--------- - - --- - - - - - - - - - - - - -- F- **** ------- --------- ---- - - - ºr-º-º-º- - - - - --~~ - | "…" - -- ºlº - - - - - - - - - NASA Reference Publication 1312 1993 National Aeronautics and Space Administration Scientific and Technical Information Branch Spectral Classification With the International Ultraviolet Explorer: An Atlas of B-Type Spectra Janet Rountree and George Sonneborn Goddard Space Flight Center Greenbelt, Maryland at T ^ E. ? H2, , ſº 12. |2|, || | (A2, ... . SPECTRAL CLASSIFICATION WITH THE INTERNATIONAL ULTRAVIOLET EXPLORER: AN ATLAS OF B-TYPE SPECTRA by Janet Rountree and George Sonneborn Laboratory for Astronomy and Solar Physics NASA/Goddard Space Flight Center I. Introduction pose without reobserving the standard stars to make sure that there are no system- A set of criteria for the spectral classification of B stars in the ultraviolet atic e was published by Rountree & Sonneborn (1991, Paper I). In that paper it was shown that photospheric absorption lines in the 1200–1900A wavelength region II. Data Processing can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a two-dimensional system consistent with the optical MK system. The stellar wind lines are not used for classification on this system. Stars with peculiar wind lines are distinguished from "normal" stars, and are marked with the suffix "w." The observational material used in Paper I consisted of high-resolution spectra from the International Ultraviolet Explorer (IUE) archives, suitably resampled and dis- played. Insofar as possible, the standard stars on which the ultraviolet classifica- tion was based were chosen from among the MK standards. The spectra comprising this Atlas were taken with the IUE short- wavelength prime (SWP) spectrograph in the high-dispersion mode. The ex- tracted spectral data, produced by the standard processing provided by the IUE Project, were resampled to a resolution of 0.25A, normalized to a rough contin- uum level between 1150–1900A, and plotted on 11 in. x 17in. paper on a laser printer. For details of the data reduction steps, see Walborn, Nichols-Bohlin, & Panek (1985) and Paper I. Our data processing procedures differ from those of the previous authors only in that the continuum normalization has been made autono- A number of representative spectra were shown in Paper I, in order to il- mous rather than interactive and that the plots were produced on a laser printer lustrate the classification method. But these spectral plots were reduced in scale rather than a CalComp plotter. The software needed to resample and normalize by approximately 50%, and thus were not suitable for practical classification the spectra is available at the IUE Regional Data Analysis Facility at Goddard work. The purpose of the present Atlas is to make available a larger number of Space Flight Center. If the user does not have access to a laser printer that accom- spectra at the scale used for classification. These spectra represent a dense matrix modates 11in. x 17in. paper, the spectral plots may be produced piecemeal on of standard stars, and also some interesting individual cases. Readers may use the smaller paper, but the original scale (10A/cm) should be preserved. It is strongly figures in this Atlas to classify their own IUE spectra, after processing the data as recommended that any spectra last processed before the improved extraction soft- described in Section II below. The recommended procedure for spectral classifi- ware was put into production (1981 November) be reprocessed by the IUE Project cation with the Atlas is described in Section IV. before undertaking the resampling procedure. Although the Atlas should be useful as a guideline for ultraviolet spectral classification with instruments other than IUE, it should not be used for this pur- III. Description of the Atlas All the stars whose spectra are presented in this Atlas were drawn from the list in Table 2 of Paper I or from a second list of approximately 100 stars that were subsequently classified (without knowledge of their previous MK types) on the same ultraviolet system (Rountree & Sonneborn 1993, Paper II). In general, these are stars with visual magnitudes brighter than about 6.5, having normal MK types in the range B0—B8 III—V according to Rountree Lesh (1968), Hiltner, Garrison, & Schild (1969), or Morgan & Keenan (1973). A few supergiants were drawn from the work of Walborn & Nichols-Bohlin (1987). The spectra are arranged in montages of four or five per two-page spread, or "plate." The wavelength scale is indicated by tick marks at 10A intervals above and below each spectrum, with numerical values of the wavelength in Angstroms shown at the bottom of the page. The crosses along the wavelength scales mark the echelle order splice points. The quantity plotted as a fine line at the top of each spectrum is the normalized data quality factor, which in these plots primarily indicates (by a downward spike) areas in which the data points may be contami- nated by a camera reseau. The most important spectral lines, especially those used in classification, are identified along the top of each plate. The stars are identified to the left of their spectra. The spectral type given for each star is the ultraviolet spectral type; in most cases, this is identical with the optical MK type. In Parts 2 and 3 of the Atlas the rotational velocity from Uesugi & Fukuda (1982) or the date of observation is also given. Overall characteristics of the spectral type range cov- ered by each plate are described in the text at the left of the spectra. There are three parts to the Atlas. Part 1, Plates 1–14, contains se- quences of spectra of standard stars for direct use in classification. Plates 1–7 show spectral-subtype (or temperature type) sequences for dwarf (class V), subgiant (class IV), and giant (class III) stars. Almost all of these stars are stan- dards listed by Morgan & Keenan (1973) or by Rountree Lesh (1968). On the main sequence, where very fine subdivisions are possible, we provide some over- lap between the groups of spectra on successive pages, so that the user will always be able to bracket the spectrum to be classified between two standards. Plates 8– 14 present luminosity sequences at seven spectral subtypes. In these montages, some of the standards in classes III—V have been replaced with other stars whose spectra were judged to be equally representative of their type, so as to give as many examples as possible of normal ultraviolet spectra. The supergiants (class Ia) whose spectra appear here are the stars described by Walborn & Nichols- Bohlin (1987). These stars have not been classified on the ultraviolet system — the spectral types given are the optical MK types. The supergiant spectra are re- produced in this Atlas in order to show the full range of variation of certain spec- tral lines as a function of stellar luminosity. Part 2 of the Atlas, Plates 15–20, illustrates the effect of rapid stellar ro- tation on the ultraviolet spectrum. Each plate in this section displays two pairs of spectra; each pair, closely matched in spectral type, consists of the spectrum of a slowly rotating star (v sin i usually <50 km/s) and the spectrum of a rapidly rotat- ing star (v sin i usually ~200 km/s). Although most of the rapid rotators are not