TA 685 N53 A 520133 1887 ARTES 18 17 SCIENTIA VERITAS LIBRARY OF THE UNIVERSITY OF MICHIGAN | $ TUEBOR ■SI QUÆRIS-PENINSULAM AMŒNAM CIRCUMSPICE THE GIFT OF Dean M. E. Cooley E. L. Cooley Memphis. Tune. TA 685 .N53 1887 CH OF UNIV 1309 C HELIOTYPE PRINTING CO. BOSTON, View of the Works of New Jersey Steel and Iron Co. New Jersey Tie and iron ELC USEFUL INFORMATION FOR ENGINEERS, ARCHITECTS AND CONSTRUCTORS, AND TABLES OF ROLLED BEAMS, CHANNELS, ANGLES, &C. MADE BY THE New Jersey Steel and Iron Co. TRENTON, N. J. EDWARD COOPER, PRESIDENT, EDWIN F. BEDELL, SECRETARY, FRED. J. SLADE, TREASURER, JOSEPH STOKES, SUPERINTENDENT, 17 BURLING SLIP, NEW YORK. TRENTON, N. J. COOPER, HEWITT & Co., NEW YORK. Western Office, H. N. Elmer, Manager, St. Paul, Minn. PRICE ONE, DOLLAR. 1887. GA De m MacCrellish & Quigley, General Book and Fob Printers, 16 East State St., Trenton, New Forsey. 3/8 17/32 11/32-7 5/8" 20in 200 lbs per Yard 6" 3/8 6: 20 in 272 lbs per Yard 19/325 11/16"- 634 SCALE: 3 INCHES = 1 FOOT 1/2 9/16 9.1 15% in 150 lbs.per Yard. 21/32 σ7--14--- 7/10 158in 125 lbs.per Yard. 15% in 200 lbs per Yard Q 42 9/16 15/32 H6tio 19/32 1 1 ---8/61-- 534- ! 1 SCALE: 3 INCHES = 1 FOOT 1/2 9/16 156 in 150 lbs.per Yard. σ7-14- 7/16 57914 19/32 534- ---15%--- 21/325 7/16 15sin 125 lbs.per Yard. 42 15/32 15% in 200 lbs per Yard 9/16 SCALE: 3 INCHES 1 FOOT 2 ++/16+ 5/8 4.79 52 124 125 lbs.per Yard. 47* --- 3/8 9. ·4½· 3/8 5---7/16 10% 105 lbs.per Yard. 5/16 4/2 102 90 lbs.per Yard. 3/8 /16 3/% 16 -15/16-- 07-111/82- 12% 170 lbs. per Yard. ∞ 47 /32 +31-d 102135 lbs.per Yard. 9/16 SCALE 3 INCHES=1 FOOT 38* 78 12 in 96 lbs.per Yard. 516 1/2 1/2 12 in 120 lbs. per Yard. 91 54 52- 39° SCALE 3 INCHES-1 FOOT V. 5/16 8 65 lbs.per Yard. 5/16 9" 85 lbs.per Yard. 25/3 3/8 5/8 16 42 4 7/18 9" 70 lbs.per Yard. 5/g بن 57 5/16 بی 7 55 lbs.per Yard. 755 - 17/32 ين 318 27/329 3/8 8' 80 lbs.per Yard. 42 17/16- 1/2 9°125 lbs.per Yard. 412- +5/8 SCALE: 3 INCHES =1 FOOT VI. 3/g بن 6'40 lbs per Yard. 7/16 5 30lbs.per Yard, -234- 3/8 437lbs.peryd 430 lbs.peryd 418 lbs. per yd 15/16 6'120 lbs. per yd 3/16- 6°50 lbs per Yard. 5'40 lbs. perYard 3/4- 690 lbs.per Yard, J5/16-1 5'- 54 32- 9/32 بن SCALE:3 INCHES 1 FOOT 1/2 15in 120 to 195 lbs. per Yard. 1/2 300 3/4" 91/11 8/2 15in 190 to 230lbs. per Yard 1/64-- 3/α 7/8 13/18 ་་ 4" 434" 42- 564 SCALE 3 INCHES -1 FOOT VIII 9/16 6h 5/16 546 10 in 48 to 92 lbs. per Yard. 3/16 3/85 10½in 60 to 105lbs.per Yard. 3 .00 بة 3/16 1/2- 124 in 70 to 140 lbs. per Yard. 33 .9° 3/16 3/85 --13/32 16 23/32 1/16 1 ·3- -396 124 in 140 to 178lbs.per Yard. 1/16 1/16 4 # 456- 234-- 33/16 -215/16 -21/2-- SCALE: 3 INCHES -1 FOOT IX. 14:: 13/32 5/18 9/16 "/32 17/32 7/16 24/32 "/32 19/32 13/32 3/4 7 in 252to 46 lbs. per Yard. 25 7 in 38 5/52 7/32 36 to 54 lbs.per Yard. 1/2 8 in 3/16 7/16! 33 to 62 lbs.per Yard. 8 in 45 to 74, lbs per Yard 26 1/2 9 in 50 to 77 lbs.per Yard. 3:00 9 in 70 to 109 lbs.per Yard. 5% 1/4 1/4 1/2 1/4 234 22- ·2.2 9%2 2.86- -3/2 ....2/2. -8/2 2.79 3% SCALE 3 INCHES -1 FOOT X. % 4/2 8in 65lbs.per Yard. 3/ 1/2 1/4" 13/32 14:2 7/16 9/32-4 4/2 13/32 3 in 15 to 25 lbs. per Yard 7/11- -1.81 *-- k.. ∙1/2 1.83 1/8 7in 55lbs.per Yard. 15/16 1/2 1/4 1/44in 16/2to29 lbs per Yard 1332 .51 1/4 5in 19 to 34 FTT lbs per Yard 232 14 1%- 1.92- 6in 22/2to45 3/18 FT lbs. per Yard. 3- 6in 33 to 54 3/6 lbs. per Yard. 888 38 17/32 1/32 3/16 6in 45to66 lbs. per Yard. 3/8" 5/ 8/1 24- 24- 2.6 SCALE 3 INCHES -1 FOOT XI. 14.46lbs. per Yard. 234x2° T 2¼4×2 T 13.08lbs. per Yard 7.8 lbs per Yard. 5.6 lbs. per Yard. 13/4 x 1 1/4 T 11/21 2*1*4 11/2x7/8 4.3 lbs. per Yard. Tibs. 4×4 × 1/2" X 37.5 lbs. per Yard 28.7832.5lbs 31/2×3/2×7/1681/2 1 1/2 1 1/2 + 1/4 6.88 lbs. per Yard.. per Yard. 3x3x388/2 1/4 x 1 1/4 x 1/485/32 24*18*4 1/ 5.46% 4.86 7.4165 7.4lbs. г perYard. 2-11/2x9/32 per Yard. 21.1275lbs per Yard. 2/2×21/2 x 5/1683/8 14.7 17.31bs per Yard T lbs. 6.5 lbs. per Yard 9 lbs. per Yard. ୮ M 12 13/16855/32 3.3x2.75 lbs. 3*2*563% per Yard. 2/4x24x9/32 14.6%17.3lbs per Yard. Purlin Bar 11.9lbs. 5 * 22 * 1/2" 35lbs. per Yard. 83 lbs. per Yard 5 T per Yard 9.4 11.5 lbs per Yard 2 +2 +4816 SCALE 3 INCHES = 1 FOOT XII. 41.8 to69.4 lbs.per Yard. 30.5 to 58.1 lbs.per Yard. 26.7t50.6 lbs.per Yard. 20.9 to 43.4lbs.per Yard. 15.6 to 40 lbs.per Yard 3½- 4"- 4½- ת. 5 6 3½½ 4 13.1 to 27.71bs per Yard 10.4 to 22.5lbs. 32 11.9 lbs.per Yard. 32- per Yard 3 214 <- -1/2 2/12 L L 1.72 to 2.46lbs per Yard. 2.03 to 2.93 lbs. per Yard. 2.34 to 4.38 lbs per Yard. 2.97to5.63 lbs.per Yard. 527to8.41b.per Yard. 621 to 9.96 lbs per Yard. 14- 9.4 to 13.6 lbs.per Yard. 2 10.6to 17.8 lbs poryd 24.8 to 13,4 lbs.per Yard, 8 bsgaryd 244- 32 11.9to 22.5 lbs.perYard.286to54.4lbs.por Yard 212- 4 3½½ 16.2 to 27.7/bs.per Yard. 37.5 to 61.9 lbs.per Yard. 4/½- 9 -244- 4/2- 14.4 to 36.5lbs.per Yard 57.5to973 lbsper Yard. 3 6"- SCALE: 3 INCHES-1 FOOT. Square root angles. Cover angles. ·2½" ·2-- 20.9 to 434lbs, 3*-- per Yard. 13,1 to 27.71bs per Yard 3-- 10.4 to22.5lbs: per Yard -3--- ------ 21/2-- 14.4to36.5lbs. per Yard. 3*...... -----23%- -----2½--- ----2- ----2--- 16.2 to 277lbs per Yard ←-24- ---2½-- 3" -2¾4→ --> 11.9 to 22.5lbs. per Yard. 10.6to 17.8 lbs. per Yard 9.4 to 13.6 lbs. per Yard. 6.2 to 9.96 lbs. per Yard ·3/11-- -13/14- 5 Light Strut.i6lbs.per Yard. 5 Heavy Strut 22 lbs. per Yard. <--14---* 527to8.4lbs per Yard 2.97to5.63lbs per Yard. 2.34to4.38lbs 2.34 per Yard. 2.03 to 2.93lbs 2.03 t per Yard 3 172 172 to 246lbs per Yard. SCALE:3 INCHES - 1 FOOT < 14 lbs. per Yard. 14 lbs. per Yard. 37½ lbs. per Yard. 5%- 50½ lbs. perYard. <- 636 Tyre Bar 7 lbs.per yd. Track Iron 621bs.per yd 4° • 4'4 6.6lbs. peryd. 4lbs.per yd, 5.6lbs. per yd. 524lbs. per Yard ·6'6- Sliding Door Bar 3½lbs. per yd. 232 lbs per Yard 34 lbs. perYard. 30 lbs. perYard. 1lb peryd. 4- 312- 3.93lbs. per Yard 252lbs.per Yard 158lbs.per Yard 13/4 66 lbs. per Yard. 45 lbs. perYard. -5%- -5-- SCALE 3 INCHES = 1 FOOT XV. STANDARD SPACING OF HOLES IN BEAM FLANGES. 3 20 272 lbs. 20* 200 lbs. -312- -3½- 15% 200 lbs. 3 13/16 1316 137 16 10½ 13/16 135 lbs. 10/2 105 lbs. 10/2 90 lbs. -2%- 2% - -24- 13/%/% 16 13/16 15% 125% 150 lbs. -31/2-- 13/1/6 9° 125 lbs. -2%- 13/16 12×12% 120%170 lbs. ཞ---.23 16 * 13/18 128124 96*125lbs 9 85 lbs. " --2--- .9° 70 lbs. 13 16 13/16 SCALE: 3 INCHES IFOOT. XVI 8" STANDARD SPACING OF HOLES IN BEAM FLANGES. -2%- <--15% - 13/16 6* 9/16 40 lbs. --15%- 80 lbs. 8" 65 lbs. ----2---- -218- 13/16 7" 55 lbs. -3/4- 6” 120 lbs. --3--- 5° 9/16 40 lbs. --1/2- 11/16 5° 9/16 30 lbs. - 1%- 13/16 4 37 lbs. ་་ 6" 13/16 4" 90 lbs. <--1/2-· 9/16 30lbs. x-158-7 9/16 क 14 4" 54 lbs." 16 6" 11/16 18168.1136 50 lbs. SCALE 3 INCHES = FOOT. XVII STANDARD SPACING OF HOLES IN CHANNELS. 33- 28--7 1-1/8- 1----3 1/2--- 15" 190to 230 lbs. ·3-- -234-- 15" 190 to 230lbs. 3/4- ---2-- --- 21/3-- --234----- 21/4-- 15" 120 to 195lbs. 213/16 --21/½--- 12 140to178 lbs. 1 -24/18--0 =-1/2-- ·1% -23- 15" 120to195lbs. * - - | 15/16 - --1/2--X 12% 70to140lbs. HOLES 1% DIAM. " --- - 2 3/1/6 ---> X-13/4"--+ <- 13/4- * 17/16-2 10% 60to105lbs. 9" 70to109lbs. 950 to 77 lbs 10°48 to 921bs HOLES 1 DIAM. . SCALE: 3 INCHES=IFOOT. XVIII. STANDARD SPACING OF HOLES IN CHANNELS. -18" 8 45to 74lbs. # 서남 ​8 33 to 62 lbs. 13/4- -11/2- *-114/16- " --11/22 + 1 3/16 2 7" 25% to 46lbs. 1 --> 1분 ​-- 1 1/2--- 6" 45 to 6 6 lbs. 16: +36 + 7" 36 to 54lbs. '6" 33to 54lbs. 6″22½ to 45lbs. HOLES / DIAM. ~15/16 ? ·|-- 15/165 1.5/16 5" 19 to 34lbs. 4 16 to 29 lbs. 3" 15to251ts. HOLES %% DIAM. SCALE: 3 INCHES =IFOOT. STANDARD SPACING OFHOLES IN ANGLE BARS. -2/1/2" -1/2- -2 3---- -6--- -24- 5- -2½-- 5---- --2- -2/2 41: -2 * 44: -24- 2- -14 +--+ -1 4 -34: 7/8- 14 ·3 13 SCALE: 3 INCHES =IFOOT. ALL HOLES " DIAM. t Ө Ө STANDARD CONNECTION ANGLES FOR BEAMS AND CHANNELS. 4x4x12" FOR 20 BEAM. ་་ 4/2-1/2 4×4×9″ FOR 15 BEAM & CHANNEL. Ө ぶぶ ​1/2 4x4x6 FOR 12 & 10" * +-21/2- 4X4 X5 FOR 9" & 8" 3-- 4x4x3 FOR 7-6" & 5' 4x4x2/4 FOR 4" } +21 4% 4% 43/43 *-22-*** 2½- M راح - 21/2- 4-21/2 SCALE: INCHES=IFOOT. Light lines indicate lattice + I + + H L H H пол H XXII. AM.PHOTO-LITHO CO.N.Y. SAFE LOAD, DEFLECTION, ETC., OF BEAMS. To find which beam, supported at both ends, and secured against yielding sideways, will be required to support with safety a given uniformly distributed load: Multiply the load, in pounds, by the span in feet, and take the beam whose "Coefficient for Strength," Col. II., pp. 40, 41, 42, is nearest to and exceeds the number so found. The weight of the beam itself should be included in the load. The safe uniformly distributed load for any beam may be found by dividing the coefficient for strength in pounds, by the length of clear span in feet, and deducting the weight of the beam of that length. EXAMPLE.-What uniformly distributed load will an eight- inch deck beam having a span of 20 feet support? The coefficient for strength of this beam is 91,800 lbs., and 91800=4,590 lbs.; subtracting its own weight, 433 tbs., we have 4,157 lbs., net load. 20 The loads so obtained are such as would bring a maximum strain upon the iron of 12,000 pounds per square inch, this being about one-quarter the breaking strain of wrought iron. The safe uniformly distributed loads for I beams obtained in this way are given in the tables pages 6 to 27 for lengths of 5 feet to 40 feet, and are therefore those which can be carried with safety in addition to the weight of the beam itself, when the beams are supported at both ends and the load uniformly distributed over the length of the beam. As, in building, the admissible deflection of beams is limited by the amount which would cause the plastering of ceilings to crack, the tables have a cross-line dividing them at the length of span at which this is found to occur; the lengths and loads above the line being proper for plastered ceilings, and those below to be used only when this consideration does not enter. The limit of deflection thus allowed is one-thirtieth of an inch to the foot of span. FIRE-PROOF FLOORS. The load upon the beams of fire-proof floors, with four-inch brick arches leveled up with concrete between the beams, in buildings used for offices, assemblages of people, or storage of light goods, may, ordinarily, be taken at seventy pounds per square foot of floor for the weight of the arches, concrete ceiling, and flooring; and at eighty pounds per square foot additional for a variable load equal to the weight of a crowd of people; making a total load of one hundred and fifty pounds per square foot of floor, in addition to the weight of the beams. Instead of brick arches special tiles may be used, such as those made by Henry Maurer, New York, details of which are given on a subsequent page. These are lighter than brick arches and cost about the same per square foot, while they have the advantage of giving a flat surface for the ceiling. 3 In the following cases the loads, in addition to the weight of the floor itself, may be assumed as: For street bridges for general public traffic, For floors of dwellings, For churches, theaters and ball-rooms, For hay-lofts, • For storage of grain, For warehouses and general merchandise, For factories, For snow thirty inches deep, For maximum pressure of wind, For brick walls, For masonry walls, 80 lbs. per sq. ft. 40 lbs. per sq. ft. 80 lbs. per sq. ft. 80 lbs. per sq. ft. 100 lbs. per sq. ft. 250 lbs. per sq. ft. 200 to 400 lbs. per sq. ft. 16 tbs. per sq. ft. 50 lbs. per sq. ft. 112 tbs. per cu. ft. 116-144 s. per cu. ft. Roofs, allowing thirty pounds per square foot for wind and snow: For corrugated iron, laid directly on the purlins, For corrugated iron, laid on boards, For slate, nailed to laths, For slate, nailed on boards, 37 lbs. per sq. ft. 40 lbs. per sq. ft. 43 lbs. per sq. ft. 46 lbs. per sq. ft. If plastered below the rafters, the weight will be about ten pounds per square foot additional. USE OF TABLES.-What beams would be required for a floor, 50 ft. by 21 ft. in the clear, to be used for offices, and there- fore loaded to the extent of 150 lbs. per square foot, and what will be the total weight of iron? Supposing that it is desired to make the brick arches between the beams about four ft. in span, we find this distance opposite. 21 ft. span, and under 150 lbs. per square foot, in the table for 10½ in. light beams. As this comes above the cross-line of the table, these beams could be used without injury to the plas- tering on account of deflection. The distance between the cen- ters of beams being 4.1 ft., there would be required 13 beams. Allowing 8 bearing at each end of the beams, the total length of each would be 22' 4', the weight of which is 781.7 lbs., or, for the 13 beams, 10, 162 lbs. If a deeper beam is preferred, 1214 light, for instance, may be substituted, and, referring to the table for this beam, we find that for the above load and span they should be spaced 5.4 ft. apart, and there will, therefore, be but 10 beams required, the weight of which would be 9,300 lbs. THE DEEPEST BEAM ALWAYS MOST ECONOMICAL. It will be observed in the above example that while with 10½ beams 10,162 lbs. of beams are required, with 12" beams but 9,300 lbs. would be needed to carry the same weight, and in all cases it will be found that the deepest beam which it is possible to use will be the most economical. The following table, under the heading, gives the relative strength of each beam in proportion to its weight, thus exhibiting the greater economy of the deeper patterns: BEAM. W STRENGTH OF EACH BEAM IN PROPORTION TO ITS Weight. 013 BEAM. C W 20 inch, Heavy, 48.56 8 inch, Heavy, • • 20.99 20 inch, Light, . 49.50 8 inch, Light, • 20.75 15 inch, Heavy, 37.41 7 inch,. 18.37 15 inch, Light, 36.76 6 inch, 120 lbs. • 14.33 12 inch, Heavy, 28.41 6 inch, go fbs. 14.67 124 inch, Light, . 30.64 6 inch, Heavy, • • 15.36 10½ inch, Heavy, 26.64 27.20 • 27.78 • 21.44 6 inch, Light, 5 inch, Heavy, 5 inch, Light, inch, Heavy,. • 15.65 12.27 • 12.90 9.95 • 23.41 inch, Light, 10.03 23.86 4 inch, Extra Light, 10.00 10½ inch, Light,. 10½ inch, Extra Light, 9 inch, Extra Heavy, 9 inch, Heavy, 9 inch, Light, . Another important advantage in the use of deeper beams is their greater stiffness. By referring to the tables it will be seen that a beam 20 ft. long, under its safe load, if 6 inches deep will deflect 9 inches deep will deflect 124 inches deep will deflect 15 inches deep will deflect 20 inches deep will deflect • • • 0.95 inch. 0.63 inch. 0.46 inch. 0.38 inch. 0.29 inch. A floor or structure formed of deep beams will therefore be much more rigid than one of the same strength formed of smaller sections. There are, of course, cases where the use of deep beams would be inconvenient, either from increasing the depth of the floor, or from the fact that with a light load and short span they would have to be placed at too great a distance apart for conve- nience. In general, however, it will be best to employ the deep beams. Beams may be rolled to special order (at extra cost) of greater thickness, and therefore greater weight per foot than the standard weight given in the tables. The figures in Col. IV., pp. 40 and 41, give the amount to be added to the coefficient for strength for every increase of one pound per foot in the weight of the bar. The Strength, in such cases, does not increase in proportion to the weight. Thus, the coefficient for strength of the 15 inch heavy beam, weighing 200 lbs. per yard, is 748,000 lbs. If this beam were rolled 9 lbs. per yard, or 3 lbs. per foot, heavier, the quantity to be added would be 6,050 × 3 = 18,150, making the coefficient 766,150 lbs. The weight of the beam would then have increased 4½ per cent., while the strength would have increased but 2.4 per cent. Beams used as girders should therefore, except in special cases, be rolled only to their standard or minimum thickness. X Channel bars being used chiefly as posts or struts in structures are, on the contrary, rolled with advantage to any thickness be- tween their maximum and minimum weights, to give such sec- tional area as is desired. 5 Depth, 20 inches. 20-INCH HEAVY BEAMS-272 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, Weight, in Inches. in Pounds. Length, in Feet. Weight, in Pounds. Width of flanges, 634 inches. Thickness of stem, 1 inch. Area of cross-section, 27.2 square inches. Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this' load. Weight of beam, in pounds. 100 lbs. 8 125 lbs. 123456 78 I 7.6 15.1 22.7 30.2 37.8 45.3 52.9 60.4 1 2 3 456 78 90.7 181.3 272.0 362.7 5 453.3 6 544.0 9 68.0 9 634-7 725.3 816.0 ΙΟ 75.5 IO 906.7 II 83.1 PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUare ters of FOOT OF 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. I I 46.65 0.06 997.3 84.8 67.9 56.5 48.5 42.4 33.9 283 W N N N N N N N N N Loads for beams shorter than 14 ft. can be increased, if stiffeners are riveted to web at ends. Awwww wwwww 85852 12 46.61 0.09 1088.0 77.7 62.1 51.8 44.4 388 31.I 25.9 13 46.56 14 15 45 0.011 1178.7 71.6 46.52 0.14 1269.3 66.5 43.33 0.16 1360.0 57 3 47.8 40.9 358 28.7 23.9 53.2 44.3 38.0 33.2 26.6 22.I 57.8 46.2 38.5 33.0 289 23.1 19.3 17 16 40.53 38.06 0.18 1450.7 50.7 0.21 19 18 35.86 33.88 0.23 1541.3 44.8 1632.0 39.8 35.8 31.9 26.6 40.5 33.8 28.9 25.3 20.3 16.9 29.9 25.6 22.4 17.9 14.9 22.8 19.9 15.9 13.3 0.26 1722.7 35.7 20 32.10 0.29 1813.3 32.1 257 21.4 18.3 28.5 23.8 20.4 17.8 14.3 11.9 16.0 12.8 10.7 30.48 0.31 22 23 29.01 27.66 0.35 0.38 24 26.42 25 25.27 0.45 1904.0 29.0 23.2 19.4 26.4 1994.7 2085.3 24.0 19.3 2176.0 0.41 22.0 17.6 2266.7 20.2 16.2 16.6 14.5 11.6 9.7 21.I 17.6 15 1 13.2 10.5 8.8 16.0 13.8 12.0 9.6 8.0 14 7 12.6 II.O 8.8 7.3 13.5 11.6 10.1 8. I 6.7 26 24 21 0.48 2357-3 18.6 14.9 12.4 10.6 9.3 7.4 6.2 27 28 23.22 22.31 0.52 0 56 30 29 21.45 20.64 11.8 18 51 17.87 19 89 19.18 0.64 2720.0 0.69 2810.7 12.8 10.3 8.6 0.73 2901.3 12.0 0.78 2992.0 II.2 0.83 3082.7 17.27 0.87 3173-3 9.9 10.5 2448.0 17.2 13.8 11.5 98 8.6 6.9 2538.7 15.9 0.60 2629.3 14.8 5.7 12.7 10.6 9.1 8.0 6.4 5.3 9.9 85 13.8 11.0 9.2 7.9 5 a 7.4 6.9 5.9 4.9 5.5 4.6 00,00 7 9.6 8.0 6 0 7.3 6.4 S.I 4.3 6.8 6.0 4.8 4.0 9.0 7.5 6.4 5.6 4.5 3.7 8.4 7.0 6.0 5.3 4.2 3.5 7.9 6.6 5.6 49 3.9 3.3 16.70 0.93 3254.0 38 37 16.16 15.65 15.16 o 98 9.3 3354.7 8.7 7.0 5.8 5.0 7.4 6.2 5.3 4.6 3.7 3.I 4.4 3.5 2.9 1.03 3445.3 8.2 6.6 5.5 4.7 4.I 3.3 2.7 1.08 3536.0 7.7 6.2 5.2 4.4 3.9 3.1 2.6 40 14.69 1.14 3626.7 7.3 5.9 4.9 4.2 3.7 2.9 2.4 41 42 14 24 13.81 43 44 13.40 13.01 1.32 1.20 3717.3 1.26 3808.0 3898.7 6.2 1.38 3989.3 45 12.63 1.45 4080.0 5.6 6.9 5.6 46 4.0 3.5 2.8 2.3 6.6 5.3 4.4 38 33 26 2.2 5.9 4.5 5.0 4.7 3.9 3.4 3.7 4.2 3.6 3.1 2.5 2.1 3.0 2.4 2.0 3.2 2.8 2.2 1.9 a 20-INCH LIGHT BEAM-200 LBS. PER YD. This Table applies only to Beams Secured against Vielding Sideways. See page 32. Depth, 20 inches. Width of flanges, 6 inches. Thickness of stem, o.5 inch. Area of cross-section, 20.00 square inches. Length, Weight, in Inches. in Pounds. Length, in Feet. Weight, in Pounds. I 5.6 23456 700 II. I 16.7 22.2 27.7 33.3 38.9 44.4 9 IO 50.0 55.6 IO HAMNO Noo a o I 2 66.7 133-3 3 200.0 4 266.7 5 333.3 6 400.0 7 466.7 8 533.3 600.0 666.7 II 61.1 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. *$q[ ૦૦૮ 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- II 27.14 0.05 733.3 49.4 39.5 32.9 28.2 24.7 19.7 16.4 Loads for beams shorter than 18 ft. can be increased, if stiffeners are riveted to web at ends. Awwww wwwww wn~ ~ ~ ~ NNN 13 14 234 12 27.11 0.07 27.08 800.0 45 2 36.1 30.1 25.8 22.6 18.1 15.1 0.09 866.7 41.7 27.05 O.II 15 27.01 1000.0 0.13 36.0 933.3 38.6 30.9 25.8 22.I 33.3 27.8 23.8 20.8 16.7 13.9 19.3 15.5 12.9 28.8 24.0 20.6 18.0 14.4 12.0 16 26.98 0.16 1066.7 33.7 27.0 22.5 19.3 16.9 13.5 II.2 нин 7 26.95 0.20 1133-3 31.7 25.4 21.1 18.1 15.9 12.7 10.6 8 26 91 19 24.09 25.43 0.26 1266.7 26.8 21.4 0.29 1333-3 24.I 023 1200.0 29.9 24.0 19.9 17.I 15.0 12.0 10.0 17.8 15.3 13.4 10.7 8.9 19.3 16.1 13.8 12.0 9.6 8.0 21 0.41 25 0.45 22.88 0.31 1400.0 21.8 17.4 21.78 1466.7 0.35 23 20.76 0.38 24 19.83 18.97 1533.3 18.1 19.8 15.8 13.2 14.6 ..6 12.5 10.0 8.7 7.3 : 11.3 1600 0 1666.7 16.5 15 2 14.4 13.2 12.0 10.3 II.0 9.4 12.1 10. I 8.7 a 000 N 9.9 7.9 6.6 9.0 7.2 6.0 8.3 6.6 5.5 7.6 6.1 5.I 26 18.18 0.48 27 17.44 1733.3 14.0 11.2 0.52 1800.0 12.9 10.3 16.75 056 29 16.11 0.60 15.51 0.64 1366.7 12.0 9.6 1933.3 II.I 2000 O 10.3 0100 00 8.9 8.3 a mo amo 8.0 7.0 5.6 4.7 8.6 7.4 6.5 5.2 4.3 8.0 6.8 6.0 4.8 3.9 7.4 6.3 5.6 4.4 3.6 6.9 5.9 5.2 4.1 3.4 14.94 14.41 13 91 13.43 12.98 0.69 2566.7 96 7.7 0.73 2133.3 9.0 0.78 2200.0 8.4 0.83 2266.7 7.9 0.87 2333.3 7.4 7266 in 6.4 5.5 4.8 3.9 3.2 7.2 6.0 5.2 4.5 3.6 3.0 6.7 5.6 4.8 4.2 3.4 2.8 6.3 5.3 4.5 4.0 3.2 2.6 5.9 4.9 4.2 3.7 3.0 2.5 37 12.56 0.93 2400.0 12.15 0.98 2466.7 6.6 II.77 1.03 2533.3 6.2 7.0 5.6 4.7 4.0 3.5 2.8 2.3 5.3 4.4 3.8 3.3 2.6 2.2 5.0 4. I 3.5 3.1 2.1 39 40 11.40 1.08 2600.0 5.9 4.7 11.05 1.14 3.9 3.3 2.0 2666.7 5.5 4.4 3.7 3.2 2.8 0.00 2.3 2.0 1.8 4I 10.71 1.20 2733.3 5.2 4 2 3.5 42 10.39 1.26 2800.0 5.0 3.0 2.6 2.1 1.7 4.0 3.3 2.8 2.5 2.0 1.6 43 10.08 1.32 2866.7 4.7 3.8 3.I 2.6 2.3 1.Q 1.6 444 9.79 1.38 2933-3 4.5 3.6 3.0 2.5 2.2 1.8 1.5 45 9.50 1.45 3000.0 4.2 3.4 2.8 2.4 2.2 1.7 1.4 6 a 15-INCH HEAVY BEAM-200 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. Depth, 15% inches. Width of flanges, 534 inches. Thickness of stem, o.6 inch. Area of cross-section, 20.02 square inches. See page 32. Length, Weight, in Inches. in Pounds. I 23+36 7∞o ao 5.6 II.I 16.7 Length, in Feet. I 1 2 3 4 Weight, in Pounds. 