cº-º-º-º-º-º-º-º-º----- | | } | | || | } {, } *: < …;…ºvº |}izsaur, H cºº º ſº ºr ºf ººz - Wºº. II: º º Cº- : = # f | ſ 3. †† TELE GIFT OF Mr. David Molitor | | i i i i Si-ºji 9:43: : ":43, #4 !º: *k, §§ | } ;:- g: ; ; f i t | : i | |- . f ERRATA. Page 38, second formula, in left hand column, should read y – Varažjºſ”. Page 70, second line, should read “the black which is to be painted '' instead of “the flat which is to be painted.” ^ Page 85, eleventh line, should read “uneven number of panels'' instead of “even number of panels.” {}AVHD A/ (OHLſ TG º ENGINEERING i LIBRARY 7T23- /&T/ 2 A 52- AMERICAN BRIDGE COMPANY Ar s º * J - ſ' Q & , , ; ; , * ~ * &ck i * \ . (It . * C-6 Y \,...'... . . . . . . .'; … Sºº-ºº-- ſº (Pover- a J & |- º * } STANDARDS FOR STRUCTURAL DETAILS 1901 ENGINEERING DEPARTMENT, C. C. ScHNEIDER, Vice-A’resident PAUL L. WolfEL, Chief Engineer NOTE. All shapes are those manufactured by the A. & P. Roberts Co. Pencoyd Iron Works. - For Carnegie Steel Co.'s shapes see Appendix. • , PRE FA C E. IN order to obtain uniformity in the work done at the various plants of the American Bridge Company, it has been deemed advisable to prepare a system of standards for use in every engi- Aneering office to asssist the engineers and draughtsmen in making g detail and shop drawings. - * These standards are the result of years of experience. They sº the progress made in the art of designing, and particular attention A has been paid to have them adapted to the latest improvements in have been revised from time to time in order to keep pace with tools used in bridge construction. They also contain such useful tables and information as will be found convenient in every engineering office where steelwork is being designed. º This present edition is a revision of former standards. Before R finally adopting the same as the standards of the American Bridge s Company, the engineers of the different plants were consulted and * their suggestions incorporated, so that these standards, as now pre- sented, are applicable to steel structures of all kinds. PENCOYD, September, 1901. d C. C. SCHNEIDER, Vice-President. PAUL L. WolfEL, Chief Engineer. CONTENTS. BEAMS AND CHANNELS. Beams, weights, dimensions, framing, etc. tºl * o “ connections for beams of different depths (framing opposite) “ connections to cast-iron columns . Channels, weights, dimensions, framing, etc. e { { weights, areas, dimensions, etc. (bridge work) . Beams and Channels, standard punching in web . Anchors - Separators ANGLES. Weights in pound per foot Actual size of legs Areas in square inches TEES. Weights, areas, dimensions, etc. Z–BARS. Z-bars, weights, areas, dimensions, etc. Z-bar columns, weights, areas, dimensions, etc. RIVETS AND BOLTS. Rivets, shearing and bearing values “ proportions and conventional signs “ lengths of field-rivets for variant grips Bolts, lengths, for variant grips “ dimensions for heads, nuts, etc. Rivets and bolts, lengths for framing beams Staggering of rivets º o Rivet-spacing in angles, clearance for driving, etc. PINS AND NUTS. Maximum bending moments on pins Pins with lomas nuts Cotter pins Pilot nuts Driving nuts EYEBARS. Ordinary and adjustable . RODS. Standard upsets for round and square bars Sleeve nuts and turnbuckles - º Looprods, allowance for eye, round and square bars Clevises . PAGE 1 and 2 5 8 3 e 4 9 and 10 6 7 11. 12 13 14 15 16 17 18 19 20 22 21 23 24 29 25 26 27 28 30 31 32 33 34 CONTENTS. FLOORING. Corrugated and Z-bar flooring Buckled plates MISCELLANEOUS. Lacing Mensuration tº Wood screws, spikes and nails Wrought-iron tubes TABLES. Ordinates for 16-foot chords Table of bevels . Natural tangents g Multiplication table for rivet-spacing e g Extreme lengths of plates (rolled by Carnegie Steel Co.) Decimal parts SAMPLE DRAWINGS. Title for bridge work “ “ building work Erection diagram for truss bridges Column schedule (buildings) Floor plan (buildings) Beam sketches tº w g is CORRUGATED STEEL WINDOWS AND DOORS. Corrugated steel . . . Ordinary window-sash Swing sash Continuous fixed sash ( ( sliding sash Counterbalanced windows Double-hung weighted windows Standard door e & * g Corrugated sheeting for buildings and roofs (description) RULES FOR MAKING SHOP DEAWINGS, General rules |Plate girder bridges Truss bridges & Office buildings, warehouses, etc. Appendix to rules for making shop-drawings Points to be observed in order to facilitate erection APPENDIX (shapes rolled by Carnegie Steel Co.). Beams, weights, dimensions, framing, etc. Channels, “ {{ { { { { Z-bars, weights, areas, dimensions, etc. Angles, weights in pounds per foot {{ areas in Square inches PAGE 36 35 37 38 39 40 41 and 42 43 . 44 45 and 46 47 48 49 51 50 52 . 53 54 to 57 58 to 60 61 62 63 . 64 65 and 66 67 and 68 , 69 70 to 77 78 to 82 83 to 85 86 and 87 88 to 91 92 and 93 94 and 95 97 and 98 99 100 101 102 BEAT1S. Weights, dimensions, framing etc., etc. b # A ſº OO & s: slº- | O 4–8–– | O | | | | 1 1 '' º: t 7. cº-É of web-Hºſ SIZE | WEIGHT GAUGE TANG'T DIST. Shiplº, # 3 # DIST. DIST . . WEIGHT SIZE OF PER FLG E. WEB R || 3: S: + PER OF BEAM FOOT g f Jø | D e3+. # 3 # STANDARD FRAMING Q || C | Foot || BEAM INCHES POUNDS NCHES NCHES INCHES INCHES INCHES NCHES, NCHES INCHES INCHES INCHES] POUNDS INCHES 100.0 7+ | #- || 4 || 20+ 1} |-} º jºo // 5 * | # 100.0 S i, D- 95.0 7-# + { { t i ". . à & º 24 5#. # 95.0 * -º-, -, - sºmeº, 24 90.0 7+ -ā- { { { % t ſ t £ 1 16 *— 5% -É. 90.0 24 85.0 || 7 || | # | | | | “ { { | f | ` 5% # 85.0 80.0 || 7 | + | | | | | | t t | g { *- 5+ | # 80.0 100.0 | 735 | + | | 16#| 1 || | # *g 5% # 100.0 95.0 6 # # { { { { { { t t S # # 95.0 sº 55.0 ||6 || | + || 3:# | 12 || 1 | # icº 2. C 5; # 55.0 Y- f 50.0 5 # + { { { % * { & f .. 5+ +; 50.0 21’’,it' 45.0 5 # # f : 12+ 1+ #; S 2. ' 11. 7 º' / º r # # +. 45.0 42.0 5 # | # | | | | | | | | | | . . 2-E 6 x 4 x is x 0-10 Wt: *7 || 5 || 4 || 42.0 * 13 1 05.0 ||6 |# 8+| 1 || 4 *::: 5#| + || 65.0 60.0 5 # # ſº f & iſ f ſº f f S # # 60.0 O *, 55.0 |5 # # . . . . . ( t | f f * Tººl- 5#| + | 55.0 50.0 |5 # | # | . . 1. 3. × - - 5+|-} | 50.0 12 * | * * | *| |3|12 |. º 12 40.0 5 + + ſ & f tº f f f f Q # # 40.0 35.0 |5 # | # | | | | 9% 1+| # // / / #| 5% # 35.0 o -18 3."x o'.7%" wº. 20 $1.5 || 5 # f : { % & 4 2-lº 6 x 4 x 16 x 0-7; Vt. # + | 31.5 * Carnegie Steel Co.'s Sect, BEATIS Weights, dimensions, framing etc., etc. © ------|x. *S-ſº--- - | SS s sº- | \}----- -y— $–-º'-3––––W. ; : ^ -----------------> - k. ; H e = | Siz E GAUGE TANG T DIST. GRIP : 3 || 2: 3 0. DIST. DIST. SIZE OF WEIGHT PLG E. WEB | # = - STANDARD FRAMING weighT or BEAM PFR FT. g t Jø | W) #3 # 3 | # (, c |* FT || BEAM INCHESTFOUNDS INCHESNCFETCHESINCEESINCEES INGESINCEES TNGHES_ |NCHES tº: P90SPS INCRES- 40.0 5; ; | 3 || 7# 1+ | # º 5% | + | 40.0 1. º 10 35.() # Tº 2% y * I' # 3. 8 5+ +; 35.0 30.0 | 4% # 1 4 S 3| 3 |80.0 |10 r º 32 | 16 x - 8 1. Tal Q 5 is is e 25.0 # # n > ; : 1 p. à º 5 # + 25.0 1 i. 9 * 85.0 4+ i. 9 p 6+ | 1 | # º 7, 8, 9, & IO // - 5; # | 35.0 9 30.0 4. # * - a y 1 n > 3. 8 Too 5 # + 30.0 9 yº 4 3 25.0 || 4 || | # 2; 7 || 1 | # 5i | + || 25.0 t 11 || 9. 5 3 21.0 4. 32 y 3 * - 1 - J 5 TG Té 21.0 * ºf 1 - * 25.5 |4; #| || 5+ | 1 || | # * 3 #| || || 25.5 8 28.0 |4}| #| " # | # # a 8 |º 5; # 23.0 8 1 20.5 |4; #| 2: . . ,, . , , || 4 d / / / // A + 5# | # 20.5 S w / ‘- a - 18.0 || 4 || 3 | | | | | | | | i. 2-&G's 4's ºxo-5 wt. 14 5+ | # | 18.0 20.0 || 3:#| | | | | 5 || 4 || # º 5% | # | 20.0 4 5 '?' | 17.5 || 3:#| # | | | | | | | | | | | 8 5* | 3 || 17.5 º' 15.0 # . 2 1 : * * * , ^ + # 15.0 17.25 || 3:#| #| 2 || 4 || + | # tºo # | # 17.25 5 6 14.75 à ā; ? I 1 - * 1 p > 3. 6 // // # + 14.75 6 12.25 || 3:#| # | . 1 * | | | | * * 35 & 6 5+ | # | 12.25 * | o 9 || 1 || 43. 3 | 5 | f_ so"... ."- ? "... a' 2" // #. 1 | 6– tºº 14.75 || 3: + | 1 || 3: 8 16 2-l: 6 x 4 x is x 0-3 for 6 Wt. 8 † iá | 14-75 -- S. // 3 12.25 # # 1 ſº 3 º tº 9 s # 6 - ‘p 2-lè 9 y o:2% 5 Wt. 7# # + 12.25 J O - * 9.75 3 # D a t * , B - >4 5+ +. 9.75 2 3 & 10.5 || 2:#| | | 1% 2+ | # | # -: 5* | + | 10.5 25 5 r". 4 9.5 2ää T6 tº tº p > * - 3 * 1. 6 `co 5:# + 9.5 + 2 1 8.5 É T y H. * . a g 2 5 + # S.5 7.5 # # 1 J ; : * ! I 5 # # 7.5 3 11 1. 3. 5 1 * 7.5 || 2 | # | 1 || || 1 | | | || 5+| + | 7.5 º - 1 3 0.5 2ä + ſº I 3 a 3 y $ in Tº 6 5 * i. 6.5 3 5.5 2 # # ſº I 1 : t e x * 5i. # 5.5 / All rivets in Standard framing angles are # diam. Weights of $ 6 $ $ “ include weight of shop rivets. 9 // When beams frame opposite each other into another beam with web thickness less than TG or where beams of Short span lengths are loaded to their full capacity, it may be necessary to use framing angles of greater Strength than the standards. See table below for minimum span lengths. º- E=== = SPAN in SPAN IN #FFF- †† SPAN | ==Firſ SPAN IN size weight|*|†," size weight|*|†"| size weight|*..." size weight"; "| size |weighiº; "| size weight|*." size weight|*|†. 24 |80.O |22.O | 18 || 70,0| 16.5 || 15 |7O.O | 18.O | 12 || 50.0|| 14 O || 10 || 35.0 | 12.O || 8 |18.0 5.5 || 5 || 9.75|| 4.0 2O |80.O 21.O | 1, 55,0| 14,O | , , |60.O. 15.5 | , , |4O.O. 11.5 ,, 25,0| 9.0 || 7 |15,O || 4,O || 4 || 7, 5 || 3.0 , , , || 65.0 | 18. O * |42.O. 11.0| " || 31.5| 9.0 || 9 |21.O 70 || 6 |12.25 6.0 || 3 || 5.5 || 2.0 Wei ights ... dim ensions f g etc tº º etc. C #. | || - - - - __{ , —S-k i F- l ; : —Al--- | ! l * *-*. i i. i. -—l | t # H. : : g --—r d | sº sº. T Lll t k 3:5 # | # _{S, t ºr INC > § : ; § H- ! H -> g- tº ES POUND § # H This le S| |NS g |- à | # * as 6” g pun 5 . . [NS * | } # sh; leg clied | 5.0 . || ||NS J. 5 : #3 H of sta Sºl | O lºse _3_ + l § ; : . 92 tij Ind © O 50.0 32 # NS. INS. Ö & 5 C g ards, | O O i º ~ * 15 |: *||*|| {NS. * | } | Q &D 5.0 5 8 2 1 |NS, e 40 0 3 # * * * * 3. . 1 # 3. - , INCHES & f % W & 17. º 4 * INC Cl *—, y 35.0 3áà # 2 12+ * * rº 3. HES S eb +4." 3 3# à | ** | # | 1=} 4. 1 § 16 : |*|| #| || || || H. as H —t- 7 g 32 13 3. 3. * £5. 40 ââ " | | | | || * | * 8 3 # C # ſ .0 5 * * * * 5 1. •% INCH li) ul 2. 3 is º 4 1. ES > 0. u ž _1 35.0 # | # * * 5 8 § { 2 fº 3# 8 * * 5 * 3 * 2#3 1. 13. POU co G 25 3#| | * 3 1; * 3 T6 3 is # ſº CHES 5.0 1 * , 3 s 3 || T 2ää 16 6 55.0 º - --- 5 § 32 11. 20.5 i. # : 1O 1 * * 1+ 2 # 16 50.0 TET –9 * 2 15. 5. 85 32 $ 3 º * * # 3. 3 * 2 # 16 8 45.0 5.0 7 § 3 * 3 4 1 # 2 # 4 30 333 -3. * * 5T + 0.0 15 IO .0 3# al s * 3 5 * 1; 8 # 25 # # * 8 3 $5 5.0 20 32 7# 1 * } 1#. .0 : ; ; | 7 || || : 3 # 33.0 e * 21 6 ºf | | | | 1. 1ää # 9. wº 9 3 1. * * * * T 6 16 4 2; # 1 8 * * | * , l 2 2 # # : 25 4 * * 1 3. $ 3 1 5.0 9 5.0 23 * * || 3 || || 1é 1 Tº 30 º 20.0 ST 17 * 5 1#. AT 3. .0 I gº 2.É. 32 * * * * } 16 1. B 25 Q 15.0 32 8– 7 1# 8 O , () asſ 13.25 2#. 5. 3 * | * * * 5 * 8 . 2 # 13. 20, 5 T6 + 8T 7. * * 3. & 7. # 4 --- * 1 8 6 85 s lº 2# | # 3| | | | * | 1. T. 30.0 1 $) 2é 2 + * * * * 1% 16 25 6.25 # | # ; | 6 1 à 3 * 5– .0 || 1 9 _* *-*. 18.75 2# | # * | 6 || 1 || $ 3 i; 㺠16 20.0 O l & * , -- pº 11.25 2#| # | | | | || 8 2 # 5. 16.0 2% 18 1# * 3 $ 3 | 6 B # | # # 6+ $ 3 21 2+ T_ 19.7 53 | " 7. 3. * } 13; 4 16 25 .75 21 * * 8 3. 4 3 * 1% 3. - 5.0 17.25 2#| # * | * 163 3% 8 20 7 .25 2 9 I6 1. * } + 1#. | 6 5 .0 14.75 # | }; # 5} 16 1. 32 2#. 10 15.0 9 2 5 * & * -º- 12.25 2# # .. $ 3 7 * 8 2 # 5. 13.25 • *, *) 2i. 8 º 3 * 13 1#. i. 8 {} 9.75 16 5. * * $ 3 § º º 2# 1 2# 16 1+ $ 4 4. 2 21.25 32 à -i. 5% * * 3 * 1 5 2 #- # • 240 15 à | ** 3. 5 8 º 18.75 .50 * * 4 3. * 1#. --- () 6 2# TET 8 * 32 3 4– 8 16.25 13.00 8 # $ 3 º * * 1#. 163 # .25 8 10 50 2 # º * * 1 $ * 16 3 6 13.75 tº 1 # * "> * 1 #. ... * * |4} | . . . * 8 2+ -; 11.25 13; 32 * } 1 9 33. # * * $ 3 5 * 32 2#. # 1 Ö 1% 3 * 1 { 6 19.75 6 1.50 2 t 8 5 5 * 5. * 3 17. 2 # # 1 75 9.00 à | } 32 5 8 : 3. 7.26 T. * 5 TG * * 13. ET 6.50 # # * # G * * * 3 # # 14.75 --- º --- 4 # | # * | | | || i; 2 # ...| ? .25 * * * * Tö 13. 5 9 pººr 6.25 13; 31. * * * 3 * 1. 7 2 iè 73 .75 5.2 #| || 1. .., | 2 | 1. 2 # # º; #| || || 2 | 33 i. 3. 15.50 --- - --- 8 3 6.0 16 * * .* + i; 3 # 13.00 5.0 1% # * * * * | 1. # Ö 2% ": 6 --- _7. * * & 11. 4.0 1 2 # 8 3. 2 $ ) 1; 2ió * .00 1# º 5 $ 3 4 * * * } 1 3. 2 : 33 s A 3 $ 4 * * 15. 2% º 11.50 * } , 4 5. 16 2 # Zir 9.0 5 * * * 2 .." 31 2 # 7 º 3 $ * 16 16 .50 92 Tā’ T. # 25. 2 5 4- 7.25 32 2 # 4. 6 2 2 # 7 3: 4 16 is 5.25 - # # 6.0 5.0 4.0 3 CHANNELS. Weights, Areas, Dimensions, etc., etc. <- - - - - - - - f.------ b 10 Fº ! -- H---------44––. t s T. S. § { | 5 < § # E | 6 || 3 || 3 || 2 || 5 || 5 || a # § 5 | ## # < 3 || 5 || § 3 || 5 || 3 || 3 | | | | | | 3 || 3 || 3 || 5 || 3 || || 5 || 3 || 3 | # #; ; à | 3 || 5 || 3: - —l Lij ºr × or S ă ă à | * | * | * | * * | | | | | | | W) |##|##| | | | | f | d ## if | * || || || 3 ; |NS SQ.. INS. INS |NS LBS, |NS. |NS, INS |NS !NS. INS INS INS |NS. |NS LBS INS |NS SQ. iNS |NS, 20.3 || 4-# | 1 || 69.0 # 2 85.1 ! # 3; 10.3 19.4|4; # 65.8 2.É. 1# 88.0 | # | 3; 9.7 > * 18.4 || 4+ | # 62.7 # 14 30.9 || || || 3:. 9.1 : | | 17.5 |4; #| 59.5 || 1 ||25 | 12 | #| || #| | | 73 1#|1} |28.7 || || 3:#| 8.5 | #: + | 16.6 || 4-# | # 56.8 # # 26.6 || || 2:# 7.8 15.6 || 4 || | # 53.1 2% ; 24.5 | # | 2: | 7.2 10 15 14.8 || 4 || 3 || 50.0 # 1}; 22.0 |# 2; 6.5 14.3 || 3:#| || || 48.6 2; 3 || 7 || 8 # , 20.0 # 2; 5.9 || – 18.4 || 3: | # 45.0 # A | Tö 1; * |17.s # 2; 5.2 # E | 19.4|8% | #| 42.2 |, |25 |,..., | 5 || 7 - + 15.0 | # 2; 4.5 || – (5 1 1 s l 12: 8 || 8 Ti 11.5 3 : '5" 39.0 5 10.5 || 3; # 35.9 2; 1#. 29.4 | # 3; 8.7 9.6 || 3; # 33.0 # # 27.5 | # 2# | 8.1 14.3 || 4 || | | | 48.5 2; 1; 25.6 |-| || 2: 7.5 : - 1 * 13.5 || 4 | # 45.7 2. #| || || 7 || 1 |* |28.7 || ||25 | 7.0 # 12.6 || 4 + | + | 42.9 # 1; 21.8 # 2; 6.4 9 5 7 - 13 11.8 || 4; # | 40.2 || 1 || 2; 10% | # | # 1#. 19.9 || || || 2: 5.8 11.0 || 4 || | | | 87.4 # 1; 17.8 # 2; 5.2 10.2 || 4; | 84.7 2.É. a | | | | | 1 |, |15.9 || || 2:#| 4.7 E 9.4|| 4 || | | 81.9 | 2+ 4 T6 || 7 || 1: * 14.0 2; 4.1 § 16.3 || 3; 1 || 55.5 + # 18.25| 4 || 2; 8.9 15.6 || 3 | # 52.9 2% # 20.8 # 2; 6.1 14.8 || 3% | | | 50.4 # 1ä | | 19.1 # 2; 5.6 : 3 || 7 || 6 - 14.1 || 3 || || || 47.8 2. Z! | 16 # | ** | 17.4 #| 2; 5.1 # * 13.3 || 3:.., | | | 45.8 1 # 3 || 7 1; 15.7 | | | 2; 4.6 8 à | 12.6 || 3: | | | 12. *||25 | * | * | * 3 14.0 | }. 2} | 4.1 T e 8 ld o 16 b e 183 2. 4. H. 3 3 r: º 11.8 || 3 || || || 40.2 * # à || 6 || 1 , || 1 , |12.8 || 3 || 23, 3.6 || 5 12 11.1 || 3 || | | | 87.6 2. 1% 11.25| # | 2 || || 3.4 || – 10.8 || 3:. . ; 85.1 2 9.6 || 3 || || || 32.5 # 8.7 | 3% | # 29.4 7. These weights are used in Bridge Worlº e 33 || 2 | * ~ * 8 for clords, posts, etc. H 7.9 # | | | 26.9 1; When ordering from Mill give weight - r t 1 3 and Section of [. I 7.2 # 3. 24.3 1. 3. - - l]] ( sº ol f f CD 3ää i. & # 10 2 || 4 3 - 12" x 26.9"C (Light Section) 23- 4." - 5 — 6.4 2; # 21.8 1; , 6.0 || 2:#| # 20.5 ; BEAris. Connections for beams of different depths. (framing opposite) - f/ Set back # for - 50"and OVer DOO - 15"and 12" - 12"and 10" - - 10"and 9” 12"and 9” 10"and 8" 12"and 8" 9"and 8" 15"and 10" 10"and 6." 15"and 9" 9 and 6." 15"and 8" - 8"and 6" g Cut Ls 34 for 50t Cut Ls 34 for 50+ - - and over. P/ f / and over. // • ‘’ f/ // I5 &nd 7 12 aAvol 7 10 aaval 7 // 9"and 7 8"and 7" * = - - - - - --> | / A ,-- - * TJse standard gauge (2% ) in connection Lº On beam with lightest web. | º // | The first hole in connection Lº is 3# from bottom of beam in all Cases | | - /? - º * © - except when a 7" beam frames opposite in which case the Con- Hº-------> nection is special. ANCHORS Anchor "1 # Round, length 2' 0" tº Anchor" 2 2 Lº 6% G", #2 0' 8"Bolted infield, #"Bolts. | | at's at e | \Sº/ \ky; *s * A / | ...]_0|| (fi) ſºn - UUUUUU Q) - # Anchor " 3 #"Round, length 1' 0" 8" x #"Flat 1, 1' 1" } Bolted infield, #“Bolts, Anchor H. 4 #"Bolt. Plain, square washer or Cast Iron Rosette. % IHacked Bolt. Size nud length of bolts variable. % % % % % A. Expansion Bolt. In ordering, give Metal to be fastened, also Dlam. and length of Bolt, Split Bolt. T’unch holes #" larger than size of bolts. 6 SEPARATORS. All Dimensions in Inclies. -—— X - ---Eſ | Cast IrOn ſ-–2- S. S; } S. ----|-- : | | t | !--—Y ! - —- Y Tº | y | | ºr . 13 k. ... H. T k K-------H. - - - - - - & K -> STANDARD DIMENSIONS WEIGHTS - S|ZE - -- SIZE DISTANCE MIN, WIDTH LENGTH INCR, IN WT. R. IN WT, OF BETweBN OF OF THickNEss OF SEPARATOR BOLTS º º OF BEAM HOLES sEPARATOR SEPARATOR SEPARATOR ea ser, AND For 1" ADDIT'L BEAM JD Jy L T sPREAD of I NUTS SPREAD of I 24 12 6# 20 + 28,OO 4.50 2.84 ,248 24 20 12 6 16 { { 23.OO 3.2O 2.70 “ 20 18 9 5+ 14 { % 21.00 2.75 2.60 § { 18 15 7; 5; 11% # 14.75 1.80 2.40 { % 15 12 5 5 8#. { { 9.75 1,50 2.28 \ { 12 10 One Hole 4+ 7; { % 6.50 1.25 1.08 .124 IO 9 { { 4+ 6# { % 5.75 1.10 1.04 ū (, 9 8 { { 4 5#. { { 4.50 1.OO 1.01 § { S ; { % 3; 5 $ 4 3.75 .75 O.95 { % 7. 