standards, these illustrations should be helpful to the user who wishes to classify the spectrum of a broad-lined program star, since they show how these spectra are likely to differ from the narrow-lined standards. Finally, spectra with anomalous stellar wind lines, primarily strong ab- sorption lines of C IV AA1548, 1550, Si IV AA1393, 1402, and/or N V AA1238, 1242, are illustrated in Part 3, Plates 21–26. These are stars whose ultraviolet spectral types have a "w" suffix in the classification of Rountree & Sonneborn (1991). As in Paper I, italics are used in the text accompanying Plates 21–26 to distinguish ultraviolet spectral types from optical MK types. The spectrum of at least one "normal" star of identical type is presented with each anomalous spec- trum to show the good match in the photospheric absorption lines, which alone are used in classification. More detailed studies of some of these stars are referenced in the text opposite the spectrum in question. IV. Use of the Atlas After the user's program spectra have been processed as described in Section II, they may be classified by direct comparison with the spectra in this At- las. As in the MK system, the ultraviolet classification system is defined by its standard stars, most of which are illustrated here. Therefore, a program star should be assigned the type of the standard star that it most closely resembles. It must be emphasized that the comparison should be made using only photospheric absorption lines. The N V, Si IV, and C IV lines should not be used in classifica- tion; they should be taken into account only in assigning the "w" suffix. Table 1 lists the standard stars of the ultraviolet classification system, as well as the photospheric lines used as classification criteria. This is a slightly up- dated version of the similar table in Paper I. In our experience, it is possible to assign a very accurate temperature type to a star from its ultraviolet spectrum, while luminosity class may be more difficult to identify accurately (see Paper II). Therefore, we recommend first locating the spectrum of a program star among the standards on the main sequence, and then going to the luminosity-effects plate at that spectral type to see if the star appears to be a subgiant or giant. If it does, its temperature type should be verified by lo- cating the spectrum on the subgiant or giant sequence. Of course, this is an itera- tive procedure, since temperature type and luminosity class are not completely in- dependent. Finally, the NV, Si IV, and C IV lines, if present, should be compared with the same lines in the standard spectrum to see whether the program star has an anomalous stellar wind. The behavior of the wind lines in the standard stars is described in the text accompanying the spectra in Part 1. It is also noted in italics in Table 1. V. Conclusion It is hoped that this Atlas will find extensive use in the classification of IUE high-resolution spectra, especially for stars that have not been observed in the visible region. Spectral types obtained by the procedures outlined here and in Pa- per I should be entirely consistent with MK spectral types. In principle, the same standards and criteria can be used for spectra obtained with a different ultraviolet spectrograph, but in that case the standards should be reobserved with the other instrument to avoid systematic effects. References Grady, C.A., Bjorkman, K.S., & Snow, T.P. 1987, Ap.J. 320,376. Hiltner, W.A., Garrison, R.F., & Schild, R.E. 1969, Ap.J. 157, 313. Hirata, R., & Asada, Y. 1976, Pub. Astr. Soc. Japan 28, 713. Irvine, N.J. 1975, Ap.J. 196, 773. Morgan, W.W., & Keenan, P.C. 1973, Ann. Rev. Astr. Ap. 11, 29. Rountree Lesh, J. 1968, Ap.J.Supp. 17,371. Rountree, J., & Sonneborn, G. 1991, Ap.J. 369,515 (Paper I). Rountree, J., & Sonneborn, G. 1993, in preparation (Paper II). Shore, S.N., & Brown, D.N. 1990, Ap.J. 365,665. Slettebak, A. 1982, Ap.J.Supp. 50, 55. Sonneborn, G., Garhart, M.P., & Grady, C.A. 1987, in Physics of Be Stars, ed. A. Slettebak & T.P. Snow (Cambridge: Cambridge Univ. Press), 286. Uesugi, A., & Fukuda, I. 1982, Revised Catalog of Stellar Rotational Velocities (Kyoto: Kyoto Univ.). Walborn, N.R., & Nichols-Bohlin, J. 1987, Pub. Astr. Soc. Pac. 99,40. Walborn, N.R., Nichols-Bohlin, J., & Panek, J. 1985, IUE Atlas of O-Type Spectra from 1200 to 1900A (NASA Ref. Pub. 1155). BO B0.5 B1 B1.5 B2 B2.5 B3 B4 U Ori 1640A (He ll) strong 1718A (NIV) strong 1748-51 (N III) marked Si IV, C IV strong absorption HD 36960, N ill present He ll, N IV moderate to strong C Ill strong Si IV, C IV strong absorption o' Sco, 42 Ori N IV weak to absent He ll marked 1247A (C III) strong 1264A (Sill) present Si IV strong, C IV wº, absorption HD 35299 1264A marked but ºf 247A He ll weak Si IV absorp., C /V wº. to absent 22 SCO 1264A (Si II) = 1247A (C III) 1310A (Si II) × 1300A (Si III) He ll weak to absent Si TV moderate, C /V absent o Sgr 1264A (Sill) > 1247A (C III) 1310A (Si II) < 1300A (Si III) 1485A (Si II blend) present Si IV absorption n UMa, n Aur 1264A (Si II) >> 1247A (C III) 1310A (Si II) > 1300A (Silll) 1485A (Sill blend) marked Si IV weak HD 20809 1310A (Sill) > 1300A (Si III) 1485A (Sill blend) prominent Si IV weak to absent Table 1 - Ultraviolet Spectral Classification Criteria and Standard Stars IV HD 75821 Interpolate between V and Ill Si IV, C IV absorption A Lep Interpolate between V and || Si IV, C IV absorption O. Vir Interpolate between V and Ill Si IV, C IV absorption A SCO interpolate between V and || Si IV, C IV absorption y Peg Si III, Al III, Fe III stronger than B2 V 1600-10A (Fe II) stronger Si IV stronger, C IV absent HD 32612 Interpolate between V and || Si TV present, C IV absent HD 134687, 126 Tau Interpolate between V and III Si IV present, C IV absent 53 Per Sill, Si Ill, Al Ill stronger than B4 V Si IV present, C IV absent HD 48434 N III, N IV stronger 1854-61A (Al Ill) stronger 1247A (C III) stronger N V, Si IV, C IV P Cyg profile 1 Cas N IV, Al Ill stronger N Ill present but weak SI IV, C IV absorption o Per, o SCO C III, Hell, N IV stronger Silll 1300 multiplet stronger Si IV, C IV absorption 12 LaC Sill, C Ill stronger Si IV, C IV stronger * Ori C III, Al III, Fell, Fe III stronger than B2 IV Si IV stronger, C IV present *Cyg Sill, Si III, C III, Fell, Fe III Al Ill stronger Si IV strong, C TV present HD 89890 Sill, Si III, C III, Al III, Fe Ill stronger Si IV stronger, C IV present No standard in program B5 B6 B7 35 Eri, p Aur Sill dominates spectrum 1655A (C I), Fell moderate 1670A (Al II), Al III strong Si IV marginal to absent 6 Sex Similar to B5 V but Al III stronger Fe Ill weaker Si IV absent o, Leo Al II, C I prominent Al Ill weaker than B6V Fe ill absent 18 Tau Sill dominant Al II, C I prominent Al Ill, Fe Ill absent IV t Her Sill, Si III, Al III stronger than B5V Si IV present, C IV absent 19 Tau Interpolate between V and || Si IV, C IV absent 16 Tau Interpolate between V and || No standard in program 5 Per, t Ori Sill stronger than B5IV Si IV stronger, C IV absent 17 Tau Sill stronger Si IV, C IV absent n Tau Sill, Al II stronger than B7V 27 Tau Sill, Al Il stronger than B8 V Part 1 Standard Stars Plate 1 a C || Si || Si III Si || Si IV Main Sequence [TTTT I-1 BO - B2 U Ori BO V The earliest main-sequence B stars are characterized by lines of He II A1640, N