66.7 133.3 200.0 266.7 4 22.2 5 27.7 33.3 38.9 5 333.3 44.4 9 50.0 ΙΟ 55.6 II 61.1 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 ibs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 6 39.97 0.02 Loads for beams shorter than 12 ft. can be increased, if stiffeners are riveted to web at ends. Awwww wwwwwww~~~ ? 30.93 0.03 400.0 466.7 103.2 82.6 68.8 59.0 51.6 88.4 70.7 58.9 50.5 44.2 30.90 0.05 533.3 77.2 61.8 30.87 0.07 600.0 68.6 54.9 IO 30.84 0.09 666.7 61.7 49.3 51.5 44.I 45.7 39.2 41.I 35.2 30.8 41.3 34.4 35.4 29.5 38.6 30.9 25.8 34.3 27.4 22.9 20.6 24.7 II H H H H H 18 30.80 12 30.77 0.14 13 28.34 0.16 14 26.25 0.19 15 24.43 0.21 16 22.84 17 21.43 0.28 20.18 0.31 O.II 733.3 56.0 44.8 800.0 51.3 41.0 866.7 43.6 34.9 933.3 37.5 30.0 1000.0 32.6 37.3 32.0 28.0 22.4 18.7 34.2 29.3 25.6 20.5 17.1 29.1 24.9 21.8 17.4 14.5 25.0 21.4 187 15.0 12.5 26.1 21.7 18.6 16.3 13.0 10.9 0.24 1066 7 28.6 1133.3 25.2 20.2 22.8 19.0 16.3 14.3 II.4 9.5 16.8 14.4 12.6 IO. I 8.4 1200.0 22.4 17.9 14.9 12.8 II.2 9.0 7.5 19 19.05 0.34 1266.7 20.0 16.0 13.4 11.5 10.0 8.0 6.7 20 18.03 0.38 1333.3 18.0 14.4 12.0 10.3 9.0 7.2 6.0 2222 17.11 0.42 1400.0 16.3 13.0 10.9 16.27 0.46 1466.7 14.8 11.8 9.3 8.1 6.5 5.4 9.9 8.5 7.4 5.9 4.9 23 24 15.49 0.50 14.78 0.55 25 14.13 0.59 1533.3 13.5 10.8 9.0 7.7 6.7 5.4 4.5 1600.0 12.3 9.8 8.2 7.0 6.1 4.9 4.I 1666.7 11.3 9.0 7.5 6.5 5.6 4.5 3.8 26 13.52 0.64 1733.3 10.4 8.3 6.9 6.0 5.2 4.2 3.5 27 12.95 0.69 1800.0 9.6 7.7 6.4 5.5 + 4.8 3.8 3.2 30 II.47 12.42 0.75 1866.7 8.9 7.I 11.93 0.80 1933.3 8.2 6.6 0.86 2000.0 7.6 5.9 5.0 4. if 3.5 3.0 5.5 4.7 6.1 5.I 4.3 +3 if. I 3.3 2.7 3.8 3.0 2.5 32 11.03 10.62 33 0.92 2066.7 7.I 5.7 0.98 2133.3 6.6 5.3 4.4 3.8 3.3 10.23 1.04 2200.0 6.2 4.I 3.5 3.I 4.7 4.0 3.5 2.8 2.4 2.6 2.2 5.0 2.5 2.I 34 9.87 9.52 1.17 1.10 2266.7 5.8 4.7 3.9 2333.3 5.4 4.3 3.3 2.9 2.3 1.9 3.6 3.I 2.7 2.2 1.8 9.19 1.23 2400.0 5. I 4.I 3.4 37 8.87 1.30 2466.7 4.8 38 8.57 1.37 2533-3 4.5 3.8 3.6 3.2 ૫ ૭ 2.9 2.5 2.0 1.7 2.7 2.4 I.Q 1.6 3.0 2.6 2.3 1.8 1.5 39 40 8.29 8.02 1.45 2600.0 4.3 3.4 3.8 2.5 2.2 1.7 I. f 1.52 2666.7 4.0 3.2 2.7 2.3 2.0 1.6 1.3 66 15-INCH LIGHT BEAM-150 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, Weight, in Inches. in Pounds. 4.2 Length, in Feet. Weight, in Pounds. Ι 50 Depth, 15 inches. Width of flanges, 5 inches. Thickness of stem, 0.5 inch. Area of cross-section, 15.04 square inches. I 1 2 2 «tino 100 8.3 ~ 2 12.5 16.7 20.8 34 110 100 150 4 200 250 25.0 300 29.2 33.3 9 37-5 IO 41.7 II 45.8 Loads for beams shorter than 11 ft. can be increased, if stiffeners are riveted to web at ends. Awwww wwwwwwN *N* *N ~ ~ N ه دره در دیا دیا сла 22 12.59 0.42 11.97 0.46 1100 23 II.40 0.50 1150 10.88 0.55 1200 ŏOOO~ a 24.90 0.02 300 83.0 66.4 55.3 47.4 24.88 0.03 350 71.1 56.9 47.4 41.5 40.6 35.5 28.4 33.2 27.7 23.7 24.85 0.05 400 62.1 49.7 41.4 9 24.83 0.07 450 55.2 44.I ΤΟ 24.80 0.09 500 49.6 39.7 36.8 31.5 27.6 33.I 28.3 24.8 35.5 31.1 24.8 20.7 22.I 18.4 19.8 16.5 13 II 24.77 12 22.66 0.14 20.87 0.12 0.16 15 14 19.33 17.99 0.19 0.21 550 45.0 36.0 600 37.8 650 32.1 700 27.6 22.I 750 24.0 30.0 30.2 25.2 25.7 21.4 18.3 16.0 25.7 21.6 18.9 22.5 18.0 15.0 15.1 12.6 12.8 10.7 19.2 18.4 10.0 13.7 15.8 13.8 II.O 9.2 12.0 9.6 8.0 16 17 18 19 16.82 0.24 15.78 0.28 14.85 0.31 14.02 800 21.0 850 16.8 18.6 14.9 14.0 12.0 12.4 10.6 10.5 8.4 7.0 9.3 7.4 6.2 900 0.34 16.5 13.2 II.O 950 14.8 11.8 9.4 8.3 6.6 5-5 9.8 8.4 7.4 5.9 4.9 20 13.27 0.38 1000 13.3 10.6 $.8 7.6 6.6 5.3 4.4 1050 12.0 9.6 8.0 6.9 6.0 4.8 4.0 10.9 8.7 7.2 6.2 5.4 4.3 3.6 24 9.I 9.9 7.9 7.3 6.0 6.6 5.6 4.9 3.9 3.3 5.2 4.5 3.6 3.0 25 10.39 0.59 1250 8.3 6.7 5.5 4-7 4.I 3.3 2.8 26 9.95 0.64 1300 7.6 6.1 S.I 4.3 3.8 3.0 2.5 27 9.53 0.69 1350 7.1 5.6 4.7 4.0 3.5 2.8 2.4 28 9.14 0.75 1400 6.5 5.2 4.3 3.7 3.2 2.6 2.2 29 8.77 0.85 1450 6.0 4.8 4.0 3.4 3.0 2.4 2.0 8.43 0.86 1500 5.6 4.5 3.7 3.2 2.8 2.2 1.9 32 8.11 7.81 0.08 0.92 1550 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1600 4.9 3.9 3.2 2.8 2.4 I.Q 1.6 33 7.52 1.04 1650 4.5 3.6 3.0 2.6 2.2 1.8 1.5 34 7.25 1.10 1700 4.3 3.4 2.8 2.5 2.I 1.7 1.4 35 7.00 1.17 1750 4.0 3.2 2.7 2.3 2.0 1.6 1.3 6.75 1.23 1800 3.7 3.0 2.5 2.I 1.8 1.5 1.2 6.52 1.30 1850 3.5 2.8 2.3 2.0 1.7 1.4 1.2 6.30 1.37 1900 3.3 2.6 2.2 1.9 1.6 1.3 I. I 39 6.09 1.45 1950 3.1 2.5 3.I 1.8 1.5 1.2 1.0 40 5.89 1.52 2000 2.9 2.3 2.0 1.7 1.4 1.2 1.0 16 4433m Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. Proper Distance, in Feet, between Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 7 15-INCH EX. LIGHT BEAM-125 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. Depth, 15% inches. Width of flanges, 5 inches. Thickness of stem, .42 inch. Area of cross-section, 12.36 square inches. See page 32. Length, Weight, in Inches. in Pounds. 3.5 6.9 Length, in Feet. in a 234 56 1234567∞ a I 10.4 13.9 17.4 20.8 24.3 8 27.8 31.2 IO I I 34 7 38.2 Weight, in Pounds. 41.7 83.3 125.0 166.7 208.3 250.0 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs 8 PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUAre FOOT OF- 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. 679 20.78 0.02 250.0 7. 20.76 0.03 291.7 69.3 59.3 55.4 47 5 46.2 39.5 39.6 33.9 20.74 0.04 333-3 51 9 9 20.72 0.06 375.0 460 IO 20.70 0.09 416.7 41.4 41.5 36.8 39.7 33.I 27.6 34.6 29.6 34.6 29.7 25.9 27.7 23.1 23.7 19.8 20.7 17.3 26.3 23.0 18.4 15.3 23.7 20.7 16.6 13.8 I I 20.68 O.II 458.3 37.6 12 18.92 13 17 42 0.16 14 15 16.14 0.19 15.02 0.21 625.0 20.0 16.0 30 I 21.5 18.8 15.0 12.5 0.14 500.0 31.5 25.2 21.0 18.0 15.8 12.6 541.7 26.8 21.4 17.9 15.3 13.4 10.7 583.3 23.1 18.4 15.4 13.2 11.5 13.4 II.4 10.0 25.1 10.5 8.9 9.2 7.7 8.0 6.7 16 14.04 0.24 666.7 17.6 14.0 II.7 10.0 8.8 7.0 5.9 17 13.17 0.27 708.3 15 5 12.4 1 10.3 8.9 18 12 40 0.31 750.0 13.8 II.O 9.2 7.9 19 II.71 0.34 791.7 12.3 9.9 8.2 70 20 11.08 0.38 833.3 II. I 8.9 7.4 6.3 7995 7.8 6.2 5.2 6.9 5.5 4.6 6.2 49 4.I 5.5 4.4 3.7 21 22 10 51 10.00 0 42 0.46 875.0 10.0 8.0 23 9.52 0.50 916.7 958.3 9.I 24 9.03 0.54 25 8.68 0.59 1000 O 1041.7 H 36 a 90 76 73 6.1 6.7 5.7 5.0 4.0 3 3 5.2 4.5 3.6 30 8.3 7.6 6.9 6.6 5.5 4.7 4.I 3.3 2.8 6.1 5.6 16 5.0 4.3 3.8 3.0 2.5 4.6 4.0 3.5 2.8 2.3 26 8.30 0.64 1083.3 6.4 5.1 4.3 37 3.2 2.6 2.I 27 7.96 0.69 28 1125.0 5.9 7.63 0.74 1166.7 5.5 4.7 3.9 3.4 2.9 2.4 2.0 4.4 3.6 3.1 2.7 2.2 1.8 29 7.33 0.79 1208.3 5. I 4.0 3.4 2.9 2.5 2.0 1.7 30 7.04 0.85 1250.0 4.7 3.8 3.1 2.7 2.3 1.9 1.6 31 6.77 0.91 1291.7 4.4 3.5 2.9 2.5 2.2 1.7 1.5 34 32 6.52 0.97 33 6.28 1.03 to6 1333.3 4.I 3-3 2.7 2.3 2.0 1.6 1.4 1375 0 3.8 3.0 2.5 2.2 1.9 1.5 1.3 1.09 1416 7 3.6 2.9 2. 2.0 1.8 1.4 1.2 Awwww w 35 5.84 1.16 1458.3 3.3 2.7 2 2 1.9 1.7 1.3 I. I 36 5.64 1.22 1500.0 3 I 2.5 2.I 1.8 1.6 1.3 1.0 5.45 1.29 1541.7 2.9 2.4 2.0 1.7 1.5 I.2 1.0 38 5.26 1.36 1583.3 2.8 2.2 1.8 1.6 1.4 I. I 0.9 39 5.09 1.44 1625.0 2.6 2.1 1.7 1.5 1.3 1.0 0.9 40 4.92 1.51 1666.7 2.5 2.0 1.6 1.4 1.2 I.O 0.8 78 121-INCH HEAVY BEAM-170 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Weight, in Pounds. Length, Weight, in Inches. in Pounds. Length, in Feet. I 4.7 Depth, 12 inches. 2 9.4 3 14.2 Width of flanges, 5 inches. 4 18.9 5 23.6 6 28.3 au & WNH I 56.7 2 113.3 3 170.0 4 226.7 5 283-3 340.0 Thickness of stem, o.6 inch. 33.1 37.8 Area of cross-section, 16.77 square inches. 9 42.5 ΙΟ 47.2 I I 51.9 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, per Square FOOT OF 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. 7 25.39 25.36 0.03 340.0 84.6 67.8 56.4 48.3 42.3 0.05 8 25.33 0.07 9 25.30 0.09 396.7 72.5 58.0 453.3 63.3 510.0 56.2 48.3 41.4 36.2 33.8 29.0 28.2 50.6 42.2 36.2 31.6 25.3 24.2 21.1 44.9 10 25.27 0.12 566.7 50.5 40.4 37.5 32.1 33.7 28.9 28.1 22.5 18.7 25.2 20.2 16.8 II 12 22 91 13 14 15 16.61 0.14 623.3 41.6 20.95 0.16 680.0 34.9 19.28 0.20 736.7 29.7 17.85 0.23 0.26 793.3 850.0 22.I 25.5 33.3 27.7 23.8 20.8 27.9 23.3 19.9 23.7 19.8 17.0 14.8 20.4 17.0 14.6 17.7 14.8 16.6 13.9 17.4 13.9 11.6 11.9 12.7 I0.2 0.00 9.9 8.5 12.6 11.0 8.9 7.4 16 17 15.52 0.30 14.55 0.34 906.7 19.4 963.3 17.1 13.7 15.5 12.9 II.I 11.4 18 13.68 0.38 1020.0 15.2 12.1 10.1 8.7 19 20 12 91 12.21 0.42 1076.7 13.6 10.9 9.0 0.46 1133.3 12.2 9.9 8.1 9976 9.7 7.8 ciao Nov 9.7 8.5 7.6 68 7.0 6.I 75604 7.8 6.5 7.0 5.7 6.1 5.I 5.4 4.5 4.9 4.I 21 23 11.57 0.51 22 10.99 0.56 10.46 0.62 24 9.96 0.67 1190.0 11.0 8.9 7.3 6.3 5.5 4.4 3.7 1246.7 10.0 8.0 6.7 5.7 5.0 4.0 3-3 1303.3 9.I 7.3 6.1 5.2 4.5 3.6 3.0 1360.0 8.3 6.7 5.5 4.7 4.I 3.3 2.8 25 9.51 0.73 1416.7 7.6 6.1 5.I 4.3 3.8 3.0 2.5 26 9.09 27 8.70 0.79 1473.3 0.84 1530.0 76 7.0 5.6 6.4 5.1 6 - 4.7 4.0 3.5 2.8 2.3 4.3 3.7 3.2 2.6 2.1 28 8.33 0.91 1586.7 5.9 4.7 4.0 3.4 29 2.4 2.0 29 30 7.99 0.98 1643.3 5.5 4.4 7.67 1.05 1700.0 3.7 3.1 2.7 2.2 1.8 5.1 4.I 3.4 2.9 2.5 2.0 1.7 Awwww wwwww 7.36 7.08 1.12 33 6.81 1.27 1870.0 4.1 1756.7 4.7 1.20 1813.3 4.4 3.5 3.7 3.2 2.7 2.3 1.9 1.6 2.9 2.5 2.2 1.3 1.5 3.3 2.7 2.3 6.55 35 6.31 1.43 1.35 1926.7 3.8 3.0 1983-3 3.6 2.0 1.6 1.4 2.6 2.2 1.0 1.5 1.3 6 in 4 may 2.9 2.4 2.1 1.8 1.4 I 2 36 6.08 1.52 2040.0 3.4 2.7 2.2 1.9 I.7 1.4 I.I 37 5.86 1.60 2096.7 3.2 2.6 2.1 1.8 1.6 .3 I.I 38 5.65 1.68 39 5.45 40 5 25 1.77 2153.3 1.87 2266.7! 3.0 2 2.0 1.7 1.5 1.2 1.0 2210.0! 2.8 23 1.9 1.6 1.4 I. I 0.9 2.6 2.1 1.7 1.5 1.3 1.0 0.9 8 00 124-INCH LIGHT BEAM-125 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. Depth, 12 inches. Width of flanges, 4.8 inches. Thickness of stem, .47 inch. Area of cross-section, 12.33 square inches. See page 32. Length, Weight, in Inches. in Pounds. I 3.5 6.9 10.4 13.9 1 2 3 4 5 78 17.4 6 20.8 24.3 27.8 9 31.2 ΙΟ 34.7 II 38.2 Length, in Feet. Weight, in Pounds. I 234 ino 41.7 83.3 125 O 166.7 208.3 250.0 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEen Cen- TERS OF BEAMS, FOR LOADS, PER SQUare FOOT OF- 879 6 18.73 0.03 250.0 62.4 49.9 41.6 35.7 31.2 25.0 20.8 18.70 0.05 291.7 9 ΙΟ 18.68 0.07 18.66 0.09 18.64 0.12 333.3 375.0 53.4 42.7 35.6 46.7 37.4 31.2 41.5 33.2 416.7 37.3 29.8 30.5 26.7 21.4 17.8 26.7 23.3 18.7 15.6 276 23.7 20.7 16.6 13.8 24.8 21.3 18.6 14.9 12.4 II 12 16.91 15.46 0.17 0.14 458.3 30.7 24.6 20.5 17.5 15.3 12.3 10.2 500.0 25.8 20.6 17.2 14.7 12.9 10.3 8.6 13 14.23 0.20 14 13.17 0.23 15 12.25 0.26 541.7 21.0 17.5 14.6 583.3 18,8 15.0 12.5 10.9 8.8 7.3 12.5 625.0 16.3 13.0 10.7 | 9.4 7.5 6.3 10.9 9.3 8.1 6.5 5.4 16 II.45 0.30 17 10.73 0.34 666.7 708.3 12.6 IO.I 14.3 II.4 9.5 8.2 7.I 5.7 4.8 8.4 7.2 6.3 5.0 4.2 18 ΙΟ.ΙΟ 0.38 750.0 II.2 9.0 7.5 6.4 5.6 4.5 3.7 19 9.52 0.42 791.7 10.0 8.0 6.7 5.7 5.0 4.0 3.3 20 9.01 0.46 833.3 9.0 7.2 6.0 5.I 4.5 3.6 3.0 21 8.54 0.51 875.0 8.1 6.5 5.4 4.6 4.0 3.2 2.7 22 8.11 0.56 916.7 7.4 5.9 4.9 4.2 3.7 3.0 2.5 23 7.72 0.62 958.3 6.7 5.4 4.5 3.8 3.3 2.7 2.2 24 7.35 0.67 1000.0 6.1 4.9 4. I 3.5 3.0 2.4 2.0 25 7.02 0.73 1041.7 5.6 4.5 3.7 3.2 2.8 2.2 1.9 26 29 WNNN! 27 6.42 0.85 1125.0 6.71 0.79 1083.3 5.I 4.I 3.4 2.9 2.5 2.0 1.7 4.7 3.7 3.2 2.7 2.3 1.9 i 1.6 28 6.15 0.91 1166.7 5.90 0.98 1208.3 4.4 3.5 2.9 2.5 2.2 1.8 1.5 30 5.66 1.05 1250.0 43 4.I 3.3 2.7 2.3 3.8 3.I 2.5 2.2 2 N 2.0 1.6 1.4 1.9 1.5 1.3 Awwww wwwww 5.43 1.12 1291.7 3.5 2.8 2.3 2.0 1.7 1.4 1.2 5.22 1.19 1333.3 3.3 2.6 2.2 1.9 1.6 1.3 I. I 5.02 1.27 1375.0 3.I 2.5 2.0 1.8 1.5 1.2 Ι.Ο 4.83 1.35 1416.7 2.8 2.3 1.9 1.6 1.4 I.I 09 4.66 1.43 1458.3 2.7 2.I 1.8 1.5 1.3 I.I 0.9 37 38 4.49 1.52 1500.0 2.5 4.32 1.60 1541.7 4.17 1.68 2.0 1.7 1.4 1.2 1.0 0.8 2.3 1.9 1.6 1.3 I.I 0.9 0.8 1583.3 2.2 1.8 1.5 I.2 I.I 0.0 0.7 39 4.02 40 3.88 1.77 1625.0 1.87 1666.7 2.1 1.7 1.4 I.2 1.0 0.8 0.7 1.9 1.5 I 3 I.I 0.9 0.8 0.6 9 12-INCH BEAM-120 LBS. PER YARD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, Weight, in Inches. in Pounds. Length, in Feet. Weight, in Pounds. I 40 Depth, 12 inches. Width of flanges, 5½ inches. Thickness of stem, .39 inch. I ×23456 NO 3.33 6.67 IO. 13.33 16.67 20.00 7 23.33 8 26.67 Area of cross-section, 11.73 9 30.00 square inches. 10 33.33 II 36.67 4 23456 80 120 160 200 240 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF 10 700 a 6 15.50 15.48 0 02 240 51.7 41.3 34.5 29.5 25.8 20.7 17.2 003 230 44.2 35.4 29.5 25.3 22.I 17.7 14.7 8 15.46 0.05 320 38.7 30.9 25.8 22.1 19.3 15 5 12.9 15.44 0.07 300 34.3 27.5 22 9 19.6 17.2 13.7 II 4 ΙΟ 15.42 0.10 400 30.9 24.7 20.6 17.6 15.4 12.3 10.3 12 13 14 15 (ر) + ) I I 15.40 0.13 440 28.0 15.38 0.17 480 25.6 20.5 14.16 0.20 520 13.11 0.23 12.20 0.27 600 21.8 22.4 18.7 16.0 14.0 II.2 9.3 17.I 14.7 12.8 10.3 8.5 17.4 14.5 12 5 10.9 8.7 7.3 560 16.3 13.0 18.7 15.0 12.5 10.7 9.4 7.5 6.2 10.8 9.3 S. I 6.5 5.4 16 17 6 7 II.40 10.69 0.30 640 14.2 II.4 9.5 SI 7.I 5.7 4.7 0.34 680 12.6 10.I 8.4 7 2 6.3 5.0 4.2 18 10.06 0.39 720 II.2 19 9.49 0.43 760 10.0 00 00 8.9 7.4 6.4 5.6 4.5 3.7 8.0 6.7 5.7 5.0 4.0 3.3 20 8.97 0.48 800 9.0 7.2 6.0 5. I 4.5 3.6 3.0 ΟΙ 8 51 0 53 840 S.I 6.5 5.4 4.6 4.0 3.2 2.7 22 8.08 0.58 880 7.3 5.9 4.9 4.2 3.7 2.9 2.4 23 7.69 0.63 920 6.7 5.4 45 3.8 3.3 2.7 2.2 24 7.33 0.69 960 6.1 4.9 4. 3.5 3.I 2.4 2.0 25 7.00 0.74 1000 5.6 4.5 3.7 3.2 2.8 1.9 wwwww ww N N N 26 6.69 0.80 1040 5.I 4. I 3.4 2.9 2.6 2.I 1.7 27 6.40 0.87 1080 4.7 3.S 3.2 2.7 2.4 1.9 1.6 30 28 6.14 29 5.88 5.65 0.93 II20 4.4 3.5 2.0 2.5 2.2 1.S 1.5 1.00 1160 4. I 3.2 2.7 2.3 2.0 1.6 1.4 1.07 1200 3.S 3.0 2.5 2.2 1.9 1.5 1.3 32 5.43 5.22 1.14 1240 3.5 2.8 2.3 2.0 1.7 1.4 1.2 1.22 1280 3.3 2.6 2 2 1.Q 1.6 1.3 I. I 33 5 02 1.30 1320 3.0 2.4 2.0 1.7 1.5 1.2 1.0 34 4.83 1.38 1360 2.8 2.3 1.9 1.6 1.4 1.I 0.9 35 4.66 1.46 1400 2.7 2.I 1.8 1.5 1.3 I.I 0.9 36 4.49 1.54 1440 2.5 2.0 1.7 1.+ 1.2 1.0 0.3 37 4.33 1.03 1480 2.3 1.9 1.6 1.3 1.2 0.0 0.8 38 4.17 1.72 1520 2.2 1.8 1.5 1.3 I.I 39 4.03 1.SI 1560 2.1 1.7 1.4 1.2 1.0 0. 0.7 40 3.89 1.90 1600 1.9 1.6 1.3 1.I I.O 0.8 0.6 9 a 12-INCH BEAM-96 LBS. PER YARD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, | Weight, in Pounds. in Inches. 2.67 Length, in Feet. Weight, in Pounds. I 32 Depth, 12 inches. Width of flanges, 5 inches. Thickness of stem, .32 inch. I 123456 7∞ 5.33 8.00 10.67 13.33 16.00 18.67 8 21.33 Area of cross-section, 9.46 9 24.00 square inches. 13 26.67 II 29.33 1 2 3 4 56 64 4 96 128 160 192 6 78 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQuare FOOT OF- 10.83 10.82 0.02 192 36.1 28.9 24. I 20.6 18.1 14.4 12.0 0.03 224 30.9 24.7 20.6 17.7 15.5 12.4 10.3 10.80 0.04 256 27.0 21.6 18.0 15.4 13.5 10.8 9.0 9 10.78 0.06 288 24.0 19.2 16.0 13.7 12.0 9.6 8.0 ΙΟ 10.77 0.08 320 21.5 17.2 14.4 12.3 10.8 8.6 7.2 I I 10.75 O.II 352 19.5 15.6 13.0 II.2 12 10.74 0.15 384 17.9 14.3 11.9 I0.2 13 10.72 0.18 416 16.5 0∞ ∞ 9.8 8.9 13.2 II.0 14 10.70 0.23 448 15.3 12.2 10.2 15 9.96 0.27 480 13.3 10.6 8.9 287 9.4 8.2 8.7 7.6 76 7.6 6.6 ∞ ON 10 10 7.8 6.5 7.2 6.0 6.6 5.5 6.1 5.1 5.3 4.4 16 9.31 0.30 512 11.6 9.3 7.8 6.6 5.8 4.7 3.9 17 8.73 0.34 544 10.3 8.2 68 5.9 5.1 4.I 3.4 18 8.21 0.39 576 9.I 7.3 6.I 5.2 4.6 3.6 3.0 9 7.75 0.43 608 8.2 6.5 5.4 4-7 4. I 3.3 2.7 20 7.33 0.48 640 7.3 5.9 4.9 4.2 3.7 2.9 2.4 21 22 6.60 0.58 704 695 0.53 672 6.6 5.3 4.4 3.8 3.3 2.6 2.2 6.0 4.8 4.0 3.4 3.0 2.4 2.0 23 6.28 0.63 736 5 5 4.4 3.6 3.1 2.7 2.2 1.8 24 5.99 0.69 768 5.0 4.0 3.3 2.9 2.5 2.0 1.7 25 5.72 0.74 800 4.6 3.7 3.I 2.6 2.3 1.8 1.5 26 5.47 0.80 832 4.2 3.4 2.8 24 2.I 1.7 I.4 27 5.23 0.87 864 3.9 3.I 2.6 2.2 1.9 1.6 1.3 28 5.02 0.93 896 3.6 2.9 2.4 2.0 1.8 I.4 I.2 29 4.81 I.00 928 3.3 2.7 2.2 1.9 1.7 1.3 I. I 30 4.62 1.07 960 3.I 2.5 2.I 1.8 1.5 I.2 1.0 31 4.44 1.14 992 2.9 2.3 1.9 1.6 1.4 I.I 1.0 32 4 27 1.22 1024 2.7 2.I 1.8 1.5 1.3 I.I 0.9 33 4.II 1.30 34 3.96 1.38 1056 2.5 2.0 1.7 1.4 1.2 Ι.Ο 0.8 1088 2.3 I.9 1.6 1.3 1.2 0.9 0.8 35 3.81 1.46 I 120 2.2 1.7 1.5 I.2 I.I 0.9 0.7 36 3.67 1.54 1152 2.0 1.6 I.4 1.2 1.0 0.8 0.7 37 3.54 1.63 1184 1.9 1.5 1.3 I. I 1.0 0.8 0.6 38 39 3.42 1.72 1.81 3.30 1216 1.8 1.4 1.2 I.O 0.9 0.7 0.6 1248 1.7 1.4 I. I I.0 0.8 0.7 0.6 40 3.19 1.90 1280 1.6 1.3 I. I 0.9 0.8 0.6 0.5 96 101-INCH HEAVY BEAM-135 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Depth, 10½ inches. Width of flanges, 5 inches. Thickness of stem, .47 inch. Area of cross-section, 13.36 square inches. Length, Weight, in Inches. in Pounds. I 3.7 Length. in Feet. Weight, in Pounds. 2 3 4 10 7∞o 7.5 II.2 15.0 18.7 1 2 3 4 5 I 45 90 135 180 5 225 22.5 270 26.2 30.0 9 33-7 ΙΟ 37.5 II 41.2 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 6 7∞ a 16.22 0.03 270 54.I 43.3 36.0 30.9 27.0 21.6 18.0 16 20❘ 0.05 315 46.3 37.0 30.9 26.5 23.I 18.5 15.4 8 16.18 0.07 360 40.4 32.3 27.0 23.1 20.2 16.2 13.5 16.16 0.10 405 35.9 28.7 24.0 20.5 18.0 14.4 12.0 ΙΟ 16.14 0.14 450 32.3 25.8 21.5 18.5 16.1 12.9 10.8 II 16.12 0.16 495 29.3 23.4 19.5 16.7 14.6 II.7 } 12 14.73 0.19 24.5 540 19.6 16.4 14.0 12.2 9.8 13 13.55 0.23 585 20.8 16.7 13.9 11.9 10.4 8.3 14 12.54 0.27 630 17.9 14.3 11.9 10.2 8.9 15 11.66 0.31 675 15.5 12.4 10.4 8.8 7.7 ୪୦୩୯୯ насо по 9.8 8.2 00 N 6.9 7.2 6.0 6.2 5.2 16 17 18 678 10.89 0.35 720 13.6 10.9 | 10.20 0.39 765 12.0 9.6 9.59 0.44 810 10.7 19 9.05 0.49 855 9.5 20 8.55 0.54 900 8.6 6. 96 in a cico No 9.1 8.0 8.5 7.6 7.I 6. но нет 7.8 6.8 5.4 4.5 6.9 6.0 4.8 4.0 6.1 5.3 4.3 3.6 ao 3 5.4 4.7 3.8 3.2 5.7 4.9 4.3 3.4 2.9 21 8.10 0.60 945 7.7 6.2 5.I 4.4 3.8 3.I 2.6 22 23 W N 7.69 0.66 990 7.0 24 7.31 0.72 6.96 1035 6.4 0.78 1080 5.8 25 6.64 0.85 1125 5.3 9 +0 m 5544 5.6 5.I 4.6 4.2 OHO N 4.7 4.0 3.5 2.8 2.3 4.2 3.7 3.2 2.6 2.1 3.9 3-3 2.9 2.3 1.9 3.5 3.0 2.6 2.1 1.8 26 6.34 27 28 5.80 0.92 1170 6.06 0.99 1215 1.07 1260 4.9 3.9 3.3 2.8 2.4 2.0 1.6 4.5 3.6 3.0 2.6 2.2 1.8 1.5 4.I 3.3 2.8 2.4 2.0 1.6 1.4 29 5.55 1.14 1305 3.8 3.0 2.6 2.2 1.9 1.5 1.3 30 5.32 1.22 1350 3.5 2.8 2.4 2.0 1.7 1.4 1.2 Awwww wwwww 5.II 1.30 1395 3.3 2.6 2.2 1.9 1.6 4.90 1.39 1440 3.I 2.5 2.0 1.8 1.5 via 1.3 I.I 1.2 1.0 4.71 1.48 1485 2.9 2.3 1.9 I.7 1.4 1.2 I.O 4.53 1.57 1530 2.7 2.2 1.8 1.6 1.3 Ι.Ι 0.9 4.35 1.67 1575 2.5 2.0 1.7 1.4 1.2 1.0 0.8. 36 4.19 1.76 1620 2.3 1.8 1.6 1.3 I.I 0.8 37 38 3.88 4.03 1.86 1665 1.96 2.2 1.7 1.5 1.2 I.I 07 1710 2.0 1.6 1.4 I.O 1.0 0.7 39 40 3.60 3.74 2.07 1755 2.18 1.9 1.5 1.3 1.0 0.9 0.8 0.6 1800 1.8 1.4 1.2 1.0 0.9 0.7 0.6 ΙΟ 10-INCH LIGHT BEAM-105 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. Depth, 10½ inches. Width of flanges, 4½ inches. Thickness of stem, % inch. Area of cross-section, 10.44 square inches. See page 32. Length, Weight, in Inches. in Pounds. I 1 2 3 4 5 6 7∞ 2.9 5.8 2 1000 8.7 I 1 2 3 456 Length, in Feet. Weight, in Pounds. 