NcO(Ot^cDrt^G0cO00(N • • rj< • 00 00 GO 00 • T—1 1—1 T-H 1—1 t^OOO) •0000G0O)00000000O)G0(NO)O) • • O) • 1-i ^ • • -rHC^ CO(M •COOTtHlN o • • -t^OO O^CO •OOJ>'!l< t4 W • • '0000 TiHTt<.l-lT-( • • \o ^ ^ Oi • • -t^OOiO •COIr^rHcO __^ • C/2 • -lOCXJOOiO -00 • •CDC505 't^OSOOS lOCO • CO • 1— ( • • 03 1— I •m ^. (N-'Os cor-- "rt •U3C5 • '05 • • -TtH T-H '(NC^IC^GOOOOi fl M . Cq" O • -co • • • (m' tH • t-H tH tH CO (N o r-l 05 i-H O -(J C3 . a w T— (rH • •!-! •T-H -t-It-I t-I •rHi—li-Hi-lt-lr-l (M CO »0 CO O tHIO • 'TtH 'CO •(Nl> CO •THrHTHCNCOrH o (Nr>.i-< • '"^ 'CO 'COio CO •t^t^t^coTj.t>.00(McO00vOiOiOiOcOrH «00(M^OiOS05CQiOl>. pq COC^-rJHiOJOiOCOcOCOCOCOCOCOOOOOOOCOOOOSOSOOOT-li-lT-l a, Q rHTHTHi-lT-lTHi-lT-(rH,-l,-li-lrHr-iT-li-lr-lr-li-t(M(M(MC^(M(M •(NOOOO -O -(MOOO -OOOOO -OIN -OOO •COcOCOCOcO 'CO -COCOCOCO -cococococo -COCO •(;OCOcO t^ci (N cooi t^or^ IH o 1—1 TO TO bC bfl fl fl Ij <5 ^"^ 73 cq" tn' OOOOOOpqOP^WOOOHOOOOpqmm^filHH^ 6 i-lC^C0'^»CC0t>«000)Oi-i(Ne0Ttii0c0l>.000)OT-i(MC0"*iOcO tH IH r-< iH 1-1 rH IH tH rH r-l CM CN CM cs cs cq cs TABLES AND DIAGRAMS 93 05Q0 OiOOOOOOt^CXDOOOiOlCft 000505 O50000O5O5O5O5O5O5 0005O50505O505Oi050iCJO ,-lrH tHi-Ht-Ii— It-It-ItHi— ti— IrH i— ii— Ir-I i— li-- OiTj<(NCq(NCOO500'#Tt< lOcOO O^-H T1HO5O5O51OC5C0001OU0 TjHOSOO 005 O050SO5000505OOO ooo C.i— iioiOOcOOlOsOS 005t^Tt^005000 (M(MCOCO(Ml:^OOGOOO 005050T-IOOOO C^rH,-H(M(N(N(M(N(M 00(NO5O5(NOSi-l,-HT-r»O«O'-t OiO0500rt^05'^Tt.tD(MOOOCOCOGOOiOO 05OO05O05OOO'-'O(N i-i(N(Nr-i(Mi-i(M(NC^C^C^C't>l>iO»0»00505eOCDcOOC005CO»0»0 COCOCOt^OSOSOSOSCNC^COt^t^t^l^OOOiOCOGOOOi-iiOOOOOOCOOOCOOt^T-it^tv. ^-^t-H^-HT-HT-^rHl-^THCO(^5COCOCOCOCOCO■^'*■*'^rt^U50cO^'^>•^'^-OOOOG0000005^--^1— I Oi0505050i0505050305050iOi05050505050i0505050505050i050i050i0505050500 i-Hi-Hi-HtHiHi-HrH,-H,-HTHT-H,-H,-H,-H,-HT-HrHTH,-HTHrHTHrHrH,-HrHi-HT-HrH,-l,-l,-(,-(,-(CSl(N • Tf4 • Tj< CO CO • • ^Q • • t^ i-H 00 • • 00 • • TjH 00 (M • • 00 • . t^ 1> CO • rH T-H tH cooooTt COi-lT-((N(MrH(NCOi-l Ot^(M(NcO-<:^cOO(M 0000OiO5O500(NT-i00 1— li— (tHi— ItHt— ((MC^T— I • CO CO • -^ 00 • • T-i tH • r-H (M tH 1-1 (M T-l • OOOOCO»OOOOCOO Q coooocoi-irHOOogc^ o O5CO»OiO(M.i-Ht^l>.00000i050 y* r-HCQi— li— It— li— (tHi— IrH (N CO lo 01> CO O (N • -OlCOCOC^OiCOt^-^O • tH tH r-i • C^ 1:^ !>. * to I CO CO CO •OSCO(Nt-IOS(M0000 CO • l> 1—1 • . i- i-ll>t>. • CO CO lO •COrHl>.OCOCOTHi— IrH •CO0000iOi>00-*T}HrJ< (M tH CO (N 1-1 i-H •eo(^^l-ll-ll-^(^^(^^coeo, CO • (N CO 1-1 •CO(M(NCOCOCOT}HTilTtH •cocO''(M0505 CO CO -* VO(N(N'*C^COCOCOCO lO O -* Tt< o »o (N CO TjH 00 00 COiOcOCOOOiOTti->*Tt< 00000000000000000000 »0 CO t^ 00 00 00 CO(NC^)LOcOcOTtH'*rt< 000000000000000000 Oioeo-0000000000000000000000 ■^Ttl>l:^00THi-li-l00i0iO"^i-li-li-tOi00C0Ol:^(NCOC005a3COcOOO'^T^i"^00000>OCOt>-^ CO CO ... tH 1— 1 • . . • (N(N(NC0C0C0C0C0C0c0t^000000000000OOOOi-l(MiOc0C0C0t^000005OOrH c<^(^^c<^(^^c^c^(^^c<^c^c^c^c^^(^^c^(^^(^^(^^cocococococococococococococO'^'«^ri^ 00 00 • . • . Tt< Tjl . . . . o o CO CO O O (M t^ t^ CO CO O (M O (N (N (M CO • • • CO CO • . . CO (M OOOrt<(MC*(MiOCOOOcOrHTtiTHi-i,-l0005aiCO(M COcOcO (NC^(Ni-ii-ii-ii-lT-iO5Ol00000000000000t^l:^t^l^cOcO-rtlTHTjHTtiC0Cq(NC^(NC?i-i0000 O5O5OSO5O5O>O5O500000000000000O0O0000000000000O00000000000O00000O0001>'l> a el o QQ ;-i 03 o p O a •S «*H ^ PQ Ito o c3 M m l^ ^t3 fl P5 ''S Lv c3 p a3 a> OWPhH d fl el 1=1 o o ci c;i PhPh H el > H 03 & ^ a 03 r r-rS •3 ^ 0) O ei e=i o • r3 ^T3 c3 o3 CQ s'a ^ > > oT . . - c3 ^g 03 rt) "-2 02 I^O o bD -3 5. 2^ ^ bC of of of ?^ o ^ .2 5 -S ^* « « fl ^ « bJD o3 o3 §1 3 .4^ ^J ^J _^ _5 M Ol 02 .2 s >^ « a i-H fe I s s fl (^ ^ 52 H 0) o3 o3 o; t^.€ 03 tn '3 ^ O S 1^ CJ e) 03 03 ^ .^ .j-i ooo t^00050rH(NCOT!00050i-lCOCOb-.00050i-l(NCOTtliOCOt~--00050i-tCOiO>OCOCOCOCOCO«OcO 94 HANDBOOK OF THERMODYNAMIC X! e4 '"^z S c3 C5 00 O 00 iO tH CO CO 05 (M C^ O »0 1-1 O rH o^'THOOOOcacot^oo O O O (N lO »o 03-0 2 O o J3 o PI a Q o 12; tH CO CO co' CO C5i d CO (M O 05 CO CO CO (M Oi "^ • i-i O (N • • I tH CO CO CO CO (M (N 1> -^ (M CO lO CO -^ lO CO 00 00 05 . 05 . CO . CO (M o o o C<1 lO CO o 00 05 CO o o (MO 00 O05ir-lO0005N.T-l r}H COt^i-H T-lOl>Ot>-C0(N'*l»0rHOl-ll-lTtl(NC0Oi-Hi-li-lrHC0(MC0OO co'oooi>-i>co»ococoTticoi>i>'^cooo^057sh'*cocoo6cococd 00 t^i-l'rHiO COiOrJ^iO iOOtHCO iOOC0Oi-HC0(NrHl>.iOO00TttO»OC0O00i-i0000t^OrHOO (NO(MC>OrHOCSl>l>COlO^OOC01>»OU:)THrHT-HO t-iocOiOTjHTt<^COCOCOCOCq(M(M(NOiOi0^>O^^>O>OX0i0i0^iO»^»O»O d Q^ Jg d -^ oT o o o o . J CQ bC ^ «-3 O bD ro H QJ 03 O O PhOU TH(NCOr}OOCOeOOO(M(M005 Oi 1:^ 00 lO (M 05 »0 00 «3 tH CO i>» o 00 o'(NT-iTH(N'^iO(NCOOi'>* 1-1 o »o CO O Tji t^ CO rH 1-1 Tfi (N (N T-l I— 1 CO cm" 00 (M (N ci »0 00 "^ CO CO 1-4 Tt< 00 T-l tH Tf. CO 00 1> ! CO 00 o o D5 (N (M 1-* ^H rH tH tH CO tH CO CO CO CO (N ; 1-H (N »0 CO 00 o • • OOC00005000i- ■ CO CO • • T-l iO TjH CO • 00 • (N CO lO . • 00 • • • CO • • ' • CO • • • . • • lO • CO • • • . Tj( ; (N ; ; ; Tt< rH CO 1-1 t>-00»OCOCOOCOCOTt< »o CO T-l 10 t>. 1> 10 Tjl 1-1 '^ 1-1 00 (N 1> (N 00 (N 00 (N Tj4 CO CO N. 010»OOOCOCOC0001>.(N CO 10 Tt< tOOOOJiO-^OOcOTjiCO 10 J> CO CO CO CO tH cO00COi-< C000c0t>-1>- cOcOi005Tt.OO^iO,-<00"3iO(NOS05COTj4|>.TH CO CO CO 1> (N(N.C0 cococococococococococococococo lOOOTjHcOOSl^t^b-rH COCOCOC0C0C0CO(NCO 0050505TtO001>TtiC0THT-lOOO050St^(N i-lb- lO00.iOCO rHOC0C0(NOOOOOOOOOOOOOOOOOOb^l:^N.t^l>.l>.COCOCO!:OCOCOcOCOlO»0»OlO»OrtlTt -^ o 0) bO 03 1^ § ^1 ^ o 03 . bC c3 ^J bC f-< -7 ^ o3 O 03 O U 03 bC-^ o3 a bC bC O r-H r-H go p^ o3 bC -d O 9. 3 11 TO a, 0^ M c3 ^-t^s 13 CD ■ t^ o o += c3 Q (32 fcl a TO rS 0000 •^ I— I 03 o <5^ c3 bC -^ O -4-3 o bD ^i oO ;h (^ t> > o o fl fl fl d WW P< 03 fX bC a c3 O to" ^bi ^ O TO o3 bC 1—1 o3 O CD o3 o bD o o TO O o TO o3 O 53 .a o3_ ,-r TO -£ bD-5 O ^ CJ .^ _ -t-» ■ d c3 2 ^ a.a- o -d d-^s |"g be::-!© o ^ d Ti '^ 'Si oj jy ■*■ (J w 'rt i_j h1WPhi-:100^ bO 02 .-d " 03 a Ph O I— I t^00050T-i(NCOTtHiOc01>.OOOsOi-l(NCOrtiiOCOt>-00030T-i(NCOTt.00050T-i(NCO C^Tl<"^.*jCO 96 HANDBOOK OF THERMODYNAMIC O ^ < O o H PI O •^ H «» P4 "§ rt «J Q ^ O < ^ 1-1 i— 1 W ^ X O ^ pq » M Hi o 5 u H 1^ o ^ o h- 1 H I— ( w o ^ ^ o o S 03 THl>rHi— lCOOt>^05000THCOOOr-<0505000COrt>Ot*» (M .-I O C0C0?0»0(NC0t>»(N"<^Oe0(NTj rt< O "^ tH CO o3"a j5 WW w Tt< CO (N tH lO CO (M O""^© 00O5OiO5 cooo CTHl>t>.l>. CO CO (M CO C^ (M tH tH O rH iO O (M ^ CO T-l 00 (M o (M CO 00 CO o i> 00 t^ (N ^- 1^ Tt< 00 (N Tji |> Tt< -^ 00 -^ O O OOOOOOOOOsasrJifN OOi0>.0U0O1>1>c0tH (M O CO O t^ O (N 00 00 CO 1> 00 CO o tH CO (M o CO (NCO 00 »0(MO TJ^O5T}^00 C0050 OOSi-H Oi t^05005COOOiOJ>.OC»00C^tJ» l>lOlOl>»^C0rHCO CO CO CO CO (M lO Tt< 00 O rH CO 00 CO t^ o COCOCOCO COOOOO r-ICO 00 tH(M(MO00'*t-i(N(N0000C005OOC0 coi:-'^,-ia505cci05coiooo^oo(NTfHTj^T^TjHco(rCO(M(^^(M00^:^1-|'-lC0C0rl^c0■^Tt^r-l00C0(^^l>•C0THO CO(N(Mi—ti— lOOOOSCiOSOSOOb-t^COCOcOCOTjHCOCOt^i-HOcO ^■<*iTt- > > ^ ^ O O o TO TO CJ ^ TO *-" d o ^ O CJ <1 o o^ ^ PhOPh-*- O) til -1-3 ,— ) X <^ rn o3 o O ~t-3 >> O CD d m « >• d o o So^ TO _r o fac d 3 ■^-^ d 5::^ <^ " % S o faC ^ bC -^^ rs TO C3 O) o rd V H '-'^ d ^ Pi d w 03 d o CO* 03 o o ^ 03 ^ a> o (U fl «^ d s «^ s grH 03 TO d 1^ d bO ^ bO •rH»r)cot>.ooc350i— iMeO'^>ocoi>-ooo50i— ic.^-^i>i>i>i^^oooooooooooooooooooo TABLES AND DIAGRAMS 97 coco Mr-lTH0Ji-lt>iC^i005«0Tt< 00Q0CDiO^»OO«0«0t}— ,t-li-t o o o o o 050505TH00THC.rH0500t>-lO'^lO(MeO o oooo 0500rHOOiOiO>OrH^-j(— , oooocoi>ioa5co(Nco»o (NCOi-Hi-lt^OCOiOOCO'"^ COC0CQC0C0(N(Nt-ItH CO C0(M(M(MtHi-It-1i-I.CO COeOC0C0C0COC0COOOCO TtiTtieocococococo(N(MT-iT-H rHC000C000'*(NTj<<:0(NO Tl^00C<^':0»O00C0(^^C000OTt^ (Ni-lc0050Tt<':Dt^f005Ttl THcoi>.ooa>05i>Tjo> ^,9 o O ^ M ■*s -tJ m m T-i 1-1 >i >i s s (D a> WW m wT a csj bL bC ■*^ HJ u ^ o o ■*-> -»-> Qi C) u l-> ^^ a a ' '. o o crt V o O f— H y o o fl) fl a c G -fj aj a ^ o a 7^ (;] f3 > c3 c3 bC bJD 1 |E^ . l Uf-lt-tt-lt-lt-lt-lt-l tH(Ncv3"^"5*>OOOC^-«^io tH 1-1 tH tH T-i(MCO'*"3«Ot>-000(N'>*0 1—1 1—1 tH 1—1 w O s I— I o ,. > 8S 3 W OQ O O) C.00050i-i.00CI5Oi-i(NC0Tt< OOOOOOOi-ti-li-li-lrH 98 HANDBOOK OF THERMODYNAMIC Table LXIV COMPOSITION OF UNITED STATES COKE (Mainly from U. S. Geological Survey Reports) / Origin. From Connelsville bituminous coal, 72 hours roasting From Connelsville bituminous coal, 48 hours roasting Foundry Ganley Mountain, U.S. Geological Survey. . . Foundry Milwaukee Solvay, U.S.G.S From Connelsville, U.S.G.S From Alabama coal, U.S.G.S. No. 1 From Arkansas coal, U.S.G.S. No. 6 From lUinois coal, U.S.G.S. No. 2 From Illinois coal, U.S.G.S. No. 3 . . From Indiana coal, U.S.G.S. No. 1 From Indian Territory, U.S.G.S. No. 2 From Iowa, U.S.G.S. No. 1 From Iowa, U.S.G.S. No. 3 From Kentucky, U.S.G.S. No. 1 From Kentucky, U.S.G.S. No. 4 From Missouri, U.S.G.S. No. 2 From West Virginia, U.S.G.S. No. 1 From West Virginia, U.S.G.S. No. 2 From West Virginia, U.S.G.S. No. 3 From West Virginia, U.S.G.S. No. 4 From West Virginia, U.S.G.S. No. 5 From West Virginia, U.S.G.S. No. 6 From West Virginia, U.S.G.S. No. 10 From West Virginia, U.S.G.S. No. 12 Connelsville average of 3, J. B. Proctor Chattanooga, Tenn., average of 4, J. B. Proctor Birmingham, Ala., average of 4, J. B. Proctor Pocahontas, Va., average of 3, J. B. Proctor New River, W. Va., average of 8, J. B. Proctor Big Stone Gap, Ky., average of 7, J. B. Proctor Alabama, run-of-mine, foundry, Moldenke Alabama washed slack, foundry, Moldenke Colorado washed slack, foundry, Moldenke Illinois washed slack, foundry, Moldenke Pennsylvania washed slack, foundry, Moldenke Pennsylvania washed slack, foundry, Moldenke Tennessee, foundry, Moldenke Tennessee, foundry, Moldenke Virginia, foundry, Moldenke Virginia, foundry, Moldenke West Virginia, foundry, Moldenke West Virginia, foundry, Moldneke Proposed standard foundry coke specification Moist- ure. .23 .19 .75 .27 .18 .33 1.30 1.57 .96 1.16 2.60 2.11 1.80 .51 .52 2.18 .40 .59 .38 .20 .42 1.00 .60 1.00 1.34 .75 .44 2.78 .23 .91 .22 1.67 .16 1.52 .67 .60 .5 Vol- atile. 1.32 .51 .35 .48 .32 .72 2.85 2.83 .44 1.24 1.85 1.79 1.95 .84 .73 1.82 1.95 1.31 .87 1.15 .43 1.85 .55 .75 1.03 .75 1.31 .74 .29 2.26 .11 1.6 .80 1.67 .46 2.35 .75 Fixed 1 Carbon. 88.18 89.6 86.38 89.63 88.75 82.63 78.84 75.42 87.08 84.81 80.25 77.01 78.64 93.25 86.40 81.34 87.47 86.70 84.48 85.42 84.34 89.60 90.34 90.37 88.96 80.51 87.29 92.53 92.38 93.23 83.35 86.00 82.18 83.35 92.53 80.84 92.44 76.87 93.24 88.52 95.47 84.09 89.75 Ash. 10.27 9.7 12.52 9.62 10.75 16.32 17.01 20.18 11.52 13.19 15.30 19.09 17.61 5.40 12.35 14.66 .18 11.40 14.27 13.23 14.81 7.55 8.51 7.88 9.74 16.34 10.54 5.74 7.21 5.69 14.28 11.50 16.07 13.13 6.95 15.99 7.23 19.86 5.80 8.29 4.00 12.96 9.0 TABLES AND DIAGRAMS 99 Table LXV PRODUCTS OF BITUMINOUS GAS COAL DISTILLATION (Juptner; (Variation with coal composition) Coal from Pas De Calais. England. Commentry Blanzy. ' Moisture Ash 2.17 2.70 9.04 7.06 3.31 7.21 4.34 8.80 6.17 10.73 Coal composition, O2 5.56 6.66 5.06 5.36 88.38 86.97 1 1 7.71 5.40 85.89 1 10.10 5.53 83.37 1 11.70 per cent by weight H2 5.64 C 81.66 I N2 1 r Gas 13.70 15.08 3.90 4.65 4.59 5.57 71.48 57.63 6.33 7.07 15.81 5.08 6.80 64.90 7.41 16.95 5.48 8.61 60.88 8.08 17.00 Tar 5.59 Products of distilla-, tion, per cent by- Ammonia water Coke 9.86 58.00 weight . Coal dust 9.36 Ga^ produced per ^^j^ ^^^.^ ^^^^^ kg coal 30.13 31.01 30.64 29.73 27.44 fCOo 1.47 1.58 6.68 7.17 54.21 52.79 34.37 34.43 .79 .99 2.48 3.02 1.72 8.81 50.10 35.03 .96 3.98 2.79 9.86 4.5.45 36.42 1.04 4.44 3.13 CO 11.93 H2 42.26 4 Volumetric analysis CH4 37.14 .88 of gas 4.76 Table LXVI AVERAGE DISTILLATION PRODUCTS OF CRUDE MINERAL OILS (Robinson) ClasB. Name of Product. Average Per Cent Yield. Specific Gr. 60° F. B6. Boiling- Point, F. f Cjrmogene small .1 1 -1.5 10 2 - 2.5 2- 2.5 12 -20 40 -55 .590 .625-. 631 .635-.658 .680-. 700 .717-. 72 .742-. 745 .780-. 785 .800-. 810 .85 .885-. 920 .980 107 94-92 91-83 76-70 65 58 49 44 35 28-22 13 32 64 86-158 140-212 175-250 212-265 300-^75 300-700 Petroleum ether. . . . Rhigolene , Gasolene Petroleum spirit. . . . ' C naphtha (benzene) . . ■ B naphtha ^ I A naphtha (benzene) . r Water white Lamp kerosene Intermediate \ Ordinary kerosene. . . . Gas oil 1 Heavy oils r Lubricating oil \ Paraffine 17.5 2 5 -10 I Residue and loss Petrol Gasolene or benzene . . Kerosene 5 -16 30 -40 10 -12 12 -15 25 -40 3 -5 10 -15 .725-. 765 .817-. 828 .840-. 860 .870-. 897 .908-. 912 .915-. 920 .900-. 950 63-53 41-39 37-33 31-26 24 23-22 25-17 Lamp oils Intermediate Solar oil C Spindle oil Lubricating oils .... •j Engine oil a , Cylinder oil at m Fuel oil Residue, astatki or gondron rt 100 HANDBOOK OF THERMODYNAMIC Table LXVII FRACTIONATION TESTS OF KEROSENES AND PETROLEUMS Clasa and Density of Original. Volumetric Per Cent Distilled. Temperature of Distillation. Specific Gravity of Distillate, 60° F. Density, Baum6. No. Deg. F. at Beginning. Deg. F. at End. 1 American kerosene Robinson Sp.gr. .797 BL 45.67 23 11 8 9 10 16 7 3 Left as res. 13 257 302 347 392 437 482 527 572 680 302 347 392 437 482 527 572 680 .748 .767 .783 .794 .807 .821 .831 .836 .843 57.21 52.5 49.0 46.5 43.5 40.8 38.8 37.5 36.5 2 Russian kerosene Robinson Sp.gr. .825 B4. 39.9 9 18 20 13 18 12 6 1 Left as res. 3 239 284 329 374 419 464 509 554 680 284 329 374 419 464 509 554 680 .786 .799 .816 .829 .831 .845 .857 .864 .877 48.2 45.4 41.6 38.9 38.5 36.8 33.5 32.2 29.8 3 American kerosene Robinson Sp.gr. 25 23 28 13 7 3 293 338 383 428 473 518 338 383 428 473 518 572 4 Alsatian petrolemn Engler & Schestopal Sp.gr. .801 Be. 44.8 .08 30.35 44.7 20.2 3.8 302 392 482 572 302 392 482 572 608 5 "Kaiser " oil Engler & Schestopal Sp.gr. .795 Be. 46.1 29.7 32.3 26.3 11.7 302 392 482 572 392 482 572 608 6 Pennsylvania kerosene Maschinenfabrik, Augsburg Sp.gr. .800 Be. 45 15.8 22 19.25 16.8 26.15 302 392 482 572 302 392 482 572 608 TABLES AND DIAGRAMS Table LXVII — Continued FRACTIONATION TESTS OF KEROSENES AND PETROLEUMS 101 Class and Density of Original. Volumetric Per Cent Distilled. Temperature of Distillation. Specific Gravity of Distillate, 60° F. Density, Baum6. No. Deg. F. at Beginning. Deg. F. at End. 7 German, benzol Maschinenfabrik, Augsburg Sp.gr. .873 Be. 30.5 68 28.7 212 302 212 302 8 Beaumont, Texas Richardson & Wallace Sp.gr. .912 Be. 23.5 2.5 40.0 20.0 25.0 230 302 572 752 302 572 752 .8749 .9089 .9182 30.1 24.2 23.6 9 Ohio Mabey & Noble Sp.gr. .829 Be. 38.9 23.0 21.0 21.0 27.0 185 302 572 752 302 572 752 .7297 .8014 .8404 .8643 62.3 45.1 36.8 32.2 10 Pennsylvania Sp.gr. .914 Be. 23.2 21.0 41.0 14.0 23.0 176 302 572 752 302 572 752 .7188 .7984 .8334 Paraffine 65.2 45.8 38.3 11 Virginia, petroleum, heavy B. Redwood Sp.gr. at 32° F. .873, Be. 30.5 1.0 1.3 12.0 212 284 212 284 356 13 Virginia, petroleum, light B. Redwood Sp.gr. 32° F. .8412 Be. 36.6 1.3 4.3 11.0 17.7 25.2 28.5 212 248 284 320 356 212 248 284 320 356 392 13 Pennsylvania, hght B. Redwood Sp.gr. at 32° F. .816 Be. 41.6 4.3 10.7 16.0 23.7 28.7 31.0 212 248 284 320 356 212 248 284 320 356 392 14 Penn., heavy, B. Redwood Sp.gr. at 32° F. .886. Be. 12.0 500 500 536 15 Java, petroleum B. Redwood Sp.gr. at 32° F. .923 Be. 21.8 1.0 1.0 15.0 22.3 24.3 212 248 320 356 392 428 212 248 320 356 392 428 464 102 HANDBOOK OF THERMODYNAMIC Table LXVIII FRACTIONATION TESTS OF GASOLENES Class and Density of Original. Volumetric Per Cent Distilled. Temp, of Distillation. Density of Distillate, 60° F. Density, Baum^. No. Deg. F. at Beginning. Deg. F. at End. 1 Gasolene [Blount] Sp.gr. .739 Be. 59.5 39 49 7.5 3.5 158 212 248 271 212 248 271 .722 .748 .757 .767 63.9 57.2 55.0 52.6 2 Gasolene [Blount] Sp.gr. .736 Be. 60.2 48 37 11.5 2.5 158 212 248 271 212 248 271 .727 .747 .762 .767 62.5 57.5 53.9 52.6 3 Gasolene [Blount] Sp.gr. .717 B^. 65.3 65.5 26.5 4.5 2.5 149 212 248 271 212 248 271 .708 .742 .754 .769 67.9 58.8 55.8 52.2 4 Gasolene [Blount] Sp.gr. .716 Be. 65.5 69.0 22.0 4.5 3 149 212 248 271 212 248 271 .707 .743 .751 .770 68 58.5 56.5 51.9 5 Gasolene [Blount] Sp.gr. .716 B6. 65.5 65.0 26.0 5.0 2.5 145 212 248 271 212 248 271 .704 .742 .753 .772 68.9 58.9 56 51.5 6 Gasolene [Blount] Sp.gr. .717 Be. 65.3 70.0 24.0 3.0 1.5 149 212 248 271 212 248 271 .71 .744 .753 .769 67.2 58.2 55.9 52 7 Gasolene [Blount] Sp.gr. .719 B^. 64.7 67.0 21.0 6.0 4.5 140 212 248 271 212 248 271 .706 .742 .750 .770 68.2 58.9 56.8 51.9 8 Gasolene [Blount] Sp.gr. .711 B6. 66.9 66 24 6.5 2.5 140 212 248 271 ' 212 248 271 .700 .731 .741 .762 70 61.6 58.9 • 53.8 9 Gasolene [Blount] Sp.gr. .715 B^. 65.8 59 28.5 7.0 4.0 145 212 248 271 212 248 271 .701 .736 .750 .765 69.8 60.2 56.6 53.0 10 Gasolene [Blount] Sp.gr. .712 Be. 66.7 62.0 25.0 7.0 5.0 145 212 248 271 212 248 271 .699 .730 .742 .758 70.1 61.8 58.8 54.8 11 Gasolene [Blount] Sp.gr. .710 Be. 67.2 68 22.5 6.5 2.0 136 212 248 271 212 248 271 .699 .736 .750 .736 70.1 60.2 56.6 60.2 TABLES AND DIAGRAMS Table LXVIII — Continued FRACTIONATION TESTS OF GASOLENES 103 Class and Density of Original. Volumetric Per Cent Distilled. Temp, of Distillation. Density of Distillate, 60° F. Density, Bauml. No. Deg. F. at Beginning. Deg. F. at End. 12 Gasolene [Blount] Sp.gr. .700 Be. 70 86.5 11.5 ■■•••-■ 133 212 248 271 212 248 271 .692 .739 72.3 59.5 13 Gasolene [Blount] Sp.gr. .718 Be. 65 59 29 8 3 145 212 248 271 212 248 271 704 .742 .755 .768 69 58.8 55.5 52.5 14 Gasolene [Blount] Sp.gr. .717 Be. 65.3 64 26 6.5 2.5 149 212 248 271 212 248 271 .705 .740 .754 .770 68.8 59.4 55.8 51.7 15 Gasolene [Blount] Sp.gr. .717 Be. 65.3 68 23 5.5 2.5 149 212 248 271 212 248 271 .705 .743 .755 .773 68.8 58.6 55.5 51.2 16 Gasolene [Blount] Sp.gr. .717 B6. 65.3 67.5 22 5.5 3.5 143 212 248 271 212 248 271 .706 .742 .758 .770 68 58.8 54.9 51.8 17 Gasolene [Blount] Sp.gr. .715 Be. 65.8 58 24 9.5 6.5 136 212 248 271 212 248 271 .700 .733 .749 .770 70 61 57 51.8 18 Gasolene [Blount] Sp.gr. .705 Be. 68.6 73 17.5 5 3 131 212 248 271 212 248 271 .697 .736 .751 .768 71 60.2 56.5 52.5 19 Gasolene [Blount] Sp.gr. .705 Be. 68.6 74 15.5 5.0 4.0 140 212 248 271 212 248 271 .696 .736 .745 .764 71.1 60.3 57.9 53.2 20 Gasolene [Chambers] Sp.gr. .71 B6. 67.18 6.67 6.66 6.67 6.67 6.66 6.67 6.67 6.66 6.67 6.67 6.66 6.67 7.67 5.66 4.37 148.8 149.2 167.0 176 176 186.8 197.6 206.6 212.0 219.2 226.4 233.6 248.0 258.8 284.0 149.2 167.0 176.0 176 186.8 197.6 206.6 212.0 219.2 226.4 233.6 248.0 258.8 284.0 311 / 104 HANDBOOK OF THERMODYNAMIC xn < < < O 1^ op a O O o coo lO 1-1 Tt< 05 CO 00 rt< C^ i-H (N 00 <© CO CO ooa5oocooot>'i>ooooi>i>'i>-ooi>.i>-i>-t^ CO(Ni-HCOOi(M0050050-^ t>.oooii>'COooooccn>-<;Dooi> 00 00 cot> N. Tt< 00 -^ 00 i-H i-i lO (N O CO lO CO T-H »0 05(N05iO(N0000OCNO54OTt- JOt^ CO 00 t^-^C^KNOO lOOO J> ^ i-H ,-1 r-i lO (M Ca i-l(N 00 05 T-4IO >0 CO CO "3 tH CQ CO »0 tXN (N (M "^ CO CO CO (N CI '"*< O CO (N t}* rji C<1 CO (M CO (M (M CO CO OOt^i-HCSr-iC^lTtllOOO O5tOI>.lOO5O5COC0"rtt^ IOCO»010^'0>OCOCO»0^ cOThooco t^ lO'-icoco^O"^*^' COTHCO(MTt<»o0505 iOiO»OCOiOiiO»0 05 to O CO CO 00 coo 00'-^O -00 US tOrH .no + 05 CO (M T-i (M l>'rt<00'*rHC0 00 05 0COOO(N05COcOO lO 1:^ Oi rH O'-tl>-i0rHOC0Oc0Ot^O i-H (M lO i-H> iO ^^ O l>- O "* O i-i 1-1 CO 1> 00 00 O O CO (M OO (M cO CO (M OO (N cO Oi c * *iO(M • • • ! '. !o • • • -(N • ■ ' ^ ! ! ! oot^os l>l>CO rH(NTj< CO00(N CO CO ^ Tt 1>(M 1-1 --^ CO O O CO i-< "^ CO O Tt^ O "^ ""^ Cq CO o^o tH tH CO CO (N co' • (M* Tt* (M T-4 O t^ »0 i-< CO CO CO* lO ^O tH (m' (m' CO i-< (N (N Co" C^' "** 1—1 05 05 CO 1— I OcOI>'i->l>»cOOOcOTt l:^ 1:^ N. t^ CO CO CO CO CO CO CO lO (N (N >Q: Qa o3 o3 o S;d d « Q d d fh 2 • S (D 03 aoj d S o3 02^ g o ?§ T3 03 0) o -d o^-l^ o3 "S;d (U rS'-'gP^ d* o to dPH' •Tj O -^ o d-g M^-a

d'^ c3 O Oi ^P O oj »OOOSOTH(NCO'*iOcOb- ooo50r-((McoTt OrH coco TABLES AND DIAGRAMS 105 CO < O (^ I— t < o ^ < ^ w < g o •cO o 5:^ < 12; X H- 1 P^ X ^ ^ r/) 2 « ^ O ^ o HH H 1— 1 w O PL, S o o op o o o u C0 001>-l>00 000 00i:0c0 0> Oi 05 00 00 CO OOCDOOOiOCOt^-^Tj* rt< rt* l>. N. "^ O lO _ O'5*• iOiOiOr}H(M00Tj<00l>» 1-ItHCO tJ0 -^ l> »0 Tt< Tj< <£>TJ0000 o> o (N Co' t>^ I> »0 lO C^' CD C^* (N O CO O CO 00 00 IQtHO COOcOfNOb- O Tl C5 -<* O O coco-^io CO(M(N CDtJ< lot^oo (N (MCO' (M ooo CO(N(N OOi-l (N(N(N lO C005 «>* (NiNOOiOCOi-i OOOO CO rt^ 05 00 t^ 00 (N lO C5 (M (N CI CO 00 00 05 00 CO' CO cooo IOtJHtJ< OOiO r-l O5 00 oocoooooi>-coooo 00 (NO l>i-lCO COCO OOO OOOOiO (N(N(M(M(M(M(N(M(M(N CO (N coco (N(M C4 o .TO . C (3 of ^O) fcl ^ 2 s .2J hC S o ^ S S bC c3 TO , PI a ^ ^-1 *-• «^ =1 13 ■^ -"^ -•^ O M O o a o3 pi Q O CO OO -U TO . (-1 P a SP o3 ^ a> o o3 d 13 (=1 Hi 03 c3^ -♦J « Pi O O >^ c3 a o3 c3 TO a> QJ ^ TO W-g •4-3 -tJ X ;=3;=!P »r TO^ 9^ o3 c3 « Ui ^1 s o oj 3 TSTJ TO 2 2 J PsPhW CD 03 O 6 U 1—1 CD -H -4-3 c3 . ^M l-H O) c:> o3 C c3 ^ b£)^3 o3 *^ o3 ;^ S^;:^ a a o o ^'^'^ bC oj o O TO TO bD a '^ •^ bC O o3 o oj 4-1 ^ -T^ a a o o o ti o o PhPP O TO „ „ ■^ 03 TO TO •r! bC "3 03 « ^ bCbC TO fH o COcOt^00050i-t COCOCOCOCOCOCOCOTt^Tj* (N CO"^ lOcOt^ ^^ r^ ^( 00C35Oi-^(MC0rt<»Oc0 106 HANDBOOK OF THERMODYNAMIC Table LXX RATE OF FORMATION OF CO FROM CO2 AND CARBON Temp. Deg. F. Time. Seconds. Volumetric Analysis. Form of Carbon. CO2 CO CO CO2 CO Authority. CO +CO2 Fine, amorphous Charcoal, 2-5 mm Charcoal, hazel nut . . . Coke, 2-5 mm Coke, hazel nut Gas carbon, 2-5 mm . . Gas coke, hazel nut, . . 1472 1472 1472 1472 1472 1472 1472 480 480 480 480 480 480 480 13.6 39.9 17.1 79.1 83.6 80.1 86.7 86.4 60.1 82.9 20.9 16.4 19.9 13.3 6.43 1.51 4.88 .26 .20 .25 .15 .864 .601 .829 .209 .164 .199 .133 Boudouard 1. Charcoal, 5 mm .... 1472 1472 1472 1472 1472 1472 1472 1472 1472 189 116 57 46 24 16 12 2.7 1.6 49.7 49.6 48.2 47.8 62.5 71.7 75.5 93.7 96.1 50.3 50.4 51.8 52.2 37.5 28.3 24.5 6.3 3.9 1.01 1.01 1.07 1.09 .60 .40 .32 .067 .041 .503 .504 .518 .522 .375 .283 .245 .063 .039 Clement 2. Charcoal, 5 mm. . . . 1562 1562 1562 1562 1562 1562 1562 1562 123 54 24 13 9.3 4.6 3.7 3.3 25.7 29.8 42.8 47.4 70.3 70.3 77.6 77.5 74.3 70.2 57.2 52.6 29.7 29.7 22.4 22.5 2.88 2.36 1.34 1.11 .42 .42 .29 .29 .743 .702 .572 .526 .297 .297 .224 .225 Clement 3. Charcoal, 5 mm. . . . 1652 1652 1652 1652 1652 1652 64 44 10 4.3 2.8 2.2 12.7 13.3 29.2 50.2 68.9 65.6 87.3 86.7 70.8 49.8 31.1 34.4 6.87 6.52 2.42 .99 .45 .52 .873 .867 .708 .498 .311 .344 Clement 4. Charcoal, 5 mm. . . . 1697 1697 1697 1697 1697 1697 119 81 12 5.8 4.3 2.3 5.3 6.7 15.2 28.2 35.8 62.5 94.7 93.3 84.8 71.8 64.2 37.5 17.9 13.9 5.57 2.54 1.79 .60 .947 .933 .848 .718 .642 .375 Clement 5. Charcoal, 5 mm. . . . 1832 1832 1832 1832 1832 70 18.6 8.2 3.7 2.3 5.1 5.7 9.7 20.3 20.5 94.9 94.3 90.3 79.7 79.5 18.6 16.5 9.3 3.92 3.88 .949 .943 .903 .797 .795 Clement Charcoal, 5 mm 2012 2012 2012 2012 2012 36.5 10.4 4.97 3.6 1.9 1.3 1.7 1.9 2.7 5.4 98.7 98.3 98.1 97.3 94.6 75.9 57.8 51.6 36.0 17.5 .987 .983 .981 .973 .946 Clement 6. Coke 1652 1652 1652 1652 142 80 44 25 72.4 86.9 90.6 94.3 27.6 13.1 9.4 5.7 .382 .151 .104 .061 .276 .131 .094 .057 Clement TABLES AND DIAGRAMS Table LXX — Continued RATE OF FORMATION OF CO FROM CO2 AND CARBON 107 I Temp. Deg. F. Time, Seconds. Volumetric Analysis. Form of Carbon. CO2 CO CO C02 CO Authority. CO +CO2 6. Coke 1652 1652 1652 16 9.6 3.7 95.1 97.4 99.2 4.9 2.6 .8 .051 .027 .008 .049 .026 .008 Clement 7. Coke 1832 1832 1832 1832 1832 1832 1832 1832 123 80 33 19 6.4 4.1 3.1 2.0 21.6 35.6 47.1 68.0 86.1 88.5 90.8 93.7 78.4 64.4 52.9 32.0 13.9 11.5 9.2 6.3 3.62 1.81 1.12 .47 .16 .13 .101 .067 .784 .644 .529 .320 .139 .115 .092 .063 Clement 8. Coke 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 90 30 13 6.7 3.2 1.8 1.7 1.6 1.5 .96 2.9 14.6 33.9 44.4 68.3 69.6 76.0 77.9 78.6 86.7 97.1 85.4 66.1 55.6 31.7 30.4 24.0 22.1 21.4 13.3 33.6 5.85 1.95 1.25 .46 .437 .316 .284 .272 .154 .971 .854 .661 .556 .317 .304 .240 .221 .214 .133 Clement 9. Coke 2192 2192 2192 2192 2192 2192 19 13 8.3 2.4 1.6 1.1 1.1 2.2 4.7 31.5 56.1 66.5 98.9 97.8 95.3 68.5 43.9 33.5 89.7 44.4 20.2 2.18 .78 .504 .989 .978 .953 .685 .439 .335 Clement Coke 2372 2372 2372 2372 8.9 4.1 2.1 1.1 .1 2.1 6.8 16.6 99.9 97.9 93.2 83.4 999 46.5 13.7 5.02 .999 .979 .932 .834 Clement 10. Anthracite 2012 2012 2012 2012 2012 34 9.4 5.4 3.3 2.4 12.2 39.9 52.3 69.8 73.5 87.8 60.1 47.7 30.2 26.5 7.2 1.5 .91 .43 .36 .878 .601 .477 .302 .265 Clement 11. Anthracite 2192 2192 2192 2192 2192 47 10 5.1 2.8 1.6 .3 14.4 28.5 57.7 69.0 99.7 85.6 71.5 42.3 31.0 332.3 5.95 2.5 .73 .45 .997 .856 .715 .423 .310 Clement 12. Anthracite 2372 2372 2372 2372 2372 2372 12.4 6.0 3.6 3.0 1.91 1.07 .1 3.5 17.6 19.1 33.7 49.7 99.9 96.5 . 82.4 80.9 66.3 50.3 999 27.6 4.68 4.23 1.97 1.01 .999 .965 .824 .809 .663 .503 Clement 108 HANDBOOK OF THERMODYNAMIC X 1-3 pq < o p Q o o o o o O o a « o o Heavy Hydro car- 3 o O . CO . d • : :^ : : .* \ ■^ '. '. . . o . .CO ... . ... w o 00 • o o o o • 05 05 r-1 O . . 1-1 o • 1-H 00 COOiOOOO -ooo .COi-l^'^-^i-l(Nco»o o h-OOTHCOfO-^iOOOOOCOCOC^ICOt^eO C<10050C.i— iiO-^Tt0000000000001>COOOOOOOOOOOOOOOOOOOOOl>OOX "^ _ t^OOCi050000>OVOOi01>t^(NOOCO(N0005(N cocoo<^^CT>cooTJ^TJ^O(^^(^^o>o^>l-l'*l>-l-|^>coooO'*o» C5 c^ CO* CO Tt< '^* !>.' ->^' TiK ^J CO c^ Tji CO CO CO i> CO CO CO* Tji CO c.COC005THiOi-iOCO(MiOCOJ>(N (M'^"^COOTHO-0C50000000 l>T-lOOTHOOOOOOOOOcOiO(N(N00050500000000tO^COi-l Tt^Tt^cOl-l05ooooI>^^^>•^»^'^»^>•^^cocococococococococo cococococ^^c^^c^c<^(^^(^^(^^(^l(^^(^l(^l(^^(^^<^l(^^(^^(^^(^^(^^(N(^^ o ^3 o3 faD o3 03 O oJ PI o , . . . JO =3 0^ d *:^ -^ .-^ .t^ "S •Tj 03 ^ O, t.HH a ^ ^s \. O ^ W M O b. "-^ »3 1 o3 O o o3 «OOQ PI o3 . . Ti a=^ •t:; -i-i .— r ^ -1-3 •^ '^ .tf 3 ^ =^ '^ taxi ^ ^ d o3 cu S to O 03 a-S a ooo ^ ;-i M fii P-i pR a, PI ID PI _ O ;^ o ►-^ -a o I— I Hi-* PI o3 ~W kT ^ S 03 bD c;> P) O ;h Ph a> o3 o3 bC bC 03 o T3 PI o 03 I 'bb PI w o 03 P. P ^Xi OOa50i-i(NCO'<:litocOI>-00050T-HC^CO;5!Jto TABLES AND DIAGRAMS 109 iHOt^i-Hi-HU5rJ^>c>oooooQOoooo(X)c»t^^>oococ»^•ooaDooc» c^osococol>^*^>OTH05coooo»oo(^^(^^(^^^^ocol:o(^^ooo50i^^ClOooo^>•osT-4T-lo 050 lOOOOJOOiOi-iOOi-HOOOOOOOOOCOOOOOOOOSeOO C<^T-^0(NC<^C>050^*r^T-^(^^(Nl-^OiOOC500^T-^Tt^GOCOrtlTtlcDeo^>cO(^^OOcO"^»OiO wt*coc. to 05 oo rn os lo i>- »0 CD lO lO lO lO to TtHi:0>OtOtOtOiOTjOG0C0C000'<*'*TtiC^ai»O»O>OOOC0THl>.05(N 1-H (M 00 CD (M to CO 1-1 cq CD ic-^-^cocotoiOTjHTtiioTticoeoioxoiococococotOJO-^cocoio to 00 CD to CD to CO T^ to to to OO . . . .T-Hi-I . .000 . . !. !!!.!.! oooo....coco..'<^i-ic^.. . . . . • • • • CO OrH -OOOO 00 -OOtOOOlMTHrHO OOOOO C^I>'• TJH to • to • to • tH (M r-( • •"^ coco (MiH r-H'lOi-ICO (N (N CO CO (N CO 00000000 OOCOCOC0000000500COOO O05OTt<'*C0C005 •OiO(N(N(NiOO:)l>|>l>OOiOiOOOi>.CDcO'^a5CO Tji to Tt< 00 CD 00 to 1-H »0,-ieO'^TtTHOOOO'*OOCO I— 1 »— li— Ii—Ht— li— IC5 1— li-H rHT— -l>COcO>OTtiCOCOCO(MT-iOOOOOCX)OOiO-^rt CD CD to COcOcDcOcOiOiOiOtoiOu:)iOiOu:iiO>Ou^u:)iOto»0'*'^TtirtiTjHTt<-^rhi-<*i TJH CO CO CO CO CO CO (N C^ (M (M (M c3 eS o ^ o OJ XD '§ a ft H o M c3 ft 13 o l-H bJO bfi 0) O ^' J O g (U O) o o o o3 HI 13 ^ t3 'tS pi3 f-( tH O -f9 TO TO O -^ o g TO :3 03 g o ;h -t-3 TO o bD CJ « ^ ft-2 H o ^-ie .^ E? M fl ^ o '^ - i-rt •"• O) tM .2 i i ft J W) bC 3 , " " o «5 O O ^' -^ fi; £ S o ^ ^ Q Q f^ tH rd ^ o3 .r» w rt OJ 5h 'bb g M O ^-5 '^a •s g ^ § ?3 <^ o ^ o3 ^ O O 2 Cl 13 ■ ^ fl S ? -*^ W tH tH "i o ■S ;=! •'-I •■-< a a a 000 tH t^ tH p!H fe fe fl fl O u CDt>.00050i-i(MCOTtiiOC01>«00050i-i(MCOrt.OOCiO'-H(N W(NCOCOTtiO'^TtHeO^O(NTtHi-l05(MO»Ht-l O000O000t>O0t>.|>001>.O01>-l>O0t^O0O0l>.00l>I>l>t>QO CO OOOOOeO^OO(Mt>.i-li-(iOOiOI^050cDi-lrHt^(N CO OOI>c0001>(NOOCS5(N0505i-tOOiOOOrtHOOcO'^'*CO O OOCOOOOOOCOI^I^COCOO OOOCOOOOI^COO o ':D00'-iOO'^»OO00<£»T-i05(Mt>-OOl>C0t>(M<;C)Tti(M(M 00 c0>OC000(N05'^iOG0r-iO(M"^C0C0OT-<'<*iO00(M'-HC0O t» tOtOtOiOiOTtiTtt>.»Ol>iOt^l>Tt-»OT^l>.iO»O00O500»O (M (N rJH Q (M (N (M T-i O O CD o o CD o CO o o (M (N CO OOOOOI:^OOOrJ^(NC0-^Ol>00CDi0l>-Ttt^l>COiOCOi-i0000500t^cO C0COCOC0C0C0COC0C^(N(M(N(M(N(N(N(M(M(N(NT-liF-lrHTH o CO (M COTtiiOOt^OOOSOT-iCqcOrPiOOt-'OOOiO'-iCNCOTtiiOcOt^ CO^CDcOCOCOCOl>t>-t>.l>JC>.t>-l>l>t^i>000000000000Q000 TABLES AND DIAGRAMS 111 050'^QO(3SOOOOOiTt00>i-l05CDcO SoSoSt>.00THSo-^oSt>-C»00»COC005t^0iCX)i-^C0^CftO0000t^«£)OO ^^t^^-t^ooo^'l>•^-^'CO^>^-co^>cDO^'CD»oo»OiOcoco^o 1-1 ■ cT~ ' ^O io lO 00 (M (N (N 1>. O O O e0C0DT)ON05OT+OU^C^C0rH(X)O(N'-Hi0rtHr^OC0"^i--COOOO'^O'>^P005OOrtHT--li--<00^OCC)00OC0OC0'<#C005THC^O»0OO c^|[ooooi■^oooc<^»oocoOTt^05^'-^OitO(^^05(^^GOO'<4^c^oooc<^ol>T-lc^lOoooo •r(^^^Ol-^"^cOaDrJ^cOCO^^O:>^^0>Ou^t^COlOOi(NlOOGOcOt>.TH050^CD^©^'00005- -lO-^OcO-^iOCOOcOCOCOCO tH •»-1'>^"iO"<^cdcou;>^^^o6ajoa50TH^>^>•<:J^CR^-^^^oo6o 1— lOd 1-H 1— It-Mi— IOq»— I rH (N 1— I T— I (M T-l T-H Cj 1— I r-t t— t l— t C<< (N OOOOOOOOOC0Oa)Ol>OO(NTtH00C0^OiL0(MOi:0TH(Mt^e0'*»-OTHoooTjJcoT-^t>•rJ^co(^^THr-l^>.