IV A1718, and N III AA1748,1751, which decrease smoothly from B0 to B1. C III x1247 begins to weaken at B1, HD 3696O while the photospheric Si II lines A1264 and A1310 begin to increase in strength. The ratio A1264/A1247 BO.5 V is approximately unity at B2 V. In these standard main- 6 Pé sequence stars, Si IV AA1393, 1402 is mainly photospheric, and shows a | | | | | | | | | | | >< >4 }< | Sz >< IS2 | NA Prs ZN 2. N >< + Pé HP6 Hº >4 marked decrease at B2. The stellar wind lines C IV AM1548, 1550 are 42 Ori essentially absent by B2. B1 V ſt Sz 1 >2 l NJ 1 >|< R2 | L sº SA Yºu’ | Sz Sz I NL’ | Sz SA 1 NA | NA I |\, | Szl | N/ | NAſ | Sz 2^NTTzv | 2 N. U /N | /N I zS F-S TZN | 2^N. I zS Jyv | z \ I zSI ArN | 2 N ſ zS TIZN I ZN |^ U zSI TZN | ZN | 2^N. HD 35299 B1.5 V |\ Rz | >2 'l Sz SA YA | >2 NZ NU/ | Sz SA *S*_l Szu |NZ 1 Sz I 1 >2 l NAſ | NZ Prs zS-T-zs- zS Jyv Izs-r-z ST AfN | zS- zS rz-T-2s |^ I-zs] zS- zSU | zS 22 Sco B2 V 1\ a NJº Sz. 1 >2 l Sz SA NL’ Rz Sz I Sz S.A. NAA | >2 Sz Nuº | Sz SA 1S2 | >2 1 ls. 1 Szl Sz NAſ | Sz 2^N. 2^N ZN 2^N. z N 2^ 2 N z \ z \ 2 N. zºN 2^N. ZN z N z N 2^N. 2^N. ZN 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 14OO 142O 1440 1460 1480 15OO Plate 1b. C IV He || N IV N || Al || Fe III ſ | | T F- T | | | I | | | | | | | | | | | | | I | T | T ><+ 26 26 →r-r T. r—T- I - m". F- I- >} >4 2% gºmº.–26 2é Bé }< }% 96 26 26 2é 26 + >é >< t —1->6– k, | SA 1 & I 1 & | NZ | NZ | NUZ | }< | NLZ | NJº | | NZ | —e-l | >el | 3. | | Sz | ><——-1–s’ SA NL’ R2 Sz | Sz. 1 SA Nue' | Sz Sz I NU/ | Sz SA 1S2 | >2 |Sz Szl Sz I | Tzv | /N I /N | 2^N. I zS ZIN Prs 2 N | 7 NTI zS Jyv | 2^N. I zS Aſ N | z \ I zS TZN | ZN I |^ I zS I /N | ZN | 2'N o Sgr B2.5 V ſ\ R2 1 Sz | Sz SA NA’ | Sz—sz Nº Z | Sz SA isz–1–N2 |Sz | >2 Sz NAſ | Sz PS 1 zS-I-zs- zS rs—T-2-1-2s Aſ N | Zs- zS zS-I-zsi Prs-T-zS rz S- /N I-zS n UMa B3 V \/\ AZA R2 Sz | Nº 1 SA N/ | Sz Szl NU/ | Sz SA Sz | Sz IS2 I Sz 1 NZ NAſ | Sz PS zS-I-zs- zS J’N Tzs-r-z ST AfN | zS- zS rzs—I-2s |zS -zS zS-I 2N. |-zS HD 20809 B4 V Sz Sz NA SA NLZ NZ | Sz SA NZ | Sz Sz Nue' | | SA I NA | NA 1 ls, | Sz 1 Sz NAſ | Sz 2^N. | ZN l 2^N. | ZN I zS PS /N | ZNTU zS J’N | 2 N I zS Aſ N | /N I zS I / N | ZN I |z S I zS I / N | zYU | 2 N 35 Eri B5 V S.A. Alº" Sz Sz Sz | " NZ Rz Sz | NZ SA ×2 " | NZ NZ I NL/ | Sz SA Sz Sz |NZ 1 NZ | Sz NAſ | NZ ZN ZN /N 2N ZN ZN /N /N ZN /N /N /N /N ZN ZN /N ZN ZN ZN ZN ZN ZN ZN 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 1 400 142O 1440 1460 1480 15OO Plate 2b %—l %—l | 9% | 1 NZ ZN | 1 & ! ZN N2 | ZN l 3. | | \, | | Si || F6 || C I Al Il Al || Fe || T TTT | F- T H–H–H–I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-T-I-T-I-T-I-T-I-T-I-T-I-T-- I- —He-Hºe-->4——º-Hº-H3–H54–He-He-Hei-He-H2–H–4–H–24-Hº-Hº-Hºd—H->e- >}— r-I-T-I-I-I-I-I-I-T-I-i-m-----|--|- ––––be-Hºd——º-H->e-H2– → He-He-He-Hºe-Hº-Hº-Hº-Hº-Hº-Hºd—H->e- >{— F-I-T-I-T-I-m- | |-m-m-m-m- rº-I-T-- —H·e-Hº-Hº-Hº-Hº-H%—Hº-Hº-Hº-Hº-Hº-H2—H->e-H–4–1–––Hº-Hºd—H-e- >{— ----|--|--|--|--|--|-m-m-m-m-m-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ —l sº ls, | SA 1 \, . 1 sº I | NZ | RA/ | NUZ | NL’ | NUZ | NA | Lºz– | \, 1 sº I | J. 1 | < | | NZl | 1 sº I Sk | |-z- Fºs I ^ -zs- | Zs- I Z\ | VN | ZºS | AN | 2.TV | WN | z- -zs- as I T I I-zs— | ZN | I-7s- T I -v-Y- –-º-º-º: 1500 1840 1540 1820 1560 1800 1600 1780 1620 1760 1640 1740 1660 1720 1680 1700 10 Plate 3a Main Sequence B5 - B8 º ſº e S *::: * t º | # s range of main-sequence types. Fe III AA1892, 1896 weakens at types later than B5, while Al III AA1854, 1861 reaches a maximum at B6. 35 Eri B5 V 6 Sex B6 V o, Leo B7V 18 Tau B8 V Z\/vºy Y. º *NWA ººze 4–4–4–5%—->{—HSé-º->4—941–H4––PéH%—H·4——4—£4–H4+->4––PéH3%—Hº-Hº | | Aſ NZ 1 NZ I NA YA | NZ NZ NA | NZ NA 1NZ | \Z |NZ 1 NZ I 1 NZ I NA | NZ \ pºw-r-zV-T-zV ZN yW Tzv -zVI AN Izv - ZN rzw-T-zv |zw r-zVI z\ | ZN I ZY *— v. v — 4–1 v v_v_1 - 4 1NZ | \Z |NZ NZ I 1 NZ I NA | NZ VN -zV-T-zV ZN yN Izv-r-zVI Aſ N. | z\ . zS rzV-T-zV |2V-Tzvi zST-I /N | z\ --|--|--|--|--|-- 1 NZ I NZ 1 | % NZ 1 NZ | NZ NA \/ | NZ NZ | NA | NZ NA 1NZ | NZ 1 |NZ | NZ | 1 NZ I NAſ | NZ ZN ZN /N /N /N ZN /N ZN ZN ZN ZN ZN ZN ZN /N ZN /N ZN /N /N 1200 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 1220 11 Plate 3b + | v- | + ++++++++------|--|--|--|--|--|-i-º-Hº-Hº-n ——e- bé l >é —e- 1–36 | 13% | % | }< | Sk | }< | % | 1–36 | 1–36 | I >e- 1 —k l |-> l | >él | 1–36 | | >{ I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 12 Plate 4a C || Si || Si || Si || Si IV Si || Subgiants [TTTT F- | I | U | I | I | I | I BO - B2 HD 75821 BO IV In the subgiants, He II A1640 remains prominent and C III A1247 × >4—k—º-->4—Hº-Hº >é–HºëHé—Hº-Hºd—Pé–HºHº-HºHº remains strong through B2. Spectral | | | | | N | | type is determined by the relative strength of the Si II photospheric lines. C IV AA1548, 1550 can A Lep Sometimes be seen as late as B2. BO.5 IV ><+}<-Hºë—24–36–Pé—->é–H54——24—k—Hº-Hº-Hé–H54——4—Bé–H54—Pé–HºHº HD 63578 B1 IV |\ -- R2 | Sz | Sº I SA N/ | >z—sz NU/ | Sz SA 1S2 I sai lsz Szl Prs TZN | ZY I zS PTN Tz's TI zS ] ACN |-zS I zS W ZN | ZN I |z S I zS] X SCO B1.5 IV | | Sz NA. 1 SA NL’ R2 | >2 l Sz SA Y-Z Lez—sz | >2 SA Sz—l szl |\z | Szl 2^N. T^N. I 2^NTI zS I 2 Nºv I zS 2TV Prs Tzv | zVTI zS P’N Izs U zS Aſ N. |-zs U zS U ºf N | Z STI |^ lſ zSI Ö Cet B2 IV I | Sz Sz | Nº 1 SA N/ Rz 1 S2 | Nº. 1 SA NZ | >2 Sz I Nuº | Sz SA 1S2 | Sz 1 |\,. 1 Szl ZN ZN ZN ZN 2^N. ZN ZN ZN ZN z \ ZN 2 N ZN ZN ZN ZN 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 1400 142O 1440 1460 Plate 4b I-I-I-I- | H–I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I- - T-I-I-I-I-I-I-II | W- | —m-I-T-Y-T-I-T- | — IT | - - H-T- He-Hºe-->4–H–2– ×—H>e-Hei-Hºt—Hº-Hºë—Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-H-4— W w vºm-º TW ſ— F-I-In |-|--|- Hº-Hº-Hºd——º- *—H%—He-He-He-He-Hee-Hee-H->e-H->4–—Hºd—H-e-H->}— —H·e-Hé-->4——º- ×—H*—He-Hº-Hº-Hº-Hº-Hº-Hº-H->e-H–4——Pe-Hº-Hº-H-4– —He-Hºe-H4——º- ×–H%—He-He-Hº-He-Hºe-H2—H->e-H–2–H–k——Hee-Hé—H->e-H–4—- →e-–4–4–4– *——º-1-36-1–%—l—4–1—º-->4–1—%—l—->e-Hº-l——4—Be--->e--->e-–—4— 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 14 Subgiants B2.5 - B7 The photospheric Si IV lines persist until type B5 in the subgiants. The relative strength of the Si II and Si III spectra makes a useful spectral type criterion. Plate 5a C || Si II SI III Si II [TTTT SI IV S. III W | T | I | I | I | I | U | W | I | HD 32612 B2.5 IV W. zº R z NA | Sz | S2 Nue | Sz | SA 1 NJº | NAA | |\, | S.2 | 1_NA | NJAſ | Neº º Lº N. IrSV Izs- zS Aſ N I-zs- zS Izs— 2^N. I |^ I zS] zS-I z \ |-z's 126 Tau | B3 IV D R2 1 >2 l Sz SA YA | Sz—sz NU/ | Sz SA 1NZ | Sz |Sz Sz i S-2 l NAſ | Sz Fºs 1 zS-I-2S→ zS PTN Tzs- zS 2^N. I-2s- zS I /N | 2^N. I |^ I zS zS-I 2^N. I-zS T Her B5 IV R2 I NAA | SA NA,” NJA I NA,” NU/ L S2 I NAA NA I |Sz | Nue' I NA | NAſ | Sz —K– F-S-I-2s | I zS Jr.'N Hº I >< Aſ N. | zS- >4 TZN 2 N - |^ I >< I ZN | 2^N. I-z's r—r—my— | | r) | | ſ 19 Tau B6 IV A M \ ANA - Lasſwº z Rz 1 \z | \, h NA NZ | >2 > YUZ | Sz SA Sz—l Szu ls. | Sz 1 NZ I NAſ | Sz \ Prs I / V 2^N. I zS JºW Izs- zS 2^ I-2s- zS I ºf N | 2^N. I |^ I zS zS - I z \ |- zS r—-r-ţ----|--|-- -I-T—ºr- 16 Tau B7 IV **.*.