35 70 105 11.7 4 14.6 17.5 140 175 210 20.4 8 23.3 9 26.2 ΙΟ I I 29.2 32.1 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- ters of BEAMS, FOR LOADs, per Square FOOT OF 679 12.90 12.88 0.03 210 0.05 245 43.0 36.8 29.4 34.4 28.7 24.5 24.6 8 9 12.86 0.07 280 12.84 0.10 315 28.5 ΙΟ 12.83 0.14 350 32.1 25.7 22.8 25.7 20.6 19.0 16.3 14.2 21.4 18.3 16.0 21.5 21.0 18.4 14.7 17.2 14.3 12.3 12.8 10.7 II.4 9.6 17.1 14.7 12.8 10.3 8.6 II 12.81 0.16 385 23.3 18.6 15.5 13.3 11.6 9.3 7.8 12 11.71 0.19 420 19.5 15.6 13.0 II.I 9.7 7.8 6.5 13 10.77 0.23 455 16.6 13.3 II.O 9.5 8.3 6.6 5.5 14 9.97 0.27 490 14.2 II.4 9.5 8.1 7.I 5.7 4.7 15 9.27 0.31 525 12.4 9.9 8.2 7.I 6.2 5.0 4.I 16 8.66 0.35 560 10.8 17 8.11 0.39 595 18 7.63 0.44 630 19 7.19 0.49 20 6.80 0.54 665 700 ∞6 56 ∞ 98 76 8.6 7.2 6.2 5.4 9.6 8.5 7.6 77 6.4 5.5 4.8 4.3 3.6 3.8 3.2 6.8 5.6 4.9 4.2 3.4 2.8 6.1 5.0 4.3 3.8 3.0 2.5 6.8 5.4 4.5 3.9 3.4 2.7 2.3 21 2 2 2 2 22 23 5.81 0.72 6.44 6.11 0.66 770 0.60 735 6.1 4.9 4.I 3.5 3.0 2.4 2.0 805 24 5 54 0.78 840 25 5.28 0.85 875 оно 5544 5.6 4.5 3.7 3.2 2.8 2.2 1.9 5.1 4.1 3.4 2.9 2.5 2.0 1.7 4.6 3.7 3.1 2.6 2.3 1.8 1.5 4.2 3.4 2.8 2.4 2.I 1.7 1.4 37 38 Awwww wwwww W N N N N 26 5.04 0.92 910 3.9 3.1 2.6 2.2 1.9 1.6 1.3 27 4.82 0.99 945 3.6 2.9 2.4 2.1 1.8 1.4 1.2 28 4.62 1.07 980 3.3 2.7 2.2 1.9 1 6 1.3 I.I 29 4.42 1.14 1015 3.0 2.4 2.0 30 4.24 1.22 1050 2.8 2.2 1.9 o a 1.7 1.5 1.2 1.0 1.6 1.4 I. I 0.9 4.07 1.30 1085 2.6 2.1 1.7 1.5 1.3 1.0 0.9 3.91 1.39 1120 2.4 1.9 1.6 1.4 1.2 09 0.8 3.75 1.48 1155 2.3 1.8 1.5 1.3 I.I 0.9 0.8 3.61 1.57 1190 2.1 1.7 1.4 I.2 1.0 0.8 0.7 3.47 1.67 1225 2.0 1.6 1.3 I.I Ι.Ο 0.8 0.7 36 3.34 1.76 1260 1.9 1.5 1.2 I.I 3.21 1.86 1295 1.7 1.4 1.2 0.9 0.8 0.6 1.0 0.8 0.7 0.6 3.09 1.96 1330 1.6 1.3 I.I 1.0 0.8 0.6 0.5 39 2.98 2.07 1365 1.5 1.2 1.0 0.9 0.7 0.6 0.5 40 2.87 2.18 1400 1.4 I.I 1.0 0.8 0.7 0.6 0.5 II 101-INCH EX. LIGHT BEAM-90 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Weight, in Pounds. Depth, 10 inches. Width of flanges, 4 inches. Thickness of stem, inch. Area of cross-section, 8.9 square inches. Length, Weight, in Inches. in Pounds. Length, in Feet. 123456 78 I 2.5 5.0 7.5 10.0 12.5 123456 I 15.0 17.5 20.0 9 ΙΟ 22.5 25.0 II 27.5 2822588 120 150 180 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 6 10.33 0.03 180 7 10.31 0.05 210 29.5 34.4 27.5 23.6 22.9 19.7 17.2 8 10.30 0.07 240 25.7 9 10.28 0.10 270 22.8 18.3 15.2 19.6 16.8 20.6 17.2 13.8 11.5 14.7 14.7 11.8 9.8 12.9 10.3 8.6 13.1 ΙΟ 10.27 0.14 300 20.5 16.4 13.7 11.7 10.3 8.2 6.8 II.4 9.1 7.6 II 10.25 0.16 330 18.6 12 10.24 0.19 360 17.1 13 9.42 0.23 390 14.5 14 8.72 0.27 420 12.5 10.0 15 8.11 0.31 450 10.8 8.6 986 14.9 12.4 10.7 13.6 II.4 11.6 9.7 9.7 8.3 8.3 7.2 3 2 7.1 773OH 9.3 7.5 6.2 8.5 6.8 5-7 7.2 5.8 4.8 6.2 5.0 4.2 6.2 5.4 4.3 3.6 16 7.57 0.35 480 9.5 7.6 17 7.10 0.39 510 8.4 6.7 18 6.67 0.44 540 7.4 5.9 679 6.3 5.4 4.7 3.8 3.2 5.6 4.8 4.2 3.3 2.8 4.9 4.2 3.7 3.0 2.5 19 6.29 0.49 570 6.6 5.3 4.4 3.8 3.3 2.7 2.2 20 5.95 0.54 600 6.0 4.8 4.0 3.4 3.0 2.4 2.0 21 5.64 0.60 630 5.4 4.3 3.6 3.I 2.7 2.I 1.8 22 5.35 0.66 660 4.9 3.9 3.2 2.8 2.4 1.9 1.6 23 5.09 0.72 690 4.4 3.5 3.0 2.5 2.2 1.8 1.5 24 4.85 0.78 720 4.0 3.2 2.7 2.3 2.0 1.6 1.3 25 4.62 0.85 750 3.7 3.0 2.5 2.I 1.8 1.5 1.2 27 28 xwwww wwwww wNNNN 26 4.42 0.92 780 3.4 2.7 2.3 1.9 I.7 1.4 I.I 4.22 0.99 810 3.I 2.5 2.1 1.8 1.6 1.3 1.0 4.04 1.07 840 2.9 2.3 1.9 1.6 1.4 1.2 1.0 29 3.88 1.14 870 2.7 2.I 1.8 1.5 1.3 I.I 0.9 30 3.72 I.22 900 2.5 2.0 1.7 1.4 1.2 1.0 0.8 3.57 1.30 930 2.3 1.8 1.5 1.3 1.2 0.9 0.8 3.29 3.43 1.39 960 1.48 2.1 1.7 1.4 1.2 I.I 0.9 0.7 990 2.0 1.6 1.3 I. I 1.0 0.8 0.7 3.16 1.57 1020 1.9 1.5 1.2 I.I 0.9 3.05 1.67 1050 1.7 1.4 I.I 1.0 0.9 0.7 77 0.6 0.6 36 2.93 1.76 1080 1.6 1.3 I.I 0.9 0.8 0.7 0.5 37 2.82 1.86 1110 1.5 1.2 I.O 0.9 0.8 0.6 0.5 38 2.72 1.96 1140 1.4 I.I 1.0 0.8 0.6 0.5 39 2.62 2.07 1170 1.3 I.I 0.9 0.8 0.7 0.5 0.4 40 2.52 2.18 1200 1.3 I.O 0.8 0.7 0.6 0.5 0.4 2 12 9-INCH EX. HEAVY BEAM-125 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, Weight, in Inches. in Pounds. Depth, 9 inches. Width of flanges, 4½ inches. Thickness of stem. .57 inch. Area of cross-section, 12.33 square inches. Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. Length, in Feet. Weight, in Pounds. 1 2 3 4 5 78 I 3.5 7.0 10.4 13.9 17.4 6 20.8 123456 I 41.7 83.3 125.0 166.7 208.3 250.0 24.3 27.8 9 IO 31.2 34.7 II 38.2 PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 'sq[ 001 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. 10 700 a 6 16.62 0.05 250.0 55.4 44.3 16.60 0.07 8 16.58 0.10 9 14.70 0.13 10 13.19 0.16 36.9 291.7 47.4 37.9 31.6 333-3 41.5 33.2 27.7 375.0 32.7 26.2 416.7 26.4 21.I 17.6 31.6 27.7 27.1 23.7 21.8 18.7 15.1 13.2 22.2 23.7 19.1 18.5 20.7 16.6 13.8 16.3 13.1 10.9 10.6 8.8 15.8 II 11.95 0.19 458.3 21.7 17.4 14.5 12.4 10.9 8.7 7 2 12 10.92 0.23 500.0 18.2 14.6 12.1 10.4 9.I 7.3 6.0 13 10.04 0.27 541.7 15.4 12.4 10.3 14 9.28 0.31 583.3 13.3 10.6 8.8 15 8.62 0.35 625.0 11.5 9.2 7-7 700 60 6 978 8.8 7.7 6.2 5.1 7.6 6.6 5.3 4.4 6.6 5.7 4.6 3.8 16 17 67 8.04 7.53 0.46 708.3 0.40 666.7 10.0 8.0 6.7 5.7 5.0 4.0 8.8 7.0 5.9 5.0 4.4 3.5 ло 3.3 2.9 18 7.07 0.51 750.0 7.8 6.2 5.2 4.5 3.9 3.1 2.6 19 0.63 6.66 0.57 791.7 7.0 20 6.28 833.3 6.3 55 5.6 5.0 o a 4.7 4.0 3.5 2.8 2.3 4.2 3.6 3.I 2.5 2.1 21 23 24 5.94 0.70 22 5.63 0.77 5.35 0.84 5.08 0.91 875.0 5.7 4.6 3.8 916.7 5.I 4.I 3.4 958.3 4.6 3.7 3.I 1000.0 4.2 3.4 2.8 сона со 3.2 2.8 2.3 1.9 2.9 2.5 2.0 1.7 2.6 2.3 1.8 1.5 2.4 2.1 1.7 1.4 25 4.84 0.99 1041.7 3.9 3.I 2.6 2.2 1.9 1.5 1.3 Awwww wwwww w☹ ~ ~ ~ 26 4.61 1.07 1083.3 3.5 2.8 2.4 2.0 1.8 I.4 1.2 27 4.40 1.16 1125.0 3.3 2.6 2.2 1.9 1.6 1.3 I.I 28 4.20 1.24 1166.7 3.0 2.4 2.0 1.7 1.5 1.2 1.0 29 4.02 1208.3 1.33 2.8 2.2 1.8 1.6 1.4 I.I 0.9 30 3.84 1.43 1250.0 2.6 2.1 1.7 1.5 1.3 1.0 0.9 3.68 1.53 1291.7 2.4 1.9 1.6 1.4 1.2 I.O 0.8 3.52 1.63 1333.3 2.2 1.8 1.5 1.3 I.I 0.9 0.7 3.37 I.74 1375.0 2.0 1.6 1.4 1.2 Ι.Ο 0.8 0.7 3.23 1.84 1416.7 1.9 1.5 1.3 I.I 0.9 0.8 0.6 3.10 1.95 1458.3 1.8 1.4 1.2 I.O 0.9 0.7 0.6 36 2.97 2.06 1500.0 1.6 1.3 I.I 0.9 0.8 0.7 0.5 37 2.85 2.17 1541.7 1.5 1.2 1.0 0.9 0.7 0.6 0.5 38 2.73 2.29 1583.3 1.4 I.I 1,0 0.8 0.7 0.6 0.5 39 2.62 2.41 1625.0 1.3 I.O 0.9 0.7 0.6 0.5 0.4 40 2.52 2.54 1666.7 | 1.3 1.0 0.8 0.7 0.6 0.5 0.4 13 9-INCH HEAVY BEAM-85 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, Weight, in Inches. in Pounds. I Length, in Feet. Weight, in Pounds. Depth, 9 inches. Width of flanges, 4½ inches. Thickness of stem, % inch. Area of cross-section, 8.5 square inches. 1234 16 7∞ 2.4 4.7 7.I 9.4 5 11.8 6 14.2 16.5 18.9 9 21.2 10 II 23.6 26.0 I 1 2 3 4 5 28.3 56.7 85.0 113.3 141.7 170.0 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, per Square FOOT OF- 6 12.36 0.05 170.0 41.2 7 12.35 0.07 198.3 35.3 28.2 33.0 27.5 23.5 23.6 20.6 16.5 13-7 20.2 8 12.33 0.10 226.7 30.8 24.7 20.5 17.6 15.4 17.6 14.I 11.8 12.3 10.3 9 10.93 0.13 255.0 24.3 19.4 16.2 13.9 12.1 9.7 8.1 ΙΟ 9.81 0.16 283.3 19.6 15.7 13.1 II.2 9.8 7.8 6.5 II 12 13 - - 14 15 1 2 3 4 5 8.89 0.19 311.7 16.2 12.9 10.8 9.2 8.1 6.5 5.4 8.12 0.23 340.0 13.5 10.8 9.0 7-7 6.8 5.4 4.5 7.47 0.27 368.3 11.5 9.2 7.6 6.6 5.7 4.6 3.8 6.91 0.31 396.7 9.9 7.9 6.6 5.6 4.9 3.9 3-3 6.42 0.35 425.0 8.6 6.8 5-7 4.9 4.3 3.4 2.9 16 17 18 679 5.99 0.40 453.3 7.5 6.0 5.0 4.3 3.7 3.0 2.5 5.61 0.46 481.7 6.6 5.3 4.4 3.8 3.3 2.6 2.2 5.27 0.51 510.0 5-9 4.7 3.9 3.3 2.9 2.3 2.0 19 20 4.69 4.97 0.57 0.63 538.3 5.2 566.7 4.7 3.8 2 00 43 4.2 3.5 3.0 2.6 2.1 1.7 3.I 2.7 2.3 1.9 1.6 2 2 2 2 a 21 4.44 0.70 595.0 4.2 3.4 2.8 2.4 2.1 1.7 1.4 22 4.21 0.77 623.3 3.8 3.I 2.6 2.2 1.9 1.5 1.3 23 4.00 0.84 651.7 3.5 2.8 2.3 2.0 1.7 1.4 1.2 24 3.81 0.91 680.0 3.2 2.5 2.I 1.8 1.6 1.3 I. I 25 3.63 0.99 708.3 2.9 2.3 1.9 1.7 1.5 I.2 I.O 26 3.46 1.07 736.7 2.7 2.I 1.8 1.5 1.3 I.I 0.9 27 3.30 1.16 765.0 2.4 2.0 1.6 1.4 1.2 1.0 0.8 28 3.16 1.24 793-3 2.3 1.8 1.5 1.3 I.I 0.9 0.8 29 3.02 1.33 821.7 2.I 1.7 1.4 1.2 1.0 0.8 0.7 30 2.89 1.43 850.0 1.9 1.5 1.3 I.I I.O 0.8 0.6 31 2.77 1.53 878.3 1.8 1.4 1.2 1.0 0.9 0.7 0.6 wwww 32 2.66 1.63 906.7 1.7 1.3 I.I 0.9 0.8 0.7 0.6 33 2.55 35 2.44 2.35 1.74 935.0 1.5 1.84 963.3 1.4 1.95 991.7 1.3 I.2 1.0 0.9 0.8 0.6 0.5 1.2 1.0 0.8 0.7 0.6 0.5 I.I 0.9 0.8 0.7 0.5 0.4 Awwww 36 2.25 2.06 1020.0 37 2.17 1048.3 2.17 1.3 1.2 1.0 0.8 0.7 0.6 0.5 0.8 0.7 0.6 in un 0.4 0.4 38 2.08 2.29 1076.7 I. I .6 0.5 0.4 39 2.00 40 1.92 2.4I 1105.0 1.0 0.8 2.54 1133.3 1.0 0.8 0.6 0.7 0.6 0.5 0.3 0.5 0.5 0.3 14 9-INCH LIGHT BEAM-70 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Depth, 9 inches. Width of flanges, 4 inches. Thickness of stem, .3 inch. Area of cross-section, 7.0 square inches. Length, Weight, in Inches. in Pounds. Length, in Feet. Weight, in Pounds. 123456 78 I 1.9 3.9 5.8 7.8 9.7 6 11.7 123456 23.3 46.7 70.0 93.3 116.7 140.0 13.6 15.6 9 17.5 ΙΟ 19.4 II 21.4 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 8 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- ΙΟ 670 00 9.18 0.05 140.0 30.6 24.5 20.4 17.5 15.3 12.2 10.2 9.17 0.07 163.3 26.2 21.0 17.5 15.0 13.1 10.5 9.16 O.IO 186.7 22.9 9 9.15 0.13 210.0 20.3 16.3 13.5 18.3 15.3 13.1 II.4 9.2 11.6 10.2 8.23 0.16 233.3 16.5 13.2 II.O 9.4 8.2 8.1 6.8 6.6 5.5 00 765 8.7 7.6 II 7.46 0.19 256.7 13.6 10.9 I2 6.82 0.23 280.0 11.4 9.I 13 6.27 0.27 303.3 9.6 7.7 14 5.80 0.31 326.7 8.3 6.6 15 5.39 0.35 350.0 7.2 5.8 9965 + 9.0 7.6 6.4 5.5 4.8 06+5∞o 7.8 6.8 6.5 5.7 5.5 4.8 4-7 4.I 4.1 3.6 5433N 5.4 4.5 4.5 3.8 3.9 3.2 3.3 2.8 2.9 2.4 16 17 5.03 0.40 373.3 4.71 0.46 396.7 6.3 5.0 4.2 3.6 3.I 2.5 2.1 5.5 4.4 3.7 3.2 2.8 2.2 1.8 18 4.43 0.51 420.0 4.9 3.9 3.3 2.8 2.5 2.0 1.6 19 4.17 0.57 443.3 4.4 3.5 2.9 2.5 2.2 1.8 1.5 20 3.94 0.63 466.7 3.9 3.2 2.6 2.3 2.0 1.6 1.3 21 3.73 0.70 490.0 3.6 2.8 2.4 2.0 1.8 I.4 1.2 22 3.54 0.77 513.3 3.2 2.6 2.1 1.8 1.6 1.3 I.I 23 3.36 0.84 536.7 2.9 2.3 1.9 1.7 1.5 I.2 1.0 24 3.20 0.91 560.0 2.7 2.I 1.8 1.5 1.3 I.I 0.9 25 3.05 0.99 583.3 2.4 2.0 1.6 1.4 1.2 1.0 0.8 W N N N N 26 2.91 1.07 606.7 2.2 1.8 1.5 1.3 I.I 0.9 0.7 27 28 2.78 1.16 2.66 630.0 2.I 1.6 1.4 1.2 1.0 0.8 0.7 1.24 29 2.54 1.33 676.7 653-3 1.9 1.5 1.3 1.1 0.9 0.8 0.6 1.8 1.4 1.2 Ι.Ο 0.9 0.7 0.6 30 2.43 1.43 700.0 1.6 1.3 I.I 0.9 0.8 0.6 0.5 Awwww wwwww 2.33 1.53 723.3 1.5 1.2 1.0 0.8 0.9 0.6 0.5 2.24 1.63 746.7 1.4 I.I 0.9 0.8 0.7 0.6 0.5 2.15 1.74 770.0 1.3 I.O 0.7 0.7 0.5 0.4 2.06 1.84 793.3 1.2 1.0 0.8 0.7 0.6 0.5 0.4 1.98 1.95 816.7 I.I 0.9 0.8 0.6 0.6 0.5 0.4 36 1.90 2.06 840.0 I.I 0.8 0.7 0.6 0.5 0.4 0.4 37 1.83 2.17 863.3 I.O 0.8 0.7 0.6 0.5 0.4 0.3 38 1.75 2.29 886.7 0.9 0.7 0.6 0.5 0.5 0.4 0.3 39 40 1.69 1.62 2.4I 910.0 2.54 933.3 0.9 0.7 0.6 0.5 0.4 0.3 0.3 0.8 0.6 0.5 0.5 0.4 0.3 0.3 15 8-INCH HEAVY BEAM-80 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Depth, 8 inches. Width of flanges, 4½ inches. Thickness of stem, % inch. 123456 7∞ 2.2 4.4 6.7 8.9 II.I 13.3 15.6 8 17.8 Area of cross-section, 8 03 9 20.0 square inches. ΙΟ II 22.2 24.4 Weight, in Pounds. Length, in' Feet. Weight, in Pounds. I 1 2 3 4 5 26.7 53.3 80.0 4 106.7 133.3 160.0 9.27 9.25 0.05 0.08 160.0 9.23 0.11 9.21 0.14 186.7 213.3 23.1 240.0 26.4 20.5 16.5 ΙΟ ŏo ou a 8.27 0.18 266.7 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- ters of BEAMS, FOR LOAds, per Square FOOT OF 250 lbs. 300 lbs. 30.9 24.7 20.6 17.7 15.4 12.4 10.3 21.1 17.6 15.1 13.2 10.6 8.8 18.5 15.4 13.2 11.5 9.2 7-7 16.4 13.6 11.7 IO.2 8.2 6.8 13.2 II.O 9.4 8.2 6.6 5.5 II 12 7.49 0.22 293.3 13.6 10.9 9.I 6.84 0.26 320.0 II.4 9.1 7.6 13 15 6.29 14 5.81 0.35 5.40 0.40 0.30 346.7 9.7 7.7 6.4 373.3 8.3 6.6 5.5 400.0 7.2 5-7 4.8 16 4500 7.8 6.8 5.4 6.5 5.7 4.6 +3 4.5 3.8 5.5 4.8 3.9 3.2 4.7 4.I 3.3 2.7 4.I 3.6 2.9 2.4 16 5.04 0.46 426.7 6.3 5.0 4.2 3.6 3.I 2.5 2.I 8d; 4.71 0.52 453.3 5.5 4.4 3.7 3.2 2.7 2.2 4.43 0.58 480.0 4.9 3.9 3.3 2.8 2.4 1.9 19 4.17 0.64 506.7 4.4 3.5 2.9 2.5 2.2 1.8 2 000 1.8 1.6 1.5 20 3.93 0.71 533-3 3.9 3.I 2.6 2.2 1.9 1.6 1.3 21 3.72 0.79 560.0 3.5 2.8 2.3 2.0 1.7 1.4 1.2 22 23 3.52 0.86 586.7 3.2 2.6 3.34 0.94 613.3 2.9 2.1 1.8 1.6 1.3 I.I 2.3 1.9 1.7 1.4 1.2 1.0 24 3.18 1.03 640.0 2.6 25 3.03 1.12 666.7 2.4 2 H 2.1 1.7 1.5 1.3 I.I 0.9 1.9 1.6 1.4 1.2 I.O 0.8 wwwww wNNONN 26 2.88 I.20 693.3 2.2 27 28 2.75 1.30 720.0 2.0 2.63 1.40 746.7 H H 1.8 1.5 1.2 I.I 0.9 0.7 1.6 1.3 I.I 1.0 0.8 0.7 1.8 1.5 1.2 1.0 O.Q 0.7 0.6 29 2.51 1.50 773-3 30 2.40 1.61 1.7 800.0 1.6 I 4 1.3 1.I 1.0 0.8 0.7 0.6 I.I 0.9 0.8 0.6 0.5 2.02 2.30 2.20 1.83 2.11 1.94 2.06 1.72 853.3 826.7 1.5 1.2 1.0 0.9 0.7 0.6 0.5 I.4 1.I 0.9 0.8 0.7 0.6 0.4 880.0 1.3 1.0 0.7 0.6 0.5 0.4 906.7 1.2 0.9 0.7 0.6 0.5 0.4 1.93 2.19 933.3 I.I 0.9 0.7 0.6 0.5 0.4 0.3 16 8-INCH LIGHT BEAM-65 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Depth, 8 inches. Width of flanges, 4 inches. Thickness of stem, .3 inch. Area of cross-section, 6.37 square inches. Length, in Inches. Weight, in Pounds. I 1 2 3 456 78 1.81 3.61 5.42 7.23 9.03 10.83 12.64 14.45 9 16.25 ΙΟ 18.06 II 19.86 Length, in Feet. Weight, in Pounds. I 21.7 1 2 3 456 43.3 65.0 86.7 108.3 130.0 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 IDs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. Proper Distance, in Feet, between Cen- TERS OF BEAMS, FOR LOADS, PER SQuare FOOT OF- 678 8.37 0.05 130.0 27.9 22.3 18.6 15.9 14.0 II.2 9.3 8.36 0.08 151.7 23.9 19.1 15.9 13.6 11.9 9.6 8.0 8.35 O.II 173.3 20.9 16.7 13.9 11.9 10.4 8.3 7.0 9 7.40 0.14 195.0 16.4 13.2 10.9 9.4 8.2 6.6 5.5 ΤΟ 6.64 0.18 216.7 13.3 10.6 8.9 7.6 6.6 5.3 4.4 II 6.02 0.22 238.3 10.9 8.7 7.3 6.2 12 5.49 0.26 260.0 9.1 7.3 6.1 5.2 13 5.05 0.30 281.7 7.8 6.2 5.2 4.5 14 4.67 0.35 303.3 6.7 5.3 4.5 3.8 2250 5.4 4.3 3.6 4.5 3.6 3.0 3.9 3.I 2.6 3.3 2.7 2.2 15 4.34 0.40 325.0 5.8 4.6 3.9 3.3 2.9 2.3 1.9 16 4.04 0.46 346.7 5.0 4.0 3.3 2.9 2.5 2.0 1.7 HH 78 17 3.79 0.52 368.3 4.4 3.5 2.9 2.5 2.2 1.8 1.5 18 3.55 0.58 390.0 3.9 3.1 2.6 2.2 1.9 1.6 1.3 19 3.35 0.64 411.7 3.5 2.8 2.3 2.0 1.7 1.4 1.2 20 3.16 0.71 433.3 3.2 2.6 2.I 1.8 1.6 1.3 I.I 21 2.99 0.79 455.0 2.8 2.3 I 9 1.6 1.4 1.I 1.0 22 2.83 0.86 476.7 2.6 2.1 1.7 1.5 1.3 1.0 0.9 23 2.68 0.94 498.3 2.3 1.9 1.5 1.3 I. I 0.9 0.8 24 2.55 1.03 520,0 2.1 1.7 1.4 1.2 1.0 0.8 0.7 25 2.43 1.12 541.7 1.9 1.5 1.3 1.I 0.9 0.8 0.6 26 2.31 1.21 1.8 563.3 1.4 1.2 1.0 0.9 0.7 0.6 27 2.20 1.30 585.0 1.7 1.3 I.I I.O 0.8 0.7 0.6 28 2.10 I.40 606.7 1.5 1.2 I.O 0.9 0.8 0.6 0.5 29 2.01 1.50 628.3 1.4 1.I 0.8 0.9 0.7 0.6 0.5 30 1.93 1.61 650.0 1.3 1.0 0.9 0.7 0.6 0.5 0.4 31 1.84 1.72 671.7 1.2 1.0 0.8 0.7 0.6 0.5 0.4 32 1.76 1.83 693.3 I.I 0.9 0.7 0.6 0.5 0.4 0.3 33 1.69 1.94 1.0 715.0 0.8 0.7 0.6 0.5 0.4 0.3 34 1.62 2.06 736.7 0.9 0.6 0.7 0.5 0.5 0.4 0.3 35 1.55 2.18 758.0 0.8 0.7 0.5 0.5 0.4 0.3 0.2 17 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 7-INCH BEAM-55 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. I 1.5 I 18.3 2 3.1 2 36.7 Depth, 7 inches. 3 4.6 3 55.0 4 6.1 4 73.3 Width of flanges, 34 inches. 5 7.6 6 Thickness of stem, .3 inch. 9.2 56 91.7 110.0 Area of cross-section, 5.50 square inches. 78 10.7 12.2 9 13.8 IO 15.3 I I 16.8 125 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQuare FOOT OF- 150 lbs. 175 lbs. 200 lbs. 5 7.70 0.05 91.7 30.8 24.6 20.5 17.6 15.4 12.3 10.3 6 7∞ ag 7.69 0.07 110.0 25.6 7.15 0.10 8 9 6.24 0.13 5.53 0.17 146.7 128.3 20.4 16.3 13.6 11.7 20.5 17.1 14.7 12.8 10.3 8.5 10.2 8.2 6.8 10 4.96 0.20 165.0 12.3 9.8 8.2 183.3 9.9 7.9 6.6 15.6 12.5 10.4 8.9 7.8 6.2 5.2 7.0 6.1 4.9 4.I 5.7 5.0 4.0 3.3 II 4.49 0.25 201.7 8.2 6.5 5.4 4.7 4.I 3.3 2.7 12 4.10 0.29 220.0 6.8 5.5 4.6 3.9 3.4 2.7 2.3 13 3.76 0.35 238.3 5.8 4.6 3.9 3.3 2.9 2.3 1.9 14 3.48 0.40 256.7 5.0 4.0 3.3 2.8 2.5 2.0 1.7 15 3.23 0.46 275.0 4.3 3.4 2.9 2.5 2.2 1.7 1.4 16 3.01 0.52 293-3 3.7 3.0 2.5 2.1 1.9 1.5 1.2 18 17 2.81 0.59 2.64 0.66 19 2.48 0.74 20 2.34 0.82 311.7 3-3 2.6 2.2 1.9 1.7 1.3 I.I 330.0 2.9 2.3 2.0 1.7 1.5 1.2 1.0 348.3 2.6 2.I 1.7 1.5 1.3 1.0 0.9 366.7 2.3 1.9 1.6 1.3 1.2 0.9 0.8 21 2.21 0.90 385.0 2.I 1.7 1.4 1.2 1.0 0.8 0.7 N N N N 22 2.00 0.99 403.3 1.9 1.5 1.3 1.1 0.9 0.8 0.6 23 1.98 1.08 421.7 1.7 1.4 I.I 1.0 0.8 0.7 0.6 24 1.88 1.17 440.0 1.6 1.3 1.0 0.9 0.8 0.6 0.5 25 1.79 1.27 458.3 1.4 I.I 0.9 0.7 0.6 0.5 WNXN ~ 26 27 1.70 1.38 476.7 1.3 1.62 1.49 1.0 0.9 0.7 0.5 0.4 495.0 I.2 1.0 0.8 0.7 0.6 0.5 0.4 28 1.55 1.60 513.3 1.1 0.9 0.7 6 0.5 0.4 29 1.48 1.72 53117 I. I 0.0 0.7 0.6 0.5 .3 30 1.41 1.84 550.0 Σ.Ο 0.8 0.7 0.61 0.5 0.4 9.3 250 lbs. 300 lbs. Length, in Feet. Weight, in Pounds. 18 6-INCH BEAM-120 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. I 3.33 I 40 2 6.67 2 80 Depth, 6 inches. 3 10.00 3 120 4 13.33 4 160 Width of flanges, 54 inches. 5 16.67 5 200 6 20.00 Thickness of stem, ½ inch. 7 23.33 Area of cross-section, 11.84 8 26.67 square inches. 9 30.00 ΙΟ 33.33 II 36.67 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 8 300 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQuare FOOT OF- 829 6 12.17 0.07 7 12.15 0.12 240 40.6 280 34.7 9 9.38 0.19 10.59 0.15 320 360 26.5 20.8 ΙΟ 8.40 0.24 400 32.4 27.8 23.1 21.2 17.6 16.7 13.9 16.8 13.4 11.2 27.0 23.2 19.8 17.4 20.3 16.2 13.5 13.9 11.6 15.1 13.2 10.6 8.8 11.9 9.6 10.4 8.3 6.9 8.4 6.7 5.6 II 7.60 0.29 440 13.8 II.I 9.2 7.9 6.9 12 6.92 0.34 480 11.5 9.2 7.7 6.6 5.8 000 5.5 4.6 4.6 3.8 14 15 3455 13 6.36 0.40 520 5.86 0.47 560 5.43 0.54 600 000 λ 9.8 7.8 8.4 6.7 7.2 5.8 654 765 ∞ 78 6.5 5.6 4.8 co over 544 5.6 4.8 4.I 443 4.9 3.9 3.3 4.2 3.3 2.8 3.6 2.9 2.4 16 5.05 0.61 640 6.3 5.0 4.2 3.6 3.2 2.5 2.I 17 4.72 0.69 680 5.6 4.4 3.7 3.2 2.8 2.2 1.9 IS 4.42 0.77 720 4.9 3.9 3.3 2.8 2.5 2.0 1.6 19 4.15 0.86 760 4.4 3.5 2.9 2.5 2.2 1.8 1.5 20 3.90 0.95 800 3.9 3.I 2.6 2.2 2.0 1.6 1.3 21 3.68 1.05 840 3.5 2.8 2.4 2.0 1.8 I.4 I.2 22 3.47 1.15 880 3.2 2.5 2.I 1.8 1.6 1.2 I.I 23 3.28 1.26 920 2.9 2.3 1.9 1.6 1.4 I. I 1.0 24 3.10 1.37 960 2.6 2.I 1.7 1.5 1.3 1.0 0.9 25 2.94 1.49 1000 2.4 1.9 1.6 1.4 I.2 0.9 0.8 26 2.79 1.61 1040 2.I 1.7 27 2.64 1.74 1080 2.0 1.6 76 1.4 1.2 I.I 0.9 0.7 1.3 I. I 1.0 0.8 0.7 28 2.51 1.87 II20 1.8 1.4 1.2 1.0 0.7 0.6 29 2.39 2.00 1165 1.7 1.3 I.I 0.9 0.8 0.7 0.6 30 2.27 2.14 1200 1.5 1.2 Ι.Ο 0.9 0.8 0.6 0.5 Length, in Feet. Weight, in Pounds. 19 6-INCH BEAM-90 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. Length, in Feet. I 2.5 I 2 5.0 2 Depth, 6 inches. 3 7.5 3 4 10.0 4 5 8 8 w Weight, in Pounds. 120 Width of flanges, 5 inches. 5 12.5 5 150 6 15.0 Thickness of stem, ½ inch. 7 17.5 Area of cross-section, 8.7 8 20.0 square inches. 9 22.5 ΙΟ 25.0 II 27.5 Distance between supports, in fect. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF S[ 001 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. 6 7∞ a 9.34 0.07 180 31.1 24.9 9.32 0.12 210 26.6 8 8.13 0.15 240 9 7.20 0.19 270 ΙΟ 6.45 0.24 300 20.8 17.8 21.3 17.8 15.2 20.3 16.3 13.5 11.6 16.0 12.8 10.7 12.9 15.6 12.5 10.4 13.3 10.2 10.7 8.1 9.I 8.0 6.4 8.6 10.3 6.4 6.4 5.2 4 5 9 CO 8.9 6.8 5.3 4.3 II 5.83 0.29 330 10.6 12 5.32 0.34 360 8.9 VO H 8 7 8.5 7.I 6.1 7.I 5.9 5.I 34 5 + 5.3 4.2 3.5 4.4 3.5 3.0 13 4.88 0.40 390 7.5 6.0 5.0 4.3 3.8 3.0 2.5 14 4.50 0.47 420 6.4 5.I 43 3.7 3.2 2.6 2.1 15 4.17 0.54 450 5.6 4.5 3.7 3.2 2.8 2.2 1.9 16 3.88 17 3.63 0.69 510 0.61 480 4.9 3.9 3.2 2.8 2.4 1.9 1.6 4.3 3.4 2.8 2.4 2.1 1.7 1.4 18 3.40 0.77 540 3.8 3.0 2.5 2.2 1.9 1.5 1.3 19 3.19 0.86 570 3.4 2.7 2.2 1.9 1.7 1.3 I.I 20 3.00 0.95 600 3.0 2.4 2.0 1.7 1.5 1.2 1.0 21 2.83 1.05 630 2.7 2.2 1.8 1.5 1.3 I.I 0.9 22 2.67 1.15 660 2.4 1.9 1.6 1.4 1.2 1.0 0.8 23 25 2.52 1.26 24 2.39 1.37 720 2.26 690 2.2 I.S 1.5 1.3 I.I 0.9 0.7 2.0 1.6 1.3 I.I I.O 0.8 0.7 1.49 750 1.8 1.4 1.2 1.0 0.9 0.7 0.6 26 27 2.04 1.74 S10 2.15 1.61 780 1.7 1.3 I. I 0.9 0.8 0.6 1.5 1.2 1.0 0.9 0.8 0.5 28 1.94 1.87 $40 1.4 1.I 0.9 0.8 0.7 0.6 0.5 29 1.84 2.00 870 1.3 I.O 0.7 0.6 0.5 0.4 30 1.75 2.14 | 900 I. 2 0.9 0.8 0.7 0.6 0.5 0.4 20 un Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 6-INCH HEAVY BEAM-50 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. I 1.4 I 16.7 2 2.8 2 33.3 Depth, 6 inches. 3 4.2 3 50.0 4 5.6 4 66.7 Width of flanges, 32½ inches. 5 6.9 6 8.3 56 83.3 6 100.0 Thickness of stem, 0.3 inch. 7 9.7 8 II. I Area of cross-section, 4.91 square inches. 9 12.5 ΙΟ 13.9 II 15.3 100 lbs. 125 lbs. 150 lbs. PROPER DISTANCE, IN FEET, BETWEEN CEN- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 175 lbs. 5 6.36 0.06 83.3 25.4 20.4 17.0 14.5 12.7 10.2 8.5 679 6.35 0.08 100.0 21.2 16.9 14.1 12.1 10.6 8.5 7.I 5.43 0.12 116.7 15.5 12.4 10.3 8.9 7.8 6.2 5.2 8 4.73 0.15 133.3 11.8 9.4 7.9 6.8 5.9 4.7 3.9 10 9 4.19 0.19 3.76 150.0 9.3 6.2 7.4 5.3 4.6 3.7 3.I 0.24 166.7 7.5 6.0 5.0 4.3 3.7 3.0 2.5 II 3.40 0.29 183.3 6.2 12 3.10 0.34 200.0 5.2 ~ ~ 4.9 4. I 3.5 3.I 2.5 2.1 4.2 3.4 3.0 2.6 2.1 1.7 13 2.85 0.40 216.7 4.4 3.5 2.9 2.5 2.2 1.8 1.5 14 2.63 0.47 233.3 3.7 3.0 2.5 2.I 1.8 1.5 I.2 15 2.43 0.54 250.0 3.2 2.6 2.2 1.8 1.6 1.3 I.I 16 2.27 0.61 266.7 2.8 2.2 1.9 1.6 1.4 I. I 0.9 17 2.12 0.69 283.3 2.5 2.0 1.7 1.4 I.2 1.0 0.8 18 1.98 0.77 300.0 2.2 I.7 1.5 1.3 I. I 0.9 0.7 19 1.86 0.86 316.7 1.9 1.5 1.3 I. I 0.9 0.8 0.6 20 1.75 333.3 0.95 1.7 I.4 1.2 1.0 0.8 0.7 0.6 W N N N N N N N N N 1.65 1.05 350.0 1.6 1.3 I. I 0.9 0.8 0.6 0.5 1.56 22 1.48 23 1.15 366.7 1.4 I.I 0.8 0.9 0.7 0.6 0.5 1.26 383-3 1.3 1.0 0.9 0.7 0.6 0.5 0.4 24 1.40 1.37 400.0 1.2 1.0 0.8 0.7 0.6 0.5 0.4 25 1.33 1.49 416.7 1.I 0.9 0.7 0.6 0.5 0.4 0.4 26 1.26 1.61 433.3 I.O 0.8 0.7 0.6 0.5 0.4 0.3 27 I.20 1.74 450.0 0.9 0.7 0.6 0.5 0.4 0.4 0.3 28 1.14 1.87 466.7 0.8 0.6 0.5 0.5 0.4 0.3 0.3 29 1.08 2.00 483.3 0.7 0.6 0.5 0.4 0.3 0.3 0.2 30 1.03 2.14 500.0 0.6 0.5 0.4 0.3 0.3 0.2 0.2 200 lbs. 250 lbs. 300 lbs. Length, in Feet. Weight, in Pounds. 