(N(^^ T-(i— lTHOOOOOOOO050500000000l>-t^l>>C0<:0<£»»O>OiO»OiOTj-05TH»OCOOOCOT^Oi05 OOOSCOOOTflOSiOOOCOCOCOOO lO 05 lO 00 05 t^ Oi-IOOTHrH000000500rHOOOSOO(M(M 1— (i— 1 T-Hi— D 03 03 ::^ :q J O "i rt o3 fa 02 ■^ o ^ l^ ^^ S O 03 ti JH bC a a 1^ TO _2 . . fe 73 2 o 2 a CO bfl 73 02 03 73 d o 73 w CO o 73 '.JZ d Q^ (N CO d P •II o3 H d o X m 73 .2 O '^ O rSoi o . w o 03 d o m p ^ M ;:^ H ^i4 o « ; • fa-fa*^ >> d 02 I P I ^ .73 P-l O d 03 d -f3 .+3 o3 m TO 1-3 33 a» 73 8. a o3 ^ d bo.o) ooo>01-l(NcoTJ^ioco^'0000'-lC^coTJ^locol>•oo^01-l(^^coTtllOco^'OOOiOT-^c^eoTt^ 00000i0i0505050505050505OOOOOOOOOgTHi^i-MiHiMi-HrHT-ji^i^ 112 HANDBOOK OF THERMODYNAMIC op ■^ Qi P^ -^ w ^s p o !-^ o Q O S PL< X X h^ ^ o n rn < O H fin o o "ci •^ IS CI O w o iO»OiOiO":)TtHT}lTjHCOTj<:Dt>.05l>.CilOO»OeO CO irH CO "^ OOOJOCOt^t^ OOrfHOOOOOOOOOOOOm '*005t^C00500iOOOO.t>.|>IoOOI>u:) -rf 1-1 CO 00 o ' ~ ' 00l>-O5C0i— it^ O • -OO • 'O • -oo • • Ot-I(MtH(NO (N • ■ y-i T-i ■ .1-1 . -c^JIh . . CO T-iiOb-COC0 COOOO(MCOOOOOr-liOOOOOOOO^OO(Nt>.OOOOOdO> 050000i-ICO^I>.COO(NI>.10t>^OTiHTjH'- . ^ ..... . 00 1-1 t>. »OI>(N'-i oooooocoooooooooooouoo t>.CDiO'^'^i-iO»0000'*COCOO>OCOI>COOO(Nt>OcDCO-^ CD t>. <;d l> CD CD (N (m' 1-1 (N CD ^l>"^COTt0l>»0O(NcDOOOOOC0OOOOOOOOOOOOO |>iOTjCDOTt"OOCOrti (M(NCDCDCT>OOt>.|>iO ,-Ht-Ii-Ii-I rH ^r-lT-tT-li-4r-ti-Hi-lT-l (N(N(N(M(N(M(N(M (N (N d tCOQ co'p d to O TO -f^ TO ft a Z/J d |!^ • I— ( •So >:§ TO "-H i< X X >i -(J -fJ " CO t>. 00 -^ +3 .+J O -^ ad) 8 § is ■e >^ 8 a o ^ g a^ ^ 2 OS o a o o u a- o tOc01>.00050i-i(NCOTfiOCOt^OOOiOi-t(MCOTtOOOi (M(NC t— 1 ^ 1-^ Tj riS _ 03 03 . o . O ^ ^ o3 1? ^ O O COO '^ o S o « o -3 . 8 03 X5 bC "• ./^ o 5 03 OQ .^ T/l . J2 • i2 • ^ • a ^a ^a ^;2 ■—1 3 H O r-i "^l" r-^ O O O O O .^ CO o o o o O CO >0 »0 O o3 CO *a2 -t^ O O O CO o ^ o 00 c o o 05 o o o 1> t^ CO CO t^ CO cO CO CO to CO ^ o lO lO o o (N iO CO (N CO CO Tt^ CO o Oi CO t^ o to »o "*. to (m" (N (m' i-I (N tH .' 00 lO >> o GO 00 05 C5 t>i d 00 d d d d .2 1— ( iH iH iH GO lO O) '^ tH O o Tt< rt< (N CO o 'm 00 CO 00 00 CO o CO 1> »o '*. o P^ ^ Or£5 • • • • • • • • Ocj- rlH '<^* Tt< Ti< CO lO lO CO lO '<^' d CO Oi o CO CO lO o CO 05 lO 00 03 c., CO CO o CO Th o (N o t^ CO 05 c3 o M '*' i> 00 ai d T-< 1> iH d 00 d 1—1 1-t 1-1 tH iH o 05 FT" (N '^ 00 »o (N CO iH (N o 05 CO CO (M CO CO CO 00 ^ CO iH o d 1—1 00 r-l 00 l>^ T-i 1— 1 1—1 d 1—1 to iH lO iH iH lO iH ta'ti ES§» CO rJH »o CO 00 tH CO (N 00 Tj< o> 1° fi^^£S CO CO iO 1> 00 CD l> 00 to CO CO tJ t O o o o o o Q o 00 o o r ■ d 1 CO (M 00 CO 00 CO <^ iH CO CO Tt< 00 CO lO o a 00 o CO iH CO 00 t^ 00 CO 00 03 1> 05 tH iH CO 00 00 »o »o ^^ CO CM lO lO sa CO iH T}H p. lO lO CO 00 Oi Tt^ CO o »o rJH CO r . C cq TtH Oi O CO (M CO (N CO o 00 pq 1— 1 CO 1-i 1-1 1-1 1-1 CO 1-1 tH o iH CO tH tH CO tH Tt< 00 CO lO o S2 cq CO (N ^ CO lO 1> (N CO 00 lO 00 !> !>. (M <1 CO 00 d l> d lO d 00 d d d o 1—1 1—1 (N ■^ o 00 1-1 CO 00 ^ Oi o (N 00 o 4) . CO Oi CO i> CO CO cq CO 00 t^ t^ Ojy_ f=H co' 05 CO d d tH co' d ^ iH d 'S.2 (N Tj^ TJH (M Tf* '^ lO CO CO lO -* 1 00 tH ^ lO CO CO KO OS (N t^ lO O CO c3 q5 t^ lO (M 0> (N '*. 00 o 00 CO f^« 1- N." CO rn" d CO* (N* CO 00* i6 d O (N* CO T-l CO (M iH o ^ .* 03" a 03 03 0) -^3 ^ o bC • 'r3 . 1 a a ■ 1 .s * o H 1 '^ Q-^ 03 . ^ O CO « d ^^ > .s 1=3 s o ^ t ^ 03 O bD . 1. •a bD t5 t3 ^ 03 1— ( .•03-^ • - a 2 c bo^ .a 03 bD g - o3 V d ^ o 15 .2" o3 *o fl r^ o «.'-'. .^ '^ -9 o bj - 2 f^ 2 !--' . q; o ^ o o o !z; ^ Jz; J4 bC TJ ^ .i, fH c ^ (=1 ^ .-^ H ^^ 03 M 1^ a > ^.a 1 « s s w. s w TABLES AND DIAGRAMS 115 rS jcg • ^ o3 c3 ^ o3 ^03 ^ .,, O O O O ^ _m , _3 • 02 . . TO ""^ m /-\ m ""^ o o ^ ■ O 2 « « o o OOOOOOO'cioOOOOCO'TjOOJOOOOO lOO^OOiOO bCO(NOO^C0 ?^001>-0000 O^ tH 00 05_ '"1 o i^ '^ "^^ <=^„ °^ '^^ '^l <^.. <^^ ^. cq «o 00 1> tH 8 -^^' CO CO 05 »0 (N CO CO t^ CD »C >0 00 00 00 00 00 CO Oi CD 00 CO CO 05 CO 05 CD OS lO (M lO CO CJ> CO * • • • ' • • • * • • * ' CD CD rH CO CO 00 CO CO iH CO rH CO Oi rH tH o o T-I 00 Oi 00 ^ Oi CO 1>. CO tH to 00 O o Oi CO CD Oi CO (M 05 CD CD' CD O CO Oi 2 o CO 00 o CD O CD Oi CO CO CO CO O tH rH o § 1> Oi CO rH fe o o OS O O CO 00 o CO CD O 00 CO CO § o 00 rH o rH O Oi O T— 1 Oi O 1-H o 1—1 O tH o rH r-i rH CD 00 CO tH CD 00 o O CD CD 1> CD § O rH CO CO CD l> lO '«d^ CO CO CO 1> CD 1> CD CO CO 1—1 00 00 05 CO rH CO CO Oi O O CD CO CO 05 o (N Oi Oi O Oi o 7—1 Oi Oi O tH 1> CO CO CO 1— ( o o 1> o CO Oi CO CO 1-1 rH rH 1-H CO 1— 1 1-H 1— 1 rH rH rH tH T-i o 1-1 CO rjl CD CO 00 CD O CD CO Oi 00 lO 00. 00 CO Oi CD Oi TjH 1> l> o 00 CO CO (N O O CO CO 1> Oi o o lO CO 1-1 1> o t^ o o 00 CO o o CO Oi CD 00 o o o o o o O rH 00 Oi O 00 00 00 CD lO t- o o Oi CO 1— I 00 CO (M -* CO l> Oi Oi 1> 1> 00 CD O 1—1 CO CD o 1—1 iO CD o 00 r-i rH lO Oi 1—1 CO o o Oi t^ 1— 1 iO Oi CO CO o lO 00 00 00 Tt^ tH CO CO rH 1-H 1-1 TtH o Oi (N Oi CO lO CO (N C3i Oi 1— 1 lO (N Oi r-i 00 lO CN lO t^ '^ lO CO CO ^ to lO T}H CO lO rji lO CO '^ o Oi (N 1> 1> 00 o 00 o CO 00 Oi o o T-i TJH K3 Oi lO CO (N CO CO CO 00 CO CO CO (N CO 00 CO CO o CO CO CO CO rH CO CO Oi Oi 03 CD 00 lO CO CO CO 00 lO CO o CO Oi 6 a *3b > I .a : o 13 _; ^ o •- 6 -a fl >: .9 bD "^ bC • i-j ^ tj '^ m -H 03 rH n^ o bO fl i-{ ,^ o3 o I o fl o Oi 6 of •1-H g 'bb o • i-H a bC > xa O* o3" O Pi be CI lO "^ CO ^ A . •a 1^ ^ CD >^ oT .^5 § K^ .ti -^ f^ kT .-t; .~ "^ ."^ t^ . c3 • 2 00 ^ •^ bC .s ii bC o .+0 fl d to . hjr pq 6 W 116 HANDBOOK OF THERMODYNAMIC Table LXXV COMPOSITION OF POWDERED COAL, PRODUCER GAS Volumetric Analysis, Per Cent. Ratio. B.T.U. per Cubic Foot. Sample. CO H2 CH4 C»H27l O2 CO2 N2 CO CO2 CO High. CO +CO2 Low. 1 2 3 4 5 15.85 13.52 12.20 18.2 13.8 6.17 11.51 10.50 12.20 10.4 4.09 5.17 3.20 2.1 2.5 .1 .5 1.4 .3 .0 .1 9.2 8.1 7.6 4.9 8.0 63.29 61.40 66.50 62.40 64.80 1.7 1.7 1.6 3.7 1.7 .63 .63 .62 .79 .63 119 140 112 128 118 Ill 129 103 119 109 Table LXXVI COMPOSITION OF BOILER FLUE GASES— (Volumetbic) Stat. Boiler, Illinois Coal.U. S. Geological Survey. Locomotive Boiler, U. S. Geological Survey. Average of. Analysis. CO CO2 CO Analysis. CO CO2 CO CO2 O2 CO CO +CO2 CO2 O2 CO CO +CO2 4 3.4 17.5 10.16 8.49 .13 .0128 .0126 3 3.7 17.2 11.10 7.84 .23 .0207 .0203 5 4.4 16.3 11.15 7.52 .20 .0179 .0176 5 5.0 15.0 11.45 6.92 .00 5 5.3 14.7 .1 .0189 .0185 11.46 7.49 .10 .00875 .00865 5 5.9 14.4 .04 .0068 .00674 11.50 7.08 .17 .0148 .0147 6 6.2 14.1 .03 .00485 .00482 11.96 7.00 .23 .0193 .0189 9 6.4 13.7 .07 .0109 .0108 11.96 7.07 .14 .0117 .0155 16 6.6 13.0 .10 .0152 .0149 12.05 6.93 .15 .0125 .0123 9 6.8 12.6 .01 .00147 .0147 12.20 6.94 .05 .0041 .0407 14 7.0 12.8 .06 .0086 .0085 12.45 5.87 .22 .0177 .0174 20 7.2 12.6 .08 .0111 .011 13.57 4.49 .20 .0147 .0145 18 7.4 12.4 .00 13.87 4.75 .25 .018 .0177 20 7.6 12.9 .05 .0066 .00655 14 7.8 12.1 .03 .00385 .00375 30 8.0 11.7 .04 .005 .00498 31 8.2 11.6 .10 .0122 .012 27 8.4 11.3 .10 .0119 .01175 16 8.6 11.1 .10 .0116 .0115 17 8.8 10.8 .20 .0228 .0222 19 9.0 10.7 .10 .0111 .011 14 9.2 10.4 .10 .0109 .01075 16 9.4 10.1 .20 .0213 .0208 10 9.6 9.9 .20 .0208 .0204 8 9.8 9.4 .20 .0204 .02 8 10.0 9.2 .20 .020 .0196 6 10.2 9.9 .20 .0196 .0192 8 10.4 8.9 .5 .048 .046 4 10.8 8.6 .02 .00185 .00185 3 11.0 8.8 .36 .0327 .0317 2 11.1 8.6 .30 .027 .0253 1 11.4 7.9 .40 .035 .034 TABLES AND DIAGRAMS 117 iH Ni 00 CO O rt4 cq 00 05 t> 05 CC !>• CO CO o a io CO o OCOOeOCD(NOi-iCO O0005O05OC«0500 O CO 05 05 •^ Oi ao 03 lO CXI o 1> CO lO 00 i> 1— H 05 CO CO CO 00 CO »-i 1-1 1> lo CO OOOiCOi— iC005TtC005t-ItJ1t-iO CO »o 1—1 05 1—1 T— I CO C5 CO lo 00 05 CO t^ (N t^ (M CO CO 00 CO (N O lO 00 00 lO r-l CO 00 05 rti 00 lO t^ rH Oi (N CO 05 CO O O CO lO 00 05 CO 05 r^ t^ 1-1 i-( rt< r-i '^ 05t*h,-<|>0 Ttio5ioo5rH05Tt^t^oo i>ai »ooi> CO 1— ico"^ lotocoi-tio CO(NOS»01>-l>-iOCOTt< lOi-t COi-COOi 1— I T— I CO tH 1— I LQ 05 t>. G5 ^ 00 Gi -^ a 05^0J(N COOiCO»0000(MiOiO 00Tt< 00t-Tj< C^ C5^0i COOOTjHO'^COOTt^TtH CO^ 00(NCO O CO00(N rlHT-(rH001:^t^O(N Tt<05 (Ni-lCO 1— I 1— lT-l(N iOo o (N 1-t O (M CO (M (N O O i-< 1-1 (M (N (M Tt< CO rt< 05 00 O lO O CO !>> TjHt^cocot^cqco OiO COiOOi^COOOOO 00(M 00 05 t>- 00 CO CO (M (N o:> lO ^^ 00 00 CO CO o O CO 00 lO (N CO CD 00 00 O (M (N 1> lO 1-1 Tt* (M 1-1 ri< th cq lO CO (N (M (N 1-1 00 (N (N l-H T-l (N Tt< (N Tt< lO Tt< I> CO (N (M i-< (M lO CO 1— I Oi t^.^1:^C000001> COiO OS'^CO »0 OOi-i oo>o-^05cooiT-(cooo Oi-i cooco oj Oii—ico t^O^t^OOr-tCO'^CO Tj^cO lOOO-^ CO l>.t^CO 00000(N000 oo ooo o ooo o »o 1-1 00 CO 00 CO O (N C3i ^ TjH t^ 1-1 t^ t^ "^ O O (N Tt< O O "^l^iOrt^COCOO t^fM-^iOi-iOiOOOO TfiCO(M»Oi-CO (M CO OO Oi »0 05 05 O Tt< CO CO CO C5 t^ 05 CD 00 C5 C^ CO lO CO Oi O rH Ttl CO CO 05 Tj< O CO -^ t^ o lO O (N O O (NTtOiOi>. rtl t^ 1-ICD -rtlOSOO <35 Tt< 1-1 OOi-lOS OCO l>00iO 00 l>COi-l OlOSCOrtHCOiOOOOiO coos t^(MTt< 05 COfMt^ C0C0iOC01>00OC0Tti TfiCO 05l>i-l 05 OOi-l CO 05 lO T}< CO O (M '^ tH Oi CO ■* i>. i> CO C (M lO 05 CO -"^ (N CO »o o CO lO (M W ^ 00 o o to -^ (^ (N !>. CO »0 CO TiH »o (N 00 Ttl 1-t 00 O lO iH CO 05 CO 00 o (N Tt< 05 i-t (M CO CO rt< o o CO 1-1 (N 00 l> CO O O CO 1—1 CO CO o 00 I> lO (M (M CO TJH O (N 1— I (M 1-1 O 05 O V, • • 'x • • o • • a • o • ; S § cu '£ ^ -!f. . • • c3 OJ ■ • O g Q^ a ^ 13 "ts (U « o o WWpqp^UO > > 9 ? bO P o3 O t3 ■^' 0) o '*' n: c^ tn bC ft TO OD tn t/^ Q^ o3 ;3 uj ^ .-S bC o bD bC o t^ g o O o3 __ bC c3 ^ s a >^ G "^ ."S "^ 5r! O O o . G . o S -iOOiOcOC(r)COcOOOO^*^>C5o6oOOOcOOOo6o6 THi-Hi-HtHTH,-HT--Hi-HTH,-H,-HTHCrt^OTJ^Ol-H0005^-^(^^OOcOCO'rf^cOTt^0051-l^>.ocOTt^ l>05»005X>J>COCOT:t<'*'^CiOa5CO(NOOr-iCOI>CO»OT--liOTtHO ooOl-Hcocx)lO^»05005^-^^>••^(Nl-^05(^o(^i1-l(^^ooir-IT--I1-^ (^lT-^(^^^-^rH1-^r^T-^c^T-^(^^r-^<^^(^J(^^rH(N(^^(^^(^lc^l--l(^l(^l(^^ OOOOOOCOOOOOOiOt^iOOiOOOOOiOOiOtOiOCOi-i (£)TfiCOC0O5OT-liOOTH00THi:OO5(MOiO00iO00»OI>(MTj— ICqCOi-Hr-lCqi-lC^CQT— li— li— li— (tHi— IC^ lO CO CO 05 o o COC005COiO>Ot^OO>OCOCOO(MOO»OC0 (Mi-l'*T}HO»C00i iOCOi->C005 C0C0C0e0O00(N(M0iO(N C<>COiOCOiOiOO"<*'rtiOOOOOT-lcqiOCiCO(NCOTHOOT-HOOCO i005COCOCOcDC01>005CDO(MI>l>iOcOcO(M'*-^COfO^CO (MOOOcOb-COOfNC^l-rHCOOiOOi— lOOT-HCOOlCOOOcDOt^iO iOL0"<^':oi:01>cOt^cot>.l>C0C0'*-«*-*"^c0'*^Tt<-^»OTtirrt o o OOi-i-i— ic005'^iOcDTt.-^(NiOcOl>'i-HC0(NCO00C0cOl>-iO COCOCOr-l(MT-IC^i-lrHTHr-lCOCOCOCOCOCOCOCOCOCOCOCOCOCO ^coooo5a50ooo5cooo(Mi>coTfiiOTtiOt-icoi>i>c<| »CO'*0 0) X5 1=1 J2 (D o .2". 2" fcJO rH,-l(NTHr-l(MrH^53 c3 el - ^ PI 120 HANDBOOK OF THERMODYNAMIC >:? < o M ^ ■^ u s ^ H o o H 02 CQ ^:3 txl ^ 1— 1 « M X ^ o o X o g H ^ u pq fe O o OQ ^ P <3 PJ a OOCOOiOOOMOO»Ot^O»OOOOOOOCr>» a 6i ooo505<©ooo"^iocoi>0'^ioooooo50ia>a)oot>-cx)os«o»o o o C000c0i000(N>Oi0t^»OOOI>i-iOO»O o >. (N(MOiOT-l(MCOi-H050t>»'>^r-l«OOit>OOt^05COe01>0(NOO a Q COCOCQOi-iCOCOOOOOOOOOOOOOT-ii-lT-li-HCqOOiOOTH 9 (^^(^^(^^c^c<^c^1-^'HT-^(^^l-ll-^r-(0505i-iOicooii-HOcoeoeoco-^rHcqoO(Mi-i(NC5CaC^TtiTtiCqi:0'*>OCfil>.»OC01:^(NOil>.l>.cO05C0CX) TH(M(MrH{N{N(Mi-l(MrHTH(NrHi-li-l,-OiO'^C0'^C0Tt TtOT-HTj0>»0 <«; GOCO":i^(NCOOCOI>OOCO(NTtTjHrHCDCOlO T-Hi— li—irHi— HtHi— (t— It— 1 tHt— It— li— 1 i— 1 i— It— Ii-Ht— It— li— IC> d 05C01>.00»OCO<:01>00(MOii005005iO(M'^TjHr)HiOTHCOCOOO "rt 73 00t>l>.(M00G0TtiiOC0(M05O>OC0»Ol>f0G0I>C000(MC01>0> ooo5ool:Ol-lOl-^co■>-lOlOTtlTt^lOOT-l"^^^o>05 fX4 (MCOCOMCOCO'^Tt^COCO 6 00t0'>*O5OO0000C0(M(NO(NCco(NcoioeocoTt^coo50cocooococx)ooi>i-i CO^CO'*Ot-iCO(Ni-l'*COrJ^CO(NiOt^t^t^COTtil><0(NT-iCD O > coccwwcococococococococococccocococococococoeoOOrHOOO(M"5C0001>'-l0500(Ne0050iOCO 00'^(NeOeOOiOTjt^l>»Ot>.<£>l>COi-i(X) ^ t— It— li-HrHrH i— li— OOOO0000Ot^00C^00t^OI>'C0O»C(N00OO00O THCJ<©l>t^(NO'-lOOOOTj.rt^05Ttit^Ca<£)OOCOi:OiOC005COCX) r-lT-l(N.-(r-(T-lT-li-lr-lTH r-l»-HTHi-.<©t>.eOOi-Hl>.cOOCOC0051>-G005rJt^i— (,-iCOCOCOiO i--N.(X)(»t*o6o6l>l>(NcD (NC^(N(N(NrHi-lTHi--li--Hi-lT-lTHi--trHT--lr-lT--cO(NOCOT-iC01>CX)C0001:^l>.'^TtiOOT-H0500 ^-cooo5(^oco»oo05C^(^oo5 05o6cx)^^o6o^ooc<)05odo6o6o5 C 0() 1—1 tH to CM rH CO O 00 1—1 to CO CO r^ o fX) CM CO 1— 1 CM 05 CO »0 CO -^ »o »c -^ CO CO ""^ to CO "<* lO Tti to Tt< -^tOCOtOCOtOTtlTt (M CO 1—1 Tfi 00 00 !>. tH CO th 05 00 to CO CM 1^ O Oi 00 CO O CM l> rJiiOCOCOCOCOrJ^OeOiOOOCN 05 O 05 CM ^ O 00 00 o rH ^ 00 CM O i> 00»OOOCOC001>COr}Hl>iOI>CS 1—1 oiototooocococoO'^cocooo tH t-H T-H 1-1 rH 1-1 1—1 T-t 1-t »-i 1-1 !>. 1-1 l> O 05 CO O (M tH to O 1-) Tt< CO CO CM t^ 00 I> '^ CO CO CO 1—1 00 CO'-i^THO"^<:Ot>0 00 Tt* CM 00 1-1 00 CO O Tt^ CM CO '^ 00 CO CO ^ CO to Oi (N 1-1 CO Oi to lO CO to o 05 CO 00 CO Ci 00 o 1— 1 00 CO 05 CO 00 to r^ rH Tt< CO "* "^ CO CO (N t^ t^ to CO (M to ^ to to to J> t^ CO to to 1> CO 1> CO CO CO 00 O »0 O CO CO O 1-1 (N o (M rt^ CO 1—1 '!t< to 00 -^ CO 05 1—1 CO T—i CO CM CO to »-i th 00 CO »o th 00 CO CO t^ rJ^ CO CM CO CO 05 CO Tt< CM tH y-i CM CO CM o to to i-iOI>l>t^OOiOCOt^OO rH ^ Oi O 1> 00 CM l—t O 1-i rH 00 CO 00 rt< o to CO Tt< CO CO CO (M 1—1 rH (M (N CO CO CO CO CM CM CM CM CM CO CO 1— 1 rH l-< CM '^ CO 00500l>.OrH'«^CO iH Tt< tH 00 CO CM "^ to 00 CM 1-i o l> (M 05 OS l> 00 rH to o Oi c^ Oi O to to rH tH rH CO CM -^ 1> 00 to CO 00 1-* O 00C:5rHrHrHi-l*,i3 ooooooooooooo '^'^-^:l^^^^^:^^^._l^^^^^^^^!^^^^^^ J5 o "^"^ I ^ o - ;2i ^ p o s o m p bC rH CM bO P a- o ^ 122 HANDBOOK OF THERMODYNAMIC Table LXXX DIAGRAM FACTORS FOR OTTO CYCLE GAS ENGINES Size in Inches. Test Authority. Compression. Efficiencies , Per Cent. Dia- Engine. Bore. Stroke. Vol. before Press, after Press.before Actual. Air Card Standard. gram Factor. Vol. after Four cycle. ...... 7.8 11.8 Meyer 3.73-6.45 t( tc (t (t 25 24.4 21.4 18.8 44 42 37 33 .58 .58 .58 .57 Four cycle 6 12 Burstall 3.03-8.13 18.9 33 .57 6 12 3.03-8.13 21.2 36 .59 6 12 3.03-8.13 21.9 43 .51 6 12 3.03-8.13 23.1 47 .49 6 12 3:03-8.13 16.6 33 .50 6 12 3.03-8.13 18.7 36 .52 6 12 3.03-8.13 17.2 43 .40 6 12 3.03-8.13 18.1 47 .38 40 H.P. four cycle .... .... Hopkinson 6.37 33.5-37.0 52 .64-.71 depending upon load Cockerill 51.18 55.07 Hubert 9.18 22.9 46.9 .49 ( < 33.465 39.37 a 10.35 25.0 48.7 .514 Delamarre 22.64 37.4 Witz 5.8 19.75 39.7 .498 CockeriU 23.622 31.5 Frangois 7.28 24.3 43.4 .56 Letombe 23.622 31.5 Witz 8.03 27.3 45.0 .606 Winterthur 20.47 29.92 Allaire 11.2 25.6 49.9 .514 Cie. Berlin Anhalt 16.92 27.56 Witz 8.17 26.9 45.2 .595 Benz 16.73 15.75 14.173 14.5 13.78 13.78 13 22 22.83 22.87 22 22 21.26 22.83 Mathot << n 13.06 7.35 11.55 4.83 9.12 9.12 9.4 23.8 31.3 30.4 30.6 18.0 24.2 38.8 52.0 43.6 50.3 36.2 46.9 46.9 47.3 .457 Soest .718 Deutz .605 Taneve .845 Fetu .384 Schmitz .515 Otto-Deutz .82 Niel 13.78 12.2 19 17.7 Witz Mathot 11.58 7.75 31.8 31.6 50.4 44.5 .63 Winterthur .71 Schmitz 11.85 11.8 18 17.7 It 11.3 10.32 31.3 25.2 50.1 48.7 .625 Winterthur .518 Benier 11.8 11 11 17.3 20 18.6 Witz Mathot 4.39 10.64 4.83 13.75 29.8 29.2 34.3 49.2 36.4 .4 Tangve .605 Dudbridge .802 Tangye 10 19 11 5.81 27.4 39.7 .69 (( 10 10 19 18 Witz Mathot 6.8 5.88 30.1 21.2 42.4 39.9 .71 National .53 Giildner 9.85 9.85 15.75 15.75 Schrotter 10.6 10.6 39.0 33.9 49.1 49.1 .795 <( .69 Catteau 9 7 18 16 Witz Hirsch 12.59 10.2 37.2 25.8 51.5 48.6 .723 Tangye .53 Four cycle 6 12 Burstall 4 21.0 42.8 .49 <( 6 12 ( < 2.44 ' 18.0 29.6 .608 (< 6 12 < ( 4 18.0 42.8 .42 (( 6 12 (( 2.78 17.6 33.3 .529 11 6 12 (( 2.7 16.4 32.7 .502 TABLES AND DIAGRAMS 123 Table LXXX — Continued DIAGRAM FACTORS FOR OTTO CYCLE ENGINES Size in Inches. Test Authority. Compression. Efficiencies, Per Cent. Dia- Engine. Bore. Stroke. Vol. before Press, after Actual. Air Card Standard. gram Factor. Vol. after Press.before Fourcycle 6 12 < < 2.04 16.2 34.6 .468 6 12 <( 2.17 15.6 26.2 .595 6 12 ( ( 4.0 13.6 42.8 .318 6 12 ( ( 4.0 13.4 42.8 .313 6 12 ( ( 1.75 12.6 19.5 .646 6 12 ( ( 2.7 11.7 32.7 .358 6 12 n 2.22 19.4 26.9 .721 6 12 11 2.94 20.0 35.0 .572 6 12 ( i 4.0 22.7 42.8 .53 8^ 13 Meyer 3.75 32.7 41.2 .794 8^ 13 < ( 3.6 26.8 40.3 .665 81 13 I i 2.84 20.2 35.2 .574 Compression pressure ratio has been calculated assuming an initial pressure of 14.7 lbs. per square inch. Table LXXXI HEAT BALANCES OF GAS AND OIL ENGINES (Per Cent of Gas or Oil Heat) Engine and Authority. I.II.P. B.H.P. Friction. Exhaust. Jacket. Radiation and Un- accounted for. Donkin Beck engine, Kennedy Griffin engine, Kennedy Atkinson engine, Kennedy Otto Crossley engine, Kennedy. , . . Comp. Ratio. R.P.M. a/g (Air-gas) 2.67 187 7.11, Slaby 2.67 247 7.35, Slaby 4.32 187 7.43, Slaby 4.32 247 7.40, Slaby General, Mathot Westinghouse, Bibbins 300 H.P. engine at 197 H.P., Eberly '' '' 294 H.P., Eberly '' " 335 H.P. , Eberly 6 H.P. engine, I.C.E 24 H.P. engine, I.C.E Deutz 2 H.P., WimpUnger Giildner 20 H.P., Schroter Wabath 75 H.P., Geer and Yane- lain 300 H.P., Goldsmith and Hart wig Hornsby, Robinson De la Vergne F. H., Towl Pierce- Arrow, Chase 22.32 19.4 21.1 25.5 22.1 18.0 18.1 24.4 23.7 33.0 29.48 43.5 45.8 41.5 31.8 33.3 21.5 42.7 27.1 24.4 21 40.14 28.0 24.9 33.5 32.2 30.9 26.7 28.3 16.1 21.3 17.1 18 27.52 18 5.0 4.58 10.0] 13.6 10.6 5.1 5 5.4 5.8 7.3 3 12.62 43.29 42.9 39.8 37.9 35.5 30.8 36.3 21.8 26.8 31.0* 36.3 24.1 23.9 24.8 41.1 37.1 25 24.1 23.4 50.6 29 20.03 32.96 33.0 35.2 27.0 43.2 51.2 45.6 53.8 49.5 36.0 34.22 34.3 31.8 33.8 27.1] 29. 6j 50.4 33.2 1.43 4.7 3.9 9.6 8 excess \x 1.9 excess 1.5 '* .1 '' 3.1 49.5 ■ 25.0 50 26.50 29.4 13.33 * Including radiation, t Including pumps. % Including external radiation. 124 HANDBOOK OF THERMODYNAMIC Table LXXXII MEAN EFFECTIVE PRESSURE FACTORS FOR OTTO CYCLE ENGINES (m.e.p') = 5.4 F^ [l " O "t^J Eq. (933) Px Pa Atmos ^Px^ [-©*] ^A^-im Px Pa Atmos ^Px^ [-(f:)*] ^■A^-{m 1 .0000 .000 .2150 .4592 2.481 1.0 1.000 8.6 9.332501-10 9 . 662040-10 . 394658 .878 .0508 .274 .2115 .4628 2.500 1.2 9.43442-10 8.705522-10 9.438140-10 8.8 9.325369-10 9.665384-10 , 398002 .786 .0917 .495 .2082 .4662 2.519 1.4 9.895623-10 8.962180-10 9.694798-10 9 9.318398-10 9.668591-10 0.401209 .715 .1256 .679 .1931 .4821 2.604 1.6 9.854271-10 9.098990-10 9.831608-10 10 9.285714-10 9.683092-10 .415710 .656 .1546 .835 .1804 .4960 2.680 1.8 9.817662-10 9.189181-10 9.921799-10 11 9.256148-10 9.695456-10 .428074 .610 .1797 .971 .1695 .5083 2.746 2.0 9.784979-10 9.254451-10 9.987069-10 12 9.229156-10 9.706154-10 ,438172 .569 .2017 1.090 .1601 .5195 2.807 2.2 9.755412-10 9.304706-10 .037324 13 9.204328-10 9.715552-10 .448170 .535 .2213 1.196 .1518 .5295 2.861 2.4 9.728421-10 9.344981-10 .077599 14 9.181337-10 9.723891-10 .456509 .505 .2389 1.291 .1445 .5378 2.911 2.6 9.703591-10 9.378234-10 .110842 15 9.159935-10 9.731355-10 .463973 .479 .2549 1.377 .1380 .5471 2.956 2.8 9.680601-10 9.406300-10 . 138918 16 9.139914-10 9.738099-10 .470717 .456 .2694 1.456 .1322 .5549 2.998 3.0 9.659199-10 9.430398-10 .163016 17 9.121108-10 9.744231-10 .476849 .436 .2827 1.528 .1269 .5621 3.037 3.2 9.639179-10 9.451403-10 . 184021 18 9.103376-10 9 . 749837-10 .482455 .417 .2951 1.594 .1221 .5688 3.073 3.4 9.620372-10 9.469925-10 .202543 19 9.086604-10 9.754990-10 .487608 .401 .3065 1.656 .1177 .5751 3.107 3.6 9.602641-10 9 . 486402-10 .219020 20 9.070693-10 9.799751-10 .492369 .385 .3171 1.713 .1136 .5810 3.139 3.8 9.585869-10 9.501223-10 .233841 21 9.055556-10 9.764169-10 .496787 .372 .3271 1.767 .1099 .5865 3.169 4.0 9.569957-10 9.514615-10 . 247233 22 9.041126-10 9.768283-10 .500901 .359 .3364 1.817 .1065 .5915 3.197 4.2 9.554822-10 9.526804-10 .259422 23 9.027337-10 9.772131-10 .504749 .347 .3451 1.865 .1033 .5967 3.224 4.4 9.540391-10 9.537983-10 .270601 24 9.014135-10 9.775741-10 .508359 .336 .3534 1.909 .1003 .6014 3.249 4.6 9.526601-10 9.548255-10 .280873 25 9.001471-10 9.779127-10 .511745 .327 .3612 1.952 .0976 .6058 3.273 4.8 9.513399-10 9.557760-10 .290378 26 8.989305-10 9.782339-10 .514947 .3168 .3686 1.991 .0950 .6100 3.296 5.0 9.500736-10 9.566579-10 .299197 27 8.977597-10 9.785344-10 .517962 .3080 .3757 2.030 .0925 .6141 3.318 5.2 9.488569-10 9.574794-10 .307413 28 8.966316-10 9.788204-10 .520822 .2998 .3823 2.066 .0902 .6179 3.338 5.4 9.476861-10 9.582461-10 .315079 29 8.955430-10 9.790918-10 .523536 .2921 .3887 2.100 .0881 .6215 3.358 5.6 9.465580-10 9.589648-10 .322266 30 8.944914-10 9.793504-10 .526122 .2849 .3948 2.133 .0860 .6251 3.377 5.8 9.454694-10 9.596410-10 .329028 31 8.934741-10 9.795963-10 .528581 .2781 .4007 2.165 .0841 .6285 3.396 6.0 9.444178-10 9.602776-10 .335394 32 8.924893-10 9.798305-10 .530923 .2716 .4063 2.195 .0823 .6318 3.413 6.2 9.434006-10 9.608794-10 .341414 33 9.915347-10 9.800546-10 .533164 .2656 .4116 2.224 .0806 .6349 3.430 6.4 9.424157-10 9.614486-10 .347104 34 8.906086-10 9.802691-10 .535309 .2598 .4168 2.252 .0789 .6379 3.446 6.6 9.414611-10 9.619886-10 .352504 35 8.897094-10 9 . 804746-10 .537364 .2543 .4217 2.278 .0773 .6408 3.462 6.8 9.405351-10 9 . 625025-10 .357643 36 8.888355-10 9.807623-10 .539341 .2491 .4265 2.304 .0758 .6436 3.477 7.0 9.396359-10 9 . 629909-10 .362527 37 8.879056-10 9.808616-10 .541234 .2441 .4311 2.329 .0744 .6463 3.492 7.2 9.387620-10 9.634558-10 .367176 38 8.871583-10 9.810434-10 .543052 .2394 .4355 2.353 .0730 .6489 3.506 7.4 9.379120-10 9.639008-10 .371626 39 8.863525-10 9.812192-10 .544810 .2349 .4398 2.376 .0717 .6514 3.520 7.6 9.370847-10 9.643265-10 .375883 40 8.855671-10 9.813881-10 .546499 .2306 .4439 2.399 .0705 .6539 3.533 7.8 9.362789-10 9.647334-10 .379952 41 8.848011-10 9.815511-10 .548129 .2264 .4480 2.440 .0693 .6563 3.546 8.0 9.354936-10 9.651239-10 .383857 42 8.840733-10 9.817082-10 .549700 .2225 .4518 2.446 .0681 .6586 3.558 8.2 9.247276-10 9 . 654984-10 .387602 43 8.833147-10 9.818609-10 .551227 .2187 .4556 2.462 .0670 .6608 3.570 8.4 9.339801-10 9.658584-10 .391202 44 8.826105rl0 9.820076-10 .552694 TABLES AND DIAGRAMS Table LXXXIII VALUES OF C FOR AIR FLOW (Weisbach) Orifice of diameter = .394 ins. Rp ... 1.05 1.09 1.43 1.65 1.89 2.15 C 555 .589 .692 .724 .754 .788 Orifice of diameter = .843 ins. Rp .. 1.05 1.09 1.36 1.67 2.01 C 558 .573 .634 .678 .723 Short tube, diameter = .394 ins.and length = 1.181 ins. Rp.... 1.05 1.10 1.30 C 730 .771 .830 Short tube, diameter = .557 and length = 1.673 ins. Rp 1.41 1.69 C 813 .822 Short tube, diameter = .394 ins. and length = .630 ins. rounded entrance Rp.... 1.24 1.38 1.59 1.85 2.14 C...... .979 .986 .965 .971 .978 C= coefficient of friction in formula v = C\/2gh Rp = ratio of pressures. The coefficient of effiux, Ce, Weisbach gives as follows: For conoidal mouthpiece with pressures from 0.23 to 1.1 atm. Ce=.97 to .99 Circular orifices in thin plates, = .56 to .79 Short cylindrical mouthpieces, = .81 to .84 The same rounded at inner end, = .92 to .93 Conical converging, = .90 to .99 125 Table LXXXIV FLOW CHANGE RESISTANCE FACTORS Fj^ (Reitschel) Condition. Resistance Factor r R Sharp 90° elbow "■ 135° elbow Long bend : r = width of duct r =2 to 4 duct widths " r = 5 to 6 duct widths Long bend 135° Long double offset Outlet register with valves | free area and 2 X flue area " " face at | free area * ' wire screens 1.5 Xflue area Entrance for square corners " rounded corners ' * flue extending into header as short pipe . . Enlargement of area from Ai to A2, sharp corners Reduction of area from A2 to Ai, sharp corners Free discharge into room when velocity becomes zero . 1.1 .3 .25 .15 .07 .15 .4 to .1 .6 .4 0.0 1.0 .5 to .2 1.5 (■43 126 HANDBOOK OF THERMODYNAMIC > X X X < o o w H O Q P^ P^ tf p^ o s CO 10 CO ^ !> CO »-l fD CO CO !>. CO !>. 00 CO CO w O O CO 10 i> o CO CO CO 00 00 CO t^ CO CO CO 10 05 C^ 10 00 (N CO CO (M CO O 05 Oi 00 00 CO 00 irH r-l (N to CO Tj< CO (M (M T-l 1-t 10 05 00 (M 1-i Ci CO CO t^ (M tH (M tH O CO o u:) 00 CO 1> 00 CO 00 Oi tH 00 1>1 rJH Tti CD !>. !> O 05 1> 1-1 (N i-H 1-1 CO 10 rt^ O Tt< l> oi C^ T-l rH 00 O 10 CO O CO CO 10 05 CO 10 O CO 10 CO Tj< 1> tH OS 00 CO CO 10 05 05 Oi CO 1-H (N (N "* . O C^ (N 05 05 00 05 b- (M Cq (M O ^ 00 05 05 05 T}< »0 r}< rj< 05 05 Ttl CO 05 C 05 CO 05 (N (M 05 CO O 05 l> 1:^ 05 05 ^ t>. CO t>. 00 10 05 05 00 l^ _ o o Soft o o 02 CO O X XX 2^ o ft' ftCI O Ph 8p^ P^'o § X t^ 00 c3 00 X a o . o ^ -^ o CO X 00 X P^ F— 5 w d o -1-3 O p:) 13 fl ;3 O ft a o "§ TO l^^l gp^ O o CO X CO »o X 00 (M Ph 1— I o -tj 02 o o ft a o o 02 I ^ i \ • Ph* ^.Xx Ph r^ . Q P^ pj Xi o ^ do go Ph P^ (M O X 00 ^ CO ^ ^ Qj a^ ^ O bC .a O o fl o a > O JO 02 O '-s O ft a o t) 02 02 o « 02 02 -S 02 O . o3 So IPh 05 X 00 P^^^X X^rX rt< n. O O o I Pi O P) -I tH O ,. •>-< O 03 M P! O a >> w) a OQ O o3 fl ft r^ o ^s« c.a ft V^ a-^p^ 8 ^p^ CQ X (U o o3 ft a O V oa O o Is Xi o trH CO S CO O CO o Ph'Pi P^P^ o^ "^ \. ^-Ph XO CO »o X^- CO g > OQ P5 O -a .9 02 jajviOtj i-BiauaQ 'sauiSug; uo^^sitj Xi'Buoi^'B^g TABLES AND DIAGRAMS 127 00 C to t^ t^ t^ 1> t- CO o CO 00 (M CO CO lO Tt< •>* 00 00 (N OO t^ 00 CO 00 05 O CO o CO 00 05 CO to CO O CO OS O 05 CO oi (N 1> CO 05 O CO HO 05 o T}1 OS 00 CO CO CD O 00 CO CO (M (M (N O (N (M i6 00 00 tH OS CO OS tH O lO (M CO CO lO 00 lO (N CO (N CO CO OS o o CO OS OS tH CO OS lO 00 00 o tH (M OS "^ o CO CO (N CO Tt< CO (N o CO (M CO CO 00 CO (N (N rt< (M CO "^ n3 (=1 o3 I— I > r— t u TO 1=1 bb (U bfl g go i^ ^ -o 2X bD M ft O • o ^X :; CO hX X W s oT a *5b ^ bC P, a :3 CD PI "bb HI bC fl 'ft a ft ^ ft a a-^, 13 i«^ P4 0) o ■^ o CO OS O 0) 1—4 .ft X lO X >, M 1—1 o .a bfl fl .a^ '^•^^.^•Vx^x-^ a ^ ■ftc^ a.- 13 ■ ft o HO ftos S 00 q; T-H 02 h-1 X X 1-.X O o o CO o" bD o3 c;> 'r-i o qT fl *bb fl (U bD PI •tH ft 3 ft ft -*^PL| ■5pl; X OS X o bD e3 t^ M o a "bb fl m bD c ft a ft<==5 ft(^. "^ 00 Ph a PI ft bD-S oO T o . ft o 'T3 -t-3 a; ft =3 CO X CO > • 1—1 a P -i -1-3 03 o 02 a o (N ft o3 0) o .to |i O ; CO 1-4 X o p[ P^ •a^ ^Ph' TO ^ 9 pj CO Ph r Suidinntt'saniSug; uo^^sTjJ iCj'Buoi^'B^g lossajd -UI03 aAT:^oraoocr[ k 128 HANDBOOK OF THERMODYNAMIC o > X X X u o I— I w w C H Q W P^ P^ Qj Ph o g o (—1 Q 1—1 [X4 12; I— I w p:5 P H Q o <5 m H c I— I Ph >» M ro flH W I— I ^ 1-1 O o 3 in m , ■; to D* a CO 10 o OS 00 00 CO d CO "^ CO 00 1>^ 10 05 c3 02 CO o (M CO X > • 1—1 O a o i=l Ti o ft a P^'Ph >:; '>;^ w CO g (M Ph 00 X (M a*^ CD o > o O Ph I— I ^ CO 10 10 CO o o t^ CO 1> CO 10 10 iO o CO 00 T}H (N CO CO t^ CO 05 C^ 1-1 t>-' CO ^ 10 1—1 CO C^ i-( 00 "* 10 CO CO CO CO OS OS CO* CO CO CO OS CO 10 10 o OS tH OS "^ OS 00 CO 1> CO !>. b- ' X "^ Tin X OS g '3b fl d X o a.- goo OS CO X i> 10 X '^ CO X (M oT fl *5b I "ft o3 O I— I a "rS Ph m • gP^ ^ _j ^ CO 02 X »o i-H X OS (M g 'Eb a d o c3 ^ :3 '^ <^Ph 1^ o3 02 Oh ^ CO X X n3 fl ;3 o ft a o o a a 0) tn §.2 CO CO X CO CO X 1— I a =! o ft a o o I CQ «2 O 1^ c;> G .a S-i c3 02 O t-i 03 OS CO X 00 10 OS CO X 10 (M 'ft '^ ft m wr O ^ k— I 5 fl " ^^ ^ w o ^ p^ .g ^ -t-= "5 ^ tH 1=1 c3 S^ O O ^ h tH a 2 03 rrt 02 ost>-i-iioo^.OOI:>-t^t>. T-i»OTt<00^CO00i-* OCTSOSOSOS-^COr-C COCOI>.(MCO'<:i<'^Tl< i-Ii-Ht-I(M CO (M T— 1 1—1 OS OS 00 00 00 * (N tH (M »0 10 (N I> CO Tt^ CO (N (M (N (M OOOO-^OOOSC^C^O OSOSCO(MOSC^CO>0 ft-M xQ m ft- - K^O o o i? 1-1 t^ OS ft 00 OS »o & ft & TO g CQ CO OOCO(N(NT-(OSIr^ 0S0S(M0S000SOiO 1— li— IC^rHT-li-(C^TH .2 03 02 o Ph o o o CD a •I-H =3 Ph 03 P M o o >1 03 :;: 00 r ^'■^ „ o o o p o o o ^ 3 10 CO bp bp „ 02 03 a.a M o g 4) fl^ S H O .a c3 02 ^ )<. h^ pJ 03 CJ <5ft^^OPHPH S3 S -ouioocyj drqsui'Ba^S gui^^ooidtoa^ oaiqjnx TABLES AND DIAGRAMS 129 Tt< t^ «0 lO t>. 1—1 on CM CO CO 00 CM crs 00 ''^^ !>. TjH OS t>. t^ CO CO CO Tt^ ^ t^ 1> CO iO UO uo CO lO lO lO o a 03 rH Tt^ lO t^ CO !>. CO r^ CM CM 05 O !>■ CO C5 -4J O CO Oi CO r^ tH 1^ o CO CO 00 05 Oi ^ lO CO 00 CO CO (M 0 05 1^ rH CO 00 CM Oi CO o lO r^ CO OS t^ o >. o CO 1— 1 1—1 05 O lO '^ CO CO CM 00 o t^ CO o T-i 1— 1 CM '^ CM T— 1 CM 1—1 CO 1-1 T— 1 T-l 1—1 CM Oj t^ cq fN cq fN CI (M CM lO CM o CO CJi CM rti 05 a 0) lO CT> 05 (N 05 C5 Oi CO O Oi Oi '^ ^ o O 05 Oi o T-^ 1—1 CO 05 Oi Oi CM TtH '=i^ 05 CM rtH tH 1-1 1-1 f1 (N (N CM CM 0) to I> lO ^ 00 CM t^ CO 00 a CO O CO 00 a l> TjH a> lO t:^ !> 1> 1—1 Ci '^ t^ 1— I 1—i lo IQ r^ Ci Fi 1—1 1-1 1-1 1— 1 CM 1—1 1— 1 CM 3 "3 CO S3 §•§■ o o m - : ^* o o t-l ^"^ ^ a> '3b o tH ^« ^ ^« u O ^ CM o o O 1-1 1—1 1—1 Q 1> 05 Q Q 1—1 I— 1 1^ c3 S3 TJ -* 1—1 !>• B t^ 00 Oi (N lO lO to 00 (^ Oi o T— 1 lO CM Oi CO ^ o 00 00 CO lO CO 1— 1 CO C5 I— t r^ Oi O o 00 00 1-1 1— 1 <4-t 1-1 1-1 1—1 r-1 1—1 1—1 1—1 1-1 1—1 rH CM CM 1—1 1— 1 •r) o (h 1— ( H S 1 1 .m !