*-->el->e >é–Bé—->é——e->é >4–1->4––Pé! %—l—º-->4 *——e. Bé–—º ->é–1—24 |→e 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 14OO 142O 1440 1460 1480 15OO Plate 5b 15 Si || F6 || C | Al Il Al || Fe III H- TTT --— F- T → p−r-T-I-T-Y-L-I-T-I-I-T-I-T-I-I-I-I-I-I-I-I-T- He *— }< 9é HX: Hº- Hºe He- He- Hºd He- → ZN Fº × >< 2é— WZN }< >{ 24 >{ Bé >é + >< >{ Hº >< >< Fº >4 ×– TZN IZN }< Hºt- —l NA’ | k, l SA | NA’ | I NA | | N/ | NZ | NU/ | NLº | NUZ | NZ | 1 NA | | N/ | | sº I | J. | | NZ | | NZl | | N/ | | sk | 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 16 Plate 6a Giants N V f ||| Si || Si || Si || Si IV TTT F- BO - B2 ſ , --I-T-Yr- HD 48434 In the giant stars He II A1640 BO III persists to B2, N IV A1718 to B1, and N III AA1748, 1751 to B0.5. Although C III A1247 is stronger > *{-><--><-Hºë—4—k-Pé––––Pé——24—º-Hº-Hº-Hé–Hº-Hºd—Pé-Hºë—Pé–HºH-6–H4—Hº than on the main sequence, the ratio | W | | | T | W WY A1264/A1247 is still near unity at B2 III. Si IV AA1393, 1402 and C IV Ax1548, 1550 exhibit P Cygni 1 Cas profiles at B0 III, and remain as strong absorption lines throughout Bo.5 III this spectral type range. NJef I l NAC ><——2–1–Sz SA NLeº KZ 1 S2 | Sz SA NA’ | >< 1 >2 l Yue' | Sz SA 1S2 | Sz |\z 1 >2 l 1 >2 l NAſ | Sz wV. TzY | zv TI /N | 2^N. I zºl 2TN Prs TZN I Tzvi-I. zS Jº V | ZN I zS Aſ N | /N I zS TZN | ZNTU |^ I zSI TZN | ZN | z \ o SCO B1 || | NA Sz. 1 NJ. 1 S2 NA 1 SA NLef K2 I NA | ſ SA N.Z. | Nue' | S2 | NL’ | NA’ | SA | N/ | NA’ I |S. | S2 | NAA | NAſ | Nue' z \ TzY | zv TV 2N. | 2^N. I zS 2TN F’s TZN I 7\TI zS Jyv | 2 N I zSI Aſ N. | /N | zS I ºf N | ZN I Prs I zSI U ºr N | /N | 2^N. 12 LaC B1.5 || 1 \\z / sº I S. SA NL’ K2 | > || > | Y/ | | sº Yºu,” | >2 SA Sº I S.2 |NZ | >2 l Sz I NAſ | Sz 2^N. Tzv | z \TI 2^N. | /NTI zS /TN Prs ITZN | 2^NTI zS rN | , N I zS ZON | /N I zS Tz N | 2 NI |^ I zSI TZN | ZN | 2 N Tr” Ori B2 || | NA* 1 S2 | NA 1 SA Niz KZ 1 NA | Neº 1 SA NA | NA 1 Sz I Yue' | NA’ l SA | N/ | NA 1 |Sz | S2 | | N/ | NA | NA /N 2^N. ZN /N 2 N 2^N. 2^N. /N z N /N 2^N. ZN 2^N. 2^N. 2^N. ZN /N 2^N. ZN ZN ZN 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 14OO 142O 1440 1460 1480 15OO Plate 6b 17 C IV He || N IV N || Al || ×– Hº- Hº Hº Hº- —l NZ kz | SA l Sz I | N/ | | N/ | | NJ’ | | NY | | NA' | NZ | | Sz | SA | Sz | | NZ | | | N/ | Szl | ZN | Fº I ^ I ZN T I ZN | IZN I }< | 2^N. | >4 | ZY, | —%- | VN | Hºë | I ^- I ^ | Izs I | zºv I | Izº | } zS } —Hº-Hº-Hºd——º-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-H->e-H–4——Pe--Hél–Hºe-H–24– >{ 24- >{ Bé >< 26 >{ | 26 >< Hºë >4 — NZ I k, | SA | NZ 1 NZ | | N/ | NUZ | NJº | NAſ | NJ’ | }<- | NZ | | N/ | _l Sz I | SA | | Sz | | NZ 1 | | NZ | l Sºl | ZN. /N ZN ZN /N ZN ZN Tzv T ZN ZN 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 18 Giants B3 - B8 Si IV persists to B5 and C IV to B3 in normal giant stars, but the spectrum of stars in the B3—B8 range is still dominated by Si II lines. Plate 7a Si || Si || º Si IV Si || I | T | I | U | U | I | I | I | I | I | I | -I | I | I | I | HD 89890 | B3 || Wºwºwſ >2–1–N2 | NA I NL’ R2 Sz_l Sz_ SA Yue' | > 1 >~1–41 NUZ | Sz SA | Sz | Sz I Sz Sz I NAſ | Sz Prs zS-I-2s zS J’N F-2s-r-zs ACN Izs— zS Izs—I-zS |^ I zS rzs-I ZN |-zS 17 Tau B6 || 2 MA/MAN al R2 1 >2 l | SA N/ | Sz Sz NU/ | | SA Sz_l Sz. IS2 l Sz 1 Sz I NA | Sz \ Prs r-z-T-zº- zS P^N. Tzs-r-z ST Aſ N. I-zs— zS Tzvi-T-zs IzS I zS Izs-I /N |-zS n Tau B7 III AºAM, Z R2 | >2 l Sz SA YZ | >2 Sz NU/ | >2 SA | N/ | Sz |NZ l Sz Sz NAſ | Sz \ Fºs 2s-T-2s- zS Jyv | Zs—T-zs Aſ N. I-zs— zS rzs-I-2s |z S I zS zS- 7W |-zS 27 Tau B8 || Wy A 1AMMa al.ſvºw i S.2 Nue 1 NL’ K2 | N/ | S2 SA NA | Sz Sº I NUZ | Sz SA | N/ | Nue 1 |\,: | S2 | 1 Nat | NAſ | Sz ZN 2^N. 2^N. 2^N. 2^N. 2N. 2^N. /N 2^N. 2 N. 2N ZN 2^N. zS 2 N ZN ZN ZN ZN 2 N z N 2N. 12OO 122O 1240 1260 128O 13OO 132O 1340 1360 1380 14OO 142O 1440 1460 1480 15OO 19 Plate 7b Si | C IV F8 | C | A | AI | [] [-T | | [–] | U | | | J | I | T | J | | | | | | | J | | | U | T | J | I | | | | | | I | | → | ~m~+++++ WWW | ––– Rz | NA 1–sz ! 1 sz_| I NA | NU/ | \/ | NA! | \AY | >< | |NA | 1 sz_ 1_sz ! | NA | | »» |_> | 1 sz_| | »| 1 |-zs+ KN I zN I z> | I-7V | I/\ | AN | ZYK | Z\ | ZY. | | VN | I"Z\ | | zx | | z] | | » | ZN I | I ZW | | zs| | →+—pe++++++++++++++++++++++++++++++++++ ––––––– | | | | | | | | W | | [T | | [T | | | | + [] | – | [` T- →+—+—–>4––><+———+—–*—–><~+–––––––Pe+––><–––><+–––––>< |-><++><–––– → ~T~~~~~ – m-I- | | | | T [~ →e+–pe-->4––><++>+++++ – |—+—–łe--be--Pe-+><+––><+––||–––>< |—>4–––><+—+—>+ → →→–be+−→é–→→→→→→→→→→→→→→→→–k–––>< –><~~~><—––– 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 20 Luminosity Effects at BO The indicated lines of C III, N IV, N III, and Al III all increase in going up the luminosity sequence from main sequence to giants. The wind lines of N V, Si IV, and C IV exhibit P Cygni profiles in giants and supergiants. Plate 8a N V Si IV T H | 'J | | | I | | | | I. . I. T | - I | U T e Ori B0 la ſ N º NZ NZ | NZ 1 NA | NZ NZ | | N/ NA 1NZ | NZ lNZ NZ | 1 NZ | NAſ | NZ \ VN zS-I-zs zS I z\ z\ | Izs ZN rzV-I ZS |ZN zSI Izs I ZN | zS | ſ | | | | | | | | | T | | I r- | | -T T-I-T-I-I-I-T-Yr- HD 48434 BO || NZ 1 NZ | NZ NA N/ | NZ NZ Yuz | NZ NA 1 NZ | NZ IN/ NZ | 1 NZ | NA | NZ WN I-zV-T-Zw ZN J/N Tzvi-r-zVI Aſ N. I Zw zS rzv-T-zv |ZY z\| z\- ZN | zS HD 75821 BO IV ×!--k+x+x+x+-->4–2–3–2–H3-H4—k H-4––XHK–H3––4–3–H54—be-i-kH%–H4—Hº u Ori B0 V w Z 94–1–24–1–24–1–24—94–1->4—24:1–3%—l->4–1–24—24–1–24–94—24:1–24–1–24—1–2% 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 21 Plate 8b }IV º | * N || Al III | U | I | I I I | I | I | I | U | I | I | I | U | U | T | I | I | I | I | | TI | T-T-I-I-T-I-T- | Sº I 1 \Z | | N/ | NU/ | NJ’ NA \Af | | N/ | ſ' N," | NZ | SA l | \, f | NZ 1 | N/ | l Szl | I zs-I I ZV | IZN | ATN | AN | zw ZN | —%— | wV | I ºv | I ×– U zº I |^ I | AV I | IZN. | I zS I -T-I-T-I-T-Y- Tºſſ-yr-ſwi-MI- —l NJ’ ſ | SA | S. 1 \Z | | N/ | NL’ | NJ’ \/ NJP | | NZ | | N/ l NAA ſº J | | Sz | | NZ 1 | 1 \Z l Szl l I-7s- Bé U ^ as I I ZN. | IZN | Aſ N | AA | /N ZY, | }<— | L^N. | TZN | I ×– U ^ I |^ I | /NT | TZN | I zS I ºs- I- —e- W --T-I-I-T-I-T-I-T-I-T-Y-L-I-T-I-I-T-I-T-m |-T | | —l NAZ | ſ SA | Sz I | N/ | | N/ | NUZ | NJº NA NY | | NZ | | N/ | NZ | SA | | Sz | | N/ | | | N/ | | Sol l I-z- Pé U ^ l ^-I U | IZN | ZIN | &\s | zºn | ZY. | —}<- | VN | ZN | I ×– U ^ T |^ I | zVTI | Izv | I ^ —I. r −ſ r——-r-r-ţ- | -r] T. |- 1') —l ><—l bé I >é | ×-l 1—2% | 1-26 | % | }< | }% | }< | % | 1->6 | 1—2% | | ×- | Sk | |→e ſ | >{ | 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 22 Plate 9a Luminosity Effects at B0.5 The C III, N IV, N III, and N V C || - Si IV Si III Al III lines are luminosity indica- I I T] | U T- I I I | I | | I | lſ —I T I tors. The stellar wind lines are in | J | | | | I | | '... | | | | T absorption, except in the supergi– | antS. 1: Ori B0.5 la NZ 1 \\zll SZ —NZ | NZ NA }< NZ 1 NZ | NZ NA N/ | SZ —NZl Y-Z | NZ NA 1NZ | NZ IN/ 1 NZ I NZ N/ſ | NZ r—zº-T-7s-1-Zvi /NT /N VN I ZV-I-Zw ZN J/N I-7s- z\ | ArN I-zV- ZN IZN | ZN I |ZN I ZN | I /N | ZN | zS 6 Cru B0.5 || NZ 1 1–4–1–4–1–Y >4—K–Pé 1 NZ | NZ SA YZ | SZ —NZ | YUZ | NZ NA 1NZ || >zu lNZ NZ | 1 NZ 1 NAſ | NZ ZN ZN ZvT-zvi zS VN r-zV-T-zV zS J/N TZS-I-ZVI Aſ N I-zV- zS rz-T-7s |ZN r-zVI Izv | /N I-zº A Lep | B0.5 IV NZ NZ | NZ NA Y/ L \Z NZ Yue | NZ NA NZ | >2 |NZ 1 NZ 1 NZ I NA | NZ WN zvi-T—zvi zS yN | Zs-r-zvi ArN I-zV- zS rzw-T-zs |zw r—zvi zS - ZN T-zº —I-I-I-I-I-I-I-T-r- HD 36960 | B0.5 V NZ 1 | >z 1 >2 l NZ 1 NA }% NZ 1 NZ | NZ NA YZ | NZ 1 NZ I Nua | NZ 1. NA 1 NZ | NZ 1 INZ | NZ 1 NZ I NA | NZ ZN ZN ZN /N ZN /N /N ZN ZN ZN 1200 ºz26 1240° 260 ° 1260 °isoo (320 ° 1346 1360 ° 1386 200 °1420° 1440 1260 °1480 ° 1506 23 Plate 9b C IV N IV Al Ill ſ | F- | U | U | I I l !