21 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 6-INCH LIGHT BEAM-40 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. I 1.I I 13.3 2 2.2 2 26.7 Depth, 6 inches. 3 3.3 3 40.0 4 4.4 4 53.3 Width of flanges, 3 inches. 5 5.5 5 66.7 6 6.7 6 80.0 Thickness of stem, ¼ inch. 7 7.8 8 8.9 Area of cross-section, 4.01 square inches. 9 10.0 ΙΟ II.I II 12.2 100 lbs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 125 lbs. 150 lbs. 175 lbs. 200 lbs. lbs. 5 5.18 0.06 66.7 20.7 16.6 13.8 11.8 10.4 8.3 ΙΟ 10 700 00 5.18 0.08 80.0 17.3 13.8 11.5 9.9 4.42 0.12 93.3 12.6 10.I 8.4 7.2 9 3.42 3.86 0.15 106.7 0.19 9.6 120.0 3.06 0.24 133.3 66 926 7.7 6.4 5.4 7.6 6.0 5.1 4.3 3.8 6.1 4.9 4.I 3.5 ∞o 10 +3 on 8.6 6.3 4.8 3.0 O moo co O 6.9 6.9 5.8 5.I 4.2 3.9 3.2 3.0 2.5 2.4 2.0 I I 2.77 0.29 146.7 5.0 4.0 3.4 12 2.53 0.34 160.0 4.2 3.4 2.8 20 2.9 2.5 2.0 1.7 2.4 2.1 I.7 1.4 13 2.32 0.40 173.3 3.6 2.9 2.4 2.I 1.S 1.4 1.2 14 2.14 0.47 186.7 3.I 2.5 2.0 1.8 1.5 1.2 I.O 15 1.99 0.54 200.0 2.6 2.1 I 8 1.5 1.3 1.0 0.9 16 1.85 0.61 213.3 2.3 1.8 1.5 1.3 I.I 0.9 0.8 17 1.73 0.69 226.7 2.0 1.6 1.4 I.I 1.0 0.8 0.7 18 1.62 0.77 240.0 1.8 1.4 I.2 I.O 0.0 0.8 0.6 19 1.52 0.86 253.3 1.6 1.3 I. I 0.9 0.8 0.6 0.5 20 1.43 0.95 266. 0.7 1.4 I. I I.O 0.8 0.7 .6 0.5 21 1.35 1.05 280.0 1.3 1.0 0.0 0.7 0.6 0.5 0.4 22 23 WOUND N N N N 1.28 1.15 293.3 1.2 1.0 0.8 0.7 0.6 5 0.4 1.26 1.21 306.7 I. I 0.9 0.8 0.6 0.5 0.4 24 1.14 1.0 1.37 | 320.0 0.8 0.6 0.4 0.3 25 1.08 1.49 333-3 0.9 0.7 0.6 0.4 0.3 26 1.03 1.61 346.7 0.8 0.7 0.6 0.5 .4 0.3 0.3 27 0.98 1.74 360.0 0.7 0.6 0.5 0.4 3 0.3 28 0.93 1.87 373-3 0.7 0.6 0.5 0.3 29 0.89 2.00 386.7 0.6 0.5 0.4 3 0.3 30 0.84 2.14 400.0 0.6 0.5 0.4 0.3 250 300 lbs. 22 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 5-INCH HEAVY BEAM-40 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. I I.I I 13.3 2 2.2 2 26.7 Depth, 5 inches. 3 w 3 3.3 3 4 4.4 4 40 0 53.3 Width of flanges, 3 inches. 5 5.5 5 66.7 6 Thickness of stem, inch. 6.7 6 80.0 7 7.8 Area of cross-section, 3.90 8 8.9 square inches. 9 10.0 ΙΟ II. I II 12.2 100 lbs. 125 lbs. 150 lbs. Proper Distance, in FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQuare FOOT OF- 175 lbs. 200 lbs. 250 lbs. 5 4.87 0.07 66.7 19.5 15.6 13.0 II. I 9.8 7.8 6.5 67 4.05 0.10 80.0 13.5 10.8 9.0 7.7 6.8 5.4 4.5 8 3.02 3.46 0.14 93.3 9.9 0.18 106.7 9 2.67 0.23 120.0 7.9 6.6 5.7 4.9 4.0 3.3 7.5 6.0 5.0 4.3 3.8 3.0 2.5 5.9 4.7 4.0 3.4 3.0 2.4 2.0 10 2.39 0.28 133.3 4.8 3.8 3.2 2.7 2.4 1.9 1.6 II 2.16 0.34 12 13 1.97 0.41 1.80 0.48 146.7 3.9 3.I 160.0 3.3 2.6 2.2 2.0 1.6 1.3 2.6 2.2 1.9 1.6 1.3 I.I 173.3 2.8 2.3 1.8 1.6 1.4 I. I 0.9 14 15 1.66 0.56 186.7 2.4 1.54 0.64 1.9 1.6 .3 1.2 1.0 0.8 200.0 2.0 1.6 1.4 I.I 1.0 0.8 0.7 16 I.43 0.73 213.3 1.8 1.4 I.2 1.0 0.9 0.7 0.6 17 1.33 0.82 226.7 1.6 1.3 I.I 0.9 0.8 0.6 0.5 18 1.24 0.92 240.0 1.4 I.I 1.0 0.8 0.7 0.6 0.5 19 1.16 1.03 253.3 1.2 1.0 0.8 0.7 0.6 0.5 0.4 20 1.09 1.14 266.7 I. I 0.9 0.7 0.6 0.5 0.4 0.4 21 1.03 1.26 280.0 1.0 0.8 0.7 0.6 0.5 0.4 0.3 22 0.97 1.38 293.3 0.9 0.7 0.6 0.5 0.4 0.4 0.3 23 0.91 1.51 306.7 0.8 0.5 0.5 0.4 0.3 0.3 24 0.86 1.65 320.0 0.7 0.6 0.5 0.4 0. 0.3 25 0.82 1.79 333.3 0.6 0.3 0.4 0.3 26 0.77 1.93 346.7 0.6 27 0.73 2.08 360.0 28 0.69 2.24 373.3 ༠.5། 0.4 0.5 O.if 0.3 0.3 0.3 0.3 0.5 0.4 0.3 29 0.65 2.40 386.7 0.4 0.3 0.3 30 0.62 2.57 400.0 0.4 0.3 300 lbs. Length, in Feet. Weight, in Pounds. 23 Depth, 5 inches. Width of flanges, 24 inches. Thickness of stem, 4 inch. Area of cross-section, 2.96 square inches. Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 5-INCH LIGHT BEAM-30 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length in Inches. I 0.8 I ΤΟ 2 1.7 2 20 3 2.5 3 30 4 3.3 4 56 4.2 6 5.0 a si 5 6 ÷ 328 40 50 60 78 5.8 6.7 9 7.5 ΙΟ 8.3 II 9.2 PROPER DISTANCE, IN FEET, between Cen- TERS OF BEAMS, FOR LOADS, PER SQUare FOOT OF- 175 lbs. 200 lbs. 250 lbs. 300 lbs. in 5 3.85 0.07 50. 15.4 12.3 10.3 8.8 7.7 6.2 5.I 670 9 3.19 0.10 60. 10.6 8.5 7.1 6.1 5.3 4.2 3.5 8 2.38 2.73 0.14 0.18 70. 7.8 6.3 5.2 4.5 3.9 3.I 2.6 80. 5.9 4.8 4.0 3.4 3.0 2.4 2.0 IO 2.10 0.23 1.88 90. 4.7 3-7 3.I 2.7 2.3 I.Q 1.6 0.28 100. 3.8 3.0 2.5 2.2 1.9 1.5 1.3 I I 12 H 13 14 15 123+ in 1.70 0.34 IIO. 3.1 2.5 2.I 1.8 1.5 1.2 1.0 1.55 0.41 120. 2.6 2.1 1.7 1.5 1.3 1.0 0.9 1.42 0.48 130. 2.2 1.8 1.5 1.3 I.I 0.9 0.7 1.31 0.56 140. 1.9 1.5 1.3 I.I 0.9 0.8 0.6 1.21 0.64 150. 1.6 1.3 I.I I.O 0.8 0.6 0.5 16 1.13 0.73 160. I.4 I.I 1.0 0.8 0.7 0.6 0.5 17 1.05 0.82 170. 1.2 1.0 0.8 0.7 0.6 0.5 0.4 18 0.98 0.92 180. I.I 0.9 0.7 0.6 0.5 0.4 0.4 19 0.92 1.03 190. I.O 0.8 20 0.87 1.14 200. 0.9 0.7 100 t 0.7 0.6 0.5 0.4 0.3 0.5 0.5 0.4 0.3 0.3 21 0.82 1.26 210. 0.8 0.7 0.5 0.5 0.4 0.3 0.3 22 0.77 1.38 23 0.73 1.51 230. 0.6 220. 0.7 0.6 0.5 0.4 0.3 0.3 0.5 0.4 0.3 24 0.60 1.65 240. 0.6 0.5 0.4 0.4 0.3 25 0.65 1.79 250. 0.5 0.4 0.3 0.3 26 0.61 1.93 260. 0.4 0.3 0.3 27 0.58 2.08 270. 0.4 0.3 0.3 28 0.55 2.24 280. 0.4 0.3 0.3 29 0.52 2.40 290. 0.3 30 0.50 2.57 300. 0.3 24 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 8 125 lbs. 4-INCH HEAVY BEAM-37 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways, See page 32. Length, in Inches. Weight, in Pounds. I 1.0 I 12.3 2 2.0 2 24.7 Depth, 4 inches. Width of flanges, 3 inches. 3 3 4 3.I 3 37.0 4 4.I 4 49.3 56 5.1 5 61.7 6 6.1 6 74.0 Thickness of stem, inch. Area of cross-section, 3.66 To 7 7.2 8 8.2 square inches. 9 9.3 ΙΟ 10.3 II 11.3 Ibs. PROPER DISTANCE, IN FEET, BETWEEN Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- Square 150 175 lbs. 5 3.65 0.09 61.7 14.6 11.7 9.7 8.3 7.3 5.8 879 6 3.02 0.13 74.0 IO.I 8.1 6.7 5.8 5.0 4.0 3.3 2.59 0.17 86.3 7.4 5.9 4.9 4.2 3.7 3.0 2.25 0.23 98.7 5.6 4.5 3.7 3.2 2.8 2.3 2 4 2.5 I.9 9 1.99 0.29 III.0 4.4 3.5 2.9 2.5 2.2 1.8 1.5 10 1.78 0.36 123.3 3.6 2.8 2.4 2.I 1.8 1.4 I.2 II 1.60 0.43 135.7 2.9 2.3 1.9 1.7 1.4 I.2 1.0 12 1.46 0.51 148.0 2.4 1.9 1.6 1.4 I.2 I.O 0.8 13 1.34 0.60 160.3 2.0 1.6 1.3 1.2 1.0 0.8 0.7 14 1.23 0.70 172.7 1.7 1.3 I.I 1.0 0.8 0.7 0.6 15 1.13 0.81 185.0 1.5 1.2 1.0 0.9 0.7 0.6 0.5 16 1.05 0.91 197.3 1.3 1.0 0.9 0.7 0.6 0.5 0.4 17 0.98 1.03 209.7 1.1 0.9 0.8 0.6 0.5 0.5 0.4 18 Ο.ΟΙ 1.16 222.0 1.0 0.8 0.7 0.6 0.5 0.4 0.3 19 0.85 1.29 234.3 0.9 0.7 0.6 0.5 0.4 0.4 0.3 20 0.80 1.43 246.7 0.8 0.6 0.5 0.5 0.4 0.3 0.3 21 0.75 1.58 259.0 0.7 0.6 0.5 0.4 0.3 22 0.70 1.73 271.3 0.6 0.5 0.4 0.4 0.3 23 0.66 1.89 283.7 0.6 0.5 0.4 0.3 0.3 2 2 24 25 0.62 2.06 296.0 0.5 0.4 0.3 0.3 0.58 2.23 308.3 0.5 0.4 0.3 0.3 26 0.55 2.41 320.7 0.4 W N N N 27 0.52 2.60 333.0 0.4 3:3 0.3 0.3 28 0.48 2.79 345.3 0.3 29 0.45 3.00 357-7 0.3 30 0.43 3.21 370.0 0.3 200 lbs. 250 lbs. * 300 tbs. 4.9 Length, in Feet. Weight, in Pounds. 25 4-INCH LIGHT BEAM-30 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. I 0.8 I IO 2 I.7 2 20 Depth, 4 inches. Width of flanges, 234 inches. QSA UJ 3 2.5. 3 30 3.3 4.2 6 Thickness of stem, inch. 5.0 456 40 50 бо 7 5.8 Area of cross-section, 2.96 8 6.7 square inches. 9 7.5 ΙΟ 8.3 II 9.2 Distance between supports, in feet. Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. PROPER DISTANCE, IN FEET, BETWEEN Cen- ters of BEAMS, FOR LOADS, PER SQuare FOOT OF- 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. 76 36 78 5 2.99 6 2.48 0.09 50.0 12.0 9.6 8.0 6.8 6.0 4.8 0.13 60.0 8.3 6.6 5.5 4.7 4.I 3.3 2.11 0.17 70.0 6.0 4.8 4.0 3.4 3.0 2.4 ~ N 4.0 2.8 2.0 1.84 0.23 80.0 4.6 3.7 3.I 2.6 2.3 1.8 1.5 9 1.63 0.29 90.0 3.6 IO 1.45 0.36 | 100.0 2.9 21 2 2.9 2.4 2.3 1.9 +a 2.1 1.8 1.4 1.2 1.7 1.4 1.2 I.O II 12 1.31 0.43 I10.0 2.4 I.9 1.6 1.4 1.2 1.0 0.8 1.19 0.51 120.0 2.0 1.6 1.3 I.I 1.0 0.8 0.7 13 1.09 0.60 130.0 1.7 1.3 I.I 1.0 0.8 0.7 0.6 14 1.00 0.70 140.0 1.4 I. I 0.9 0.8 0.7 0.6 0.5 15 0.93 0.81 150.0 1.2 1.0 0.8 0.7 0.6 0.5 0.4 16 0.86 0.90 160.0 I.I 0.7 0.6 0.5 0.4 0.4 17 0.80 1.03 170.0 0.9 0.8 0.6 0.5 0.4 0.4 0.3 18 0.75 1.16 180.0 0.8 0.7 0.5 0.5 0.4 0.3 0.3 20 19 0.70 1.29 0.65 1.43 190.0 0.7 0.6 0.5 0.4 0.3 0.3 0.2 200.0 0.7 0.5 0.4 0.4 0.3 0.2 0.2 21 0.61 1.58 210.0 0.6 0.5 0.4 0.3 22 0.57 1.73 220.0 0.5 0.4 0.3 0.3 23 0.54 1.80 230.0 0.5 0.4 0.3 0.2 24 0.51 2.06 240.0 0.4 0.3 0.3 25 0.48 2.23 250.0 0.4 0.3 0.3 0.2 26 0.45 2.41 260.0 0.3 WNUN 27 0.42 2.60 270.0 0.3 28 0.40 2.79 280.0 0.3 29 30 0.35 3.21 0.37 3.00 290.0 300.0 0.3 26 4-INCH EX. LIGHT BEAM-18 LBS. PER YD. This Table applies only to Beams Secured against Yielding Sideways. See page 32. Length, in Inches. Weight, in Pounds. I 0.5 I 6.0 2 1.0 Depth, 4 inches. 3 1.5 2 3 12.0 18.0 4 2.0 Width of flanges, 2 inches. 56 2.5 Thickness of stem, inch. 3.0 Area of cross-section, 1.77 78 7 3.5 8 4.0 square inches. 9 4.5 ΙΟ 5.0 II 5.5 Distance between supports, in feet, Safe uniformly dis- tributed load in tons of 2000 lbs. Deflection in inches under this load. Weight of beam, in pounds. 100 lbs. 125 lbs. 150 lbs. 175 lbs. 200 lbs. 250 lbs. 300 lbs. PROPER DISTANCE, IN FEET, Between Cen- TERS OF BEAMS, FOR LOADS, PER SQUARE FOOT OF- 45 2.24 0.06 24 II.2 9.0 7.5 6.4 1.79 0.09 30 7.2 5.7 4.8 4.I 53 5.6 4.5 3.7 3.6 2.9 2.4 670 I.49 0.13 I.27 0.17 I. II 0.23 48 ao 0.98 0.29 ΙΟ 0.87 0.36 II 0.79 0.43 12 0.72 0.51 13 0.66 0.60 14 0.60 0.70 15 0.56 0.81 oovy a gun AOA W 36 5.0 4.0 3.3 2.8 2.5 2.0 1.7 42 3.6 2.9 2.4 2.1 1.8 1.5 1.2 2.8 2.2 1.8 1.6 1.4 I. I 0.9 54 2.2 1.7 1.4 I.2 I.I 0.9 0.7 60 1.7 1.4 1.2 1.0 0.9 0.7 0.6 66 1.4 I.I 1.0 0.8 0.7 0.6 0.5 72 1.2 1.0 0.8 0.7 0.6 0.5 0.4 78 1.0 0.8 0.7 0.6 0.5 0.4 0.3 84 0.9 0.7 0.6 0.5 0.4 0.3 0.3 99 0.7 0.6 0.5 0.4 0.4 0.3 0.2 17 19 20 8gཟུ5 16 0.52 0.91 96 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.48 1.03 102 0.6 0.5 0.4 0.3 0.3 0.2 0.2 18 0.45 1.16 108 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.42 1.29 114 0.4 0.4 0.3 0.3 0.2 0.2 0.39 1.43 120 0.4 0.3 0.3 0.2 0.2 0.2 21 0.37 1.52 126 0.3 22 0.34 1.73 132 0.3 23 0.32 1.89 138 0.3 24 0.30 2.06 144 0.3 25 0.29 2.23 150 0.2 Length, in Feet. Weight, in Pounds. 27 SETTING AND CONNECTING BEAMS. Beams for floors with brick arches should have a bearing on wall of about eight inches. The distance apart of the beams should not exceed 5 feet. Tie-rods from 5½ inch to 7 inch diameter are ordinarily em- ployed to take the thrust of the brick arches, and to add to the security of the floor. These may be spaced from eight to ten times the depth of the beam apart, and the holes for them are usually punched at the center of the depth of the beam. Fig. I. Fig. II. Fig. 1 shows a fire-proof floor, as ordinarily constructed, with brick arches leveled up with concrete, having wooden strips bedded in the concrete to receive the flooring nails. Fig. II shows a convenient form of center for laying the brick arches. When beams are used to support walls, or as girders to carry floor-beams, they are often placed side by side, and should in this case be furnished with cast-iron separators fitting between the flanges, so as to firmly combine the two beams. These sep- arators may be placed about the same distance apart as the tie- rods. Such an arrangement is shown by Figs. VIII. and XI., Figs. VI. and X. showing forms of separator usually employed, that with two bolt holes being used for the 12 and larger beams, and that with single hole for smaller sizes. When beams are required to be framed together, it is usually done as shown by the accompanying cuts, in which Fig. VII. shows two beams of the same size fitted together. Fig. IV. shows a beam fitted flush with the bottom flange of a beam of larger size. Fig. III. shows a smaller beam fitted to the stem of a larger beam, above the lower flange. Wooden beams may be secured to an iron girder in the same manner as an iron beam, by framing the end and securing it by an angle bracket, or an angle iron may be riveted to the web of the iron girder to afford a flat bearing on which the wooden beam may rest. See Fig. IX. * 18 Fig. III. Fig. IV. Fig. V. Fig. VI. Fig. VII Fig. IX O Fig. VIII. Fig. X. Fig. XI. 29 WEIGHTS OF SEPARATORS AND BOLTS FOR GIRDERS. Beams close (" to " apart at flanges). Beams spaced 12" across flanges. SIZE OF Beam. Weight of Sep- arator in lbs. Length of Bolts inside of head to point in ins. Weight of 34" Bolts in Ibs. Weight of Sep- arator in fbs. Length of Bolts inside of head to point in ins. Weight of ¼" Bolts in lbs. 20" Heavy, • 1734 20" Light, 16½ 15" Heavy, 15" Light,. 15" 9" 8" 8" 6" 6" 6" 5" Heavy, Light,. Heavy,. • Ex. Light, 121/4" Heavy, 12" Light,. 120 lbs., 12/ I2" 96 lbs., 10½" Heavy,. 10½" Light,. Io½" Ex. Light, Ex. Heavy, Heavy,. Light,. 9' 9" 7" 6" • Heavy, Light, 120 lbs., 90 lbs., • 1234 ΙΙ 1214 12 IO 1014 104 7/2 634 • 5/2 5 4 • 5 3/4 7906 NO NO 1O 1O 1ONO NO NO IS IS 76 75o in in & Cn in 7/2 \ \ 812 2 bolts-3 2 bolts-23 7/2 2 bolts-23 1234 7/2 612 2 bolts-2 15 81 6½ 2 bolts-2% 15 74 2 bolts-234 12 8 614 I bolt -I 14 7 138 12 73/4 2 bolts-234 2 bolts-3 2 bolts-3 2 bolts-3 1 bolt -1/2 I 6 " I 8 4. 612 6 II 9 814 "" C I II 834 1 II 853 CE I 934 87 14 IO 835 I 10½ 91/ 53 I 7 83 ་ ་ C C 5 I I 63 < I 6% 44 I I 74 73% 44 CC I 8 ΙΟ 44 6% 10% FITTINGS FOR ENDS OF FRAMED BEAMS. I I SIZE OF BEAM. Fittings required. Weight of Fittings. SIZE OF Fittings required. ВЕЛМ. Weight of Fittings. 20". 2 Ls, 4″ 4"X12"X} 24 Ibs 7" & 6″ 9, " bolts,. 2 LS, 4 6,3" bolts, 4 8 lbs 4 30 lbs 12 tbs 15". 2 Ls, 4"X4" 9," bolts,. 18 tbs 5" • 2 LS, 4"X4″X3}″ X 1″ 7 lbs 6 3,3" bolts,. 2 24 tbs 121" to 9" 2 Ls, 4″X4″X7″×3″ | 14 Is 4″. 6,3" bolts + 18 lbs 8" 2 Ls, 4 6,3" bolts,. 4" 12 tbs 4 9 ths 2 Ls.4"X4"> 2 Ibs 3,3" bolts,. 71 Ibs 16 lbs Fig. V. shows a common common form of anchor, another being shown in Fig. VII. Weight of anchors, 3 to 6 lbs. each. 30 When the width of a floor is too great to admit of its being carried by beams of a single span, it is usual to divide the space into two or more spans by girders resting on columns, if these can be introduced. This method of construction will usually reduce the quantity and cost of the iron required, by permitting much lighter beams to be used. 3 For example, a floor 28 ft. in the clear by 60 ft., calculated for a load of 150 lbs. per sq. ft., would require, if carried by beams of a single span, 15-inch light beams, spaced 4 ft. apart, and if no beams were used immediately against the walls, to support the first arches, there would be required 13 of them, which, allowing 9 inches for bearing at each end, would weigh 1,475 lbs. each, or, in all, 19,175 lbs. If two columns were introduced, carrying a line of girders, dividing the space into two spans of 14 ft., then 24 light 8-in. beams, each 14 ft. 9 inches long, spaced 4.6 ft. apart, would be sufficient for the flooring. The columns being 20 ft. apart, the girders would have to sustain on each span a load of 20 ft. X 14 ft. X 150 lbs. 42,000 lbs., for which a pair of 15-in. light beams would be ample. The weight and cost of this structure would be, say— 7,669 lbs. 8-inch light beams, 6,150 lbs. 15 inch light beams, 13,819 lbs. @ 4 cents per lb., 50 lbs. bolts and separators for ditto, 1,400 lbs. two cast-iron columns 6/ diameter 34/ thick, 15 ft. high, 3 cents per lb., 15,269 With beams of single span, as above, 19, 175 lbs., @4 cents, $552.76 2.00 42.00 $596.76 767.00 This con- Girders are sometimes formed by riveting beams to- gether by their flanges, one on top of the other. struction is not an economical one, because the large body of metal in the flanges that are riveted together is brought at or near the neutral axis of the girder where it is almost totally ineſ- fective. Girders formed of two beams so riveted together are 1.35 times, and those formed of three beams 1.78 times, as strong as the same number of beams not riveted together. Girders should not be propped up during the building of the walls they are to carry, as it is only by acquiring their proper deflection, that they can exert the upward pressure neces- sary to support the load. If sustained by a prop, deflection will occur when it is removed, and the wall be cracked. The beams used should be of such depth that their deflection will come within allowable limits. If, from the absence of openings, the wall, when dry, will be partly self-supporting, a girder may be used which will support only a portion of the weight. In this case, after so much of the load as it is to support has been placed upon it, but not till then, the girder should be propped until the mortar has set. 31 The rule by which this table is calculated will of course apply to beams of any span, and is as follows: RULE.-Multiply the coefficient for strength in Column II. of the table on page 40, by the number given in Column V., headed "Correction for Lateral Deflection," and divide the pro- duct by the number in Column V., plus the square of the span taken in feet; this quotient divided by the span in feet will give the safe load in pounds, unless this result should be greater than the maximum load given in Column III., which must in no case be exceeded. in Feet. Span, Heavy. 15 inch Light. 15 inch Heavy. ¡ 12 inch Light. 12 inch | Heavy. 10½ inch Heavy. Extra 9 inch Light. Extra 10½ inch Light. 10½ inch 9 inch 6 Heavy, Light. inch ΟΙ 30.84 23.88 SI 24.43 18.00 Supported,. Unsupported, Supported,. 30.84 24.80 25.27 | 18.64 | 16.14 | 12.83 15.42 10.27 13.19 9.81 8.23 22.53 16.12 11.94 10.27 11.08 8.20 6.63 19'91 12.25 11.66 9.27 8.11 8.62 6.42 5.39 Unsupported, 19.37 13.55 13.00 9.00 8.63 6.53 5.67 5.98 4.42 3.45 20 Supported,. 18.03 13.27 12.20 9.01 8.55 6.80 5.95 6.28 4.69 3.94 25 Unsupported, Supported,. 12.20 8.29 8.07 5.40 5.18 3.80 3.29 3.42 2.53 16.1 14.13 otor 9.51 7.02 6.64 5.28 4.62 4.84 3.63 3.05 Unsupported, 7.92 5.22 5.14 3.31 3.16 2.26 1.95 1.95 1.46 1.06 10 Supported,. Unsupported, 8.27 6.64 7.01 5.35 15 Supported,. 5.40 4.34 Unsupported, 3.80 2.78 20 Supported,. 3.93 3.16 Unsupported, 2.20 1.52 25 Supported,. 3.03 2.43 Unsupported, 1.27 0.82 હું . 3.76 3.06 2.40 2.85 2.14 1.71 2.43 1.99 1.39 0.97 1.75 1.43 0.69 0.45 0.98 0.45 0.93 0.56 0.42 0.16 0.65 0.39 0.16 0.04 1.45 0.87 Span, in Feet. Heavy. 8 inch Light. 8 inch 7 inch. Heavy. 6 inch Light. 6 inch Heavy. 5 inch Light. 5 inch Heavy. 4 inch Light. Extra + inch Light. 4 inch BEAMS UNSUPPORTED SIDEWAYS. The foregoing tables are calculated on the assumption that the beams are secured against deflection sideways by filling in between them with brick arches, or in any other suitable man- ner. Beams unsupported sideways, of any considerable length, are liable to fail under a much lighter load by yielding laterally. The following table gives a comparison of the loads which will be supported safely in either case for each five feet of span: 32 STRENGTH OF BEAMS BY ACTUAL TEST. The figures given in the foregoing tables, for the strength and deflection of wrought-iron beams, have been obtained by cal- culation from the depth and form of section of the beams and the known strength of wrought iron, in the manner described later under the head "Moments of Inertia and Resistance, and Radius of Gyration for various Sections, and their Use, in the Formulas for Strength of Columns and Girders." Our beams have, however, been subjected to actual tests, to prove the correctness of the calculated strength, and in the fol- lowing table a few of the results, selected at random from a large number of trials made at our works by a U. S. Govern- ment engineer, are given, and show clearly that the figures given in the tables are well within the actual strength of the beams. Thus it will be seen from the column headed "Ratio of actual to safe load," that the beams bore, before breaking, a load from 4.3 to 6.5 times that given in the tables as the safe load, showing obviously an ample margin of safety. The column headed "Limit of Elasticity" gives the load at which the beam began to be permanently bent by the strain put upon it, and, as appears in the last column, this load varied from 2.7 to 4.2 times the safe load. The results given for the 15-inch light beam are the mean for two beams tested. They showed no signs of breaking with the maximum load applied, but could not be loaded further, as they had deflected so that one of them touched the ground. In test- ing these beams, a load equal to twice the safe load was first applied and allowed to remain on the beams 23 days; during this time the deflection increased from .98 inches to 1. 