^ W ^-^ > S "^^ ^ |> ^=7^ tH (U M ^ CD .Si "^ C3 03 -U O »o O 3 ^^ <^ O '-' NO 03 Q »o 1> o o lO t> C o m O bO OJ . • p O O O O o o o o o O ' o f-l o faJD C *S o^ o fcJD c3 p p O! M 02 02 OJ 02 f-i fa ^>' MM •^ p OP^ omqmx l-H (H ft a .5 cj ^ fa 130 HANDBOOK OF THERMODYNAMIC P O > ^ O o in "^ O I— I ni eaqoui ja^aiutJiQ O CO CD 05 (N CO CO CO CO •># CO Tj< O CO (M ■* ic CO CD r^ 00 T*< O CD IN t^ 00 05 o> O 1-1 00 tJH O IN ■* O rH (N CO Tl( saqoui ajBUbs jo' apig 91'Bnbs 1>. O . 00 OS O O rH (M rH 1— 1 rH rH 4^ >> O o o o 03 o ft 1 <0 CD O w 'S u. aj s s o o O l> CO I> 03 O CO 05 CO iC Tjl CO 00 1H Tt< rH i-< 1-1 IN CO CO CD O ■* CD t^ O ^ rH OS IN CO CO "* ■* o iH IC rH rH Tt< iC IC CO 05 ■* 1-1 05 CO iC 00 1-1 CO rH rH 1-1 IN IN O IN rH CO OS O IN CD OS <3S l> O CO O 00 IN CO CO '^ ■* 00 1-1 CD CO tH 1—1 CD TjH O Tt* CO ■* t> IN 00 CD CO IC 00 O CO rH rH rH (N O CO 1-1 1-1 rH !N . 1— 1 rH CO t^ (N O CO iC l> O CO rH rH rH IN (N IC 00 00 05 O -^ 03 CO (N IC 1> 03 (N rH 1—1 rH rH (N ■* 00 OS (N (N IC IC l> 1> CO •C 00 rH 00 CO (N IN CO CO rt< T-l 1-1 CO 00 o 1-1 (N l> 03 00 Tt< t>. 00 rH CD CO C T-{ ■!-{ CO ■r^ ^ IC 00 rH 00 iC (N (N CO CO rH O to I— 1 IC l> CO 1-1 t^ IC «> 00 o tH IN Tt^ CO 00 O IC CO 03 CO O (N tJ< CO (3i IN rH rH rH rH (N 00 CO ■* CO iC t^ t^ 00 iC OS T}< t> O 1> •* (N 00 O rH (N rH CD t> IC CO tJ< O O CD IN - rf* CO IN CO OS (N ■* l> O CD Tl< (N IN CO CO Tjf o I— I (N 05 CO Ol Tt< (N CO 00 o -H (N 00 03 CD O rH rH CO t^ CO (N Tt* CD X rH ■r-\ T-K T-i T^ C^ OS iC CO t^ (N OS 00 00 CO IC CO CD OS CO CO IN (N IN CO Tt( 1—1 (N O »C CO ■<*< 00 CO O »C CD 00 O 1—1 IN tJ< CO CO OS IC 00 rH IC rH CO iC 00 O rH rH rH rH IN 00 Tt< iC -^ iC rH OS 00 r-H O CO iC 00 IC IN (N CN (N 00 tJ< CO CO i> CO o (M ic o r- IC CO 00 05 O >C IC O rH IC ■* >C 00 IN rH CO »C l> O rH rH rH rH (N CD t>i CO O l> T)< 00 IC (N »C 00 ■<# IN IN IN CO 125 130 CD CO rft 1-1 (N 05 1-1 T)H O >C CO >C CO t> 05 (33 O CO l> CO IN IN (N ■<*< 00 rH CO IC N. 03 ■* OS CO OS IN -^ "N IN 05 CO 05 t> •* CO CO Tj( O 03 03 rH Tfl rH (N Tj< t> 03 O OS rH (N o 1-1 1-1 CO 0> O CO 00 03 1-1 CO rH CO Tj< CO t> Oi Tff 00 CO 00 iC 00 CO CO l> o O 00 O ■<# 05 CO ■<# CO l> 00 (N rH kC CO CD rj< CO ■* O (N Tl< CD rH rH 1— 1 rH o 1— ( 1-1 1—1 >C IN CO 00 CD CD 1> 05 IN 1> CO Ttf IC l> 00 00 Tj< CO -r-^ O (N o 1-1 CO CO 1-1 05 1-1 CD >C CO Ni 1-1 iC CO '•* IC l^ 00 o o o 1—1 00 IC 00 05 IC Tt< IC T^ ■<** CD 05 CO CO Tf IC CO 00 05 Ttl 1-t 1-1 IC IN (N 05 00 rH CO CO CO »C l> CO Tj< IC CD o CO 00 tC 1> o ■<*< 1-1 (N C^ o r^ CD CO IN CO CO Tf »c 00 O t^ 00 (N 00 rH CO CO O CO -4 rH ,H (N (M iD iC (N 1-1 CO ■* o 00 t^ CO CO CO rH O CO CO 05 CO T-l 1-H rH ,-( (N 1—1 CO aa'Bn bg ut 'B9jy tH Tt< t^ O IC 0> CD t>. ic rH •<# rH (N l> IN 00 T}< 00 O CO 00 IC O rH Tt< iC t- 00 OS c »c CO O 00 IC 00 CO (>• t>r OS rH ai saqouj TQ O CO CO Oi (N CO CO CO CO Tjf 00 T)< O CD IN ^ IC CO CD l> 00 rj< O CD IN t>» 00 03 03 O rH 00 Tj( O 0) 13 c3 3 > O* CO o CI 1 d £ < CO II CO CO ^ o 11 -»3 a; a> «»H ^ _fl o +3 V Xi m M o OJ ,13 rC L4 (U II C^ &3 « TABLES AND DIAGRAMS 131 Table LXXXVII THEORETICAL DRAFT PRESSURE IN INCHES OF WATER* IN A CHIMNEY 100 FT. HIGH (For other heights the draft varies directly as the height) Temperature in Chimney Temperature of External Air (Barometer 30 Ins.) Fahr. 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° 200° 0.453 0.419 0.384 0.353 0.321 0.292 0.263 0.234 0.209 0.182 0.157 220 0.488 0.453 0.419 0.388 0.355 0.326 0.298 0.269 0.244 0.217 0.192 240 0.520 0.488 0.451 0.421 0.388 0.359 0.330 0.301 0.276 0.250 0.225 260 0.555 0.528 0.484 0.453 0.420 0.392 0.363 0.334 0.309 0.282 0.257 280 0.584 0.549 0.515 0.482 0.451 0.422 0.394 0.365 0.340 0.313 0.288 300 0.611 0.576 0.541 0.511 0.478 0.449 0.420 0.392 0.367 0.340 0.315 320 0.637 0.603 0.568 0.538 0.505 0.476 0.447 0.419 0.394 0.367 0.342 340 0.662 0.638 0.593 0.563 0.530 0.501 0.472 0.443 0.419 0.392 0.367 360 0.687 0.653 0.618 0.588 0.555 0.526 0.497 0.468 0.444 0.417 0.392 380 0.710 0.676 0.641 0.611 0.578 0.549 0.520 0.492 0.467 0.440 0.415 400 0.732 0.697 0.662 0.632 0.598 0.570 0.541 0.513 0.488 0.461 0.436 420 0.753 0.718 0.684 0.653 0.620 0.591 0.563 0.584 0.509 0.482 0.457 440 0.774 0.739 0.705 0.674 0.641 0.612 0.584 0.555 0.530 0.503 0.478 460 0.793 0.758 0.724 0.694 0.660 0.632 0.603 0.574 0.549 0.522 0.497 480 0.810 0.776 0.741 0.710 0.678 0.649 0.620 0.591 0.566 0.540 0.515 500 0.829 0.791 0.760 0.730 0.697 0.669 0.639 0.610 0.586 0.559 0.534 * The available draft will be the tabular values less the amount consumed by friction in the stack. In stacks whose diameter is determined by Eq. 1005 the net draft will be 80 per cent of the tabular values. Hence to obtain from the table the height of stack necessary to pro- duce a net draft of say 0.6 in., the theoretical draft will be 0.6 X 1.25 = 0.75 in., which can be obtained with a stack 100 ft. high with flue-gas temperature of 420° F., and air temperature of 0° F.; or a stack 125 ft. high when the air temperature is 60° F. and the flue temperature 460°. 132 HANDBOOK OF THERMODYNAMIC Logarithms to the Base 10 1234 5 6789 10 1.00 0.0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 0043 1.01 0043 0048 0052 0056 0060 0065 0069 0073 0077 0082 0086 1.02 0086 0090 0095 0099 0103 0107 0111 0116 0120 0124 0128 1.03 0128 0133 0137 0141 0145 0149 0154 0158 0162 0166 0170 1.04 0170 0175 0179 0183 0187 0191 0195 0199 0204 0208 0212 1.05 0212 0216 0220 0224 0228 0233 0237 0241 0245 0249 0253 1.06 0253 0257 0261 0265 0269 0273 0278 0282 0286 0290 0294 1.07 0294 0298 0302 0306 0310 0314 0318 0322 0326 0330 0334 1.08 0334 0338 0342 0346 0350 0354 0358 0362 0366 0370 0374 1.09 0374 0378 0382 0386 0390 0394 0398 0402 0406 0410 0414 1.10 0.0414 0418 0422 0426 0430 0434 0438 0441 0445 0449 0453 1.11 0453 0457 0461 0465 0469 0473 0477 0481 0484 0488 0492 1.12 0492 0496 0500 0504 0508 0512 0515 0519 0523 0527 0531 1.13 0531 0535 0538 0542 0546 0550 0554 0558 0561 0565 0569 1.14 0569 0573 0577 0580 0584 0588 0592 0596 0599 0603 0607 1.15 0607 0611 0615 0618 0622 0626 0630 0633 0637 0641 0645 1.16 0645 0648 0652 0656 0660 0663 0667 0671 0674 0678 0682 1.17 0682 0686 0689 0693 0697 0700 0704 0708 0711 0715 0719 1.18 0719 0722 0726 0730 0734 0737 0741 0745 0748 0752 0755 1.19 0755 0759 0763 0766 0770 0774 0777 0781 0785 0788 0792 1.30 0.0792 0795 0799 0803 0806 0810 0813 0817 0821 0824 0828 1.21 0828 0831 0835 0839 0842 0846 0849 0853 0856 0860 0864 1.22 0864 0867 0871 0874 0878 0881 0885 0888 0892 0896 0899 1.23 0899 0903 0906 0910 0913 0917 0920 0924 0927 0931 0934 1.24 0934 0938 0941 0945 0948 0952 0955 0959 0962 0966 0969 1.25 0969 0973 0976 0980 0983 0986 0990 0993 0997 1000 1004 1.26 1004 1007 1011 1014 1017 1021 1024 1028 1031 1035 1038 1.27 1038 1041 1045 1048 1052 1055 1059 1062 1065 1069 1072 1.28 1072 1075 1079 1082 1086 1089 1092 1096 1099 1103 1106 1.29 1106 1109 1113 1116 1119 1123 1126 1129 1133 1136 1139 1.30 0.1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1.31 1173 1176 1179 1183 1186 1189 1193 1196 1199 1202 1206 1.32 1206 1209 1212 1216 1219 1222 1225 1229 1232 1235 1239 1.33 1239 1242 1245 1248 1252 1255 1258 1261 1265 1268 1271 1.34 1271 1274 1278 1281 1284 1287 1290 1294 1297 1300 1303 1.35 1303 1307 1310 1313 1316 1319 1323 1326 1329 1332 1335 1.36 1335 1339 1342 1345 1348 1351 1355 1358 1361 1364 1367 1.37 1367 1370 1374 1377 1380 1383 1386 1389 1392 1396 1399 1.38 1399 1402 1405 1408 1411 1414 1418 1421 1424 1427 1430 1.39 1430 1433 1436 1440 1443 1446 1449 1452 1455 1458 1461 1.40 0.1461 1464 1467 1471 1474 1477 1480 1483 1486 1489 1492 1.41 1492 1495 1498 1501 1504 1508 1511 1514 1517 1520 1523 1.42 1523 1526 1529 1532 1535 1538 1541 1544 1547 1550 1553 1.43 1553 1556 1559 1562 1565 1569 1572 1575 1578 1581 1584 1.44 1584 1587 1590 1593 1596 1599 1602 1605 1608 1611 1614 1.45 1614 1617 1620 1623 1626 1629 1632 1635 1638 1641 1644 1.46 1644 1647 1649 1652 1655 1658 1661 1664 1667 1670 1673 1.47 1673 1676 1679 1682 168S 1688 1691 1694 1697 1700 1703 1.48 1703 1706 1708 1711 1714 1717 1720 1723 1726 1729 1732 1.49 1732 1735 1738 1741 1744 1746 1749 1752 1755 1758 1761 TABLES AND DIAGRAMS 133 Logarithms to the Base 10 1:^34 5 6789 10 160 0.1761 1764 1767 1770 1772 1775 1778 1781 1784 1787 1790 1.51 1790 1793 1796 1798 1801 1804 1807 1810 1813 1816 1818 1.52 1818 1821 1824 1827 1830 1833 1836 1838 1841 1844 1847 1.53 1847 1850 1853 1855 1858 1861 1864 1867 1870 1872 1875 1.54 1875 1878 1881 1884 1886 1889 1892 1895 1898 1901 1903 1.55 1903 1906 1909 1912 1915 1917 1920 1923 1926 1928 1931 1.56 1931 1934 1937 1940 1942 1945 1948 1951 1953 1956 1959 1.57 1959 1962 1965 1967 1970 1973 1976 1978 1981 1984 1987 1.58 1987 1989 1992 1995 1998 2000 2003 2006 2009 2011 2014 L59 2014 2017 2019 2022 2025 2028 2030 2033 2036 2038 2041 1.60 0.2041 2044 2047 2049 2052 2055 2057 2060 2063 2066 2068 1.61 2068 2071 2074 2076 2079 2082 2084 2087 2090 2092 2095 1.62 2095 2098 2101 2103 2106 2109 2111 2114 2117 2119 2122 1.63 2122 2125 2127 2130 2133 2135 2138 2140 2143 2146 2148 1.64 2148 2151 2154 2156 2159 2162 2164 2167 2170 2172 2175 1.65 2175 2177 2180 2183 2185 2188 2191 2193 2196 2198 2201 1.66 2201 2204 2206 2209 2212 2214 2217 2219 2222 2225 2227 1.67 2227 2230 2232 2235 2238 2240 2243 2245 2248 2251 2253 1.68 2253 2256 2258 2261 2263 2266 2269 2271 2274 2276 2279 1.69 2279 2281 2284 2287 2289 2292 2294 2297 2299 2302 2304 1.70 0.2304 2307 2310 2312 2315 2317 2320 2322 2325 2327 2330 L71 2330 2333 2335 2338 2340 2343 2345 2348 2350 2353 2355 1.72 2355 2358 2360 2363 2365 2368 2370 2373 2375 2378 2380 1.73 2380 2383 2385 2388 2390 2393 2395 2398 2400 2403 2405 1.74 2405 2408 2410 2413 2415 2418 2420 2423 2425 2428 2430 1.75 2430 2433 2435 2438 2440 2443 2445 2448 2450 2453 2455 1.76 2455 2458 2460 2463 2465 2467 2470 2472 2475 2477 2480 1.77 2480 2482 2485 2487 2490 2492 2494 2497 2499 2502 2504 1.78 2504 2507 2509 2512 2514 2516 2519 2521 2524 2526 2529 1.79 2529 2531 2533 2536 2538 2541 2543 2545 2548 2550 2553 1.80 0.2553 2555 2558 2560 2562 2565 2567 2570 2572 2574 2577 L81 2577 2579 2582 2584 2586 2589 2591 2594 2596 2598 2601 1.82 2601 2603 2605 2608 2610 2613 2615 2617 2620 2622 2625 L83 2625 2627 2629 2632 2634 2636 2639 2641 2643 2646 2648 1.84 2648 2651 2653 2655 2658 2660 2662 2665 2667 2669 2672 1.85 2672 2674 2676 2679 2681 2683 2686 2688 2690 2693 2695 1.86 2695 2697 2700 2702 2704 2707 2709 2711 2714 2716 2718 1.87 2718 2721 2723 2725 2728 2730 2732 2735 2737 2739 2742 1.88 2742 2744 2746 2749 2751 2753 2755 2758 2760 2762 2765 1.89 2765 2767 2769 2772 2774 2776 2778 2781 2783 2785 2788 1.90 0.2788 2790 2792 2794 2797 2799 2801 2804 2806 2803 2810 1.91 2810 2813 2815 2817 2819 2822 2824 2826 2828 2831 2833 1.92 2833 2835 2838 2840 2842 2844 2847 2849 2851 2853 2856 1.93 2856 2858 2860 2862 2865 2867 2869 2871 2874 2876 2878 1.94 2878 2880 2882 2885 2887 2889 2891 2894 2896 2898 2900 1.95 2900 2903 2905 2907 2909 2911 2914 2916 2918 2920 2923 1.96 2923 2925 2927 2929 2931 2934 2936 2938 2940 2942 2945 1.97 2945 2947 2949 2951 2953 2956 2958 2960 2962 2964 2967 1.98 2967 2969 2971 2973 2975 2978 2980 2982 2984 2986 2989 1.99 2989 2991 2993 2995 2997 2999 3002 3004 3006 3008 3010 134 HANDBOOK OF THERMODYNAMIC Logarithms to the Base 10 These two pages give the common logarithms of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right (or left) in the number is equivalent to adding n (or — w) to the logarithm. Thus, log 0.017453=0.2419 — 2 [=2.2419]. To facilitate interpolation, the tenths of the tabular differences are given at the end of each line, so that the differences themselves need not be considered. In using these aids, first find the nearest tabular entry, and then add (to move to the right) or subtract (to move to the left), as the case may require. Pages 132-137 are reprinted by permission from Huntingtons "Four Place Tables." Tenths of the Tabular Difference 1334 5 6789 10 12346 1.0 0.0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 0414 1.1 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 0792 1.2 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 1139 1.3 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 1461 To avoid Interpo- 1.4 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 1761 lation In the first 1.5 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 2041 ten lines, use the . .- 41. . 1.6 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 2304 special tabiu uii um preceding page. 1.7 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2553 1.8 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2788 1.9 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 3010 3.0 0.3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 3222 2 4 6 811 2.1 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 3424 2 4 6 810 2.2 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 3617 2 4 6 8 10 2.3 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 3802 2 4 5 7 9 2.4 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 3979 2 4 5 7 9 2.5 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 4150 2 3 5 7 9 2.6 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 4314 2 3 5 7 8 2.7 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 4472 2 3 5 6 8 2.8 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 4624 2 3 5 6 8 2.9 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 4771 1 3 4 6 7 3.0 0.4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 4914 3 4 6 7 3.1 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 5051 3 4 6 7 3.2 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 5185 3 4 5 7 3.3 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 5315 3 4 5 6 3.4 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 5441 3 4 5 6 3.5 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 5563 2 4 5 6 3.6 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 5682 2 4 5 6 3.7 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 5798 2 3 5 6 3.8 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 5911 2 3 5 6 3.9 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 6021 2 3 4 6 4.0 0.6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 6128 2 3 4 5 4.1 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 6232 2 3 4 5 4.2 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 6335 2 3 4 5 4.3 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 6435 2 3 4 5 4.4 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 6532 2 3 4 5 4.5 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 6628 2 3 4 5 4.6 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 6721 2 3 4 5 4.7 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 6812 2 3 4 5 4.8 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 6902 2 3 4 4 4.9 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 6990 2 3 4 4 TABLES AND DIAGRAMS 135 Logarithms to the Base 10 5.0 0.6990 5.1 7076 5.2 7160 5.3 7243 5.4 7324 5.5 7404 5.6 7482 5.7 7559 5.8 7634 5.9 7709 6.0 0.7782 6.1 7853 6.2 7924 6.3 7993 6.4 8062 6.5 8129 6.6 8195 6.7 8261 6.8 8325 6.9 8388 7.0 0.8451 7.1 8513 7.2 8573 7.3 8633 7.4 8692 7.5 8751 7.6 8808 7.7 8865 7.^ 8921 7.9 8976 8.0 0.9031 8.1 9085 8.2 9138 8.3 9191 8.4 9243 8.5 9294 8.6 9345 8.7 9395 8.8 9445 8.9 9494 9.0 0.9542 9.1 9590 9.2 9638 9.3 9685 9.4 9731 9.5 9777 9.6 9823 9.7 9868 9.8 9912 9.9 '9956 6998 7007 7016 7024 7033 7084 7093 7101 7110 7118 7168 7177 7185 7193 7202 7251 7259 7267 7275 7284 7332 7340 7348 7356 7364 7412 7419 7427 7435 7443 7490 7497 7505 7513 7520 7566 7574 7582 7589 7597 7642 7649 7657 7664 7672 7716 7723 7731 7738 7745 7789 7796 7803 7810 7818 7860 7868 7875 7882 7889 7931 7938 7945 7952 7959 8000 8007 8014 8021 8028 8069 8075 8082 8089 8096 8136 8142 8149 8156 8162 8202 8209 8215 8222 8228 8267 8274 8280 8287 8293 8331 8338 8344 8351 8357 8395 8401 8407 8414 8420 8457 8463 8470 8476 8482 8519 8525 8531 8537 8543 8579 8585 8591 8597 8603 8639 8645 8651 8657 8663 8698 8704 8710 8716 8722 8756 8762 8768 8774 8779 8814 8820 8825 8831 8837 8871 8876 8882 8887 8893 8927 8932 8938 8943 8949 8982 8987 8993 8998 9004 9036 9042 9047 9053 9058 9090 9096 9101 9106 9112 9143 9149 9154 9159 9165 9196 9201 9206 9212 9217 9248 9253 9258 9263 9269 9299 9304 9309 9315 9320 9350 9355 9360 9365 9370 9400 9405 9410 9415 . 9420 9450 9455 9460 9465 9469 9499 9504 9509 9513 9518 9547 9552 9557 9562 9566 9595 9600 9605 9609 9614 9643 9647 9652 9657 9661 9689 9694 9699 9703 9708 9736 9741 9745 9750 9754 9782 9786 9791 9795 9800 9827 9832 9836 9841 9845 9872 9877 9881 9886 9890 9917 9921 9926 9930 9934 9961 9965 9969 9974 9978 Tenths of the Tabular DifferencB 6 7 8 9 10 1 2 3 4 5 7042 7050 7059 7067 7076 1 2 3 3 4 7126 7135 7143 7152 7160 1 2 3 3 4 7210 7218 7226 7235 7243 1 2 2 3 4 7292 7300 7308 7316 7324 1 2 2 3 4 7372 7380 7388 7396 7404 1 2 2 3 4 7451 7459 7466 7474 7482 1 2 2 3 4 7528 7536 7543 7551 7559 1 2 2 3 4 7604 7612 7619 7627 7634 1 2 2 3 4 7679 7686 7694 7701 7709 2 3 4 7752 7760 7767 7774 7782 2 3 4 7825 7832 7839 7846 7853 2 3 4 7896 7903 7910 7917 7924 2 3 4 7966 7973 7980 7987 7993 2 3 3 8035 8041 8048 8055 8062 2 3 3 8102 8109 8116 8122 8129 2 3 3 8169 8176 8182 8189 8195 2 3 3 8235 8241 8248 8254 8261 2 3 3 8299 8306 8312 8319 8325 2 3 3 8363 8370 8376 8382 8388 2 3 3 8426 8432 8439 8445 8451 2 3 3 8488 8494 8500 8506 8513 2 2 3 8549 8555 8561 8567 8573 2 2 3 8609 8615 8621 8627 8633 2 2 3 8669 8675 8681 8686 8692 2 2 3 8727 8733 8739 8745 8751 2 2 3 8785 8791 8797 8802 8808 2 2 3 8842 8848 8854 8859 8865 2 2 3 8899 8904 8910 8915 8921 2 2 3 8954 8960 8965 8971 8976 2 2 3 9009 9015 9020 9025 9031 2 2 3 9063 9069 9074 9079 9085 2 2 3 9117 9122 9128 9133 9138 2 2 3 9170 9175 9180 9186 9191 2 2 3 9222 9227 9232 9238 9243 2 2 3 9274 9279 9284 9289 9294 2 2 3 9325 9330 9335 9340 9345 2 2 3 9375 9380 9385 9390 9395 2 2 3 9425 9430 9435 9440 9445 1 12 2 9474 9479 9484 9489 9494 1 12 2 9523 9528 9533 9538 9542 3 1 1 2 2 9571 9576 9581 9586 9590 3 1 12 2, 9619 9624 9628 9633 9638 3 1 12 2 9666 9671 9675 9680 9685 ( D 1 12 2 9713 9717 9722 9727 9731 ( } 1 12 2 9759 9763 9768 9773 9777 ( 3 1 12 2 9805 9809 9814 9818 9850 9854 9859 9863 9894 9899 9903 9908 9939 9943 9948 9952 9983 9987 9991 9996 9823 112 2 9868 112 2 9912 112 2 9956 112 2 112 2 136 HANDBOOK OF THERMODYNAMIC LOGABITHMS TO THE BaSE G ] 1 1 1 These two pages give the natural (hy- 2 perholic, or Napierian) logarithms of 3 Qumbers between 1 and 10, correct to 4 four places. Moving the decimal point 5 n places to the right (or left) in the num- 6 ber is equivalent to adding n times 2.3026 7 [or n times S.6974) to the logarithm. 8 9 2.3026 4.6052 6.9078 9.2103 11.5129 13.8155 16.1181 18.4207 20.7233 1 0.6974-3 2 0.3948-5 3 0.0922-7 4 0.7897-10 5 0.4871-12 6 0.1845-14 7 0.8819-17 8 0.5793-19 9 0.2767-21 Log, (Base e = 2.71828 +) Tenths of the Tabular Differencfl 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1.0 0.0000 0100 0198 0296 0392 0488 0583 0677 0770 0862 0.0953 10 19 29 38 48 1.1 0953 1044 1133 1222 1310 1398 1484 1570 1655 1740 1823 9 17 26 35 44 1.2 1823 1906 1989 2070 2151 2231 2311 2390 2469 2546 2624 8 16 24 32 40 1.3 2624 2700 2776 2852 2927 3001 3075 3148 3221 3293 3365 7 15 22 30 37 1.4 3365 3436 3507 3577 3646 3716 3784 3853 3920 3988 4055 7 14 21 28 34 1.5 4055 4121 4187 4253 4318 4383 4447 4511 4574 4637 4700 6 13 19 26 32 1.6 4700 4762 4824 4886 4947 5008 5068 5128 5188 5247 5306 6 12 18 24 30 1.7 5306 5365 5423 5481 5539 5596 5653 5710 5766 5822 5878 6 11 17 23 29 1.8 5878 5933 5988 6043 6098 6152 6206 6259 6313 6366 6419 5 11 16 22 27 1.9 6419 6471 6523 6575 6627 6678 6729 6780 6831 6881 0.6931 5 10 15 21 26 3.0 0.6931 6981 7031 7080 7129 7178 7227 7275 7324 7372 7419 5 10 IS 20 24 2.1 7419 7467 7514 7561 7608 7655 7701 7747 7793 7839 7885 5 9 14 19 23 2.2 7885 7930 7975 8020 8065 8109 8154 8198 8242 8286 8329 4 9 13 18 22 2.3 - 8329 8372 8416 8459 8502 8544 8587 8629 8671 8713 8755 4 9 13 17 21 2.4 8755 8796 8838 8879 8920 8961 9002 9042 9083 9123 9163 4 8 12 16 20 2.5 9163 9203 9243 9282 9322 9361 9400 9439 9478 9517 9555 4 8 12 16 20 2.6 9555 9594 9632 9670 9708 9746 9783 9821 9858 9895 0.9933 4 8 11 15 19 2.7 0.9933 9969. [0006 0043 0080 0116 0152 0188 0225 0260 1.0296 4 7 11 15 18 2.8 1.0296 0332 0367 0403 0438 0473 0508 0543 0578 0613 0647 4 7 11 14 18 2.9 0647 0682 0716 0750 0784 0818 0852 0886 0919 0953 1.0986 3 7 10 14 17 3.0 1.0986 1019 1053 1086 1119 1151 1184 1217 1249 1282 1314 3 7 10 13 16 3.1 1314 1346 1378 1410 1442 1474 1506 1537 1569 1600 1632 3 6 10 13 16 3.2 1632 1663 1694 1725 1756 1787 1817 1848 1878 1909 1939 3 6 9 12 15 3.3 1939 1969 2000 2030 2060 2090 2119 2149 2179 2208 2238 3 6 912 15 3.4 1^238 2267 2296 2326 2355 2384 2413 2442 2470 2499 2528 3 6 91214 3.5 2528 2556 2585 2613 2641 2669 2698 2726 2754 2782 2809 3 6 81114 3.6 2809 2837 2865 2892 2920 2947 2975 3002 3029 3056 3083 3 5 8 1114 3.7 3083 3110 3137 3164 3191 3218 3244 3271 3297 3324 3350 3 5 8 1113 3.8 3350 3376 3403 3429 3455 3481 3507 3533 3558 3584 3610 3 5 8 1013 3.9 3610 3635 3661 3686 3712 3737 3762 3788 3813 3838 1.3863 3 5 81013 4.0 1.3863 3888 3913 3938 3962 3987 4012 4036 4061 4085 4110 2 5 71012 4.1 4110 4134 4159 4183 4207 4231 4255 4279 4303 4327 4351 2 5 71012 4.2 4351 4375 4398 4422 4446 4469 4493 4516 4540 4563 4586 2 5 7 912 4.3 4586 4609 4633 4656 4679 4702 4725 4748 4770 4793 4816 2 5 7 911 4.4 4816 4839 4861 4884 4907 4929 4951 4974 4996 5019 5041 2 4 7 911 4.5 5041 5063 5085 5107 5129 5151 5173 5195 5217 5239 5261 2 4 7 911 4.6 5261 5282 5304 5326 5347 5369 5390 5412 5433 5454 5476 2 4 6 911 4.7 5476 5497 5518 5539 5560 5581 5602 5623 5644 5665 5686 2 4 6 811 4.8 5686 5707 5728 5748 5769 5790 5810 5831 5851 5872 5892 2 4 6 810 4.9 5892 5913 5933 5953 5974 5994 6014 6034 6054 6074 1.6094 2 4 6 810 TABLES AND DIAGRAMS 137 Logarithms to the Base e Ten' thsi DfthB Tabular Difference 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 5.0 1.6094 6114 6134 6154 6174 6194 6214 6233 6253 6273 6292 2 4 6 8 10 5.1 6292 6312 6332 6351 6371 6390 6409 6429 6448 6467 6487 2 4 6 8 10 5.2 6487 6506 6525 6544 6563 6582 6601 6620 6639 6658 6677 2 4 6 8 10 5.3 6677 6696 6715 6734 6752 6771 6790 6808 6827 6845 6864 2 4 6 7 9 5.4 6864 6882 6901 6919 6938 6956 6974 6993 7011 7029 7047 2 4 6 7 9 5.5 7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 7228 2 4 5 7 9 5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387 7405 2 4 5 7 9 5.7 7405 7422 7440 7457 7475 7492 7509 7527 7544 7561 7579 2 3 5 7 9 5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733 7750 2 3 5 7 9 5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 1.7918 2 3 5 7 8 6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 8083 2 3 5 7 8 6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229 8245 2 3 5 7 8 6.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390 8405 2 3 5 6 8 6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 8563 2 3 5 6 8 6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703 8718 2 3 5 6 8 6.5 8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 8871 2 3 5 6 8 6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006 9021 2 3 5 6 8 6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 9169 3 4 6 7 6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 9315 3 4 6 7 6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 1.9459 3 4 6 7 7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 9601 3 4 6 7 7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 9741 3 4 6 7 7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 1.9879 3 4 6 7 7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988j0001 2.0015 3 4 5 7 7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 0149 3 4 5 7 7.5 0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 0281 3 4 5 7 7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 0412 3 4 5 7 7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 0541 3 4 5 6 7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656 0669 3 4 5 6 7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 2.0794 3 4 5 6 8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 0919 2 4 5 6 8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 1041 2 4 5 6 8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 1163 2 4 5 6 8.3 1163 1.175 1187 1199 1211 1223 1235 1247 1258 1270 1282 2 4 5 6 8.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 1401 2 4 5 6 8.5 1401 1412 1424 1436 1448 1459 1471 1483 1494 1506 1518 2 4 5 6 8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 1633 2 3 5 6 8.7 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 1748 2 3 5 6 8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 1861 2 3 5 6 8.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 2.1972 2 3 4 6 9.0 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 2083 2 3 4 6 9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 2192 2 3 4 5 9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 2300 2 3 4 5 9.3 2300 2311 2322 2332 2343 2354 2364 2375 2386 2396 2407 2 3 4 5 9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 2513 2 3 4 5 9.5 2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 2618 2 3 4 5 9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 2721 2 3 4 5 9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 2824 2 3 4 5 9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915 2925 2 3 4 5 9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016 2.3026 2 3 4 5 PART II CHARTS CONSTRUCTION AND USE OF DIAGRAMS Chart 1. This chart gives the work required to compress and deliver a cubic foot of (sup.pr.) air, or the horse-power to compress and deUver 1000 cu. ft. of (sup.pr.) air per minute, if the ratio of pressure (del.pr.)