6 { % 3+ 4; § { 2.25 .6O O.93 { % 6 BoIts * Cliam. Beams should be t K-4------> (O) ----|--~~~ Gas-pipe -—3–l--------------- STANDARD DIMENSIONS WEIGHTS S|ZE - SIZE OF MIN. LENGTH NOMINAL |NCR. iN WT. #NCR. IN WT. OF DIAMETER OF SEPARATOR BOLTS OF BOUT OF BEAM SEPARATOR OF PIPE SEPARATOR tf AND fu BEAM FOR 1 ADDIT'L FOR 1 ADDIT'L L d spaeAD of I NUTS spread of I 35 3 # .28 .1 .9 ,124 3. 4 # $ $ .26 $ $ .87 § { 4. 3 2+ * { .21 § { .82 { % 3 º ff & Bolts # diam. Z2" in- le • •» +\ H^ eºº * rºſº Z.6 -/a/ | 1?';F -2-5-ș%• -- ،ſºſ-ſý| ...ºķzo, •| | | |, !_ºff/ (\]* 1*$'), [[--| №ſ №t:±±|||213 !i ;t || „“ZZ Tº z.e-lº-y #####ż: Z.Q/-/º:/ ·ſ·r·eſſ -- | 11 * --- | {{ſ(ſl) || – ~--~~~~ 103.9" * ---- - - - -;-) bºs:? * All webs on lugs to be 34// thick. When the metal in the Shaft Of the Column is of less thickness than that of the Stiffener under All seats to slope }}''. creased to same thickness as Stif- Seat, the shaft should be BEAMS, Connections to Cast-iron Columns. * 24." fener for a distance of 6// below to G// above Seat. '~'-4,- ---ſe-}-->.*-« º. •*\,¿¿cº,Źāļēķă №ſſºſºïſſä,§, {{№ſºſ, făzcz-º&, ; ; ; ; »;→ ſſ);|• 2!-N-3(Ųſ §, |----+---+--+§ §:ſſ!!!!!!!!!!!!!!!!) Sj | Q §:ſſ:||::|:|| <!--+--; ţ! |S| ;№ſ– + – –)N<!--+---+---+– ! ##79-?“;&###~);z-Q\!.#########ŽIZI. Zººį, š &•{•}}- - - -, «-» - L -44+---><!--ſº- *:: -- ; ;; ; ; ;#::--:º-º-º-º-; zezº¿zºſ ģ •! ! ,●!!!I №. !! ſty ~ - ! 1■ ■!è--!|------- — — — — —*. ----+–––––––!--(°- §:ſs=!!!!!!=+{[−ş,ſuſ I|-+---+vºŲ:__||- ~, J. J.-----<\!Ni ------ ----- «-»hae N.^)! -IIIŅĶĪ 4%. hº /ºx33xonºr /5x60 xorer º t | * ! l 47 -43 - A673.5 x voder t I | | ! ! l ! f ! t ſº - I M MIN, BEATIS AND CHANNELs. { Standard Punching in Web. MMN, size of WEIGHT bisr, pist. BEAM PER FT. Cº, INCHES LBS. INCHES INCHES \ // 100.0| 2; 3+ 24 I 95. O| “s a g Holes shown in each. 24 90.O| “. * * group can be punched 85,0 in one operation (at º S Tencoyd) and any de- 8O,O it & Too sired hole can be omitt- 3. l S 100.0| 2+ | 3; sº ed. 3 holes 3 apart and * A ſt a g Cº) / 95. O - 2 holes 3% apart cannot 90.O. “ * { pe punched central in 85.O. “ g ºt beam. 20 8O.O. 2; 3# Min. dist. & will in the 75.O. “ a ſt first case be 3'plus 7O.O. 2; 3# 1 8" & 2O // - amount given in table l” ol” and min, dist. b will in 65.O| “ . . . 2} 90.O Second case be 3%" plus e amount given in table. 85.O 5 Holes for Tie-Rods 8O.O should be spaced 4%." 18 75.O 2* | 3: apart for 24 to 12" 7O.O. . . a 1. BearxıS. 65.O tº ſº a ſº 6O.O 2.É. 3# 55.O. “ * I 8O.O. 2; 3# 15" f/ // – a ſ/ ... . ... WEIGHT | size of 2} 2% 2. : IPER FT, ICHANNEL 75,0| “ —x{-} +6- ºf 1NCHES | INCHES | LBS. lNCHES 7O.O ſº a tº 3# 2#. 55 O 8 8 º 65.O. 2; 3# 5-3. 3.17% © S. 4 & * | 5O.O d tº 5 º §-3 A. 35 ? º 3' -Q- - 15 | 6O.O. S &l- 5-33 (-$: 3 || 2:# |45.0 1. ſº °3-–6 6–-, * K 55.0| 2 || 3: Sf S; rºsiº S; t is * | 40,0| 15 5O.O tº a i i * | 35.O T. $ 45.O 2* | 2% ºf a “ | 33.0 42.O. “ * J 65.O. 2; 12" ſt // , , // // }}<--> -> <->†<- 55.0| 5O.O 2* | * *. S-121 x-- ---, 2} | 40.0 - 4- ! .Q- `...ſº 8 º } 12 º 45.0 2# S-sº -º-, 3,4--i-º-ºr g & 35 O | 12 CŞ SAT Sº i - 4O.O| “ S$ S$ 7 1á 30.0 35. O| 2 31.5 s & 25.0 d * | 20,5 BEAMS AND CHANNELs. Standard Punching in Web. º:lº º ... ºl: T. LBS. ºil º LBS. INCHES - 10 2 |35.O 40.0 || 2:# “ 3O.O 10 35.0 || “. • 25.O || 10 30.0 | 1% 3: *::III - , 1; 20.0 25.O || “. GNP is S; “ 15.O 35.0 || 2: 2#. * } lºn 1# 25.0 a 300 " 4. 2; * 200 || 0 25.0 | 1.4 ff ... ff fy 1} |15.O 210 º 9, 8 & 7. “ 13.25 1; 21.25 25.5 2 Af ff “ | 18.75 8 |23.O. 1% # º ... 16.25| 8 2O.5 || “. * H Tº 1# 13.75 18.0 || “. * H-s, * -s; | “ 11.25 I- —- 1} | 19.75 “ 17.25 '?' |2O.O | 1% $ $ 14.75|| 7 17.5 “ 1; 12.25 15.O || “. “ 9.75 6, 5, 4 & 3" 1; 15.50 6 17.25 1+ 13.OO 6 14.75|| “. 10.50 12.25|| “. * | 8.OO 14.75 1+ 1; 11.50 5 h9.25 s # * | 9.00, 5 9.75 “ H Tº “ 6.50 10.5 | 1=} ' ' s: | 1; 4 99 || “ * | 725 t 8.5 || “. “ 6.25 7.5 || “. “ 5.25 7.5 | 1; 1+ | 6.O. 3 | 6.5 * | 5,O || 3 5.5 “ “ 4.O Holes shown in each group can be punched in one operation (at Pencoyd) and any desired hole can be omitted. At t Holes for tie-rods should be spaced 2# apart for 1o tº O s"beams. lo ANGi ES Weight in pounds per foot. S X & 26.4 |29.8 |33.2 |36.6 |39.0 |42.4 |45.8 |49.3 |52.8 |s xs 6 X 6 14.8 || 17.3 |20.0 |22.4 || 24.9 26.5 29.2|317|341 |86.5 G X G # 5 X 5 128 143 |16.6 ſea |202ſ22.2246 267 lose lao.7 5 X 5 & 4 X4 82| 9.8 |113 ſize TAB | 16.0|177|19.5 4 X 4 3-#x3+ 7.1 | 8.5 9.9 in 125 | 18.9 3#x3% 3 X 3 4.9 6.1 7.8ſ at To 9 || 112 | 124 3 3 ešx2 # 4.5 5.5 || 6.6 || 7.7 8.6 2}x2% || 2#x2 # 3.1 || 41 || 5.0 | 5.9 | 6.9 || 7.8 2#x2+ #2; x2+ 2.7 || 3.6 || 4.5 5.4 2#x2+|* 2 X2 2.5 || 3.2 | 40 || 4.8 2 2 1:#x1#. 2.1 2.8 3.5 4.1 1}x 1% 14; x1 + | 1.2 | 1.8 || 2.4 2.9 || 3.5 1#x 1 # SIZE | #- | # | # # | + | # | # | # # | # | } | # | | | # | 1 || size # 8 X G 23.0 25.8 28.8 || 31.7 || 34.6 || 37.6 | 40.6 || 43.6 |46.7 |s x 6 ° 7 x 3+ 17.0 | 19.2| 21.3 |23.5/24.8|27.1 |29.2 || 314|84.0 | x3 #|* G X4 12.2 14.3 | 16.5 G81 20.2 22.2] 24.4 || 26.4 28.6 || 3O 5 G 4 |o x3 + 11.6 || 13.5 15.6 || 17.1 | 19.0 | 20.9|23.O || 25.O | 27,O |29.O 6 x3 + 5 × 4 11.0 | 12.8 || 14.8 Tie2 17.9 || 19.8 || 21.9 J X4 |* 3 x3 + 87|104 |121 [I36 T54|169 |189|209 5 x3 + 5 x 3 8.2 9.8 || 11.4 || 12.8 || 144 | 16.O 17.6 | 19.5 5 X 3 4 x3% 77| 9.1 |ioeſtle! 184|150 |168||182 4 ×3 # 4 x 3 7.1 8.5 9.9 L 111 | 12.5||13.9 4 X 3  6.6 || 7.9 || 9.2 10.7 | 12.1 | 13.4 3 #x3 * 3:#x2 # 4.9 || 6.1 7.2 | 8.3 9.4 º +|* 3 x2+ 4.5 5.5 6.6 7.7 8.7 3 x2+ 3 X2 4.1 | 5.O | 5.9 || 6.9 || 7.9 3 X 3 2#x2 2.7 3.6 4.5 5 4 || 6.2 || 7.O 2 #x2 2 x1+ 2.1 | 2.9 || 3.6 || 4.3 2 x1#. 2 x1 # 1.9 || 2.6 || 3.3 3.9 2 x1+ Note: [. Indicates finishing rolls. Angles marked+are special. Ll 'Itri oods out: x poxiaºul Solàu.V. 'sſ Io.1 5up ULSIUIIJ Sontrol put I T : 90 ON EZIS } # # # + # | | | } + g 3ZIS # 1 x +I + #1 x 3 # 1 x # I #I #1 x a * * * * *#3 | # -# 3. Z a x #3 tº x. $.” +& | #6 ºf a 3 X 3 # * x & - #3 | #3 ºf a #&x & #6 x £e +& #3 º; a #68 ºr ex-Ée #8 #8 || 8 || + 8 ex #e * x *g ºg | g : Q 9 x j, + 8 x +8 || || 8 || || 8 || 8 || 8 || || 9 #2 x r & x +g | 8 || 48 ºg | 8 || 8 9. 3 x Q. f x Q. at # | ** | ** | *|†† : f x ç #ex #8 | #8 |#8 |#8 | #8 #8 |#8 #8 #8 #8 x 9 f x ºw | | V | * * | * * | * * | V | iſ ºf # F x ſ) # ex #8 || 8 || 8 || 8 || 8 || 8 || 8 #8 x 4 9 x #9 || || 9 |#9 |#9 || || 9 || 9 || 9 9 X & S’ S2I # 9I S’ 9I & 9I 8 $9 I f for & EZ|S T | FF | Tº 77 || 3 || Tº | T | ET | < | F | T | F | TF EZIS #1x #r *I #1 x #1 #1 x+1 #T #1 x £r 3 X 3 & & X 2. #3x #3 +& #2 x #3 #3 x + & + 46 #3 x-#3 #3 & #6 8 #3 #6 x #6 3 x 3. *}.8 + 4.8 3 x 4: #ex #8 +8 #8 #8 # #8 #8 x+8 # x f. + v | #f # 7 || 3: V. FT ºr # # x f. 9 x ç +g |#g | #g | #g 4-g ºg T]+T *g Q X 9 9× 9 +9 |49 |#9 |49 | I]+9 |*T*9 |#9 9 9 × 9 s x s) #8 || 8 || 8 || 3: 8 || || 8 || || 8 || || 8 || 8 S X & s321 JO oz Is It?nqov SEITONV &T ANGLES Area in square inches. S X S 7.76 876' 9.76/10.76||1147|1247|1347|14.5015.5als is 6 x 6 4.35| 5.09 || 5.88| 6,60 7.32| 7.79| 8.6O 9.32| iO.O3|1O.73 6 x 6 * 5 x 5 3.62 4.21 || 4.89| 5.35| 5.94 | 6.53| 7.24; 7.86| 8.41 9.O3 5 x 5 |>k 4 x 4 2.41 2.88. 3.32 || 3.76|| 4.26|| 4.70 || 5,2O || 5,73 4 x 4 3#x3; 2.O9| 2.50 2.91 || 3.26|| 3.68|| 4.09  3 x 3 144 179| 2.16| 2.50 2.90| 3:28 3.65 3 x 3 +|2%.2% 182 165l 194 2.2el 2.58|| 2}x2++ *#x2; O.91 | 1.21 147|174 2.03] 2.29) 2#x2#. #2.Éx2.É. O.79| 1.O6| 1.32 1.59 2#x2}{* 2 x2 O.74] O.94| 1.18 | 1.41 2 x 2. 1}x1} O.62| O.82| 1.O3 1.21 1}x 1% 1#x2 + 0.35 0.58 OT1 0.85 1.03 1#x1#. size | + | # # | # | # | # | + | # # | # # | # # # | 1 || SIZE >k 8 x 6 6.76 7.59| 8 47 9.32| 10.17 | 11.06| 11.94 12.82. 13.738 x 6 |>k >k 7 x3 + 5.00 5.65 6.27| 6.91 || 7.30 7.97 8.60 9.23|10,00|7 x3;|3: G x4 3.60| 4.21 || 4.85| 5.32| 5.94 6,53| 7.18 7.76|| 8,41 || 8.97 6 x 4. 6 x3; 3.41| 3.97 4,60 5.03 5.59| 6.15 6.76|| 7.35| 7,94| 8,53 6 x 3; >}+ 5 x 4 3.24 3,76|| 4.35| 4.76 5.26|| 5.82 6,44 5 x 4 |>{< * .34 2.56 3,06 3.56| 4.OO| 4,53| 4.97 5.56; 6.15 3 x 3% 5 x 3 2.41 2,88! 3.35 | 3.76|| 4.24 4.70 || 5.18 5.73 3 x 3 4 x3: 2,26. 2.68| 3.12 || 3,50| 3.94 4.41 || 4,85 5.35 4 x 3; 4 x 3 2.09| 2,50 2.91 || 3.26 3.68|| 4,09 4 x 3  1,94| 2.32| 2,70| 3.15 || 3.56| 3.94 3#x3 #44.2% 1.44| 1.79| 2.12| 2,44| 2.76 }+ 3 x2+ 1,32| 1,62. 1.94 2.26| 2.56 3 x2#. 3 x2 1.21 | 1.47 1,74 2.03 2.32 3 x 2 2#x2 0.7g 1.06 1.32 1.59) 1.82 2.06 2#x2 2 x1; O.62] O.85: 1.O6 1.26 2 x 1% 2 x 1+ O,56, O.76 O.97. 1,15 2 x1% - 1 3. ./ 5 3 *- I £) d 11 3. 13 7" 1/5 SIZE | – | # | | | | | | | | | | | | | | | | | | | | | | | | 1 || SIZE Angles marked k are special 13 TEES. Weights, Areas, Dimensions, etc., etc. \ N ſ EVEN TEES UNEVEN TEES E E E - |º] ... [º] ..., Hº-Hº- ..., |º] ..., |gº INCHES les. SQ.. INS. INS. INS. INS. INS. |NS. INS. INS. |NS, INS. INS, INS. |NS. SQ, N.S. LBS, !NCHES 440T4 x4|10.9|8.10 | #|25 | #| | ||25 | #|1 |8 || | | | |33 || 3 || 8.21 |28.26 x4}| 66T 4411"|4 x4 || 13.7| 3.98 || # 2+ | # # |2% | | | # 2+ | # | # | 3 | # 4,61 |15.6 (6 x4 || 64T 335T3#x3; 7.0 2.08 || # 23 # # ||25 | # |1} |33 || 1 | # 4 || 1 |11.58 |39.06 x54|| 65T 336 T3#x3; 9.0| 2.65 | # 23 || 3 | # ||25 | # | # |2} | { | } |34 || 3 || 4.95 |17.05 x3}| 53T 337T3#x3; 11.0| 3.24 # 2+| # # 2.É | # | # |2% # | # |3} | . . 4.54 |15.3 p. x4 || 54T 330 T3 x3 6.5 | 1.91 | # | 1 || 3 | # | 1 | # | # | 13 | # | 3 || 234 | 1.93 || 6.5 + x2 || 42T 331T3 x 3 || 7.7 2.27 | # 1% | | | | | 13 | # | # | 1 || 3 || 3 || 2:# # 2.67 9.0 4 x3 || 43 T. 225Tl2#x2# 5.0 | 1.47 | # 13 | # # | 13 | # # | 1 | # # |2% # 3.05 |10.2 t x3 || 44T 226T12#x2# 5.8 1.71 # 1#| # # 13 | # # 23 # # | 3 | # 4.65 |15.8 |4}x3#| 46 T 227Tl2#x2# 6.6 | 1.94 | # 1#| # # | 13 | # | # |2% # | + || 23 # 3.38 |11.4|4 x4}| 4: T 222T24x2} 4.0 | 1.18 # 1#| | | # | 1 || | + | | |2% # | 3 || 23 # 4.29 |14.6 t x4#| 45T 223T12}x2# 4.0 | 1.18 # || 1 || | | # | 13 | # | # | 1 || | | # |2% | # 2.11 || 7.0 34x3 ||38T 220T2 x2 3.5 | 1.03 | # | 1 #| # | # 1é | # | # 1% | # # 2% | # 2.46 || 8.5 3#x3 || 39T 117 T1}x1; 2.4| 0.71 || 3 || 1 || 3 | | | 13 || 3 | # | 1 || 4 || 3 || 2 || 3 | 1.20 || 4.03 x 14|30T 115T |1}x1# 2.0|| 0.59 | # | 1 || + | # | 1 || 4 || # | 1 || + | # | 2 | # | 1.46 || 5.0 3 x2#| 31T 112T |1}x1# 1.5| 0.44 || 3 | #| || || 3 || || || 4 || | | 1:#| # # || 2 | # | 1.76 6.0 3 x2#| 32T 110T1 x1 | 1.0|| 0.29 # # # # |1} | # | # | 2 | # 2.06 || 7.0 3 x2#| 33 T. # 1% # # | 2 | # 2.38 || 8.0 3 x2}| 34T # ||25 | # | 4 || 2 | # 2.46 | 8.3 3 x3;|35T # 2} | # # | 2 | # 2.81 | 9.5 3 x3;| 36T # # | 1 | # | 1.96 || 6.6 2.3×1}| 2ST ; # 1% # 2.14 || 7.2 23x2 29T # # # # | 1: # | 0.97 || 3.3 23x1% 25T # | 1 | # # 1; # | 1.68 || 5.7 242; 26 T # | 2 | # 1; # | 1.76 6.0 24x3 || 27. T # # 1#| | | 0.66 2.2 24x #| 24T + # | 1 || 3 || 0.60 | 2.0 2 x #| 201 # | #| | | | | 1 || 3 || 0.62 2.0 2 x 1+, 22T + | # # | # | 1 || | # | O.72 2.5 %2 x 1 || 21 T # | 1 || || | | | 1 , | # 0.91 || 3.0 2 x1; 23T # #| | | 3 || 1 , | # 0.56 | 1.9 |1}×1}| 17 T # | #| | | | | 1; à | 1.04 || 3.5 |1}<1%| 181 # #| | | | | | | | | 0.41 | 1.4 14* {#| 15T # #| | | | | #| | | 0.35 | 1.2 |1}x #| 12T NOTE: In Ordering Tees give size, weight and section number. In giving size of Uneven Tees flange should be given first. 14 Weights, areas, dimensions, etc., etc. Z= BARS K* * * * * > § t Fº NOMINAL ; ACTUAL SIZE WEIGHT gauge wºwers | Gauge § NOMINAL >< , - ~ | PER AREA - S& SIZE # FLANGES & WEB; Foot G G. G1 G1 # SIZE |NCHES |NCH FS INCHES * POUNDS so-inches | NCHES INCHES |NCHES IN CHES |NCHES IN CHES # 2; x 3 x 2% 6.60 | 1.94 | 1+ + -# 13; # # 2# x 3# x 2.É. 8.29 || 2.44 tº a # -ā- 2# x 3+ x 2% 1O.OO | 2.94 # 3 -ā 2# x 3 x 24; 11.15 3.25 | 1; # 3 + 2# x 333 x 2+ 12.75 3.75 ſt a g it + + 2# x 4 x 2% 7.88 || 2.32 1} + # 2 # # 2# x 4:3 x 23# 9.89 || 2.91 tº ſt tº it § { # -ā- 3 x 4 + x 3 11.90 3.52 i -# # 3 x 4 x 3 13,46 || 3.96 # # + 333 x 4:3 x 3% 15.5 O || 4.56 tº a -# 4. # 3# x 4 + x 3} | 17.54 || 5.16 # 4. + 3#3 x 4 x 3% 18.80 5.55 2 £ 4 # -## 3# x 4 = x 3% 2O.87 | 6.14 # —# 3# x 43 x 3; 22.95 || 6.75 tº ſº # # 3# x 5 x 3 # 11.42 | 3.36 2 -# # 2# # —É- 3# x 5; x 3% 13.77 || 4.O5 ſt ºf # t i º # # 3# x 5 # x 3% 16.15 4.75 #. —# 3+ x 5 x 3} 17.78 5.23 4 1 # 35 # 3# x 5 = x 35 | 20.O9 || 5.91 t # 3. + 3% x 5 # x 3} 22.44 | 6,60 a t 3. # 3+ x 5 x 3 + 23.66 | 6.96 2% # -ā- 3# x 5% x 3% 25.97 || 7.64 & 8 # # 3 # x 6 x 3% 15.61 || 4.59 2% -# # 3 # # 3% x 64; x 3% 18.32 5. 39 i tº * { #, + 3; x 63 x 3+ 21. O5 6.19 -# # 3# x 6 x 3+ 22.71 6.68 tº 6 * { #. -º- 3# x 6; x 3% 25.36 || 7.46 # ## 3# x 6% x 3} 28. O5 8.25 # 6 #– 3# x 6 x 3+ 29.37 | 8.64 tº t # 6 ſº # 3% x 6 a x 3% 31.89 9.33 # + 3; x 6; x 3% 34.54 || 10.16 –% l6 Z= BAR, COLUTINS - * r Weights, areas, Yº-HE::=#–Y dimensions, etc., etc. —Tºl- : ; Śā. SIZE OF Z-BARS # § g AXIS X-X, AXIS Y-Y. weight| AREA ## § 3 ||3: #3 - = | 5 || || STANDARD DIMENSIONS MoMENT RADIUS | MoMENT (RADIUS | PER is à H**|## size of FLANGEs|Ir g t nºw s: nºw : POOT | SQ..I.N. º # 24 × 3 × 256}|1;|5; 84,7| 3.O 31.7| 1.8 31.5 9.26 #|2% x 3% K2%| 64. 14' 5% 11” >ſ 105.1 3.0 || 41.8 1.9l 39,611.64 #| ||2+x 34, 23|6;|14|54 F-º- 125. 1 2.9 || 53.4| 1.9 || 47.6|14,01 s?|#|24, 3 x2' 65||1343 êiº k #– 134.62.9| 55.2 1.8l 53.5/15.63 6 #: # 23 x 3% x 2: 6; 14|4% lººkſ a s 153. 1 2.9 || 67,1 1.9 61,218.OO º X— —Y. : } |2% x 4 x 24 || 8 || 13| 7 | 134.7 3.4 65.7| 2.4 37.5||11.O3 #|2; x 4}, x2%|8&| 1 || 7# 166.9| 3.4 || 85,8| 2.4 || 47.O. 13.83 g| #|3 x 43 x 3 || 8 || 13| 74 199.4| 3,4 |1O7.8| 2.5 56.5|16.71 |#|3 x 4 x 3 |8&| 13 65 220.6 3.4 115.6| 2.4 || 64.3|1890 S §§ º 345 x 45 x 35 | 8-}| 1%| 6; 25O.8 3.4 138.6 2.5 73.9|21.74 i, 3 | #|3} x 4+ x 3 |8%|1}}|6% * 3.3 |163.O 2.5 | 83.6|24,58 #| 3 ||34 x 4 x3%|84| 2 | 63 296.3 3.3 |167.3 2.5 90.1|26.58 #| |}|3+ x 4 x 3 ||38|2&l 6& 323,8] 3,3 |192.8 2.5 | 99.9|29.37 #|3% x 4; x3%| 9 |2% 6% 351.5| 3.3 |22O,5| 2.6 ||109.7|32.25 #|3# , 5 x 3%. 10; 1%| 9% 193.8 3.5 |147,4|3.O | 53.115.63 #|3} x 5% z 3}|10%|1}| 9% 231.O 3.5 |183.4 3.1 | 64,O| 18.83 ... a 3% & 5 # X 3%|10|| 1:# 9%. 267.6 3.4 |222. O 3, 1 || 75. O|22.06 #| ||34 × 5 x 8:10, 1318; |287.6 3.4 |234.4 3, 1 | 83.024.42 s: #|3% 5* .. 35.10%| 1:#| 85 321, 1] 3.4 |273,7| 3.1 | 93.7|27.58 10 i. #| 3 ||34 x 5 x 3: 10%| 2 | 84 354.3 3.3 |315.6 3.2 104.7|30.78 i #|3} x 5 x 34.10%| 2 || 8% 364.8 3.3 |32O.O 3.1 | 111.0|32.65 *| 3 |3% 55 x 38.10%|2;|3} 395.5|3.3 ||363.O|| 3.1 |121.7|35.81 #|3} x 6 x 3;|12%| 1: 337,O 3.9 |287.8| 3.6 | 72,621.36 *|3}× 6, 23%|12|| 1ſt 391.43.9 |346.9| 3.7| 85.225,06 ... à |3} x 6' x 8:12; 1; 444.6 3.9 |409.2| 3.7| 97.7|28.76 #| |3}× 6 x 84.12ſ. 1: 469. 1 3.8 |426.3| 3.6 |1O6. 131,22 12 : #|3% x 6; x 3%|12}| 2 518.0) 3.8 |489,2| 3.7 |118.4|34,84 & #| #|3} x 6' x 3 +|12.É 2, 566,5; 3.8 |555.8| 3.8 |130,938.50 i } |3} x 6 x 3+12+ 2} 579,7| 3.7 |562.4 3.7 | 137,940,56 *|#3; , 6,8812;|2. 622.5| 3.7 |628.2| 3.7 ||149.6|44.O2 | |3} x 6' x 3;|138|2; 666,6 3.7 |699, 1 3.8 |162,047.64 11” 3 */ RIVETS : DIAM. 16 SHEARING AND BEARING VALUE OF RIVETS. g Values above or to right of upper zigzag lines are greater than double shear. * * below 4.6 ° 4 left 6 & lower & 8 * * * * less ** single ‘‘ DIAM. OF RIVET AREA º: BEARING VALUE FOR DIFFERENT THICKNESS OF PLATE AT 12000, PER SQ, INCH. IN * AT #: *gº ,, . so. INS. 6000 1. 5. 3 7 1. 9. 5 11 3 13 T. 15. FRAC. DEC'L 4 16 3 T6 2 16 8 16 4 1 8 16 1 # .375 | .1104 || 66O || '113O || 141O | 1690 #| .500 | 1968 || 1180 || 1500 1880 2250 2630 || 3000 ; .625 | .3068 1840 1880 || 2340 || 2810 || 3280 || 3750 || 4220 || 4690 ; .750 | .4418 2650 | 2250 || 2810 || 3330 || 3940 || 4500 || 5160 | 5630 | 6190 | 6750 # .875 . . 6013 || 361O 263O || 328O || 394O || 4590 || 5250 || 5910 || 6560 | 7220 || 7880 | 853O | 9.190 || 984O 1 | 1.OOO | .7854 4710 || 3OOO || 3750 || 4500 || 525O || 6OOO || 6750 75OO || 8250 9000 || 9750 10500 | 11250 | 12OOO # oAM. of Riverſ AREA | **** BEARING VALUE FOR DIFFERENT THICKNESS OF PLATE AT 15000, PER SQ.. INCH. SHEAR t IN AT' + 1 ... I sq. INs. 7500 1. 5. 3 T --- 9 5 11. 3. 13. T. 15. FRAC. DEC'L 4 16 3 T6 2 16 8 16 4 1 8 1 J # . 375 .1104 || 83O || 1410 || 176O 2110 # . 500 . 1963 || 147O || 1880 234O || 281O || 328O || 3750 # ., 625 | .3068 || 23OO || 2340 || 293O || 352O || 41OO || 4690 | 5280 || 586O # .750 , 4418 3310 || 281O || 352O || 422O || 492O || 563O 633O || 7O3O || 772O | 8440 # ... 875 a 6013 || 451O || 328O || 41OO 492O || 574O || 656O | 738O | 82OO 903O | 985O || 1067O | 11480 | 123OO 1 | 1.000 | .7854 || 5890 || 3750 | 4690 562O || 6560 | 7500 | 8440 | 938O | 1031O | 11250 | 12190 | 1313O 14O6O | 15OOO DIAM. CF RIVET AREA º: BEARING VALUE FOR DIFF CRENT THICKNESS OF PLATE AT 22000,"PER SQ.. INCH. |N Ar"a - ... I sq. Ins. 11000] 1 5. 3. .7 1. 9. 5. 11. 3. 13 7 15. FRAC. DEC ‘L. 4 16 8 16 2 16 8 16 4 16 8 16 1 # , 375 .1104 || 121O || 206O 258O || 3O90 As # . 500 || 1963 216O 2750 || 344O || 4130 || 482O 5500 ; .625 | .3068 || 3370 || 3440 43OO || 516O | 602O | 688O || 774O || 86OO # . 750 .4418 || 486O || 4130 || 516O 6190 | 722O 825O || 928O || 1032O 1134O 1238O § .875 . . 