12 inches. The load was then increased up to three times the safe load, and allowed to remain 15 hours, in which time the deflection increased from 2.01 to 2.09 inches; the load was then increased to 90,000 lbs., with a deflection of 2.7 inches, which, after 18 hours, had increased to 2.77 inches. The load was allowed to remain on the beams 15 days, when it was removed. TESTS OF TRENTON BEAMS. Size of Beam. Clear span, in feet. 6" Light, 12. At center. 2,608|11,000 4.3 Failed. .27 .30 7,000 2.7 6" Light, 11.93 At center. 2,624 17,000 6.5 Failed. .27 .15 11,000 4.2 9" Heavy, 14.93 At center. 6,330 32,000 5.1 Failed. .28 .16 22,000 3.5 15" Light, 21. (See *) 25,188 90,000 3.6 (See †) .42 *Uniformly distributed. ·36 † Deflected 2.7 inches, but not broken. 33 If the load on the beams is not uniformly distributed, but applied in some other manner, or if the beam is not sup- ported at both ends, or extends over more than one span, the proportion of allowable load and the resulting deflection to those given in the tables will be as stated in the following cases: Case I. W Safe Load that given in the preceding tables Y Deflection C X 3.2 Case II. Safe Load that given in the preceding tables X Deflection Case III. W X 2.4 Safe Load = that given in the preceding tables X ½ Deflection = C X.80 34 Case IV. W W B Each load that given in the preceding tables L C 8 B 6-8 () Deflection that given in the preceding tables 5 -A- Case V. W B _______ Safe Load that given in the preceding tables The distance of point of greatest deflection tion from the further bearing is Call this distance D, then L2 2 SAY B L - B3 V 3 Deflection that given in the preceding tables X 3.2 D3 AX L2 3447 W Case VI. L L- Safe Load on each span that given in preceding tables for span L. Deflection CC - .416 X Load on each end abutment << 3% that on each span L. Load on center pier 14 that on each span L. C (W) L Case VII. (W) L Safe Load on each span = that given in preceding tables for span L. Deflection 467 that given in preceding tables for span L. Load on each end abutment that on each span L. Load on center pier 13% that on each span L. W -L- Case VIII. W W L- L- Safe Load on each span L= 14 times that given in preceding tables for same span L. Deflection with this load in end spans = .661 X that given in preceding tables. Deflection with this load in center span = .05 X that given in preceding tables. Load on each end abutment of that on each span L. T Load on each intermediate support of that on each span L. 348 Case IX. W (W) (W) -L- ·L- L- = Safe Load on each span that in preceding tables for span L. Deflection under this load in end spans = .6286 X that in preceding tables. Deflection under this load in center span .1143 that in preceding tables. Load on end abutments of that on each span L. 20 Load on each intermediate support = 23 of that on each span L. The loads on the girders and supports, when the beam is con- tinuous over more than one span, given in Cases VI to IX, will be as stated only when the bearings are strictly in one horizon- tal line, and the beam bears firmly on each before any load is applied. If even slight settling occurs in any point of support, the loads will be very materially altered, and cannot well be estimated. In such cases it will probably be better to divide the beam at each intermediate support, letting each portion take its own share of the load. EXAMPLE.-A load of 6 tons is to be supported at a distance of 7 feet from one support of a beam having 20 feet clear span; what size beam is required? Here L2 8 AX B (see Case V) 400 8 7 13 .55. The load to be supported, 6 tons, must therefore be not more than 55 per cent. of the safe load given in the tables for a beam having 20 feet span, which, therefore, must be not less than II tons. A 1244/ 170 lb. or 15 150 lb. beam will therefore be required. 35 To find the pressure on each bearing of a beam sup- ported at both ends. If the load is either uniformly distrib- uted, applied at the center of the beam, or symmetrically divided on each side of the center, the pressure will, of course, be the same on both bearings, and equal to one-half the entire load. If the load be not evenly situated with reference to the two bearings, then divide each load by the length of the beam and multiply by the distance from its center of gravity to either bearing. The quotient will be the portion of its weight which comes on the other bearing. EXAMPLE.-What will be the weight on each bearing pro- duced by a beam loaded with a load of five tons, and one of four placed thus? <4FI> er 5 20-FT K-8-FI B 4 520.25 420 .20 .25 X 4 I weight on B. .20 X 12 66 2.4 .25 X 16 = 4 .20 81.6= X weight on A. " 3.4 total weight on B. 5.6= total weight on A. The weight on both bearings = 3.4+5.69 tons, which equals, as it should, the entire weight of the two loads. The greatest bending strain on a girder supported at both ends and loaded with a number of loads will occur at the point where the sum of the loads occurring from one end of the girder to, and including that point first equals the press- ure coming on the bearing at that end. The amount of the bending strain at any point on a girder supported at both ends and loaded with any num- ber of loads may be found by the following rule: Multiply the pressure coming on one bearing by the distance in feet of the point in question from that bearing, and from this product subtract the product of each load occurring between these two points, multiplied by the distance in feet of its center of gravity from the point at which the bending strain is sought. To ascertain the size of beam required to sustain the strain thus found, multiply the result just obtained by 8, and take the beam whose coefficient for strength (Col. II., pp. 40, 42,) is nearest to and exceeds this product. These coefficients are, it should be observed, for loads expressed in pounds, and the strain on the beam must be also so expressed. 36 For a riveted beam proceed as directed in "Use of Tables," p. 44, using the product above found by multiplying by 8, in place of the product of a uniformly distributed load by the span, and observing that in this case the load should be taken in tons of 2,000 lbs. The EXAMPLE. In the case supposed in the previous example the greatest bending strain would occur at the load of four tons, because the load of five tons is not equal to the pressure on the bearing A, which was found to be 5.6 tons, and we must therefore go on till we come to the load of four tons before the total amount of load equals the pressure on the bearing. same result would be obtained if we started at the other end, the four-ton load being the first reached, and being as great as the load on the bearing B, which is 3.4 tons. Then the bend- ing strain at this point will be the pressure on A, 5.6 tons X 12 feet, less the load 5 tons X8 feet, 27.2. The same result would be reached if we consider the other end of the beam, for the pressure on B 3.4 tons X8 feet 27.2. This product, 27.2, multiplied by 8, gives 217.6 tons, or 435,000 lbs., which is nearest to the coefficient for strength given for a 12 heavy beam, viz., 511,000 lbs., and this would, therefore, be the beam required for this case. If a riveted beam were to be used, its dimensions would be obtained from the tables, pp. 45, 46, using the number 217.6 as the product of span and load. In a girder supported at one end only the greatest bend- ing strain occurs at the bearing, and is equal to the sum of the products of each load by the distance of its center of gravity from the bearing. This sum must, as in the previous case, be multiplied by eight to conform to the quantities given in the tables. To find the center of gravity of a number of weights. Multiply each weight by the distance of its center from any given point; add these products together and divide the sum by the sum of all the weights. The quotient will be the distance of the center of gravity of the group from the point from which the several distances were measured. EXAMPLE. Find the center of gravity of weights placed thus: |--5--->|<-------| 8000 8000 5000 6000 Measuring from the first load at the left we have 8000 X 5+ 5000 X 19 + 6000 X 23=273,000; 2720000 = IO. II Therefore the center of gravity is 10.11 feet from the left-hand load of 8,000 lbs. 37 --- A case frequently occurs in which a number of loads con- nected together at a fixed distance apart, as, for example, the wheels of a train of cars, may occupy any position along its length. In this case it is important to determine in what posi- tion the strain on the girder will be greatest. The position in which a number of loads spaced a given distance apart will produce the greatest bending strain on a girder will be that in which the distance from one end of the girder to the center of gravity of the group of com- bined loads is equal to the distance of the point where the bending.strain is greatest from the other end of the girder. Or when the point of greatest bending strain and the center of gravity of the loads are at an equal distance on either side of the center of the girder. EXAMPLE.—If loads, spaced as in the foregoing example, are applied to a girder, in what position will they produce the greatest strain? The center of gravity of these loads was found above to be 10.11 ft. from the left-hand load. The greatest bending strain will occur at the second load of 8,000 lbs., the distance between which and the center of gravity of the group is 5.11 ft. Therefore the greatest strain upon the girder will be produced when the second load of 8,000 lbs. is half of 5.11 ft. or 2.55 ft. to the left of the center of the girder. <--10---H' о 8000 8000 Greatest Bending Strain. Center Line of Span. Center of Gravity of Loads. о 5000 6000 In the case of two equal loads, the center of gravity of the pair being midway between them, the greatest bending strain will occur when one of the loads is on the opposite side of the center of the girder from the other, and at a distance from the center equal to one-fourth the distance apart of the loads. SUDDENLY APPLIED LOADS. A load suddenly applied to a beam produces a strain just double that caused by the same load at rest upon the beam. If the load is not only suddenly applied but falls upon the beam from a certain height, then the uniformly distributed load, W, which would produce the same strain on the beam as the 38 falling body (supposing the blow not to be so great as to perma- nently bend the beam), may be found as follows: Let G the weight that falls upon the beam, in tons of 2,000 lbs. M the weight in tons of the beam itself, together with the weight of brick arches and flooring which it supports whose combined mass tends to deaden the force of the blow. h the height of fall in inches to the level of the top of the beam. d the deflection of the beam in inches under its safe uniformly distributed load, as given in the tables pp. 6-27. S safe distributed load for the beam the co-efficient for strength given in Col. II. of the table, p. 40, divided by 2,000 to express it in tons, and divided by the clear span of the beam in feet. Then W-2GV 1¼ h S I +1+M+2 G d G + ½ M The load W thus found should of course not exceed the safe load for the beam S. If it is greater than this, stronger beams must be provided. EXAMPLE. A floor composed of 9' 70 lb. beams of 15 ft. clear span, placed 3 ft. apart, with brick arches and concrete weighing 70 lbs. per sq. ft., is liable to shock from pieces of half a ton weight falling one inch in handling. Will these beams be of sufficient strength, supposing no other load to rest at the same time on the beam struck? Safe distributed load S Deflection d=.35. 5.57 tons. Falling Weight G= ½ ton. Height of fall h = 1''. Mass of beam and flooring M 15 X 3X 70 +350 1.75 tons. 2,000 Then by the above formula the load W will be equal to 6.68 tons, which exceeds the safe load S. Repeating the calculation, supposing 10½ 105 lb. beams to be used, we find the load on the beam to be equal to 8.14 tons, while the safe load for this size beam is 9.53 tons. The strain therefore would in this case be within the limits of safety. Were the case that of a 10½ beam alone without brick arches, the load due to the blow would be equal to 9.13 tons, whence it appears that the naked beam would be more strained by the falling body than would the same beam if sustaining dead weight to deaden the blow, notwithstanding the strain already on the beam due to this weight. The formula will enable us to ascertain up to what limit this is true. Of course, when the dead load is already all that the beam can carry, its presence will not allow of the additional strain due to impact. 39 TRENTON ROLLED I BEAMS. I. DESIGNATION OF BEAM. Yard, in Pounds. Weight per II. III. IV. V. VI. | VII. VIII. | | IX. X. XI. Strength as Strut. Co-efficient for Strength in Pounds. Maximum Load in Pounds. Addition to Co-efficient for increase I of 1 lb. per ft. in Weight of Bar. for Lateral Deflection. Correction Side- Edge- Flanges. ways. ways. Areas, in square inches. Web. Total, pendicular cident with Area. Moments of Inertia. XII. Axis per- Axis coin- to Web at Center. Center Line of Web. " " " " " 20 inch Heavy, 20 15 15 15 124 1214 272 1,320,000 94,300 8,000 1,213 427 15,168 13.45 13.75 27.20 1,650.3 46.50 Light, . 200 990,000 55,000 8,000 979 333 15,500 9.97 10.00 19.97 1,238.0 26.62 Heavy, 200° 748,000 62,300 6,050 882 343 8,830 10.95 9.07 20.02 707.1 27.46 Light, 150 551,000 50,100 6,076 705 256 8,702 7.45 7.59 15.04 523-5 15.29 Ex. light, 125 460,000 41,800 6,050 714 235 8,785 6.01 6.35 12.36 434.5 11.64 Heavy; 170 511,000 51,100 4,924 835 382 5,832 9.38 7.39 16.77 391.2 25.41 Light, 125 377,000 37,700 4,900 645 235 5,777 6.58 5.75 12.33 288.0 11.54 " 12 120 lbs., 120 375,000 31,250 4,800 897 357 5.995 7.05 4.68 11.73 281.3 16.76 " 12 96 306,000 21,850 4,800 792 308 6,056 5.62 3.84 9.46 229.2 11 66 10% Heavy, 135 360,000 32,700 4,200 603 300 4,372 8.43 4.93 13.36 233.7 15.80 10½ Light, 105 286,000 26,000 4,200 555 230 4,445 6.51 3.93 10.44 185.6 9.43 10½ 116 Ex. light, 99 250,000 20,800 4,200 543 229 4,000 5.62 3.28 8.90 164.0 8.09 " 9 8 6 aaax 00 70 06 Ex. heavy, 125 268,000 33,500 3,600 535 227 3,015 7.20 5 13 12.33 150.8 11.23 " Heavy, 85 199,000 24,900 3,600 520 216 3,290 5.12 3.38 8.50 111.9 7.35 " Light, Heavy, Light, • 70 167,000 18,500 3,000 421 175 3,353 4.39 2.70 7.00 93.9 4.92 80 168,000 18,700 3,200 566 240 2,602 5.07 2.96 8.03 83.9 7.55 65 135,000 16,900 3,200 423 180 2,632 3.97 2.40 6.37 67.4 4.55 " 6 " " " 5 55 lbs., 120 " 99 Heavy, Light, Heavy, 55 101,000 15,500 2,800 396 177 2,011 3.40 2.10 5.50 44.3 3.90 I 20 172,000 24,000 2,400 808 393 1,375 8.09 3.75 11.84 64.9 18.59 go 132,000 19,000 2,400 681 310 1,431 5.70 3.00 8.70 498 10.78 50 76,800 12,800 2,400 324 14 1 1,475 3.11 I 80 4.91 29.0 2.74 49 62,600 10,400 2,400 239 102 1,452 2.5་ 1.50 4.01 23.5 1.61 • 40 49,100 9,820 2,000 261 199 986 2.34 1.56 3.90 15.4 1.68 40 TRENTON ROLLED I BEAMS. I. 11. III. IV. V. VI. VII. VIII. | IX. X. XI. XII. Strength as Strut. Areas, in square inches. Moments of Inertia. Weight per Yard, in Pounds. Co-efficient for Strength in Pounds. Maximum Load in Pounds. Addition to Co-efficient for increase of 1 lb. per ft. in Weight of Bar. for Lateral Deflection. Correction Axis per- Axis coin- Side- ways. Edge- ways. Flanges. Web. Total Area. pendicular to Web at Center. cident with Center Line of Web DESIGNATION OF BEAM. 5 4 " 4 inch Light, " 30 38,700 9,675 2,000 218 87 996 1.79 I 20 2.99 12.I 1.04 Heavy, 37 36,800 9,200 1,600 263 121 634 2.41 1.25 Light, 3 66 9.2 1.74 ვი 30,100 7,250 1,600 215 96 644 1.91 1.00 " 4 2.91 Ex. light, 7.5 IS 18,000 6,000 1,600 113 36 639 1.02 .75 1.77 114 " Steel, 45 5/4 2,160 1,610 625 71 33 65 .37 .15 .52 .135 I.I I .31 .069 STEEL BEAMS. Steel beams have from 20 to 50 per cent. higher ultimate strength than iron, according to the quantity of carbon in the steel. They have, however, the same deflection as iron beams; hence, when the size of the beam is determined by the allowable deflection, the same beams must be used, whether of steel or iron. 40 a 15 " 15 1:4 12 10% IO DESIGNATION OF BAR. The data given in this table are for the minimum weight of the bar. inch Heavy Channel, Light Heavy Light Light " " Heavy 38 Light " " Light " 8 Ex. Light * 2 2 NN NWNNW 44 in inches. Width of flange, Thickness of Stem, in inches. II. for increase of 1 ft. per TRENTON DECK BEAMS. CHANNEL AND STRUT STRUT BARS. 1. Weight per Yard in lbs. | | Coefficient Coefficient | for transverse IV. VI. VII. X. XI. XII. XIII. XIV. Addition to Strength as Strut. Moments of Inertia Addition in] Distance in Area of Cross-Sec- about Neutral Axis. inches to thickness inches of neutral axis Min. Max. Strength in lbs. foot in Side- Edge- tion in Square Weight of ways. ways. Horizon- inches. Vertically. Bar. tally. of web for cach lb. Yd incre'se of weight. per parallel with web from back of bar. 190 230 625,000 6,000 428 7.762 18.85 586.0 32.25 .0066 1.26 120 195 401,000 6,000 301 7,833 12.00 376.0 14.47 .0066 0.95 .68 140 178 381,000 .4,900 317 5,170 14.10 291.6 17.87 .0082 I.120 33 70 140 200,100 4,900 180 5,470 7.00 153.2 5.04 .0082 0.755 бо 105 134,750 4,200 160 3.685 6.00 88.4 3.84 .0094 0.628 48 92 102,500 4,000 115 3.358 4.77 64.0 2.20 .0099 0.565 43 70 100 146,000 3,600 190 2,925 7.02 82.1 5 35 .OIII 0.85 -33 50 77 104,000 3,600 124 2,892 5.08 58.8 2.53 .OIII 0.63 .26 45 74 .20 33 62 " 7 Light " 7 Ex. Light " 2 * 36 .20 25½ 46 6 " Heavy .40 45 6 6 S Light .28 33 54 " Ex. Light Ex. Light .18 22% 45 " .20 10 34 " 4 Ex. Light " .20 16½ 29 28 798 34 20 $8,95 3.200 1.42 2,480 4.48 44.5 2.54 .0125 0.76 65,800 3,200 100 2.493 3.30 32.9 1.44 .0125 0.58 62,000 2,800 136 1,883 3.60 27.1 1 96 .0143 0.715 39.500 2,800 82 1,700 2.54 17.3 .83 .0143 0.511 66 58,300 2,400 123 1,257 4.32 21.7 2.12 .0167 0.725 45,700 2,400 101 1,343 3.20 17.2 1.30 .0167 0.63 33,680 2,400 77 1,493 2.25 12.6 .70 .0167 22,800 2,000 57 930 1.92 7.2 .44 .0200 15,700 1,600 49 597 1.65 3.9 .32 .0250 0 54 0.464 0.46 16 3 Ex. Light .20 15 25 10,500 1,200 SI 341 1.45 2.0 .29 .0333 0 51 5 5 " STRUT BARS inch Heavy, Single Bar, Light, DECK BEAMS. 3 inch Deck Beams, 7 16 222222222 11,900 2,000 48 433 2.15 3.7 .41 .0200 9,100 2,000 44 457 1.55 2.8 .27 .0200 . 42 4/2 .38 ما نانا نان نان 65 55555555 91,800 3,200 147 2,177 629 54.7 63,500 2,800 168 1,640 5.35 35.1 نیا نیا 3.7 .6125 3.6 .0143 41 Designation of Bar. Thicknesses rolled. Designation of Bar. Thicknesses rolled. Weight per foot in lbs. TRENTON ANGLE BARS. I. EVEN LEGS. II VI. X. XI. BARS ROLLED TO LEAST THICKNESS. Coefficient for transverse strength in lbs. Strength as Strut. Area of cross- section in ". Moment of in- ertia about neutral axis. Distance of neutral axis from base of L in ins. 6" X 6" ½ to % 19 to 322 36900 865 5.75! 