-^ (sup.pr.), the value of s and the (sup.pr.) are known, and compression occurs in one stage. The work or H.P. for any number of cubic feet is directly proportional to num- ber of feet. The curves are dependent upon the formulas, Eq. (31) , for the case when s = l, and Eq. (49) for the case when 5 is not equal to 1. They were drawn as follows : On a horizontal base various values of Rp are laid off, starting with the value 2 at the origin. The values for work were then found for a number of values of Rp with a constant value of (sup.pr.) and s. A vertical work scale was then laid off from origin of Rp and a curve drawn through the points found by the intersection of horizontal lines through values of work, with vertical lines through corresponding values of Rp. The process was then repeated for other values of 5 and curves similar to the first, drawn for the other values of s. From the construction so far completed it is possible to find the work per cubic foot for any pressure ratio and any value of s for one (sup.pr.) by projecting up from the proper value of Rp to the curve of value of s and then horizontally to the scale of work. It will be noted from these formulas, however, that the work may be laid off on the horizontal base and a group of lines drawn so that the slope of the line equals ratio of work for any supply pressure to that for the (sup.pr.) originally used. For convenience, in order that the group of s curves and the latter group may be as distinct as possible, the origin of the latter group is taken at the opposite end of the base line. If from the point for work originally found, a projection is made horizontally to the proper (sup.pr.) curve, the value for work with this (sup.pr.) will be found directly below. It will be noted that from point of intersection of the vertical from the Rp value with the s curve, it is only necessary to project horizontally far enough to intersect the desired (sup.pr.) curve, and since no information of value will be found by continuing to the work scale for the original (sup.pr.) this is omitted from the diagram. In brief, then, the use of this chart consists in projecting upward from the proper value of Rp to the proper s curve, then passing horizontally to the value of (sup.pr.) and finally downward to the work scale. As an example of the use of the curve: Find the work to compress 1000 cu. ft. of free air from 1 to 8i 139 140 HANDBOOK OF THERMODYNAMIC atmospheres adiabatically. On the curve project upward from 2?p=-8.5 to curve of s = 1.406, then over to 14.7 (sup.pr.) curve and down to read work = 6,300,000. Chart 2. This gives the work required to compress and deliver a cubic foot of (sup.pr.) air or the horse-power to compress and deliver 1000 cu. ft. of (sup.pr.) air per minute if the ratio of pressures, the value of s and (sup.pr.) are known and if compression occurs in two stages with best-receiver pressure and perfect intercooling. The work or H.P. for any other number of cubic feet may be found by multiplying work per foot by the number of feet. The method of arriving at this chart was exactly the same as that for one stage. As an example of the use of the chart, find the work to compress 5 cu. ft. of free air from 1 to SJ atmospheres adiabatically in two stages. Project upward from Rp = 8.5 to curve s = 1.406, then over to 14.7 curve and down to read 5320 ft. -lbs. per cubic foot. Chart 3. This chart gives the work necessary to compress and deliver a cubic foot of (sup.pr.) air, or horse-power to compress and deliver 1000 cu. ft. of (sup. pr.) air per minute, if the ratio of pressures, the value of s, and the (sup. pr.) are known and if the compression occurs in three stages with best-receiver pressures and perfect intercooling. The work or horse-power for any other number of cubic feet may be found by multiplying the work for one foot by the number of feet. As an example of use of this chart, determine the horse-power to compress 100 cu. ft. free air per minute adiabatically in three stages from 15 lbs. per square inch abs. to 90 lbs. per square inch gage. From Rp = 7, project to curve of s = 1.4 then over to (sup.pr.) = 15 and down, and the horse-power will be found to be 13.6. Chart 4. This chart is for finding the (m.e.p.) of compressors. In the case of multi-stage compressors with best-receiver pressure and perfect inter- cooling, the (m.e.p.) of each cylinder may be found by considering each cylinder as a single-stage compressor; or the (m.e.p.) of the compressor referred to the L.P. cylinder may be found. The chart depends on the fact that the work per cubic foot of (sup.pr.) gas is equal to the (m.e.p.) for the no-clearance case and that the (m.e.p.) with clearance is equal to the (m.e.p.) for no clearance, times the volumetric effi- ciency. Diagrams 1, 2 and 4 are reproductions of Charts 2, 3 and 4 to a smaller scale and hence need no explanation as to derivation. Their use may be briefiy shown. From the given ratio of pressures project upward to the proper curve, then horizontally to the (sup.pr.) and downward to read work per cubic feet of (sup.pr.) gas. The volumetric efficiency diagram was drawn in the following manner: From Eq. (59) vol. eff. ={l-\-c — cRps), showing that it depends upon three variables, Rp, c and s. A horizontal scale of values of Rp was laid off. Values of RpJ were found and a vertical scale of this quantity laid off from the same origin as the Rp values. Through the intersection of the verticals from various TABLES AND DIAGRAMS 141 values of Rp with the horizontals drawn through the corresponding values of {Rp)^ for a known value of s, a curve of this value of s was drawn. In a similar way curves of other values of s were drawn. From the construction so far completed it is possible to j&nd the value of {RpY by projecting upward from any value of Rp to the curve of s and then horizontally to the scale of (Rp)^. Values of volumetric efficiencies found for various clearances and the values of (Rp)^ are laid off on a horizontal base, with the origin at the opposite end of scale from that of Rp values, in order that clearance curves and s curves might be as distinct as possible. These clearance curves were drawn through the inter- section of horizontals through the (Rp)^ values, and of verticals through the vulmetric efficiency values corresponding to them for the particular clearance in question. To find volumetric efficiency then it is merely necessary to project from value of Rp to the proper s curve, then across to the given clearance and finally down to volumetric efficiency. As the value of (Rp)^ is not desired, the hori- zontal projection is carried only to the intersection with the clearance curve and not to the edge of the diagram. To find the (m.e.p.) for single stage, the work per cubic foot is found from the diagram and then the volumetric efficiency, both as described above. The product is {m.e.p.). For multi-stage compressors with perfect intercooling and best-receiver pressure, as stated above, the (m.e.p.) of each cylinder may be found, consider- ing each to be a single-stage compressor and remembering that (1 rec.pr.) becomes (sup.pr.) for second stage, and (del.pr.) for first stage; and that (2 rec. pr.) becomes (sup.pr.) for third stage, (del.pr.) for second stage. The (m.e.p.) reduced to low-pressure cylinder is found by taking work per cubic foot of (sup.pr.) gas and multiplying by volumetric efficiency of low-pressure cylinder. To illustrate the use of this curve solve the following problem. A three- stage air compressor runs at 100 R.P.M. with best receiver pressure; the low- pressure cylinder is 32 X 24 ins., clearance 5 per cent. Compression from atmosphere to 140 lbs. per square inch absolute, s = 1.4. Find horse-power and the best receiver pressures. Projecting upward from the pressure ratio of 9.35 to the line of s = 1.4 and then over to (sup.pr.) = 15 in diagram 4, since compression is three stage and from 15 lbs. per square inch to 140 lbs. per square inch, work per cubic foot or (m.e.p.), is found for no clearance to be 37.8 abs. per square inch; since best-receiver pressure assumed is 31.6, which gives a ratio of 2.1 for the low-pressure cylinder. From diagram 3, by projecting upward from Rp = 2.1 and over to the 5 per cent clearance fine, volumetric efficiency is 96.5. The product gives (m.e.p.) reduced to low-pressure cylinder and is 36.5. From the — ^ '^' formula, the horse-power is found to be 358. Chart 5. There is one (sup.pr.), which for a definite (del.pr.) will give the maximum work of compression. This chart, originated by Mr. T. M. Gunn, 142 HANDBOOK OF THERMODYNAMIC gives a graphical means of finding this value of (sup.pr.) when the (del.pr.), clearance and value of s are known. It also gives on the right-hand of the chart a means for finding the (m.e.p.) for this condition. The figure was drawn by means of Eqs. (139) and (142). To find the (sup.pr.) to give maximum work for any (del.pr.) it is only necessary to project from the proper value of s to the given clearance curve, and then horizontally to read the value of Rp. The (del.pr.) divided by this gives the (sup.pr.) desired. To obtain the (m.e.p.) project upward from the value of 5 to the clearance curve, then horizontally to read the ratio ( ' ' ' ) \del.pr./ The {del.pr.) multiplied by this quantity gives the m.e.p. As an example of the use of this chart let it be required to find the (sup.pr.) for the case of maximum work for 9 X 12 in. double-acting compressor running 200 R.P.M., having 5 per cent clearance and delivering against 45 lbs. per square inch gage. ; also the horse-power. Compression such that s = 1.3. Projecting from the value 1.3 for s on the left-hand diagram to the line of 60 5 per cent clearance find Rp to be 2.8, hence (sup.pr.) =^r— = 21.4 lbs. per 2.0 square inch absolute = 6.4 lbs. per square inch gage. Again, projecting from value 1.3 for s on right-hand diagram to line of 5 per cent clearance find (m.e.p.) ^ TTTT3 23 X 1 X 64 X 400 rhat . , , r- = .383, hence (m.e.p.). =23 and I.H.P. = ^tttt^t^t: (del.pr.) 33,000 = 17.8. Chart 6. This chart is designed to show the saving in work done in com- pressing and delivering gases by two-stage or three-stage compression with best-receiver pressure and perfect intercooling over that required for compress- ing and delivering the same gas between the same pressures in one stage. The chart was made by laying off on a horizontal base a scale of pressure ratios. From the same origin a scale of work for two or three stage divided by the work of one stage was drawn vertically. For a number of values of Rp the work to compress a cubic foot of gas was found for one, two and three stage for each value of s. The values found by dividing the work of two or three stage by the work of single stage were plotted above the proper Rp values, and opposite the proper ratio, values and curves drawn through all points for one value of s. To find the saving by compressing in two or three stages project from the proper Rp value to the chosen s curve for the desired number of stages, then horizontally to read the ratio of multi-stage to one-stage work. This value gives per cent power needed for one stage that will be required to compress the same gas multi-stage. Saving by multi-stage as a percentage of single stage is one minus the value read. To illustrate the use of this chart, find the per cent of work needed to com- press a cubic foot of air adiabatically from 1 to 8J atmospheres in two stages compared to doing it in one stage. From examples under charts Nos. 1 and 2 it was found that work per cubic foot was 6300 ft.-lbs. and 5320 ft.-lbs. respec- tively, for one- and two-stage compression, or that two stage was 84.5 per cent TABLES AND DIAGRAMS 143 of one stage. From Rp, 8i project up on Chart 6 to s = 1.406 for two stage, and over to read 84.6 per cent, which is nearly the same. Chart 7. This chart, designed by Mr. T. M. Gunn, shows the economy compared to isothermal compression. The chart was drawn on the basis of the following equation : ^ /• ,, ,x m.e.p. isothermal (no clearance) liiconomy (isothermal) = :; — -. — ^ — -, m.e.p. actual — il^i, actual Values of this expression were worked out for each exponent, for assumed values of Rp. A scale of values of Rp was laid off horizontally and from the same origin a vertical scale of values of the ratio of isothermal to adiabatic. The results found were then plotted, each point above its proper Rp and opposite its ratio value. Curves were then drawn through all the points found for the same value of s. In a similar way a set of curves for two-stage and a set for three-stage compression were drawn. This chart is also useful in obtaining the (m.e.p.) of the cycle if the (sup.pr.) and the volumetric efficiency of the cylinder be known. A second horizontal scale laid off above the Rp scale shows the (m.e.p.) per pound of (sup.pr. for) the isothermal no-clearance cycle. This is found to be equal to loge Rp, since the (m.e.p.) for no clearance is equal to the work per cubic foot of (sup.pr.) gas, which, in turn, for the isothermal case is (sup.pr.) loge Rp or loge Rp when (sup.pr.) = 1. Knowing the ratio of pressures, economy compared to isothermal can be found as explained above. Also knowing Rp the (m.e.p.) per pound initial is found from the upper scale. Since the latter quantity is assumed to be known, by multiplying it by factor just found there is obtained (m.e.p.) isothermal. Since volumetric efficiency is assumed known, all the factors are known for the first equation given above which, rearranged, reads , N.I m.e.p. isothermal (no clearance) (m.e.p.) actual = t -. — -r in . i^ , (economy isothermal; —il^,; Chart 8. This chart is drawn to give the cylinder displacement for a desired capacity, with various values of Rp, s and clearance. From the formula Eq. (58): (L.P. Cap.) =Z)(l+c-ci2pi). The right-hand portion of the diagram is for the purpose of finding values of (i2p)s" for various values of Rp and s, and is constructed as in Chart 2. The values of the lower scale on the left-hand diagram give values of Z) = (L. P. Cap.) -^{l-\-c — cRps), where capacity is taken at 100 cu.ft., this scale was laid out and the clearance curves points found by solving the above equation for various values of {Rp)i for each value of c. To obtain the displacement neces- sary for a certain capacity with a given value of Rp, c and s, project upward from Rp to the proper s curve across to the c curve and down to read displace- ment per hundred cubic feet. Also on the left-hand diagram are drawn lines of piston speed, and on left-hand edge a scale of cylinder areas and diameters to give displacements found on horizontal scale. To obtain cylinder areas or approximate diameters in inches project from displacement to piston speed line 144 HANDBOOK OF THERMODYNAMIC and across to read cylinder area or diameter. Figures given are for 100 cu.ft. per minute. For any other volume the displacement and area of cylinder will be as desired volume to 100, and diameters will be as \/desired volume to 100. As an example of the use of Chart 8, let it be required to find the low-pres- sure cylinder size for a compressor to handle 1500 cu. ft. of free air per minute. Receiver pressure to be 45 lbs. per square inch gage and (sup.pr.) to be atmos- phere. Piston speed limited to 500 ft. per minute. Compression to be so that s=1.4 and clearance = 4 per cent. Projecting upward from Rp = 4: to s = 1.4, across to c = 4:%, and down to piston speed = 500, find the diameter of a cylinder for 100 cu. ft. per minute is 6.3. For 1500 cu. ft. the diameter will beas Vl5X6.3 = 3.9X6.3 = 24 ins. Chart 9. This diagram for mean effective pressure in terms of initial and back pressure, clearance, compression and cut-off, facilitates the solution of Eq. (184) . The mean effective pressure is the difference between mean forward and mean back pressure. The former is dependent upon clearance, cut-off and initial pressure. In the example shown on the figure by letters and dotted lines, clearance is assumed 5 per cent, shown at A. Project horizontally to the point F, on the contour line for the assumed cut-off, 12 per cent. Project downward to the logarithmic scale for ''mean forward pressure in terms of initial pressure" to the point G. On the scale for ''initial pressure" find the point H, represent- ing the assumed initial pressure, 115 lbs. absolute. Through G and H a straight line is passed to the point K on the scale for "mean forward pressure," where the value is read, m.f.p.=49.5 lbs. absolute. Mean back pressure is similarly dependent upon clearance, compression and back pressure, and the same process is followed out by the points, A,B,C, D and E, reading the mean back pressure, 3.2 lbs. absolute at the point E. Then by subtraction (m.e.p.) = (m.f.p.) — (m.b.p.) =49.5 — 3.2 = 46.3 lbs. Chart 10 is arranged to show what conditions must be fulfilled in order to obtain equal work with complete expansion in both cylinders in a compound engine, finite receiver, logarithmic law, no clearance, when low-pressure ad- mission and high-pressure exhaust are not simultaneous. The diagram repre- sents graphically the conditions expressed in Eqs. (283) to (286). To illustrate its use assume that in an engine operating on such a cycle, the volume of receiver is 1.5 times the high-pressure displacement, 1.5 = 2/, then - = .667. Locate the point A on the scale at bottom of diagram, corre- sponding to this value. Project upward to the curve marked "ratio of cut-offs" and at the side, C, read ratio of cut-offs Zh/Zl = . 572. Next extending the line AB to its intersection D, with the curve GH, the point D is found. From D project horizontally to the contour line representing the given ratio of initial to back pressure. In this case, initial pressure is assumed ten times back pres- sure. Thus the point E is located. Directly above E at the top of the sheet is read the cylinder ratio, at F. Rc = Dl/Dh = 2A. If cylinder ratio and initial and final pressures are the fundamental data of the problem, the ratio of cut-offs and ratio of high-pressure displacements to receiver volume may be found by reversing the order, TABLES AND DIAGRAMS 145 Chart 12. Diagram (A) is the Marks and Davis modification of the Cp curve of Knobloch and Jacobs, the integral of which (C) gives the heat of super- heat from any temperature of steam generation to actual steam temperature, while (B) shows the values for the mean specific heat above the temperature of saturation for the particular pressure in question. Chart 13. This diagram is for the purpose of finding the cubic feet per pound, or pounds per cubic foot, of a gas at 32° F. and a pressure of 29.92 ins. of Hg, if its volume or weight per cubic foot be known at any pressure and temperature. The curves depend upon the fact that the pounds per cubic foot (5) vary directly as the pressure and inversely as the temperature. That is T 29 92 ^32*') 29.92'' = d TP 7q9 — p~' The line of least slope is so drawn that for any temperature on the horizontal scale its value when divided by 492 may be read on the vertical scale. The group of lines with the greater slope is so drawn that for any value on the vertical scale this quantity times 29.92/P may be used on the horizontal scale. That is, the vertical scale gives the ratio of densities as affected by temperature for constant pressure, while horizontal scale gives the ratio as affected by both temperature and pressure. A recipro- cal scale is given in each case for volume calculations. To find the pounds per cubic foot of gas at 32° F. and 29.92 ins. of mercury when its value is known for 90° and 13 lbs. per square inch. On the temperature scale, pass vertically until the temperature line is reached, then horizontally until the curve for 13 lbs. absolute is reached. The value on the scale below is found to be 1.265, so that the density under the standard conditions is 1.265 of the value under known conditions. Had it been required to find the cubic feet per pound the process would be precisely the same, the value being taken from the lower scale, which for the example reads .79, or, the cubic feet per pound under standard conditions is 79 per cent of the value under conditions assumed. Charts 16 to 21. These are diagrams of the properties of steam and give respectively the pressure-temperature values, heat of the liquid, latent heat, total heat, specific volume and density of the liquid, and specific volume and density of the vapor. The values in the charts correspond to the tabular values given in the steam table (XL). Charts 25 and 26. These diagrams, devised by Professor Parr were de- / I — 32\ rived from Eq. (576), h = h' -0.000367 h{td-L) (l — T7y^)^ where h is barometric height in inches, after applying all corrections, and h' is pressure of saturated water vapor, in inches of mercury, corresponding to the temperature tw. The vapor pressure, h, is in ins. of mercury corresponding to given read- ings of the wet- and dry-bulb thermometers, td and tta, degrees F. The use of the curves is best illustrated by an example: if the dry-bulb reading is 75° F. and the wet-bulb 65° F., find the dew point. The difference of wet- and dry- bulb temperatures is 10°. From 10° at the top of the diagram (B) Chart 25 project downward, and from 75° air temperature at the left of diagram project 10 146 HANDBOOK OF THERMODYNAMIC to the right to the intersection, where the dew point is read by interpolation between the contour curves at (C) to be 59.5° F. These curves are drawn for a barometric pressure of 29.92 ins. (standard) and will not apply correctly, when the barometer is not equal to this, though with fair approximation, so long as the difference in barometer is not great. Where there is much departure the formula must be used. Chart 26 gives weight of aqueous vapor per cubic foot of mixture, in grains (yToV ^^•) ^^^ ^l^o the degree of humidity. The tempera- ture of the dew point 59.6° F.,is located at (C) on the right-hand side. Inter- polation between the ends of the contours for weight, gives 5.6 grains per cubic foot. On the same scale the temperature of the air, F., is represented at point (A) 75°, projecting to the intersecting point D and down to the bottom of the diagram gives on the scale for degree of humidity, 60 per cent. Charts 27, 28 and 29. These diagrams have been plotted chiefly from ex- perimental data: the lower values are new, but the upper are those given by Starr several years ago and generally accepted by refrigeration engineers, as standard. These data refer to the equilibrium conditions of the solution, and in using them for practical problems care must be taken to avoid applying them to other conditions, for example to solutions that are not homogeneous, or in which there has not been sufficient time for the establishment of equilibrium. Charts 30 and 31. These represent various fractionation tests plotted in curve form, on which are indicated the boiling-points of known hydrocarbons, and bands are added for the class of distillate in accordance with the Robinson classification. Horizontal distances represent fractions distilled, a fraction being the per cent by volume that has been discharged between two given tem- peratures in a boiling mass, the temperature continually rising. Incidentally it may be noted that the temperature is different in the vapor than in the boil- ing liquid, though that of the liquid is usually taken. The rate of boiling or application of heat very seriously affects these curves, any one of which might easily be changed thereby. Chart 33. This diagram gives the heats of reaction plotted as a function of S alone, laid off horizontally, and a separate curve drawn for each value of the CO p^^yr- ratio, 2, 6, 15 and infinity. The vertical distances are heats of reaction, first, per pound of gases produced and second, per pound of carbon, the former being a measure of temperature rise, and the latter of efficiency of reaction. These two heats are derived from Eq. (658) in the two Eqs. (661) and (662). S is the weight of steam per pound of air reacting. Chart 34. Here one set of the Mallard and Le Chatelier values for the mean specific heat of various gases given in Eq. (674) has been used to calculate the temperature rise above 32° for various quantities of heat. For any heat incre- ment per pound of gases there is a corresponding temperature increment that can be read off directly. Thus, for CO2, consider 1 lb. to receive 1000 B.T.U.; starting at 32° F., the temperature rise would be 3290° F.- 32° F.= 3258°, TABLES AND DIAGRAMS 147 whereas from 1000° F. as a starting point this same 1000 B.T.U. would yield a temperature of 3690° F. or a rise of 2690°. Chart 36. The values of the factor of evaporation and equivalent pounds of water per hour per boiler horse-power may be found directly from the curves, which also give the heat per pound for dry saturated, wet or superheated steam above any feed-water temperature. The construction of this chart is given on the diagram. Charts 38 and 39. These represent a number of boiler tests with some one item of importance, selected to show the effect of various conditions of service and fuels in the same and different boilers, all of which are self explanatory. Chart 40. Calculation and use of diagram, giving constant volume lines for steam. To illustrate the method, the location of the line of constant volume of 2 cu. ft. will be traced. Let the first temperature be taken at 800° F. absolute for the first point A, corresponding to 340° F. From the steam tables dry satu- rated steam at 340° F. has a specific volume of 3.786 cu. ft., so that the quality when the volume is 2 cu. ft. is 3.7^86 =52.8 per cent. The entropy of the water at 340° F., from the steam tables, is 0.4903, therefore the entropy in- crease in making this steam from 32° F. and at 340° F. = entropy of the steam +entropy of water content - entropy at 32° = 0^-032 = (.528 XI. 0984 + .4903) — = 1.0703. Another point B is located by assuming a temperature 4=440° F. or 7^6 = 900, for which 06-032 = 1.5602 by the same method. To illustrate the use of the diagram in solving problems, suppose 1 lb. of wet atmospheric pressure steam, occupying 10 cu. ft. be enclosed in tank and heated to raise the pressure to 30 lbs. per square inch absolute, find the final tem- perature, entropy and dryness. From 14.7 lbs. per square inch on the pressure scale project to point P on the constant volume line of 10 cu. ft. and follow this line to the point C for 30 lbs. per square inch absolute pressure. Projecting from C to D the absolute temperature is found to be 710° or ^ = 250° F., and projecting from C to E the entropy 0c — 032 = 1.332. The final quality CM ^^ ^ ==== = 72.4 per cent. OM ^ Again, if heat be added to raise the temperature to 842° absolute the entropy is found by following the 10 cu. ft. line to the point K opposite the temperature, and projecting down from K to Q the entropy is found 0^ — 032 = 1.724. The quality may be read off directly from Chart 44 which carries lines of constant quality that might be superimposed on this constant-volume chart. Charts 41, 42 and 43. These have been drawn to facilitate calculations of P, V, T relations for expansions and compression having various values of s; Charts 41 and 42 have been plotted to a vertical scale of ( p^) , with a double horizontal scale for the corresponding (y-j and {tft) • Each curve is for a different value of s, as marked on it. These are also given on logarithmic 148 HANDBOOK OF THERMODYNAMIC cross-section paper in Chart 43 as arranged by Gunn, where all lines become straight, to which an entropy scale is added. Chart 44. Calculation and use of temperature entropy diagram, lines of constant pressure and quality. Let it be assumed that the line of quality 80 per cent is to be located, starting with the pressure of 200 lbs. per square inch ab- solute, point A. From the steam tables t = 381.9° F. or Ta = 841.9, the en- tropy of the liquid is .5437, of evaporation complete, 1.0019, so that <^a — 032 = .8Xl.0019H-.5437 = 1.3452. To locate a point B in the superheat region at the same pressure and for 100° of superheat, the steam tables are found to give directly 06 — (/)32 = 1.6120. The following problem will serve as an example of the use of the diagram. Steam at a pressure of 160 lbs. per square inch absolute, dry and saturated ex- pands adiabatically to atmospheric pressure and to some unknown quality to be found. From the point C representing the initial condition project verti- cally down to the pressure line 14.7, at point D. By interpolation the quality is found to be 86.5 per cent, as point D lies between the two lines of 80 per cent and 90 per cent quality. Another example will illustrate the passage into the superheat region. At- mospheric exhaust steam at 20 lbs. per square inch absolute, is superheated 120° by a reheater and then expands adiabatically in an exhaust steam turbine to an absolute pressure of half a pound per square inch absolute, to find the final quality. The initial condition is represented by point E, from which project- ing downward to the low-pressure line at H, lying between 80 per cent and 90 per cent, the quality is found by interpolation to be 88.4 per cent and the tem- perature by projecting to K,is T = 540°. The corresponding volumes may be read off from Chart 40. Chart 45. The Mollier Diagram. On this diagram the total heats above 32° are ordinates, and entropy from 32° are abscissa, plotted in a series of curves. On this chart the vertical distance from any pressure, temperature or quality, to any other, is the work done in heat units, by the whole cycle including an adiabatic expansion; this can be marked off on a strip of paper and referred to the scale of heat to permit the work to be read directly, or the ordinate of the low can be subtracted from that of the high point. As this is so convenient for turbine work a scale of corresponding steam jet velocities has been plotted beside that for total heats. A large scale chart of this sort is very necessary when many calculations of this nature are to be made and such may be plotted from the steam tables. Chart 46. To illustrate the use of the diagram, the following problem will be graphically solved. Find the Rankine cycle efficiency, heat and steam con- sumption for an initial pressure of 150 lbs. per square inch gage and dry satu- rated steam with a back pressure of 10 lbs. per square inch absolute. Starting at the initial pressure point B, project up to the 10-lb. back pressure curve point C, and then across to the efficiency scale point D, reading there a thermal efficiency of 19.3 per cent and a heat consumption of 13,200 B.T.U. per hour per I.H.P. Continuing across horizontally to the back pressure curve of 10 TABLES AND DIAGRAMS 149 lbs. in the left-hand angle to point E and thence downward to the water-rate scale point F, the value 12.6 lbs. steam per hour per I.H.P. is read off directly. Chart 47. To illustrate the use of this chart, find the thermal efficiency, heat and steam consumption, for the Rankine cycle, when steam is 90 per cent initially dry at 200 lbs. per square inch gage pressure, and the back pressure 15 lbs. per square inch absolute. From the scale of quality at 90 per cent, point E, project up to point F on 15- lb. curve, and then horizontally to point G at 18.98 per cent thermal efficiency and 13,400 B.T.U. per hour per I.H.P. heat consumption. Continue across to H and down to K, reading the water rate value 14.4 lbs. of steam per hour per I.H.P. on the bottom scale. Chart 48. To illustrate the use of this diagram, find the jet velocity, work per pound of steam, and mean effective pressure for the Rankine cycle for steam at 75 lbs. initial pressure gage, dry and saturated expanding to 10 lbs. absolute. Project up from point B to point C and across to point F where there is read, work done = 115,000 ft.