6013 | 661O || 481O || 602O || 722O | 843O || 963O || 1 O84O | 12O4O || 1324O || 1444O 1564O | 1684O | 18O5O 1 | 1.000 || 7854 8640 l 5500 | 683o 8250 9630 | 11000 | 12380 | 13750 | 15130 | 16500 | 17880 | 19250 | 20680 22000 DiAM. OF RIVET AREA Fº BEARING VALUE FOR DIFFERENT THICKNESS OF PLATE AT 24000, PER SQ.. INCH, IN AT # - ** , sq. INS. 12000) 1. 5- 3. 7. l 9 5 18. 3. A3, 7. 15 :^PAC. DEC'L | # 16 8 18 2 16 8 16 4. 16 8 16 1 § -375 || 1104 || 132O 225O || 2810 || 3380 # , 500 || "... 1963 || 236O || 3OOO || 375O || 4500 || 525O 6000 # .625 | .3068 || 3680 || 375O || 4690 || 562O || 656O || 7500 | 8440 | 9370 # .75O .4418 53OO || 45OO || 562O || 675O || 787O 90OO | 1012O || 11250 | 1237O | 13500 tº # .875 . . 6O13 | 722O 525O || 656O || 787O || 9190 10500 11810 || 1312O 14440 | 15750 || 17O60 | 18370 1. 1. OOO | .7854 || 943O || 6OOO || 75OO | 9000 || 1050O 12000 || 13500 | 15000 | 16500 | 1800O 19500 21000 || 225OO || 24OOO 17 RIVETS. Proportions and Conventional Signs. 4P/==<\Iſi<!--- Iſ-III,Tī£T=T=T-*ų. (b) iIIIu IIi ſ !()ZETFO| 1:1 |S-+-7NOE-ZT\QL/TÍVOED/ º3u , wate.Ip uſo pº qou eq pinoqsqą ºpad[dſȚqo | 9q qs nuuſ 49 Aļā YIuns.rºquinoo ºroq AA -:GIJLON | I -- - ------ - ----`-(âS,■ Kä�——�—(@)/*\------> JJ<>/*-¿?SØ ----|- | $3�$$QD|{$�|� || š“;5E“;5 | 5“;ğ į | № || 2$ſae2.$! | 2$3 | | | ||y!،|2!!!ø,;2|■!•{|2| || 355→353 | $5|-| || — ||ſºQ£{ſºQ±|ºQ§-ſ| }<>.<8>|<>|{N^ S83, LN(\OONİV/Tid / le-~~————————————————————————————><–––––––––––––––––––––––––––––––––– Is• S_j_E/\|\-| CITE 1-1S_LE!/\!\ł d'OHS *-āș-* Í ,,61 | *№.————!| `ø|2$ - Z – *ą).“-ą. `eļº„º» >. Â\\* *№,ZAST fals? Kaeſ y/ l8 RIVETS Lengths of fieldrivets for variant grips. Dimensions in Inches ----ºº----, G2'ip -D | Length j ... Pength...... D|AMETER GRIP D|AMETER 2. .# 3 2 1 1. # 3 7: 1 2 4. & º ... 2 4. & # 1# 1; 2 || 2 || 23 # "| 1+ 1ā- 1# 1+ | 1+ # # 1#. 2 2; 2+ 2#. # 1#. 1#. 1#. 1; 1+ # # 1+ | 2#. 2+ 2.É. 2% # 1#. 1+ 1+ 1+ 1#. # # 2 2+ | 2+ 2+ 2.É. # 1#. 1} 1#- 1; 1+ # I 2#. 2# 2+ 2.É.- 2# I 1% 14. 1+ 2 2 1#. 2% 2+ 2# 2#. 2+ 1+ 1; 2 2 2# 2+ 1+ 2#. 2+ 2+ 2+ 3 1#. 2 2+ 2# 2+ 2 # 1% 2# 2# 2+ | 3 3+ 1# | 2% 2} 2#. 2# 2# & * 4. B 8 S 8 4. 4 8 8 1# 2# 3 3# | 3% 3# 1# 2+ | 2+ 2# 24 2# 1; 2# 3# 3# 3# 3# 1; 2# 2#. 2# 2#. 2#. 1#. 3 3# 3# 3# 3# 1}- 2#. 2# 2#. 2# 24 1% 3# 3+ | 3% 3# 3# 1% 2# 2#. 2# 2# 3 1% 2 3+ 3# 3# 3+ 3% 2 2#. 2# 3 3 3# 2 2+ 3# 3# 3+ 3# 4 24 2#. 3 3# 3# 3# 2# 2 # 34; 3+ 3+ 4 4+ 2% 3 3# 3# 3+ 3# 2# 2.É.- || 3% 3% 4 4; 4+ 2% 3} | 34 3# | 3 || 3 || 2:3. 2 : | 3 || 4 4+ || 4 || 4 || 23 || 3 || 3 || 3 || 3 || 3 || 24 2+ 3# 4+ 4+ 4+ 4; 2#. 3# 3+ 3# 3# 3+ 2#. 2 # 4 4+ 4+ 4% 4+ 2% 3# 3+ 3+ 3% 3+ 2} 2% 4% 4+ 4; 4+ 4# 2% 3# 3# 3% 3# 4. 2% 3 4; 4+ 4+ 4; 5 3 3# 3# 4 4; 4+ 3. 3# 4% 4% 4+ 5 5#. 3# 4 4 4+ | 4+ 4+ 34- & 3+ || 4 || 4 || 5 5+ | 5} | 3% | 4 || 4 || 4 || 4 || 4 || 34 3# 4}. 5 5; 5+ 5#. 3} | 4+ 4% 4# | 44 4} 3# 3# 4. 5+ 5+ 5# 5; 3# 4% 4% 4% 4; 4} 3# 3; 5 5+ 5#. 5+ 5; 3# 4+ 4+ 4; 4+ 4+ 3% 3} 5+ 5 # 5+ 5+ 5+ 3}- 4; 4% 4; 4% 5 3+ 3# 54 5; 5; 5+ | 5% 3# 4+ | 4% 4; 5 5% 3% 4 5#. 5; 5+ 5% 6 4. 4#- 5 5; 5 # 5+ 4. 4; 5% 5% 53 || 6 6} || 44 5 5+ 5+ 5+ | 5#. 4# 4# 5+ 5% 6 6# 6 # 4% 5+ 5+ 5#. 5á- || 5% 4# 4} | 5 || 6 6+ | 6 || || 6; 4; 5} | 5 || 5 || 5 || 5 || 4; 4# | 6 6; 64 || 6 || || 6; 4# 54 5+ | 4% 4; 6# 6# | 6 # 64; 6. 4; 5 + | 5% 4; 4}. 6# 6# 6+ 6# 6% 4% 54- 6 4}. 4% 6;- 6; 6# 6# 7 4% 6 6# 4%. b 6+ 6+ 6 g- || 7 7+ 5 6 - || 6+ b 3+ | 6; 6% 7 7# 7+ 5#. 6; 6# 5% 3-# 6# T 7# 7+ 7# 5#. 63 6% 54 3% 6# 7+ 7+ | 7+ 7+ 5:- 63; 6+ 5% l 9 BOLTS Lengths for variant grips Grip H} | - *- Length . | ALL DIMENSIONS IN INCHES D|AMETER D|AMETER 1. 5. - 7. 1 GRIP GRIP 1 3. 3. 2 I GRIP 2 & 4. & 2 & 4. & -# 1% 1+ 1% 1#. 1% # 3# 6# 6# 6# 6# 6+ 5; # 1+ 1; 1; 1% 1% # 3; 6# 6; 6; 6; 6+ 5; # 1; 1% 1% 1+ 2 # | 5% 6; 6% 6; 6# 7 5% # | 13 || 1 || 14 || 2 || 2 § | 5% 6} | 6 || 64 || 7 || 7 || 5% I 1% 1#. 2 2 2+ I 6 6}. 64 7 7 7+ 6 1-# | 13 2 2 2+ 2} 1# | 6; 6+ 7 7 7+ 7+ | 6; 1} | 2 2 2# 2% 2# | 13 || 6+ | 7 7 || 7 || 7 || 7# | 64 1; 2 2# 2} 2#. 2# S. 6; 7 7+ 74 7+ 7; 6:- 14 2} | 2+ 24 2; 2# 1} | 6% | 73 || 7+ | 7 || 7 || 7+ | 6+ 13 || 23 24 24 2+ 24 || 13 || 6′3 || 7+ | 73 || 7# 7# 7+ | 6; 1} | 2; 2#. 2# 2+ 3 1} | 6; 7} | . T + | 7+ 7; 8 6# 1% | 2+ 2+ 2#. 3 3 1; o: 7# 7+ | 73. 8 8 6; 2 2; 23– 3 3 3+ 2 /*- 7#– 7+ 8 8 8#. 7. 2 # 2#. 3 3 3# 3# 2 # 7# 7; 8 8 8+. 8+ 7# 2 # 3 3 3# 3# 3# | 2:# | 73 || 8 8 8} | 8% 8# | 7+ 2} | 3 3} | 3} | 3 || 3 || 2 # || 7 || || 8 83 || 8 || 8 || 8 || 7; 2#. 3# 3# 3# 3+ 3# 2#. 7# 8+ 8+ | 8+ 8; 83. 7# 2.É | 3# 3# 3# 3# 3# 2# 7; 8+ 8+ | 8; 8+ 8+ 7; 2} | 84 3# 3# | 3 || 4 2} | 73 || 8 || 8; 8+ 8; 9 7# 2% 3# 3# 3# 4 4 23. 7% 8#. 8+ | 84 9 9 7; 3. 3# 3+ 4 4 4+ 3 S 8+ | 8+ 9 9 9+ | 8 33 || 3 || 4 4. 4} || 4 || 3:# | 84 || 8+ | 9 9 9+ | 9+ | 8; 3# 4 4 4# 4# 4; 3 # 8% 9 9 9% 9+ 9; Sł 3; 4 4+ 4# 4+ 4; 3# s: 9 9+ 9+ 9; 9+ s: 3# 4+ 4} 4% 4; 4+ 3# &# 9} 9+ 9+ 9; 9+ &# 3# 4} || 4 || 4 || 4 || 4} | 33 || sº | 93 || 9% 94 | 93 9+ sº 3} | 4; 4+ || 4 || 4+ 5 3% sº; 9; 9; 9. 93- || 10 8% 33 || 4 || 4 || 4 || 5 5 33 &# 9} | 93 9} | 10 1O 8% 4. 4# 4. 5 5 5; 4. 9 9% 9} | 10 1O 10+ $9 4# 4+ 5 5 5+ 5. 4# 9:- || 9:- || 10 || 10 10+ | 10% 93. 4% 5 5 5+ 5#. 5#. 4+ 94 || 10 1O 10+ 10+ 10; 94 4; 5 5#. 5+ 5; 5; 4; 9; 10 10# 10+ | 10% | 10+ 9; 4% | 5 || 5 || 5 || 5 || 5 || 4 || 9% 10+ | 104 || 10} | 103 || 103 || 94 4; 5} | 5 || 5 || 5 || 5+ 4; 9; 10+ | 103 || 103 || 10+ | 10+ | 93 4} 5; 5; 5% 5+ 6 4} 9% | 10# | 104 || 103 || 10+ 93- 4; 5; 5} 5+ 6 6 43 9% | 103 || 103 || 103 11 9% CŞ 5% 5% G 6 6+ 5 1() 1O# | 10+ | 11 11 1() 5 # 5; 6 6 6+ 6# 5; 103 || 103. 11 11 11+ 102. 5+ | 6 6 6+ 6+ 6# 53- || 10% 11 11 | 11+ + 5; 6 G+ | 6+ 6; 6} | 5; 10} | 11 11% | 11+ | 11; 2O RIVETS AND BOLTS. Lengths for Framing Beams. TV-TV S12E WEIGHT RIVETS | BOLTS BOLTS RIVETS WEIGHT I SIZE SIZE || WEIGHT RIVETS | BOLTS BOLTS RIVETS WEIGHT SIZE OF PER WEB GRIP GRIP PER OF OF PER GRIP GRIP WEB PER OF BEAM I FOOT LENGTH |LENGTH LENGTH |LENGTH FOOT BEAM BEAM FOOT LENGTH |LENGTH | UENGTH Length, FOOT || BEAM 100.0|| 3 || 1 , |25 ||25 || 2: | 3}| ſº 100.0 40.0 || 1 , || 2 || 23 || 2 || 23 || 1 | # 40.0 95.0 | # | 13 | * | * | 2} | 3 | 1; 95.0 | 10| 85.0 #| 2% | * | * | 2: | # | # 85.0 IO 24| 90.0|# 1; 2# | 2 || “ “ | 1 , | 90.0 || 24|| || 80.0 1; 2% 2; “ “ # # 80.0 85.0 | # | 1 “ “ 2+ 2% 1; 85.0 25.0 # 2# “ 1% 2# | } | # 25.0 80.0 | # | # 2# “ “ “ | 1 || || 80.0 85.0 || 1 , |2; 2% || 2 || 2:# | 1 | # 85.0 100.0|| 3 || 1; 2+ |2|+| 23 || 3:#| 1 |100.0 9 |800 || 13 ||25 |2||13 ||25 || 3 | # 80.0 9 95.0 | # 1; 2; “ “ 3# 1; 95.0 25.0 | “ “ “ “ “ “ | | ||25.0 90.0 | # | 1 || || “ “ 2+ | 3:#| 1; 90.0 21.0 || 1: 2+ “ “ 2+ # | # 21.0 20 85.0 | # “ “ “ “ “ “ | 85.0 20 25.5 || 1 , |2} | 23 || 2 || 2: # | # 25.5 80.0 | # 1; 2# | 2 || “ “ | 1 || || 80.0 23.0 “ “ “ “ “ “ “ |28.0 75.0 | . . . . . “ | “ “ “ “ 75.0 8 20.5 1; 2# “ 1% 2} | . . ; 20.5 8 70.0 | # | 1 * G | {{ “ 2+| 1; 70.0 18.0 # “ “ | “ 2+ | # # 18.0 65.0| # | #| 2# “ “ | “ | 1: 65.0 20.0 # 2+ || 2 || || 2 || 2:# # # 20.0 90.0 90.0 7 |17.5 || 1 , |25 | " | 13 || 23 || 3 | #|17.5 || 7 85.0 85.0 15.0 # “ “ | “ 2; # | # 15.0 80.0 80.0 17.25 | 1; “ “ | 1 , || 2:# # | . 17.25 18 75.0 | # | 1: 24 || 2 || 2:# | 3:#| 13 || 75.0 18 6 || 14.75 1; 24 || 2 || “ 2# | # | # 14.75|| 6 - 70.0| # | 1 ç ç $9 § { # 1; 70.0 12.25 | 1 $ $ “ “ “ . . . ; 12.25 65.0 || “. * G | | * * $ (, l (; ; ** | 65.0 14.75 || 1: 24 || 2:#|1} |2|+| # | # 14.75|| 60.0 | # | #| 2# “ | “ “ | 1 || 60.0 3 | 12.25 | 1; 24 || 2 || “ 2; # | # 12.25| 5 55.0|# | # | “ “ | 2+ ||25 | 1; 55.0 9.75 | #| 2: “ “ || 2 | # | # 9.75 80.0 | # 1% 2% | 2+ || 2:# | 3 || 1; 80.0 | 10.5 || 1 || 2: | 2: | 1+ | 2% | } | #- || 10.5 75.0 | # | 1 || || 2: | “ 2% |3} | 1; 75.0 9.5 || 1 , |2| || 2 || “ 2+ | # | # | 9.5 70.0 # 1; 2: 2 § { | { { # | 70.0 | 4 || s.5 1 || “. “ | * | * | * s.5 4. 65.0 || || “ “ “ | “ “ | “ 65.0 7.5 | #| 2} | “ “ | 2 | # ; 7.5 15|| 60.0 | # # 2# “ “ 2% | 1 || || 60.0 | 1.5 7.5 || 1 , || 2 || || 2 || “ 2; # || || 7.5 55.0| “ | < | * | * | * | * | 55.0 3 || 6.5 || 1 || “ “ “ “ # | | | 6.5 3 50.0 || “ “ “ “ | “ “ “ 50.0 5.5 # 2} | “ “ || 2 | # ; 5.5 45.0 | # 4 || “. “ 2; 2% # 45.0 Itivets and bolts are # diam. 42.0 | . # 2+ | 1 + || “ “ 1+ 42.0 AII dimensions in inches. 65.0|# | 1 || 2: |2% 2} |3} | 1; 65.0 60.0 | # | 1 || 2: “ 2+ 3+| 1; 60.0 55.0| # | 1 || 2: 2 “ 2% | 13 || 55.0 50.0 “ “ “ | “ | “ “ “ 50.0 12 45.0 | “ | “ | “ “ | “ “ “ 45.0 I2 40.0| 4 || 4 || 23 | " | 24 |2+ 1} | 40.0 35.0 | “ “ | “ | ** | ** | ** | ** | 35.0 31.5| # # 23 |1} | “ 2; 1#. 31.5 21 BOLTS. Dimensions for Heads, Nuts, etc., etc. ROUND HEAD NUT Or: HEXAGONAL º SQUARE SQUARE º HEXAGONAL ſº # | ? WW 7~ z= |-| z=\ | # > , Y& A ( / ) O TH (Ø © > # * () (2) © « < D. |NS. SQ.. INS. |NS. SQ.. INS. |NS. |NS, |NS. JNS |NS, |NS. |NS. | N.S. |NS, |NS. |NS. + | 049 .185| 027 20 # | + + | + | # # | # | + | # | # * | 110 .294 068|16 || #| # + | + | 1 # | # | # #| # # 196| 400 126 || 13 || | | # # | 1 1} | # # # | 1 || # # .307 .507 .202 11 || 1 , | # # 1% | 1 || 1 , | # 1; 1; # + | .442 .620 .302| 10 || 1 , || 1 || + | 1; 1; 1; 1 # | 1+ | 1+ | # # | 601| 731 420. 9 #| 1: | # | 1% 1#| 2# 1á | + | 1; 1% # I ,785 .837 .550 1# 14 | + | 1; 2# | 2% 1+ | 1 # | 1 || 1 1; 994| 940 ,694 # 1# | 1 || 1 || 2; 2# 1# | 1 || 1:# 2; 1#. # | 1.227|1.065 .893 “ 2% 14 || 1 || 1; 2% || 2:#| 2 || 14 || 2 | 2% 14 1% | 1.485||1160 | 1.057| 6 || 2% | 2 || 13 | 2 # 3% 2# | 1 || 2% 2% | 1: # 1767|1284 1295| “ 2; 24 1; 2# | 3 || 3: 2} | 13 || 2: 2+ |1} 1; 2.074|1.389. 1515 5% 2#| 2# 1# 2; 3; 3; 2% | 1 || 2: 2# | 1: # 2.405 | 1.491 1,746, 5 3; 2+ | 1+ | 2; 3; 3#| 2} 13 || 2: 3# 1+ 1% 2.761|1616, 2051 | 3 || 2:#| 13 || 2: | 8% 4% 2# | 1 || 2:# | 3: | 1; 2 || 3.142 | 1.712| 2.302 || 4 || 3; 3 || 1 || 2: | 4 || 4% 3+ | 2 || 3 || 3 || 2 2} | 3.976 |1962. 3.023| “ | 3:#| 3} | 2} | 3+ || 4 || 4:# 3; 2} | 3 || 4 || 2:# 2# 4909|2,176. 3,719 || 4 || 4 || 3: || 2 || 3: | 5 || || 5% | 3 || 2: | 3 || 4 || 2:# 2# 5.9402.426 4.620 “ 4; 4# 2} || 4 || 5% | 6 || 4 || 2: 4} || 4; 23- 3 || 7069|2.629. 5428| 3 || 5á 4; 2; 4; 6# | 6; 4 || 3 || 4; # | 3 3+ | 8.296 2.879 6.510 || “ + || 4 || 3 || 4; 6; 7; 5 3+ 5 5# 3+ 3# 9,621 |3.100|7.548| 3 || 6; 5 + | 3 || 5 || 7# 7# 5% | 3 || 5 || 6 || || 3:#- 3} | 11.045|3.317| 8,641 || 3 || 6 || 5 || || 3 || 5% 7# 8+| 5 || 8 || 5 || 6% |3} 4 || 12,566|3,567 9.963 “ 6+ | 6 3# 5# | 8; 8; 6; 4 6; 7á 4 4# 14.186 3.798. 11.829, 2% 7# 6} | 4 || 6% 8; 9à | 6 || 4 || 6+ 7; 4+ 4# 15.904|4,028 12.753| 23 || 7:- 63 || 4 || 6% 9% 94 || 6 || 4 || 6 || 7# |4; 4} |17,721 4.256|14.226 2; 8% 7# 4} | 6% 9} | 103 || 7 || 4 || 7 || 8; 4; 3 |19,635 |4,480 15,763| 2: | 8; 7# || 4 || 7+ | 103 || 10; 7; 5 7; 8; 5 3+ |21.648 473017.572| “ 9; 7+| 5 || 7# 10+ | 11; 8 || 5+ | 8 || 9% 54 3+ |23,7584.953|19.267 || 2 || 9 || || 8 || || 5 || 7# 11; 11+ | 8 || 5 || 8 || 9; 5% 5%. 25.967|5.20321.262 “ 9; 8} | 5 || 8; 11; 12; 8+ | 5 || 8+ | 103 ||3} 6 |28.274|5.423|23,098 || 24 10% 9 5% | 8; 12% | 12# 9} | 6 9} | 10; 6 22 STAGGERING OF RIVETS. D|STANCE C. TO C. OF STAGGERED RIVETS. VALUES OF “X” FOR VARYING VALUES OF ''A' AND "B" VALUES OF A. VALUES 1 NCHES in Chi ES |NCHES INCHES INCHES !NCHES INCHES 'INCHES |NCHES INCHES INCHES tncHES INCHES INCHES | OF •’ f º 1 : +1 | 13 | 11 | 15. 8 13. 21 | <>1. 8 olT - JB § | 1 1, 1+ 1; 1; 1; 14 || 1 || 2 || 2: 2# 2. 2: s {p- |NCHES * - * 1} | 1% | 1% - 1% 1% 14 | 1% | 2 || 2 # 2# 2# 2; 23 || 2 #| 2: –G– 1} | .1% 13 || 1:# 13. 1# 1% 2% 2# 24 || 2: 2á 2 #| 2:#| 2:# *|4. 1} | 14 || 1:#| 13 | 1% | 1 #| 2 2# 2# || 2 # || 2 # 2# 2.É 2-# 2 # Sk * N *H: 1} | 13 | 1% 1% 1} | 2 || 2:# 2# || 2:# 2# 2} || 2:# 2 #| 2:#| 2 # * | z §: * 3-H. T. 1; 1# 1á 2 2# 2+ | 2# || 2:# | 2:# | 2:# 2# || 2:# 2# 2 # 3 z º 1} | 1% | 2 || 2 # 2# 2#| 2% 2# 2% 2#| 2:# 2% 2% 2#| 3% 1; 2# 2 # 2# || 23 2# 2# 2# 2% 2; 2# - 2% 2#| 3 || 3 # –G)- 2 || 2:# 2 # 2# 2 # 2 #3 || 2 # 2# 2+ 2+ | 2:#| 2.É | 3 || 3 || || 3 # i | 3 2} || 2:# 2 # 24 2% 2# 2# 2# 2#| 2#| 2#| 3 || 3 #| 3 #| 34 --- 2} | 2% 2 # 2% 2% || 2:# 24; 2# 2 #| 2% | 3 || 3% 3 #| 3 #| 3 + -č 2#| 23 || 2:#| 2# 2 #| 2 | | 2% 2% 2#| 3 || 3 || || 3% | 3+ | 3 #| 3% 2} | 2:#| 2:# 2% 2% 2% 2% | 3 || 3:#| 3:#| 3:# 3# 3# 3% | 3% NOTE: Values below or to right of upper zigzag lines are large enough for 3% rivets. & 4 * { { % $ $, 6 & * < lower { % é & $ 6 € $ & 6 tº 6 % { % # DIAM. # DIAM. C º O Minimum Stagger for Rivets. NCHES INCHES INCHES 1 1 : + # $3 1ſ; 1íš 1% 1 1. 1 - 1 i 15 1 + at) /TN ch ch As ; : ep | s 1%; 1 is 1% → 16 \ly cº-º-ºp B. 15 + - N 13 16 13 | \, \ 7 7 ! 0. N r 1íð 3 1 K- Ye'º ^* 14 3 15. - 2 4 16 9 5 13 1íđ 5 T5 5. 3 11 1 ; Tà 16 11. 1 1 i. O 3. 8 —5. 1ji O 16 23 RIVETSPACING IN ANGLES, CLEARANCE FOR DRIVING ETC. All Dimensions in Inches. r– Rivets in Crimped Angles MAX. LEG G. G MAX. LE E G G. RIVETS 1 2 RIVETS 8 4% # 8 3 3 # 7 | 4 || “ | 7 || 2: | 3 || “ + $ 1 1 § 6 3 # (, 6 2# 2+ (, 5 3 { % 5 2 1% (, , 4 2% { { 3+ 2 * { // 3” When G L Exceeds ; 3 1% * @ 6 2#. 2} 4; When angles are crimped, distance“b” Slmould be 1% plus twice thickness of 2#. 1% : chord angles, but never less than 2" 2 # 1. (*6. 1. 1 S. 2 : 1. 3. 2 1; & C. 3 l. & 7 3 Clearance for Rivetting 1% Ts s 3 1. zi § { 9 1. 1 16 4 Minimum Rivet Spacing 1 3 1 5 3 || 7 |ZE OF *= i = i <-- H -- - - - -- S|ZE OF RIVET 4 8 || 2 à | # | 5 || 1 M |M|M UM - 1 3 j 5 DISTANCE 1 1, 14 || 2 || 2 || 2: 3 24 */ */ A/ 2% £º 9. 2. // - Af My Ay AEZº g&” 9 # C/ - Az // 2% - 2% £e 2 #2/ %2/ | . .2/ | # 93 * | #4" | 2 | #C/ ‘old tº try troAI3 qunoure liqıAA Tougoñog ‘requioto roy ºppu ...?), dirá ºrigido o L -:GILON +” - 2] +” #2 #| |#g . ; 2 || 9 || OI *~, 9t - - _j. %| | #7 º' /24/ // 24 *o ra" : #2 9 $2. // zz 4 #2| || 2 || | #5 L # | ? 9 | #6 | 9 | /24/ 0/2A #6 ºz. 4- * / #21 | #41 | #g /*.*.*.*. + | #6 || 9 || # *çI #OI ºg tº #: + | #3 || 9 || 6 #&T | #OT | #g # # 9 | # #21 | #61 | #g # #3 || 9 || # º! Y, f #OI | 6 | #g TE #3 9, 7 #OT | #6 g + | #3 9 8 #OT | #6 | #g + | #3 || 9 || #4 #6 | #8 || || # | #2 | #g | #4 r 75 #6 | #8 || || # #3 | #g | #4 #6 #8 || || # #3 | #g 4 # +6 || 48 | #g + | #3 | #g | #9 #8 #1, #7 # | #3 | g | #: - # #8 #1, #7 # | #3 | g | #9 #9 || 1 | #7 # || 1 | # 9 # #8 /, #7 # | #1 | # | #9 3, & # /, #7 # #I #7 #9 * * #9 #8 # #I | f | # # #9 | #8 # #I jz 9 - # #9 #g | #8 # #I #8 +, #9 | #g | #8 # #1 | #g | # # #g • #9 # #I #8 #f + g | #3 # #I 9 º f + g | #3 # | #I 8 || -- #g | # | #& #– * | #1 | #2 | # #: # #g | # #3 ń | | | | #I | #3 | # "F-E--- - #g # *} % - • + #I #3 9. •- 1 fºr r- w jº * | #8 #1 | | | | | | | 6 | # # #8 #I Nº * | #1 z | #3 †r ºr 3.T k-> Y. & fay +8 #8 +I ;I + +I 76 +8 || 48 | #I + | #I 3. U T S ETIOH *UIoup tod. SpüolliJ, 9 di H.S) º _LS)NET 2 : "WWIO "WWIO ºngº O.L - O # .# |theº] eno | 1sons wº. SNOISNE WIG GIX-VGINV_LS GGV WWE 8K)S ... ; z g - # F. - _Lſ N ...) Nicſ IJ “souloup up suo Isua (Upp IIV ‘s.InN swwoT H.LIAA SNid COTTER PINS. All dimensions in inclues. P|N HEAD COTTER ADD TO GRIP DIAME º º DIAMETER FOR LENGTH |FOR LENGTH º OF TAPER AT END DIAMETER | THICKN ESS LENGTH DIAMETER OVER UNDER ALL HEAD -H P PIN-HOLE t IHI T C ID MI L P f -*- - + + 3 + 7. 0. I 1 33 16 X 16 1. 4 1+ 4. 8 8 I 1 9 9 + 1 + + 7. 5 4. 1ā 16 X 16 1. 4 2 4. 8 Ts." 1+ 17 + -*- 1 I b- 1 7 # 32. 16 X 32 1#. T 2; 13 1+ Teſ 1#. l ^ 3 25 7 + 1 3. _0_ l 7. & -Z 1: 16 X 32 2 Aſ 2. 10 1; 8 1+ 1 + + 3 3 8 3 2 2ää 2 X 8 2; Ta 3 8 1; 1 2 9– + + § 3 1. 3 S # 2ää a X = 2+ Tº 3. Ts. 1; 1 2#. 17. 9 + 7 -- 3 3 4– 1 i # 32 8 X as a Ts' 3# 16 1; 1; 2+ 3 25 0. -*- 1 3 7 1 1 4. 32 8 X 32 3; 8 4 16 1+ 1; 2} 1 3. -*- 1 + + sº 3 33; 4 X 16 3# 2 5 3 1+ 1. 3 1 *_ 9. 9 3 + + 7 3 4. 3: 4. X 16 3. 2 5 2 1+ 1+ 3+ 17 7. 4– + 0– 1 5 3# 3ää. 8 X 32 4 2 6 8 2. 1; 3+ 25 + 4– 1. + _5_ l 5 #- 3:T 8 x, 32 T 2 6 8 2; 1+ 3} T NOTE:- Use pins with Iomas nuts, in preference to cotter pins, whenever possible. * 26 2 of each/areza” PILOT NUTS. 2%/27//?” 9.2% Cast Steel. t All dimensions in inclues. 6 Threads ver inch. % | *. | * = |s|ss Hºs. sº | | | | | #| s= | sº as sºlº /63. I D | S | H | T | L | I | R | A B I? | T | L | H | S | D /#| || 2 || 1: 1; 1; 5 || 14 || 8 || | | | | |L s]s s] 4: || 2 || 1 || 1 || 2 |% # 2# | 13 || 1 , || 1 || 5 || 1: 8; # # |L 9| S 9 || 3 || 3 || 2 || 1:# 1; 2; / z; 2# 2 1; 1: 53 || 2: |10; + # L10 || S10 || 4 || # 2 1; 2 || 2; 3% 3% 23 || 2 || 1:#| 1 || 6 || 2: 104 || | | | |L11|st 1| 3 || 4 || 2 | 13 || 2 |2}|4 3% 3 2# 2; 1} | 6 || || 2: | 12 # # L12 || S12 || 4 || || || 2 2# 2# | 3 || / 3#|34 || 2 || 2: | 1 || 6 || 23 |12 || 3 || 3 |L13|sis|| 3 || 3 || 2 ||25 || 2 |33 |z * : 3; 2; 2; 1+ | 7 || 3 |12 #| | | L14|sau 2; | 2 || 2: 24 |33 |2% 6 |33 || 3 || 2:# || 2 || 8 || 3 |15; #| | |L15|sis|| 4 || 1 || 23 || 2: | 8 |3}|z{ a || 4 || 3 ||25 || 2 || 8 || 3 |15; | #|L16|sag| 3 || 1 ||25 || 2:#| 8 || 4 ||2% 7 || 4 || 3: 3; 2 || 8 || 3: 15; | | | L17| S17| 4 || 1 || 2: 3; 3} |4} || 3 ^{| 4 || 3 || 3: | 2 || 9 || 3: |15; #| | | L1s sas || 3 || 1 || 23 || 3: | 3 || 4 || 3 // | 4} | 3 || 3: | 2 || 9 || 4 |15; #| | | L19|S19 || 3 || 1 || 2 || || 3 #| 3 || |4} |&# /Zál 5 || 4 || 3: | 2 || 9 || 4 |16; 1 || 1 |L20 | S20 || 4 || 1 || 2 || || 3: | 4 || 5 |4% //# 54 || 4 || 3: | 2 | 93 || 4 |16} | 1 || 1 |L21|s21| 3 || 1 || 2 || 3: || 4 |5}|z{ /* || 5 #| 4 || 4 || 2 | 10% 4; 204 || 1 || 1 |L22|S22 || 4 || 1 || 2: 4; 4} |&#|4% /%| 5% || 4 || 4 || 2 | 103 || 4 |204 || 1 || 1 |L23|S23| 3 || 1 || 2 | | 4 || 4 |5% |&# 20 || 6 4; 4; 2 | 11 5; 20% | 1 || 1 || L24|S24| 2: | 1 || 2: 4; 4} | 6 || 6 # 2%. 