19.91 1.685 42" X 42' fo to 3% 12½ to 20% 18000 480 3.75 7 20 1.286 4 % to 34 92 to 18 12184 381 2.86 4.36 1.138 32 X 3% to 814 to 142 9200 288 2.48 2.86 1.013 3" X 3' to H 4.8 to 12¼ 4611 216 1.44 1.24 0.842 234" 234" to fo 5.4 to 9% 4710 177 1.62 1.15 0.802 I I 25/火​2% 2½" 21" 21/" 13/4" to fo to 6 13 to 14 1/8 to 1/4 1/4 to 1/½ 3.9 to 7 3156 148 1.19 0.70 0.717 to 3% to 6 2530 119 1.06 0.50 0.654 to 3% 234 to 4% 2 to 134 to 234 4432 1752 94 0.83 0.3T 0.580 32 1150 72 0.62 0.18 0.507 832 52 9.53 0.11 0.444 8 I to 1% 393 37 0.30 0.044 0.358 34 to 1% 246 23 0.23 0.022 0.296 7/8" X 7/8" 1/8 18 to 16 .6 to I 186 17.5 0.20 0.014 0.264 3/4" X 3/ 3/4" 1/8 La to 18 to .8 133 12.5 0.17 0.009 0.233 Weight per foot in hs. I. Coefficient for strength in lbs. transverse Strength as Strut ". Area of cross- section in Moment of in- ertia about neutral axis. UNEVEN LEGS. II. VI X. XI. BARS ROLLED TO LEAST THICKNESS. Distance of neutral axis from base of Lin ins. 6" x 4" X4" 1 to 34 14 to 23 5" x 32" to 34 10.2 to 19½ 42"X3" 3% to 5% 9 to 142 30680 923 14750 335 18353 638 9651 261 14580 513 7020 186 3.05 2.67 5.49 1.49 4.18 4' " 15.46 |1.964, 6″ way. 56 0.964 7.78 1 61 5" 3.19 0.86 3½" 1.98 0.74 4" X 3" to 1 7 to 14½ 32"X3" to to 15.2 to 13.3 9850 403 5871 197 6180 316 2.00 1 1.56 4710 209 3½"X12" 4" 5515 316 4.0 1148 35 1.19 3" X 22" 4 to 4% to 9½ 4490 223 1.31 3233 142 3.37 1.26 1.640 76 1 91 1.035 1.30 0.785 3 1 50 1.32 32 0.17 0.32 I L 1.17 0.91 3' 0.74 0.66 " " 42 "" 4' 4" "" // 3 "" 32 " " 3" X 2" 32 to ½ 3.5 to 7½ 3833 231 1850 82 | 1.05 $ 0.97 0.98 3′ 0.35 0.48 2" bars so held as that For two bars placed The figures in Columns II., VI. and XI. are for bending will occur in the direction of one flange back to back, the quantities in Columns II., X. and XI. would be doubled, but those in Column VI. remain constant. For thicker bars the figures in Column VI. remain nearly constant, while those in other columns increase nearly as the thickness. 42 Designation of Bar. Thickness rolled. TRENTON TEE BARS. I. II. VI. X. XI BARS ROLled to Least THICKNESS. Weight per foot in lbs. Coefficient for transverse strength in ths. Strength as Strut Area of cross- section in o″. Moment of in- ertia about neutral axis. Distance of neutral axis from base of ↓ in ins. EVEN. 4" X 4" 1/2" 12/2 15800 371 175 3 75 3½"X 3½"&" 9.6 & 10.8 10550 284 2.87 { 133 3" X 3" &½" 3 7 & 9 6680/209 2.II 97 2" X 2" f&%" 5 & 534 3850 145 0145 } 5.56 1.18 Vertically 2.62 Sidewise. 3.26 1.03 Vertically Sidewise. 1.53 1.76 0.89 Vertically | Sidewise. 0.97 0.85 0.74 Vertically 1.46 68 0.40 Sidewise. 24" X 24" 32" 4.0 { 2811 117 0.56 0.66 Vertically 1.19 55 0.26 Sidewise. 2" X 2" X 2"&" 3% & 34 1970 92 0.35 0 94 43 0.16 0.59 Vertically Sidewise. 1¼"X 1½" ¼" 2.29 1033 49 25 (0.13 0.46 Vertically 0.69 0.07 Sidewise. 1¼"× 1¼" 3&¼" 1.62 & 1.83 596 33 17 fo.065 0.38 Vertically 0.49 10.034 Sidewise. (0.024 0.295 Vertically 10.012 Sidewise. ( 1.50 0.61 Vertically 5.09 (0.47 1.45 0.68 &" 0.93 & 1.10 &r 268 21 0.28 II UNEVEN. 5" X 26" /½" 11.7 6344 107 |363 3.50 3″ X 2″ fo & 3" 4.8 & 5.8 2540 81 117 2¼"X1"X" 2.4 604 21 61 0.06 0.74 0.18 3.0 1355 47 50 O 17 0.917 0.18 2" I' X" 457 17 2.15 0.65 53 0.14 1½"X I' X" 1.86 421 17 0.56 31 2"X1" " 19 I 32 Sidewise. 0.52 Vertically Sidewise. 0 29 Vertically Sidewise. 0.50 Vertically Sidewise. 0.04 0.26 Vertically Sidewise. (0.04 0.28 Vertically | 0.07 Sidewise. HAND RAIL TEES. " 6 // IG 4.82 2331 1.45 2" X 2" 0.41 0.53 Vertically 9 77 32 4.36 1987 1.311 0.34 0.57 Vertically 30 2.6 763 0.781 0.08 0.36 Vertically 42 a BASIS OF STRENGTH. THE coefficients in the foregoing tables, except those in Col- umn III., headed "Maximum Load," correspond to a stress or straining force of 12,000 lbs. per square inch on the part of the beam at which the strain is a maximum. The greatest SHEARING STRESS on the stem under the loads, given in Column III. as the maximum allowable, will be 4,000 Ibs. per square inch. Although the ultimate resistance of wrought iron to tension is considerably greater than to com- pression, the amount of extension or compression, within the limits of strength which can be used in practice, is the same for either force, and therefore wrought iron beams with equal areas for tension and compression have a less deflection, for a given weight of beam, than if those areas are unequal. For any stress not exceeding the "limit of elasticity," which is about 26,000 Ibs. per square inch, the amount of deflection will be in a cer- tain direct proportion to the load applied, and on the removal of the load the beam will regain its original condition. For greater stresses the deflections will increase in a much more rapid ratio, and the beams will retain a "permanent set." Experiments on the effect of repeated applications and removals of the load, accompanied with considerable vibration, appear, however, to show that when a beam may be subjected to such repeated applications of the load an indefinitely great number of times, the maximum stress should not exceed 16,000 s. per square inch. The basis adopted in the above table is, there- fore, about one-quarter of the ultimate stress for a single appli- cation of the load, 45 per cent. of the limit of elasticity, and three-quarters of the safe stress for indefinitely repeated applica- tions of the load. The loads determined by the use of the coefficients will therefore be the SAFE WORKING PERMANENT OR DEAD LOADS, including a sufficient margin of safe strength to allow for the vibrations and ordinary contingencies to which the floor-beams of buildings are subjected. In railroad bridges or structures subjected to vibration from moving loads, the strain from the live load should not exceed 6,500 lbs. per square inch, while from the dead load a strain of 15,000 lbs. may be allowed. This will give smaller coefficients than those in the tables, when the live load exceeds 35 per cent. of the total. If a greater or less strain per square inch is allowed, the corresponding coefficients will be found by increasing or di- minishing those in Columns II. and IV. of the tables, in the ratio that the strain allowed bears to 12,000 lbs. The deflec- tions will of course vary in the same ratio. EFFECT OF TEMPERATURE ON TENSILE STRENGTH. Wrought iron increases in strength with increase of tempera- ture up to 600° to 900° F., depending on the purity of the iron; pure wrought iron reaching its maximum strength at a higher temperature than impure iron or than steel, and soft steel at a higher temperature than hard. Beyond the temperature of its maximum strength it weakens rapidly, and at a dull red heat has only about half its strength at ordinary temperatures. 43 TABLE OF STRENGTH OF RIVETED GIRDERS. When loads or spans occur too great to admit of the use of rolled beams, it becomes necessary to employ riveted girders of greater depth. These are usually made either of I or box form. Box girders have more stiffness sideways than those of the I form, and hence are used in cases where the girder is unsup- ported laterally. In other cases the I section is preferred, being more economical and more accessible for painting. The following tables enable the proper dimensions of such girders to be determined with facility. The numbers given in the tables show how much of the strength required will be supplied by each of the component parts of the girder, viz., the stem, the angle iron, and the top and bottom flanges. They are calculated assuming a maximum strain on the iron of 12,000 lbs. per square inch, and therefore give the safe strength of the girder. In the table for strength supplied by 3" X 3" angles, allowance is made for the iron punched out in a single row of 18 holes in each flange. The 6/6/ angles are assumed to have two rows of 18 holes in each flange. The table for the strength supplied by the web-plate is calculated on the assumption that holes are punched as in 3" X 3" angles, but may be used without material error where 6' x 6' angles are used. The fourth table gives the strength due to each inch of effective width of the top and bottom plates, that is, of each inch of width remaining after deducting the diameter of the rivet-holes. To use the tables, the strength required for the girder is first expressed by multiplying the uniformly distributed load in tons of 2,000 lbs., to be borne by the girder, by the length of clear span in feet. The thickness of the web may be deter- mined approximately by dividing one-half the load, in pounds, by 5,000, and dividing the quotient by the depth of the girder. The thickness to which plates of the size required can be rolled, must, however, be taken into consideration. It will be rarely less than 4, nor more than 5%. The sizes of angles as- sumed in the table may be used in most cases; or, if other sizes are used, the quantities in the table referring to the angles may be proportionately increased or diminished. The strength supplied by these two parts may therefore be taken imme- diately from the table, in the line opposite such thickness of flanges, as may be convenient; and the sum of these two quantities subtracted from the total strength required, as above expressed, will give the portion to be supplied by the flanges. Dividing this remainder by the quantity given in Table IV., as the strength supplied by 1 inch of width of flanges of the thick- ness assumed, we obtain the effective width required for each flange, that is, the actual width less the diameter of rivet-holes punched out at any one point in the cross-section of the flange. The diameter of holes must therefore be added to the effective width to obtain the actual width of flange required. By revers- ing this process, the load which can be safely borne by a girder whose dimensions are already fixed, may of course be obtained. 44 1.—SAFE STRENGTH SUPPLIED BY EACH INCH THICKNESS OF VERTICAL STEM PLATE. Total Depth of Girder in Ins. Thickness of each top and bottom flange in ins. Total Depth of Girder in inches. Thickness of cach top and bot- tom fange in inches. 38 HX H H 222 214 22 S 12 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 26 27 27 28 29 30 31 32 33 34 35 36 37 9.6 11.3 13.1 15.2 17.4 19 7 22.2 24.9 27.8 39.8 34.0 37.4 40.9 44.6 48.4 52.4 56.6 61.0 65.5 70.2 75.0 80.0 85 290.6 96.1 101.8 8.4 10.0 11.7 13.7 15.7 18.0 20.4 23.0 25.7 28.6 31.7 34.9 38.3 41.9 45.6 49.5 53.5 57.8 62.2 66.7 71.4 76.3 81.4 86.6 92.1 97.6 8.8 10 5 12.3 14.2 16.3 18.6 21.1 23.7 26.5 29.4 32.5 35.8 39.3 42.9 46.6 50.6 54.7 58.9 63.4 68.0 72.8 77.7 82.8 88.1 93.5 7.3 6.4 7.7 9.3 11.0 12.8 14.8 17.0 19.3 21.8 24.5 27.3 30.3 33.4 36.8 40.2 43.9 47.7 51.7 55.8 60.2 64.6 69.3 74.1 79.1 84.2 89.5 5.5 6.8 8.2 9.8 11.5 13.4 15.4 17.7 20.0 22.6 25.3 28.131.2 34.4 37.7 41.3 44.9 48.8 52.9 57.0 61.4 65.9 70.6 75.5 80.5 85.7 4.8 5.9 7.2 8.7 10.3 12.1 14.0 16.1 18.4 20.8 23.4 26.1 29.0 32.1 35.3 38.8 42.3 46.0 50.0 54.0 58.3 62.7 67.2 72.0 76.9 82.0 6 9.1 10.8 12.6 14.6 16.8 19.1 21.6 24.2 26.9 29.9 33.1 36.3 39.8 43.4 47.251.1 55.3 59.5 64.0 68.6 73.4 78.3 4.I 5.1 6.3 7.6 3-4 4.4 5.5 6.7 8.1 9.7 11.4 13.3 15.3 17.5 19.8 22.3 25.0 27.9 30.9 34.0 37.4 40.9 44.5 48.4 52.4 56.5 60.8 65.3 70.0 2.9 3.7 4.7 5.9 7.2 8.6 10.2 12.0 13.9 16.0 18.2 20.6 23.2 25.9 28.8 31.8 35.1 38.4 42.0 45.7 49.5 53.6 57.8 62.2 66.7 2.4 3.2 4.1 5.1 6.3 7.6 9.1 10.8 12.6 14.6 16.7 19.0 21.4 24.0 26.8 29.7 32.8 36.1 39.5 43.1 46.8 50.8 54.8 59.1 63.5 3.052.0 2.0 2.7 3.5 4.4 5.5 6.7 8.1 9.7 11.4 13.2 15.2 17.4 19.8 22.2 24.9 27.7 30.7 33.8 37.1 40.6 44.3 48.0 52.0 56.160.4 74.8 71.4 68.1 64.9 39 52 53 54 55 56 57 58 59 60 40 41 42 | 43 44 45 46 47 48 49 50 51 107.6113.6 119.8 126.2 132.7 139.3 146.2 153.2 160.3 167.7 175.2 182.9 190.8 198.8 207.0 215.3 223.8232.5 241.3 250.4 259.5 268.9 278.3 103.3 10.2 115.2 121.5 127.8 134.4 141.1 148.0 155.1 162.3 169.7 177.2 185.0 192.8 200.9 209.1 217.5 226.1 234.8 243.7 252.7 261.9 271.2 1/2 99.1 104.8 110.8 116.9 123.1 129.6136.2 142.9 149.9 156.9 164.2 171.7 179.3 187.0 195.0 203.1 211.3 219.8 228.3 237.1 246.0 255.1 264.4 95.0 100.6 106.4 112.4 118.6124.9 131.3 138.0 144.8 151.8 158.9 166.2 173.7 181.3 189.1 197.1 205.2 213.5 222.0 230.7 239.5 248.4 257.6 91.0 96.5 102.2 108.1 114.1 120.3 126.6133.2 139.8 146.7 153.8 160.9 168.2 175.7 183.4 191.3 199.3 207.5 215.8 224.3 233.0 241.9 250.9 14 87.2 92.6 98.1 103.9 109.7 115.8 122.0 128.4 135.0 141.7 148.6 155.7 162.9 170.3 177.8 185.6 193.5 201.5 209.7 218.1 226.7 235.4 244.3 83.4 88.7 94.1 99.7 105.5 111.4 117.6 123.8 130.3 136.9 143.6 150.6 157.7 164.9 172.4 180.0 187.7 195.7 203.8 212.0 220.5 229.1 237.8 79.8 85.0 90.2 95.7 101.4 107.2 113.2 119.3 125.6 132.1 138.8 145.6 152.6159.7 167.0 174.5 182.1 189.9 197.9 206.1 214.4 222.8 231.5 76.3 81.3 86.5 91.8 97.4 103.1 108.9 114.9 121.1 127.5 134.0 140.7 147.6 154.6 161.7 169.1 176.6 184.3192.2 200.2 208.4 216.7 225.3 72.8 77.7 82.8 88.0 93.5 99.0 104.8 110.7 116.7 123.0 129.4 135.9 142 7 149.6 156.6 163.9 171.3 178.8 186.5 194.4 202.5 210.7 219.2 22 69.5 74.3 79.2 84.4 89.7 95 1 100.7 106.5 112.4 118.7 124.8 131.3 137.9 144.7 151.6158.7 166.0 173.4 181.0 188.8 196.7 204.9 213.1 HHH 24 N N N 7204.9213.1 45 12 13 14 15 16 17 18 19 20 21 II.-SAFE STRENGTH SUPPLIED BY FOUR CONTINUOUS ANGLE BARS, 3" X 3" X 2", WEIGHING EACH 9.2 LBS. PER FOOT, CONNECTING THE FLANGES WITH THE VERTICAL WEB. (4 angles Total Depth of Girder in inches. II square inches sectional area.) | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 36 302 322 340 358 378 340 358 378 396 414 246 232 260 276 291 306 322 246 262 276 292 432 451 338 352 308 324 338 353 368 218 234 248 264 278 294 310 324 479 488 368 382 398 414 428 444 384 349 354 379 386 400 416 432 506 526 544 562 582 600 618 460 400 414 439 446 462 476 476 490 Thickness of cach top and bottom flange, in inches. 3/4 1/2 72 446 462 175 194 212 212 230 247 266 284 126 140 156 170 185 200 216 230 1/2 114 114 128 144 157 170 186 202 218 102 116 132 146 160 174 190 204 92 [06] 120 134 148 162 176 191 206 220 236 250 266 282 296 310 326 341 356 372 386 402 418 432 448 14 81 941 108! 122 136 159 164 180 194 208 224 238 254 268 282 298 314 328 342 358 374 388 404 418| 434 98 112 126 138 152 167 182 196 210 226 240 254 279 286 300 314 339 344 369 374 399 406 420 134 62 76 88 IOI 114 128 142 156 170 184 198 214 228 243 258 272 288 302 316 332 346 362 378 392 408 104 118 118 131 144 158 172 188 202 216 230 246 260 276 290 304 319 334 359 364 380 394 94 108 122 134 148 162 176 190 204 218 234 248 262 278 292 306 322 336 352 366 382 48 Gol 72 84 98 112 124 138 152 164 179 194 208 222 236 251 266| 280 294 309 324 338 354 368 N N N 24 2/2 Total Depth of Girder in inches. Thickness of each top and bottom flange, in inches. 54 46 361 66 78 92 58 701 82 51 52 53 54 55 56 57 58 59 60 19/60 37 38 39 | 40 | 41 | 42 | 43 | 44 44 45 46 47 48 49 50 638 656 676 694 712732 750 768 788 806 824 844 862 880 900 918 937 956 974 992 1012 1030 1048 1068 4506 521 536 552 568 583 598 614 630 644 660 676 690 706 722 738 752 768 784 798 814 830 846 862 492 507 522 538 554 568 584 600 614 630 646 662 676 692 708 722 738 754 768 784 800 814 830 846 34 478 492 508 524 538 554 569 584 600 616 632 646 662 678 692 708 724 738 754 770 784 800 816 832 464 478 494 509 524 549 554 579 586 602 616 632 648 662 678 694 708 724 740 754 770 786 802 816 450 464 480 495 510 526 542 556 572 587 602 618 634 648 664 680 694 710 726 740 756 772 786 802 436 450 466 482 496 512 528 542 558 574 588 604 619 634 650 665 680 696 712 726 742 758 772 788 134 422 438 452 468 483 498 514 528 544 560 574 590 606 620 636 652 666 682 697 712 728 744 758 774 408 420 449 454 479 484 500 516 539 546 560 576 592 607 622 637 652 668 684 698 714 729 744 760 24396 412 426 442 456 47 486 502 516 532 548 562 578 594 608 624 638 654 670 684 700 716 730 746 21 2½ 384 398 414 428 444 458 474 488 504 518 534 550 564 580 595 610 626 6401 656 670 686! 702 716 732 45 a 12|1 12 13 13 14 15 16 17 18 19 20 316 597 633 HHHH I III.-SAFE STRENGTH SUPPLIED BY FOUR CONTINUOUS ANGLE BARS, 6" X 6" X ½", WEIGHING EACH 19.2 LBS. PER FOOT, CONNECTING THE FLANGES WITH THE VERTICAL WEB. (4 angles Total Depth of Girder in inches. Thickness of each top and bottom flange in inches. I 23 square inches sectional area.) 21 12 / 2 230 255 281 22 23 24 25 349 383 418 453 489 525 561 671 707 744 781 819 856 893 931 969 1007 1044 1082 1119 1158 1195 262 289 315 343 372 400 429 457 487 515 545 575 605 634 664 694 724 754 784 814 844 875 905 240 257 293 320 348 376 405 433 461 491 519 549 578 608 637 667 697 727 757 787 817 847 877 245 271 297 325 352 380 409 437 465 495 523 553 582 611 641 671 701 731 760 790 820 851 224 250 276 303 329 357 385 413 441 479 499 527 557 586 615 645 675 704 734 763 793 823 307 335 362 390 418 446 475 503 532 561 591 619 649 679 708 738 767 797 210 235 261 287 313 340 367 395 423 451 479 508 537 566 595 624 653 683 713 742 216 241 266 292 319 345 373 400 428 457 484 513 542 571 599 629 658 687 717 746 1971 222 247 272 247 272 298 325 351 379 406 434 462 490 519 547 576 605 633 663 692 721 204 228 253 278 394 331 357 385 412 439 467 495 524 553 581 609 639 667 697 187 210 235 259 285 311 337 363 391 418 446 473 501 529 558 586 615 644 673 25 26 27 28 29 30 31 32 | 33 | 34 | 35 35 36 771 37 | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Total Depth of Girder in inches. Thickness of each top and bottom flange in ins. 38 39 40 41 42 57 58 59 60 1233 1271 1300 1347 1385 1423 1461 1499 1537 1575 1613 1652 1690 1728 1767 1805 1843 1881 1919 1957 1995 2034 2072 2111 935 965 996 1026 1057 1087 11181148 1179 1209 1240 1271 1301 1332 1363 1393 1424 1455 1485 1516 1547 1577 1608 1639 907 938 968 999 1029 1059 1089 1120 1151 1181 1211 1242 1273 1303 1334 1365 1395 1426 1457 1487 1518 1549 1579 1610 34 880 911 941 971 1001 1031 1062 1093 1123 11531183 1214 1245 1275 1305 1336 1367 1397 1428 1459 1489 1520 1551 1581 854 883 913 944 974 1004|1035 1065 1095 1125 1156 1187 1217 1247 1277 1308 1339 1369 1400 1431 1461 1491 1522 1553 827 857 887 917 947 977 1007 1038 1068 1099 1129 1159 1189 1219 1250 1281 1311 1341 1372 1403 1433 1463 1494 1525 801 831 861 891 921 951 981 1011 1041 1071 1101 1132 1162 1193 1223 1253 1283 1314 1345 1375 1405 1436 1466 1497 776 805 835 865 895 925 955 985 1015 1045 1075 105 1135 1165 1196 1226 1257 1287 1317 1347 1378 1409 1439 1469 751 78 810 839 869 899 929 959 989 1019 1049 1079 1109 1139 1169 1199 1229 1260 1290 1321 1351 1381 1411 1442 24 726 755 785 814 84+ 873 903 933 963 993 1023 1053 1083 1113 1143 11731203 1233 1263 1293 1324 1354 1385 1415 2/2 702 731 760' 731 760 790' 819' 849' 873 907 937 967 997 10271057 1087 11171147 1177,1207|1237'1267|1297 1327 1357|1388 45 6 IV.-SAFE STRENGTH SUPPLIED BY EACH EFFECTIVE INCH OF WIDTH OF TOP AND BOTTOM FLANGE PLATES. Total Depth of Girder in in. 12 13 14 15 16 17 18 Thick 11.5 12.5 13.5 - 32 33 34 19 20 21 22 23 24 25 26 27 28 29 30 31 35 36 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5 35-5 ness of 1/2 22.1 24.126.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0 460 48.0 50.0 52.0 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 each Top 34 31.7 34.7 37.7 40.7 43.6 46.6 49.6 52.6 55.6 58 6 61.6 64.6 67.6 70.6 73.6 76.6 79.6 82.6 85.6 88.6 91 6 94.6 97.6 100.6 103.6 & Bottom I 40.4 44.4 48.4 52.4 56.3 60.3 64.3 68.3 72.3 76.3 80.2 84.2 88.2 92.2 96.2 100.2 104.2 108.2 112.2 116.2 120.2 124.2 128.2 132.2 136.1 Flange, in 14 48.4 53.3 58.2 63.2 68.2 73.1 78.1 83.1 88.0 93.0 98.0 103.0 107.9 112.9 117.9 122.9 127.9 132.9 137.8 142.8 147.8 152.8 157.8 162.8 167.8 inches. 