--- J. – U | I | – T | U I | I | I | U | I I-II-T-ſ-ſ-TIT-T —Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-H-4––Pei-Hº Hº-H-4– —Hºe--be-Hé——º-Hº-H%—He- Hº–Hé-Hº-H2−H->e-H–e1–1–4––Hº-Hºë—H-e-H-4– —t-tº-m-t-t-t-t-r-T-I-T-I-T-I-T-I-m- —t-I-I-I- —Hºe-Hºe-H4——º-H->e-H%—Hºe- He-He-Hº-Hº-Hº-Hº- —k——Hºe-H *— He-H->}— rº-rºr-r-T-I-I-I-I-I-I-T-I-T-I-T-I-T-I-T-Y-I-I-I-I-I-T- —l—e- bé ſl >é —e- |->e- 12% | –36 | & N. | >é | >{ | >{ | bé | |->e-l —e- > l |->e- | >é–1 | 1->6 | l >d l 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 24 Luminosity Effects at B1 The Si III multiplet at AA1290– 1300 is luminosity-sensitive in the B1—B3 spectral type range. C II, Si IV, C IV, and Al III exhibit P Cygni profiles in supergiants, but not in stars of luminosity class III—V. Plate 10a C || Si || C|| Si IV Si || | - H | I | I | I | I | I | lſ | I | U | U | I | I | l | T | U | I | HD 148688 B1 la MA M. Jºſ | NZ NZ | | NZ NA YA | NZ –Az Yuz' | NZ NZ | \Z |NZ NZ 1 NZ | NA | NZ \ |^ z\ |-|zV ZN J/N Tzvi-r-zVI ArN I-zv- ZN rzV-I-Zvi |zV- * Izs T-I ZN |-z\ r—-T-I-m-m-m- O Per B1 || >é+*H*——24-HºH)4—3–Pé–H54—H·4––24—%—H·4––PéHé–Hº-Hº!—#4–H4+->é——24–36–H4—Hº -T-T- HD 63578 B1 IV |\ º Rz LSZ | NZ NA NZ | NZ v Y-Z | NZ NA Y | Szil. |NZ NZ 1 NZ NAſ | NZ W VN zvi-T-Zvi ZN yN I-zV-r-zVI Aſ N |-zV- ZN rzV-I-ZN |zV-T-7s z\- ZN | zS to' Sco B1 V NZ N/ NZ 1 NZ | NZ NA N/ NZ NZ | NZ NA YZ | NZ NZ I Y/ | NZ NA NZ | NZ |NZ 1 NZ | 1 NZ | NA | NZ ZN ZN ZN ZN /N ZN ZN ZN ZN /N /N ZN ZN ZN /N ZN ZN ZN ZN /N ZN ZN ZN ZN 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 25 Plate 10b C IV Al Ill Fe || | | -I | I | I | I | I | I | I | I | T | I | | | I | I | l | I | ſ | I | | T rº-r-T-I- | NZ NZ NJ’ | NA/ | | N/ | NA J | Sz | | NZ 1 | º NZ I NAA NA’ NA’ \A | NZ J l | Sz I | NA' | | vzl | Hº: pe-H4——xe-H-x-H%— Hº-Hº-Hº-Hº- H->e-H–2–H r—I A-I-T-Z-- ^ - −1–º be | >é 1 sº I ZN | | >k- | | % | | —e- | ×-l —k- | |→ l | Szi | º # >{ 1500 1900 1520 1880 1540 1820 1840 1560 1800 1600 1780 1620 1760 1640 1740 1660 1720 1680 1700 26 Luminosity Effects at B2 Lines of C III, Si III, Fe II, and Fe III are luminosity indicators for main-sequence, subgiants, and giant stars at spectral type B2. C II, Si IV, C IV, and Al III exhibit P Cygni profiles in supergiants. X* Ori B2 la T* Ori B2 || k Cen B2 IV o Cen B2 V NZ NZ NZ I /N NZ 1 NA NZ T %—9é——% | NZ | NZ I NZ | | NZ NA Plate 11a C || Si || C II Si IV Si || | TTT | H | l U I I | I | I | U | I | W | U | l | I | U | I | U | ſ | | NZ 1 NZ | NZ 1 NA | NZ l NZ | Nº. | NZ 1 NZ | N/ 1 IN/ | NZ | 1 NZ | NA | NZ VN z\-T-Zvi zS *-i- T-zV ATN I-zV-1 ZN rzV-T-Zvi I/N -zVI rzV-I ZN |-z\ ſ - - - - - l NZ NZ | NZ NA Y/ | SZ 1 NZ YA L NZ NA 1 NZ | SZ |NZ | NZ | NZ | NAſ | NZ Prs zv-T-zv- ZN J’N Tzv --zvi ATN I-zV- zS rzº—T-zs |ZN I zSI rzV-I /N |-zS |-|--|-- ſ NZ 1 NZ | NZ NA N/ | NZ NZ NA/ | NZ NA 1NZ | NZ 1 |NZ 1 NZ 1 NZ I NAſ | NZ WN zv-T-z- zS J’N | z\-r-zVI /N I-zV- zS rzV-I-ZS |ZN Tzvi z\-I ZN | zS }< | VN | I ºv | U ZN | + ^ I | zVTI | I | I- ^l U T-I-T-I-I-T-I-T-I-T-I-T-m be-->4——º-l——e-->4–1—%—l—k——k——3– —e-l-->4–1–1–3%——->e--->e——->e-l——º- % I NAA 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 ^ 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 28 Luminosity Effects at B2.5 The principal luminosity indica- tors at spectral type B2.5 remain the lines of C III, Si III, Fe II, and Fe III. The Si II blend at A1485 makes its first appearance at this spectral type. The supergiant wind features of C II, Si IV, C IV, and Al III are weaker than at B2. Plate 12a C || Si || C || Si IV Si || Si || | TTT || | | | —I- | I | | I | I | I | | I | | | U | HD 92964 | B2.5 la v. A NZ NZ | | NA N/ | NZ 1–Azil NA L NZ NA 1NZ | NZ |NZ 1 NZ | 1 NZ NA | NZ PS zv-T-zº- ZN yV F-7s-r-zvi ArN | Zs-r-zV rzw-T-zs tº -zVI z\-I ZN | z\ tº Cyg B2.5 || f", x N/ L NZ l' NZ NA NZ | NZ NZ Yue L NZ NA 1NZ | >Zu |NZ 1 NZ I 1 NZ I NAſ | NZ Prs z\-T-zv- ZN yN Tzvi-i-zVI ArN I-zV- ZN rzw- ^: 2N−zvi z\-I /N | zS HD 32612 B2.5 IV \ſº NZ LSZ | NZ NA N/ | NZ v N.Z. | NZ NA 1NZ || >zi |N/ 1 NZ 1 NZ NAſ | N/ TVN zv-T-z- ZN yS TzV-1-zS AN |-zV- ZN rzv-T-Zvi tº as º | ZN I Zw - -I-I-T-I- A Lib B2.5 V d -4- >é–24—26–%—->é——26–24—3%—l->é——24:1–3%—l->é——24—124–1–24–94—24:1–24–1–24—1–2% 1200 1220 1240 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 Plate 12b 29 C IV F6 || He || A| || Fe || 26 +2% % }< Bé Hé >< 26 26 >{ --T-I-T-I 26 >< Hºč }é >{ 24- >{ Bé 26 H 26 >{ Izs + >< Hºč zS 26 Pé >4 2% 26 º 9% }< }< 9% Hé 2% 26 | >é >é. + * —H >} —l-e--be-->4——º-l—re-->4–1—3–1—º-Hº-1–24–1–24–1–9–1–1->4–1—24–1–1–24——Be--—e--—º-|-->el— 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 30 Plate 13a Luminosity Effects at B3 Lines of C III, Si III, Fe II, and C || Si || C || Si IV Si || Fe III remain luminosity-sensitive at J U |- I I TTT I ſ I -T- I U U I type B3, but show less variation | | | | | | | | | | | | than at earlier types. The most t ſ ſ d prominent wind feature in B3 supergiants is C IV AA1548, 1550. o°CMa B3 la M. NZ NZ I l'NZ NA Yuº | SZ —NZ NA | NZ NA 1NZ 1–NZ |NZ yv-r-zv-T-Z- zS rvi-Tzv z\ | Arv Izv- zS rzw-I-Zw tº ſ - T-I-I-I - HD 198820 ||| ||||Wh | | B3 || | \"\hw →–be-i-k-Hé-4→et-Hº-Hº-Hº-Hº-->4—e-Hº-be-->4—e HD 134687 M WWW MW NW t B3 IV Jº Aſ NZ 1 NZ I NZ NA MA | NZ v. Y-Z | NZ NA 1 NZ | N/ I IN/ | WN zV-T—Zvi zS J/N TzV- ZN | ZON |-zV-1 ZN I ZN | ZN I * -msmº, |- | T n Aur B3V |→él–º-4→6––24–1–24–24—24–94—->{—1–24–1–24—24–1–1->4—24–36–1–24–24—24–1–24–%— ZN 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1480 1500 31 Plate 13b Fe III T A|||| [- Fe || TTT C IV ſ - II- TV 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 32 Luminosity Effects at B5 Lines of Si II, Si III and Al III are luminosity indicators for classes III, IV, and V. In the supergiants, the wind lines of C II, Si IV, C IV, and Al III are in absorption. Plate 14a Si || Si || Si || C || Si IV Si || | TTTT | H | | T | | T | I I I | I | I | U | I | I | U | I | I | n CMa B5 la | | ſ M Y!!!'ſ "...T. >4—K–Pé–H%——bé+->4—94"–H54–1–24–3—H·4–1–24 Bé–H54 }{-|->{ HK–H54 HK -------|--|--|--|--|-m------|--|--|--|- HD 2094.19 B5 || H NA NZ_l Szu |NZ 1 NZ NZ | NA | NZ ZN rzº—T-zs Izs-r-zº] rzs-T-Zw | zS T Her B5 IV NA 1NZ | \Zu |NZ 1 NZ 1 NZ | NA | NZ zS zV-T-Zw |zV-I-ZVI z \ | ZN | zS p Aur | B5 V "A. 4–1–2é—%—->é——24–1–24—94–1–24–1–24–36–1–24–24—24–1–24–94—24:1–24–1–24—1–2% 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 —º Plate 14b Si || ſ Fe II C || º | A|||| º | I | l | I I I | I | I | I | lſ | I I I | I | I | I | I I I I I | I | I | W I ſt-I-T- T-T —l sz R2 | SA | Sº I | N/ | | N/ | NU/ | NJ’ | NA | N/ | | N/ | | N/ | Sz_l | SA l | \, | | NZ 1 | | NZ | | __ I-zs- Fºs I ^ I zs I TZN | IZN | AN | *N | /N | ZN. | —2%- | VN | Tzº | T-zs I ^ I Izs I | /N. I | IZN | TI I >< -º- —Hº-Hº-Hº-Hº-He H*—Hº-He-He —k—Hº-Hº-H-e-H->e H–3——Hº-Hºd—H-e-H->}— —r-— -T-I-T-I-T-m-m-m-m-T-I-T-I-I-I-I-I-I-Hº- —Hºe-Hºe-H4——º-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-H-e-H-4––Pe--Hél–H36–H–4— -Yº v-Y Wy— I -tº-m-m-m-m-m-m-m-m-I-T-r-ţ-T- F-ºr- r-m-- F-I-T- — NZ | be | >é | 26 | | 2% | 12% | % | }< | >k | }< | % | 1->6 | | 26 | | ><- | >k | | 26 l | >{ | 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 35 Part 