-lbs. per pound of steam. Continuing across to D and down to E, (m.e.p.) =23.5 lbs. per square inch, or continuing CD across to G the jet velocity is 2790 ft. per second. Chart 49. To illustrate the use of this diagram, find work, jet velocity, and mean effective pressure, for the Rankine cycle when initial pressure is 200 lbs. per square inch gage, 50° superheat and back pressure 1 lb. per square inch absolute. Projecting up from point E to F and across to G, read, work = 272,000 ft.-lbs., velocity =4190 ft. per second, and stopping on the 1-lb. curve at point H the mean pressure 7.4 lbs. per square inch is read directly below at K. Chart 50. Carnot steam cycle. To illustrate the use of the diagram, solve the problem: For the Carnot cycle with dry saturated steam between 150 lbs. per square inch gage and 10 lbs. absolute find the thermal efficiency, heat, and steam consumption. From point B pass up to C and across to D, reading efficiency = 21.1 per cent, and heat consumption 12,060 B.T.U. per hour per I.H.P. Passing horizontally to E and down to F' the water rate of 13.9 lbs. per hour per I.H.P. may be read off directly. Charts 51, 52 and 53. Carnot steam cycle. The use of these diagrams requires no special explanation since they follow in general the methods given for the Rankine cycle charts. Chart 54. Non-compression gas cycle. To illustrate the use of the dia- gram find for a Lenoir cycle receiving 800 B.T.U. per pound of working gases the thermal efficiency, heat consumption, and cubic feet of 300 B.T.U. per cubic foot fuel gas per hour per I.H.P. From the 800 point E pass vertically to point F on the Lenoir curve and thence horizontally to G on the efficiency scale, reading 35.2 per cent and heat consumption, 7250 B.T.U. per hour per I.H.P. Passing across to the 300 B.T.U. calorific power curve at H and down to K, the gas consumption is found to be 24 cu. ft. per hour per I.H.P. Chart 55. Work of the non-compression gas cycle. The following prob- lem illustrates the use of this diagram : Find the work per pound of working gases and the mean effective pressure for an Otto and Langen cycle receiving 150 HANDBOOK OF THERMODYNAMIC 500 B.T.U. per pound of gases. Starting at the 500 B.T.U. point G^ pass up to the cycle curve at H and then across to the point K on the work scale, reading 260,000 ft.-lbs. Passing horizontally across to the point L and thence down- ward to point M the mean effective pressure is found to be 1.18 lbs. per square inch. Chart 56. Stirling gas cycle. To illustrate the use of this chart, find the efficiency, cyclic and fuel heat consumption for a Stirling cycle, for 300 B.T.U. supplied from fire per pound of working gases, 30 atm. compression, and a fur- nace efficiency of 40 per cent. Starting at point E at the value 300 on the upper scale, pass vertically up to point F on the efficiency curve referred to fire heat, and horizontally to G, reading thermal efficiency of 62.8 per cent, and cyclic heat supplied 4050 B.T.U. per hour per I.H.P. Continuing across to point H on the 40 per cent furnace efficiency curve and down to fire heat scale at K, the fire heat supplied is found to be 10,200 B.T.U. per hour per I.H.P. Charts 57 and 59. A similar procedure applies to the curves for the Ericsson cycle, which need no detailed explanation. Charts 60 and 61. Adiabatic compression » cycles. Illustrating the use of the curves the solution of the following problem is traced graphically on Chart 60. Required the thermal efficiency, cyclic heat, and fuel consumption for the Diesel cycle, supplied with an oil yielding 1500 B.T.U. per cubic foot in its vapor, the cycle receiving 600 B.T.U. per pound of working gases after 10 atm. compression. From the 600 point E on the heat-supplied scale pass up to the 10 atm. compression Diesel curve F, and horizontally across to the efficiency scale G reading 28.6 per cent and 8900 B.T.U. per hour per I.H.P. Continuing across to the fuel calorific power curve of 1500 B.T.U. per cubic foot H, and thence down to K, the fuel consumption is found to be 6 cu.ft. The second set of efficiency curves, Chart 61, is used in exactly the same way as Chart 60, the only difference between the two being the scales. Charts 66 and 67. Comparison of rational and emperic formulas for air and steam flow. These have been calculated for air from Eq. (25) using 7 = 1.4; and by the Mollier diagram for steam. To this diagram are added some curves of experimental flow laws stated in Eqs. (951), (952) and (953). Chart 69. Velocity of air pipes. This diagram was calculated from Eq. (968) and also by the simple equation in which density changes are neglected. These give comparative results as indicated in the chart, reproduced from Kneeland. Chart 71. Chimney diameter. This diagram corresponds to Eq. (1005) which assumes that the minimum-cost steel stack has a diameter depending solely upon the horse-power of the boilers it serves, and a height proportional to the net draft required. Charts 72 and 73. Refrigerating effect, ammonia and carbon-dioxide. See the diagrams for construction and use. TABLES AND DIAGRAMS 151 I I r4 r-; » r4 0. 1^ n. B. ^ ®r!"i i" c"" r"'" )^*^^-o ____\ 1 1 i__.i::::: ::::^-:::::h:i::i3::::::^:::--:::: jJJ. 1 \\\\\ JJI |--'-l4iii| :::::k::::::"===^E-:::::=¥i::::: __5._-i=t: -^J^- ^ 3 I X i- A A V — — ""^ ^^^ ^"^^ ^ -^ ^ i- X --'-' — ^ "* *- ^ ^^ ^ ^^ L _ _ . _- ^,-- -" __ --"'^ ,-'''' ^^ ^^<' -^ s S . L :t: = e--*"'' -^^ y^ y** ^ »^ ^ ^ k- --'F" -.-*■' -- ** ^^ ^^ X > "^ ^ =-V - A --•-■' ^'^ .=:^ ^^^ ^'' ^ Z CQ-A"'-' 3 H =-'' -'' ^^ ' ^-'%^v^/ •^ J^ _ _^_ t__ _ __ , = '1 - .<=' _ - ^^ ^^ A A a"^ A 3^t L -3 ,-=' A ;' ^^ z.^ \7 ^'^ Aj -A X ,-'' h -" ,^ ^^ ^^ A AA7^ -^-r- J *=■' \ - -"' ^^ - ^'' A '' y'^ y A^ 4A -b=--' - h - ^^- ^^ z^ ^A .^ .^ ^7 y AA © -tp\ --■' \ \ -■' , ^' _ ,.^' ^^ A A y r A/7 M S .--%^ ' - ^-=' 4 ^-- ^'^ y ^"^ A A A A ^ ci -^ 2 co ' t ^^=' . J ^'-'' ^^ ^-^ A ^z A A AzAA^ ^ 5 \r ^ f" 4 ^^ ^ ^^ ,^ :^^ ^ V'^V'^ZVU^?^ ^ \ ^«='" 4 J ^-'^ '<'' y^ i^ A 4 A A AAtzz ^ ^__ c ,]-' _: .,^=' ^t •' y A A / / A^AAAt . § \ A=-- h .'-'' r ^^ ^ ~-y AAAAAiAAfu J - ^'? V l^ ^^ - A^ ^A ^^ y7 7 T' zA AAz22t L-*" S ^ S^ X ,^3 ^^ ,^ A ,^ v'^ z ^ AAAAA42 ""♦"A J \-^,^^3 3 ,^' . ^' A A v^ v^ AzA~,AA^tzL ;'' -_S t^:'^ X ,.i- ^: '' / 7 A z>7 z /:/ J Ai , /I1I 1 '-'. ? ^''^ \ ^^ 3 ^^ " ^ ^ A A A JAAAtAALtLLu H '^ S ,' A \ ^ i X ^ '^ A z J Az^ A 2 f22A442t2A co^ -\ y C ^''t P ,' A z z ^72. tA2A^tttt tti A ^'^ k- 5 ^^ A /3L ^^i A 7. zA^ A 2 tAt244jJi-> tt ___ _ 2>^Z- \ > ^ /s'^± ^'^ ^ A A zA A AtAtA-ttAiA^^ ^^__ :, ^^ /: u ^ j^ A A 2 oiA A At274i-n.^tM ,^ * C^ A vA V 4 - A A At/ z 1 '2AttuA2 't __..?____r__^3sf_J ^^5. ^L^^ft. ,f_^^_/.L^,^,z;:|^^^v^:t7v^^:=::: '■2 ^,i:::::::^2f:±:--^^— tzfiib^iV --/--7-7^^7-7-?A?i-jWrWm-----r. So =3 - ^^A ^ ,^ V ,5 S ^3 z 22/^2 A2 t4AttttAi74-it -^ 2^ •0 . - ^' ^ 4 \ ^t A^ y A AAA 2 4 A2 ^24AA 2 tt-i-iui 3 _ ,^^ ,S t Zt 2 _-^S--yl iz_zz A XAAjAtt2t tAtiiit- -- ^ y^ y^J J^ A /.\ -J- J 1 At A 4tz iA24A^^4 2z^t'j- -: ^^^ /'^ L 2C \-c \ Z ^ A AA z AAt AtAtt22 t 't4Ar ^^ /^ A ^ A ^ ^2- e /- AA A Am- ' 4 iJA'tA 4 'iiii ^ *"• ^-^ ^«^ V •^J 2l JZI ^'^I X^ A z iiz tAtt24 2 14 ^Wi £ro ^ ^_ ^^ ,z^ ^^: L z \.7Z..J..i \ t 4 Ati 2 t^Att 'AijAAit ai-u§ 5^1 ,^ ^^ L. 2 V w Z /* X/ ' iM- ^ 4 't44 4 t ttti «2 ^ 4 /^ w r j^ >r ^[^l: .A- z A-A-2 tj-Ati I tiAttu',-- -» ^^ fc. ,^ ^ Y A / t ^'^X V a2^ K 4 ^^ A A'l4A A 4 ti ^^i^ * g £ \<^ ^ ^A % 5^^ ^y }'i z^ A 2 z'Z '2Att 2 iAituit 3 0.'=^- - ^ -- ^--^ ^\ ^^ ^? A ^ -2 A A A2A2AA ' tiAtti OT . ^''^ ^2 ^y'^^r- z\ i\A^\J 7:A t wA2At2 7 7 ttA'^U " w ^Z ^ZL j'^ ^-f^ ^ /^ Y^ -Z- ^'^VZ A 4MA2A' t L^ 17441 g ^ J^ -.2 ^■^^ ) V M ^ t- 2 y ' 'jL2At7 4A lAtiA k" iJ y^ -.^ -/ ^^^V -A AA -/X^ 12 2 wAtAt 2 t 'tAtt f^o !ll /.. __ ^Z__ _^^ S'^ 5-,'^ L-y r,Z^-5- A jA TV n 1 ^ ' 1 'Til co«-i§ ^'^x 2 z ^^ Z V ? t? A t 2 ti(-2At 7 J z_ tttt - -- <» ojs > 2 ^2 z ^^^ ^ /x zz^ v5 "ri I AAA^tA2A t t ^7 '~tt 0"= P- - -,7 ^ Z ^u'^^y/ C / L,?t t t l-,12 't 4 A7 t4^ u -2 . %'' /: ^ ^ 3'^ \l XXl 4 itjL2lt7A i 7 t tt4t -s d _,^- __ 4. 2 ^^^^^^^ 2l ^^.Q- A 'V / f '1 / t ,7tTlT ^ ^ 3 ;7 ^^ ^'^ z Xz \J\J \t-- S jL ) lAhA I -4 i L4J Li p=^ -• m y^ / v'^ /! Z2t- ^^ Y- 2Uv ' 1 A21L7 ' i tAt4A <£' y'^ ^ J / //\ J\ A /-J- _2 2 iAt' 7 ^ At 'tit ' r-** / 7 y -.V %" f „r ^ ~\ ' A2 Ai t 4 t t-i ^t ^ J z y tz -,5 2__2_:5: ll2 l-t4% 4 I tAt-tJi -r^ S -^^ I Z l/^ Z v,^^ :^ i [ vA J-^iJ L J 4 i LIjL ^' S J 4 ^ // 4 ^ Xt V- I 2\t '\i A t i tAtt'' ^ J ^ ^^ -^^t V Ik }t & j- A-,-4 )AA2 ' '^At-, u J y J Z2 Z ^ ^J\4 \T t titAt- t 4.4 7 tiA ^Z-. J z jA A t % ^' \ s^ 2A) 7^11,^ t-i tAiM- - z 2 AJ A T A^j.\AV- l lA2\ t A A A7 t '- z A At 1 A ' v^t\ -t\4 X ' 7 7 1 14 Q A A zA A t ~i t\A\ti tit T^7 \ t t tAi4t it A ^A A J A A^t A\ AAi.t 5 ^ H ^ J tit A t--AA t--AX- 1 t A\ ' ^A-jut J2 A t fiA2't-t2 ' t \t^i. t^i^ A 2 2AtT2Ait4 ^ t s^tAA ^ 1 A A 7- 2 2 ^ t A 4 i 4 t 1 \^^AtA - «— § T ^ t A A A J A i t A t A I iti%^i\ z ^ g A J A t 2 t A t A A i At t^t\.A't\^^ ' 4 ^ A A A 2 A t t ^ i t 7 A 4^ji>.x^^x esZ f 2 '12^2 AA t f A t t i ^^vt^V 55. z_ A- 2 4 A 2 A t-t-- L_: 1 A A i tJ%is,W\-- A t A t t A 2 j—f---r-- 1^7 A- 73ISS^S> c A 2 t 4 A t A t 2 t ^ 7 t t t tt t,i\S.l t A A A t A 2 A ' A 1 t A t t A KK^ZsrK 4 t ' 2 4 2 A 2 4 t t A t A 44 ^cS^^ V 2 ' A ^ ^ t ^ 2 ^ t '4 7 t 1 4 tt ^i\\K^ __ ^s. A A J A A 2 t 2 4 2 7 i t t tt ^5e«. ^^ t^ A 2 2 t A t t it t -A A A ^5ct s •"*_ A 2 ^ '^ 4 t A A .:_i_j 7j_ ^5S c>* — ^ ©ifnxosqy 'ui -ts wd 'sqi ('JJ 'tlnb) 2 <3 C3» O «4-l m o 3 03 ft ft <4-l O ft 0) O o o o a> ft o 03 o w o o o p. .0 H w 152 HANDBOOK OF THERMODYNAMIC ri=s •gqv'UI 'ts wd 'sqi (-ad-dns) TABLES AND DIAGRAMS 153 lO-<*»eo 05 f-4 B II II. n. n rt. mmxfx m m xn •sqv '01 'nbg aad ajy ('Jd 'dJ^S) 154 HANDBOOK OF THERMODYNAMIC f ! 91 U 77 5 6 7 8 9 10 1,1 12 13 14 li I I R'atio Of Pressuiies I I I I I 70 63 56 49 42 35 28 21 14 7 Work per Cu. Ft. of (Sup. Pr.) Gas«^144 Chart 4. — Mean Effective Pressure of Compressors, One-, Two-, and Three-stages. TABLES AND DIAGRAMS 155 ^ Initial Pressure Lbs. per Sq. In. Abs. 7 8 9 Ratio of Pressures 63 56 49 42 35 Work per Cu. Ft. of (Sup. Pr. ) Gas-i-144 12 21 13 U U 7 15 Chart 4. — Mean Effective Pressure of Compressors, One-, Two-, and Three-stages. 156 HANDBOOK OF THERMODYNAMIC - ~ " - ~ ■" , i_i - r - \ \ \ } V X \ \ V \ \ w \ \ \ > \ \ \ A \ \ \ \\ \ \ V \ > \\ > \ y \\ y y \ \ \ \ \ V ^ \ \ \\ \\ \ \ i \ \ \ \ N \ k k\\ L \ \ V \ \ \ , \ \ V y W^ \ \ > ^ \ \ \ \ \ \ k> > y > 1 \ \ > \ V V y \y y y v \ ^ \ ll \ \ \ W y\ \ V \ V \ \ ^ V y ^^ w \ \ > \ \ \ V \ \ \ yy A^ k \ \ > \ N V \ \ \ ,\^ > y \ \ ^ \ y y \ y \ \\ y y yy A V \ \ V N V V y y y \\ \\ \ \ \ \ \ \ > V I Oi y \ \ \ V \ \ > y \y v\^ . \ \ \ \ \ \ \ y ' > > > N N > "? AA^^ ^ u\-A- ^-^-^^5S?^2^C^ ^ rA^ CO ^\.oS,^' r y*Y\?'\A<2\'&^^ j\ *j\ \ \ ^ \ \ \ ^ . v\ V\ y y V V \ ^ \ \ > k y > A y\\ \\ ^\ \ \ V \ y \\ W , ' k "^\ \ , \ \ \ > I V^ A\ y \ •o [ \ \ \ > V y ' y \ A \ y > V ' \ \ \ 1 \ \ \ \ y y y y y y y \ y V ' y \ > y^ y\ \ y \ y y \ y y y \ V y > \ 1 .^ ' \ 1 \ \ ^ \ y \ y y V y. \ y \ \ \ k \ \ K \^ y y \ \ > y \ \ V \ N y \y \ y y y y y y k \ ' \ \ \ ^ \ y y y y \ y V \ > L \ \ V^ \^ \ 1 , ' y^ 1 k , \ ' y y \N y \ \ \ \ \ \ \ \ y y y \ \ y y \ \ \ ' > \ \ y \ \ y \ \ y y \ y y y y y y \ \ \ \ . y k \ k y \ y y y y y \ L \ > v > \ y \ 1 y k y L_ y^ I V > y \ y y > 1 \ \ \ \ \ \\ \ \ y y y y \ \ > \ ^ \ \ > \ y y ' y \ \ \ \ y y y y y y y y \ k \ \ ^ , y y y y y y y y y y \ ^ V ' y y \ y y V k y y k y \ \ ^ N y y ' k y \ \ \ \ y \ \ \ \ ^ \ \ y \ \ \ \ \ \ > \ \ \ ^_ ^. s ^ ^ ^ s GanssQJd: kjsAnsd 0% cd /a •in) jo oivs^ ra'tiniTx^H \ \ 1 \ I \ \ \ y y y y yy \ \ \ 1 \ \ \ ^ ^ ) ) \\ L \ \ > y y y y \^ \ L V \ \ \ \ y y y\k V \ \ L \ \ \ y y M^ ^ \ \ \ \ I 1 , . y y 1 \ I y \ y y \ \\\ 1 \ \ ^ \ y \ \ \ \v , , ^ \ \ y \ \ ' \\ \ \ ^ ' , y y y y y \ \ y y \ \ y ' y\ I ' , V \ y \ y ' y y \\\ \ \ y 1 y 1 i I y V y y I y y \ A^ {A V ' \ y y \ \ \\ \\\ y 1 \ \ \ y 1 1 1 H H- \\\ \ \ \ \ y ' 1 y y \ Ay \v y cJV -k\ \^\ ^ U4^.-y;4 Mm?W tjVf^ i^'V-^ ^;\o\i^a?j« ^?H y \ y y \ y* y y 1 ■ y y \ y y \ \ y \ y \ ' y y * \, \ k ^ y y y y ^ ) y y y \ y y y y \ \ y y y y - J 1 Li \ _L ^J [y [^ A iJ A ij A \j u _ _ 1 _ > 13 02 02 pLt > O :i ^ g o 02 o O (A CM O n Ph ;3 >> r-J i-H eS A > A d OQ > < O <^ (M (M ■r^ao^ raninixBj\[ ao J ^y 'saanssaati jo oj;Ba o TABLES AND DIAGRAMS 157 I LOOn-TT- T- r- T- — r- r- r- r- — — — 1— n — - n r- - n n r- n r- — 1 q r-i — I - — - !s,^ .yo "" ■ .^ "^s. ^ "" ^ ' . ^ "• ^ ■» .WD 5 "^ "-■ , - ^ •^ _J — s ^ *- _ __ >> -» V "** •^ ^ ~ — - - - ^ QA ^^ J^ V ""■ ~ ■ — - - - L _ . •5 .94 j-^ ^ "~ ^ *-i v A ^ ■- _ i-J ^^ - ^ J "■ >. "■ L. il r> ^ Is V ' » ^ " — Lj - no ^ s s v. ^ ., —J _ bo .92 r \ , "N ^ ^ ~ a ^ N ' >., s ~ ^ . \ , , s ' .. ^ — •; V ' .. ., ^ ^ ^ V V "■ .. . C .90 K s'J * ._ ^ s'^ ^ ■> * . _ >, \ s' ■ -.. , ~ - . Xi ^ \ *^ .^ ■ ■— » .. s. ' J [^ * ■• if .88 "v \ <> * L ' ... \ V ■■ ~ •".^ t> v N -. ' ^ t> s. N * , ' •■ . ^ *■ — L, \ ^ s ' L -oo \ s "■ ~ — J == =i £P S » ^ J .. C3 - ^ * ^ v ^ N. ' « ^ « V . V V. , ■ ^ "^ s V ■" ^ L^ . a .84 S s ■^ V 3 S S ^ ■». s s s > . ^^ . s s -. ^ -J ., , ^ QO \ s ^ ■«J . .0 .04 s s , .. *■ .^ N " V " ^ s s . . , ^ (1> V Vs " ^ ^ "= « ■N - •. ■"■ ^55 M« .OU S V " >. c v ■xl N, ^ s IV . s •» — . ,^ .78 N s. ■^ s ■ ~» ^ N s V g ^ V V , {? .«. ^ ^ "" V V V TA ' "vl , V, ■». ■». .?« _ i_ S=l.l S = l.l 3=1,3 3 = 1.2 3 = 1.3 3=1.4 3 = 1.3 Z 3 = 1.5 3 = 1.4 3 = 1.5 10 11 13 13 14 15 Hatio of Pressure = Rp Note; Solid Lines = 3 Stage; Broken Lines = 2 Stage Chart 6. — Relative Work of Two-stage and Three-stage Compressors Compared to Single Stage. 168 HANDBOOK OF THERMODYNAMIC o NJ i fl 1 1 / 1 \ 1 11 1 1 / } 1 / ' 1 r" 1 CO 00 CO co c6 ta ^6 •^ o CO CO Jh CO g CO S '^H 00 O ^. a z erf \\ ' 1 , 1 r ' 1 1 1 r / / 1 / 1 1 1 1 - . (ij/ 1 / / / / 1 j / 1 I / 1 / / 1 ll - bd 1 1 / / / / 1 / / 1 / 1 1 / 1 1 z_ ccp 1 1 / ' 1 ' 1 / 1 J j / 1 1 z ^11 1 1 j / 1 J / / / / / / j 1 ~ col 1 1 I 1 j / / 1 1 1 / / 1 / If 1 ^ / // 1 1 1 ' 1 1 , 1 / 1 1 1 y , 1 1 ~ ill / // 1 1 1 ll 1 1 / 1 / 1 / 1 / 1 j - 1 / / // 1 1 1 1 II 1 1 1 1 / 1 / 1 J >l 1 ^ ; ( / / j 1 / 1 1 Ij 1 1 / / 1 1 1 1 1 / h 1 z / / 1 1 j I 1 1 / / 1 1 / I / 1 >l 1 r / /, // 1 ' I // 1 / / . 1 / 1 / 1 If '1 h 1 j // / j 1 1 J 1 1 / / / // 1 r / f / // 1 1 , / 1 / 1 / 1 / 7 1 / / 1 1 1 ' <\ /^ 1. 1 / 1 / 1 / / 1 / _ 1 / /// j j j // ^1 f '^ •/ ^>7'^ / / 1 / / - 1 / 1 // 1 1 i ^ ' / r>; ':,yi ^^ j j / t />. - / n \j 1 So/ / l^i '3LcS-iI[>j 1 / - '/ / 1 1 71/ / 1 / y^hm 0^ t V ~ • / 1 1 on/ / ,( / 1 1 ::iw^^^ t\i _ // 1 I 1 1 *j J , / / 1 1 1 1 '^ Hr I / 1 1 1 ^1 j 1 / f / 1 1 1 / h ■~ /) 1 1 1 ■^ 1 / / / 1 f / J 1 f — // 1 1 '// bj / / 1 / / / 1 f / // — '// 1 f-i 7 ic ?/ / 1 / 1 1 / 1 1 1 '/ 1 ^ ~ j 1 , / / 1 / 1 f 1 / (^ 1 - ill Ij 1 1 / / / / 1 / / /, ^/ ' 1 ji / f 1 ( / I j 1 f 1 \ — 1 1 it" / / 1 / 1 A 1 / / / III - / 1 11 1 ' / 1 / / f 1 1 ' / 1 1 ' 1 1 / 1 / 1 " / 11 1 / 1 1 / 1 / / / / 1 Illl 1 / / ' / 1 / / / Illl 1 / 1 1 / 1 / 1 I ' I 't *' d CO (KJ t-l O = III 11 1 1 7 / / 1 1 / / / / / / 1 i § If 'f 11 f 1 / / / / / '> V V = 1 Ik f / / / / / / /' // 1 \ E~ / 1 . Ij Ij f j 1 / / t 'i '/ y CHART TO GIVE ECONOMY OF EXPONENTIAL CYCLES REFEJIRED TO ISQTHERIVL4U-AS STANDARD. SINGLE STAGE. TWO STAGE AND THREE STAGE WiTH BEST ,, RECEIVER PRESSURES, SELECTED VALUES OF & E- ml ' 1 Ij 1 1 / / / / 1/ 1 - 1 1 1 Ij 1 1 1 / / 1 , / / '/ - illl II Ij h 1 1 / / / / / / / /t ' z 1 L^ 1 Jh 1 1 '/ / / / // i_ ■.^^^ Ii >j 1 / / / / / > ^ ft // : ii Wi »/ 1 1 'l '/ 1 / / 1/^ f ::" ufl 1 1 / 1 1 '/ ' /l '/ r 7r" % * 1 1 f . 1 / '// ^ ^/ If T 1 1 / / 'l / // / - Cff ii ll 1 j j 1 1 / 1 i >/ I y~j 1 '1 Ii 1 / ' 1 '/ ' - O-ti '1 1 / 1 h 'l / : 1 Ij /A// f , 1 1 1 / ' f /P I / 1 1 1 1 1 / h /> ~ ///// / 1 / If 1 // '/// ' /// f 1 ' 1 1 1 / / '( - - 1 // 1 ' 1 ' 1 If //, / - 1 '/ f 1 II '/ - - z 1, J 1 1 / '/ -• II 1 ' 1 // 'A - _ 'II j 1/ 1/ // y - j If 1/ {/ ~ Ij if '/, — Ii '// / - //jf/f '// - f// - '/ ~ 'h - r" j // — / — / f f " 1 / - / / / / / _ / - i w L _ _ _ _ _^ ^^ - -^ : / 1. o cS C/2 to a I_«o o 0> fij >> 0* o 1— 1 §• a> OS o -M rn CO r/l » u (i> CO > (l> fl in CM Q «3 O -* ■tJ cU ■«« rt OOCO-^IMO 00CD-^(MO COCOCDCOOOlOtOiOIO .,»'»♦ J •pa'BpuB^s iBinaaiuosi qjiAi paaBdmp^ ^iiiioaQoa TABLES AND DIAGRAMS 159 I Qi O •^ .s 03 03 a (>i Cj o d (y > fr4 O s <1 o T-l ^.-— X «4-l U p4 a> 3 H W (U ^"—^ o -•-' oi3 ^ 3 G rH ^ ^ a> 0) T5 A fl o T) a '-.^ 5i >> •i-i 3 u (T u fl) o rt o S 1—1 5 O fl U -u a , 'H on 1 S <{ i34 W <» u p d o> ■+J r-) CD 04 1 1 § ^ H S saqoui UI aapureitl Japnn^O a^Btuixoaddy ^ :5! ^ 160 HANDBOOK OF THERMODYNAMIC (M - <«2 ^g ss§^ III i /l / / / -s ^\ / / (>f / / / 1 I— 1 / / / •^ / / / i-H .^/ / / CO / ,/ / / l—t S O- CG T— 1 .-H— 'co"2 !ZI£^-t_i l^/ / / / CO y / / / iJ o_ ft £ ^ ^ II. « fa ^ « " §- / ^/ / / -2 8- y / / / / / / (>i / / y / •!> / / / - o ^ y / ^ y y / X / -^ 4) ^ ^ ^ ^ / ,1 >(• y - gs- h-^^ _: -^ ^ ^ ^ y "■*"«^ ^ r 22- 2g- 1^" o_ o_ St o_ 00- 0— M— 3 - OJ.o - £'^- -M - _ ^ ^^ — ^ S"^ ^ ^ y CO s- M,.tO^^-1 "^ "—-- ^ -.-^ ^ ' ^-^ ^^ y^ y >o oi^ ^ ' ::^< -^ .^^ ^^ J ^^^ ■ c«i — ^^ " -^ ' "~~~' --_, ^^^^i 5' ^^ s ji^-' ' , ---^ „^ -^^ ^^.^ '^ ^\ h-^ \* cj-*- ~se- — ~ - — -- — - ■ ■ "^£ ^^ s \, 1— I ^7;:r ^Q " ~ — .^^ "^ \^ \ CO 0) \ =~yy; =^~ -=- — ■ — ,^ ~^^ 5^.^ N T-i PL,CO- -5^- -,_^ "■■^ ^\ \, 00 .M - , ~~ — — . '~^ > ^ \ \ 1— 1 «>«- -i&y- — ~ -~~^ _ ""^^ss^ ^ \ \ \ fl - 03 -% ■ ■ — —- ■"""■ -^0-^^ ^^P- \. s^ \, (M Mox -- ^^ ^^' — ^ \ \, ■St>'c»J £^G br — ■ ~~'~- -i-^. -■■^^^ "n. \, \ g(M '^iJ " — f) „ ""■^^ V. N \ ■»-- \^ N \ ta c g % » -i r ^ -1 r ^ % % ^ V^ ■3 '- -1 r- 5 ?: 3 C isja U90 i -1 ■s t - c a X "<^ « c c ■* r -i c ZiQi TABLES AND DIAGRAMS 161 CJ H S o t^ 03 'M f3 _. c3 S CO 03 OT (>j lO ^ a iM ^ "^ ^? ^^ c^ 7P (U is M ^ ?. ;h ^ S? ^ 'M- Q^ ■% i "*— ' ^•1- -■P o q o^". -^3 o fl - a r-; o .a ^ ^ ^ ^ '^r s :^'S -' > ^ w - ^ ^ 3 m o a> .a ^ O o ,-1 -t-» u H Jh PL| -^-i rH a ^ ^•O ^ a o w 0) o^ CO 3 CO a -^ U =3 nfi ?2 60 nd ^^ o >> o o --5 i^ ^U d 4:3 0) ^ ti OT a e3 6 o3 I— I ^H "Z S^ '*'^0 eanssajj tiSjh JO ol:^Ba o u 162 HANDBOOK OF THERMODYNAMIC •t^ 03 M V c3 1 P>H r*" in H O 3J S 0) CO O S-l Z^ <>JbO o 0/ •i-« p ^ .a o > ^Il'X'a UT 28 aAoq^ s^o jo ptmoi aad ^bqh a; r. ^ :^'BaH oijioads P4 CO a O O 1^ o (N CO a o -*3 w o '3 . .^ "*v >::^ ■^^ ^^ ^ ^ ^ ^ ^~»_ in ^N, >^^ ^ ^ ^ :C; v^ ■^ ^ t-l ^^ -C; ^ ^>v .^^ >. !^ "^ ^^ ^ ^ ^v >:::v. g ^ J^ s^ ■^ ^ ^ 5^ ^ O CO (M 1-t / 't / 1 1000 / / 1 \ ii >> / ,/ A 'I ^ y y / 7 L // \ ^ ii II , _^ ^ ^ ^ y^ ^y y / // b :z: £± _ ■ ■■ — — ' ^ ^ ^ y / > / T == _ — ___,^ ^^ -^ ^^ y y '/ \ o i^ ^ ^ u 7^— < T / r ^ •sq ^•ui •bS. 9J-S qi IT sa JtlSS ajj t-t c s ^k u5^ .— 1 1 AS +3 03 O) &: -a xi t-i 5l 0) ^ ^ a> CQ 2 C4-1 bio 03 a o o u 3 «3 -s ti cj o Ot «\ a <]> H (U s -t-3 C3 02 bi c? 9^ ^ Ph 3 g"^ ,■ Q s . .3 ^ 2 ■4J cJ OJ ^j W 2 p. a> a EH S^ a3 ^H CQ a {2 § g • • • 5' • ' « /u / y/zi , y Vv' f S _ _ .^ -^ ^y ; 1 — "^^ — — ' ^ ^ yj / 1 ^^ ' — ' /I ■ — ^ u TO - rol. "^ t> 2 .8 o -Z .6 s o .2 < y y v / y / / > V y y C" J /■ ;=^ k / ^ J* J p From Values of Wood o " " " Dieterici • "■ " Regnault + " " Ledoux > 1 ^ A ./^ [^ . ^ y X .2 .3 .4 .5 .6 (Critical Temperature Divided by any other Temperature)— 1 = ^ — 1 1400 > / c^lSOO < •^.1000 > / / / / / t 800 / f y / in Pou / V §400 Ah 200 / * / From Values of Wood o " " " Dieterici • " '• " Regnault + " " >.' Ledoux / y ^ u>^ x^ -o- K>^ -»- -40 10 260 60 110 160 210 Temperatures in Degrees Fahr. Chart 14. — Ammonia Pressure-temperature Relations, for Saturated Vapor. 166 HANDBOOK OF THERMODYNAMIC .1 .3 .3 .4 .5 CCritical Temperature Divided "by any other Temperature)-! 4 CO o Ph O P4 0) + / 900 A / / ' ; / 1 From Cailletet's Data • " Regnault's ^ " Stewart's Interpolation of Zeuner's Data + " Zeuner's Tabulation of Mollier's Formula based on Amagat's Data o / 600 >] > / / 1 / / 300 J V r/ / J^ X < ^ ^ 9^ ^^ -^ ^^ -^r^ —100 50 50 Xeanperafeures in Degrees Fahr. Chart 15.' — Carbon Dioxide Pres&ure-temperature Relations for Saturated Vapor. TABLES AND DIAGRAMS 167 n .Q CO 9i . Ph. 670 650 C30 610 590 570 550 530 s §3 a. 1200 i75 480 485 490 495 500 520 500 ,480 460 3 05 310 315 320 ,. 325 . 33 440 A20 ^ 205 SlO 2 15 220 225 23 O 11 M CQ9.0 u ^^^i::::E:iE:E:S: 6.0 1 80 1 85 190 19 5 200 20 5 01 69 O u ^4.0 E: 57 S 1 55 160 165 170 175 18 ?.0E 130 135 110 145 150 155 53 l.Ol D" 51 105 110 115 120 125 130 / ;^ ^^ ,'' _ >'■ ^■' ^'^ T - ,-: * -- x^ .-■' ."' (^ 5 «;; ;. 80 85 90 95 100 105 i 400 ? ii i |E :v!t "I I I I I I M I M I I M I ■ I . 425 430 435 440 445 450*r*» 49,^ 280 285 290 295 300 305 48 / ^ , <• / ' y y ~l ^' ^ ,^ ^ P" -- ' 1450 ? , n wmm . ,_ L , _ 1 1 3 :::: I t t ■ -t ■ t ■ r IF j : ' .1 D 7k D R fc ? A\2.ffi T- £*^r 1 ' ' 1 ' ..LLL.i. 100 200 46 id z ^'^ z 2 J t 7 r 7 "•" z Z ^r /: z z Z2± ^/^ z /^ Z ----- / . 1 -J 400 405 410 415 420 425i35( 240 375 380 385 390 395 400l05| £ 1050 650 555 560 565 570 575 350 355 360 365 370 375 120 .100 i255 200 266 270 275 280 325 330 335 340 345 350 500 505 510 515 620 626 Temperature in Degree^ Tahr, Chart 16. — Steam, Pressure-temperature (Table XL). 168 HANDBOOK OF THERMODYNAMIC 14 16 18 2p ^^ ,^' z ^^ 13*' :H ^^ ,'- ~ ^ ^''- .''l ^'^ Upper Horizontal Scale =Pressures in Lbs. Per Sq. In. Abs. Lower '* " = Temperature in Degrees F. Tertical Scale =Heat Per Pound in B.T.Us Above 33° 505 8 215 "9 1 2^5 1,0 11 12 ^'Cft ? ^ ^^^ -\ ^y ^fin ( J ^^ ,«?'■ .^ y^ 180 190 2U ;i50 200 225 250 V ,z ,<==- ^' ^d. © ^^ y ^'' ,y ^' y' ^^■^ ^^ 390 .400 175 1 1 ?I ^ ^^ 110 c ^y ^' ^^ ,<== ,^ 4^oU ^ ' - _ ^2 1 ?"= 155 1 C5 175 t" -i" • ^ ^ ? M <: ~ N" . ^? ? ^'' ^z" -f"^ y ^* ^ "7 ^^ ^^ ( fvtft - .=' • ^•' y -,U ^^ _^ y" _y 600 500 - ^ / ''A It ,^i 7 V ~Z " ~ d; U GuiaeGurves - ,LI 1 L llii±±.. 530 030 530 540 650 120 aio 100 ::::E-::::::==^^i::: 320 310 300 355 305 110 ^20 376 130 140 " ^ ,Z ^^ ^' TSt .^ M ^' ^^ ^y ^^ y . ^ ^ ^ V '' _ --^^ " I''-" /'^-- !i - -_ -1- ''' T " ^ ^^ ^^ y . '^ ,/ ' ^50 350 506 515 COO 525 330 340 350 75 80 85 90 95 100 130 140 1.5 1 150 .2 ,^'^_ ^^ ,y \) ^.^ ^ ^^ SO »'' ^ „ ^ "^ 250 ..Zii ^^M ffi il f s- 280 380 480 10 5 115 7 125 j 1 70 .^ ^''^ - : a: ^ j^ ^'^ CO ^ - ,^ -.-^ i Wt y _ -'' 2 315 325 50 '5^ 60 65 7,0 80 90 25 3 100 4 5 _. y iO -D y"^ 240 ,^' ^^ ^y ^^ .^ ^y 55 65 75 " 15 2 ^ ' ^^ 20 -- "A" ^' ^"'^ : ^^ ,y (-"^ z y ^' - 200 .^^... ;25 2f-G 21 2ft B .30 130 230 .455 465 350 ^i75 400 420 ,? .^^ ^-. ^ ©t ^^ .y 7' fisn ^^ _ y'' r 5 ^' V ft / /. ■\f\i- / 7 / ^ <^ y^ / /"^ / ,7 ^ - ^ ^"^ ^ 580 590 600 i430 440 450 275 300 ^ .A u ^ > 1 ' y ■ t" /" - -^ 1 ^ ^ ^ ^ ^ ^ 30 .40 50 230 .240 >!50 d y J ^ / ---\r- ,- ^ , f- ^ ,^ : ^"^ : ./' / J y ^ 7 ' ^"^ 555 505 575 Chart 17. — Steam, Heat of the Liquid (Table XL). TABLES AND DIAGRAMS 169 34 3C 38 40 1 1 45 Stfj -i)- ^' y / ~^ ?* , ^ - ^ j^ J ~i ^ J^ 7 .^ ^^ ~ZL 7 255 265 275 28 360 390 420 ^ 1 : 3^ ■Qrr - ..5- 7Rft ^z i lI Z y^ ►rort Z ± <^ y ' 800I2: LL S70 510 430 ■ 440 270 300 450 455 330 530 (945 «50 955 2? 24 2,6 28 3 1 I / / -- / / / , / 4 ^^ 7 / Zl / it 7 11. . LL I. 2 30 1.4 240 1,6 1 8 250 2,C 255 960 -H ,- ' ' ^ >' 970 " ^ ^ U L T LL L L L _ L L L - _ u "•0 205 215 225 230 855 ^ 9 10 11 12 200 205 355 03 w % JOIO 03 1700 1800 1901) 410 Ilyi ^ ^'^ y> 4aU i ^ ,Zl ,2;i 2: 7^ 530 n^^^ ^ ^ 1 ' wo X^i III! ■X'^ 005 615 ' 6^5 630 1400 1500 IGOO 610 600 605 1150 1200 '1300 770 ' 1 It 7_ / ,'l X\ 1 ^^JJ / Z7 2 1 z: zy z_ /' ^ '^n^'^ / 1 / 1 / 1 _ / .J-L 1.^ 'M. 3 w; i ii: 1 860 420 480 510 600 660 360 IVl 375 380 1020 130 1020 -E 1 1 1 1 1 1 1 1 1 1 ij T^ 885 110 120 130 k/i 1/ / 4 / / / ± 2: j^ ' . ^ y f y -j^ z' 7 / 110 150 155 330 310 350 355 1030 ? -b TI" U L_ I ^./•^ ^-- '' b>ri r ^^ [ i_LLLL 105 115 125 130 1035 1045 6 7 8 9 1,0 1-i- '-+- " 1- = ^ '^^ T-^ ^^■^ ^ -- '^ ^ ^ ^ ^ ^ 890 895 900 905 75 80 85 op 100 ~t J Jr jf X 1 y / 1 ^L-^ 1_ 1 \y 1 ?Y_i 505 515 525 530 575 600 650 700 100 105 305 1050 1060 315 325 330 s 5 I 65 1.5 75 2 80 , ^^ 1065 "^ ■' ^ "^ r-' -" 1 xa/b 1 -il, ■ ■J _ „„ ~l 50 55 1 60 65 r 7,0 -H s ^^ r Z 910 Z /■^ /•^ / ,^ Q1 1\ ^ - / A / / 1 920 / / y nbYf. LLL a ^ .. iZ-iiir::i^± ^Tr 655 665 675 680 2000 2100 2200 2300 480 400 500 505 450 480 500 525 550 SO 40 50 55 280 290 300 305 455 465 475 480 630 610 Lower Scale = Temperature in Degrees F. Upper Scale = Pressure in IDs. per sq.in. aba. Chart 18. — Steam, Latent Heat (Table XL). 650 655 170 HANDBOOK OF THERMODYNAMIC CllEO '? ' ^'^ 12 13 , 14 ■i ^^ ^-''^ ^ ^ ^ ^-■- ri^ 190 200 210 6.0 . 7.0 8.0 9.0 1 1 1 1 ^^'^ 1 ^ ^ ^ ^^'■' u r" i Lower Scale = Temperature Degrees .Fahrenheit Upper Scale = Pressure Lbs. Per Square Inch Absolute 8 20 900 1000 1152 1205 1200 180 lUO .5.0 6.0 1130 1125 1210 560 1210 1200 1205 300 t 400 500 600 roc 1 ^ -- ^ ^, ^ ^ y -•' "T ^ ^ ^ . ^ ^ _L _ __ no 400 500 150 160 .2.3 2.5 2.7 3 3.5 180190200 220 240 275' .1175 d g 1120 o f^ 130 It-I 140 150 1.3 1.4151.6 1.8 1.92,0 2.2 :i200 ,1195 -'I 1195 300 120 510 GO(k Temperature, Fahrenheit 1175 370 390 410 103 110 120 130 140 150 160 170 w ->^ o B 1190 ! 1 I f 1 1 1 > 1 , 1 > 2! ^ ^± ^^ ^^=' N" J 1150 330 350 •53 d o 370 g ;_ 110 120 130 $, 0.7 0.8 0.9 1.0 1.1 1.25 O 58 62 06 70 74 78 84, 9,0 100 I^ii25 -1105 ^00 fr^iTPPi ,2 ^ ^ ^ ^■'^ ^ ^ "U ■ ■ ■ ■ J 1100 90 100 110 0.3750.4 0,45 0.5 0.55 0.6 0.7 1100 ^095 K090 1090 £:: •70 80 90 2 0.25 0.3 0.35 290 30 3 31C t 38 42 1 r 1 r 4C 50 330 54 -' ■r ,'' . ^ 11-70 _ ^^ iL ^^ y* 1 ^ 1 1075 li m. u il I Guide Curve- - 30 l;iO 210 300 Temperature. Fahrenheifr 250 270 290 21 22 23 24 25 26 27 28 29 29.8 1162 £0 60 70 0.1 0.125 0.15 cm 1156 __ 1 I'l 1 '[ 1 1 1 1 I'l 1 i'l ['ijIl.1 ""i^ ,,— -^ rtf^ rf-Y^ "^ ^^ U- p ^ -^i ^^ n lS5w 1400 1450 1574= -•s ' V 1180 ^ N S V ";> .. 1 11.5g 80 59 60U 1080 J075 230 240 250" 1152 1200 1250 1300 1359 .14,15 , 16 17, 18, 19,20, 1195 1155 1150 1190 ful J 1 1 1 1 1 ■^ ^ *=-.^ ^v.. ^^■s *> ^ 'd- '^^ ' R "s 1 ^0 600 670 680 Chart 19.— Steam, Total Heat (Table XL). .TABLES AND DIAGRAMS 171 180 190 200 ___ _ _____ ^^ J> . ,7 .T / 4 ,/ ,a_ y' / ^^ >'' W ^^ •+" ."^ / i60 320 61.7 ^00 62.0 .170 130 JIO I i 56.6 56.8 57.0 57.8 57.1. UO 150 160 ._ .__j, z ,21 ± ,/ ± ^TT J^ /^ ,<* C. -^ r ,^ Z 2. J40 E::: 58.0 58.2 53.4 58.6, » -^^ ^^ ,w n" ,--^ u j>' 30 90 JIO — IE ^ .^'"'^ ^ * «s " " ^ .^ *• '' -A- ^ -- '" tr ^ - '' q_r ..It.. '60 70 80 D H 1 D i i ^ r- ■*r "^ 1 - — — "■* ■■■■■■■ aLi 1 2-- 510 520 --1 — -« ,^ it ^ ^ "P* ^ ^^ ^ 1^ J/ z ^'^ (?r /' '^ '' T IL 48;0 500 i9.2 l9.6 160 T I ^ ^ j^ ^^^ it ^ ^ II i I- .^^ .-4- N4_- > .l^' T^ Ti "■ ±L;:- 300 50.8 51.2 51.6 1 1 1 I 1 1 1 1 1 IJ L. "^ ^ ^^ _ ^ ^ 1/ ^^ K :^^....j:^.:. 58.6 hH 53.0 .&3.4 V.400 53.6 51.0 550 560 a Q iO.O Z-ii 530 V510 T\ "> ,y^ ^2"^ ^ it ^ j^ V ^ ,Z^ 7>' |1 610 520 i^^iiiijiiiX 42.0 41.0 i6.0 48.0 50.0 52.0 51.0 Guide m Curve -w- I I ai 400 ^50 500 S50 60Q 490 IT 1112^ Z^ ?