1½ 55.561.4 67.3 73.2 79.1 85.1 91.0 96.9 102 9 108.9 114.8 120.8 126.8 132.7 138.7 144.7150.6 156.6 162.6 168.6 174.6 180.6 186.5 192.5 198.5 134 61.9 68.7 75 5 82.4 89.3 96.2 103.1110.0 116.9 123.9130.8 137.7 144.7 151.7 158.6 165.6 172.5 179.5 186.4 193.4 200.4 207.4 214.3 221.3 228.3 67.6 75.3 83.0 90.8 98.7 106.5 114.4 122.3 130.1 138.0 145.9 153.9 161.8 169 7177.6185.6 193.5 201.5 209.4 217.4 225.3 233.3 241.3 249.2 257.2 24 72.6 81.2 89.8 98.5 107.3 116.1 124.9 133.7 142.5 151.4 160.3 169.1 178.0 186.9 195.8 204.7 213.7 222.6 231.5 240.5 249.4 258.3 267.3 276.2 285.2 5/203 154.2164.0 203.3213.2 223 1233.0 22 76.9 86.4'96.0 105.6 115.3 124.9 134.6 144.4 154.2 164.0 173.8 183 6193.5 203.3 213.2223 1233.0 242.9 252.8 262.7 272.6 282.5 292.5 302.4 312.3 1 7 Total Depth of Girder in inches. Thickness of each Top and Bottom Flange, in inches. r 72.0 74.0 46 47 48 49 50 51 52 53 54 55 56 57 58 37 38 39 40 41 42 43 44 44 45 59 60 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5 51.5 52.5 50.5 51.5 52.5 53.5 54.5 55.5 56 5 57.5 58.5 59.5 76.0 78.0 80.0 82.0 84.0 86.0 88.0 90.0 92.0 94.0 96.0 98.0 100.0 102.0 104.0 100.0 108.0 110.0 112.0 114.0 116.0 118.0 4106.6 109.6 112.6 115.6 118.6 121.6 124.6 127.5 130.5 133.5 136.5 139.5 142.5 145.5 148.5 151.5 154.5 157.5 160.5 163.5 166.5 169.5 172.5 175.5 140.1 144.1 148.1 152.1 156.1160.1 164.1 168.1 172.1 176 1180.1 184.1 188.1 192.1 196.1 200.1 204.1 208.1 212.1 216.1 220.1 224.1228.1 232.1 1172.8 177.8 182.8 187.8 192.7 197.7 202.7 207.7 212.7 217.7 222.7 227.7232.7 237.7 242.7 247.7 252.7 257.7 262.7 267.7 272.7 277.7282.7 287.7 12204.5 210.5 216.5 222.5 228.4 234.4 240.4 246.4 252.4258.4 264.4 270 4 276.4 282.4 288.4 294.3 300.3 306.3 312.3 318.3 324.3 330.3 336.3 342.3 134 235.3242.2249.2 256.2 263.2 270.2 277.2284.2 291.1 298.1 305.1 312.1319.1 326.1 333.1 340.1 347.0 354.0361.0 368.0 375.0 382.0 389.0396.0 265.2 273.1 281.1 289.0 297.0 305.0313.0321.0 328.9 336.9 344.9 352.9 360.9 368 9 376.8 384.8 392.8 400.8 408.8 416.8 424.7 432.7.440.7 448.7 2294.1 303.1312.1 321.0 330.0 339.0 347.9 356.9 365 8 374.8 383.8 392.8 401.7410.7 419.7 428.7 437.6 446.6 455.6 464.6473 6 482.6491.5 500.5 2/2 322.2 332.2 342.1 352.1 362.0 372.0 381.9 391.9 401.8 411.8 421.8 431.7 441.7 451.7 461.6 471.6 481.6 491.5 501.5 511.5 521 541 2 .5 521.5 531.4 541.4 551.4 * 46 When the load on the girder is large, it is necessary to rivet vertical stiffening pieces against the stem plate, to prevent it from crushing or buckling under the load. This is conveniently done by using a pair of angle or T irons at the ends of the girder extending from the top to the bottom flange. To determine whether these will be required, and how many, it is first necessary to ascertain the shearing strain on the girder at a number of points in its length, which is simply the load brought to bear by the girder on the nearest bearing less the load resting on the girder between that bearing and the point in ques- tion. Divide the shearing strain in tons at any point thus found by the vertical sectional area of the web alone at this point. If the quotient so obtained exceeds the figure given in the follow- ing table under the number nearest that which would be obtained by dividing 1.4 times the depth of the girder by the thickness of the web plate, then stiffening pieces will be required at the point in question. dx 1.4 t d X 1.4 t 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 3.08 2.84 2.61 2.39 2.18 1.99 1.82 1.66 1.52 1.40 1.28 1.17 1.08 1.00 .92 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 .79 .69 .60 .53 .47 .42 .38 .34 .31 .28 .25 .23 .21 .20 .18 In a girder with the load concentrated at the center the shear- ing strain produced by the load would be as great at any point in the span as at the bearings, and therefore stiffeners would be required for its entire length at intervals equal to the depth of girder. With a distributed load the shearing strain diminishes uni- formly toward the center of span, where it disappears, and therefore the stiffeners may be placed at greater intervals, say once and a half the depth, except directly at the bearings, and can be omitted altogether beyond the point where the strain comes within the limit given in the table. EXAMPLE. What must be the dimensions of a girder 24 inches deep, having a clear span of 20 feet, to support a uni- formly distributed load of 40 tons? Product of span by load 20 X 40= Load in pounds on each bearing 40,000; thickness of 40,000 5,000=8; 8÷24'' = ½'' ÷ stem plate-say three-eighths. Assuming, for the present, that the thickness of the flange 800 • plates will be about 1, we have- From Table I., for the stem, 31.2 X 3= From Table II., for 3X 3X ½ angles. 93.6 . 266 359.6 Remainder to be supplied by top and bottom flange plates, 440.4 47 From Table IV. we find, under 24 inches depth of girder and I thickness of flanges, the number 88.2; hence 05.0 inches of effective width of each flange, or, say, 6.6 inches full width, allowing for the rivet-holes punched out. If it is necessary that the flanges should be of a given width, the corresponding thickness can be obtained by dividing by that width less the rivet-holes, and taking the thickness given in Table IV. opposite the quotient so found. 3. Thus, if in the present case the width of the flange plates must be 10, the effective width would be 8.4, and 440.4 ÷ 8.452.4, which comes between the quantities given for 34!! and ½ plates in a 24" girder, and the thickness would there- fore be .58". // 2 If it is desired to be more accurate, we may repeat the calcu- lation, using quantities for the stem and angles corresponding to this thickness, viz.: For the stem, 35.1 X 3=. For the angles, • 105.3 287.8 393.I 800-393.1=406.9; 406.9÷8.448.4, which corresponds to a thickness of .53'. To determine whether stiffening pieces will be required, we divide the load on each bearing, 20 tons, by the sectional area of the web, viz.: 9 square inches, which gives a quotient of 2.22. The depth of the girder, multiplied by 1.4 33.6, which, divided by the thickness of web plate, 390, the figure under which in the foregoing table would be 1.08, and, this being less than 2.22, stiffening pieces would be required at the ends. As the shearing strain is := 2.06 times that allowed by the table, and, as it decreases uniformly from the ends to the center of the span, stiffeners will be required until within a distance of 10 feet 2.06 4.85 feet on each side of the center of the span. The deflection of the girders, with the distributed loads given by the tables, will, if the dimensions of the plates are kept uniform from end to end, be, as in the case of rolled beams, equal to the square of the span in feet divided by 70 times the depth of the girder in inches. In the above example the deflection will be 20 X 20 24 X 70 .24 in. If a less strain than 12,000 pounds per square inch on the iron is desired, the figures given in the tables must be propor- tionately reduced. The deflection will then be decreased in the same ratio. The rivets should not be spaced closer than 21½ times their diameter, nor further apart than 16 times the thickness of the plate which they connect. Those connecting the chord angles to the web have to trans- mit the shearing strain on the girder, and should have sufficient area of cross-section, and also sufficient bearing surface on the plate for this purpose. It is usual to allow 7,500 lbs. per square 47 2 inch shearing strain on the rivet and 12,500, s. per square inch crushing pressure on the bearing. The table p. 53 gives the shearing and crushing strength on this basis of rivets of various diameters and with different thicknesses of web plates. The shearing strain on the web of the girder divided by the quantities thus given will give the number of rivets required in a length equal to the depth of the web. If the web-plates are connected to the chord by single angles, as is usual with box girders, the rivets will be in single shear, but if by a pair of angles as usual with girders having a single web, the rivets will be in double shear. The table indicates that larger rivets should be used when in single shear than in double, so that the shearing and crushing strength may be as nearly as practicable equal. EXAMPLE.-Supposing the girder in the preceding example to be riveted with // rivets, how should they be spaced at the ends of the chord angles? The shearing strain at the ends of the girder is 20 tons. The shearing strength of % rivets in double shear (Table p. 53) is 9,020 lbs. ; their crushing strength in 38 plate 4,101 lbs. The latter being the least, will determine the number of rivets required, viz., 40.000 lbs. TOT 934 in the length equal to the depth of the girder (24) or 2½" center to center, increasing toward the center of the span where 6// would be sufficient. In long girders the sections of the web plates toward the ends of the girder are often made thicker than those at the center, thus giving greater bearing on the rivets, as well as greater resistance to the shearing strain on the girder. In heavy girders a saving of iron may sometimes be made by reducing the thickness of the flanges towards the ends of the girder, where the strain is less. The bending strain at a num- ber of points in the length of the girder may be determined by the method given on page 36, and the thickness of flanges neces sary for this strain be found as in the previous example. The thickness of the flanges is easily varied as required, by forming them of a number of plates sufficient to give the required greatest thickness at the center of the span, but extend- ing on each side of the center only to such distances as may be necessary to give the required thickness at each point. The deflection of girders so formed will be greater than those of uniform cross-section throughout. EXAMPLE. In the case supposed in the previous example, if each flange is formed of two plates, each ½ inch thick, one running the whole length of the girder, how long must the sec- ond plate be? The pressure on each bearing is 20 tons; the load per foot of length is 2 tons. The bending strain at a point 5 feet from one bearing will be 20 X 5, less the load coming between the bearing and this point = 5 X 2 = 10 tons multi- plied by the distance of its center of gravity from the point in question, viz., 2.5 feet. 20 X 5-10 X 2.575, which, multiplied by 8, as explained on page 37, gives 600. 48 Beyond the point where the second plates end the depth of the girder will be but 23 inches, and the strength supplied by the stem will be 32.5 X 3 = by the angles, • 600 — 373.5—226.5 to be supplied by the flanges. A ½-inch plate of 5 inches effective width gives 220, which is not quite sufficient. 44 X 5 // = 97.5 276. 373.5 The same calculation made for a point 4 feet from one bear- ing would show that 138 would be the strength to be supplied at that point by the flanges, which is less than the strength sup- plied by the ½" plate, and hence the single ½-inch plate will be sufficient up to a point 4 feet 11 inches from each end, and the length of the second plate, from end rivet to end rivet, will be 10 feet 2 inches. The relative strength and deflection for loads other than uniformly distributed will be determined by the same rules as in the case of rolled beams. (See pages 34 and 35.) The weight of a girder may be found by the rule that the weight per yard of wrought-iron of uniform cross-section is ten times the number of square inches in its cross- section. Two-thirds of the weight of the rivets may be added as the weight of the rivet-heads. The weight of a pair of rivet heads is about as follows: Diameter of rivet, Weight of two heads, 11// 5/1 1", ", ㅎ ​W 8 th. The length of rivets required for machine driving is 14 times the length of the hole + 1½ times the diameter of the rivet. I For hand driving, the length of the hole + 1½ times the diameter of the rivet. GIRDERS FORMED OF WOODEN BEAMS WITH IRON PLATES OR BEAMS SANDWICHED ¡ BETWEEN THEM will not support a load equal to the sum of the safe loads of the wooden and iron beams separately, given by the respective tables for such beams. Under the loads given in the table for wooden beams, their deflection would be rather more than double that of iron beams or plates of the same depth under their safe load; hence, when bolted together so that the deflec- tion of both is only equal to that of the iron, not over half of the strength of the wooden beam would come into play. In estimating the strength of such compound beams, where the depth of the wood and iron is the same, the quantities given in the table for the strength of the wooden beams should be reduced one-half. The safe load of wrought-iron plates or beams of rect- angular cross-section is 9.6 times that of wooden beams of the same dimensions given in the table p. 72. 49 TRUSSED BEAMS. Instead of riveted girders, trussed beams are sometimes em- ployed on spans too great for plain rolled beams. In such a construction the load on each of the subdivisions B of the span is transferred by the beam to the points of support at the ends of those subdivisions, the struts C forming supports to the beam precisely as the bearings at the ends of the span. The load thus carried to the struts is then transferred by the truss-rods to the main bearings. As these rods must sustain all the load coming upon the struts, it is evident that unless they are strong enough to take the whole of this load, no strength whatever is to be gained by their use, since, if they cannot sustain the load coming upon them, the beam will continue to deflect until the rods are stretched beyond their limit of safety, or, perhaps, broken. The use of small truss-rods, with the idea that they at least afford some support to the beam, is therefore not only use- less, but dangerous. The beam, the struts and the truss-rods must each be proportioned to the strain brought upon them. Ist. Load on the Struts.-If the beam is in separate sec- tions meeting at the struts, the load brought by each section. upon the struts supporting it will be determined by the Rule p. 36. But if the beam is in one continuous piece and the load not all concentrated directly at the strut, more load will be brought by it upon the struts, and less directly upon the main bearings, than when in separate sections. With a continuous beam and distributed load, if the truss-rods should be so tight as to spring the beam upward in the center, an additional strain. would be brought upon the struts. Care should be taken, there- fore, that the truss-rods are so tight as to prevent deflection of the truss when loaded, and no more. For a load strut will be: - W, uniformly distributed, the weight on each TRUSS WITH SINGLE CENTRAL STRUT. B B T T Beam continuous for whole length of truss, Beam in sections meeting at each strut, • 45-2 TRUSS WITH TWO STRUTS FORMING THREE EQUAL SUB- DIVISIONS. B B T ว H C Beam continuous for whole length of truss, Beam in sections meeting at each strut, T B W کر کے W .367 W W 50 The struts must be proportioned to sustain their loads, accord- ing to one of the Rules p. 57 to 60. 2d. The Truss-Rods.-The strain on these will be: In a truss with one central strut: half the load on the T strut Xc In a truss with two equally-loaded struts: the whole T load on one strut Xē If the struts are not equally loaded, then determine by the Rule p. 36 what pressure will be brought upon each bearing by the loads coming on both struts, and the strain on either truss- rod will be equal to the pressure at the nearest bearing due to the loads on the struts, multiplied by T C · In this case an addi- tional rod must run from the foot of the more heavily-loaded strut to the top of the more lightly-loaded one, of a strength sufficient to sustain a load equal to the excess of the pressure brought by the load on the struts upon the bearing nearest the more heavily-loaded strut, over that brought upon the other bearing, multiplied by the length of the rod divided by C. For trusses sustaining a moving or variable load, such an additional rod or counter-brace will be required from the foot of both struts, as either may at times be the more heavily loaded. The lightly- loaded strut must have strength to resist the downward pull of the counter-brace in addition to its own load. It will be observed that if the angle of the counter-braces and of the main truss-rods is the same, the strain on the truss-rod at the heavily-loaded end will be equal to that on the rod at the lighter end plus that on the counter-brace. The truss-rods should always be attached to the beams, well over the bearings, or beyond them, if possible, so that their downward pull may be resisted by the bearing and not act to increase the deflection of the beam as it would if the rods were connected to the beam between the bearings. The dimensions of the truss-rods should be such that the strain upon them, as here determined, shall not exceed 10,000 lbs. or 5 tons per square inch of their cross-sections. The size of rods required may be found from the Table p. 93, by the following rule: Divide the strain in tons by 1.5, the quo- tient will be the weight per foot of the bar to be used. 3d. The Beam.-As far as transverse strength goes, it may be considered simply as a beam of the span B sustaining the load that comes upon that subdivision. It also, however, acts as a strut to resist the tension of the truss-rods, and must, there- fore, have adequate strength in excess of that required for trans- verse resistance to enable it to resist this strain also. The compressive strain due to the tension of the truss-rods will be: In a truss with one central strut: half the load on the strut X B C 51 In a truss with two equally-loaded struts: the whole B load on one strut X C B In a truss with two unequally-loaded struts: on the spans on each side of the heavily-loaded strut-the tension on the tie-rod at the bearing at that end of the truss X On the span between the lightly-loaded strut and the bearing at that T end of the truss-the tension on the tie-rod at that end B X T The safe load as a strut of the beam to be used can be found by the rule given on p. 57, The safe load of the beam as a girder will be found in the Tables pp. 6-27, if the load is uni- formly distributed, or, if otherwise applied, by the Rules pp. 34-35; and whatever proportion of the safe load as a strut is required to resist the compressive strain on the beam, so much less than the whole safe load of the beam as a girder must be considered as available to resist the bending action of the load resting upon the subdivisions between the supports; that is, for example, if its actual compressive strain is 34 the safe load as a strut, then it can only support as a girder 4 its safe load for this purpose. EXAMPLE.-A 15-inch heavy beam is to be trussed so as to support a uniformly-distributed load of 20 tons on a clear span of 36 feet, the truss having two struts 4 feet long between cen- ters of beam and truss-rod, and dividing the beam into three equal panels of 12 feet each. What must be the dimensions of the rods? and will the beam have sufficient strength to resist both the transverse and compressive strains to which it will be subjected, supposing it secured against yielding sidewise? B Here, 3. C T 3.16. C 20 X.367—7.34 tons. The load on the struts will be, The load on the truss-rods will be, The compressive strain on the beam will be, 7.34 X 3.16 = 23.19 tons. 7.34 X 322.02 tons. The safe load as a strut of a 15-inch heavy beam, 12 feet long, secured sideways, according to Rule p. 57, is 79 tons. The actual compressive strain is but 22.02 tons, or 27.8 per cent. of the safe load. We therefore have 100—27.8-72.2 per cent. of the safe transverse strength of the beam available to support the load which comes on each panel. The safe uniformly dis- tributed load of a 15-inch heavy beam, 12 feet long, is, by the Table p. 6, 30.77 tons, 14 times which (see Case VIII, p. 346,) is 38.46 tons, 72.2 per cent of which is 27.77 tons, while the load on each panel is but 2-63 tons. The beam will, there- fore, be ample for its work. I 20 The weight per foot of the truss-rods should be 23.19 divided by 1.5=15.46 lbs., corresponding to a single 2½ round, or a pair of 134 rounds. 52 RIVETS AND PINS AND THEIR BEARINGS. The pins, bolts or rivets used to form the connections of a truss or girder, must be proportioned so as to resist both the shearing and bending strains to which they are subjected, and the area of their bearing must be such that the metal against which they bear shall not be crushed. The strains usually allowed per square inch on these members are: shearing, 7,500 lbs.; crushing, 12,500 lbs.; bending, 15,000 lbs. The shearing strain is measured on the area of cross-section, the crushing strain on the area measured by the product of the diameter of the pin by the thickness of the plate or web on which it bears. The following table gives the bending moments allowable for pins from to 615 diameter, with strains on the fibres of 15,000 lbs. and 20,000 lbs. per square inch, the former being suitable for iron and the latter for steel. The shearing strength for each diameter, on the basis of 7,500 lbs. per square inch of area, and the allowable crushing force per inch of length of bearing on the pin are also given. Diameter of Pin in Inches. Allowable bending moment for strain of 15,000 lbs. per sq. inch. Allowable bending moment for strain of 20,000 lbs. per sq. inch, Shearing strength at 7.500 lbs. per sq. inch, single shear. Allowable crushing force per inch of length of bearing at 12,500 Ibs. per square inch. Allowable crushing force for plates, " to 4" thick. 