2 Effects of Stellar Rotation 36 Plate 15a Rotation Effects at B0.5 * * e o C Si i crº in # - am these stars are photospheric. They are broader and shallower in the --------|--|--|--|--|--|--|--|--|--|-r r—T- rapid rotators HD 135160 and 6 Sco than in the slow rotators HD 36960 A Lep and A Lep. Both width and depth must be taken into account in esti- mating the strength of these lines for B0.5 IV classification purposes. v sin i = 50 km/s NZ 1 |->4–1–4–1–Y >4– NZ 1 \Z | NZ NA Yvº | \Z 1–Azil Yue | NZ NA 1NZ | \Z. |NZ. zº—r-z-T-7s-1-ZvT-zºn }<- yv-r-zv-T-z-r-zº y \ Tzvi-r-zvi 2^N | Zs-r-zº rzw-T-ZS IzY Ö SCO B0.3 IV y sin i = 180 km/s NZ 1 \, NZ SZ — 4–1–Y >4—K 1 NZ | NZ NA \/ | \Z–1—Az Yua | NZ NA 1NZ_1–4. IN/ T-7s-1-2\ I-zvi zS VN 1 z\-T—Zvi zS yW Tzvi-i- ZN 2^N. I-7s- ZN rz-T-7s IZV +--T-I-T-I-m-m-m- HD 36960 B0.5 V y sin i = 35 km/s NZ 1 NZ | NZ NZ NZ I YZ L \Z NA 1NZ I-Azu IN/ VN I ZN ZN Tzvi-I-ZVI ATN I-zV- ZN rzv-T-zs |ZW * }< HD 135160 B0.5 V y sin i = 180 km/s NZ 1 NZ | NZ NA NZ | NZ NZ | | NZ NA 1 NZ | NZ |NZ /N ZN (320 1340 1860 & 1386 200 °1420° 1206 (i226 (240° 1260 ° 1260 Tisoo /N ZN 1440 Plate 15b Hºd Hºe- He-H Hº % }< >< H % —l Sz ſ R2 l >é l Sz_l | >< | -->{ | 9% | }< | }< | }< | 9% | | N/ | I >< | _l >é | | >k 1 500 1 520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 38 Rotation Effects B1 - B1.5 Main Sequence Unlike the photospheric and stellar wind lines, the interstellar lines are unaffected by rotation. They are easily picked out in the stellar spectra of rapid rotators HD 154445 and HD 37303 by their very sharp profiles. Some lines, e.g. Si II A1526, have both stellar ind inter- stellar components. Plate 16a C || Si || Si || Si || Si IV U | | I T | I | J | I | I | | | U | U | U | I | I | HD 36959 | B1 V y sin i = 25 km/s - NZ | >2 'l NZ SA \/ | Sz–1–szl NZ L NZ NA 1NZ I A2 |NZ 1 NZ I 1 NZ | NAſ | NZ Prs z\-Tzvi zS J’N Tzs z\ | ArN I-zV- zS rzs I C- IzV--zVI z\- ZN Izs HD 154445 B1 V y sin i = 185 km/s |\ HD 35299 B1.5 V v sin i = 35 km/s HD 37303 B1.2 v | y sin i = 240 km/s w 94 –24–1–24– >4 × |→4—24. }< |→4— >4 24–1–24. Bé —24: |X— >4 | NZ 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 39 Plate 16b —r-r-I-I-I-I-I-T-Y-L-T-I-I-I-I-I-I-I-I-I-m-T-I-T-I-m- NZ NZ M.A. NL2 _l 1. NA’ | NA’ NA | NZ | | N.A. i | 1 \Z ſ J | N/ | N/ NZ l | NZ | NZl | | N/ | Sk ×-H2–Hºe-He –––––be-Hº-H->e-H-e-He--He-Hºd—H->e-H->}—- NZ | N/ % }{ ZN ZN |→-1–%— %—l—º- —e- —e- —k— |→e- —e | |->e-l——º i 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 40 Rotation Effects B1.5 - B2 Giants and Subgiants Rotation effects tend to be less pronounced for stars above the main sequence, but they can produce apparent differences in the signal-to- noise ratio (S/N). Note that the in- strumental S/N is about 30 for all the digital plots in this Atlas. o: Pyx B1.5 || y sin i = 20 km/s HD 70930 B1.5 || y sin i = 220 km/s HD 39777 B2 IV y sin i = 40 km/s p Sco B1.7 IV y sin i = 155 km/s 1200 Plate 17a C || Si || Si || Si || Si IV | | TTTT - H I | I | I I | I | TI | I | I | | I | I | I | I | I | A NZ SZ | NZ SA YA | \Z–1–4 Yuº | NZ NA 1NZ || Azu |NZ NZ I 1 NZ I NAſ | NZ WN ZN-T—ZS-T-zV J/N Tzvi-T-ZVI ArN | Zs ZN rzV-T-zV |zV-I-zVI z\-I /N | zS | Hº-Hº-Hº-Hé –3–2–1->4–H54–H54—) ("Hº-HºHé–H4–1–1->4—Bé–Hé-Bé–HºH)4–H54—Hº |\ NZ NZ || NZ NA *4–1–1–4––4. Yuº | N/ NA 1NZ_1=>4. |NZ 1 NZ | 1 NZ | NAſ | NZ PS /N-I ZS- zS yN Izs z\| ArS | zS zS rzº—T-7s |zY -zVI z\,-] ZN Tzv | | NZ NZ | NZ NZ NZ l NZ NA NZ | NZ NZ I YA | NZ NA 1NZ | NZ |NZ 1 NZ 1 NZ I NA | NZ /N ZN ZN /N ZN /N ZN ZN ZN ZN /N ZN ZN /N ZN ZN ZN ZN ZN ZN ZN ZN 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 Plate 17b 41 ×— Hº }< Hºt Hº Hºt ><— Đé Hé He- HA Hº: Hº- H* Hºd Hº-Hºº-º-º-º-º-º-º-º-º-º-º-º-º-º-T — »e H be -->4——º-Hº-H2—He-He-He He–He-H2–H–4–H–e1––––Hº-Hº-Hº-H-4– – sº be-->4 —e- | Nº | Bé-l %—l }< | >k- | }é | %—l *— —e- Sz I l Sk l | S. |→e | 1 sº I 1–4 . 1 500 1 520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 42 Rotation Effects B2.5 - B3 Subgiants Line broadening can pose a less severe problem for the classification of the mid-B stars, where the stellar wind is weak and the photospheric Si II lines are not yet saturated. For example, HD 150745, with a v sin i of 285 km/s, is one of the fastest ro- tators in this program, yet its spec- trum is quite comparable to that of the moderate rotator Ö Ori B. Plate 182 C || Si || Si || Si || Si IV TTTT H U | | lſ | | U | I | I | | I | U I I I U | U | I I U | Ö Ori B B2.5 IV y sin i = 35 km/s N º NZ 1 NZ | NZ NA MA | NZ NZ | Y-Z LAZ 1 NA 1NZ | Sz. NZ —NZ! LNZ NA | NZ \ VN z\-T-Zvi ZN yS I/S zSI ATN Izvi- ZN I /N | ZNT |ZN I zSI º | /N | zS ------------|--|--|--|-m-m-m-m-m-m-m-m-m-m-m-tº- HD 150745 B2.5 IV v sin i = 285 km/s Aſ) NZ 1 NZ | NZ SA Yvº | NZ NZ | NA LAZ NA |SA-I-4- |NZ 1 \z I | >2 l NA | NZ Prs TZN | ZN I zS Jyv TZN ZN I AN |-zv- zS IZN I ZN I |z\ I ZN | IZV | /N | zS HD 134687 B3 IV y sin i = 40 km/s *4-x-->4–4–4–4–3–2–Hºe-4→e-P-->4–2–3–4–3–H54–B––4–3–H54–Hº ---T-Y-m-T-I-I-I-T-I-T-I-m-m- T Tau B3 IV y sin i = 180 km/s Aſ A T z bé –24–1–24– >4 % |→é >é! % |→4— >4 |X: | ><+ Bé l >é | NZ 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 Plate 18b Al III Fe III *— T- T | I | | I I | W | | U I I- I W | U | I | ſ T I | I | I | U I I T | I —m----|--|--|-m-m-m-m-m-m-m-m-m-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ-ſ- —Hºe-Hº-Hºd—-24– ×—H2−. He-Hº-Hº-Hº-H2–H–2– ×- —k——Hº Hºë—H->e-H–4– --tº-r-ţ-T-I-I-T-Y-T-I-m-m-m-m-m-ſ-ſ-ſ-ſ-ſ-ſ-r-ţ-tº-m- —Hº-Hºe >4——xe-H->e-H2— He-He-He-Hº-H2—H-e- ×- —k— Hº Hº!—H->e-H–4— I– F-U-N-y—- -V Fir-I-m-ſ-ſ-ſ- | —Hº-Hº >4——º- ×-H*— He-Hº-Hei-Hºº-H2—H->e— ×- —k— Hºe Hº!—H->e-H–4— ——4––% >é——º- Hº-1–3——º-l–4–1–24–1–3——%—l—->e- >e- >{ |→ |→e——º-1-->4— 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 44 Rotation Effects B5 - B6 Giants and Subgiants The spectrum of the late B stars is dominated by lines of Si II, whose relative strength is the principal classification criterion. In order to ensure that both depth and width of the lines are accurately taken into account, it is useful to have both broad-lined and narrow- lined stan- dard spectra. Plate 193 Si || Si || Si || Si || | TTTT | | | lſ | I | I | U | I | ſ | U | TI | I | I | U | I | I | I | T Ori B5 || v sin i = 45 km/s o Cas B5 || y sin i = 255 km/s AVY'Ax, be-º-Hº-1-4—k-Hº-->4–*—Hº-Hºº-º-Hº-be-->H2-H2—Hº -—t-m-m-T- -T-T r-i-m-m-m- 2 Lac B6 IV v sin i = 60 km/s | *%+x+x+x+x—k—x–Hei-4—kº-Hº-->4–3—Ex-->4–ee-Hºº-ºº-->4–2–H54–Hº -----|--|--|--|--|--|--|--|--|--|--|--|--|--|-rr- 23 Tau B6 IV ~~~~r, 4Thºë-ºf-><– >é- >él >é % bé –24–1–24– >4 >< |→é——24 % |→4— >4 Bé——24. Bé —24! Bé—l >é |→é 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 Plate 190 45 Si || Fe || C | Al Il A|||| Fe || —H··m−1·ſ−trº-H- Twſ >< | >< Hº }< >{ 24 >{ Bé >< >< × Hºe 26 º × \Zl | | Sk /NI | I ZN | I zł >é $é }< —% He + bé Hºč Hºe- Hº- Hº- He- } k, >4 26 >< HP6 }< >{ 24 >{ Pé >< >< + × H Hº >< Hº × |->e--be-i-4——º-l——º-l—º-l—%——3– | NUZ | NZ | | N/ | | NZ | l & | J, | | Sz l | NZl | 1 NZ | l Sk | ZN ZN ZN ZN ZN ZN ZN ZN 3% 1 soo 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 46 Plate 20a Rotation Effects B6 - B7 Giants Many of the late B giant stan- º | # - º | dards, including 16 Tau, 17 Tau, I U | U | lſ Uſ T I I I U U U U | I | U and n Tau, are members of the Ple- | | | I | | | | | | | iades cluster. This cluster is a