^T ■ 5^ X ^ i i ± .^ ,A/ -.^ _yy ^^ nn ±1 tL.'.. 470 480 T ;< ^ _^ ^ ^^^^ \/ ^==' V ^"^ i «^ ±... ii:=Sf±Si:iI 54.0 500 55.0 56.0 '57.0 58.0 59.0 60.0 60.0 60.5 61.0 61.5 62.0 Guide :S2 Gur-v,e I Eq:I I 200 250 300. ^0 40d 410 420 520 230 -H-H q -.^ ~ 1:5:1 - ^^-- — - ^-'f £h: - 62.5 50 100 150 20(1 Temperature Degrees Fahr« 380 390 Am 240 51.4 54.2 5*4.6 ^^_^^ 55.0 i20 ^ SO ^ 200 210 220 360 370 Vertical^cale =iDensity, Pounds per Cu.Ft. HorizoataLScale ■= Temperature j'aUr.ejiheit 42.6 ,43.2 ^li§-i=====3 4 ( Q 50 CO : I \"=- 1 ^ ( """"«- - e:: 59.6 1 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 1 IJJ ^ ^ ^ ^ .(=" ^■^ _^ 1 00.0 ^' iJ ^ ^ n . ,^' 'r ^ -^ =-'' R-- ,«= ji-i -l" ^ 580 590 SOO " " X 3 'fr . . _ -^ " 1 41.0 --i" X ;' ^0-^ : "' 0: ^ "^ _r 4*'8 3^. ...4 i 560- - '570 580 Chart 20. — Steam, Specific Volume and Density of the Liquid (Table XL). 172 HANDBOOK OF THERMODYNAMIC 0035 ?55 65^ 60 ^ "7 - K ^ " ,, : 1 t15 ' /! T v*^ y I -.It : / J : z -13 Z 8 - i- - J- - - J - j^ -.12 t \ 7 1.05 55 360 480 400 430 1 r ~j. 1 .^ « 0-- ^ -.9 -p ^ «: ^' /' lb v' : ^"^ -.8 y .7 -.71: 155 200 245 290 335 430 455 270 290' . 320 - _ i ^ X ---j-. n^ 2- ? i -vl _ ,2 -3 - i •?■! ^^ -a!^ -■' " 4 2.5 380 405 555 580 .1 .15 .? ' ~T ' vfftftft? I ^2 "Jl'K. ^ - t KK 7 00 ' . f . '2 1- - 65 »^ftn _ V i t ■ - ' t CI / -- -vt 1 i _ 1 - 85 3300 I4.I..IV.. + —400031 180 .020 155 170 185 900 975 1050 ■ LL ' '~ ^ ~Z. 4 rt-^ -M ^..^-^ ^^ -.lU .e^' p ^ 1 -.<''' J-.36 J c - •"".45 _^'' ,£' ^^■^ I,i B 355 110 125 ItO 1 I'l ' 1 ' ^ -tM ^ OA ^ '' ^ 2 ~ " -Z -.26 i L ,qz : -.24 380 530 505 750 820 555 530. 25 2.2 2. TTT 1 M 1 1 1 1 1 1 1 1 1 I>l2.5 -it ,-•' - ,\ 85^ \ \ \ \ iL \ \ \ \ \ \ k \i ^ \ \ \ \ \ \ \ N \ k N, \, \ \ v*' ^ \ \ \ \ \ > \ \ \ s \, \1 \ h?' \ \ \ \ N . \ \ \ s. \, \ S S, X^ N s N 80^ \ \ \ \ \ S \, \ N P^. \ N, V v \ \ \ \ \ \ s. \, \ ^. , ^1 \, s. N X \ \ \ \ \ V \ N \ N V \ \, s. X \ \ \ V \ \, N s% \ V, \ N N, \ \ \ \ \ ^^ k ^*. N V \ ^ 25^ \ \ \ s. \ V, ^ N s. \ s. \ s. X \ \ \ Ni , D r^ -^ v ._^ "V" _b. A \ \ \ \ ^ \ 1 \ \ \ s, N ^ \ \ \ >s S N, \ V \ 9 \ \, \ \ ^ O - w \ \<5 N \, \, \^ X \j k 1 \ \, \ ^v ::- ol5- \ k \ \ \, \ \ \ \, \ N, X V 53 \ k N \ N K, N N, \ c3 \ \ \ \ 1 \ \, ^ \ iio°- Eh I \ \ \ k \ \ \ X. ^^ \ \ \ \ s ^, S N, ^ • ■-4 \ \ N \ \ "s N, v 5°- \ \ s \, 1 ^ \ "V \ \ \ \ \ \ \ 1 \ \ N \ f\° s \, \ \ ^ V \ ^ 1 ■■ \ V ^^--v \ \ X ^ \ s \ Ts \ 1 \ \^ ^^ 5°- \ ^^ ^ N |E ( ) 1 a 8 4 5 6( 3 7 8 9 10( 100'= 90° 80° CO -/ '/ 1 r / / 1 / / f / / T ! 1 ii 1 i / /, / / / / / / / y •J3 (y / J 1 i / ' i r f / / / / 150 / 1 ( / ' l/h / r / f 1 1 / / i ■'/ / ^ / / / / // f // (^' / > '.' / / / / / / / / } 40 / / / / f / / / p 1 f / / / / / A f / /I / '' / // } / / (A f^J / / '/ / / / / / I 80 / / / / / / /a / / / / / i r / / / / A A f A / y 4 / j\ f /.^ f / / ' vV / / A A A < / // ^ // / / / A ,,' '/ w f / ^ / 20 ^ / / / / A '/ / / ^/ / / / / A :'/ 4) A [^ / < y A / / .-; / /■ '/ / y y y y^ ^ -vJvi ^ <^ y ^' y^ ^' ^^ r:^ ^ ^ — 88 60 70 90 110 130 150 170 190 Temperature in Degress Fahrenheit 210 230 250 Chart 27. — Ammonia-water Solutions, Relation between Total Pressure and Temperature (Dotted Lines MoUier Data). TABLES AND DIAGRAMS 179 135 130 aio 100 3 90 §80 M <0 t-i a I 70 a> Qt w •O a 3 60 o ru B 50 40 80 20 '10 / 7'/ 7, ^/i/ ^ / /!/ / , // ft // // // ( 1 / / 1 // 1 i / / / / / ' , / ■ ) / 1 / / 1/ j / //i /i/ // V 1 Te I mperatu >egrees F 1 / 1 / •es yck. j ihii / 1 / / / / / / / / !/ / /i ' / 1 / 1 i I 1 / / / // / / // / i / / '/ / / // v / / ,1 ' /' / 1 , / ' / / 1 / / 1/ / / // V / 1 1 i f 1 ilZ^/ / /' ' / 1 / ' i / ' / / 1 / / '/ // /J y 1 1 III /' / / ' / / 1 / > [/ / / > /o / Mr ) / / // 1 / y i / / / / ' ' / 1 / 1 1 i ' / / / / / 1 / / / / A ^ 7^ /I // // 4/ / i / A / / 1 / f^ !/ / ° / o / i/ 7 i v\ /^ u / y A i^ <:^ 1 A ^ ^ <^ ^ ^ Ay X. i ^ ^ /^ >^ .X'^ o 1 ^ ^^^;p^ TTT^ 1 1 1 1 5 Jpll.8 15 20 2S.3925 30 33.73 35 4041.55 45 50 Xer Ce"nt by W^gkt of Anrmonta inSottflami. Chart 28. — Annnonia-water Solutions, Relation between Total Pressure and Per Cent NH3 in Solution. 180 HANDBOOK OF THERMODYNAMIC d eS P. B OM s 1 ~ ■^ 1 -I " ■" ■^ "~ — '~~ -r 1 > 1 1 1 > \ 1 1 1 1 s \ y 1 1 1 1 525 v s, > 1 1 1 1 > \ \ N 1 1 1 % s \ \ 1 1 1 \ \ ^ \ \ \ 1 1 1 N V > < V \ 1 1 1 1 V ^ N N S s V 1 1 1 BOO \ \ \ \ 1 1 1 1 \ \ > \ \ > \ \ 1 1 1 > \ s. \ ' \ \ w ' S; 1 1 1 s N \ y \ V >h 1 1 1 ^5 s \ ^ ■V . \ \ V t^ \ 1 1 1 ^, ^ \ s \ > ^, S. s N 1 1 ^ N, > \ NiS s, \ 1 1 1 \ > y '< vP s s \ v 1 1 1 \ \ \ \ > \ \ ^ \ ^ s s \ N s S s p aenr-f> ir 1 1 ^n ujiic s 1 s. \ \ y. s, s ^j s. V s V s s N 1 JT- .-^^„ .r e-: -n e^ _k-K S( k fl 1 ^ s s, \ \ s; s, ^. s s, S s S V \ \ 1 l J^ I 1 1 \ s y. s > s s nJ N \ s s, \ s Hs 1 1 \ > s s s "s s s s Ts. s s \ N s s S V s s, s IN . s V s S \, J ^ L ["' s s S \ s s s 1 \ ' \ \ V \ s IS V s s s, ^ ^ i N Sj V s, V s s <1 s sj V 1 175 \ \ s •s s. s. s, s ^j5 s r* \ s s s sj S > s s 1 s \ \ s. \ V s iS s S \ >S s, V i, N s S s 1 s s s S^ s 1 \ \ s \ s s' N s i?^ :» \ s I s X s N s s SJ s s s, s s '"^S 1 ^ ' 1 \ s^ V \ s K S \p \ s K, s^ S \ sl s| S s s "s^ \ \ s \ s,^ s^ s, 1 \ s fi-"^ \ s is s s, s N S 1 s s s s S, ""s, s s, 1 150 V \ \ V y s si s s ^^ s S 1 S \ N s s s s N S ^^^ s s 1 ^ y. S \ s \ ^ jS ^0 \ \ S h V s N s^ V s 1 s s s S 's^ s \ S 1 \ \ v \, S s V s^ s s s N \ i>. s s N s 'n s, 'Si s^ s s V s s^ s s s s S 1 \ s. y s. s s s s s 1 s y. \ s s S s, sL * s \ \ \ >), \ V s \ s s s s f^s s s. V s s ^ s y \ s. \ N s n'> r s s 1* S s s s s s s Ss s V s s "js 125 \ y \ \ s s, S sN w \ s 1 s S s s. s s s s s s s s s V N> '4 •s s V S V s \ S V sK \ s s 'S s N s s s r 1 s \ s s '"^s K s s S V S 1- s. \ \ \ V s \ vS \ s s 1 N S s S s s V s, s s s V, s k > S s s V \ Ss^^ \ V s vj \ s s s s s s! \ s s '> s ^ V > ■ S s s, s^" s v] s VJ s 1* s S s r k V s v s "^s k^ V s. s 1 * 100 \ S s \ v^ \, s s s s 1 s s s S s N s X v ■s. S s > ^ S s ^ s s S s s, s VJ V s 1 1 S s 1 s V 'V s ^s N s V, V 1 \ s N sv'a' 1^ s s 'V. s s. N is 'V s s sl N s ^s ■v V s s. s T" « A S s' K s N s s ■K s s t s s s ■^s L ■s. V V s V s \ ') s s 'V s s s is s v N s 1 s s, 's k "s Ss J s 75 > \ Ss 1 \ 's s s s. ^ s *s K V s s •s 1"" •s> \ si s V V 'S s Ss s s. s s V s 1 s ■s. s> s s. •s S. ■^ . s s ■^ s V 1 V s s s 's, s s 1 s s. ^s s V s. V "is J \ .{ 1 s. V s s 'S s V. V, V s S s s, s s V V •i, \ V 1 "V V s < V v s 'V, s s s s s, s. V, ^s l' S bO s -1 — s ■s 1 v V "N s s s s s V < k S s V s. >l s, s V •V s s s s s k. ^ 1 ' IS s s > V V s s{ s s s s V. •s «s — 1 — s. V t V s s s s 1 V s s s s S ;> K •s 1 1 's s ■v "t. *> H s^ s s ^^s f^ k ■s. J 25 1 ■ s. 1 "■^ »v >1 V s N. . ■» 1 s. ' «>, «s 1 '> . 1 I '"s 1 ^s 1 '*-. 1 1 1 J- >» ^ ^^^ l._ ,^ „ ^ ^ "130.36 _„ 5 10 11-8 15 20 33.3925 30 33,7335 4Q4J-55 i5" 50 55 Percent by Weight of Ammonia in Solution Chart 29. — Ammonia-water Solutions, Relation between Temperature and Per Cent NH3 in Solution. TABLES AND DIAGRAMS 181 I r" I ^ — 1 1 - T -r 1 1 1 1 fl 05 P ' 1 "S" 1 1 1 1 1 1 S ^ 1 n 0) 1 i 1 1 1 y 4 fc^ 1 ^ \ ■ — ^ i 1 \^ A vj \ \ .. \ 1 4 =1 1 \ \ IV I \ \ \ -• \ •5i \ 5? 1 r \ J \ \ \ \ \ a C3 \ I - % ' 1 1 1 I s \ \ \ A \ \ \ ^ y H 0. ■ n "H* lL 1 1 1 1 o» N \ \ \ \ \ \ \ •* r ti » ^ 1c 1 1 N s \ i ^ L \ri ^\ \ \ ^ I c3 Ic 4^ \ 1 = H-o- 1^ ^ \ \ v<-< \\ !F \ \ K \ 1 1 \ P o \ N iV* ^\ I \ \ \ \ 1 1 .\ "C ,k o \ ft <} \ Ji \ \ \ > \ 1 1 \ p f \ 1 I \\ \ ei\ CO V \ 1 1 ^ ^ HH ' s N \ 1 V \ \" \ \ 1 \ ^ \ j\ ^ \ \ \ V 1 \ \ ^t ii =5 k\ \* \ \ \ \ \ 1 1 \ ' o s; N * \ \ \ \ \ \ 1 \| ti s \ v\ \ \ \ \ 1 \ \ li V k \ ^ 1 1 \, \ •^ (D \ |U \ V \ \ \ \ 1 \ \ \, o Q rv \ \ \ \ \ 1 S'g "s \,N k bB c3 I \ \\ V \ \ 1 V t u O 1 \\ ^ \ \ k\ \ \ i \ 1 09 l\ ^^ v O ■-w 1 1 \ \ \ \ w \ \ \ \ \ \ 1 fl 1 .^ .\ 1 1 \ "} \ p \ \a a 1 1 *- \ \ 1 I \ \ ^. \ \\ \ \ C5 1 1 1 3 \ \ 1 1 \ ^ \ A ft ,c 1 1 1 1 1 \ \ 1 1 \ \ \\ \1 V \ \ ? 1 1 >> 1 1 S; 1 \ ^ \ \\ \ \\ \ 4 rr 1 1 i-» 1 1 ' ^ k \ \ V V \\ \ c 1 1 §3 1 1 V \ \\ \ s^y \ '^. 3 1 1 \ 1 ^ \ \ N M y ■ _!? 1 -q< 1 1 M N 4 \ ^ 1 1 1 1 1 ^ K ^^ \^ 1 1 1 1 1 1 \ \ 1 \>V E^ A> s\ V\ 1 1 1 1 1 \ \ \ M \^ \ \\\ 1 1 o 3 1 1 1 \ \ \ \S ^ V \ 1 1 CO ^ a, - ^ i i ' - 1 1 \ \\ > \ ^ 1 §*. M 1 "5 1 1 I V V \ ^ 1 (3 4- ^ -! ■y 3 1 1-1 \ \ U w s. ^ 1 1 0) 'p ■^ la 1 J ^ - » . s ^ i a? \ \^ ^ \ h 1 o s -C -a L 2 1 O 1 J3 ■s ». % \ \ V ^ \ \\ ^ \ 1 \ 1 .5 ■ : ~5 P ' S S q S C3 r T3 \ s V Vy \ ^ -V o o a n 1 ° '© 4 1 •^ d \ \ > V \ \ \ \ f ^. fcl 4) "p i JJSl jS l^-sS 1 ^ 1 t \ \ V ^\ \ * \ \ i ^ k s -l-J 3 V O a o 'a n 1.2 ^ S -si— »--— B-^- ■S i .2 =i cs S o ^ ca -g 1 z \ o6 C3 O m 0(2 1.2 1^ 0. o Pi p I \^ y \ M \ \ II 1 ^ 1 J 1 Irn tx o \ ^ \ \ \ r=" ^^ '^ :::t: 1-3 I. o \ O \ uv 1 \ 1 1 1 L" !' ."1 . J M O -4 _ 1 !s -~- ■ ^1 1 1 1 1 i I 1 c § 1 4 c *'Ji ^^d [•d TU8 3 1 > > 5J^ i § 3 8 > 1 182 HANDBOOK OF THERMODYNAMIC 28S 265 245 225 205 185 165 145 i25 / 1^ /76 i 2% pBEJ^e -B( «* an( i 1 f / \ . Hling r-fJiiit ui v-f\;i| y m ^ ^ 1 // -^^^ 11 S 'ccj[ /^ uj.. 1 I 1 9/. ^// 7 /■ C.ur;ye*|. Gasoline fip^ Gv. .739 JBlo.unt rt #3 .» 11 .. .736 rt #3 .1 u .. ^717 " *6 » " '' .717 '^ *i #13 u »»■ u .7 a - *I7 .715 " Jl9 '^ " " .705 " *29 '■' u V. .71 (Dhapabers ^ r .,^. J ' 1 1 rt 1 4 F I /K A f /^ { < 1 :* V ^ / / 1 ,y ;/ / y ^A / A. A A \ r / 4 ^ c ' 1 1 ^ / / V f i \f / \f A / >i ^■f/ 4^ / / / / / '? '/ / / / / / / \/ // / A A y / A / / / V / / 'A / A / / / /■ ^ K A V / / / / Pi / / / A y / / A / -Bo ilin r-P( a/\. A ^en ^,oV // r / / C p "7 ■Fi J —y ^ / - — -7- — — — — — , — / / A // / /^ '/A / / A / / // '/ '/ J / / '/ / / / // y / L , „ -k y A —y /_ „ / f- f / 7^ Be ilin gp 3in1 Of He can ^ 53 ^ 7 // f / / A / / / 1 . / / / / f :/ '7 ' ~~~ ~ _-__ — — ~~ — — ""—" ^~ — ■""■"" "^~" -_— . ■"""" "—^ - —~ _(D> ' — o '/ '- N um Ders on Curve wit] lOU a# ]r( ifer toi k( w. 3f I >ist] Hat efr om ■ - i3 ill \i stt empers ture. * 1 % if ^ Oj^ e iO^ £ fe" 1( K)^ Per Cent Jay "Volume Distilled Chart 31. — Fractional Distillation of Gasolenes. TABLES AND DIAGRAMS 183 \ 8 II \ V fl ^M \ ^TT i no -^ \ V > ^ \ \ \ CI lo V \ S, \ s \ A ... c ^ u n c D u 5 O Hi <1> Pi a 03 J- \ 'n , i -/:^£^ \ '\ r '00 UU \ \ \ \\ \ N, V \ >«, \ \ L > 5 S' g ^ o \ CO \ \ i ^'kt \ ^TT Z' L y^Cj a > \ nUL s \ \ 5]0 \ \ \ \ \ \ L L 1 ^ s § S! o \ V f \ 3 -^^f \ «e — %- — > ^ g rt'=t— '^ —Of \ •> 3 — -Xv- N \ — Ja.- r \ \ \ S \ \ X \. \ L_ \ d o H .o M ^•d o -TS ^^s ^ s £ "^u B • t o ^ ^ "^M ^ ^ O « M '^3 S3 I-? 13 n3 O M P4 I— 1 bJ o • r-t , -u u 9i o o p« . >% ^a W u V:? KB' O «?^ fl o <=^a2 o oaS V \ \ \ \ \ \ N \ \ \ ^ \ \ CO - Cqoo 2 \ \ \ \ \ \ \ > \ \ \ \ S, \ s. \ \ \i V \ s. \ \ \ N ^Cp<.-j } \ S \, \ N V S N. \ ^^^ s N s \, ^\ > V \ "S i -^ i:o "i* — .^.e CO COi p6 s K N V \ k. "v \ co- co 5 -~ \ \ s. s N "V CO CO; '■? ^ ^ ^ -J ^ _x ^ ^ ^ '■^v F OO, 5 "^ "~i = ■:^ ^ ^ FI r — ^ S— ' *v ^ - I 1 .2 ^ ^ "*^ S ^ ^ l-. Lb s. S lem u p er 1 *^ lIi' V > "^ \ k = CO CO ^-^ [^ -^ "^ ■^ ^^ r^ -- "** Chart 33. — Heats of Reaction for Hypothetical Producer Gas from Fixed Carbon, B. T. U. TABLES AND DIAGRAMS 185 COgConst. 0,Const.^2 fe CO ©onst CO Var.) 0< NaCVar.) GOj Var \ Steam Const C7 ar. 7 CC [2^ )+-50J / S ' r 1 i f^ ) ^ r / J / / i 1 / / A r / / / / 1 / / / 7 / 1 / / 1 / / f A / / / / 1 1 / / / ^ / / i 1 / / / 1 / 1 / 1 1 / f / } f / t / 1 / 1 / / / / / 1 1 1 / / / f / /^ 6000 1 f i i / / / / / 1 / 1 1 / / / f / / / 1 1 / / / l\ / / / \j / / / / 1 / / / / 1 / / / / f/ / 5500 ' / i 1 / / / 1 V / / 1 1 / / / // / / 1 1 1 / // Steal l^.i 1 / i 11 / / ( / f 1 / J / // y / 5000 / \ 1 f f / i / ^ / 1 1 1 / / // y • / 1 1 1 ^ / / / / / 1 / 11 1 J / j f J / / f / II / / / / / 4500 i / h ' 1 / / ^ 1 1 ; 1 1/ / / / / 1 / 1 / '/\ / / / 1 1 / 11 \ // f / / / i / II // J / 4000 / / i f // / / / 1 1 fl / fe' 1 / 1 i / « 9 / 1 1 i ^v / / 3 / / \ / i >- // / erat / / 1 f / t/ [/ y / / / 1 i // ■o 4.0 // / V p. a / / 1 // >T/ / / I I / ^// / H / 1 / 1 f / ^ 3000 / 1 / It 8\ // / '^^ / 1 / If ,« \/ I / / / 1 , 'i '1 1 "1 1 i / ' / i 1 / 1 / / f / / 1 If 1/ / 2500 i 1 / 1 1 / / 1 1 . / /; / l^ 1 f / / / 1 / 4^ // A 1 / m — -- / r ~- A r( c tnr it-Pn. Ht SOOO 1 / fli "-- ~~~ o .. 1 1 / / -~~ n! ,<*;r( -) 1 1 1 I A 1— 1 — steam / l\ i // / / // / 1500 / / / / f '/ / } f 5( 'h nn A- 50 oO ..It A 1-^ V.O UI ., Xi ris bit -S: lec fie H iat 1 // / ij / '/- H, o 1 1 1 1 ^for Vnrinhlp Snp'r-ifl cJPi^r t ti .^J^' ^ ^ 1000 i i^ f- -_ C-O- ,1, \r .. ,<.'^<^-^''n -^ i M — ^ 0-: - ,, .1 j. .. -A „s '/ — o J. 1 ,. ^ Cja-^" — - kI J. j. ,, ^aV^'^'U M 500 M // L-^ -^ afi ' ^Jf "" ti '^ ' ^ 500 1000 1500 2000 2500 B.T.TJ. per Pound of Gas 3000 3500 4000 Chart 34. — Relation Between Temperatures and Heat for Gases According to the Constant ^ and Variable Specific Heat. 186 HANDBOOK OF THERMODYNAMIC (asiB^ JO eoqoui) '^^ qsy puc aouuanj; uaoAv^aq pajmbaa W'JJ'CI JO 90J:o j TABLES AND DIAGRAMS 187 2790 2790 2790 2790 W 2790 Ph 2790 ^ 2790 2790 P. •o 2790 ^ o Xi 2790 t? H 2790 2790 t 1 1 f ~ " ~ 1300 1250 1200 1150 1100 1000 v u S 90o| P s <» H 800- 1 7003; > 600" S 500o 400^ P m 300 200 100 1.339653 1.288128 1.236603 1.18507 1.13355 l.«3050 .Q2r452 .82440 s .721352 a ea t> til .61830 2 .s y .515251 .412201 .30915 .20610 .10305 25.753 27.8990 a. 30.4353 1 33.4788 i 37.1987 % 41.8485 47.827 '■ S P. 55.798 66.9576 83.697 03 111596 167.399 i34.788 a w 2.58 ;< 03 P^ 2.79 c? M 3.04 s 3.35 ;h 3.72 u a> p. 4.18 u ■p 02 4.78 di CO 5.57 ;.! 0) ft. 6.7 2 8.37 6 p > 11.2 1 16.7 03 33.5 3348 M 3348 u 65 5.58 ■d 2 6.98 6 ft 9.3 u 1 13.93 ID 27.9 . 1 iQf>n ___ — ^ — 1 — _^^ .^ ■— ^ _ __ -- "^ _ — _^ _. — ■- ^^ — ^ -- _^ _-- s /?: ic C- _ 1 ' — ^ ■^ ^ It S' 05f^ ;:ir 1_ — - ^ t e! s i ■V !s 1 teat _ ^r: -" ^^ X\ -t ^ = ^ — — = ■^ 1100 - — «0 ii. ^ ^ -1 J Wa ^'■p= — ■^ — — - -i — - — ^^ Eb = eiPr; 3^ ^ -n ..- -' _J ,4 A\p'&. r^ 1 ^ r-J' "* *o^ -^ '^ 95tef- „j vV_ateM__ — ■^ ^_ _ — ■■ .J U-i 71^ \otv "X^ -■ U r— " .., " OfN'fe ^e»i^ ■T L oWV ^ L- ■— 1 _ .— h^ ^r^ ?./' \ - -T l^' r— .., — -" r kvpaiO \ rf r _^ ^ ^■' i^ ^ -- A?> ^ FjZ^ ' ioi - 'Z. 't .^i^ 25^;ai^ ^ ■5 ^ "^^ — r a ^ .^ r-^ i s* Iti u.- u- 4 1-' ' ^ U- -- ^ .*' ^ oUU - ... ^ r* ,v kt ■^ ' ^ U- ^ ,-'' ,f ,i *\s^ ..• .... -" p^ '' „TfV ^ 1 .- -^ b &« 1..- ^^ ,, o ^ et , ^ ff^ a ^ u* 1 CQ d e^< ''^ finn - t Q DUU ^ ^ 1 "3 - _, k^ .-• 1 d -•^ ^ PL| 500 - Ol P. ►-! • dAfl - ^400 03 .^ ^ i r r1 tA 1 W H d -.•S «f> v^ •^ <\1fl '^J'' ^ ^d. ,^ X "^J^ -^ \^^ litL^ __ __ __ _J L 1 r .>Vx X T) >0^i'V ^ inn - X 1 ^ X y iy' _ p • r^ .t i 'o 1= .1. >( .2 51 1 OO L ' 1 5 iO S : 2 LO 00 ] 15 2 5 ! )0 3 4 ) » 30C rs" ■ IC 56 3 2 SQ 40 Upper Line=Temperature for Saturation, Lower Line=At)SQlute Pressures Chart 36. — Heat per Pound of Steam above Feed Temperature. Evaporation per Hour per Boiler Horse-power. Factor of Evaporation. Each of the upper curves gives directly the total heat per pound of steam above 32° and the distance between them and the lower curve intercept, that for any feed-water tem- perature, by a vertical distance. If, therefore, AB be the total heat for the steam above 32° at 100 lbs. per sq. in. absolute and 20° superheat and DE the heat of Hquid at 200° F. feed temperature above 32°, then AC, the vertical distance between these two points, is the heat per pound of steam above the feed temperature 200° F. for 100 lbs. steam with 20° superheat. This can be marked on a slip of paper and read off on the extra scale to the right in terms of, heat in B.T.U., or factor of evaporation, or actual weight of water that must be evaporated per hour to give a boiler horse-power. 188 HANDBOOK OF THERMODYNAMIC 5 6 7 8 9 10 11 12 13 14 15 16 Evaporation From & at 212°F, per Square Foot of Heating Surface per Hour, Chart 37. — ^Heat Balance for Locomotive Boiler Workine Under Various Rates of Evaporation, TABLES AND DIAGRAMS 189 eoi o o / o / y / / o / /J o y X n—" o^ i^ 10 15 20 Lbs. Air per Lb. of Coal 'HX) 700 Plue Gas Temperature 800 C o 1005^ o B.&W. Boiler ^ Thornj-croft Boiler S s 8054 s V ^ S n 5^ •^ ^., N "■&Q >-v + ■^ RO^, 90^. X ^ \ N, \J V >» ■s V. X 'V ^ X >^ <^ xFurnace Temperatun oFlue Gas «« 1 Furnace Temp'era'tur e mi i^ 00 :i5|oO 2^ 27^30 2^00 2900 755^ =3 V 555^ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lbs. Water Evaporated from and at 212°F. per Sq .Ft . Heating Surf, per Hr. •"^ A y' / / y / / / 10 11 % CO2 in Flue Gases 12 0.5 1.0 % CO in Flue Gases lost 205^ 30i4 40?i Volatile Carbon in Total CarbonPer Ceait. Chart 38. — Influence of Various Factors on Boiler Efficiency. 190 HANDBOOK OF THERMODYNAMIC '0.2 0.3 0.4 Draft over Tire in incites of Water 4 6 Thickness of Fire in.inclies 90 5? .2805^ H 70 3^ 12 8 4 5 6 7 Evaporation per Sq. Ft. of Heating Surface per flr. ^ y y / V / / > y y / / / J f / /l f 500 H.P. B. & W. Boiler / 1 400 600 800 IPOO 1200 Boiler Horse Power .2 P4 60 f' / y^ "^ ^. 50 JJ / ^ ^, / / \ 40^ / / VV\eir. ^ ^ /^ f*^ ^ ^ '^"ii y ^ ^^ U ^ ^Ct ^ ^ I ^ ^ ■<; Ill's; L^ T^ ■ ^ ^ ^ ^ f^. "^ ^ Ve" ^ \ -^u '^^ ^ v \ ^ v^ MOO 18 23 26 Pounds of Dry Coal Fired per Hr. per Sq. Ft. of Grate Surface 12 3 4 5 6 7 Evaporation per Sq. Ft. of Heating Surface per Hr. Chart 39. — Influence of Various Factors on Boiler Efl&ciency. TABLES AND DIAGRAMS 191 9iniosqY 'ui 'bg aad 'sqi ut gjnssajj i _L. e 1 _^ 5 c 't r 1 s § ? .X. s »o ^ ? <5I 1 i eJ — ■~- . 1 -7 - ■ — \o^ 1 f 1 ei ■ ■^ '— L^ ■^ .^ 1 1 ;-s V —- OCi '"■*■ 1 — ■ ^-1 k. 1 o. — ' -~ — . ■^ ^ ,^_^ [> ^ A c« ■^ — r- U - OS ~~~ ^ '^ . 1 / $ —- — , _^ """ ~^ ■^ ; — ^ -^ .^ ■>- --- / V4 ,. 1 — — . . . Sc ■~- r^i --. 1 /T ^ " ^ . t T — -~ ^ >^ 1 y ?' CO ~~ — -— or >~~ . . -J r^ 1 ^s 1 r-l "— ■~- "~~ "^ — -^ r^T :^ -) • tl „i_. . o r~ ■■ — ' — ■ ~~: r~" ~~-i iQd Lir" Arc no "^ ■-^ ■^ -'^ 1 8|i "r-i ■ — -^ — S — _U/ _^tai t' > ^ ■^ ^' 5 1 f ' — ao nvj fa ^jtH^ [^ — -J ^ x >T B 1 «o ^A u ^Sfebr- "-52 — 1 ^ 1 CO ._! rH, I — — . — ~. u ^ ^ y 1*1 ' 1 ""^ ^ ,»-■ ,^' ( Ai \ \ l' "i-i ,^^-'' ,.^ \ \ 1 , ' ^■^°^ c r- *\ \ 1 -■ ^ \ 1 1 i-t 1 * f" r \ 1 \ \ \ J L t' ._ — 1 — . ., ._ . - __l1j % i\ \ 1 \ \ \ \ 1 CO \ \ 1 \ \ \ ' 1 \ \ 1 1 ^ \ \ \ 1 ij ?-. > V V -< y \ \ l\ j ?is^ \ \l \ \ \ 1 O ' o\c> \ \ \ \ \ ! i-t t^h \ \ ^ \ \ \\ \ \ T^ c^ \ k \ \ \ \ \i \ -OS ■« \ \ \ \ {"^ J \ j ■ m> > V \ \ \\ \ \ I ■^^ «^ 0\vr \ \ \ \^ \ \ "v s. \ 1 1 \ \ \ w , 1 ^. nJ \ \ V \\ \ y \ '*^ "^ "^V 1 \ \ \ \^ \\ \ \ 1 ■- . 1 ^^ h V J \ ■^X' pV\ A A A n d si§i n 1 ^x 1 '. 1 o \ \ \ \ Iv , \ I \ \ I .^ N N \ W \ \ \ 1 1 Q< k \ N \ v \\ \ I ' .lO \ 1 1 / ^} ^i> \ ^^J K^ \ \ \ li 1 % ^> -^^ b\ \ y i \ 1 ^•, ^^ \, \\ \\ \ 1 1 :^^ -3 ^ sN s^ \ \ \ 1 ^^ s^ \ \ -co 1 1 ^ \ \ 1 y L ' 1 \ y \ • 1 1 V A \ i. 1 1 ^ \ \ T-« 1 1 ^ ^ \ II _2J ^ I 1 1 i 1 ( 1 1 ( « T -1 .) aj] W^t ( c c M3 1 9Jt aq nioi iqV o -(J a 192 HANDBOOK OF THERMODYNAMIC oTCfBa ejnssGi J § CO o d CM o CM 1-1 o \ s. \ 1 1 := \ \ — B^^ X i^ — — \ — N \ ■^ 5_^ s N \ t ^ 3 > \ s — — — A N ^ — ""^ \ ^■ H?; — " \ S, \ t-\^ ^^ ^v >», \ \ , — ' —- \ ^ \ *N \ S -" \ c x ^V ^ \ — ■ — ' -*v \s \ \ •V > I'V^ _,^ — ■^< ^^ N s ^ C- A\ ^ ''C ^^ v^ s > '' \ ci ^ ■^ ^^ 'v. pv. ^ N \ \ y "^ ■^ ^ -- >< \, "s N ^ \ ^^ "~^ -- ^ >J < ^ V ^ y ^ K \' ^ :> x: c;;;^ «^ ^ < s SiTv \ / >" =; ^ ^ r^ — "^ X ■\ \ % ? ^"^ ■^ .___ "^ >* " "-»v ^ X ^t'-^- N V ^ \ "~~- -s: ^-' -"^ ^ .N^ K ^ -^ -^ "~~ -^ ■ — . "" "^ ^ 9 \ V, / ^ •^ ^ -^ ^^ ^ f ^ ^ ■^ ■^ ^ p?^ fe -L >, (^ ■^ r ^ <=> tH O .3 «-• CM © a => — > S w CO* c3 H .^ 0) o o SJ O CQ I- d s o» CO t- «o 10 -^ eo CM ^ s ^ *" "" ^ T=" Xl ^ ^ ^ S, \^, — " <^ — ~ ~ ■~ S" - ^ XT --' y /. ~~ ~ 5; "~ i __■ ~ _ — — 1 "X^ ,^ y / / ^ >. S \ "^ /' _/ ^/ •N ■ — ^, ' >,\;^ / '/ — \ ~ ~ ~ " S ^ ^ ^ ^ ^ \ v- V s S •X ^9 ^ 1 — ■ — ■ > y '^ N \ % ^ ^ ^ _ _ \ X —I ■^ y ' / / ~~ l> r- —I \ ^ •^ ^ / s cH — 1 — s \ < 0--^ c=i S ^ l»^ ' <^ y^ ^ V N \ J ^ X ^ •* ■n s ■^ ^ y y ' "^ s "~ ■~ ^ •* \ fl ^ ^ '" y »s 'v ~^ S s y ■V ~ == ^ ^ \ s, s , V y ^ ^ »s -N V >^ y \ '^)> y' ■^ V, "^ s >< ' ^ ■^ ' ~ >^ ■>x J ^ N s ^ r s \ "' ~ p^ ~ — — ^ < ' |v, > N b . S^ ~ "^ ■> < ~ "V > ^ - y < ^ r> \ ■«; X{ ^ r>> r> <^ ?•, ^ F' s \ _ ■ ..J. ~ ■■ *>; ^ V 'iv S \ ■^ ^ y ■^ •} 'r . 1 ' V. ^' s N \ _ , y ( ^ hij <• y "V ^ S \ \ _ _ y ^ "^ - \ — — "" ~ ~ ■ V ^ ^ <> \ — — ~ ~ ■~ "■ ^ ^ ^ ^ ~ " ~" -k ^ 1 k ^ _ ^ » 9 t _ «. \l 3 r 9 c 9 C 4 t- ^• ^ -I « © 3 a ii opB^ OJtissaj^ ^^ Ph PJ o3 C3 r-H 03 QJ O 5 ej o +i ft o3pq I g^ ? '^'^ CQ TABLES AND DIAGRAMS 193 13 194 HANDBOOK OF THERMODYNAMIC r / / ^ ^2j^^' f ^ V /^-^S^wky^y^ / 4~ ~W^ ^ —u^^^Z^^^^^^Zy^^T^ ^^^^^^^^^2^^^^ ^ <>*' - .^^312^2:^'^2>^^7>5'^/^y ^ ^ 9jlpE^?^:?^^^?^^^'^^>-^ / '^* a ^^^i^^^^^^g^?^^^>^^^^> /'" I -^\i|^^fcL:2'^^^^^^S?^i^>^2t / ^ ^* i C^^'^^^^S^^^^'^S'^^^^^'^^' ^' ^^'" " ^^^^c^^^^^^^S^^£^x2^>r^ /^ y^ ^ *^ n^^^^^^^§^^^^^^^>^^^^^Y" ^""^ y'^ I < ^9 ^-^^^^^^^^^^^'5<^'^^^^^ ^'^ y '^ s ^^^g^^^^<">r^r -""^ ^ ^^ ^ N^^V^"^ ^'^' ^'^ /^ ^' 1 l5^> ^^^ ^,^-^ T~y^ c^M;^ ^^'"' =c E'"'' ^^' ^* ^ _^^"" j^^'"' -'-'" cO 1 — i — OiO — ■ — ""' leSS ^-^'"^ ro "S Q-50 ----- - - _ _iJ A^,'^ 040 T 1 "^ " -£3 2 T — — ^«= 0^ _ c3 c — ■- — ^. 'u -\ 1 ^' rA •'; jT^---^ ^■^—-^13 -f ,A*S,^ fh-i "^-o^ ^^ ' s^ *** *.• r — 1 GO Ld ^^ s^--^ "^^ oi -~-4^ ^ (5 'it!.C< "'"^IJ ^~^--i"- " £ XEs \ T^^ ■ %\ ^t'^^t'-^x- - ^- a ■ ■ ■ ^r — — CO -^Nr — 4 CO _J 1 ^ >. ^ V^ r^ 'TTTtJ.T '^r:*^ -.-r^^MT/^^^,^^ ^^^T^^ *^ ® ^ 1 TABLES AND DIAGRAMS 195 *n*x*a' 'vsds TB?ox 196 HNADBOOK OF THERMODYNAMIC TABLES AND DIAGRAMS 197 «\_ \ \ \ \ \i \\ A \ \ \ \ \ \ \ \ ^.\ \ J ^\b' ^ ^\ \ ^ ^^ J s mR •S- gL ' \ c - o ^ Oil l (N \ . 1 , a 1 '-I , ^,1 1 ::i 1 /3 1 b n ! ^ !) K r^UlT u< D!:).iun;i3S d 1 ' o 1—1 yfi 8 ?s c y, " ■1 H u. ■- — --- - - — - -- — '- -- -- - -- - -- - 1 1 ' \ ll' \ , \ . ll \ \ i \ 1 \ \ 1 i 1 1 \l \ \ 1 % \ i \ 1 \ ^\ \ \l -QqV- ' \ ' \ 1^ \ \ k \ \\ \, \ \ \ \ % >\ \h \ ^ A \ 1 \ \\ -i 1 Hi \ \^ \ \ \\ \ \ }a \ 1 \ \ \ \ \ \ \\ 1 \\ . K > \N \ \ u # k \ W s ^^ ^ \ N, \, 1^ %^ N \ r \ s'^ \ S, N, ins »^ J ad ^^3 !^ ^1 5a\^«^t hlaai: [i\ V \^ N s 8 1 h V ^ S ra 4?N N'^ S \ Ov c S L o T 1 dj" *7 < _Q 1 o 1 o 1 ^ s o s 8 H 8 ^ 8 o ^ «--. >> ~co erf" ^' T-l h ^ B ■? 8 ,y \' \-- V - '^-t 1 4 rH s S^, \ ""A V ^ 1 ^ aai tVOd[ ? )sa OH- I9( 1 . tn OH J ad i-i ii'al \: s \, \l \ V \^ s s\ /v m\ \ r^ 1^^ \ \ \ Hn , \ ± 1 SiT ~] — ~" "~ — — — " \\ \ \ s \ \ , \ V ri'v s\ - \A'^ 14, ^^ %}\- a\c^^ •^^ \ < V i i\ 1 ^c \\\ A' \ \ \ \ \ N^. Si v\ \ 1 i 1 \ A\; A \M \ 1 I , ?, " N\N ^ \\\ \ ' 3 ^\ \ \i -S > \\ A Oh - \\ \\ i\ '^ !; \\ \^ A \ \ \ 1 if \ \v u 1 \ p-* < ^ \ u i+J : > A , 2 r 1 Y 11 \ 2a \ \ i Sn^ \ <-> c w 1 ~^ tf \\ , \ 1 i .OJT ^ n^flts ; ^ -3'' c3 O 8 Ul c3 d >> fl 6D d o CD ^ 3 >. 2 ^H o 5 :3 w (D to ^^ CL. '^ >• M ^ Ph <>i ^ ,— . HJ O lA P. "d %^ ■^^ 0) OJ S 3 f-l '^ 5 o u 5 g 0) 13 i « •l^ o h »o (U 1 ti t^ ^ <1 s o 198 HANDBOOK OF THERMODYNAMIC 0) Ph '3 03 4i^ M ID 1-5 Q o3 o3 s i o3 ^ \ \ V \ \ \ ^ \ , \ S ^^ \ \ \ 1 \ \ 1 \ \ s ^ X \ \ y \ \ ^ ^ y \ \ \ \ \ A \ \ \ \ \ \ \ \ $^ \ 1 \ \ \ ) \ \ s % ) 1 \ *, Yf \ I \ ^ s \ *§ \ ■^\ ^rac 'o\ '^\ ^ 4i A c^h TV jr f\- — c\-\ -- -- -- — r4- -- -- -+- -- LU '% \ 1 t \ n ~_\ \ 1 \ A \d , 11 \ I , 1 1 1 R \ 1 \ 1 , 1 \ \ \ ^ \ \ \ p- . 8UI t: U( ^n BJ nq ^S 3 ^ \ V, 1 s \ \ 1 N V \ \ \ A . \ v\ s ^i \ s. \ j \ s. \ \ \ \ \ \ 1 1 \ \ \ \ V \ \ \ \ \ A \ 1 1 % 1 Is, \ 1 , 1 \ \ V \ ^v 3Q \ V \ >o 1 ^< % l\ N S \ \ A \ A t- 1 1 V 1^ \ ^J N N s \ \ \ \ \ 1 1 H 1^ , 1 s. \ s. \ \ A . 1 1 1 <-' i \ \ \| \ \^ s \ \ \ 1 1 1 \ \ M A .\ \ Y \ Q 1 1 1 1 1 "^^ M \ \ \ \ \ \¥ X\ »A 1 1 1 1 < %\ \ \ V I ^ \ i 1 1- 1 1 1 \ n; >f' ^ V N V 1 1 1 1 1 N 4 \ s ^ \^ V V ^ \ 1 1 1 i 1 1 1 <^\ ^^ \ ^ ^ N N V ^ k S 1 1 1 1 1 \^ s\ sj s N,\ \ N^\ 1 1 1 1 j 1 1 s ^ N s R \ V \\ TOl 38'^S JC •lo 1 11- IGd'S y \3. %1 JC R ^ 1 ^ \^ n: ^^ \ 1 % 1 ^, & 1 o N \ \§Sj \^ \ l_ yu i.C .! T* p 1 ? s \1 \^^ \^ ^ h-4 ■--k — S^ h\'^ , _ -i- -s- -A ^' fe = =S3 ?-^ — ^ — ■" k_ est -j-i- i_ H [A z — =c •n ~ 1 — + ~-C •>-t( s= = ^ Z -« r ^_ ■r4< 1 -f- i-H ■—co-d-- ^^ — t r- — 1 — -1 1 — — — — i 1 — :::: '^ — P M= — o a o ca 1 1 ^ __ — t — ^ ^ 1 1-1 [.10 — — — ^ 1 \ 1 ■^ /< Q-Qj- — — — — \- — c 1 =4 — — __ 1 _ — — — ■y / — — — ^^^ \— 1 — -i — — — -t — ~ ^ T — a "]>■ 1 1 1 1 ■^ f 1 1 1 -d- — — tr n 1 . -t o o , / I «} 1 / 1 a y y j o At ^ ^ / CO fl u c 1'^. o ■^ f / 1 OS 3 a i ^ ^ T— 1 / 1 , ^^ Ik ■. ~1 ^ ^ ■^ y 1 rSti:' 'A t ^ 1 / / o ■^s i / ^ / i f 1 •^ o - lO- ^ / 1 'ffl I— 1 --^i J ^^ 'T' V / 1 1^ 1 ,'K X / o 1 1 / K ^ y r lO , 1 — — / r-^ y / - 1 -~ ,^ ^ ' ^ y / '( ,/ ? ^ > > J 1 / ^ d- 1 s ;3 ^-N o 1 [ , ;h o C« t> +3 Rj Ti xi ei u oj o ^\ 1 ?: t. O -- •- A -- y -) ■- -- -" — - ~ — -- -- — -- -- — cS I \ 1 1 1 \ 1 a \ ' \ \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \ \ ^ I ] \ \ \ \ \ 1 \ \ ri -•- 1 \ 1 \ \ \ ■§ k ^\ i I 1 \ \ \ \ 8 S ^ ^J \ \ 1 \ ] \ -VI- > \ \ \ \ ^ \ \ \ i \ t? a J \ ' \ \ (S 1 ^\ \ I \ \ if 0^ p\ \ \ \ . <^ \ \ 1 1- 1 \ \ \ \ \ \ \ 1 2 \ \ ) \ \ \ \ \ 5 tl "^A \ \ \ \ \ \ \ \ P^ \ \ \ \ \ \ L y \ \ \ \ > , ?.\ '^ \ 1 1, ^ \ 2 *■ Ph 5 t^ \ ^\ \ 1 \ V \ V ?. \ ^^' 1 \ I 1 \ \ V V \ ^ ^ p A "^ \ L y \ > \ \ \ V '.\ \ \ \ > y V \ ^ \ ';^ \ \ 1, \ > \ k \ \ V \ \ V -»-: ^\ \ V \ \ \ \ \ > V \ a X n ^ \ \ \ 1 \ 1 ^ I i\ \ \ \ \ V hC '^A \^ \ k \ \ V V \ \ \ o > '.\ \ \ \j N 1 \ \ \ \ s. 5 t V \ ^ N 1 \ \! s. \ V \ N \ a. > ^ \ 1 s \ V \ k ^ c 'G^. \ o V f^'' \ f? \ ^A A c VS ^ \ '^^N \ £ \ s \ \ s. \, \ \ ^0 \ ^. o ^ \ \ i N N. \ \ \ s ^J \ "^^ \ \ \ N s \ v \ N \. N S s. s -(: ^s \ N 1 , 1 N N \ sj N,. \ \ N lU M da (1) jS loi liJI i)y m [ ULl IJc >^i Li \ N N s \ s K sl Sj s \ ,G 6 c^ N I ^r^ > s -1 •^ \ ^ N *^. N V H i ^ ^ 6 s 9 R 'i i) ^ o s. o * 5 s & 5 s 8 H ^ o § .^ <— ■JU - I f o CO 8 ^ a 9^ vo d as lO H jM in o i- 10( 1 • ii^ klr P W "^ ■■"" i '0 := ~ - ~1 ( Q P^ -^ >^j 1 •-i • • S ~ Ij jJJ > . -1 ^. nr^ -~^ ^ 01 ^ N i <5 s N V (D s. i 3 n S; N. O ^^ 1 a « -^ \ \ cS3 j CI ^ n\ J3 -fc3 53 f' \ \ te, 11 irno M 6 rf) ' s > o u \ \ u Q, ^ A o -J3 \ s o 1"! \ s V ^ H u:i \ w u TABLES AND DIAGRAMS 201 \ ^ \ \ \ \ \ \ \ \ \ \ \ \ ^ \ \ 1 1 1 h\ 1 \ 1 \ 1 \ \ \ \ w\ Q \ \ \ \ ^ \ \ \ o E \ \ 1 .s ["" cr- 1 i-l to Is — iC 1-1 ^. ?-i o o tA .-^ iffl 1— (N ;i c3 1 ^ O " ■ 3 » i - O c3 1 ^ 2 - 1 O n 1 l-l t4 P5 i» J5 ra cs d "" (N| ■o m O I-l o 03 ■ jlIL F)0 J? rl '/f ")n O-I in a I'^ m .in n,i I o 8 1 "^1 S ^ lO (3 § u O 4 T .c ■) A i,l 1^ "1 1 T" o X i!" T ^ s > ol 0| 1 R g B 1 'S B o R § R «D t- • f of s T—l 1 1 ¥ o ^ c > o ■* > ^s - ■n oo ■J T 3^ lO I^ r :0- 3- 'F i. mp H- :^^ a- 3^ Sv ^ "*■ -~ -~, "* *^ ^ ^ ^ •5^ 'Nr -- — — ~ -- — — — — -- — -- to w]r ^ "^ *" ■>. *^ S 0> Wff V ^ I— I <^ 1 ^ yi "^ ^ c s Sv ^ O ^^(^ L. "^ V, i^ ^. 3 dd 7- ia •v. •s X o ffJnj JU . 1—1 ^>. - - 2 V s ^4 ^ s »o 6(9^ s o ^'0 '^^ s A V v^ l> (M in E ^-"^yi ^. (M g -t • N CD- C c- s •A S ^A P a) a ^v \, n to V S \ 03 T s c ^, |4 \, j S \ r \ s 1 a Q eo \n s ■— 1 3 o ^ ^ f- »l \ f 3 .a a. a* TO o o M o 0) OS O" '^ • B >* c8 03 -1-3 »-' ^ •t; (U o3 a ^ ^ t-i o O* c^ . rse- any 01 CO ^2 '^^ a u >> >> gj ;=j »4 CU 03 o b ^ o ffl O w o a c3 03 ,o oi > a PLi •:; -i^ t-l o p. a; Q fii T3 a) ri 3 c3 a Cl) c3 03 o -t-> >1 tt-4 u o a 1. <7; o +-> -t-3 ci o a ^ tH 3 03 CJ 03 S I H o 202 HANDBOOK OF THERMODYNAMIC CI a 03 03 c3 O o f— I d o3 a b o3 1 — I O o3 1—1 TO o :3 03 fl > ^ a c3 -. 0) o3 O O o3 m o TABLES AND DIAGRAMS 203 O N \ \ k k \l ' \ C^ V V \ \ V \ y N \ > .Q) \ \ \ \ V 1 V \ 1 ^>\ \ \ 1 \ \ , ^ r* V \ y ) \ \ \ 3$ %..\ V V \ \ \ ) \ \ ^^' 1 \ \ _* ^\ ^\ ) \ \ i V ^: ^) V w> V \ \ \ f° \ N \ V >o 1 1 1 1 \ vl \, V \ \ \ \ \ ^ t- 1 1 V 4 \ V V \ \ A V 1 1 1 'j\ \ \ \ V \ \ \ \ y 1 1 1 1 1 1 6 \ \ \ V \ \| y 1 1 1 1 1 % ^> N ^ \' V V <-> 1 1 1 1 \ -5> '^^ N ^ ^ VN »A 1 1 1 1 1 1 ^ s\ ^ 1 1 1 1 1 1 '< \ \^ ^ \ 1 1 1 -i i 1 s\ \ \ 1 1 1 1 I i\ V (^ ^ 1 1 1 1 1 1 % 1 S\ 1 1 1 ^ 1 sqjT ^^ r I ■'ni'Bac ■ 1 r-, S ^? '<^ laoc [ : \x 3A i ^ 1 § 1 1 8 1 1 8 y V c ^ ^ (J 1 u 1 1 _ 1 1 \t ^ ^ ? \ _ , , _^ 1 -4 4 u — U — L_ — ^ """ — ^ in: >^o = ^^ ^^ ^^ 1 =1 1 — o— T-H 1 z — - = ^^ - — :^ 1^ ii: "^ — " r- 1 1 - . ^ •* -y '^ h 1 1 1 -) -i^ 1 1 COL — — ' ^ -^ 1 U 1 ""^ 1 ^ ^ J 1 1 ^ ^ ^ / 1 1 1 »n ,^ --; 3Q- / s 1 ^ ^ "> ) / •^ •\ / / 1 ^^ x / O) % ^ ^ / g '^^ 3 o i-H /' 1 MO ^ -^ '' / 1 1 ^^ ^' X / / f ^ Ha / ^ /' / 1 l."^-.^ ^ ^ / 1 5 ^. ^^ ■>1 4 / / ^m ^ ^f / / Si o / y y / w^. / / ^ ^ ^ / t? / ,^ ^^ / ■r>r ^n / / -^J pi 10 oc -". a [Bi lie 1- / H- y >afea Ol uj llfelJ L> i\+ 1 00 lu A / ^ X ^ ^ ^ § s -^ ^ / S 8 8 % ^ — ^ U JL HI iJL oL JL JJ JL M X ^ ^ ^ U y^ -H X 3 a eg eS a> faD c3 flj to a ^ ;3 d Oi TO >. 