64 || 5 || 4 || 23 |113 || 5 |204 || 1 || 1 |L25|ses|| 4 || 1 || 3 || 4 || 5 || 63 |&# 26%| 6 || || 5 4; 2; 12 5+ | 20% | 13 || 1 || L26 || S26 || 3 || 1 || 3 4; | 5 || 6; 6 32 || 64 || 5 || 5 # 24 |12 || 5 |20; 1} | 1 |L27|S27| 4 || 1 || 3 || 5 || 5 |6%|3 3.2 || 7 || 5 || 5 # 2} | 12: | 6 |21 1} | 1 || L2S | S28 || 3: | 1 || 3 ; 5+ || 7 || // 36 || 7# | 5 || 5 || || 2: | 123 || 6 |21 1: | 1 || L29 || S29 || 3 1; 3 5; 5; 7# //# 33 || 7 | | 5 || 5 # 2; 13 | 6; 21 || 1 || 1 || L30 | Sºo 3 || 1 || 3 || 5 || 5 || 7#|^3 %2 || 7# | 6 || 5 # 2; 13; 6; 23 || 1 || 14 | L31|| S31|| 3 || 1 || 3 # | 6 || 7% Jº 8 6 5; 2; 13; 6; 23 1} | 1 || || L:32 || S32 || 3 || 1 || 3 5; 6 || 8 | 8+ | 6 || 5 # 2; 14 7 23 1} | 1+ L33 || S33 || 3 1+ 3 5; 6 | 84 # | 6 || 5; 2} |14} | 7 |23 1; 1} |L34 S34|| 2: | 1 || 3 || 5; 6 | 84 |&#| 6 || | |23 4; à |22 || | | | |Z 33 &# 73 a, 3 | " | 3 | *# Zá. " | " | | |Z36 9, 26% Lä–1–6 f/ , /&T || 7 % a f : " |Z 37 32. 9 # 6 7 a 73% ºf , a * 27 / 3% 9% 2% 6 " " / # 33 " " " Z 39 9 % /o 6 " " / # &# , " " Z zo /0 DRIVING NUTS. 2 o'eza/, /ö/ e32 Cast Steel. 2/72/27//ze 9/2/zr 6 threads per inch DIAMETER DIAMETER SIZE OF LENGTH LENGTH |NSIDE DIAMETER PAT. N.O. W. OF SCREW ROUGH HOLE OF THREAD OVER ALL DIAMETER OF HOLE //7 D S HI T L I JB ſh'ſ 2#. 1#. 1; 1+ 4 1+ + ID 3 2} 2 1+ 1+ 4; 2#. # ID 4 3# 2# 2; 1+ 5 2} . #– I) 5 4. 3 2#. 2 5+ 3# + D 6 /O 4} 3+ # 2 5% 3# { { D 7 |/3# 3# 4 3# 2 6+ # 1 D 8 || 22 6 4; 4% 2 6+ # { { D 9 |303 6# 5 4; 2#. 7; 5+ { { DIO |Jºž 7+ 5+ 5; 2#. 7+ 5+ Q (, DII. Aſ 8; 6 5# 2; 7+ 6+ tº D12 |2% //) | 6 J% J’ 9: 6% / 9á Z2/24 |32 9% Z7/? |2/# 2.É //# 28 MAXIMUM BENDING MorieNTS ON PINS * PIN MOMENTS IN INCH Pounds FOR FIBRE STRAINS PER SQ, IN. OF PIN ... | AREA 15,000 | 18,000 || 20,000 22,000 || 25,000 AREA |. I O.785 1470 177O 1960 216O 2450 O.785 | 1 1+ 1.227 2880 3450 383O 422O 4790 1.227 | 1+ 1#. 1,767 497 O 596O 663O 729O 828O 1.767 || 1:4 1#. 2.405 7890 947 O 1O5OO 1157O 132OO 2.405 || 1; 2. 3, 142 118OO 14100 15700 1728O 19600 3.142 2 2#. 3.976 1680O 20100. 22400 || 24600 28OOO 3.976 24 2#. 4,909 23OOO 276OO 3O7OO 337OO 384OO 4.909 || 24 2 # 5.940 3O6OO. 36800 4O8OO 44900 51OOO 5.940 || 2 # 3. 7.O69 398OO •477OO 53OOO 583OO 663OO 7,O69 || 3 3# 8.296 5O6OO 6O7OO || 674OO 741 OO 843OO 8.296 || 34 3# 9.621 631OO 758OO 842OO 926OO . 1O52OO 9,621 || 34 3 # 11,045 777OO 932OO 1O35OO 113900 1294OO 11.045 || 3:# 4. 12.566 942OO 1131OO 1257OO 1382OO 1571 OO 12.566 || 4. 43 || 14, 186 113OOO 1357OO 15O7OO 1658OO 1884OO 14,186 || 44 4# | 15.904 1342OO 161OOO 1789.00 1968OO 2237OO 15.904 || 44 4} | 17,721 1578OO 1894OO 2104OO 231500 263000 17.721 |4} 5 19.63.5 1841OO 22O900 2454OO 27OOOO 3O68OO 19,635 | 3 5% 21,648 2131OO 255700 2841OO 3125 OO 3552OO 21.648 || 5 # 34 || 23.758 245000 294OOO 326700 3593OO 4O83OO 23,758 54 53 || 25.967 28OOOO 335900 3733OO 41 O600 4666OO 25.967 || 5; 6 28.274 3181 OO 3817OO 424.100 466500 53O2OO 28.274 || 6 64 || 30,680 35.9500 4314OO 4794OO 5273OO 59920O 30,680 64 64 || 33.183' 4O44OO 4853OO e 5392OO 5931 OO 674OOO 33.183 || 64 6; 35.785 4529OO 543500 6O3900 6642OO 7548OO 35.785 6; 7 38.485 505100 6O61 OO 6735OO 74O8OO 84.1900 38.485 7 74 || 41.282 5612OO 6734OO 7482OO 823OOO 9353OO 41.282 7% 7# 44179 62.1300 745500 8284.00 9112OO || 10354OO 44,179 || 7% 73. 47.173 6855OO 8226OO 914OOO || 1 OO5300 || 11425OO 47.173 7; 8 50.265 754OOO 90.48OO || 1 OO5300 || 11 O58OO | 12566OO 50.265 S 84 53.456 826900 99.23OO | 11O25OO | 12128OO || 13782OO 53.456 | 84 84 56,745 90.44OO 10852OO | 12O58OO | 13264OO | 1507300 56,745 | 84 &# 60.132 98.6500 11838OO | 13154OO | 1.446900 | 16442OO 60.132 | Sº 9 63.617 1073500 | 12882OO | 1431400 | 1574500 | 17892OO 63.617 | 9 94 | 67.201 11655OO | 1398600 | 1554OOO | 17O94OO | 19425OO 67.201 || 94 94 || 70.882 12626OO | 15151OO | 16834OO | 18518OO || 21043OO 70.882 94 93 || 74.662 1364900 || 1637900 | 1819900 2001900 2274900 74.662 9% 10 T8.540 14726OO || 1767100 | 1963500 2159900 2454400 78.540 || 10 104 || 82.520 1585900 1903OOO | 2114500 || 2325,900 | 2643100 82,520 104 103 || 86.590 17O47OO | 20457OO 2273OOO || 25OO2OO 284.1200 86.590 104 103 || 90,760 18294OO 21953OO || 24393OO 26832OO | 3O491OO 90,760 |f(); 1 / 95.030 19601 OO 235210O || 26134OO || 2874800 || 3266800 95,03O |11 113 || 99.400 2096800 2516100 2795700 3075400 | 8494800 99.400 |11; 1.1% | 103.870 22397OO 26876OO 29863OO || 3284800 || 37328OO || 103.870 |113 1.1#| 108.430 238890O || 28666OO || 31852OO || 3503700 || 39815OO 108.430 |11; 12 113.100 2544700 || 3053600 || 3392900 || 3732190 || 424.1200 || 113. 100 |12 29 EYE BARS Ordinary Adjustable / \ % % % Min. Length C. to end 6' 6," preferably 7' 0° WIDTH MIN. HEAD SCREW. END WIDTH OF THICKN ESS *. - THICKNESS OF BAR OF BAR DIAM. " º: abºat *. ºt DIAM. LENGTH OF BAR BAR |NS. iNS, INS |NS F.T. & INS. FT. & INS. INS. INS. INS |NS. 5. 4} || 1: O – 7: f. 8 * O – 7 2 5 15. 2 5% 2} 1 - O 16 2 3 l l l_ tº 1 T 5 § 2+ O gºs 9; * __ 15 1. 1 2; H----|-- Hi– 1-1 2} | 5 | # to 1; 2% 3 + 7 3 1 - 3 1 - 5 2 + 5 + 1 to 11's 3 ă î 8 4. 1 – 6 1 - 5 2 # 6 13 to 14 4 \ # 9% 4+ 1 – 8 1 – 8 3 | 9 1 to 1% 4. f iſ 10% 5+ 1 - 10 1 – 8 3 # 6 : 1+'s to 1; AE 4. 11+ 5 1 - 9 1 - 9 3 + 6+ 1 to 11's 6 &P 1 12# 6 2 - 1 1 - 9 3 # 7 1} to 13 (> # 13% 5 # 1 – 11 1 – 11 3 # 8 13 to 11's 6 1 14+ 6+ 2 - 2 1 - 11 4 8 14 to 13 7. + 16 6 # 2 - 3 2 - 3 4+ 9 14 to 13's 7 #- 17 7+ 2 – 8 2 - 3 4 + 9 13 to 1%. 1 17 6+ 2 - 3 8 1% 18 7+ 2 – 6 S . 1 # 18+ 8. 2 - 10 1+ 19 # 7; 2 – 6 9 { { 21+ 9 :- 3 - 1 - 9 1 #- 22 9 2 - 11 10 ( ( 2 3 1O 3 – 3 IO 12 I2 Note: Eye bars are hydraulic forged, and are guaranteed to develop the full strength of the bar, under conditions given-in the above table, when tested to destruction. 3O STANDARD UPSETS. For Round and Square Bars. ROUND O BARS SQUARE | BARS ROUND UPSET UPSET SQUARE ow. || Anea ow. | Lenarº | abo |, ..., | "..." | "... [...] abo | Length ow. | Anea ow. INCHES SQ.. INS, !NCHES |NCHES º SQ.. INS. % 9/o SQ.. INS. NCHES |NCHES INCHES 8Q. INS. INCHES # | 0.307| 4 || 4 4} | 0.420, 36.8 # # | 0.442|| 1 4 a; lossol 244 20 e loosa 3# | 4 1# 0.563 | } # O.601 || 1: 4 5 0.891 || 48.8 | 16.8 0.891) 4 4. 14 || 0.766 | # I O.785| 1: 4 4; 1.057| 34.7 || 29.5 | 1.295 || 4 4 1 * | 1,000 || 1 # 0.994| 1: 4 3; 1295, 30.8 || 19.7 1515 4 ; 4; 1; 1266 || 1: # | 1.227| 1: 4% 3# 1.515 23.5 || 31.1 | 2,049| 44 4 ; 1; 1,563 || 14 t; | 1.485| 1 || 44 3} | 1,744 17.4 21.7 | 2.302| 4 || || 5 2 1891 || 1: # 1767| 2 5 4# | 2.302| 30.3 || 34.0 | 3.023| 4 + 5 2 # 2.250 1#. # 2074 2+ 5 4. 2.651 | 27.8 || 29.6 3.410 || 4 ; 5 ; 2; 2,641 || 1: # |2405| 2: 5 4 3.023. 25.7 21.3 3,716 || 4 || 5 || || 2 || || 3.063 || 1: # 2.761 || 2: 53 || 4 || 3.410 || 23.9 || 314 || 4,619 || 5 | | 6 2 + | 3.516 || 1:4 2 3.142 || 2:# 5. 3+ | 3.716 | 18.3 || 27.7 | 5.107 || 4 |} 6 2# |4,000 || 2 24 3,547| 2: 5+ 3; 4,155 17.1 | 20.2 5.430| 4 | 6 3 4,516 || 2 # 24 || 3.976 24 || 6 4+ | 5.107| 28.5 28.6 6.510 || 5 || || 6 || || 3+ 5,063 || 23 2; 4430 3 6 4; 5,430, 22.6 || 33.8 || 7.548| 6+ 7 3% 5,641 || 2:- 2#- || 4.909| 3; 6+ | 4+ 5.957| 21.3 || 30.7 | 8.17O | 6 || || 8 3} | 6.250 || 2 # # | 5.412 || 3} 6# 4; 6.510 | 20.3 || 35.0 9.305 || 6 || || 8 3+ 6,891 2; # 5.940|| 3: 7 || 4 || 7.O88 19.8 321 9994 6. 8 4 76es 2} 2% 6.492| 3: 8 5+ | 8.170 25.9 | 87.0 |11329 8 - 9 4; 8.266 2; 3 7,069 || 3+ 8 5+ | 8,641 22.2 || 41.7 |12.753| 7+ 9 4; 9,000 || 3 # |7.670 3; 8 5; 9,305| 21.3 3# # | 8.296 || 4 8 4; 9.994| 20.7 3# 3# 9.621 || 4 || 9 5+ | 11.329| 17.7 3# # |11.045| 4 || 9 4+ | 12.753 wº 3} 31 SLEEVE NUTS AND TURNBUCKLES. All Dimensions in Inches. Manufactured by the Cleveland City Forge & Iron Company, --------4* * * * * * * * * * >] T gºveland. Ohio. ...T...--4-----T. K------>|<-------------+------> isºlº || standard ºx:"… hy Extra Lengths, 9, 12, 18, 24, 3G, 48 & 72 (Special Prices). º º º º º º º * * t ++. **r T .. # 14 || 7 || 1 || 14 || 1 || 3 || 2: 24 || | | 1 || 2: 1; 8; 1; ; I 1; 7 1: | 1 || 1 || 3 || 3 3# | #. “ 2; 1; 9 1 # 1 1; 13 || 7 || 2 # | 1 | # | 3 || 4 # “ 2; 1á 9; 1; 1; 1} | “ ( { § { § { “ 4. 5# “ | 1 || 2 || || 1; # 1# 1% 1} | 2 || 8 # 2} # , || || || 4 || 6 * | 1 || 3 || 1; 10# 2; 1; 1; “ { { $ $ { { “ 64; 7 # “ 3; 1-# | 10; # | 1; 1; 2} | 8 || 2: 3# 1% # | 8 || 8 || “ | 1: 3% || 2 || 10% 2% 1; 1} | . $ (, sº $ (, “ 8; 10 || “ 2 3% # 11; # 1% 13 || 2 | 9 3} | 3 || 2 | } | 10 || 11% # “ | 3 || 2: 11; 2; 1% 2. { % { { { % { { “ | 11 | 13 || “ | 2: 4; # | 12 3 || 2 2; # | 9 || 3 || 4; # | # | 14 | 15 # 2; 4; # 12; 3á 2; 2} | . * : ºt º * | 15 18 # “ || 4 || 2; 12% # 23 2.É | 3 || 10 3% 4; 2; ; 18 20 | “ 2} | 4% # | 13; 3% 2; 23 “ { { $ t (, i. “ | 19 || 24 | # 3 # 3; 13% | 3: 23 2; 3} | 103 || 4 || 4 || 2 | # 22 || 28 # 5; 3# 13; 3# 2; 2} | * | * { % § { “ 23 || 3O || 4 || 3+ 5+ # 14; 4; 2# 2} | 3 || 11 || 4 || 5 || 3 || 3 || 27 | 34 1; “ 6; 3; 14; 4; 2; 3 || “ “ “ | “. * | 28 38 | 3 || 6 || 3 | 15 || 4 || 3 3# | 3 || 11} | 5 || 5; 3} | # | 84 3# 3} | * | * § { { % “ 35 | 50 | 1; 4 6+ | 3 | 15+ || 4 || 3+ 3: || 4 || 12 5. 6; # # 39 3: 3; “ “ { { | { { * | 40 || 65 | 13 || 4 || 7+ || 4 || 16# 53 || 3; 3} | 4 || 12; 5% 6; 3# # 45 3# 3} | . | “. $ (, § { “ 47 1; 5 8+ | 4 | 18 6 3# 3 || 4 || 13 6; 7 || 4 || 1 || 52 3; 4. $ \ { % § { { % § { 55 1; 5 8# 4+ | 18 6 + 43 || 4 || 13; 6; 7# || 4 || 1 , || 65 # 4# | 5 || 14 6; | 8 || 4 || 1 , || 75 4; Wrought IrOn f 4. 7 Length in inches beyond pin centre to form one eye equals 3.7 (P + It) DIAM, D|AM. OR SIDE OF BARS DIAM. OF - OF PINs | } | 3 || 1 || 1: 13 || 1 || 1: 1; 1} | 13 || 2 || 2 || || 2 #| 2: 2+ 2; 2} | .2% | 3 || Pins I 11; 12 | 12; * M - 1. I 1# | 12# 12# 13+ | 134 | 1.4: ‘. 1#. 14 || 13; 18; 14+ | 1.4% 15+ | 15 # | 16; 1#. 1} | 1.4% 14+ 15% 15% 16% 16#| 17 | 1.7% 18 1# 2, 15: 15; 16; 18; 17 | 17 | 18, 18; 18; 19+ | 19% 2 2# 16; 16; 17 | 17; 18 18# 18% 19+ 19% 20+ 20+ 21+ 21; 2# 24 || 17 | 17 # 18 18% | 184 19+ | 19+ | 20+ | 20+ 21+ | 21; 22# 22# 23 || 23# 2#. 2 7 3. 1 1 ts I 1 - 2 23 18 18; 18+ | 19: 19+ | 20; 20+ 21; 21; 22; 22# 23 23; 24 24; 24; 25% 2} 3 18; 19% | 194 | 20+ | 20% 21; 21; 22# 22# 23 23# 24 24; 24; 25+ 25% 26% 26% 27# 3 3# | 193 20% 20+ 21; 21; 22# 22# 23 23# 24 24; 24% 25+ 25% 26; 26+ | 27# 27# 28} | 3:# 3# 203 || 21% 21; 22; 22# 23 23# 24 24; 24; 25+ 25% 26; 26% 27# 27# 28# 28; 29 || 3:# 33 || 21; 22# 22# 23 23; 24 24; 24; 25+ 25% 26% 26% 27# 27# 28+ | 28+ 29 29#- || 30 || 33. 4. - 4. 4, 22; 23 23; 24, 24; 24; 25+ 25+ 26; 26% 27# 27; 28+ 28; 29 29% 30 || 30; 31, 4 44 || 23; 24 24; 244 ||25 || 25% 264 263 27# 27# 28; 28; 29 294 || 30 303 ||31 || 31|| || 31|| || 44 4# | 24; 24; 25+ 25% 26% 26; 27# 27# 28} | 28} | 29 || 29; 30 30% 31 || 31#. 31# 32+ | 32+ | 4; 4} || 25; 25% 26+ 26% 27# 27# 28; 28; 29 29# 30 30% 31 || 31# 31% 32; 32% 33% 33% 4% 35 26# 26+ 27# 27# 28% 28; 29 29# 30 30% 31 || 31# 31# 32% 32% | 333 || 33} | 34} | 34} | 5 5# 27# 27; 28; 28; 29 29; 30 30; 31 31; 31% 32} | 324 || 333 || 333 ||34 |34} | 35 | 85% 5#. 54 || 28# 28; 29 29% 30 || 30} | 31|| || 31# 314 || 324 || 32+ | 333 33} | 34% 34; 35 | 353 || 36 || 36% 5#. 53 29 29; 30 30} |31 || 31+ 31% 324 324 33% 33} | 84; 34} | 35 | 35+ | 36 || 36} |37 || 37+ 5% 6 30 || 30; 31 31# 31% 32% 32% 33+ | 33% 34% | 34% 35 | 35% | 36 || 36% 37 || 37} | 37# 38% | 6 NOTE: Maximum shipping length should not exceed 35 feet. . § CLEVIS All dimensions in inched, N. - JB N f Grip G can be made to surff connections. DIAM, OF CLEVIS DłAM, OF CLEVIS MAX, PIN —r FORK NUT WIDTH THICKNESS CLEVIS JD P º N W T A. B I) 3 1#. tº 1% 13; # 6 5 3 4 2#. 1# \ 1% 1% # 9 8 4. 5 3 2# N 2+ 2% # 9 8 5 6 3# 2% N2% 2% # 9 8 6 7 4 3# 34 3% # 9 8 7 Table giving diameter of Clevis for given rod and pin. ROD ENs ROD ROUND | SQUARE | UPSET || 1 1+ 1} 1+ 2 2+ 2}. 2}- 3 3: 3+ 3 + 4 || UPSET | SQUARE Round # * | 1 || 3 || 3 || 8 \ 1. + # # 1} | 3 3 || 3 || 4 4 4 # # # # 1+ 4 | 4 4 4 4 # # # 1 1+ 4 || 4 4 4 4. # 1. 1; 1 1% 4 + 4 4 4 - || 5 5 5 # 1 1% 1% 1+ 1; 4 4 || 5 5 5 5 5 # 1; 1% 1 # 1% 5 5 || 5 5 5 5 5 # 1#. 1#. 1; 5 5 || 5 5 5 5 5 # 1: 1#. 1:# 2 5 º 5 5 5 [e 6 6 2 13 14 1#. 2+ 5 5 || 5 5 || 6 6 6 6 2; 1# , 1# 1. 2+ 6 6 || 6 6 6 6 || 7 |7 ||Y 2% 1#. 1} 1% 1#. 2.É. 6 6 || 6 6 || 7 7 7 7 7 || 23. 1% 1% 2 1% 2#. 6 6 || 7 7 7 7 7 7 2; J; 2 2#. 2#. 7 7 || 7 7 7 [- . 2; 2* 1#. 2: 7 7 || 7 7 7 2.É. 1; 2#. 2 2% * 7 7 2% 2 2+ Round SQUARE | UPSET || 1 1% 1# 2 2+ 2* 2: 3 3: 3; 3} 4 || UPSET | squarE | ROUND ROD P|NS ROD Clevises above and to right of heavy zigzag line, may be used with forks straight. Clevises below and to left of same line, should have forks closed in until pin is not Overstrained. 34 BUCKLED PLATES. • - - - ) || > → T ~ Tº sº. To T-T- O - : ...b <------------+---------- ...Radius O - • * > Lººſ.' Io e s > To sº. To TST - || - To To a = {#: £, b = {# 3% e = {{...; S! ZE OF BUCKLE RAD. OF BUCKLE | Maximum SlzE OF BUCKLE RAD. OF BUCKLE MAXIMUM No. of in FEET AND inches | * | In FEET AND inches ||Nº|| No. OF in FEET AND inches | RSF | In Feet And Inches | Nuween PLATE TIENTTWFT" "TWEFT|, ..., |PLAre TWTTTIF" "TWETTINGT1..., L W R. L TW TV L I? JV L 1 || 3-11 || 4-6 || 3 || || 6-8 || 8-9. 7 || 26 || 3 - 1 || 3 - 2 || 3 || 4 - 10 || 5 - 1 || 9 2 || 4 -6 || 3-11 || 3 || || 8-9 6-8 6 || 27 || 3 - 2 || 3 - 1 3 5 – 1 || 4 - 10 9 3 || 3-11 || 3-6 || 3 || 7-9 || 6-3 7 || 28 || 3-1 || 3 - O || 3 || 4 - 10 || 4 - 7 || 9 4 || 3-6 || 3-11 || 3 || 6-3 || 7-9 8 || 29 || 3 - O || 3 - 1 || 3 || 4 - 7 || 4 - 10 || 9 3 || 3-9 || 3-9 || 8 || 7-1 || 7-1 || 8 || 30 |2-0 |2-6 || 2 | 2-6 || 3-10 | 10 6 || 3-1 || 3-9 || 3 || 410 || 7-1 || 9 || 31 2-6 ||2-0 || 24 || 3-10 |2 - 6 15 7 || 3- 9 || 3-1 || 3 || 7-1 || 4-10 8 || 32 - 6 5 - 6 || 3 || 5 - 4 |13 - 1 || 5 8 || 3-8 || 3-8 || 2 |10-2 || 10-2 || 8 || 33 5-6 || 3-6 || 3 |13 - 1 || 5 - 4 9 |2-8 || 3-8 || 2 | 5-5 10-2 10 || 34 || 4-0 || 4-0 || 3 || 8 - 1 || 8 - 1 || 7 10 || 3 - 8 || 2 - 8 || 2 | 10-2 || 5-5 8 11 || 2 - 2 || 3 - 8 || 2 || 3-7 || 10-2 || 10 12 3 - 8 || 2 - 2 || 2 | 10-2 || 3-7 8 13 || 3 - 0 || 3-0 || 2 | 610 || 6-10 9 14 || 2 - 9 2-9 || 3 || 3:10 || 3-10 || 10 19 || 2-6 || 2-9 || 2: 310 || 4-7 || 10 20 || 2 - 9 || 2 - 6 || 2 + || 4-7 3-10 || 10 21 || 2-6 || 2-6 || 2:# 310 3-10 || 10 22 || 3 - 5 || 3 - 6 || 3 541 || 6-8 8 23 || 3 - 6 || 3 - 5 || 3 || 6-3 || 5-11 8 24 || 3 - 6 || 3 - 9 || 3 || 6-3 || 7-1 8 2.5 || 3 - 9 || 3-6 || 3 || 7-1 || 6-3 8 Plates are made 1, Ig, st Rivets generally f 5' 3 1” 5 f/ */ fy OT i thick, Buckles of different Sizes should not be used in the same plate, *" or 8” ai # or + diam. 35 FLOORING —l # SIZE OF Z BAR GAUGE STANDARD DIMENSIONS à wº THICK FLG.E. & WEB. g 7 7 3. - # 2#. X 4 X 2% 1: e.9.2 -3-º/--> 1 15 25 | All # 2# x 4; x 2.É 1%; <----" > 3 + 13 ! / N / N /TN (TN a 3 x 4; x 1#. E | i | JTV I T. 3 x 4 x 1% fy SC .N. 1// 3// 1// \ily 3'ſ Sº 3# , 16 32 3} L 2; i. #-F. 5. ºf ..”fl-->i. *— 4 1. 1. 1 4– 4- | z-rºw z-T-sº | * 3ía X 4 is X 16 8 | 2 | V ch \–C | Q 3+ x 4 + x + 29. (P- | H cº-, P– TE 5 8 8 32 | | SP # / \D == 5 1 x & 1 15 V | L.-- 9 > + | 3; x 4 3# 1; --J-> --- | | * 31 # 3; x 4; x 3; 32. i. |-e J.- *------------- -> 3 3 1. 3 Ts + || 3 # X 4+ x 3; 2 3 25. _(1. ..( – ºr, # 3# x 5 x 3; 1. * . Fº | | 4 3 + + 19_ Hº: - - H--> * - CD # 3+ x 5; x 3 + | 13; ! / N at N k{ſ- i --i--ºf----- f ! <ſ. 6 2 1 2 i | | | | (D G TS' 8 16 3 | ef | | | M * | # \e i Fº | | S-CD- -4 / | I- *}º l i 3 | \l/ i \J | 8’’ \D // \#2 | | s? t *ā-----L 8 > He –––––– F-------> | |-K- — — — — . z-r-, | | // | # / | s © |. 10 + *--------- F : . Tºs : . . . * * o e ~, o 36 LACING Maximium Distance C for given thickness of bar. = C- ~~~ ºr & | . c. z. e # = #, A single Lacina t-à | Double Lacing t-à Z = 737 THICK. D|STANCE D|STANCE TH|CK, C t C C f C * / , , g º / - Oz # O - 10 1 - 3 # /*6% ‘. 2-4 " 5 1. 3 5 - * % / - Jºž 6 1 - Oż 1 - 6: 16 /-///2 /- « 24 -É 1 - 3 1 - 10% # 2 - 22. /- 9% | # 1 - 5%; 2 - 2+ # 2-3% 2 - / # 1 - 8 2 - 6 # cº - //4 2 - 2 # 1 - 10+ 2 - 9%. # J’ - 6 2- Zá # 2 - 1 3 - 1+ # J - /ø 3% - 7 --> . - Tºivet ge # Itivet 8 # Rivet ; Tºivet 4. ====== <==== _*T 2- 2 –––––––––––––z--N- —-----K-T- *T*. { i ! | ; | | | | G) -j- icolº GD •ly G) | Fºr-le GD -kºl. ! -- -- | * * * * | # | . 1# : | N---- Kº- +* * k-tº- k 1; | 1 F------- > k---tº-> CU, l b C - - **k- — — — —Y. ! L_l × De Dº-D ; Distance to be added to C. C. length c. i - o i F|N|SHED LENGTH Q, ORDERED LENGTH ! D|AM. OF RIVET | D|AM. OF RIVET 1. 6 3. 1. 5. 3. 2 & 4. 2 8 4 1% 1% 2.É 1% 1% 2# 2 2} 2% 2; 2% 2; 2# .: . ': : y; Dimensions in Inches © : 37 = f – e." - at = 7 ;-ay I & Lºl& =.t ºf & O stº - ...t S a 'ſ zo. g(aſ -º)-2't 3 = 0 A ‘0tto x &ºx99&zsoo = 'o. F. ,” \ & w * ,' * A \ /*------*\ / Aſ \ ,' * ,’ \ & / \ ,' \ 20 Aº A \, (FA wns) rſi, I oc & ºf º / •e \ z \ A Mºs ,” w —#–E– = A \, (a A wys) o rſi, k--- 4.