par- - ticularly good source of broad-lined standards, although narrow-lined Ç Dra stars are found there also. B6 || v sin i = 30 km/s Hº-Hº->4—%l-H4––2éHé–H4+-4—24–H54—Pé–H4–3—Hº-Hº | T I- | 17 Tau B6 || y sin i = 215 km/s A MAT %—Pé—->{—Heli->4—94–H54–1–24–36–H4——24—126–H4+-Pé–H54—3–H54—Hº 20 Tau B7 || y sin i = 45 km/s | NA NZ | \Z. |NZ 1 NZ I 1 NZ | NAſ | NZ r—zV-2N-I-2\, |zV-r-zVI z\ I-zw-T-zº F-T -T-I-T- n Tau B7 || y sin i = 210 km/s AMVMM. z NZ 1–2% | ><– NA NZ | NZ >é! YA | NZ >4 1 NZ | NZ |NZ ſ >< | >é |→é 1200 ºz26 1240° 260 ° 1280 isoo (320 1346 1360 ° 1386 200 1420° 1440 1260 ° 1480 ° 1506 Plate 200 47 -T-I-T- | NA l Rz | SA | N/ | i__N/ | | N/ | NZ | NLZ | | NLZ MA | NA | N/ | Sz | | NA | NA' | | N/ | l S} | T ZVTI I ZN I | TZ'N | I /N | y^N. | AN | —}<— | ATN | VN | +26 | | /N | | zS –H —k— I | ZN | | /NI | H26 | I I | d | | | || || || | | i | | Sz R2 NA sz | Sz ! NZ | NUZ | Nº | S.A. | | | IN/ | |->~! sº SA | Sz | Sz | I X- | l NZ | |-ZS | PS I zS } | z-T IZN. | ZIN | /N | Zºn | >{ | —}<- | L^N. | Tzv | --~~ } zi ; T^ | | Z\TI | I ZN I ^ I | Sz Rz | SA 1 & 1 & 1 Sz NZ | NLZ | NL’ | NZ | NZ | 1 Sz 1 so I 1 & | N. l | Sz_1 | Sz | 1 & | Sk l /N ZN ZN /N ZN ZN ZN ZN ZN ZN ZN 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 49 Part 3 Stellar Wind Effects 5O Plate 21 a Stellar Wind Effects * sº # * at BO - BO.5 ---T-T-I-T-prºnºv-ºf-wºrn U Ori BO V Both U Ori and t Sco are MK standards for type B0 V. In the ul- >~1–4–1–sº traviolet, however, t Sco exhibits | zS-2's | zS greatly enhanced lines of N V, | | | r-I-T-----------|--|--|--|--|--|-- ---T- Si IV, and C IV. We use u Ori as the standard for ultraviolet classifi- r sco | |W. J \||Nº||N|M|| cation at B0 V, while t Sco is desig- d nated B0 VW, indicating that the º stellar wind lines appear to be "ab- B0 Vw normal" in comparison with the standard. The two spectra of t Sco 1984 Jul 1 NA presented here were taken over three 2 N. ><+->z—sº-->4– zs-r-zs-I-2s /N I >< >< +2% >4 >< PS >4 TPS F-ZS Although it is a fl Cephei vari- R. ><+ able, f Cru has a normal optical MK T | ſ | rin_T----|--|--|-- —-T- | | | m— T-I-T-I type of B0.5 III and a normal ultra- | violet spectrum. In contrast, HD f Cru \ t + M. W 53974, whose optical type is also B0.5 III (Rountree Lesh 1968), was | given the ultraviolet classification of B0.5 III | B05 IIIw by Rountree & Sonneborn (1991), who cited its broad stellar wind lines and especially the P Cygni profiles of NV and C IV. ––p-r T-T-I-T- | | rº-º-º-º-º-º-º-º-º-Hº- - - - −) - HD 53974 º BO.5 |||W NA > A Sz Sz NA. I SA NLef KZ Sz | Sz SA NA | Sz S2 | Nue' | Sz SA 1 NA | NZ 1 |Sz | Sz | N/ | NA | Sz ZN 2N 2^N. 2^N. z \ 2^N. ZN 2^N. 2 N 2^N. ZN 2^N. 2^N. 7 S. 2 N 2N 2^ 2N ZN 2N 2^ ZN 12OO 122O 1240 1260 128O 1300 132O 1340 1360 1380 1400 142O 1440 1460 1480 15OO 51 Plate 21b A|||| N IV He || C IV ~ ſ | ---- | I-m-m-ſ-ſ-ſ T r—-tº-T—w-T-I-m-m-n IT-I II- ><— -T | T 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 52 Plate 22a Stellar Wind Effects * * # * I | T I | I I I | W I I | W | I | I | W | I | I | I | I | at B1 O Per B1 III The MK standard for B1 III is o Per; o Sco is a fl Cephei variable >< *H*——º->4—k—Pé–H54–Hº-Hºd—4–Hºº--><–H-4—Hº and a spectroscopic binary, but at | N | | N | | | zS | | | classification dispersion both its op- tical and its ultraviolet spectra are normal for B1 III. However 1 --~~~~~ CMa & CMa, another 6 Cephei variable, & is classified B1 IIIw because of the | P Cygni profiles of the N V and B1 Illw C IV lines, and the weakness of the Si IV absorption lines. Rountree NJ’ 1 | >2–1 ><– NA I SA NLeº R2 | | | SA NJef H-4- S.2 | NU/ | | SA *—l—- Pé I S2 | HP6 | Nueſ | Sz and Sonneborn (1991) cite evidence zº—2-T-2s I-2sr−. as—Ps—-2s—T-2-1-2- rS-I-2S zSI as H-2-1-2S rzº—I-2s | zS] I-2s |-z's for a variable stellar wind in this Star. Grady, Bjorkman, and Snow or Sco (1987) describe 2 Vul as a Be star with a variable wind and a partially resolved discrete absorption compo- B1 || nent. In the example displayed here, the C IV doublet is greatly enhanced Sz". Sz_1^2–1–1–4–sz | > | > −4—2–1–4–4–4–1–2 – S4 Sz—1–4– Bez—Szl_i > 1–sº | Sz in comparison with the normal spec- ~–~–T-7--~ 2sr−2T→r-P---|--|--|--|--|-2sr−1s− r^-I-2s 2N–1–2s. | 2N–I-2N-I-2s trum of HD 63578. The latter star is d a rapid rotator (vsin i = 200 km/s). HD 63578 B1 IV "A 1 \\A | NA NA I NL^ | N/ NZ | YA | NZ Yue' NZ 1 1 Nº NZ 1 | | Neº 1 N-Z Nef 2^N. ITZN | 2^NTI ><- z N I >4 /TN Pé Tzv ZNTI >4 Jº N 2 N I >< Aſ N | /N T >4 IZN. ZN I Prs I >< ITZN | /N | ZN 2 Vul B1 |VVV "A |\! >4–4–1–24–34—we Bé-->4——4––4—94–1->4––Pél–36–1–4–4–4–e4–1–24–94—ººl—eº-I->é——º 12OO 122O 1240 126O 128O 13OO 132O 1340 1360 1380 14OO 142O 1440 1460 1480 15OO 53 Plate 22b >é }< + 26 + >< Fºs >{ 24 >{ Bé >< + |→e--be-i-4–4–3–1–––. | | So I | Sz ! SA NA | 1NZ | NUZ | NJ’ NA N/ | | N/ | | \Z | 1. sz SA ! | Sz I | NA' | | 1 NZ | | Szl | I-A U Fº I ^ I ^T TZN | IZN | ATN | ZN ZN | ZN Hº– VN | I ZN | -zs- | ^ I |^ I | ZN I | TZN | I ^I I —t-m-m-m-T-I-T-I-I-I-I-I-I-T-I-T-I-I-I-II-I-I-I-I- NZ | NZ l SA Sz I | N/ I NA | NL’ | NJ’ NA/ NZ | | N/ | I NA/ | I | S, I NJe. I | NZ | s/l | | ZNTU Pé I ^ I ^ - Tzvi | IZN | ZIN | Z\ | 24 | ZY | —%– VN | I ZV | I ×– T >{ I Izs I | z \ I | I /N I I ^ I | Sz I ZN ZN ZN zºN 9% 1 S. 1 N. L ZN NZl | _1 \Z | l ZN 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1840 1860 1880 1900 1820 1740 1700 1720 1760 1780 1800 54 Stellar Wind Effects at B1.5 HD 85871 and HD 166596 have anomalously strong C IV lines, in comparison with the normal B1.5 III spectrum of HD 70930. The Si IV lines have peculiar pro- files, in addition to enhanced line strength. The C IV lines, normally absent at B1.5 V, are prominent in the spec- trum of 19 Mon. Grady, Bjorkman, & Snow (1987) describe this star as having a variable stellar wind. Emission at Ho is cited by Irvine (1975) and Hirata & Asada (1976). HD 7093O B1.5 || HD 85871 B1.5 |||W HD 166596 B1.5 |||W HD 35299 B1.5 V 19 MOn B1.5 VVV Plate 23a f ||| º | Si || º Si IV l | I | I | I | I | I | I | I | l | | I T I | I | I | I | | NA. W. 1 | 1 Sz Neº 1 NA NLef R2 | Sz_l Sz SA NA | 1 Sz NUZ | Sz SA I NA | Nº 1 |\,. I NZ | I NA | | Sz 2^N. I ZN | ZN I /N | /N I zS 2TN Prs TZN | 2^NTI zS P^N. I 2^ I zS 2^N. | 2^N. zS I 2 N. | Z STI Izs I zSI I / N | /N | ZN }4–H54–1–24—º-Hº-Hº-Hé—Hº-Hºd—Pé-Hºë—Pé–HºHº-Hºd—Hº ſ Rz 1 Sz 'l Sz. 1 SA Y/ | Sz Sz NUZ | Sz SA 1S2–1–2– IS2 1 Nz I Sz NAſ | Sz Prs TZN | /N I zS J’N | ZN I zS ATN | ZN zS I ZN | ZN I |^ I zS I ZN | ZN | ZN NZ 1 | Sz Sz | Sz SA N/ Rz 1 >2 l Sz SA NZ | Sz Szl NU/ | Sz SA 1S2 | Sz lsz | NZ | Sz NAſ | Sz ZN 2^N. ZN /N ZN ZN ZN 2^N. TZN ZN ZN /N ZN ZN ZN ZN /N ZN ZN ZN /N ZN /N 122O 12OO 1240 126O 128O 13OO 132O 1340 1360 1380 1400 142O 1440 1460 1480 15OO Plate 23b 55 | I | I | I | m-m-m-m-ſ-ſ-ſ-ſ-ſ rº-H-I-T-I-T-I-T-I-I-T-Y-H-I-T-I- 26 Bé }< # }< F- TI- T- HPé 96 NUZ | }< NZ Hº >< 26 >< >4——º-l—e-Hee-i-º-He-l–k—l |→e-l—ee-H->{-1–––––.k——->e--->4—1–––––– }< 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 56 Plate 24a Stellar Wind Effects sº º | I mº * B2 Dwarfs -----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-m- 13 SCO B2 V The ultraviolet spectrum of 13 Sco is normal for a rapidly rotat- →3'→4–4–24–1–2– +: ing B2 V star (v sin i = 225 km/s). - | NA | SA | N/ | NA I ls, | NA | NAſ T^N | | z STI zS I /N | ZNTI |^ ZN | ZN | 2^N. In particular, the C IV lines