02 +j -D cS 3 o o» o l-H (M OS t4 +3 O t4-i a M elocity, ality. a >? (0 >i w •-5 a fl Ti '^ 1 i o •a >» o^ CU 03 erivatives. Work per lb. of Steam, (m.e. Various Back Pressures, Steam Initi . Q a M ^3 is* <0 01 -3 Ul U 1 a -2 o Ul B o CO % < 204 HANDBOOK OF^ THERMODYNAMIC ' .2 L_ t t - JI S I t I " 4 1 § a i S I L \ I t n^ ^ T IT 0) _\ —1 t ^ "" -f^ v< t— fl-L § -^t -i9i t ^lE o s, -ft -n a+ ^ M^- v^Afe «t $ 1 d) ^^\ i v4 §1 03 j^t ^ ^' 1 ^ ^ -4t Z bC -4' Z$^. o ° PI c^ bV L -h 8 - -tI \ 3i ■ t "^s 1 <>L r^ t ^ "^X It i o ^\- +3 4 ^ t^A ?V^ t ^ J s§ \ 1 \ - ^c^ \ I \ t b led pe Lang ^ i A V S \ 4 V 4 S "^v t: 3 ^^ 1 Suppl and ^s. «v 4 ^^ 4 \ 1 -1- \- >^ -1^ ^^ : T \ ^ W 'T^ "^»^_^ 4 "^s^ S '^ nt of ir, an '^"^^ 1 ^v. \ i "^4^-- "^ v qiuao J9d ut jfouapgja iBiujsqj 1 """""— -^ o '^is, p rt CO *T S io ^ o! ^ s i^n — ^^ — :^^ i^ 2=^== = : — R: Sll -8_ j_ § "^ § ^ i:^— !!::__ :^::r— ~^ S, % 8 ^ « § ^ .^J — — . .^ — -~— ■I^^'— ■^■^^^■^ "= T -_^ ~~~-^ . ' "^""^-^ '^^^^"^'^"^^^s. o s ^ al -~ — 1 — ^ '^T'-^^i,^ _rij^l^__l"Iri>J\Ljs^^ 1^. "^ ^ m w ^"^■>-, -^^"^■^ ^v ^"^^s. \ V fH 1^"^. ^ ^\ ^\ N ^ \>A |>. O) - ^^ ^s. -l^p^iw^ °^ "H. n. ~0' -■—■■■ ^**,,,^ ■ - XQ >1 <\^T\\ ^ B 6 w ^^^ N^ J^ 'S^^V^t e 3 02 M ^. 4X ""X^AArS 1 p. ^v^ ^^ ^9^ ^^)\\\ oW tj *z ^^ Sn. 35:^™ ^S 03 H :S^ 4)s__^>_^\-%UV t^ 03 W" _ _4^ fA % %\ftu § '^>K. IS ox ^\ \ 111 •-^X^ _4rpJ,^ ,?o\ 4444 SW •13 c3 ■§ '^ V 4 \ u! i^ J^l 4 4 41 sS ^\ 4 ^ it -'g >» '^ \ i 1 ° f3 4 4 444 - r^ O) \- 4 H- -s^ A 41414 --^3 4^\ i-4 t - 1 ir t tjif - "^ '^ g 4 jitt -^ L. 1 LI _- 4 4 t- - 4 t-- - 1 A- ^4- -s •^ 4^ 4 1-4- ^ 4 44- _ I,. . , ^^ lit. . w TABLES AND DIAGRAMS 205 I>1 o CO 03 s O 1-1 a o ja 02 cy (H a, 1 i D a hn O ^ SJ M - -tti - M \ •73 01 l!. t: U \\\ \ S 01 i» 6fl c \ % 't W :q « 1 y 1 f!2 7) tT> U-l , ■ \ \ K 42 \ d b 1 i M < 60 1) : ^ a re 3 -Ct "n « \ o A ■u 03 -u •c \ \ m 2 • O O •3 o \ \ a I u 1 Ph Oh \ \ < ^il U a ffl \ V ^^ A. — dl t>> \ \ \ \ ir ) ir 2 O o' CO. O ? 1 SI a \ \ \ --/ \ / / / / / / o) C o .i : \ \^ / / ^^ / / / / ''v^ u5 wi e \j \ / ' } / / 5. \ w '^ \- ^ O / / / / / a\ -< II II ^ / s N / \ / / "\ ^ LU LU T* P^ N \ ^ <^ V 1 \ ^ 3 U "»TT fiir m TT w tTt an T~ -l- - ' — ■^ == ^ i ^ & - Z ~L- ~~ o r- O 1 — ' ' ~\ o C M- 51 c I ~ ? — ~c 3 t* ? = ^ b'^a^^ r===r= = S C3 U J -4 _ inr— _§{. ^ c c 5 S- C3 — Ci C3 -8- -= - = 1 — Ij MS; ziro; ^^ q -J. — — e. ~ A — t~ - — — o" — -o- — CM s "" — — 09 -4- 1 — — -1 ^ ~~. *^ nT" . I "^ ^ "^ ^ :=^ s^ J8AU 3J-8Sa OH Jpd j^ ^ X *"- — . ^ ,J noTl~lj sd'n" T/aoi 2^0 S — i — - ^ "> N ^ ** ^ \, s N \ "~ ^ "-v "-. X ^V^ •^, c c ■-^ V \ N s \ \ r^ 5o L^ S < S \ ^.<\ R ^^ ®^ ^N, \, \, M <>^ >^ \, N tP'S-^ V_ ^^ ^ \, k>\ , \ \ W 4 S N V \ \ \ § ^^ N ^ \ L_ ^ V ^v \ \ \ '<^: \, ^ \ \\ V \ \ w ^N \ \ § ^O \ \ cT % \ \ \ , ■'^\ \ \ \ \ \ \ \ I * \ \ \ § \ JJ i . ^ '^\ ^^ r \ > L J "^ V § \ f^ 1 llllt \ y \ ,^ i , .-^. tl3 a pci ^ s o 9) gx-i C! 60 CD .3 60 ■H a ^ o i-l ,D W a [jti! 0)1 03 C M ! TJ OS 0) >- -^ ^( _o o f^ Ci .2 ^ Oi o O 13 "^ s w I W3 ft .a cL ^ oi bC o O "-iT O H I— I *" a ^ oi. a; ^t 02 g: W:- CO f-3 » it TABLES AND DIAGRAMS 207 208 HANDBOOK OF THERMODYNAMIC i r- Si i-H i-« o 1 o' / 8' ^' S' s' i j ' 1 s •♦3 i o / -•- o a '3. ^ as u . / ^ 1 / t^ « 69 1 « Oil "S o 4J • ^ 1 i — O: "^1 -3 --03 w4- 1' = J3 i ^ t /"cS -3 M 1 ^ SB U 5< fl ft t £ / -'" (SI M \bB y a s; ;. c a a e o f s,\ s\ f a "3) j ^ ««-l ',2 SI /§, o s osphe agai £ & K 1® ^ § 3 r1 M /'e4 ^ \1 IS '3 : n 1 '^ 't o o -=?■ y \ \i p* H II ^ i a: h § ^pA \ » H UJ Ll. 2 -2 c d ll !- 1^ / 7 I tJ 1° Uj I "^i / O .C 3 ^ 1 \ J- 03 1 / /, / / .-^ S s. \ W 1 1 // h / ^ O ■a 0) ^ ^ \ .a / J V ■^ ::;i f 1 =^ JS ^ 4' yj _^ / / 1 *i ^ r-- ^ SL J ^t- '1^ ^ ^ (an£ 0. I8( i) 3 JC > 3^01 J9 01 BE [I BI] uaq X i" Ph 1 ""^ ** aa *. _ _^ ^ ^ s f ^ c 3 5 ^ t>-' ^ > u ^ f\ *> i ^ ^ < J o T li-i 3 i ;^ ~ — —J — _ ~ ^ — 1 no r ^ 1 h y i« bC » CQ — — 3 _ HI ^ ^ «i ~ 1 ^ - o S ^ 1 d 1 ~ — — 1 , — ^ — 7i« 112 -4 ^ ^d(B J 3d J n( >H [ j^d 'I IX a p 5to^ ? ■~~ p r-J "^ IT r •T — . — , "^ "V ^ ^ d "^ ^ ■^ ■^ •v S N 6 ~ — .^^ ^ ■v s \ \h. ■^ ■^ N \ \ . >. '-^ ^ V, s V^ !;> \ \, !_; d *■ s s. \ \ \ N k S c; r ?r^ »fc \ s \ \ ur per lEffic P< b^ s ^ \ \ N ^0 t^ \, \ \ 'tv/ ?* k \ \ \ o ^ w a < ^-•^N \ \ ^ I i <^. '>: \ \ \ \ .U, per The <^ ^^^^ s V \ \ ^i >^ \ \ \ '?> \ 1^ S^ " b\ \ % N, \ § cS' ■ >^ V . \ \ \ \' ■+3 OQ \ \ a o \ \ w bC \ V -5 ^'4 ^ \ I i Heat ;.— St] •3 ;^ \ ^ g 5 \ ^ < TABLES AND DIAGRAMS 1 /- 1 'B .1 15/ ^^A d o 05 2 IW § +3 6 O ^ t\ \i fco c 1 « % s a o 0) g, COJ vF C r o k b "3 bo ^1 ^1 sl H-4 ^ ^ ?* 3 C] J/M^L .a -P o p. .« T) /h1. \ii o 4 a ..a j OS ^ •.^/ 2» lte( 2 fcl u ; ^i si V ©4-19 t 11 r V. -2- 2 c ' s o7 ^ \r ti 2 fe oi .'''• ^7 ■^ If- T. Sfi % ■^1 « l: t ^j/ '.CD C 'J ^ C3 fepr "o g -^ n] ^/ f\ lea ^ >i ft tM Si u, of ?/ / M AS ^ -H- C3 1/ § ( 1 2\ / o I Y^ pw ©; - Lul 13 i V. s;i ' <*-* \Vc u. , W 3 f ^ -/ V '^\l\3> 4 II llI tu TO, ml / uW O i / ' / <^\ \ \ U] 1 / / / / •s^^ \ \ i f n 1 L / /I / '2\ \ \ / / / ^ \\ \ V f A / © ^ \ / "u '^ ^ i / <^ 7 - - " - - -- -- — - -- — -- ss © -- ■- ~ b ^ s -- — -- — -- -- -- — -- 5 ^ // ^ M / i So n M / // / -* ^ / / 1 a 1 A ^ J k t-' 7^ , / U^uaa jgd \'= 1 io 3^ Coi 18 pi ga IBvaa. 8^1 ^1 fu \ a» ■*■ ^ I- i o 00 a i- 1 ? S s o 8 o ° S- - _ 8 u 1 1- 8 — 8 _ -S- -S- s O _ o Jq ^ = '± — 3 ^ ^ fe ^ ^ ^ —7 ^ — ^ - — — t '- — . t '- — - — r-l — — — — — -o — ■g -H __ - - ^ .. ~~i — j — — ^ ^ 'd •HJ 9d IJ nc >H J' ad •n'x'a ai; }^ 3 "~ ■l~ — ,_ ■ ■ ' — j — . .^ -»-. "*■ k. f 1 ~o«" "^ "'^ ^v. s. "v -^ 1 1 "*- — 1 k - ^v V, •V s "s S i 1 -J 1 1 ■** ■^ >^ Vj V N 6 ^ 1 *"■ 45r^ L- ^_ __ , __ _. _±r^ __ J ^^ --^ '\(- \ __ 1 1 --U v N l s \ \ t 'S-r i7r> ^ s s \ \ \ \ I "c» -td ^ ^^ k \ V \ ; ^f^ ^ ?^ ' N, \ \ N 1 1 ^ \ \, V *V" s,. \ V, \ \ ^^5 > \ V y { ■ '%> \ \ ; ,? ^^ s > K 1 \ ' '^. s \ \ \ N } , A ' \ > y I •> \ \ \ \ ^ \ \ \ 1 1 \ \ V I 1 \ \ i <5 — \ 9\^ \ ^ \ A '^\ ^ 1 14 • 209 ^ 09 a> O fH 03 p. (M _, O 2 COO o © o m %< o O O u p o o M o *** O Vl CO 0< 8 -^ Q P, a © oW H © o 3 210 HANDBOOK OF THERMODYNAMIC 1 ~ / "" n ■"" ~ J"" / rrn 1 / o ^ fil O 1 ii J g 1 i-H «lr^l "r!,! 'rJ 5x ^ g 3" « PI -O 'm ; ?^ r ^/ { ^1 • g f M S. oL^ ^ to o 0)1 ' " co/p CO •^n' tuJL *-> ■*1 O- ?/^^ o Q >> O bo f. 'M o "l/i i-H •?/- 1- ^ u & ^ d 9. o ^:/9 a 'S h"^^^ 8 ^ S 01 3\:^ 3" 1 3 -fl Q ' u 1^ — -^ 1' — w^ 1 x^ 1 1" / r^ fcl a >^ ^ 4^ O / 'f^ -^ . w^ , fl 1 8^ oo — < -1 c« «?,\ / _u ci 1 ^ $ \ ' o ^^ / 1 -^ all. ^\ )^ o \ 1 \ "^ tH 1 H ^o ^ ^ ^ /o \ / Y q $1 / 1 3 ^ jj; .U S^ 1 +j ^ / f f/ 1 1 / Si o P / \ c^ / 1 /' ^\ ^r, b \ r# 1 <^y P^ g O \ \ ^^/ 1 ^^^ ^ ^\ k \ \ / / 1 /# P, \S 1 \ \ / V t< &?^ 0* as rT V"" 1 \ N y N k u »' — u -75 qi A / \ s A '\ .<^ ^/ 1^ r ") ^W" ifii F .m.. A V ■) / V » vy 3-1- - c J i- ' r-c:r5 "M K ^s. z' o|o i:^ ^ = = 1 — 1 ~ □ = ~- - ~= - — = f- ^ ^ ^ •=^ ■*^ ■^ S \ .?b^ -8- Eh ^ ' — ■ — . 1 — , ■^-. ^^ ■^ ^ s N \ \^J (M "3 ~ ■^ """>^ \j k \ [% V^ (Vl <*^ 1 — — ^ "^ ■v .s kV. rN \ - ^ \J > r\ <^ >.\' ^^\ \ M C3 %^ - -a '~- -^ .i"< ^1 <^r \ O'v K^.N \ \\ "* o "^ ^«. ^ti /^ ^v \ % \H , v\ o p- ^ > \ "^ ^. r, \\ PM i 6r d N \, 1> A i\\ , S 2 o ^7 \ ■^ f o s ^ ^ \ ^4-f» 1^4 j= °"^^ 'k A '^\ , 4^ W ■ O^ >>> vO \ ^ \ 9>V \ I »4 'f^\ '^^ k 9\ ^ \ \\ ,-.2. v^^N \ ■^A \ \\ 00 u ,A ^\ 1 \ O ^> \ r:^ \ 1 hQ '^^ \ \ I Q O 9^\ \ 1 <'• \ \ \ 1 1 \ \ \ 1 \ Pi ^ ^t> V \ 1 o \ S "'R 3 J3 I o \ ^ \ _\ 1 . . TABLES AND DIAGRAMS 211 <=?•. 1 1 1 1 \ \ 1 \ 1 1 1 ^ \ \ 1 \ 1 \ 1 \ \ T) 1 \ \ ""^ I 1 '>i c 4 5 \ i^ \ 1 C \ >? \ I °i> 01 =?,\ ■S!\ ^,\ -+ D JAA "t \ 'o\ t\ t\ iM l"a\RT \ ^ \ U \ i'^S 1 \ \\ i >\ 4?- \64 . t\ k 'A '\\ 1?^ \ 1 \ o |_ 'i ,^ 'M t\ ^\ \i \ rX \ \ \ r-l ^^\ %\l^\ ^N u. - \ \ — - \ \ \ N -- €f^rY — -- — -- _,. jj ^ '% \% i i\ ^^ k ir -> , 1 h^ \ \ ^ t>\ i°i -b\Sl '■4 \ V ^ ^ ^\ 1 ?\l 1 N '^\ •s \ '^ ^ tn O £ ( ^\i \ 1 1 N K k ■s ^ > O M cr| m aj (D \ \i N N "■ V^ ^ ^ ^ ^ ■5. 'r^r.^ Limit 'osa'ibil .foiUbi Cycl --. ?r ; \ r-,1 ^^ •v k "^ -J^ -- ^ !^ u? D. 8C [n ijt ou 9T 5a ra IT5 xu at X n "^ -^ ' — J^ ■— ___ ■ — — — S! o s ^ i'o o s" a o g -= s = • i 3P n -J = o 1 =^ u= L ^ — — s — 1- ^ T r fc= r ^ n ' ■ 1 1 = = |;^ s ^^ ^ ^ 5 -H- Ik n ' p- M ^- z^ ._. — :z} — ._, _ :::-=f-4^-' ^^T-4crf^ -v L^ sk td- "^ <-> ' — 1 L ^ ~~'~ ^ ^^ 1 1 ^-"^j * ^1 ^ ^ (M ~^ -~J '^ -< ~j ^<^^ ^ ^""^ ^^ V -a- 3' -O. '"^ ■^ ■>J^ -^~c^ b"^ \^^^^ \ \ '~~" ^^ '<^ ^>« V^ h \ \\ O "~ ^ S^ N ^ o> \ ^ w -* "^ ^^ "<. T'- ^ , V \ ^\ ^ \i "■ ■^ "V, ^ ^ S ^N s ^^ \t\ \\\ ^ >s> y> K ^ •i^. %\ \ \\ s p ' ^^^ V <, ?■) \ '\ \\\ [ H -^|0^ N ^->x\ ^^\ \ \^ - cq ^ ^9:n ^\ \ \ w ^'^.N ^s y \ \ \ O ''<\ \ \ \ ' ^vi > ^ 1 K \ \ ?l \ \ \ i ^•M ) V \ , ^1 S \ •%N \ V \ ' 1-1 \ \ 1 \ \ 9, 1 II tH \ \ ) 1 S I \ _^ _ _ _ _1 _ _ _ _ _ _ _ _ A - a o -t-3 P. a 3 tc fl O O -(J i ;3 o o 03 TS -Q fl ^ c3 OT »s O (H d 0) > -tj a < S (D si 'J 03 01 H ?i f— 1 03 ,V c3 1 ^o ^ h ^ ^ a o a> U 'o O >j m o ^ _ ^^ ^a O o ^^ O 0) 'm -^ fl "*^ c3 iH ^^ w ^-^ ^•s OJ ^ u -E ^ 3 Q o w o a CO o C5 ^ ^ ^ s> 'to\-^ 1 V-\ ^ =iJii fe^ Yoya k^'o^ ^ ^,^X\°a ^«-\<^ 5 H> u"''^^*^ N H'>^!\ r4\ >-) p-Oi <^ c ;:^ c ^<^s j»; ^ b b 1^ ^ ^N \ l>S T ^o O^S. s $> sl^b"^ t^ ^o\ ^<:jbs' V 0>-')k ''d\ 1 A ' L ^ \l "^.^ I v*^ s m. 1 Ug,^ V. ^ ';^ v 1 ^ ^^L*^ \ ";x s I wi jj 1 ^^> ^ ^^ \ "< K ';i\'^ JM ^ ^5t^ \ >vN iii\ lo °3-3 V- ^O^^R^ VK^-^ '^J ^ ^«-£'=' o 1 "■o ^« f^^.X \ N \^v \ s 1 1 1 «"^r% K S s'*'^^ O \ \ _ 1 1 1 ^>'< ^v'C sV^ vk. \ \r n, 1 1 1 1 ■^^j°o T ^ vio V \ 1 1 I 1 v>. '-^^/.N^ ^ ^ syo a aiJiJp^ JO quad •SQT "i^ ay moM. 1 1 1 1 1 0^ ' ^ ^ Si^ of '■§>■ i i § g 3 3 § 1 § 1 gj o ' ^ ^ 5*V V*?" o 95- o §■ 1 1 o 1 _§-J 5 [,:<{cn;V5 2 > >^y^- § ^ § <5 s § 1 s 1 1 ^ 1-f 1 aoiss^jdi^o 0- sra;'j'^!or ^n.iKO lU. JOUJISQ "1^ I 1 ! duioo-' 1 '"^ 1 , ' |-L tV|<,6| *^ ""Ptioi^TJaaz eJ - 1 uoissyauu 1 !•■ 'i ' .. _i 1 -:S ^ uoi'ssajdOTpo !suiay'nr|] iidi^R-iiar i::^ a 'Vf ==^ ^ I 1 1 1 1 ! ^L iJdiT^oo-K 4U — ' — - -T ^ ^"^ ^^ / s tl . n'^ • ,siMv / / 1 pi /_ /- _. _. 1 1 V A / "r 1 1 / / 1 / 9> 1 1 1 / / / >/f S 1 1 1 1 / / / Ki / / / 1 1 1 / ^1 / / 1 1 k^ 1 / / 1 ^ ky /' / 1 (M .^' V.:^ ?/ 1 / f 1 o^>fi^ .oV 1 .^X_j^. / .^^/^ ' o; ^u ^ •/ ^ V 1 1 ct ^> / ^ ^J ^ 1 ^ < ^1:^ / #-^ / 1 CO .l^^ / ^/ :^/ 1 '>Y/ ^/ --< 4^ / 1 .oV <^ 1 y 1 O^/ >-^ / ^/ 1 § y ^/ "^ / 1 / (. y ^/ 1 /' / / o". / / / / 1 / / y 1 o / / / 1 ^ / / / / / 1 / / J / SB{^ Sui5f J 0A\ jo ^ Jad "il'X'a UT| 5lJOAi| \ s ^ S s /| /^ o / Q (P 1 Q -S- 1 £ P ^ ^ Ji 1^ ^ 1 1 £ 1 ^ _L ^ -H g ■■■■ ■"" :< A ■* to ai O bo o -«-9 a c3 a P. H u P I: 'I! a S o O O d O o t CO g -"I n TABLES AND DIAGRAMS 213 J g? l| ^ i^ I 1 >-^- H r f 1 r g e f — o- 1 ^ %^ 5_ .3 ?? 1 1) 1 ? l\ 1 D'i- p!\ 1 1 \ tl §1 —11 4J t3 o o h\ tt\ 1 \ B |g p4\ ^\ |> n o 1^ -<*« 81 Sj 1 1 y^ \ ^ SI d o +-> p. 111 \ 1 1 ! ^\ r T 1 1 ^.\ H 2 1\ 1 i ^ \ s >,' S E-i; o ^\ 1 1 \-S 2 -I "a ! I) o C5 1 O i— ^ 1 ?\ ^ r 1 5. m < ■^ A 1 #1 iS r \ -^ c \ 1 % P- cjT 1 V^ \ c k :e i P a S M A 1 !^ &\ q 1r^ TO '^I fB ^\ 1 \ < 1 o it Icb ^\ pa \ 1 [^ ^i \ S a\ o\ 1 ^ \ 9- 8 8\ "6^ \ i 1 4 — N \ -\ r V Q ca ^ \ 1 1 ' y \ V 1 ^ \ \ OJ - ' T \ \ \ 1 1 1^ 1 „ b , ii'i ' ( J O \ > { 1 \ y# \p [1' ^^^ \ N K 1 V 51i \ i \ \ \ 1 I N \, 1 \ \ v'' ■^ \\ \ n i V J 1 \ N^ \ \ r , \ tJ 2 N s. 1 ( h 1 V \, \ y V ^^ ^ 1 \ 1 1 > "^ \ \, V \ \ k 9 ^ ^ ^ 1 1 1 §1 1 S^ K ~*, TS ^^. V V ^' o" o 1 ^- 1 '^ T^ ^ ^! „ _p1. \ \ "^ -■J tA ^ i g g a 1 "1. 1 4- •^i 1 . .-1 f _ ■ ' - •s 3£ S [IT nj 1 1 1 - c -d- L*a|005 '0^U^VQ^ s^ b^ 7 n-i OJ , ^ ^« •q H y(] ["i: m '4 A 4. lU Ai 1 1 1 .,4- a^ '.^'^-^ / 1 l.r ^^•1 Mi, 1 r- U- ^ .^^ g^^^?j2 53- 1 ^ ^ .^il^ S^ ^ L P^-'l'^^IMl 1 f:^ ^ ?• 1 S> %^s>-' m^%^M^^ s ^- 1 1 1 /' 1 — ^^ro<^; •^ >^. — 1 < :ir ^■~"c ) 1 1 1 1 < /^^^~ o-Wi- y ^ W"-^ 1 1 u ^' 1 P.^;f /' ^ 1 1] ^^5 • / ^< J- 1 1 o li <.^ / ?? 1 1 \ e 5/ .5>^ ^•f ^. rH 1 1 \ 1 il ii r'K <^ U- 1 1 |l / '^° 1 !| Y 1 1 1 k i7§ 1 1 M T-l 1 1 >^nr 1 1 w 1 1 1 .>'/! r 1 I of^ 1 1 1 ^ 1 1 / 1 1 r ^ ,^ *i. y 1 1 r m 1 1 A ^ r j-"^- c- r s X 1 1 (j5 <^^,' r — X kC- ^ 1 ^ 1 y / 1 o 1 « SI 3f) s at5fj OA \ J ol-qtabd'-fi-j/J T1 IT >IJ'0 M -> \ 1 ■ ~l 1 1 1 1 o I— 1 ^ s i M Is 1 g § '? 5 s s _L c» J_ 5_ J^ 1 x I' 1 iT b if '^ Q :^ -♦a d o J, d 03 0) m O ^ I - ^ ^ 0) o M u p. 0) ft . ™ TO l^ O o o U . c3 -tJ s a O O •73 O d "o o a M o a" o I" t CO CO 214 HANDBOOK OF THERMODYNAMIC -n -1- 5 « 1 \ ^ 1 \ \ 1 t -S§ \ IT t 1 "^ ^ I r 60 — L i T -3 s i r ^ 3 { ^ ^3 \ V o ^ 1 A a ^ ^ J t -^^ s A j^ g -a fli L_ ^ M ^rri. .d V ■ ■ ^0\ 1 1 1 1 1 1 1 1 1 1 Iv^ll 1 1 1 1.21 1 1 ^ -^W SV J_ -bL 1 i n B _gL § 1 . W I 3: «^. o^ ^ - V ^1 2 ^'"'^'^ .^^s^ S J-^-f^ (>* ^-"[^ 1 ^^ 1 _^- o j 1 st?Q SuT>i'jojVi JO 'qi JOd 'Xl'l/a ^f -5lJOA\. ■^ 1 R 1 |g 1 8 8 £LL „,-^ J2±, -J^l" . o5 .—1 i TABLES AND DIAGRAMS 215 n — — — — ~~ ■~" \ "~" 1 CO § \ «1 S \ o V \ ^ \ \ -a 3 bsolu f Co \ \ o \ k 1 <1 o \ \ 1. 22 26 re, Atmosphere r any Amount - > \ A ^ N. 1^ 9 A ^ ts -is v\ s\ s .2 ^A ^'\ t; ft ^\ ^l 1:1 CQ -4-3 S \ t I ^ \ \ w 52 rt ,$ ./ / ^ /1 O ^ / 5? 1 / lO OJ / / g / '^ / / / '^'5 r»> V / s / § ^: / . o ^/ M ^ ^/ ^/ / / / / / ^ *s / / §d ;D /' / / / y / • y / ,H 'S / ■ ^^;^ ,v 1 ,csy o Sf/ u • / J2 CJ / / / S ./I / o / / 'aJ / i 1 /' / / . / / •stif) s;upiJto^ jo-qi aad •IIM/R ni ?i^o^ e3 H 1 ^ c a < 1 1 216 HANDBOOK OF THERMODYNAMIC ^ / ^ 1 / / CO / f 4) 3 -s- H / :2 / ^ _« a CO s / 03 0) / 1 -5 on a -S- 3a- W / -8S ■70 / tM It 7 FR d .a ( /A > o ■4J h ^ ^ \, / s :^ ^ \ w|rS :^ tf== \, s?- / ^ ^ =f =*=" 5-^ \ ^^■s / 4= Jt =^ I \ ' a : a J- to H CO a:?l y r^ .2 3^ .X / c8 ^ > 3 p 2 s c^ in (1) a< M Ph PLI .2 nj n •JH J8d •ui •bg I8d •sqq^ nt « OIJ rt ^ d / c» / ■5 / ' / / fi l> / < d / >> / ^ / 0) d 0^ ^ / y IB ^ / S ^ ^ I ^ i- :::i! ^ 'i ~ a 03 § rf - iB ^. .0 •8 ^.5 ^ 03 - CO HO u M § D. r 5 t- t-t ^ II 8 II -2 to © - a a s - 2 (S P4 P 1 i^ ^ 1 jd _ cd Go 1 u PQ m 1 e4 rd ? ^ 0) ffi 2 a ^ u 2 o3 \~_ 73.5 alP 1 ca -M '% ■V _ ^ ^ fe 368 1 fi - c3 aJ 8 J 8 M T3 a> 1-1 ,_^ •fci .ss M <0 0) * u %- i tn a u o a d f-H oi d o •r-t 8 9 •JH ^od 'HI 'Dg aoa 'sqi U} mox^ s "d d H ca \a ^ oJ 0< a us si u CD 3 CO H « <) w U TABLES AND DIAGRAMS 217 ^ ^ ^ ^^ ^ ;;;;^ ^ ^ ,^ ,/^ X^ 52$: ^ ^^ ^ ^,./^ y 'i<^'^ ^ X / / -p . *«- ^ ^ .^ r T 4/ /^ ..?/ / r^ o1 >/ /^ ^/ / «5V / J c"^.' ^ / 1 c- Y 4- 1 ■n% ^ \ f -■^i / 1 / .^ f \ ' f ? 1 air s si / flj 1 >i r / ?/ « C ' S= c 7 t m •^fl CS a fli H« 0) ii (U 1 W ] o Ol T^ll 3 02 a 3 to m n it 2 P- (0 m Oi / &4 2 '■3 _^ &< 1<3 / 5 M rt ^ a "5 ^ c ►q Q '5 — 1 ri T S O O 1. O 4J (2 o L CO "3 O S •JH 3^^ '"I "T^S ^^^ 'sq-i ui i\ou »4 •rH 1 I' — . :;=: ^ ^ ^ ^^ ■ ^ "^ "^ Cl'^>V /^ ^ ^ ■^' ^ ^ ^ .^ 4 'y , ^-(5 -.•^ "^ \^ ijN^ ^ ^'•^ ^ / > ^ y > z. J P" ^/ f A ■/ / 4 A / y - / / ■H / sk 11 # f i.e) 1 i / 1 ^y \ a, / .?/ - H ^ ' -4^ / f c ? »^\ -^ ^5 ii\ M a •u i"^ \ _t3. •>:> -86< --30 on !H" a c8 1^ ^i (a o c 5^ O / / a i ^CLh •JH jad 'uj 'bg jsd 'sqi ui mo[^ 218 HANDBOOK OF THERMODYNAMIC X *0N QAJTio 'BrnTHJOj srJQjci'GN: JOJ (jn'B!jsa03 s so ^ ^ S ' "■ / / s, / L \ k \ fv \ V \ V \ V \ \ \ K •\ V \ \ \ \ r > \ \ <> s 1. \ ,p k •t^ \ > (7lli • \ ^ y , U ' V r \ i • \ i \ j V s 4 V k 1 k o > '^ A o: ~v^ V 9 / . Curve No, 1 Napier's coefficients Curve No, 2 Weight of steam discharged per hour under constant pressure of 159.7 lb. abs. <>• \ M O \ / \ 1 V » \ V j • \ k \ f _ \ 1 \ , \ \ , \ • \ . k * \, V f f \' y / \ - i 1 J, 1 { \ \ ' \ \ 1 \ \ \ I a 1 C CI a I a 3 t i 8 S 5 •+3 p* > . ' bo 03 o o I— I 03 a> o O a, 03 la CO H w o g 'oii 9Aii;iO'Jiioa,aad paSaBnosfCI wbo^s 'sqT TABLES AND DIAGRAMS 219 \ \ i \ \ \ \ \ \ \ \ \ \ \ V •M o 1^ 05 m 220 HANDBOOK OF THERMODYNAMIC ^ .024 .022 v02Q 4fi]8 ^' *016 .014 1 U- -Rr lok vval .012 \ \ \ \ \ \ \ \ .010 i\ V \\ \ y \. A V V \\ \ \, .008 \^ V s V s \ \ \, \ ««^ KN \^ \ K s, ^ s X ~ \\. S, \ ^->. .006 \^ s,"^ V N -^^ A \ Ks^ •^ -r- 8^ V s., ii^H CH .12" — N s — — Q= ir" .00:4 ■v^ ■ _____ r ba" - . L— jso ■ r -inn" ^ " ^002 ' 1 d ' 1 r !0 r JO 4 Q 6 Velocity "Eeelrpet Second Chart 70. — Coefficients of Friction f for Air in Ducts. These values of the coefficient of friction are given by Rietschel for straight ducts of brick and iron for velocities up to 50 ft. per second; for iron ducts different values are given for perimeters or circumferences from 8 to 100 in. They are intended especially for air ducts with the usual velocities of air, 6 to 24 ft. per second when served by fans, and 3 to 8 ft. per second when the flow is due to natural draft. TABLES AND DIAGRAMS 221 50 60 70 80 Diameter of Stack in Inches Chart 71. — -Curve Showing Diameter of Chimney Stacks at Sea Level. (Stirling). For brick or brick-lined stacks, increase the diameter 6 per cent. 222 HANDBOOK OF THERMODYNAMIC o > o a w 53 CO m 1 1 1 S- 3f Var )o: r Oualitv J5 — — — ■"■ 80 ■"■ 5 ^75 ^ — — — — 60 .yu, = _ — — — "■"* 19 f^ W< 40 — s — — ~' 95- _^ 20 . ^ >. Ci -T irp;s_{>l Vapo] , .^^ 25 ur«^-?TT / / / / f / 20 / ^. v / / / / i \ / / / y f / 15 / / ^/ / / J / / / -- — <- — -- -- -- f / J / / f / f 10 / / / / / / 4 ' / \ V / / / / J / / / / / / 16 / / / / / / / / / f ,^/ / / / / / /; / / y r / / / / / / ' y u / J, z L _ i: "a +J 3 MS ^;i ^' 540 Curv( 3S oO!iid uidjTemD. °F If )- . „„ ,^ r- r- r ^ r- ^ -^ ' 530 --' ^ ^ ^ r [x ^ ^ / y .^ -^ 520 • / ^ 607 ^ -^ ,^ ^ ^ y ^ — /' ^ ^ •510 / ^ ) ^ -^ 7( y —■ — ■ y ^ ^ ■— " / ^ -- -^ 500 / /' ^ / / -^ ^ ■ 80 y ^ _„ ^ X ^, -— / ^ 490 / / ^ --' / ' ^ -^ 0- ^ y ^ / ^ ■"■ ■" ,^ y —• " 480 / ^ -^ ' / ^ ^ A 1^ X - lOv ^ y ^ y "^ 470 / '' -^ -- / ^ ^ ^ ^ y ^ Y 40 20 ?0 10 ^0 10 Refrigerating Coil Press. Xbs, per Sq.In., Ga. 20 30 40 Chart 72. — Chart to Determine Available Refrigerating Effect per Pound of Ammonia for Any Refrigerator Pressure and Any Refrigerator or Liquid Temperature. Construction and use of Diagrams, Charts 72 and 73. These diagrams are for the pur- pose of finding the refrigerating effect per pound of fluid, which is made up of the latent heat, or as much of it as is available, less the heat necessary to cool the liquid from its original temperature to that due to the pressure in the coils, plus the heat absorbed in superheating the vapor. A horizontal scale of pressures is laid off in both directions for a vertical axis carrying a B.T.U. scale. In the section to the right of the center axis curves are drawn representing various temperatures of the liquid before entering the refrigerator coils. These are so drawn that the vertical scale opposite the intersection of a vertical from any pressure with any curve gives the latent heat for that pressure, less the heat required to cool the liquid. This is the available heat for refrigerating if the vapor leaves the coils dry and saturated. TABLES AND DIAGRAMS 223 1 o a CQ o ' ' 1'" 25 Curves of Vapor Quality OQ -1 - ^ r— -rt - __ J w. 4U ^ — r" 2^ZE ^ _ __j_ - _ __ 20 ^ - ^__ — — 1 "a &-- 13^ ^ LJ — ' — ^ ^ — •=t . r — Rb ^ - - - — - -h ^ — [— - _ 1 — - — Hj.. ^ni X "S^ — ■ ^ 1_ — -1 , n,| . i h - + -60- 15 "" .«it ^L. J L __ _ 1 1 — r— •" ■* _ 1 — ■— — — 1 — 1 — "^ _^ — — ,yu ~n 70" — — — — -]-' 10 — — 1 — "" 925 _ - — — ■* L_L - - - - - — L U - - - = = r ■zi ■"" = ^ - - 10" _ ^ — _ _ _ _ — — _ — _ _ _ ^ V- _ — -yb ^ 5 = — — — ~ ■" — ~ — — — — — — ~ — — Jiil i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _ _ — _ _ _ _ _ _ _ _ ;^ _ _ a 4 / / / _rA _ _ ^ / / / f ^ [y / / / k? y ^ / / / ^ ^ i£ t^ ^ ^ .<^ J. _ „ ^ ^ _ jL ^ W A. ^ 1^ ilj:. — xji ji 500 400 300 200 300 Befrigerator Coil Press. Lbs. Sq. Iq« Ga, 400 600 Chart 73. — Chart to Determine Available Refrigerating Effect per Pound of Carhon Dioxide for any Refrigerator Pressure and any Refrigerator or Liquid Temperature. In the section to the left of the center axis are two sets of curves, the lower, representing temperatures of the vapor leaving the coils, is so drawn that the value of the left-hand vertical scale opposite a point of intersection of a vertical from any pressure with any curve, gives the heat absorbed in superheating the vapor. The sum of this and the value found in the first section gives the total refrigerating effect for the case when the vapor leaves the coils in a superheated state. The upper curves in this section represent quality of the vapor if the liquid has not been entirely evaporated and are so drawn that the value on the vertical scale opposite the point of intersection of a vertical from any pressure with any curve, shows the heat unavailable for refrigerating, due to incomplete evaporation of the liquid, and the difference between this value and that found in the first section gives the total refrigerat- ing effect for the case of wet vapor leaving the coils. As an example of the use of Chart 72 let it be required to find the refrigerating effect per pound of ammonia when the pressure in the coils is 20 lbs. gage, the temperature of the liquid 224 HANDBOOK OF THERMODYNAMIC © n o 29 27 25 23 21 19 17 15 13 5 Cu.Fi d -0188 .0186 .0184 .0182 .018 .0178 .0 rn 1 1 1 1 b. per Lb. 176 .0174 .0172 .017 .01G8 .0166 h? II i 1 r* STs: ^^ 3 s ZlL )^ C75 S, 5^ S :^ "N^ _ fiii, ^. S, S, \, "*^ ■(^ V ^t-S, !S 5^ ^>. ^^ 5 \ % :^ \ •jfl 5 !N ^t \ % N S> \ ^^ \ % 5s .885 \ ^t 5 ^v % ^^ .OOO _ 1^ ^ y :» ^ "^ s s % i % ^^ !^ S \ -^^ \ \ .895 \\^v 'n s s Curv^-n of \ \ \ s "■. "v '^ui vya ui S S S \ ^s '^ Ffiinl V •'^— ' 1 1 M 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10'^ \ S \ \ ^s vtJ.quaiir'i ^•^''- oq • \ \ % % % ^^ ^^ \-\ \ % \ s ^^ ^.^ \ % N ^ S ^^ \ \ Ni .915 \ V. S^ _^. \ ^^ 9A ^^ ^^ s : ^^ % ^ S ^e !sl -^^ % \ 5s S ^ ^. % - s, \ !s \ 5^ S, i-N ^^\ ^e 5 % >- : V _ 20 Sjfe,^trP ^ (St- Ss^ V-^ ,935 s^ W ^ % \ % _ s ^ . S -\ ^.^ \ - ^ ^1. ^t \ \ St ^ ^v ^ ^ ^^ s 5 ^t "^ ^ "S s \ ^ ^^ Sk L, .955 \ ^e \ S •»oo y ^ \ , ^ s ^^ 5 ^ . V s \ ^ 5 w. s \ \ s k ^ ^ ^. ^^ % I \ - \ - ^fc - BKa o«,-s - - b- . sa ' 53 54 55 56 57 58 59 60 Hjs. per Cu. Ft, Chart 74. — Density and Specij&c Volume of Ammonia-water Solutions. before entering the coil is 70° F. and (a) Vapor leaves dry and saturated; (6) Vapor leaves 92.5 per cent, dry; (c) Vapor leaves at a temperature of 30*^ F. From 20 in the right-hand section (Chart 72) project up to curve 70°. The value on the vertical scale at this point is 502 B.T.U., which is the value for case (o). From 20 in the left-hand section project to curve 92.5 per cent.; the value on the left-hand vertical scale is 43, therefore, for case (6) the result is 502 — 43 = 459 B.T.U. For case (c), project from 20 to curve 30°, the value on the vertical scale corresponding to which is 12.5, hence the result for this case is 502 + 12.5 = 514.5. The refrigeration per pound of fluid may be obtained from Eq. (1030), but since these are all tabular values, except the heat of air and of vapor superheat, the determinations can be readily made by means of the charts. From the data of these diagrams the dis- placements of compressors and pumps may be computed directly by the use of the slide- rule. When superheated vapor densities are to be evaluated, either vapor — ammonia or carbon dioxide — may be assumed to behave as a perfect gas, volumes being directly, and density inversely proportional to absolute temperatures. The volume per pound of ammonia solutions may be read off directly from Chart 74. i TABLES AND DIAGRAMS 225 ** i4-l £. f/%c * -*5 f ■* •J / ^/ r^ 1 y / ^ 1/ r^ r- / / '''? / Q "•■".^ . / >^ r h» ? — 7 t / y "■"■ ^^ / y- «-. / ?/ Pv •v ^ / > ■ > \f fftS ^^ ^; -A- — — ^ ~ ~ r " *> ^ 1 / / >? 7- ~f ^^W" ~ g ~ ~ t ' y / «v'. 7 7" ^ / / ^ ^ L S 2^-^ - / ^ "^ / /- v^ / -_jai / / >«. / / ^ ./ . z!_ ?&^>.LI ~" / ~ / r ^ ^ y / ■^ - A - - -^ y ^^ oo r^ ~ 7 '/ "V [r^ J^ / V t [ I '^^ /, / / ~^ .p*^ / jL ^"^^^ / 7 •^ ~ / / A ^ / >^ / ^ -/ -7 ~ ~ ^ J^ r "* ^ / ^^'^^ J S5^^ A- y — " / / - ■*" ^ ;;; 7 r/ y / .^^/ W ^^ -«, / ~ r ~ / r.^' / / — ^ t ^ L ^s Ix ^^-7 ^ ~ ~ / ~^ A \ W< y /- v^ 2 "=->^ z ^ ^ ■*■ A ^ / \> / "^ / / - / - ^5^ 1/ ?^^ IC- y - 7^ ■■ ■*• ^ vV / -V. , / J. >s» / ^-^ 7^ — ? /ti" / / r '^ ■^ c> / / *». -^ /^ - /- »v /^ ^^^ A H ^ / ~ " r^ b f /' .4 "•^^ / - 3 ^^ %-- '1 jk. ^ *" y "* 1 V ./ / ^4 y =^-v ^"^ •A / "V ^A / /- »^ y A '^ ^^- - y ^ ^ 05 j.^/ •= ^ ? Y -«. / ■^ y ^- "-^^ ^? ^^ ^=»- r ~ ri. -c,^ / > y ^ . ^ - v^^ ^^ /^ 'H' k^ = r "^l -^ ^ ■ / r '-■^, / ""> -^^ - ^ ^ >.^W- - -V ct| 't's- ^ L ~ "" "^ ■-i Z - "^ ~A ^ / ^^h - >' Oo n== z - ■* "^ ^ y^ ■^ n ^ / " > / /■ — 1 ■^ / >/ - - ^: ^ L? ~ / ■^ / /> >«. '/ ^^ ,^ ^;; ^SS -'^ j^~" - "" "^ k L L 9- •-^ ■^ ■«^ /' "^"^ / : _ %^^p^ y ' r-i t "* r~ 7 ■^ "^^ „^ / ■^ - J^^- :«.s -fe^-- _:2:_. .. y -^- 2--- .__ - - r "" ^ Jv^ 9. 5 t ■«=;: ~5» I -^ ■^ =;: — r- -=^^-^c t^^- y -^1:::: :;^^ ::: - L 7 ^% ■^. / ».^ ?^ -/C>>L: 5:. - ^ ' '^ _ ^^ - ~ ~ v3 f?o. 1 - ^^ ^ v^ / '^ 1^ y d ^^^ -. " ^ ' "■ / ■»« — — — — ~ ~ — ^ nh U- ^- - -- -^ ~ ~ ~ j b^s/i II L ^^^ ~ "■ ~ •- 1 "^■~-. . "■ ^v ^ 1 h?"~ — — — — ~" .\ ' - S: '^^> t: ^^ ~ OS, .. ^«, -h-^i^ ^- - - , ~ ~ ~ i> •v^0\ - .^. m$>.- - ~ ~" ^1- "^^ - 4^^^^^ - ~ ~ ~ ~ - ^-i I '\ ^-^ - ife^-- — ■ ]\C ^s ^ 's St - - *^ 5^- - ^=^,_ _. .. (3^ . _ . ~ ~ ~ "■ -^,^ ;^^ _. .._4i - ^^ ^, _^s-. ..It — " _ ^, 3-^ 'v - "■ ^1- :^ _ ./^^ ^^^- S_ . ^^ -_L^- V s ■ - ^<^^ ^^ -.— fl^ ~" ~ - ^ § ^ -^, 10 "^ j^x« ^ ^ ^ _ ^ ^ „, ^^i _L- ^ ^ „ t ■i-> a o 2 I •scjy '^ 699a39(X *©an:iW9ara9i 15 226 HANDBOOK OF THERMODYNAMIC CO 5^ a o Q a < a B 03 CO El < K o rnu'a T' »«»H i«*oji. TABLES AND DIAGRAMS 227 ?^'^-l- ^^^-=- y |r^"=--^ ""-Stft 'J$^ ^^■"- ^"^ ^^"^"^^y^ iv^"^--^ ^-^^"^ ^^^^^3^ ^Ji^^^ y^^^ ^ ::^-. %^> ^"^^ ="-^ -^ - K ^^ !^ ^"^ >'*'^^ ^ "^"^^ ?'%■ X "^^ vj,'^ 'j;^ "^jj^ ^ ;i-^ ^^ ^^^^ ^^r^^ :^.^^^ ^-^^ ^ ^<, ^^^-^ ^^ ^^i ^Cx^^^^ '^^--^ y H^ ^^'^^ y qs^-^S^ Ai>^^ z z ^-^ -§z^-^ >^ -^^^ 3,^ --- -^^ ^--^ "^-^Z ^ ^-^^ ^*^-^ ^^"^^.^^^^ ^^^ la^>=^=. >^-- / r^^--^ / ^?< '^ .'^'^^ ^^ ^->. K''^ i^-^ y*^ ""7-^ ■ ^/T" "^x:^ /^k^^y^ ^><: >^^ ■ Tft>^^^. ^ L. ^ -cSZc*. ^ ^ ' ^1^ ^ "^ s*^^-^ ^^^ ^x tNiQ— ^ 7 ^-^^ ^^ ^->?^ 7n^->^ ,^ ^^. ,><^ .^^"--^ N^jx-^ 7 2 ---^ _,7^---^Z ^/-^^ ^^ ^^<^ ^>< Zk t J. 2 -^^z 25^^ /^ ^^^ ^^^^^^^^^^^^^^^. ^-^^ / 7"-- / ^^^^^ 7 "^/^ ^^ ^^ =-- ?^-^^ v'^ v^- / ^^^ ^ ""^-^^^ ^^st=^ ::% '"^-^ 7^-:=. Z ^-^=5C z ^-^^ ;;><>^ ^-^.-^ j^-' JfeprC^ 7-:^" 7 tL^^^-^^^ 2^-,^ ^7 ^-•^'^ ^-.-^ X- ^^L ^-^ 7 ^^:==^ ^ ^^ ^|^' ^^^ -^ J^^^id-=./ oin^C ^^ ^2^^ V ^^ -- --- -8- J- ^'^•^9':'^ 7"--. ^ 7 ^^^7 7^ ^^ ^ ^ , ■~ ''•'^>:>.^ ;--- / y^-. / .'-Is ^ :^^- '^'f ?^^ 7^ J "? ^ § --■-' ?si> ■^■w/ ^'^>w7 7 / S — — "" ^jo^-^..^'"^^ 7 s" 3;:--' !!^--^^ ^:5'^/ip.^'-:. "~^-^/ /^ v-^ .. . - ^ 10 . ^l|^ .. ^ =:-'- _i=.g>'^ ^-::- o> / ^^ y' gj ^ 1 1 __^^ _^.-Q_ _ . =1 _i _ _ -ft ^ "■""—■»- -._c ^i^ ^^ '"aj"'^'^ ► ^^ ^--5r ■"^- v^^ Sfe^ ^^^^ 33i^=K 3.^^^ i^-^- '^ii^ iSi^^ ^= ^-. 46 \^ ^^-, -N^ "^^ J^l ^tL.- ^v. ^iv ^^, ^N.^ _. I^s, nh; "^v. ^ISv 5g^ ^v, a, s:g^v""i^S^ "^ir e ^^ ^v'^ ^^ \ -'^S~ \ ^ ^^ \li ^ ~X. \ ^ \ ^ sy"*^' ^.^ ± _ ^_- 3 8 s (do) 'dJtu^uadmex ^nioeqy 228 HANDBOOK OF THERMODYNAMIC cn'i'a) 5«sH i^ox) o § § s i 00 ^ S g s. s V o \ . M 1 V \ \ V O CO \, o \. o S , s S c 1 \ \ \ \ S I, s \ s,. o s L s V N -t \ \ '\ \ 00 s S \ ^ ^ ii> c> \ s ■■(« V '^ \ \ \ ''\ \ '<' \\ «sl \, V ojL, V \ \ \ ?H N ,yp 1 \ s K \ ~S S •^n >v y \ \ '^ s «1 S \ "y s\ \ \ \ V^ol N> ^^. \ \ \ s \ .\ o T \ ^.v ^ , ^ s, ^Vj V s V ^ rt 0) > .\ S V s V. H \ \ \ ^' u N, \ \ \\ \ s \ \ V ^ I -u v) >y \ s sV s^ ■* ^\ \, s \ ' y / CQ s \'* \ \ ^ \| V s V )^ ?i ^ s. ^y ) s \ ^>. '• V c> s. \ ^^ ^ v^ V , \ s, 1 \ ^^ vS, \ \ ^ \ \ V V \ ^> \ ^ \V \ \. \ 02 \ ^ \v '^ \ V oi \ \ '\'^ ^ V. >^ <^^ \ \ ^r> s,*V N s \ \ V \ Y \ V> \ N^* V '' N^A \ \ \ o v^ N V ^J' "^tN s. \ ^ )\ V \, \ S V \ s ^ Ti s V \ en V ?■ ''>\ ^ ^ \ \ / \ ■Clio ■^ }^ M^ y \ y V y \ ?l: ■/ \1y y V \ \ 1 \ ?1 ?.? '^'S \^ X y \ ? h Oi oo vj ^ o ■" -"^^ V \, \ J \« ty "^^^^ VV \ ^ ' ''< ^ \ V^ \ ^ _g V7 ^ \ 1 V i \c \ (5 [t] -^^ $\ V\ \ y \ ?! c o tvS ^ !vv \ \ ^ ^ Q c « 9i 8 ?r 5^ ?s ^t ?{2 g ''^ \ V V kl \ f^ \ 3 o ^ \ \ f<*^ s O ^a ^ "?£ i^ o ys ^S i^ \ \ V \ ^ -fl ^f^ '^ V V \ ^ 7^ •s ^ 'Jh \ \ ^ \ t \ ft p r- n tn V ,\ , \ \ p m h ^-^ t - A e ^ _ ^ ^ V - h h T H H H. ^ R ^ ?R SSIc ?s S 3 \ k* v^ V \ 53 ^ e^ cor f* iO c- a uOj a> m >v v^ \ \ ^ o CS g(/J 1 Si ^ Wl C L| Q S y\ \ ■=3 r~ rt \ V V \ L. . Li i ^ £^_ - rv" ^ "^ ?3 c o '>< o o o Q, M f^ c3 P .9 00 K W o 000 g 3 ;4 «9 oo TABLES AND DIAGRAMS 229 - 1 r ~ AW ■' ■ bll H O. - r- o. . o- ^ HI V If ) ■^ »- 0) U 0) 0)0 S a' mi-l ' ' 1 1 , i 1 ' I \ 1 L \ 1 1 \ I ■ \ 1 1 V \ \ \ \ \ \. 