-------------------------------> Q #22 – 2: ºy 9 \, : (Eſſº)p# #; =F2C ,' !-4------- t s v , ſº ^ſo ! ..' g QC '. \ W t l —'s 2, 20 + 22 2. +?) ==== - Q0,70 sº /V 132 + 2 ≤ . I Q+22 azu +a (ro-o)/V = ſt := = z:x: a'l-Fa (ra--a )/V =ac agitta (8” +”)/w -a. -X----- ! : I | | i | | | 2s, | / 's | 2’ l / i & l ,” | 2^ ! . ,’ ! Sº 2^ to ,’ | ! \ W | w | | \ S. | * *A | \ | w | \ | - \ | º \ | ‘e. \ | \ l * ; 6A/ 'N / > 3--- Y { S For gear device, s § Tº | --->| As shutters to swing ޺ 3. | | -\, j,\, .223 on pivots in end Jº s ... i. º. | | | - * > * uprights. : cº se © s | ſ | 2 < – ºr * * E | | | 2 * * ~ * Q9 * N 2. | | | | | - *** Lever. s * | 2." * * º i]-} + 9 s"|*. º T | Steel spring to opposite side. 5 CNR 2'' x 2// _3/? - WWWWN : --- y X Tº L. CIi s \ Z nch f *|= A | N iv et,. i 14"Flashing turned Wy Roof Steel. over angle, TS, Clim cli Ikiv et. Flasii iug unless otherwise specified is usually one gauge thinner than roof covering & of same l; ind of In alterial. Louvres of this lºlnd are made of + 84 steel. Maxina urn leng End lap 34'' to 3%.'' louvres 11!! wide. #" holes in uprights, for 34'' oval screw head bolts $4" long, I5' Rooſ’ Steel. BERLIN LOUVRES. Roof Steel Clinch ltivet - Set yzł º Order steel for This or similar lever apparatus may be used on better class of structures; it is also used for swing sash. It Inay be oper- ated from any point as speci- tied. S & * > U se angle uprights at s trap. / p- splice joints of louvres. s &". ** 2|3. A r: ~\ s Flashing. J "f * *—º-Z, º * Sº 1%" x 34” brackets at so $5 * -# .* I_--~~ &, splice jolnts. s A Ny ~ -- *. alsT §: N Gauge of metal §§ ef •+ 82, unless specified. z §§ 2. + 1%" x}{"Strap at joints. “ Louvre Block, SR Maximum length of 1%'' Long. * Iouvres 740," no lap. - g- Qºler steel 11 wide. - '.11.4.” § i;" holes for Šs" oval th -1-1%. N screw head bolts 1'.' -: , long. t Israel:ets at joints.-- 'Louvre Flashing. --> s s \{j---, \\ Sº >|Yº! —t—º- 1?'" Flashing. J yº” X---- Rootsteel, 2 ~~~ \ * Clinch- \ iº SHIFFLER LOUVRES, – © Gº *: A & 3. § # ă : p=1 : gº * $ * : º - * s *: F. g > c ~5 * * * , © d) -le Q ſº * * : clie * F *]; in g: * † gº! $4 * I H >st S. *: 5 S. º Nº E * Nº *{ z. e Yºut × P •º * S. 3s s Nº ſº Nº < *ſ –41 rº S-/ NJ Section through Section through Flat or crimped Corrugated Steel shutter, Flat, or crimped steel #20 gauge & of same kind of material as roof unless noted. V entilators with ſlat or crimped steel slautters, should have intermediate portions & ends covered with corrugated steel. Use standard corner cap. steel shutter, to be eovered with regular Cor. steel same as rest of building. Ordinary length of shutter, 840." Steel shutter. Vents with Cor. Roof Steel, 6O ORDINARY WINDOW SASH Dimensions in feet and inches. § 2 size of WIDTH | HEIGHT HEIGHT | WIDTH | SIZE OF ||, tº 3 & STYLE STYLE . 35 2 —J GLASS Jy IHI. IEI Wy GLASS || 2: I 10 x 12 || 2–113 || 2 - 5; 4-7+ || 2 - 11+ | 10 x 12 12 x 12 || 3 = 5+ || 2 - 5% 4-74 || 3-54 | 12x12 10 x 14 || 2 - 11% 2 -9% 5 - 3+ || 2 + 11+ | 10 x 14 12 x 14 || 3 - 5 # 2 -9% *- 5 - 3+ | 3 - 5+ | 12 x 14 a | 10×16 2-14 || 3-1; 5-14 || 2-14 || 10×16 |ze 12 x 16 || 3 – 5-3 || 3 - 1% 5 – 11+ | 3 - 5+ | 12 x 16 14'x16 || 3 - 11+ 3 - 1+ 5 - 11:# 3 - 11% 14 x 16 10 x 12 2 - 114 || 3 – 6 6 - 8+ 2 - 11% | 10 x 12 12 x 12 || 3 - 5 # | 3 - 6 6 - 8+ | 3 - 5+ | 12 x 12 10 x 14 || 2 - 11+ | 4 - O —, 7-8% 2-14 | 10×14 12 x 14 || 3 - 5 # || 4 - O - - - - - 7 - 8+ | 3 - 5 + | 12 x 14 10 x 16 || 2 - 11% | * 4 - 6 III s # 8–8+ 2 - 11+ 10 x 16 * | 12,16 || 3-54 || 4-6 Hill. |-8-84 || 3-54 | 12x16 1S 14 x 16 || 3-11+ i + 4-6 |-- : 8-84 || 3-1}} 14x16 "If", 10 x 12 || 3 - 9% 2 - 5% 4-7# | 3-94 | 10x12 12 x 12 | * 4-5% 2 – 54; 4-7+ |*4 - 53' | 12 x 12 10 x 14 || 3 - 9% 2 - 93 5 – 3+ || 3 - 9% 10x 14 12 x 14 | x 4-5% 2 -9% 5–3+ |44 - 5; 12 x 14 -10 x 16 || 3-94 || 3-1; TTTE ºf 5 - 11; 3 - 9; 10 x 16 8 5 s 16 12, 16 || 4-5% | 3-14 || || LLlº. 5–41; +4 – 5% 12 x 16 14x16 | x 5 - 1: 3 - 1+ |-ir- e 5 – 11% #5 - 1% 14 x 16 1O x 12 || 3 - 9-# 3 – 6 6 - 8+ | 3 - 9% 10 x 12 "12 x 12 || 3: 4 - 54; 3 – 6 6 - 8+ | * 4 - 5; 12 x 12 10 x 14 || 3 - 94 || 4 - O —r || 7-8% 3-94 | 10 x 14 12’x 14 | * 4 - 5% | 4 - 0 -–1 : 7-84 || 4-5% | 12 x 14 12|10x16 8-9; 4-6 s s: 8-84 || 8-9s 10×16 |e, ... 12 x 16 || 3: 4-5% 4-6 –4 8-83 || 4-5; 12x16 14, 16 | * 5-1} | * 4-6 8-84 |-5-1; 14x16 k-w- Note: Sizes marked thus” have 1% sash. 61 CONTINUOUS FRATIES AND SASH IN MONITOR. § A. * Y - º C9 ºxxº ES Purlin * II.I.III III IIlli; T – T | I-L-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > _{T 2-T // // Crimped Iron Cornice, %x 2% Lag- | º/ Screw - ----------------- - - - - - - - - - - - - - - - | º •- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |Flashing —rs Block ! . . // //t y // L., PA - - - - - - - - - - K 6-to-8% S$4'x3'x 6 3---|HH=|^j 1%x 3' *}___ T| i 134'x 5% (Nº-K----|- ſ) #-Fi : | a m |2|=|| || A \, : Dimensions of sash determined by % # 7. 2%, ’’ ; number and size of lightis. º: * Sºf 2%f 3 Nº * 2. º . § || || || 21% = } \1 12 º' +% round - // A/ - - - - sº | i * |}6'x 2% Lag- - - - - - - - - - - - - - - - - . . - —H Screw Flashing | > * > Cor. Steel ELIEVATION SECTION y // 1.-34 round // % - - - - - -W;-Glass, Muntins and 4%------>| PLAN Design shown is for fixed sash for monitor; for swing monitor sash, cult stops off as shown by dotted lines and omit headl stop on inside. Make frames and sash of White Pine, excepting spiking and blocking pieces, which are to be oſ Spruce, Homlock or Norway Pine, planed on all exposed sides. For swing sash order two trunnions for each sash, and Call for lever Operating device. 62 CONTINUOUS SASH § ſº &O +: tº +: * ºf 5 pººl mºst sº ; º: * =3 -> 5 * $) -4 * * = i . Steel i MIuntin Tinner’s Nails Dimensions of sash determined by number and size of lights. Usual sizes of lights, 10%. 12.12%. 12, 10'x14" and 12%. 14; No. 2 American glass, single strength. For lights larger than 12"x 14"use double strength. #: Screw; 12 blue, round headed, 2 washer. long, with tton) Cor. Steel S sº *t past o *{ N ee * p=4 o ſº § \ S - s SS Ş s * S cº § |f -: =. %x 2% Bolt 3:0'c. to c. SECTION TELEVATION | 1% w U —JC – J U S J ZU J f H H + H +4+| LE !----- — | | | | | | | | T-- H i i ? I i | i i | // ! // !..., | 7, | y, ! / 2%. 2% || 3 J3% |% 2%il | Kºk+ or — »ººk--- Glass-------Glass---º-- glass-º-glas--- ^k-> | | * — — — — — — — — — — — —W = Glass, Muntins, and 4%% ––––––––––.> T^LAN S:2. S Design shown is for Continuous Fixed Sash in Cor. Steel sides. Malce sash and sill of white IPine, planed on all exposed sides. 63 CONTINUOUS SLIDING SASH. Cor. Steel Lag Screws 4 x 1%." Spaced. 2' to 3'Ctrs. Flashing e Purlin Rail Dimension of sash determined by number and size of lights. Muntins & tº- // y f Usual size of lights 10'x 12' 12"x 12, y/ f f f * 10"x 14"and 12"x 14: No, 2 American glass, single strength. // // For lights larger than 12 x 14 use double strength glass. Roller Botto in Tail : ; Cor. Steel ELEVATION Roller 1%x %'Stop Ol' - 1.% Round W= Glass, Muntins and 4%" T^LALN & SECTION Design shown is for sliding Sash in corrugated Steel sides. Make frames and sash of white pine, excepting spiking and blocking pieces, which are to be of Spruce, hemlock or Norway pine, planed on all exposed The stop used for roller track, is to be hardwood. Sidles. ſº * º tº Call, for Operating device, as desired. ~ C 4-> 24 (D S SN (AE) ;4 SN `...? ;4 *! § SS3 - & S. T. º * Tºrºzººi" | SS: A. Nºr- N RI. & + § êſ) E rº, N © {j} º cº £: ; y-f § { tº) . C5 §3 ºr ;4 (/) sp=ſ & H * $º 3 = S 2 £ : So 3% U # < | sº § & | E in Sº I + Uſ) // O & |}% ! 3 *{ S$ CS Ö ºf *4 184 >| | . . /, "c 13; rº g re: * - || 3:5 9 § || E |{n 3 3 || Sºn |\ge 2 Ú) Toc ~5 * || || 3 * S SN ** j || ot § : SS & >{ Ş 64 COUNTERBALANCED WINDOWS A / f/ % x 1% lag Flashing b ſ screw, e \ 1% x 3 x l. Purlin . l s w *ś 6 | ? sº-----|--|-y------ f- —º Jº-E = − . g/ +j-- ſ—Hir-i > 1% |X 7 + ! #--- || ||{s}.}~ Pulley Top Rail | | Tºle | , - . * | | ; : .E. | 3 3 's Cºl Muntins , > is # | & | * go Y - * -- * : *-* º º Q) | : | ≤ Tº KS & S., $º § | | ||*||##| || = 3 §§ | % s 2H} 9 : *{ 3 \ch § U} ~ * ; : º º, Y ; : /~ : J ;4 | PTS : \*** - 3 S | & CN: º * e --~,- & Y. –––l. ---. *—| – |-&- . Meeting Tail 2. sº *:::: TJ |ſº 3 e I i | | ‘L Purlin 3. # Dimension of sash determined l % : by number and size of lights. g Á 2. sš ; * * J. ºf lºy > | : |S| ºt - - 3 | * | S * º: Muntins , ! {{=-|-|-}. ; + Usual sizes of lights 10%. 12' 12"x 12" | | | f / # / y * 10'x14" and 12"x 14: No. 2 American | is | | Ü) | glass, single strength. & 3 §2. a *ſ pºrt • SN For lights larger than 12% 14"use Ž * wº- | double strength glass, | | | _Y ——ll-l - -]|}- iſ | s: * IBOttom Rail ! s ºf | | Ll -*--ºxº- 4x2F * S Nº. 3- 2. ! ===}|H=======Hiſ------→======= .# ºrº-H------ Y. — #|| Purlin. | Drip // / / ...}} {{!!! .2 x 8 Sill | | j|| | | | Trim sheet under window in field IELIEVATION // / / <--— 2% x 3% stop * L = E –/S ſE. | Fº J +% % i | | 2 // ; f/ } 3 ºff- -Glass. ---ſº -- Glass- --> -Glass, Mu ptins-and-4% 4'-o'Max. IPLAN x 1% stop f/ #3% * i . . // K---Glass.-->;--> -- 1% 2% - A/ g 4– 1 % round */ // % x 1% lag SCI’e WWS SECTION Design shown is for a window frame with counterbalanced sash in corrugated steel sićles, Malce frame and sash of white Pine, except spiking and blocking pieces, which are of Spruce, Hemlock or Norway T’ine planed on all exposed sides. † tº g * e A // This design for sash having both dimensions not groater than 4 - 0. 65 COUNTERBALANCED WINDOWS Flashing // // % x 1% Lags crews S z/ // IPurlin '. * x 3 slº F' Zº // A A N == T EF 1% x 7 & 4 -ſ ripalley º : % ': 3. ~ Ö © | º * s 3 Muntin : ¥ | tº 5 ºffi Hº ; 'ºn | 1%++ : § !, "TEIN ||- Jº H § - § SS: : 3 3 * * Y- E § 3 ; * ! y” sº sº \,, | | Ú) : * * X P’ : § sº 4–H– 3. | i ~|||—|A $ Pulskill | CN: .* Dimension of sash determined by ; Jr. mumber and size of lights 3 *º o Ö J.--> | Yº S rt Muntin Sº r: ====#|==# º glass, single strength A // 3. Tor lights larger than 12 x 14 use Ö double strength glass. | ----!!-FSL Rotto in Rail Yeº – sºlº T == t Nº Purlin * ſ |ſ R \, , , . I) rip | | 2 x 8 sill Cor. Steel 1. × round U 4 x 1%." Lagscrews Trill) sheet under ELIEVATION SECTION windlow in field - 13% 14' t // // à X % SUO 2 x 7 1%x 3. / > 1-94 round --W.- Glass, Muntins and—4% 4-1"Min. PLAN This design for sash. having one dimension not less than 4 - 1" Design shown is for a window frame with counterbalanced sash in corrugated Steel Si(les. Malce frame and sash of white Pine, except spilcing and blocking pieces, which are of Spruce, Hemlock or Norway Pine, planed on all exposed sides. 66 DOUBLE HUNG, WEIGHTED WINDOWS. | *... St. C C A ©or. Stool %x 184 Lag- Flashing & screw - f/ / Purlin X: 3 block T-T-7- - - - - - - - - - E -- ~. -- ~. T Fºsº Sº S sſ º J * M * * || 3 || \º -- * -º-j-i-H *E fº e | |-}Mortised Pulley | ty) I 3 p I Fº sy- 3 *||3 > | N+5 - * 39 i * Muntin 3 ! s }=== || º e 'p cº- - 3 &n ēſ) ! | (ſ) g: g | | 's sº, | % th. I Š & tº- | : #|N||: º Y- *...* N. Tſ) $4 ; (5 c S& : : Ş : à Sc \º | | * p. *Y------ x- Sø –-Y--TH sy & | ! * & & : r Dimension of sash determined % S C * -- 3 i or Jº by number and size of lights. § |; Teo (5 |- re: | re: º *}=== =}==}}}.} Usual sizes of lights, 10" x 12," | 12" x 12' 10"x 14, and 12” x 14. h No. 2 Aunerican glass, Single 3 Strength. ! & IFor lights larger than 12” x 14" : i use double strength glass. | | } = } * Botto ºn Iſèail # * * as: Lºſ T -: sº 2 * \ , Purlin * 2' %x 1% Lag- Drip , , screws Cor. Steel /* .. º e Trim sheet LEV 1-94 round | 2 x 8 Sill window in field ELEVATION. * SECTION. ... // // &o .* 1% x 4% , , , crº , // A/ AZ // g gº 7% X. 1% wº #6 1% % x % parting strip \ 7%. 114 —f i & TT; TIFF: | Eſºftop ºr=#H***, *º ol, ºffl-lle | rº- fiği | | 1-94 round | “. - & sº , ºt U tº & º | | 7, 3. This design ſor sash Sºo r:// . !! , , 11 tº g § º ºr }% |% Wii having both dimensions *—4% ºf gº-glass-----glass-----, Glass iſ’ 4% Vigá not greater than 4-0. 1% %| // %2, 1% kº-W = Glass, Muntins, and 4%-4-o'Max.” PLAN. Design shown is for a window frame with double hung weighted Sash in Cor. Steel siding. Make sill and casings of white pine; jambs and parting Strips Of hard pine; spiking pieces and blocks of Spruce, Hemlock or Norway Pine, plained on all exposed 67 DOUBLE HUNG, WEIGHTED WINDOWS. Cor. Stoel // Az IFlashin 1% x 1%. Ilags crew § f/ A M Purlin | º ſº x 3 block * - - - - - - - - - - - - - - - - (K--5 ſ - - * - - - - -- sº S ] SAS § 2/ X lſº Cry S S | sº | S. J. Lºgº º -º-HTH is -º-º-º-º-H- -> | `-----|-hallſ; | : s | | e - Mortised ſ | > Pulley | | | i # | | & | | & | > | | * 9 Muntin $ Scº.----|-l § i e F---TT th 3 : ! * º t * © SS ; : ]]|| || 3. * | 3. +. J Uſ) $4 ... Sº 2. Y NQR 2- - fe; t º S S ---N. - i. Sº, ſº * Sº-FF=-FE frº- Ea. :- J ºf 4 o ÖC . | : | | S Dimension of sash determined : in s © : r § 2--1- 4-c- f) * by number and size of lights. t cº H. --> t fººt -- -Hº- > -o | § r: | ~ N. I | l 4,---Glass--->|<º-Glass--->K? --Glass-- #4% *: // having one (limension 2 i 2 * z */ 2% }% - A , // *w- Glass, Muntins, and 4%–161'arin.” not less than -1-1. TIAAN. * Design shown is ſor a window frame with double hung weighted sash in Cor. Steel siding. Malce sill and casings of white pine; jambs and parting strips Of hard pine; spiking pieces and blocks of Spruce, Hemlock or Norway Pine, planed on all exposed Sidles. 68 standard DOOR l * S *. : % iſſº 2 .’ 8"x2 Miljić wall 9's 1% y / * Z Aſ / / |z Z z / |, Z z' / /* |^ % / / A Y / a rai (33.7 2.8 2// 3/ .../ 1 / / A Design for door up to 3-0"x 7'-0" $ 3. º'-- 2’ z' Z. A./ 2% Bottylä rá11/19%x 1%." - z z a" f / Z Z A. Af z Z 3 Tl s/s & g * Zo A | , / 2^ y 2^ 2 A # * : * A 2^ 2^ Töp rairs xx & / 2^ / / 2 ºz---|-- 2 oz's zz- * / % /* 2^ A p/ © .* 2|| 333 4 Matélºd * z à Z Íeaded wiiite piiie rº / | she'athing screwed/ -- . e 2 / ~~< ºv tí 2 % $º & / O frºme W Ele As - l sº s^ /Noºi. screw Spait; tº / Sº ſº 2--> --> * º * - / eiich bearing z * S / x sº >% / f/ * 7 // § ,” * / i}{}|}|-% 5 32 | B || / ) i * << */ q) * § tº 2? 'grouarter wº/ 3' / 2^ #|† 2/ nºſed with brods || 2 Z t g|. 2 : %éhainfér / ! // / *: | - / 2^ V, A g F: 5 § / Jº Aſ Z / / º / Ny y ſº I al; L----E=—-º-E=2-y 4 , i. gº tº > Z Z 2 / /// /// / S ”, ſº † s " ; / 2' / 2^ Middle rail 8, 1% 2ſ / / / 30| |...}. .." | 2: | / / / z / 2. / / / 2 º' , c : * }^ / / / ^ 2 / || 2 | Z Se Z —4— - - - - 3—H3 & Z o % k’ A º ** g - N A s * ſ / / % ./ S : l / / ; : s / * : *. % g Fº \\ / | *|† #. rº, / / `sh 3. }^ / © .* º / ſº z / ſ | |^ / X ) / a Z ^ / A 2. J 2S→2-H2—’ 2’ Ty — 2. / / t / / / | / | / Z / / A ,’ / ^, / sº 2% / / / / à variº o' tº z / / / }/ // 2^ y^ JBotton rºl 1() ×1% / / 2^ 2^ al / s / ! * 2 : A –Z Z 2^ / 2^ 2^ 2^ 2^ 2^ º X N -: / // / // º iº .* For doors 6-0 to 8-0 wide; ſº- Section A-A. g ~ all doors over 8°0'wide to have two or more center stiles 3 //TIZ. Z £4. Zºtovºail,6'x1337.2 º:--> z º -& & ->7 -: st S&L IIardwood 2- kg. ZTod raillºg's: 134' - sº * e 2% p rail-6 x § Meeting strips for Meeting strip for Z ſ / double sliding doors. double swing doors. Sº 2 ~, / & .* * §e / Doors may be either slide or swing. Sliding doors should *ś, / be 4 wider and 2 higher than clear opening between jambs. º: / All doors under %9 wide to have 1% stiles and rails, Ž 2. ,’ All doors over 6-0 wide to have 1% stiles and rails. All stiles and rails to be Ilalved or mortised and tenoned together. Doors to be inivole of White pine If doors are to be covered with tin or sheet metal they are to be maile of two or Isaore thicknesses of 76 matched white pine sheathing not over 4 wide, laid diagonally and put together with wrought nails well clinched. Tesign for doors over 3.0% fºo" and up to 6'-0"wide 69 CORRUGATED SHEETING FOR BUILDINGS AND ROOFS. Two kinds of corrugated sheeting are used in cover- ing buildings—the flat, which is to be painted, and the galvanized. In the United States sheets both flat and corrugated are made by the mills to fulfil the standards, fixing the gage, thickness and weight per square foot, approved by act of Congress, March 3, 1893. They are as follows: WEIGIIT PER SQUARE FOOT. GAUG E No, º FLAT SHEETs. CoRRUGATED surns. Black. Galvanized. ||Black, Painted Galvanized. 16 .0625 2,50 2.66 2 75 2.91 18 .05()() 2.00 2,16 2.20 2.36 2() ,0375 1.50 I, 66 1.65 1.82 22 .0313 1.25 1.41 1.3S 1.54 24 ,025() 1.00 1.16 1.11 1.27 26 .0188 0.75 .91 0.84 (),99 28 .0156 0.63 ,79 0.69 0.86 The weights of corrugated in the above table are for the standard corrugations, 2% inches wide approxi- mately, and 3 of an inch deep. The standard slope for roofs covered with corrugated sheeting is six inches to the foot. The sheeting should not be used on roofs having a slope of less than four inches to the foot, unless special provision be made to make laps tight. The sheeting is placed directly on Roofing. 