are van- | | I----- | | +----|--|--|--|--|--|--|-- NA | NA 2^N. NLZ Sz–1–4– SA NA | >2 Sz NU/ 2TN 7~-I zS PN | z I | 2TV Sz | N /N I / | | SA I zS N I ishingly weak. The other B2 dwarfs depicted here exhibit different de- HD 3701 7 grees of C IV enhancement. The choppiness of the spectra of HD | 57150 and HD 161056, due to a B2 Vw poor echelle ripple correction in the data processing, makes precise clas- sification difficult. zs-r-zs- NZ I SA NZ | | NZ l SA PS | zS-I zS J’N | | ZN I zS --- - --> l - * - - Shore & Brown (1990) reported Y-- H-H - | | d T | I-m-m- —I- T-I-T-I-T- -mſ-TI- C IV and Si IV line variations in HD 37017. Balmer line emission in HD 57150 HD 57150 and HD 72067 has been described by Slettebak (1982). B2 VW: NA | 1 |→-->4–1—- SA NZ KZ Sz Sz | —sz YUZ | | sº-Hº- |Sz | S2 | Sz NJT | N/ Z S I-2-I-2s I zS /NTI zS- 2IN PS TZN | zS-I zS J’N Izs I zS ACN |-zs- zS I ZN | ZN I |zs I zS TZN | ZY |-z-S {- --|--|--|--|--|--|--|--|-- T----|--|-- HD 72O67 W *. B2 VVV >44–4––24-Hº->4—k—Bé-->4––––54—k"—Hº-Hº-Hº-Hº-Hºd—º- |--→4–1–2% - --- --- —ſ *T*Tº-s— —ir-------- --tº-T-I-T-Y-r --I-y F-T- | | | | | HD 1615O6 wº i { | r B2:VV | "...l 1 S2 Neº i SA NZ Rz Sz S2 SA Y/ | Sz Sz NLZ | Sz SA | N/ | NA I ls, I NZ 1 NA | NA | Sz 2^N. 2^N. ZN ZN /N ZN ZN ZN 2^N. 2^N. 2^N ZN 2^ ZTS 2^N. ZN ZN ZN ZN 2^N 2 N 2^N. 12OO 122O 1240 1260 128O 13OO 132O 1340 1360 1380 1400 142O 1440 1460 1480 15OO 57 Plate 24b C IV A| || H–I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I I- Hº-Hº-Hºd——x–H–3–H54—Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hºd—H->e-H->{– | NZ l |\, _l ZN >é | l Sz I | NZ ZN | NZ R. SA I NZ º | N/ | | N/ | | NJ’ | NA NA’ | | NZ 1–4 ^- r—zº ſ | | Sz l N/ SA | < | Sz | N/ | | | | MA | | Sz_l NZ | NZ | I | < | | NZ I | 1 & | Sk | I-7s l Fº I ^ I ^-I Tzv | IZN | Pé | }< | }<– | }< | VN | I /\ | Tzv | | ^T + —k— I-7s I | /NI | Tzv | I zł I Hº-Hº-Hºd——x-H-e-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-Hº-H-4––Pei--|->e—H·e-H–24— NZ | 1 sº | | | \, . | Sz | usz 1–szl | VN | zº- l zS I | z \TI | TZN | I ^ I 1 N.A | l J. | |-}=1–3—1–*—l—k——%—l Sz 1 \, . I ZN ZN ×–1––– 1500 1520 1540 1860 1880 1900 1 1840 560 1820 1580 1800 1600 1620 1640 1660 1680 1700 1760 1780 1720 1740 58 Plate 25a Stellar Wind Effects º Fº Si || hº * I | I I | I | I | I | U | I | I | I | I | I | I | I | I | The B2 Subgiant Ç Cas —t-m-m- Ö Cet B2 IV The fl Cephei variable 6 Cet has a normal ultraviolet spectrum for a l | >2 – 2 | Sz SA NLZ Rz Sz—l sz– SA Yue' | >2 Sz Nue' | Sz SA Sz—l—sz- |Sz l S2 | | >2 l | Sz I 2 N | /N I /N | ZNT zS 2TV Prs TZN | zºv I zS J’N | ZN I zS I 2^ | ZTS I zS Tz N | 2^N. I |^ I zS I ºf N | 2N. | 2 N B2 V slow rotator (v sin i = 10 km/s). The N V lines are absent, | | | | H-I-T-I-T-I-T-I-T- | T Si IV lines are moderately strong, and C IV is very weak. In C. Cas, which is not a 6 Cephei variable, the wind lines are all enhanced and are variable in strength. This variation B2 IVw Ç Cas is especially remarkable in the CIV lines. Sonneborn, Garhart, and 1982 Sep 7 e l |→4–1–4–1–sº SA ->|<- KZ Sz I Sz. 1 SA NA |->4–1–sz Nue' | Sz SA Sz_1=z- lsz 1 Sz | Sz NAſ | Sz Grady (1987) set an upper limit of →-T-7s-1-2s /NT zS PS r-z-T-zs zS PTN Izs- zS ACN |-zS- zS TZN | ZN I |z S I zSI I ZN | ZN |-zS several months for the time scale of | | | | | | | | | | | s the wind variability in this star. HD 163472 (B2 IVW) has an Ç Cas ultraviolet spectrum very similar to Ç Cas. Its potential variability has not been studied. B2 |VW 1982 Nov 25 | | | >Al-Hº-Hº-Hº-Hºë—4—k—Pé–H54–H54–1–24–36–H4––PéHé—Hº-Hºd—Pé–Hº-Pé——24–24–H54—Hº Ç Cas B2 IVW 1983 Oct 2 | | > 1–2–1–sz SA ->|<– Rz l | NZ N/ | >2 Szl | Sz I NA | Sz ls, | Sz | Sz | NAſ | Sz ZN I ZN | ZNTI zS I /NT zS PS I / N I ZNTI zS J’N Izs I zS ACN | ZN T zS I/N | ZN I |^ I zS TZN | ZN | /N Ç Cas B2 (VW 1934 Feb 12 ^ º º º N | | Sz. 1 SA NZ | Sz Sz | Nº | Sz. 1 SA 1S2 | Sz |Sz 1. Szl Sz | NA | Sz ZN ZN ZN ZN /N ZN /N ZN ZN 2 N ZN ZN ZN ZN /N /N 12OO 122O 1240 1260 128O 13OO 132O 1340 1360 1380 1400 142O 1440 1460 1480 15OO 59 Plate 250 A| || C IV ſæTSZ-}-*- ţ-*--*- †-X - –==-e-) →«-, -ę•) )—«æ, ae«), → T U )-r- (>=)�') );├─TĒ=+— !=–”Tº !== --•■ |} }X | k !* !* })×|-SKSKŠK|-Sk X|-XE-XX|-X )|-z-|-+!+|+ T !=–-r-• •†�■ ■ ■•) )|ºg5ºTºgºTºgº5k XXXKX* );–||–||–—— | —•) →«) →•) ►X|X|XXX ====~) ſæ,= ==)«■■|• → →–f– P →æ: XXX|* >)•==== - 1900 60 Stellar Wind Effects Mid-B Dwarfs HD 192685 is essentially iden- tical with the B2.5 V standard o Sgr, except for the abnormal profiles of the Si IV lines and the abnormal strength of the C IV doublet. In HD 72356, all the stellar wind lines are enhenced in compari- son with the B4 V standard HD 20809. Plate 26a C || Si || Si || Si || Si IV | | TTTT H I | | I | I | I | I | I | I |-r | I | I | | | I | I | I | o Sgr B2.5 V >é!-->4+H=4––2é–H4+->4—3–54–1->4—H·k——4—%—Hº-HºHé–H54——24—1%—Hº!—Pé——*H*—Hº-Hº HD 192685 f B2.5 VW >éHº-Hº-Hº-Hºë— 4—3–94—1->4–H54–1–24—%—H·4––PéHé–H54——34—Bé–H4+->é–H4H2—H24—Hº HD 20809 B4 V ALſ "TM' NZ 1 NZ | NZ NA Y/ | NZ NZ | NA | NZ NA 1 NZ | N/ 1 |NZ | NZ | 1 NZ I NAſ | NZ VN rizV-Tzvi ZN J/N Tzvi-r-zVI ATN Izs- ZN rzw-T—ZN LV-I-ZVI rzV- /N | z\ —Y- HD 72356 B4 VW "W.M.A.J Z % 94 1–2% H-54– >4 × 1-1-X— ×l % |→4— >4 Lé | >{ 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 Plate 260 61 >< * >4 >< >< + H26 % }< }< }< Pé Hº >< >< >< ><; >< + t + NZł 26 >< | – -T- . TIT Fº W| * | [ . . . |-><--be-->4–1–2–––2–1–9–1–3–1—º-->4——d-1–%—l–%—l—->e-l——º-H4—12––––––Be-1––24— 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 ||| Form Approved RE PORT DOC U M E N TAT I O N P A GE | OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 2.2202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) || 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1993 Reference Publication 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Spectral Classification With the International Ultraviolet Explorer: An Atlas of B-Type Spectra 6. AUTHOR(S) 680 Janet Rountree and George Sonneborn 7. PERFORMING ORGANIZATION NAME(s) AND ADDRESS (ES) - 8. PEFORMING ORGANIZATION REPORT NUMBER Goddard Space Flight Center Greenbelt, Maryland 20771 93B00096 9. SPONSORING ! MONITORING ADGENCY NAME(s) AND ADDRESS (ES) 10. SPONSORING / MONITORING ADGENCY REPORT NUMBER National Aeronautics and Space Administration Washington, DC 20546-0001 NASA RP-1312 11. SUPPLEMENTARY NOTES Rountree and Sonneborn: Goddard Space Flight Center, Greenbelt, Maryland 20771 12a. DISTRIBUTION / AVAILABILITY STATMENT 12b. DISTRIBUTION CODE Unclassified - Unlimited Subject Category 90 13. ABSTRACT (Maximum 200 words) New Criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a two- dimensional system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard Stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25A, uniformly normalized, and plotted at 10A/cm. The atlas displays such spectra for about 100 stars, arranged in spectral-type, luminosity, and rotational velocity sequences. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical. 14. SUBJECT TERMS 15. NUMBER OF PAGES 65 IUE; B-type stars; stellar classification; stellar rotation; stellar winds 16. PRICE CODE 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT UL Unclassified Unclassified Unclassified NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39.18 298-102 BARCODE INSIDE The HF Group Indiana Plant Illilill 2/6/2007