1, [ \ \ \ \ ^ \ \ I ani'- T X 10 TlT3JtHT3« - s '\ s \ \ \ \ s. \ \ > ) \ h \ s \ ^ \ \ V \ \ \ S \ \ > V \ \ \ V i \ \ \ ^ ) \ y \ 1 ^ ' - (11 i?, r^ j ii ' 1 Qi / 1 ^'1 / i / 3 ' 1 / "^1/ 1 / '^1 ' y -p 1^ 1 pl* 1 ^^ ^ e 3 c * O — > c -> c -A -1 ,VM U>| .'^ 'P M'l n c e % u 5 c c 3 vj u \ • o • fit o be .a M n, ,CJ O o3 ^ ^^ M o • i I o 00 O Id g a, 1— I ^ -^ 03 d, p. ^ Oh >^ •ao" I § < o r- r " " ' r~ ' r 'rx^ 1 1 - 1 1 dT* o o p °. 6 f^l ;^ y ^ / k V ^\ ^, h?' '^1 1 / 1 p / I 1 1 ^^i / j / I / ^J / 1 / / f 1 1 / ^t / I 1 ' SI / y / r? / i / / J ' / ' \ i Or / y 1 i / b f { ' / 1 j ' :yi / y { 1 I 1 ^ / / / 1 1 1 1 r i 1 1 f I j / 1 i I / j / i 1 / 1 / ' / 1 / / 1 ' 1 / 1 / 1 1 f / / / I 1 1 / ' / f ' / 1 / / f / i / 1 / f 1 f 1 y / / / f i\ / / t f f / / 1 / f / / / j / f / ' ' 1 f ' / / / / f 1 1 / / / ' t / / f r t ' / / f t / / f / / / / f / / / / f / / / / / Y / / f 1 f / / / / / / / / / / > / / / / / / / / r V / / r / / / / / / , / / / / / z' / /' / / / ^ y /" / / / / ^ ^ y / / ^ / ,^ •^ ^ ^ ^ X' /' ,/ / y / ^ «: IH ^ ^ £ ■^ ^ ^ ^ ^ ^ ^ y , J o P5 •+3 o3 !-< O m w CO Ph PQ .a O c3 > Id B -^^ a; o3 ri OS r^ '-I '§^^ 02 C!5 5 bc s .a >i O 230 HANDBOOK OF THERMODYNAMIC -1-=' o3 p^ "~ ' ~ 7 1" / 1 \ / / / 1 / 1 1 ' / / / 1 1 / / / / / 1 / / i 1 / . <% f 1 j ^/ f 1 / ^"/ f y 1 / ^1 / / / / ^ / 1 ' / / .^z f / .^'y ' t f 1 ^ /. / / j\ 1 / ^^ ^'^ / / f / / <^ i"*^"^ / / t f / 1 r^ / / / / ,^ ^ / / f / / y / / J 1 -^ ^ (^ / / ( ^ X y f / / ^ ^ / / / / 1 ^ ^ c^ / / / ^ r^ ^ /^ V o / i 1 ^' '' x^ / <^4 / / -^ "' ^ X / 7 .°y ^ L^ / / W i** ^ / / / ^ ^ / / ^ / ^ ^ ^ / / / ^ -1 il -1 J i^ ^ L / o ^ O o > o ^ o o '73 0) r^' OJ o3 ^S c3 oi^Ba 00 -Q W) INDEX (Numbers refer to pages) Absorption of air in water (Winkler), table of, 60 of gases by liquids, table of, 60 Accuracy of Marks and Davis tables, 2 Adiabatic expansion of steam, values of s, table, 14 Air, absorption of in water, table of, 60 and steam flow, charts of, 216, 217 and water vapor, dew point, chart of, 176 flow, coefficient of friction for, in ducts, chart of, 220 values of C for, table of, 113 gas, blast-furnace, composition of, table, 99 mixtures, best calorific properties of, table, 107 explosive, limits of proportion, table of, 108. required for combustion, table of, 61 velocity of, in pipes, chart of, 219 Alcohols, vapor pressure of, chart, 175 Altitudes and barometric pressures, 8 Ammonia, gas, Mollier diagram for, 226 pressure-temperature relations, for satu- rated vapor, chart of, 165 refrigerating effect per pound, chart, 222 solutions, table of relations of, 54 tables of properties of, how derived, 3 T4> diagram for, 225 vapor, properties of saturated, table of, 41 water solutions, table of partial pres- sures, 58 relation between temperature and per cent NH3 in solution chart of, 180 relation between total pressure and per cent NH3 in solution, chart of, 179 relation between total pressure and temperature, chart of, 178 work absorbed in refrigeration by, charts of, 229 Atomic weights, international, table of, 34 Average distillation, products of, crude mineral oils, table of, 90 Balance, heat, for locomotive boiler, diagram of, 188 Barometric heights, altitudes and pressures, tables of, 8 pressure, how used, 1 Baume specific gravity scale, table of, 19 Bituminous gas coal distillation, products of, table, 95 Blast-furnace gas and air gas, composition of, table, 99 Boiler efiiciency, influence of various factors on, charts, 189, 190 flue gases, composition of, table, 106 horse-power, evaporation per hour, chart of, 187 locomotive, heat balance for, diagram of, 188 Boiling points, table of, 32 Brayton gas cycle, thermal efficiency, heat and fuel consumption, charts of, 210, 211 use of diagrams, 150 Brine, sodium chloride, specific heat of, table, 25 British thermal unit (B.T.U.) vlaue of, 2. of steam and gases, variation of with temperature, chart, 185 Calcium chloride, freezing points, table of, 19 Calorific power and composition of coals, table of, 70 of hydrocarbon oils, table of, 90 of mineral oils, table of, 89 properties of best air-gas mixtures, table of, 117 Carbon dioxide, Mollier diagram for, 227 pressure-temperature relations for satu- rated vapor, chart of, 166 refrigerating effect of, per pound, chart of, 223 tables of properties of, how derived, 3 vapor, properties of saturated, table of, 50 work absorbed in refrigeration by, charts of, 230 Carnot steam cycle and derivatives. Ther- mal efficiency and heat consump- tion, charts of, 200, 201 use of charts, 149 work and jet velocity, charts of, 202, 203 Cellulose and wood, comparison of, table, 69 Centigrade and Fahrenheit temperatures, table of, 16 Charts, construction and use of, 139-150 Chemical compounds, heats of combustion of, 63 Chimneys, dimensions of, by Kent's for- mula, table, 130 relation of diameter to horse-power, chart of, 221 construction of chart, 150 Classification of coals by gas and coke quali- ties, table of, 87 new basis of, 4 231 232 INDEX CO from CO2, rate of formation, table of, 106 Coals, classification of by gas and coke qualities, table of, 87 combustible and volatile of, table of, 78 combustion, rate of, table, 119 new basis of classification of, 4 new table of chemical and thermal prop- erties of, 3 powdered, producer gas, composition of, table, 116 rate of combustion of with draft, dia- gram of, 186 table of composition and calorific power of, 70 Carnot gas cycle, thermal efficiency, heat and fuel consumption, charts of, 210, 211 use of diagrams, 150 Coefficient of cubical expansion of liquids, table of, 26 of friction for air in ducts, chart of, 220 of heat transfer, table of, 62 of linear expansion of solids, table of, 25 of pressure rise of gases and vapors, constant volume, table of, 27 of radiation, table of, 61 of volumetric expansion of gases and vapors, constant pressure, table of, 26 Coke oven, and retort coal gas, composition of, table, 94 United States, composition of, table, 98 Combustible and volatile of coals lignites and peat, table of, 78 Combustion, air required for, table of, 61 heats of, table of, 63 of coal, rate of, table of, 119 rate of with draft, chart of, 186 Complete-expansion Otto, gas cycle, thermal efficiency, heat and fuel consump- tion, charts of, 210, 211 use of diagrams, 150 Common logarithms, 132, 134 Composition and calorific power of charac- teristic coals, table of, 70 of blast-furnace gas and air gas, table of, 99, 104 of boiler flue gases, table of, 116 of coke oven and retort coal gas, table of, 94 of hypothetical producer gas from fixed carbon, chart of, 183 of natural gases, table of, 91 of oil producer gas, table of, 113 of powdered coal, producer gas, table of, 116 of producer gas, table of, 108 of United States coke, table of, 98 of water gas, table of, 113 Compound engines, equal distribution of work in, chart of, 161 Compression gas cycles, thermal efficiency, heat and gas consumption, charts of, 207-211 work and m.e.p., charts of, 212, 213 Compressibility of gases, table of, 82 Compressor cylinder displacement for given capacity, chart of, 159 Compressors, one, two and three stages, mean effective pressures of, charts of, 154 Conductivity, thermal, table of internal, 65 table of relative, 68 Constant, gas, values of R, table of, 28 pressure and constant quality lines for steam with T(i> diagram, 194 volume, gases and vapors, coefficient of pressure rise of, table, 27 lines for steam on the T^ diagram, 191 construction and use of diagram, 147 Constants for the curve PF" = K, table of, 13 for use in Heck's formula for missing water, table of, 18 Construction and use of charts, 139-150 Consumption, fuel, Brayton gas cycle, charts of, 210, 211 Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling, 206, 208 gas, and thermal efficiency, non-com- pression cycles, charts of, 204 heat, and thermal efficiency, Carnot steam cycle, charts of, 200, 201 Rankine cycle, steam, charts of, 196, 197 Conversion table, heat and power, 7 inches of mercury to pounds per square inch, 10 of units of distance, 5 of power, 7 of pressure, 6 of surface, 5 of volume, 5 of weight and force, 5 of work, 6 Crank angle and piston position, table of, 11 Critical point, table of, 30 Crude mineral oils, average distillation, prod- ucts of, table, 99 Cubical expansion of liquids, coefficient of, table, 26 Cylinder, compressor, displacement for given capacity, chart of, 159 Densities, equivalent gas, at different pres- sures and temperatures, chart of, 164 of gas, comparison of experimental and computed values, table of, 29 Density and specific volume of ammonia- water solutions, chart, 224 of the liquid (steam), chart of, 171, 172 Determination of m.e.p. for single-cylinder engines, chart of, 160 construction and use of chart, 144 Dew point for air and water vapor, chart of, 176 ^ INDEX 233 Diagram factors for Otto-cycle gas engines, table of, 122 to give economy of exponential cycles referred to isothermal, chart of, 158 Diesel gas cycle, work and m.e.p. for various amounts of heat added, chart of, 215 thermal efficiency, heat and fuel con- sumption, charts of, 210, 211 use of diagrams for, 150 Dimensions of chimneys by Kent's for- mula, table of, 130 Displacement for given capacity of compres- sor cylinder, chart of, 159 Distance, units of, conversion table, 5 Distillation, average, products of crude min- eral oils, table of, 99 of gasolenes, fractional, chart of, 182 of kerosene and petroleums, fractional, chart of, 181 Distillates, vapor pressures of, chart of, 173, 174 Distribution of work, equal, in compound engines, chart of, 161 Draft, rate of combustion with variation in, diagram of, 186 Economy of exponential cycles referred to isothermal, diagram of, 158 Efficiency, boiler, influence of various factors on, charts, 189, 190 volumetric, of compressors, chart of, 154 Empiric and rational formulas for air and steam flow, charts of, 216, 217 Engine, see under separate headings, steam and gas cycles. Engines, Otto cycle, mean effective pressure factors for, tables of, 124 steam, and turbine efficiency factors, table of, 115 Entropy diagram, total heat for steam, Mollier, 195 -temperature and PV relations of gases, chart of, 193 diagram with constant pressure and constant quality lines for steam, 194 for ammonia, diagram of, 225 for carbon dioxide, diagram of, 227 for steam, diagram of, 194, 195 Equal distribution of work in compound engines, chart of, 161 construction and use of chart, 144 Equivalent gas densities at different pres- sures and temperatures, chart of, 164 Ericsson gas cycle, thermal efficiency, heat and fuel consumption, charts of, 207, 209 use of diagrams, 150 Ethylenes and naphthalenes from Russian petroleum, table of, 88 Evaporation, factor of, chart of, 187 of locomotive boiler, heat balance of, diagram, 188 per hour, per boiler h.p., chart of, 187 Expansion and compression, tabular values for, PF« = K, 13 cubical of liquids, coefficient of, table, 26 linear of solids, coefficient of, table, 25 volumetric of gases and vapors at con- stant pressure, coefficient of, table, 26 Explosive air-gas mixtures, limits of propor- tion, table of, 118 Exponential cycles referred to isothermal, diagram to give economy, 158 gas changes, charts of, 192, 193 construction of charts, 147 Factor of evaporation, chart of, 187 Factors, efficiency, piston steam engine and turbine, table of, 126 Fahrenheit and Centigrade temperatures, table of, 16 Feed temperature and heat per pound of steam, chart of, 187 Fixed temperatures, tables of, 15 Flow change resistance factors, table of, 125 Flue gases, boiler, composition of, table, 106 Force and weight, conversion table of units of, 5 Formation of CO from CO 2, table of, 106 Fractional distillation of gasolenes, chart of, 182 of kerosenes and netroleums, chart of, 181 Fractionation tests of gasolenes, table of, 102 of kerosenes and petroleums, table of, 100 Freezing, or melting points, table of, 34 point of calcium chloride, table of, 19 Friction, coefficient of, for air in pipes and ducts, chart of, 220 Fuel consumption, Brayton cycle, charts of, 210, 211 Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling, 206, 208 elements, heats of combustion of, table, 63 liquid and gaseous, boiling points of, table, 33 table of composition of coals, 70 Fusion, latent heats of, table of, 31 Gas, air-, mixtures, best, calorific properties of, table of, 117 and air gas, blast-furnace, composition of, table, 104 and oil engines, heat balances of, table, 123 changes, exponential, charts of, 192, 193 coal distillation, bituminous, products of, table of, 99 constant, R, table of, 28 consumption of, and thermal efficiency, non-compression cycles, charts of, 204 234 INDEX Gas, Bray ton cycle, charts of, 210, 211 Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling cycle, charts of, 206, 208 cycles compression, work and m.e.p. charts, of. Bray ton, 210, 211 Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211, 215 Ericsson, 207, 209 Otto, 210. 211, 214 Stirling, 206, 208 thermal efficiency, heat and fuel con- sumption, charts of. Bray ton, 210, 211 Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling, 206, 208 non-compression, thermal efficiency of, charts, 204 work and m.e.p., charts of, 205 densities equivalent at different pres- sures and temperatures, chart of, 164 comparison of experimental and com- puted values of, table of, 29 engines. Otto cycle, diagram factors for, table of, 122 from fixed carbon, heats of reaction for hypothetic producer, chart of, 184 composition of hypothetic producer, chart of, 183 oil producer, composition of, table, 113 pressure-temperature-volume relations, charts of, 192 producer, composition of, table, 101 tests, table of, 114 PV and T(f) relations, chart of, 193 water, composition of, table, 113 Gases, absorption of by liquids, table of, 60 and vapors at constant volume, pres- sure rise of, coefficient of, table, 27 at constant pressure, coefficient of volumetric expansion, table of, 26 boiler flue, composition of, table, 116 compressibility of, table, 28 natural, composition of, table, 91 relation between temperatures and heat, chart of, 185 specific heat of, chart, 162; of table, 22 Gasolenes, fractional distillation of, chart of, 182 fractionation tests of, table of, 102 vapor pressure of, chart of, 173 Harter's weight of flow, superheated steam, chart of, 218 Heat and fuel consumption, compression gas cycles, charts of, Bray ton, 210, 211 Carnot, 210, 211 Heat and fuel consumption, complete-expan- sion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling, 206, 208 and gas consumption, and thermal efficiency, non-compression gas cycles, charts of, 204 and power conversion table, 7 and temperatures, relation of, for gases, chart of, 185 balance for locomotive boiler, diagram of, 188 balances of gas and oil engines, table of, 123 consumption and thermal efficiency, Carnot steam cycles, charts of, 200, 201 Rankine cycle, (steam), charts of, 196, 197 latent, steam, chart of, 169 of fusion for various substances, table of, 31 of vaporization for various substances, table of, 31 of the liquid, steam, chart of, 168 per pound of steam above feed tem- perature, chart of, 187 specific of gases, chart of, 162; table of, 22 of liquids, table of, 24 of solids, table of, 20 of superheated steam, 2; chart of, 163 supplied and work, compression gas cycles, chart of, 214, 215 total entropy diagram for steam, Mol- lier, 195 steam, chart of, 170 transfer, table of coefficients of, 62 unit of, 2 Heats of combustion of fuel elements and chemical compounds, table of, 63 of reaction for hypothetical producer gas from fixed carbon, chart of, 184 Heck's formula for missing water, 18 Horse-power of chimneys, diameter for, charts of, 221 per pound m.e.p., table of, 12 per 1,000 cu. ft. per minute supply pressure gas, for single-stage com- pressors, chart of, 151 for two-stage compressors, chart of, 152 for three-stage compressors, chart of, 153 construction and use of chart for single-stage, 139 two-stage, 140 three-stage, 140 Humidity and weight of moisture, cubic foot saturated air, chart of, 177 construction and use of chart, 145 Hydrocarbon oils, calorific power of, table, 90 Hydrocarbons, vapor pressure of, chart of, 173 Hyperbolic logarithms, 136 I INDEX 235 Hypothetical producer gas from fixed car- bon, composition of, chart of, 183 heats of reaction of, chart, 184 Ignition temperatures, 3; tables of, 30 Inches of mercury to pounds per square inch, conversion table, 10 of water, theoretical draft pressure, table of, 117 Indicator card, missing water from, 18 Internal thermal conductivity, table of, 65 International atomic weights, table of, 34 Isothermals, compressibility of gases by, table of, 28 Jet velocity and work, Carnot steam cycle, charts of, 202, 203 Rankine, cycle (steam), charts of, 198, 199 Kerosene and petroleums, fractional distil- lation of, chart of, 181 fractional tests of, table of, 100 Kerosenes, vapor pressure of, chart of, 174 Latent heats of fusion, table of, 31 of vaporization, table of, 31 of steam., chart of, 169 Lignite, composition and calorific power of, 75, 77 Lignites, combustible and volatile of, 83, 85, 86 Limits of proportion for explosive air-gas mixtures, table of, 118 Linear expansion of solids, coefficient of, table, 25 Liquid and gaseous fuels, boiling points of, table, 33 Liquids, absorption of gases by, table of, 60 coefficient of cubical expansion of, table, 26 specific heats of, table, 24 Logarithms to the base e, 136 to the base lo, 132, 134 Marks and Davis' steam tables, 36, 40 Maximum work and supply pressure, chart of, 156 Mean B.T.U. value of, 2 effective pressure and h.p., table of, 12 and maximum work, chart of, 156 and work non-compression gas cycles, chart of, 205 Diesel cycle, for heat added, chart of, 215 Otto cycle, for various amounts of heat added, chart of, 214 compression gas cycles. Bray ton, ' Carnot, Diesel, Otto and complete- expansion Otto, charts of, 212, 213 Mean effective pressure, determination of, for single cylinder engines, chart of, 160 factors for Otto cycle engines, table of, 124 of compressors, one, two and three stages, charts of, 154, 155 construction and use of charts, 140 Melting or freezing points, table of, 34 Mineral oils, calorific power of, table of, 89 crude, average distillation, products of, table of, 99 properties of, table of, 92 Missing water, Heck's formula for, 18 Moisture, weight of, per cubic foot of satu- rated air, chart of, 177 Mollier diagram for ammonia, 226 for carbon dioxide, 227 total heat entropy diagram for steam, 95 Multi-stage compressors, mean effective pressure of, chart of, 154 Napierian logarithms, 136 Napier's coefficient of steam flow, chart of, 218 Naphthalenes from Russian petroleum, table of, -88 Natural gases, composition of, table, 91 Non-compression cycles, thermal efficiency, heat and gas consumption, charts of, 204 use of diagrams, 149 work and m.e.p. chart of, 205 Oil and gas engines, heat balances of, table of, 123 Oil gas, properties of, table of, 90 producer gas, composition of, table of, 113 Oils, hydrocarbon, calorific power of, table of, 90 mineral, calorific power of, table of, 89 crude, average distillation, products of, table of, 99 properties of, table of, 92 Otto-cycle gas engines, diagram factors for, table of, 122 mean effective pressure factors for, tables of, 124 thermal efficiency, heat and fuel con- sumption, charts of, 210, 211 use of diagrams, 150 work, and m.e.p. for various amounts of heat added, chart of, 214 Paraffines from Pennsylvania petroleum, table of, 88 Parr's psychrometric diagrams, 176, 177 Peat, composition and calorific power of, 77 combustible and volatile of, 86 Petroleum and kerosene, fractional distilla- tion of, chart of, 181 distillates, vapor pressure of heavy, chart of, 174 ethylenes and naphthalenes from, table of, 88 kerosenes, fractionation tests of, table of, 100 light, vapor pressure of, chart of, 173 paraffines from, table of, 88 Pipes, velocity of air in, chart of, 192 Piston positions for any crank angle, table of, 11 236 INDEX Pitot tube readings and velocity of air, chart of, 219 Pounds per square inch to inches of mercury, conversion table, 10 Power and heat, conversion table, 7 (h.p.) and m.e.p., table of, 12 units of, conversion table of, 7 Pressure, barometric, table of, 8 constant of steam, with T^ diagram, 194 in inches of water, theoretical draft, table of, 131 mean effective, for compressors, one two and three stages, chart of, 154 rise, of gases and vapors at constant volume, coefficient of, table, 27 temperature, relations for saturated vapor, carbon dioxide, chart of, 166 for saturated vapor of ammonia, chart of, 165 steam, chart of, 16, 167 volume relations of gases, charts of, 192 units of, conversion table, 6 vapor of heavy petroleum distillates, chart of, 174 of hydrocarbons, chart of, 173 volume and T0 relations of gases, chart of, 193 ratios, constants for, table of, 13 values of, for gases, various condi- tions, table of, 28 Pressures, interpretation of, 1 Producer gas, composition of, table of, 108 from fixed carbon, composition of hypo- thetical, chart of, 183 hypothetical from fixed carbon, B.T.U., heats of reaction, chart of, 184 powdered coal, composition of, table of, 116 tests of, table of, 114 Products of bituminous gas coal distillation, table of, 99 of crude mineral oils, average distilla- tion, table of, 99 Properties of ammonia and carbon dioxide, tables of, how derived, 3 of mineral oils, table of, 92 of oil gas, table of, 90 of saturated carbon dioxide vapor, table of, 50 ammonia vapor, table of, 41 steam, table of, 36 of superheated steam, tables of, 40 Psychrometer readings, chart of, 176. Con- struction and use of chart, 145 Quality, constant steam, lines of with T<^ diagram, 194 R, gas constant, table of, 28 Radiation coefficients, table of, 61 Rankine cycle (steam) thermal efficiency and heat consumption, charts of, 196, 197 use of charts, 148, 149 work and jet velocity, charts of, 198, 199 Rate of combustion of coal with draft, dia- gram of, 186 table of, 119 of formation of CO from CO2 and car- bon, table of, 106 Rational and empiric formulas, air and steam flow, charts of, 216, 217 Reaction, heats of, for hypothetical producer gas from fixed carbon, chart of, 184 Refrigerating effect per pound ammonia, chart of, 222 carbon dioxide, chart of, 223 Refrigeration, work absorbed in by am- monia, charts of, 229 by carbon dioxide, charts of, 230 Relative thermal conductivity, table of, 68 work of two-stage compressors, com- pared to single-stage, chart of, 157 Resistance factors, flow change, table of, 125 Retort coal and coke oven gas, composition of, table of, 94 s values of for adiabatic expansion of steam, table of, 14 for various substances and conditions, 15 Saturated ammonia vapor, properties of, table, 41 carbon dioxide vapor, properties, table of, 50 steam, table of properties of, 36 Single cylinder engines, determination of mean effective pressure in, chart for, 160 -stage compressors, horse-power per 1,000 cu. ft. per minute supply pressure gas, chart of, 151 work per cubic foot supply pressure, chart of, 151 Sodium chloride brine, specific heat of, table, 25 Solids, coefficient of linear expansion of, table of, 25 specific heats of, table, 20 Solutions, ammonia-water, relation between total pressure and per cent NH3 in solution, chart of, 179 relation between total pressure and temperature, chart of, 178 between temperature and per cent NH3 in solution, chart of, 180 table of relations of, 54 of partial pressures, 58 Specific gravity scale, Baume, table of, 19 heat of sodium chloride brine, table of, 25 of gases, chart of, 162; table of, 22 of liquids, table of, 24 of solids, table of, 20 of superheated steam, 2; chart of, 163 volume and density of the liquid, (steam), chart of, 171, 172 Stack, see Chimney. Steam, adiabatic expansion of, values of s for, table of, 14 and air flow, charts of, 216, 217 INDEX 237 Steam, consumption of, and thermal effi- ciency, Carnot cycle, charts of, 200, 201 Rankine cycle, charts of, 196, 197 engine (piston) and turbine efficiency factors, table of, 126 piston position and crank angle, table of, 11 expansion and compression of, tabu- lar values for given ratios of PV, 13 flow, curves of for superheated steam, 218 heat of the liquid, chart of, 168 heat per pound of, above feed tempera- ture, chart of, 187 latent heat, chart of, 169 pressure-temperature, chart of, 167 relation between temperatures and heat, chart of, 185 saturated, table of properties of, 36 specific heat of, 2 specific volume and density of the liquid, chart of, 171, 172 superheated, table of properties of, 40 specific heat of, chart of, 163 tables, saturated 36; superheated, 40 thermal efficiency and heat consump- tion of (Rankine cycle), charts of, 196, 197 (Carnot cycle) charts of, 200, 201 total heat, chart of, 170 entropy, diagram for, MoUier, 195 work per pound of and jet velocity (Carnot cycle), charts, 202, 203 Rankine cycle, charts of, 198, 199 Stirling gas cycle, thermal efficiency, heat and fuel consumption, charts of, 206, 208 use of diagrams, 150 Superheated steam, flow of, chart of, 218 properties of, table of, 40 specific heat of, 2; chart of, 163 Supply pressure and maximum work, chart of, 156 construction and use of chart, 141 Surface, units of, conversion table, 5 Symbols, table of, xv Table of symbols, xv Tables, see list of, pageix; also under sepa- rate headings. Temperature-pressure, relations for am- monia saturated vapor, chart of, 165 relations for carbon dioxide saturated vapor, 166 for steam, chart of, 167 volume relations of gases, charts of, 192 Temperatures and heat, relation of for gases, chart of, 185 construction of chart, 146 Temperatures, Centigrade and Fahrenheit, table of, 16 fixed, table of, 15 of ignition, 3; table of, 30 Thermal conductivity, table of internal, 65 table of relative, 68 Thermal efficiency and heat consumption, Rankine cycle (steam), charts of, 196, 197 Carnot steam cycle, charts of, 200, 201 heat and fuel consumption, adiabatic compression cycles, use of diagrams, 150 Thermal efficiency, heat and fuel consump- tion, Brayton cycle, charts of, 210, 211 Carnot cycle, charts of, 210, 211 complete expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 Stirling, 206, 208 non-compression gas cycles, charts of, 204 Theoretical draft pressure in inches of water, table of, 131 T<^ and PV relations of gases, chart of, 193 T(j> diagram and constant-volume lines, 191 for ammonia, 225 for carbon dioxide, 227 with lines of constant pressure and quality for steam, 194 construction and use of diagram, 148 Three-stage compressors, horse-power of, chart of, 153 work of, chart of, 153 Transfer of heat, table of, coefficients for, 62 Turbine and piston engines efficiency factors for, table of, 126 Two-stage and three-stage compressors, compared to single-stage, chart of, 157 Two-stage compressors, horse-power of, chart of, 152 work of, chart of, 152 Unit of heat, 2 Units of distance, conversion table of, 5 of heat and power, conversion table, 7 of power, conversion table, 7 of pressure, conversion table, 6 of surface, conversion table, 5 of velocity, table, 7 of volume, conversation table, 5 of weight and force, conversion table, 5 of work, conversion table, 6 United States coke, composition of, table of, 98 Use and construction of charts, 139 to 150 Values of C for air flow, table of, 125 of the gas constant, R, table of, 28 of 5 for adiabatic expansion of steam, table of, 14 for various substances and condi- tions, 15 of X for use in Heck's formula for missing water, 18 Vapor pressure of the alcohols, chart of, 175 of heavy petroleum distillates, chart of, 174 238 INDEX Vapor pressure of hydrocarbons of the gaso- lene class, chart of, 173 Vaporization, latent heat of, table of, 31 Velocity of air in pipes, chart of, 219 units of, table of, 7 Volatile and combustible of coals, lignites, and peat, table of, 78 Volume, pressure and T