7O CORRUGATED SHEETING FOR BUILDINGS AND ROOFS. Siding. Straps Clinch RivetS. purlins spaced proper distances apart, or may be laid directly on wood sheathing, which covers the entire surface of the roof. When the corrugated sheeting rests on purlins, the gages commonly used are No. 20 and 22. - * Corrugated sheeting for siding of buildings is attached the same as roofing, directly to the purlins or nailed to wood sheathing. If purlins are used, the gages com- monly specified are Nos. 22 and 24. One gage lighter being used for the siding than is used for the roofing for the same building. Whenever possible, particularly for roofing, sheets should be arranged to span at least two purlin spaces. Fastening for Corrugated Sheeting. Various methods of fastening the corrugated sheet- ing to purlins on the sides and roofs of buildings are shown on the accompanying standard illustrations, pages No. 58 and 59, and in a general way is shown the dif- ferent conditions under which the different methods of fastening should be employed. Straps made of band steel # inch wide are used to fasten the sheeting to purlins made of all the rolled shapes, but usually are to be applied for fastening the sheeting on roofs where channel, I Beam or Z-bar pur- lins are used. These straps pass around the purlins, and are riveted at both ends to the sheets, or they may be fastened by bolts specially made for such purpose. Two of these straps should be used for each sheet on each purlin, or practically 12 inches apart. Clinch rivets are commonly used for attaching corru- gated sheeting to angle iron purlins. These rivets are made of wire with a special head which fits the top of the 71 CORRUGATED SHEETING FOR BUILDINGS AND ROOFS. corrugation and, as indicated on pages Nos. 58, are put through the sheets close to the upper face of the angle purlin and clinched around its lower edge. The same fastening is used for siding where angle purlins or girts are employed. Three or four of these clinch rivets should be used for each sheet on each purlin or girt, spacing them practically 6 inches apart for roofing and 8 inches for siding. Clips and bolts are used for fastening corrugated sheeting to channel, I Beam or Z-bar purlins, where straps or clinch rivets cannot be conveniently employed, or when steel sheeting is lined with an asbestos anti-con- densation lining. The clips are made of flat steel, 1} inches wide, about 2% inches long, and are slightly crimped at one end to go over the flange of the purlin. One bolt is used on each clip, and this bolt is made of the same diameter of wire, and has the same head made to fit the top of the corrugations as the clinch rivets. These clips and bolts are spaced 6 inches and 8 inches apart, the same as the clinch rivets. Edges of sheets where side laps are made are usually riveted every 12 inches. All fastenings should be securely applied, and the sheeting brought to Snug bearing on purlins and at all joints. In all cases the bolts or rivets fastening the sheeting to the purlins or girts should go through the tops of the corrugations. Flashing, Ridging, Capping and Cornices. Flashing, ridging, capping and cornices should always be used to cover up the joints in sheeting, and make the structure weatherproof. Flashing, when used Clips and Bolts. 72 CORRUGATED SHEETING FOR BUILDINGS AND ROOFS. Ridging Corner Capping. Cornices where the slope in the sheeting changes direction, should be of sufficient dimension and so arranged that at least three inches vertical height is obtained between the edge of the flashing and the end of the corrugated sheeting. Vertical seams of all flashing should be closely riveted, and the horizontal edges of the flashing should be sécurely riveted to the corrugated roof or side sheeting. Ridging should be placed covering the apex of all roofs, and where buildings are of ordinary size standard ridge roll should be used. Corner capping is either bent, plain edge flat steel, or bent flat steel, with the edges terminating in a small scroll to keep the capping well in line, or corrugated sheeting may be turned around the corners neatly, thus closing up the opening where the two vertical surfaces join. Cornices along the eaves and the gable ends of build- ings may be finished in various ways. The two usual methods employed for both eaves and gable ends are shown on pages No. 58, 59 and 60. If desired, a molded cornice can be used, made of such a form to fit the projection of the purlins, and of dimensions com- mensurate with the size and character of the building. Ciutters and Conductors. Gutters and conductors are made of various dimen- sions, styles and forms. Three eave gutters in common use are sketched on page No. 58. Conductors are made of plain sheets with round cross-section, and corrugated of either round or rectangular cross-section. The round conductors are more commonly used. 73. CORRUGATED SHIEETING FOR BUILDINGS AND ROOFS. Ventilators. Openings in ventilators may be fitted with shutters, Sash, or with louvers. Shutters are made of angle iron frames covered either with flat, crimped or corrugated sheets. These shutters are hinged at the top, and may be operated by a straight lever device, by means of cord and spring, or operated by means of any of the worm gear toggle arrangements which are commonly used in various loca- lities for such purposes. Any device which will easily open and close the shutter, and at the same time securely hold it in any position in which it may be placed, will fulfil the required conditions. Louvers are usually made in two different ways. The louver shown on page No. 60 as the Shiffler Louver is one which is commonly used in the Pittsburg District, while the other form, known as the Berlin Louver, has been used in the East. Tubular ventilators of various kinds are often em- ployed in place of monitors for roof ventilation. These tubular ventilators are made of various dimensions, of galvanized or other sheet metal, and are usually placed along the ridge line of the roof. For proper ventilation of the building, it is customary to estimate that one Square foot of ventilator area will ventilate 300 to 400 square feet of floor area, depending on the character of building to be ventilated. 74. Shutters LOuvers Tubular Ventulatons. CORRUGATED SHIEETING FOR BUILDINGS AND ROOFS. Box Skylights. Continuous Skylights. |Doors. Skylights. When skylights are placed in roofs of structures, two types are used: - - - * Box skylights covering a small area are placed in the slope of the roof at proper intervals. These are placed on a curb raising the glass above the roof line. Continuous skylights are made in an extended strip of a width sufficient to properly light the building interior. These are placed in the slope of the roof, preferably at the ridge. Ribbed glass is used extensively for skylight work in thicknesses varying from # inch to $ inch. The glass is supported by steel bars, either solid special rolled sections, or made of sheet metal properly formed to receive the glass. The supporting bars are spaced about 20 inches apart, to suit the sheets of the glass, which comes in sheets about 20 inches wide, and not more than 8 feet long. Doors and Windows. Steel doors for corrugated steel buildings are made by covering an angle iron frame with corrugated sheet- ing, usually the same quality as the building siding. Fireproof doors are sometimes constructed of two or more thicknesses of matched pine sheathing, covered on both sides with flat sheet steel or tin. Wood doors are usually constructed of matched pine sheathing fastened to a well built frame, as shown in the details on page No. 69. Stock wood doors up to 3 feet wide can be procured of manufacturers, and are usually made of white pine with molded panels. Small 75 - CORRUGATED SHEETING FOR BUILDINGS AND ROOFS single doors up to 4 feet wide should be detailed to swing on hinges, and large doors, both single and double, should be arranged to slide sidewise on over- head trolley tracks with adjustable hangers, or to lift upwards between vertical guides, counterbalanced by weights attached to ropes passing over sheaves. Doors should be detailed to suit the conditions they are to fill, and the openings they close. The different types of windows ordinarily used in the sides of buildings, constructed with corrugated sheet siding, are shown on pages No.61 to 68. The sash and frames are constructed of white pine, and the glazing is usually No. 2 or A quality, American glass, single or double strength, depending on the size of the lights. The sizes of glass commonly used are 10 inches by 12 inches, 12 inches by 12 inches, 10 inches by 14 inches and 12 inches by 14 inches lights. In the sides of buildings where light is to be ob- tained and no ventilation desired the continuous fixed sash is used. See page No. 63. If a maximum amount of light is desired and venti- lation is to be obtained, the continuous sliding sash can be used. See page No. 64. This detail allows one- half of the window area to be opened. In the sides of monitors and sometimes in the sides of buildings, swing sash are used. See page No. 62. These should be carefully made and fitted, and operated by a device that will hold them securely in any position. Two kinds of single windows with two sash each are shown by the sketches. One is the Counterbalanced Window, where one sash balances the other. See page No. 65.66. Two sizes are shown varying by thickness of sash for two sizes of windows. Windows. 76 CORFUGATED SHEETING FOR BUILDINGS AND RO OFS. Another is the Double-Hung Weighted Window, where each sash is balanced by weights, also arranged for two sizes of openings. See page No. 67 to 68. The styles of windows shown on illustrations. will fulfil all the requirements desired for ordinary factory or mill building construction. For windows in brick walls the frames need only to be modified slightly to suit the usual details for brick work. 4. Corrugated Steel Arches. Curved or arched corrugated sheets are used for arches between rolled beams, forming a support for con- crete filling. The steel is ordinarily the standard 2% inch corrugation, and gages are Nos. 16, 18, and 20, depending on the superimposed load and the length of span. The rise of the arch should not be less in inches than the span in feet, and should be determined by the depth of beam supports and the thickness of material allowed over crown of the arch, varying from 2 to 4 inches. Beams are spaced for this construction from 4 to 7 feet apart. 77 R U L E S ...for... MAKINGi SHOP DRAWINGS. The standard size of sheet shall be 24 by 36 inches, with two border lines 3 and 1 inch from the edge respectively. See page 49. Small sheets shall be used for beams, pins, eye-bars, etc. Special forms are provided for these sheets. The title shall be arranged uniformly for each con- tract near the lower right-hand corner of the sheet. See pages Nos. 49 and 51. A stamp is provided for the contract, sheet number, etc. It shall be applied in the lower right-hand corner of the sheet. The name of the draughtsman in charge of the work shall appear in full, others with initials only. See page No. 49. Detail drawings shall as a rule be made in scale 3 or 1 inch to the foot; for large plate and lattice girders # and # inch may be used. Larger scales, such as 13 and 3 inches to the foot, are permissible only for show- ing certain complicated details or for machine work. Large sheets shall be neatly and carefully made to exact scale. Members shall be detailed in the position which they occupy in the structure, i. e., horizontal members shall Size of Sheet. Title. Scale. General Rules, 78 BULES FOR MAKING SPHOP DFAWINGS. be shown lengthwise, and vertical members crosswise on the sheet. Inclined members (and vertical ones when necessary on account of space) may be shown length- wise on the sheet, but then always with their lower end to the left. Avoid notes as much as possible. Where there is the least chance for ambiguity make another view. Show all elevations, sections and views in their proper position—looking toward the member. Place the top view directly above and bottom view below the eleva- tion. The bottom view shall always consist of a hori- Zontal section seen from above. In sectional views the web or gusset plates shall always be blackened. Angles, fillers, etc., shall be cross-hatched, but only when necessary on account of clearness. In a plate girder for instance, it is not necessary to cross-hatch all the stiffeners and fillers in the bottom view. Holes for field connections shall always be blackened, and shall, as a rule, be shown in all elevations and sectional views. Rivet heads shall be shown only when necessary; f. i., at the ends of members, around field connections, when countersunk, flattened, etc., etc. In detailing members which adjoin or connect to others in the structure, part of the latter shall be shown in red, sufficiently to indicate the clearance required or the nature of the connection. Plain building work is exempt from this rule. When part of one member is detailed same as an- other, figures for rivetspacing, etc., shall not be repeated; refer to previous sheet or sheets, bearing in mind that these must contain final information. It is not per- missible to refer to a sheet, which in turn refers to 79 FULES FOR MAIKING SHOP DERAWINGS. another. Main dimensions, which are necessary for checking, such as c. to c. distances, story heights, etc., shall be repeated from sheet to sheet. Holes for field connections must always be located independently, even if figured in connection with shop-rivets; they shall be repeated from sheet to sheet unless they are standard, in which case they shall be identified by a mark and the sheet given on which they are detailed. A diagram in small scale, showing the relative posi- tion of the member in the structure, shall appear on every sheet. The member or members, which are detailed on the sheet, shall be shown in black, and the rest in red ink. Plain building work is exempt from this rule. The quality of material, workmanship, size of rivets, etc., shall be specified on every sheet as far as it refers to the sheet itself. Standard workmanship, such as milling and tight fit of stiffeners, milling ends of col- umns, etc., etc., shall not be specified on drawings. Each piece which is shipped separately shall have a shipping mark. These marks shall consist of capital letters and numerals, or numerals only ; no small letters shall be used except when sub-marking becomes abso- lutely necessary. The letters R. and L. shall be used only to designate “right” and “left.” Never use the work “marked ” in abbreviated form in front of the letter, f. i., “3 Floorbeams, mk. G4; ” say “3 Floor- beams G4.” Pieces which are shipped bolted on to a member shall, as a rule, also have a separate mark in order to identify them should they for some reason or another become detached from the main member. The drawing Marking System. 8O Lettering. Conventional [Signs. Shop Bills, IRULES FOR MAIKING SEHOP DRAWINGS. shall specify which pieces are to be bolted on for ship- ment, and the necessary bolts shall be billed. A system of assembling marks shall be established for all small pieces in a structure which repeat them- selves in great numbers. These marks shall consist of small letters and numerals or numerals only; no capital letters shall be used; avoid prime and sub-marks, such as m'a. * For all lettering use plain letters, see pages Nos. 49 to 57. For title, main dimensions and for all marks, particularly shipping marks, use heavy type. Red ink (Winsor & Newton’s Carmine) shall be used for dimen- sion, reference lines, etc. Conventional signs for rivets are shown on page No. 18. Countersunk rivet heads project #"; if less height of heads is required, drawings shall specify that they are to be chipped, or that they must not project more than ...". Flattened heads project from #" to 4"; if less height of heads is required, they shall be countersunk. Steel in section shall be shown thus, z2 or m Cast-iron.......... ....................... thus, Cast-steel................................ thus, & Phosphor bronze or brass............ thus, ZZZZZ Shop bills shall be written on special forms provided for the purpose. When the bills appear on the draw- ings as well, they shall either be placed close to the member to which they belong or on the right hand side of the sheet. When the drawings do not contain any shop bills, these shall be so written that each sheet can have its bills attached to it, if desired; i. e., one page of shop bills shall not contain bills for two sheets of drawings. 81 - RULES FOR MAIKING SHOP DRAWINGS. In large structures, such as Elevated Railroads, Viaducts, etc., which always are subdivided into ship- ments of suitable size, both mill and shop bills must be written separately for each shipment. In writing the shop bill, bear in mind that it shall serve as a guide for the laying out and assembling of the member, besides being a list of the material re- quired. For this reason members which are radically different as to material shall not be bunched in the same shop bill, neither shall pieces which have different marks be bunched in the same item, even if the mate- rial is the same. The main material in a member shall be billed first, followed by the smaller pieces. It is generally a good practice to begin at the left end of a girder, or at the bottom of a post or column. Do not bill first all the angles and then all the flats; when f.i. the end stiffeners in a girder are billed, the fillers belonging to them shall follow immediately after the angles, and so on. In a column each different bracket shall be billed complete by itself. When machine-finished surfaces are required, the drawing and the shop bill shall specify the finished width and length of the piece, proper allowance for shearing and planing being made in mill bill. When the metal is to be planed as to thickness, the drawing and shop bill shall specify both the ordered and the fin- ished thickness, f. i., one pl. 12” x #" x 1' 6" planed to #". Flats and universal plates over 4” in width should be ordered in even inches; flats under 4” should be ordered by #" variation in width. Flats #" and under in thickness are very difficult to secure from the mills, and should be avoided if possible. • 82 RULES FOR MAKING SHOP DRAWINGS, Sub-Divisions. General Rules. Every contract embracing different-classes of work shall have a subdivision for each class. These sub- divisions will be furnished by the Ch. Eng. of the dis- trict. Drawings, shop and shipping bills must be kept separate for each division. * Plate Girder Bridges. As soon as a plate girder span is taken in hand, it shall be laid out in regard to location of web splices, stiffeners, coverplates, and in a through span, floor- beams and stringers, so that the material can be ordered at once if required. Locate splices and stiffeners with a view of keeping the rivet-spacing as regular as possible; put small frac- tions at end of girder. Stiffeners, to which cross-frames or floor-beams con- nect, must not be crimped, but shall always have fillers. The outstanding leg shall not be less than 4", guaged 2#"; this will enable cross-frames or floor-beams to be swung in place without spreading the girders. The second pair of stiffeners at the end of girder over the bed-plate shall be placed so that the plate will project not less than 1" beyond the stiffeners. Always endeavor to use as few sizes as possible for stiffeners, connection plates, etc., and avoid all unneces- sary cutting of plates and angles. For this purpose locate end holes for laterals and diagonals so that they can be sheared in a single operation. - 83 FULES FOR MAIKING SEIOP DRAWINGS. In spans on a grade, unless otherwise specified, put the necessary bevel in the bed-plate and not in the base-plate. In short spans, say up to 50 feet, put slotted holes for anchor-bolts in both ends of girders. In square spans show only one-half, but give all main dimensions for whole span. In skew spans show whole span; when panels in one-half of span are same as in other half, give the lengths of these panels, but do not repeat rivet-spacing, except where it differs. In the small scale diagram, which shall appear on every sheet, unless span is drawn in full, show the posi- tion of stiffeners, particularly those to which cross- frames or floor-beams connect. On top of sheet show top view of span, with cross- frames, laterals and their connections complete, the girders placed at right distance apart. Below this view show the elevation of the far girder Deck Spans, seen from inside, with all field holes in flanges and stiffeners indicated and blackened. At one end of the elevation show in red the bridge- seat and back wall, give figures for distance from base of rail to top of masonry, notch of ties, depth of girder, thickness of base-plate and of bed-plate or shoe. When the other end of girder has a different height from base of rail to masonry, give both figures at the one end, and specify “for this end ’’ and “for other end.” If span has bottom lateral bracing, a bottom view (horizontal section) shall be shown below the elevation. When no bottom laterals are required, show only end or ends of lower flange of girder, giving detail of base-plate and its connection to the flange. Detail the 84 RULES FOR MAIKING SHOP DEAWINGS. bed-plate separately, never show it in connection with the base-plate. Cross-frames shall, whenever possible, be detailed on the right hand of the sheet in line with the elevation. The frame shall be made of such depth as to permit it being swung. into place without interfering with the heads of the flange-rivets in the girders. Always use a plate, not a washer with one rivet, at the intersection of diagonals. In skew spans it is always preferable to have an even number of panels in the lateral system. Through spans. Show on top of sheet an elevation of the far girder, seen from inside; below this view show a horizontal section of span, seen from above with lateral system detailed complete. It is generally best to show floor- Q. beams and stringers in red in this view and detail them On a separate sheet. r The stiffeners in a through span should always be arranged so that the floor system can be put in place from the centre towards the ends. What is said under “deck spans” about showing bridge-seat, back wall, detailing bed-plate separately, etc., applies to through spans as well. Truss Bridges. General Rules. Before any details are started all c. to c. lengths of chords, posts, diagonals, etc., shall be determined, and sketches made of shoes, panel-points, splices, etc., so that the material can be ordered as soon as required. 85 - RULES FOR MAKING SHOP DRAWINGS. If not otherwise specified, camber shall be provided in the top chord by increasing the length #" for every 10 feet. This increase in lefgth shall not be consid- ered in figuring the length of the diagonals, except in special cases, as directed by the engineer in charge. Half the increase in length shall be considered in fig- uring the length of top laterals. Particular attention must be paid to what is said under “General Rules,” on page No. 79, about showing part of adjoining member in red, and about small scale diagram on every sheet. For every truss bridge an erection diagram shall be made on a separate sheet, giving the shipping marks of the different members and all main dimensions, such as c. to c. trusses, height of truss, number and length of panels, length of diagonals, distance from base of rail to masonry, from centre of bottom chord or pin to ma- sonry, etc., etc. Give further size and number of bars in bottom chord and diagonals, size and grip of pins, and show in larger scale the packing at panel points. State also any special feature which the erector needs look out for, and give approximate weight of heavy and important pieces when their weight exceeds five tons. If in any place it is doubtful whether rivets can be driven in the field, the erection diagram and also the detail drawings shall state that “bolts may be used if rivets cannot be driven.” A list giving number and contents of drawings belonging to the bridge shall also appear on the erection diagram sheet. In square spans, not too large, show the left half of the far truss, seen from inside, and detail all members in their true position, making the skeleton one-half the scale of the details. Lattice Bridges 86 RULES FOR MAKING SHOP DRAWINGs. In skew spans, not symmetrical, show the whole of the far truss. In large spans detail every member separately. When detailing web members bear in mind that the intersection point on the chord must not be used as a working point for a member which stops outside of the chord. A separate working point, preferably the end rivet, must be established on the member proper, and tied up with the intersection point on the chord. The clearance between the chord and a web member entering same shall, whenever possible, not be less than #” in heavy and " in light structures. Members shall be marked with the panel points between which they go, f. i., End post LO—U1; 1st post L1–U1; top chord U1–U3, etc., etc. See diagram, page No. 50. *::::::::: * In pin-connected bridges detail the left half of the far truss, every member by itself. It is generally best to commence with the end post, showing it lengthwise on the sheet with the lower end to the left, then the first section of the top chord, and so on. The packing at panel points shall, whenever pos- sible, be so arranged that, besides the customary allow- ance of #" for every bar, a clearance of not less than #" can be provided between the two sides of the chord. When more than two pin plates are used, ..." should in addition be allowed for each plate. Members shall be marked same as for lattice bridges, with the panel points between which they go, except the posts, which are best marked with letters and nu- merals. See diagram, page No. 50. 87 RULES FOR MAKING SHOP DRAWINGs. Office Buildings. Factories and Warehouses. The different sheets shall be numbered consecu- tively, whether large or small. No half numbers are permissible except in emergency cases. It is always well to arrange the numbers so that the sheets follow in the order in which the material is required at the building. The following is generally a good order: Floor Plans for all floors, Column Schedule, Cast-iron Bases for Columns, Foundation Girders, & 4 Beams, First tier of Columns, Riveted Girders, connecting to first tier of Columns, Beams 6 & 4 & 66 & 4 & 6 “, Miscellaneous material for above, Second tier of Columns, etc., etc. Floor plans shall, as a rule, be made in scale #" to the foot, see page No. 53. A separate plan shall be made for each floor, unless they are exactly alike. Columns shall be marked consecutively with nu- merals, the word Col. always appearing in front of the numeral, f. i., “Col. No. 20.” The architect or engi- neer has generally on his drawings adopted a system of marking for the columns, which should be adhered to, unless altogether too impracticable. Riveted girders shall be indicated with two (2) fine lines when they have cover plates, and with four (4) fine lines when they have no cover plates. They shall be marked consecutively with numerals, using same marks for girders which are alike. Numbering of Sheets. Floor Plans. 88 RULES FOR MAKING SHOP DRAWINGS. Column Schedule. Columns. Beams and channels shall be indicated with one single heavy line. They shall be marked same as girders, with numerals, using same marks when alike. Tie rods shall be indicated with one single fine line; they need not have any marks. * - - The marking system shall be as uniform as possible for the different floors, i. e., a beam which goes between columns No. 2 and No. 3 shall be marked with the same numeral throughout all the floors. All figures necessary for making the details shall, as a rule, appear on the floor plan, care being taken in writing same to leave room for the erection marks, which must be printed in heavy type above the line or lines representing a beam or girder. For every large building a schedule of the columns shall be made before the details are started. See page No. 52. Each column, even should several be alike, shall have a separate space, in which shall be given the ma- terial and finished length. As soon as the detail drawings for one tier of col- umns are finished the sheet numbers shall be inserted as shown on sample schedule, making the schedule serve as an index for the column drawings. Columns shall, whenever possible, be drawn stand- ing up on the sheet as they appear in the building. If it becomes necessary to draw them lengthwise on the sheet, the base shall be to the left. Particular attention shall be paid to establishing a marking system for brackets, splice-plates, etc. A sum- mary of all these standard pieces shall be made for each tier and sent to the shop as early as practicable, in order that they may be gotten out before the main material is 89 - RULES FOR MAKING SHOP DRAWINGS. taken up. The material for the small pieces shall, as far as possible, be chosen from stock sizes. Columns shall be marked with the number of the floor between which they go; f. i., Col. No. 4 (1–3), The lower tier is best marked “Basement Tier.” Girders shall be marked with the number of the floors, not with letters, unless specially requested; f. i., “2d Floor, No. 5.” What is said under columns about marking system for standard pieces applies to girders as well. When a girder is unsymmetrical about the centre line, and a question may arise how to erect it, one end of the same shall be marked with the number of the column to which it connects, or with North, South, East or West. Girders must not be bunched together for the dif- ferent floors more than to meet the requirements in the field; i. e., they must correspond to the tiers of columns as they will be erected. Beams shall be drawn on the standard forms pro- vided for the purpose, see pages Nos. 54 to 57. º They need not be drawn to scale; neat freehand sketches being allowed—in fact, desirable, where it will facilitate the rapid completion of the drawing without sacrificing clearness. Beams shall be marked same as girders with the number of the floor; f. i., One 12" x 40 lbs. I x 19–33”, Mark 2d Floor No. 35. What is said under girders about marking one end, when not symmetrical around centre line, and about not bunching the different floors more than to meet the re- quirements in the field, applies to beams as well. Whenever possible use standard framing angles. Riveted Girders. 13eanns. 90 RULES FOR MAKING SHOP DRAWINGs. If it is deemed necessary to use 6" x 6” angles, punch both legs same as 6" leg of standard; in 34" x 34” or 4” x 3}” angles, punch both legs same as 4" leg of standard. It is not absolutely imperative that the gauge of the framing angles shall be standard as long as the vertical distance between the holes and in the 6” leg the horizontal distance (24"), is kept standard. Holes for connections, tie-rods, etc., shall be located from one end of the beam, preferably the left. If one end rests on the wall and the other end is framed, then figure from the latter end, be it right or left. This rule may be dispensed with in case of numerous holes regularly spaced in web or flange for connection of shelf-angles, buckle-plates, etc. The allowed overrun at ends of beams must always be indicated, either by giving figures or by showing wall bearing. - g Holes at end of beam for anchors are best figured from wall end, not connecting them with other figures. The distance between end holes in beams which connect through web or flange to columns, girders, etc., shall always be given. When framing angles are standard, do not give any figures for either shop or field rivets, except the distance from bottom of beam to centre of connection or to first hole in framing angle, and the horizontal distance between field holes. When special framing angles are used, the fact must be noted and figures given for gauges, etc. For standard connection holes in web of beam all figures required are the distance from bottom of beam to centre of connection or to first hole and the hori- zontal distance between holes. Whenever possible use standard punching as given on pages Nos. 9 and 10. 91 APPENDIX TO RULES FOR T1AKING SHOP=DRAWINGS. Two methods may be employed in making shop-drawings for trusses in Mill Buildings or other structures, and for lattice girders in bridges. The First Method is to make the drawings so complete (see previous rules) that the templets can be made for each individual piece separately on the bench. The Second Method is to give on the drawings only sufficient dimensions to locate the interior of the member and the position of all pieces, leaving the details to be worked out by the templet- maker on the laying-out floor. Sufficient figures should be given to definitely establish the main laying-out points; generally these figures should be those locating the outside dimensions of the chord of a truss, the end depths or such heights as may be necessary to establish the general outside lines of the complete member. The interior pieces should be located by centre-lines correspond- ing to the gage lines of angles, or the centre of gravity lines of the pieces, as the case may be. The rivet-spacing should be given complete for all connections to members not shown on the same sheet, in places where it becomes necessary to indicate clearance on opposite flanges, and for any con- nections which may be readily located from fixed points without employing any computation. All other rivet-spacing, such as the connections of web pieces 92 RULES FOR MAKING SHOP DEAWINGS. * -*. to gussets, and the lengths of interior pieces, may be indicated by scale, leaving the actual location of the rivets to be determined by the templet-maker. The drawing should, however, indicate the number of rivets to be used in each individual connection, and should also state the usual rivet pitch to be employed for the work shown on the sheet, as well as the minimum rivet-spacing allowed. No definite rule can be laid down as to which method should be employed: but in general straight work, such as columns, plate girders, heavy lattice girders in buildings and chords, floor beams, and stringers in highway bridges, should be laid out by the first method. All roof trusses, light lattice girders and complicated work, such as towers, domes, hips and light lattice struts, should be laid out by the second method. - * Before deciding which of the two methods should be employed in any individual case, the templet-maker should be consulted as to the facilities for undertaking the work, as lack of floor space in his shop may prevent the use of the second method. 93 RULES FOR MAKING SHOP DRAWINGS. Points to be Observed in Order to Facilitate Erection. The first consideration for ease and safety in erec- tion should be to so arrange all details, joints and con- nections that a structure may be connected, made self- sustaining and safe in the shortest time possible. Entering connections of any character should be avoided when possible, notably on top chords, floor beam, and stringer connections, splices in girders, etc., etc. When practicable, joints should be so arranged as to avoid having to put members together by entering them on end, as it is often impossible to get the neces- sary clearance in which to do this. In all through spans floor connections should be so arranged that the floor system can be put in place after . the trusses or girders have been erected in their final position, and vice versa, so that the trusses or girders can be erected after the floor system has been set in place. All lateral bracing, hitch-plates, rivets in laterals, etc., should, as far as possible, be kept clear of the bottom of the ties, it being very expensive to cut out ties to clear such obstructions. Lateral plates should be shipped loose, or bolted on So that they do not project outside of the member, when- ever there is danger of them being broken off in un- loading and handling. Loose fillers should be avoided. They should be tacked on with rivets, countersunk where necessary. In elevated railroad work, viaducts and similar struc- tures, where longitudinal girders frame into cross girders, 94 IRULES FOR MAKING SHOP DRAWINGS. shelf angles should be provided on the latter. In these structures the expansion joints should be so arranged that the rivets connecting the fixed span to the cross girder can be driven after the expansion span is in place. t . - - In viaducts, etc., two spans, abutting on a bent, should be. So arranged that either span can be set in place entirely independent of the other. The same thing applies to girder spans of different depth resting on the same bent. - Holes for anchor-bolts should be so arranged that the holes in the masonry can be drilled and the bolts put in place after the structure has been erected complete. In structures consisting of more than one span a separate bed-plate should be provided for each shoe. This is particularly important where an old structure is to be replaced; if two shoes were put on one bed-plate or two spans connected on the same pin, it would necessitate removing two old spans in order to erect one new one. In pin-connected spans the sections of top chords nearest the centre should be made with at least two pin- holes. In skew spans the chord splices should be so located that two opposite panels can be erected without moving the traveler. Tie plates should be kept far enough away from the joints, and enough rivets should be countersunk inside the chord to allow eyebars and other members being easily set in place. Posts with channels or angles turned out and notched at the ends should, whenever possible, be avoided. 95 APPENDIX Shapes rolled by Carnegie Steel Company 96 + S-is: So s: ºr: i\!----, 3-ºf--- § F---------*: I "#"Fangilwe awa=fano'ſ Dist. one ºf - 3 º- B T | H = DjST. º FOOT g t k b |...] § |"." STANDARD FRAMING * † I inches Pounds | INCHES INCHES INCHES incHE8 thcHES INCHEs INCHES INCHES PL, Q C FOOT 1. 3 (NCHES] INCHES ||POUNDS INCHES S t- A 16 || © 95.0|7-; ; # g i 5 #| # | 05 1 || 5 * * * # | 73 || 95.0 24 90.0| 7-3 || + 1 | 16 |s. 5 + | + | 90.0 9. l s g 85.0|7; # × 5 : : 24 * is . . . 85.0 80.0|| 7 | # So * : 100.0. 7 #| || 1 3 15 5 ; ; ; 80.0 º * 32 ST 16+ 1 T Te #, 5 7 1. 1 7 1 D- a T2. 00.0 95.0. 7 sa, # 5 #| - 1. Te T2" 95.0 85.0|7; | # * 5 - || is 00.0 º 16 32 2-1s 4'', 4', & # // 20 19 # | 16 |sº 2-8 4'x4'x #x 1-6 wi. 37* 5 #| # s5.o 80.0|| 7 || 3: 8 v-4 5 || 3 20 ». f/ Af 5 § | + | 80.0 13 || 21 * 62 8 8 ſº 25.0| 63; ã 17 1+ + 'd 18 aAvol. 20 5 #| # | 75 5 $9 gº º ºmº º º ºs T5 16 .0 70.0) 6 is is #sº - 5 9 3 4C- * - --- 70,0 65.0| 6+ | # i || sºf-fé 16 || 8 +|| s-#--#6)- 5 # | # 65.0 70,0 1 23. 3 1. 3 5 º ! +|+|—-3 AS 2 16 •0. .0|| 6 + j := | 3 || || 15+ | 1 , || -- §, i || §s \º 3 7 65.0| 6; # *ś +: it--ºf- 9 5 : is 70.0 18 tº 16 8 7 4 +. -* +- -4) 5 5 3. 60.ol 6* | # | 16 || – E à || || || 65.0 iſ 6 #3 32 ! s - 24 ---Tºm 5 9 3 60.0 18 T sº. * ºf 16 *sº e 55.0|| 6 Te * f. $3 2-lè 4"x 4"x 3"x 1-6." wi. 31 #= 1 : 1. 25 3 (; 5 Tº Ts 55.0 00.0| 6; 1; 11 || 2 | 1 3. 21 l. 1 #s. 6 #| # 100.0 95.0 6:5; 1; * 1 || 5 9 : 31 6 is 95.0 7. TG ſº 85.0 6; # 8 15" 5 : + |ss. &D Ta | T2 ſº 80.0| 64; ; 5 # | # _9_ 7 $ 15 T 80.0 75.0} 6: | * 11+ 1 + + * 5 # 1 15 70 3. 25. ;4 8 2 75.0 Ö .0|| 6 is § 12 l ; 3 7 3 || 11 . 5 # is 70.015 65.0. 6; i. sº 11 7 19 º 5 is is 65.0 55.0l 5 + | #| 3 - 12+| 1 ; o || 4 | f z" | | | | 60.0 sº 4. 32 3 2 12 2 1 Z Teſ 2-86 'x 4"x Tö x 0-10" Wt. 27+ 5. 3 5 17 5 8 TST 55.0 50.0 TST || 32 5 9 3 5 16 || ET 0.0 45.0 5%| # * , f : 42.0l 5+| # 5 ; 45.0 5 is 42.0 #, CO 12" 55.0| 5 #| #| 3 } I 4 9. 11 3 | 16 à | 9 || || 1 , | is s 13 | 1– 5 1. iſ G’ 5 # i 55.0 12 0.0|| 5 # i. * 11 | 7. zey 45 0 3 9. 8. 12 *. }; 5 16 16 50.0 © .0|| 5 || || 15 3 4 olº 9. 3. 12 I 7 ?: * * * =s* 5 16 8 45.0 40.0| 5 || | is w 24" I ſº $5.0|| 5 # 7. 9 #| 1 # _l *] fº 7, t fg 5 + . . . 40.0 32 5 #| + | 81.5 97 ---- +sº--- + O O 'S s: £3-- : ----, f 3.l. *- - - O O - ! Af - - - - -ºº ºn as sº sº * * * - - - - - - * 3-i sº of web-Hº--- : Jci 1 TANGT Dist. GRIP MAX. O DIST. DIST. WEIGH RIVET || - 3 I wall * I of 3 ºf STANDARD FRAMING PER t; A b s.r | *; * Gº || 0 || roor Transsºns; mºst Tanzanaries mºstmºstpouſinginºs =#: 8 || 1 | # º 5 # # 40.0 S 5 # # $5.0 * 8 S 4 O 5 # # 80.0 10 * 5 × 5 # | + |25.0 olo 85.0 |4 #| # 7 º 5 # # 85.0 OO 9 80.0 || 4 #| || | * # | 8 5 # | # |80.0 9 25.0 || 4 #| #| 2 + 4 5 # # 25.0 21.0 || 4 #| # 5 # | # 21.0 25.5 4 + # 6 + | # +. * – f f 5 # # 25.5 5 7 v- t +2+ 7 5 3 28.0 -37 - rf fy fr y r * 5 - 2 .0 8 4.3% is # | 8 2-13 6'x4'x;x 0-5 wº.1a* T5 | 16 8 20.5 || 4 #| # 2+ to 5 # | + |20.5 18.0|| 4 | # & 5% | # 18.0 +-r- blo 20.0 | 3 #| # 5 + + * 5 # # 20.0 5 OO 7 |17.5 || 3 #| # ** #- || 8 5 # # 17.5 7 15.0 || 3 #| 3– 5 # # 15.0 . 3 #| #| 2 || 4 || | #- +. 5 +| # 17.25 6 |14.75 3% # + || 6 5 # # 14.75 6 |12.25. 3 #| # | " 5 # | # 12.25 14.75 3 #| + | 1 #| 3 || | + | # 5'4' 6" 5 # | # 14.75 - “D & C 12.25. 3 #- | # 1. ! ? ... ºf rºy ºf / ..., f f_ _ ºf # | + |12.25 Å 5 3 * * à || 6 to 2-1s 6'x4'xãx 0-3 ºr 6 wº. sº 5 # : J) 0.75 3, # & 2-LS >> o-2 #4, 5" wi. 7 5 # # | 9.75 × 10.5|2|+| #- || 1 + || 2 # * | =P------- F- 5 # | # 10.5 9.5| 2 #| #| " to 5: q q. 5 # | + | 9.5 1 ––––.--|H=== 4. 23-1 - 1 2. 6 2}{2k-iº | S 4 8.5 || 2 #| || in 2 + T ~ *.i. 5 : 75 8.5 . 21. 3. a tº * / ºf e _3_ 3- 7.5 || 2 # is § & 4. 5 §§ is 7.5 7.5 || 2 # | #| 1 , || 1 } * 2-13 6'x4'x'Éx.0-2"wt. * ; # 7.5 1 3 || 6.5| 2 #| - à || 6 } | # 6.5 3 5.5 || 2 #| # 5 * | * | 5.5 All rivets in standard framing angles are #"diam. Weights of * { & 4 “ include weight of shop rivets only. When beams frame opposite each other into another beam with web thickness less than º' or where beams of short span lengths are loaded to their full capacity, it may be necessary to use framing angles of greater strength than the standards. See table below for minimum span lengths. TI wº Ri ITWEIGHTSPAN,N I weight|*||Nº|| I weight|SPAN IN I weight|SPAN IN I weight|SPAN IN I weight|SPAN in 24 |80.O 22.0 15|80.0 |2O.O 8 | 18.0 5.5 5 9.75|| 4 O 20 |80.O 22.O || 18 55, O | 14 O 60.0 | 15.5 |12|400||115 ||10|25.ol 90 7 |15.0 | 40 4 7.5 || 3.0 22 |65.O | 18. O 420, 110 || 2 || 31.5 9.0 || 9 |210 || 7.0 | 6 |1225 6.O || 3 || 5 5 20 lº - 98 • * * & © . •, & ". * #ſº ºftees 4 *ºtº This leg punchred same is as 6 leg of standards, wºr rºse was cause | Tanºſ. bºr. GRIP *::: DIST. GAUGE DIST. DIST. w; T L FOOT - g t A: Ö BOLT d/ f S & FOOT 55,00|| 3:# | #| 2+ | 12# 1+ | # | 1: 2% 3# 4 55.OO 5O.OO | 3} | #| “ ilt 4.4 Çſ 4. tº 2% 3# .# 50,00 45.OO|| 3+ | # 2 g & &g § { a " 2+ 1 34 # |4500 15 40.OO! 3% | # | “ “. & 8 tº º 4. £ 6 2ä 3 # 4O.OO 35.00) 35 | #| | | | | ". tº a “ 2# 2# # |35.OO 33.OO|| 3:# #| “ tº º § { “ & J. 2ää 2#. + 33.OO 4O.OO || 3:# | # “ 1O 1 # 1# 23 3# §: 4O.OO 35.00; 3% | # | “ { { tº ſt it ſº f £ 2ä 3# # 35. OO 3O.OO|| 3:# | # | 1% “ “ “ | # | " || 13 || 3 # 30.00 | 12 25.00 || 3:3 | #| “. § { é & * { tº ſº 1% 2#. # 25.OO 2O.5O] 24; # | “ £ 6 { { & 4 £ 6 1}- 2# -ā- 20.50 35.OO 3% | # “ 8#. # tº tº 1+ 2ä 3# + 35.OO 3O.OO! 333 | # “ f : £,f tº tº # 6 1# 3# + 3O.OO 25.00| 2% # “ t. ºf € $ # | } & a 13; 3# + 25.00 10 2O.OO| 2:# | #| 1; & t &.f & & £ & 1#. 2; # 2O,OO 15.OO || 2:# # “ £ tº & 4 & 6 ſt tº 1+ 2: # 15.OO 25.OO 2% # “ 7+ + tº 6 1+ 1+ 3# # 25. OO 2O.OO| 2% | # “ 4.6 8.4 6.6 3 § { 1% # # 2O.OO 15.00 || 2:# | # 1} g-t * { f : Zſ 6.6 1% 2; # 15.OO 9 13.25 || 2:# | # “ 41ſt f f tº. f & & 1% 2+ # 13.25 21.25 | 2+ | # § 6# fl.d # 1# 13; à + 21.25 18.75 || 2:# | # “ & f & 4 &_{ 4 & 1ä 3 # 18.75 16.25 | 2á #| “ £ ºf 4.i. 8.f # & 6 1#. # # 16.25 | 8 13.75] 23% | # | 1+ | “ 6,8 £.t & 4 1% 2# # 13.75 11.25 | 2+ | #| “ & f tº g 4 & & 4 1% #- +; 11.25 19.75 || 2:# | # 1+ 5#. #– tº ſº 1 is 14& # # 19.75 17.25 || 2:# | #| “ t £ {.{ {{ 4,6 1% 3# # 17.25 14.75 2á | # “ £ 6 ſ.t. 4,6 # & 8 1% 2#. + 14.75 || 7 12.25 || 2:# | # 1#. 6 ºf £,8 4,6 & & 1+ 2# # 12.25 9.75 || 2:# | #3 || “ tº ſt & 6 4.4 & ſº 13% + + 9.75 15.50 2# # “ 4+ “ tº º —# 1+ 3# + 15.50 || 13.00: 2; is “ & º & & { { 5 £,6 1#. # + 13.OO 6 10.50| 2ä # | “ & ſº { { {.ſ. 8 £,4 1+ |, 2.É. + 10.50 8.OO || 1:# | # 1% 4, ºf & 6 & & & 6 1#. # # 8.OO 11.50 || 2:# #| “ 3#– -}. -# + 1#. 3 # 11,50 9.OO 1% # “ , ” * | * | # | " | 13, 2#. -: 9.00 5 6.5O || 13 | # “ f f & 4 # 8 & ſº 1% # + 6.50 7.25 | 1% | #| 1 2+ | + & ſº + 17's # # 7.25 6.25 | 13, #| " | " | " | " | | | | | 1 2 # # 6.25 || 4, 5.25 || 1:# | # “ { % & ſº & ſº é & + 2# + 5.25 6.OO || 1:# | # | # 1}- + + 4. 1 2#. # 6,00 5.OO | 13 | # “ &f 4 * * | + | . + 2#. # 5.00 || 3 4.O.O. 1; ; # “ & 4 6,ſ & 4 & 4 % 2; + 4,OO 99 —ar— All dimensions in inches NoMINAL Hackness actual-size | "..." ſº. GAUGE | MAX, RIVETS GAUGE HHicksess NOMINAL SDZE FLANGES & WEB FG) OT INCHEs. G G Gi G1 SIZE # 28 x 3 x 24 || 67 | 1.97 || 1: # # # + # 23 x 3% K 24 8.4 2.48 || “ “ f : & g # # 24 x 3 x 24 || 9.7 2.86 || “ . . 4 & t # 3 # 24 x 34 x 23 || 11.4 3.36 || “. £ £ t i ! t . # 3. # 2% x 3 x 24% 12.5 3,69 £ 6 t ( • f : # # | 2+ x 3% & 23 14.2 || 418 || “ £ t [ { tº º # + | - # 35 x 4 x 35 | 8.2 2.41 2 # | | | 2 + # 3+ x 45 x 34 || 10.3 | 3.03 || “. f : 4 ſt tº t # # 3# x 43 x 3% | 12.4 3.66 f : t [ ] { { f f # # 3% & 4 x 3* | 13.8 405 f : t { £ & £ f # # 3+ x 4% x 3} | 15.8 || 4,66 tº & “ tº f + 4. # 3# X 4 x 3% 17.9 5.27 6 & § { f : £ i # 4. # 3# x 4 x 3% | 18.9 5.55 & 4 iſ t § { § { # # | 3+ x 45 x 3} | 20.9 | 6.14 || “. & t iſ f tº ſº # # 3# x 4+ x 3% 22.9 || 6.75 & 8 { { # # 34 x 5 x 3} | 11.6 | 3.40 | 2+ # # 2} | # # 3# x 5 # x 3% | 13.9 || 4,10 f : tº f { { # # 3# x 5 # x 33 | 16.4 4,81 { { 4 & § { ! { # # 34 x 5 x 34 17.8 || 5.25 § { é i & & # * # # 3# x 5 is x 3% 20.2 5.94 { { £ 6 & § { # J # 3# x 5+ x 3} | 22.6 6.64 f : f & & & # £5 # | 3+ x 5 x 33 || 23.7 | 6.96 || “. { { & t { { # # 3% z 5 # x 3% 26.0 7.64 t t & t £ # # 34 x 5+ x 33 28.3 | 8.33 || “. § { § { tº t # # 3+ x 6 x 3} | 15.6 || 4.59 || 2:# # # 3 # # 3% 6% & 3% | 18.3 5.39 || “. t ºf f : { { # # 3+ x 6+ x 3} | 21.0 | 6.19 | a { { t { tº { # # 3+ x 6 x 3+ 22.7 | 6.68 * 1 { { { { # # 3; a 6% & 3% 25.4 || 7.46 | . i ( { { { { # 6 # 3# x 64 x 3% 28.0 8.25 { { & & { { # 6 # 3 # x 6' x 3; 29.3 8.63 ſt & § { § { # ++ 3# K 6 is x 3% | 32.0 9.40 t & { { t { { { # # | 3: .. 6+ x 3} | 346 | 10.17 | . ... I * { # LOO weights of ANGLES All dinnensions in inches W 8 x 8 26.4 |29.6 || 32.7|35,8|38.9 |42.O 45,0|48.1 |51.0|54.O 56.9|8 x 8 16 x 6 148 17.2 |19.6|21.9|242|26.51287|310|28.185.8187.4 6 x 6 5 : 5 12.3 |143 162|181 20.0|21.8|23.625.427.2|289|30.6| 5 : 5 4 x 4 82 | 68 ii.a. 12.8 |14.3 |15.7|17.1|18.5|19.9| - 4 x 4 3} x 3; 7.218.5 |98|11.1|124|136148|16.0|17.1 3# X 3% 3 x 3 4.9 || 6.1 7.2 8.3 9.4 |10.4 || 11.5 3 x 3 24, 2; 45 be eel 7.6l as 24, 24 2+ x 2; 3.1 14.4 || 5.0. 5.9 || 6.8 7.7 24 x 2% 24, 24 2.8 3."º 4.5 5.3 6.1 | 6.8 24, 23 2 x 2 2.5 | 3.2 4.0 4.7 5.3 2 x 2 1+ x 1% 2.2 2.8 || 3.4 || 4.0 || 4.6 1+ x 1% 1+, 13||13 |18 || 24 29 | 84 1+ x 1+ 1+x 1%, 1.0 | 1.5 |2.9 2.4 1+ x 1+ 1 x 1 || 0.8 | 1.2 | 1.5 1 x 1 size | # | #| # | # | #| # | # | # | # |##|# |##| } | #| 1 |1}| 13 | size * , 3. 15.0|17.0 | 19.1 |21.0|23.0|24.9|26.8|28.7|30.5|32.3 # , 8, 6 x 4 12.3 |14.3 |16.2 | 18.1|200|21.8|23.6 254 27.2 28.9 |30.6 6 x 4 * . 3# & 11.7|135||15.817.1|189|200|224|240|25.7|27.8|289 6. x 3% - * 5 x 4 11.0|12.8|145|16.2 17.8|19.5|21.1|22.7|242 5 x 4 5 x 3; 87 |104|120liae|132168|168|168|21sla27 5 x 3 + 5 x 3 8.2 9.8 11.3 |12.8|14.3 15.7|17.1|18.5|19.9 5 x 3 4 - 3. 7.7 | 9.1 |106 |11.9||13.3 || 14.7|16.0|17|3|18.5 A 34 4 x 3 73 8.5 || 9.8 |11.1|124|13.6|14.8|16.0| 17.1| 4 x 3 3# 2 3 | 6.6 || 7.9 9.1 |10.2 |11.4 | 12.5||13.6|14.7; 15.8 3# X 3 las. 2; 49 6.1 | 72 8.8l 24|104|115||12.5 3+ x 2+ x 2% |45 be | 66||76] ables 3 x 24 3 x 2 |40 || 5.0 | 5.9 | 68|7.7 3 x 2 2#x 2 2.8|37 |45 || 5.8|e 1| 6.8 2# & 2 size # # + | #|+|#| #|#|-# # |+|-#-| 4 || #| 1 || 1:#| 1+| size Angles marked * are special . . ANGLES Area in square inclies. size # #| # #|# | # | # #| # |##| + | #| 3 | #| 1 || 1:#|1}| size 8 x 8 |7.75|8.68|9.61|10.53|11,4412.3413,2314.1215.0015.8716.73|8 x 8 6 x 6 & 4,36|5.06|5.75|6.43| 7.11||7.78 8.449.0919.74|10.37.11.00 6 x 6 5 : 5 3.614.18475|5.31|5.866.42|6.947.46||7.99|8.50|9.00 5 : 5 4 x 4 2.40|2.86 3.31] 3.75 |4, 18|4.61|5.03| 5.44 5.84 4 x 4 || 3# , 3} 2,09|2.48|2.87|3.25 | 3.62| 3.98|4.34 4.69| 5.03 3# x 3% 3 x 3 1.44|1.78|2.11 |2.43|2.75|3.06|3.36| 3 x 3 2: . 21. 1.31|1.62|1.92|2.22|2.50 2: . 2: 2} x 23' |0.90.1.191,4711.73|200|225 . . 2# x 23 2: . 2, log111.06||1311.55|1782.00 2: . 2; 2 x 2 O.72|O.94| 1.15||1.36 | 1.56 2 x 2 1%. , 13 O.62| 0.81 | 1.OO | 1.17 | 1.30 1+ x 1% 1# x is 0.36|O,53|0.69|0.84|O.99 1; x 1% 1+ x 1+| O.30|O.43|O.56|O.69 - 1+ x 1% 1 x 1 || 0.24] O.34|0.44 -- 1 x 1 size # #| #| #| #| #| # #| #|##| #| #| #| #| 1 || 1%|1}| * * , 8, 4.40|5,00|5,59|6.17|6.75||7.31||7.87|8.42|8.97|9.50 * , all 6 x 4 * 3.61|4, i8|4.75|| 5.31|5.86|6.41|6.947.47| 7.99|8.50|9.00 6 x 4 6 x 3%| 342.897|450lb.oab.55leoelabel70elf.55/8088.50 6 x 3; * .. 4 3.23| 3.75|| 4.25 || 4.75 5.23| 5,72|6.19 || 6.65||7.11 # , 4 5 x 3; 2.56|3.O5| 3.53|4.OO |4,47 || 4.92|| 5,37| 5.81 6.25 6.67 5 x 3% 5 x 3 2.40| 2.86| 3.31|| 3.75|4, 18|4.61|5.03 || 5,445.84 5 x 3 A , 3} 2.25| 2.67|3,09| 3.50|3.90|4.3O| 4.68||5.06| 5.43 4 × 3, 4 x 3 2,092.48287|3.253.628.98l43414.695.08 4 x 3 3# X 3 1.93| 2.3O| 2.65|3.OO |3.343.67|4.OO || 4.31 |4,62 3# x 3 3# X 2; 1.44 | 1.78| 2.11 2,43| 2.75 3.06 |3.36||3,65 3# x 23 3 x 2% 1.31 | 1.62| 1.92| 2.22|2,50 2.78 3 x | 3 x 2 1, 19 | 1.47 | 1.73 2.OO 2.25 3 x 2 24 x 2 O.81| 1,06| 1.31 | 1.55 | 1.78| 2.00 2+ x 2 size | #- | #| # | #| | | # | #- | #| #| #| + | #| 4 |#| 1 || 1:# 1+| size Angles marked * are special. 102 - is & - & ſºl e *\ } 39, _____. Nºe T-ſº-> z V. % 42 C -2- Ž * 2–H HS ſ N | - 7| |AE 72 lº. //ray, a = AE Z 7 m (Zza/4 % a (ſomeozeeeer /ºz ) AZ. &a Y. — (*, *72) a- gº -g- -, --, // - w x ~ = /?, ? Z / 7. (Z-2) – 2, x ax ſºmeo/.../eoſ/ſ/ e - *-a º - // = {} % - 7 /27a) –20,22 ‘. . . () 7. * ,” “ry, , dºzer - *ºrary /* = &ºſe-2/-, 2-ay-a,” a” & ſ. Tº MI © . : : Engin. Library - TG. . 151. A52 American...bridge f company Sfandards for struc tural details gift s º : sº i º :| : º