14 I 7 1,953 2,344 2,734 3,125 1/4" 5 17 TO 3%83 7 io" 1/2" 184 245 262 359 349 1,864 1.472 6,250 7,031 1,562 1,757 479 479 2,301 638 2.784 7,812 1,953 3.906 4.297 4,687 5,078 5,177 11,719, 2,190 2,6361 3,076 3,515 2.441 2,928 3,418 2,148 2,635 3,222 3,700 2.343 2,929 3.516 4,101 2.5391 3,174 3,810 4,443 2,734 3.418 4,IOI 4,785 5.469 4.3951 5,128 5,866 4.687 5.469 6,250 5,566 6,494 7.422 8.594 621 827 3.313 9.375 790 1,052 3,889 10,156 987 1.315 4,510 10,938! 1,214 1,618 2,930 3,660 1,473 1,963 5,890 12,500 3.125 3,906, 2,467 3,288 8,306 14,844 3,711 4.639 4,375 5,830 12,172 17,969 4,492 5,615 6.738 7,861 8,984 7,079 9.434 16,774 21,094 5,273 6,591 7,910 9,229 10,547 10,713 14,277 22,112 24,219 6,054 7.568 9,084 10.595 12,109 15,418 20,547 28,187 27,344 6,836 8.545 10,254 11,963 13,672 21,332 28,427, 34.998 30.469 7,617 9,521 11,426 13,330 15,234 28,592 38,104 42,545 33.594 8,398 10,498, 12,600| 14,697 16,797 218 37.336 49,756 50,828 36,719 9,180 11,475 13.770 16,065 18,360 47.793 63,572 59,848 39,844 9,961 12,451 14.940 17.432 19,922 59,832 79,735 69,604 42,969|| 10,742 13,427, 16,113 18,799 21,484 73,858 98,427 80,100 46,094 11,523 14.494 17,286 20,166 23,047 89,921 119,833 91.328 49.219 12.305 15.381 18.456 21,534 24,610 41% 108,161 144,141 103,290 52.344 13.086 16.357 19,629 22,901 26,172 128,712 171,529 115.995 55,469 13,867 17.334 20,800 24,267 27.734 151,716,202,185,129,428 58,594 14,648 18,310 21,972 25.635 29,297 177,308 236,290 143.602 61,719 15.430 19,287 23,142 27,003 30,860 51% 205,626 274,029 158,512 64,844 16,211 20,264 24,318 28,369 32,422 57 236,810 315,586 174,157 67,969 16,992 21,240 25,488 29,736 33,984 51 271,000 361,149 190,545 71,094 17,773 22.216 26,660 31,104 35,547 518 308,328 410,895 207,660 74,219 18,555 23.194 27,834 32,471 37,110 6348.937 465,013 225,517 77,344 19.336 24,179; 29,004 33,838 38,672 67392,965 523,687 244,110 80,469 20,117 25,146 30,174 35.205 40,234 3rd لدا درا در 31 348 318 4 4 ! 1 440,549 587,100 263,437 83,594 20,898 26.123 31,347 36,572 41.797 618 491,826 655.434 283,500 86,719 21,680 27,100 32,520 37.940 43,360 53 EXAMPLE. In the truss above calculated, suppose two truss- rods 134 diameter to have been adopted, secured by a pin through the web of the beam, the thickness of the eye being also I 134'', and therefore the center of the rod // from the bearing of the pin, what diameter pin will be required, and what thick- ness of bearing must the pin have in the web of the beam? The strain on each rod is 23,190 lbs., which multiplied by %', gives 20,291, as the bending moment on the pin, corres- ponding most nearly with that given in the table for a 2 pin. The shearing strength of this pin is 34,998 lbs., which is in excess of that required. The allowable crushing force per inch of length is 30,469 lbs., and as the strain brought by both rods is 46,380 lbs., the length or thickness of bearing in the web must be 46380 1.52 inch. 30469 SAFE LOAD OF HOLLOW CYLINDRICAL CAST-IRON COLUMNS. (ONE-FIFTH THE BREAKING WEIGHT.) The following tables give the safe load in tons of 2,000 ths., for columns having capitals and bases ACCURATELY TURNED to a true plane, and having a perfectly fair bearing on these sur- faces. In the case of columns having turned ends, but set only with the degree of care usual in ordinary building, only ONE- HALF of these loads should be taken; and for columns not turned at all, or having rounded ends, ONE-THIRD of these amounts should be taken for the safe load. Columns having one end accurately turned to a true plane, and the other rounded, may be loaded to two-thirds the amount given in the tables. Safe Load, in Tons, for Cast-Iron Columns with Turned Capitals and Bases. LENGTH IN FT. 1/2 OUTSIDE DIAMETER, 3 inches. Thickness in inches. OUTSIDE DIAMETER, 4 inches. Thickness in inches. 3/4 I 14 1/2 34 I I ! 18 78 a 12.8 15.9 17 2 24.9 32.9 38.3 41.7 10.9 13.0 14.0 21.7 28.4 33.0 35.8 8.9 10.7 II.4 19.0 24.8 28.7 31.0 10 7.5 8.9 9.6 17 4 22.0 24.9 26.3 II 6.4 7.6 8.1 14.8 18.7 21.1 22.4 12 54 6.6 7.0 12.7 16.2 78.2 19.3 13 14 15 16 345 4.8 5.7 6.1 II. I 14.1 15.9 16.8 4.2 5.0 5.4 3.7 4.5 4.8 0100 9.8 12.4 14.0 14.9 8.7 II.I 12.5 13.2 17 18 19 6 780 3.4 4.0 4.3 78 3.0 3.6 39 7.0 2.8 3-3 3.5 6.4 2.5 3.0 3.2 58 x xo 9.9 8.9 II.2 11.8 10.I 8.1 7.4 8. 20 2.3 2.7 2.9 5.3 6.8 13 36 coo & 10.7 9.I 9.7 8.8 7.6 8.1 21 2.I 2.5 2.7 4.9 6.2 7.0 7.5 22 1.9 2.3 2 5 4.6 5.8 6.5 6.9 23 1.8 2.I 2.3 4.2 5.3 6.0 6.4 24 I.7 2.0 2.I 3.9 5.0 5.6 5.9 25 1.6 1.9 2.0 3.7 4.6 5.2 5.5 54 LENGTH IN FEET. 700 00 9 7 inches. SAFE LOAD, IN TONS, FOR CAST-IRON COLUMNS WITH TURNED CAPITALS AND BASES. OUTSIDE DIAMETER, 5 inches. OUTSIDE DIAMETER, OUTSIDE DIAMETER, 6 inches. OUTSIDE DIAMETER, 8 inches. OUTSIDE DIAMETER, 10 inches. OUTSIDE DIAMETER, 9 inches. Thickness in inches. Thickness in inches. Thickness in inches. Thickness in inches. Thickness in inches. 1/2 3/4 I 34 I 1 ¼ 11/4 3/4 I 1/4 1/2 34 I 1144 11/2 I 39.5 53.8 65.0 73.3 35.1 47.6 57.3 64.41 31.3 42.3 50.7 56.8 28.0 37.7 45.1 50.4 25.2 33.8 49.3 44.9 22.7 30.5 35.2 40.3 13 21.0 27.6 32.2 35.2 18.5 24.3 28.3 31.9 15 16.5 21.6 25.2 27.6 I I 12 14 SAW 16 17 18 19 20 14.8 19.4 22.6 24.7 13.3 17.5 20.4 22.3. 12.1 15.9 18.5 11.0 14.5 16.9 10.1 13.3 15.4 16.9 20.2 18.4 9.31 12.2 14.2 15.5 8.6 11.3 13. 14.4 8.0 10.5 12.2 13.3 21 22 23 24 25 7.4 9.7 11.3 12.4 6.9 9.1 10.6 11.5 77.3 95.5 110.3 122.1 69.7 85.7 98.7 108.8 62.8 77.1 88.5 97.3 56.9 69.6 79.6 87.4 51.6 63.0 71.9 78.7 46.9 57.2 65.2 71.2 42.9 52.1 59.3 64.6 39.3 47.6 54.1 58.9 36.8 43.9 49.0 52.6 33.0 39.4 44.0 47.2. 29.8 35.5 39.7 42.5 27.0 32.2 36.0 38.6| 24.6 29.4 32.8 35.2 22.6 26.9 30.1 32.3 20.8 24.8 27.7 29.7 19.2 22.9 25.6 27.4 17.8 21.2 23.7 25 4 16.6 19.7 22.1 23.7 15.4 18.4 20.6 22.1 102.4 128.7 150.7 169.4 93.6 117.0 136.9 153.5 85.6 106.7 124.6 139.3 78.4 97.5 113.5 126.6| 71.8 89.2 103.6115.3 66.0 81.7 94.8 105.3 60.7 75.1 87.0 96.5 56.0 69.2 80.0 88.6 51.8 63.9 73.8 81.6 48.1 59.2 68.2 75.4 44.6 54.9 63.2 69.8 42.0 50.9 57.8 63.0 38.3 40.4 52.7 57.4 35.1 42.5 48.3 52.6 32.3 39.1 44.5 48.4 29.8 36.2 41.1 44.7. 27.7 33.5 38.1 41.5 25.7 31.2 35.4 38.6 24.0 29.1 33.1 36.0 34 I 114 1½ 128.3 162.6 193.0 219.5 118.7 150.1 177.7 201.6 109.8 138.5 163.6 185.2 101.5 127.8 150.7 170.2 94.0 118.0 139.0 156.7|| 87.0 109.2 128.2 144.3 80.7 101.1 118.5 133.2 75.0 93.8 109.8 123.2 69.8 87.1 101.9 114.2 65.0 81.1 94.7 106.1 60.7 75.7 88.3 98.7 56.8 70.7 82.4 92.1 53.2 66.2 77.1 86.1 51.1 62.7 72.1 79.5 47.0 57.7 66.4 73.2 43.5 53.3 61.3 67.6 40.3 49.4 56.8 62.7 52.9 58.3 11/2 154.8 197.7 236.6| 271.4) 144.7 184.5 220.2 252.0 135.0 171.8 204.7 233.9 126.0 160.0 190.3 217.0 117.5 149.0 177.0 201.4 109.6 138.8 164.5 187.9 102.4 129.4 153.2 173.9 95.7 120.8 142.8 161.9 89.5 112.9 133.3 150.9 Thickness in inches. 3/4 I 1/4 1½ 181.6 233.4 280.9324.2 171.1 219.5 263.8 303.9 160.9 206.2 247.3 284.5 151.2 193.4 231.6 266.0 142.0 181.4 216.9 248.7 133.4 170.1 203.1 232.6 125.3 159.6 190.3 217.7 117.8 149.8 178.4 203.8 110.8 140.7 167.5191.1 104.3 132.4 157.3 179.3 98.3 124.6 148.0 168.5 92.7 117.4 139.3 158.5 87.5 110.8 131.3 149.3 82.7 104.6 124.0 140.8 65.5 83.9 105.7 124.6 140.9 78.7 99.0 116.7 131.8 73.9 92.9 109.4| 123.5 69.6 87.4 102.7 115.9 82.3 96.7 108.9 61.8 75.5 91.0 102.6 58.4 73.2 55.9 85.9 96.7 69.3 80.4 89.5 78.3 99.0 117.2 133.0 74.21 93.7 110.9 125.8 70.4 88.9 105.1 119.1 37.5 35.0 46.0 42.91 49.31 52.0 64.4 74.8 83.3 66.9 84.3 54.41 48.5 60.1 69.8 77.7 64.9 81.0 99.7112.9 94.2/106.3 55 SAFE LOAD, IN TONS, FOR CAST-IRON COLUMNS WITH TURNED CAPITALS AND BASES. OUTSIDE DIAMETER, OUTSIDE DIAMETER, OUTSIDE DIAMETER, OUTSIDE DIAMETER, OUTSIDE Diameter, OUTSIDE DIAMETER, LENGTH IN FEET. 700 9 II inches. 12 inches. Thickness in inches. Thickness in inches. I I H 2 Ι 269.4 325.9 377.6 469.5 255.1 308.1 356.8 442.2 241.2 290.8 336.3 +15.6 227.8274.2 10 227.8 274.2 316.7 390.3 11 214.9 258.4 298.1 366.3 12 202.7 243.5 280.5 343.9 13 191.2 229.4 264.0322.8 180.5 216.2 248.5 393.3 170.3 203.9 234.1 285.1 16 160.9 192.4 220.7 268.3 152.1 181.7.208.2 252.7 143.9 171.7 196.7 238.3|| 136.2 162.5 185.9 225.0 129.1 153.9 176.0 212.6 45 14 15 17 18 19 20 21 22 23 24 25 122.4 145.9 166.7 201.2 116.3 138.4 158.1 190.6 110.5 131.5 150.1 180.7 105.2 125.1 142.7171.6 100.2 119.1 135.7 163.1 1 H I مارت 377.7 461.1 539.9 684.6 363.1 442.8 518.0 655.9 348.5 424.4 496.3 627.0 333.8 406.3 474.6 598.5 I 2 449.8 551.1 648.0 828.6 435-3 532.8 626.3 799.8 420.5 514.4 604.1 770.4 405.6 496.0 581.8 740.9 13 inches. 14 inches. 15 inches. 16 inches. Thickness in inches. Thickness in inches. Thickness in inches. Thickness in inches. 2 I I 1 1 عدالت 2 I I 11 13 2 I 1 1 2 ات 341.5 414.4 485.7 612.7 327.0 396.3 464.1 583.9 312.4 378.4 442.5 555.5 298.0 360.6421.3 527.8 284.0 343.4 400.6 501.1 270.5 326.7380.8 475.3 257.5 310.8 361.8 450.7 245.0 295.5 343.7 427.4 233.2 281.1326.5 405.4 222.0 267.3 310.3384.6 211.3 254.4295.0 365.1 201.3 242.1 280.5 346.7 191.8 230.6 267.0 329.5 182.8 219.7 254-2313-3 319.4 388.5 453.4 570.7 305.4 371.1 432.6 543.6 291.8 354.3 412.7 517.7 278.8 338.2 393.6 493.0 266.2 322.7 375.3 469.4 305.3 370.8 431.7 540.9 290.9 352.8 410.2 512.8 276.6 335.0 389.1485.0 262.7 317.7 368.6 458.3 249.2 301.0348.8 432.9 236.3 285.1 330.0408.6 223.9 270.0312.2 385.7 212.3 255.6 295.3 364.1 201.2 242.1 279.4 343.9 190.8 229.4 264.5 325.0 181.1 217.5 250.6 307.4 171.9 206.3 237.5 290.9 163.3 195.8 225.3 275.6 155.2 186.0 213.9 261.3 147.7176.9 203.2 247.9 174.4 209.5 242.2 298.2 140.6 168.3 193.3 235.5 166.5 199.9 230.9 284.0|| 134.0 160.3 184.0 224.0 159.0 190.8 220.4 270.7 127.8 152.8 175.3,213.2 152.0182.3 210.4 258.3 .8167.1203.1145.4174.3 122.0145.8 167.1 203.1145.4 174.3 201.0 246.6|| 254.3 308.0 357.9 446.9 242.9 294.0 341.4 425.7 232.0 280.6 325.6 405.5 221.7 268.0 310.8 386.5 212.0 256.1 296.7 368.6|| 202.7 244.7 283.5 351.8 194.0 234.0 270.9 335.9 185.7 224.0 259.1 320.9 177.9 214.4 248.0 306.8 170.5 205.4 237.5 294.1|| 390.6 477-4 559.8711.7 376.0 459.3 538.0683.4 361.6 441.2 516.7 655.1 347.6 423.8 495.9 628.0 333.9 406.9 475.9 601.8 413.7 506.1 594.0 756.7 399.3 487.9 572.2 727-7 384.4 469.5 550.1 698.4 369.7 451.0 528.2 669.3 355.1 433.0 506.3 640.9 340.6 415.0 485.0 612.8 326.5 397.6 464.5 585.9 313.0 380.7 444.4 559.7 299.9 364.5 425.2 534.9 287.2 348.9 406.7 510.9 320.7 390.6 456.6 576.6 275.1 334.0 389.1 488.1 308.0 374.9 438.0552.5 263.6 319.7 372.2 466.5 295.8 359.9 420.1 529.4 252.5 306.2 356.2 445.9 284.1 345.4 403.0 507.3 242.0 293.3 341.0 426.3|| 272.9 331.6 386.8 486.3 232.0 281.0 326.5 407.8|| 262.1 318.4 371.2 466.2 222.5 269.3 312.8 390.3|| 251.9 305.9 356.4 447.2 213.4 258.3 299.8 373.7 242.2 293.9 342.3 420.1 204.9 247.8 287.5 358.1 232.9 282.5 328.8411.9 196.7 237.8 275.9 343.2|| 224.0 271.6 316.1 395.6 56 BARS USED AS PILLARS OR STRUTS. When a beam is used as a pillar or strut, and not as a girder, to find the safe load in tons of 2,000 lbs. which it will support if secured against deflection, either by having accurately-faced capital and base, or in some other manner. RULE.-Multiply the area of cross-section of the bar given in column X. of the tables pp. 40 to 42, by 4, and multiply that product by the number given in column VI., and divide the product so found by the number given in column VI., plus the square of the longest length of the strut or pillar, which is unsup- ported sideways, taken in feet; or if, by reason of the pillar being supported sideways, it will fail, if at all, by deflection edgeways, substitute in the above rule for the number given in column VI. that given in column VII., and for the longest length unsupported sideways substitute the longest length unsupported edgeways. If the pillar is hinged or not faced at the ends, and thus not secured against deflection, take in the foregoing rule one- fourth of the number in column VI. or VII., instead of the whole number. EXAMPLE.-What load will an 8-inch light beam, 15 feet long, and having ends accurately faced, support as a pillar? Area of cross-section, Col. X., = 6.37. Number in Col. VI. = 180. 6.37 X 4 X 180 4586 180 +225 405 11.3 tons. If the strut is hinged at its ends so that its bearing opposes no resistance to deflection sideways, then we should use the num- 180 ber 4 45 instead of 180, and we should have for the load, 6.37 X 4 X 45 45+225 4.25 tons. But if hinged so that it would deflect edgeways, we should use the number in column VII., divided by 4, viz. : 2,632 4 658, and the load would be 6.37 X 4 X 658 658+225 19.0 tons, which is greater than the strength of the strut to resist deflection. sideways, even when not hinged in that direction. Unless sup- ported sideways, therefore, the load for such a strut would have to be limited to that found in the case first supposed, viz.: 11.3 tons. The following table gives the ratio of the length of beams and channels that may be unsupported edgeways to that unsupported sideways to obtain the same strength, and shows that the points of support sideways should be from 2 to 5.87 times as near together as those edgeways. 57 RATIO OF LENGTH OF POSTS UNSUPPORTED EDGEWAYS TO LENGTH Į UNSUPPORTED SIDEWAYS, GIVING SAME STRENGTH. BEAMS. CHANNELS. SIZE. Ratio SIZE. Ratio SIZE. Ratio SIZE. Ratio 20" 272 Abs. 5.96 9" 20" 70 lbs. "C 200 6.82 8" 15" 200 5.07 811 80 " 3.29 15" 120 4.37 15" 190 lbs. 4.26 5.10 65 " 15" 150 15" 125 5.83 7″ 6.11 6" 3.82 12" 140 << 55 3.37 121" 70 46 " 120 12" 170 1.87 10" бо во 5.56 4.04 6" 33 4.267 6" 45 7" 25 lbs. 4.55 3.20 " 3.65 6" 22 " 4.27 3.91 6" 带着 ​4.80 90 12" 125 2.15 10" 5" 19 " 4.04 4.96 6" 48 "( 5.4 "" 50 12" 120 3.23 9" "" 4.10 6"1 70 3.92 3" 15 40 12" 96 (c 3.77 9" 50 10" 135 10" 105 103" 90 4.43 5" "" 40 3.01 8/1 3.82 5" 45 "" 30 "" 3.38 811 33 4.40 9 125 3.64 9" 85 4.48 4" 4" 37 2.29 7" 36 "" " 4″ 161 3.49 4.83 STRUT BARS. 4.18 5" 22 Ibs. 3.00 4.78 5" 16" 3.22 3.72 " 2.59 30 18 "" 2.59 4.21 3.90 TABLE SHOWING DISTANCE REQUIRED FROM BACK TO BACK OF CHANNELS FORMING POSTS TO GIVE EQUAL STIFFNESS PARAL- LEL WITH, AND AT RIGHT ANGLES TO THE WEB: Flanges turned out- ward ] [. Dis- Flanges turned inward tance apart in the clear in inches. [ ] out Distance in inches. out to · SIZE OF CHANNEL. 15" heavy, 190 lbs. per yard 8.32 15" light, " << 120 9.08 2.40 19.64 3.26 20.38 12" heavy, 140 "" "C 6.58 1.70 15.80 121" light, "" CC ༡༠ 7.70 101/ бо 66 2.86 17.14 " (C 6.28 2.30 14.02 IO" 48" (" 6.07 2.27 13.47 9" heavy, "" " 70 4.90 1.24 11.86 9" light, " 50 5.40 8" light, 1.84 12.30 " 7" light, 6" heavy, 5″ ( " 8" ex. light, 33 366 7" ex. light, 251" 6" light, 6" ex. light, 4" 45 4.60 1.26 II.00 "C " 5.02 1.70 II.40 " 3.86 0.90 9.46 " " 4.08 1.32 9.34 "( " ( 45 2.80 0.30 7.42 " 33 3.20 0.68 7.94 22" 352 1.00 8.32 C 19 2.83 0.76 6 80 3″ 161" 15 " 2.03 0.34 5.16 C 1.16 0.00 3.58 a∞ Square or fixed flange will have a width out to out exceed- Posts formed of channels meeting flange to ing that here required. 14.82 14.04 13.72 12.30 11.38 10.34 10.46 10.48 866 7.00 5.62 15 26 24.68 24.18 20.28 20.16 16.54 15.73 ends. Ends hinged on pins at right angles to web. Ends hinged on pins parallel with web. Square or fixed ends. Ends hinged on pins at right angles to web. Ends hinged on pins parallel with web. 13.36 7.44 12.88 7.06 11.06 6.18 10.72 5.88 8.80 4.82 8.33 4.53 8.30 4.64 7.92 4.36 7.64 4.30 7.34 4.02 6.70 3.74 6.12 3.36 5.72 3.22 5.72 3.20 5 68 316 4.69 2.62 3.87 2.18 3 20 1.78 POSTS FORMED OF CHANNEL AND STRUT BARS RIVETED CLOSE OR The same formulæ as employed on the preceding page, viz. : Columns with faced or fixed ends. Columns with hinged ends. NEAR TOGETHER. r 4XaX- 4XaXr Safe load Safe load L²+r L²+- ++ 4 r 4 58 of the length in feet. the values of a and r in the following table; L' being the square give the safe load in tons of 2,000 lbs., in this case, using the VALUES OF a AND r FOR USE IN THE PRECEDING FORMULE. DESIGNATION OF BAR. 250 [NOTE. a = area of cross- section in sq. inches, r= times the square of the radius of gyration of the section.] Single Bar. Strength sideways. Two bars riveted together thus, strut bars (), chan- nels ][, but not weakened by rivets at middle of length. Strength side- ways. Strength edgeways. Bars as in Column II. Two bars riveted together, allowing for rivet holes in stem-one rivet in 3 in., 4 in, and 5 in. chan. nel bars, two rivets in Strength sideways. others. Bars as in Column IV. Strength edgeways. I. II. III. IV. V. VI. 12″ Heavy Channel { 121" Light 14.10 28.20 28.20 26.49 26.49 26.49 r 317 630 5170 669 5357 746 CC Sa 7.0 14.00 14.00 13.17 13.17 13.17 Γ 180 322 5470 342 5675 39.5 9" Heavy Ja 7.02 14.04 14.04 12.96 12.96 12.96 Two bars riveted together, but separated from each other as below, allowance made for rivet-holes in stem of chan- nels and in flanges of strut bars; inch rivets in 6 inch| and smaller bars, ½ inch in larger bars. Strength sideways. 44 inch. inch. 1 inch. VIII. 26.49 1024 13. 17 603 12.96 VII. 26.49 831 13.17 456 12.96 190 371 2025 401 3061 · 461 529 687 9" Light Ja 5.08 10.16 10.16 9.33 9.33 9.33 9.33 9.33 124 230 2892 250 3036 297 352 485 6" Heavy 6" Light 5" 19 th. 4″ 16%½ lb. 3″ 15 tb. 4.32 8.64 8.64 7.84 7.84 7.84 7.84 7.84 123 248 1257 272 1326 324 384 525 CC 3 3.20 6.40 649 5.84 5.8uf 5.84 5.84 5.84 Γ IOI 197 1343 215 1420 260 314 443 a 1.92 3.84 3.84 3.62 3.62 3.62 3.62 3.62 Tr 57 III 930 118 987 152 194 394 Sa ત 1.64 3.29 3.29 3.07 3.07 3.97 3.07 3.07 Ir 49.2 102 597 IIO 640 144 186 294 fa 1.45 2.89 2.89 2.67 2.67 2.67 2.67 2 67 51. 116 341 125 351 163 200 324 5″ Heavy Strut Sa 2.15 4.3 4 3 3.67 3.67 367 3.67 3.67 47.7 132 433 153 356 196 248 376 5" Light " a 1.55 3.11 3 II 2.61 2 61 2.61 2.61 2.61 43.6 105 457 124 376 164 211 329 19 lb. channels, 6 ft. long, riveted together 1/ apart and hav- EXAMPLE.—What is the safe load as a strut of a pair of 5″ Answer. — ing fixed ends? Safe load 36+304 4 X 3.62 X 304 12.95 tons. 59 SAFE LOAD IN TONS OF 2,000 LBS., FOR CAST AND WROUGHT IRON COLUMNS OF VARIOUS SEC- TIONS. I HI +4 D__. HAVING FACED CAPITALS AND BASES. An approximate rule for determining the safe load of columns, of any form of cross-section, is as follows: RULE. Divide the length of the column by the least diame- ter D measured, as shown by the accompanying cuts, both in inches; multiply the number in column headed C of the table L on the next page, corresponding to the quotient so found by D' the area of cross-section of the column in square inches. If the columns are not provided with faced capitals. and bases, the loads so found are to be divided by the number in column headed Rounded Ends," corresponding to the L - quotient D' " EXAMPLE. What safe load can be borne by a hollow rec- tangular cast-iron column 12 inches wide by 6 inches deep, and 15 feet long, the thickness being I inch, and the column pro- vided with faced capital and base ? Here, D=6; L L= 180; L D 30, opposite which number in 3.14. The area of cross-sec- the column for cast-iron we find tion of the column is 32 square inches, which, multiplied by 3.14: 100.48 tons, the safe load. If the column were not provided with faced capital and base, it would be necessary to divide this load by the number 2.59, found in column headed Rounded Ends," and the safe load thus obtained would be 38.8 tons. In calculating by this rule the strength of wrought-iron col- umns, formed of beams, channels, or angles riveted together, 60 the areas of cross-section will be found in the tables relating to these bars in the previous portion of this book, pp. 40, 41, and 42, Col. X. This table is calculated by Gordon's formula, taking 8,000 lbs. per square inch as the safe load for a short column of wrought-iron, and 6 tons for cast-iron. The quantities are respectively and 1% of the breaking loads. This table may also be used for determining the safe load of the Trenton rolled sections, as given by the rule pp. 57 and 58, by simply dividing the figure given under the head of "Strength as Strut," Col. VI. or VII. in the tables pp. 40, 41, 42, 59, by the square of the length of the column in feet, and multiplying the quantity in the Col. C for wrought-iron opposite the quotient thus found by the area of cross-section of the column. CAST-IRON. WROUGHT- IRON. r L2 WROUGHT- CAST-IRON IRON. JIA 12 L C Rounded ends. C Rounded ends. HIA L2 C Rounded ends. C Rounded ends. 670 99.0 6.38 66.0 6.28 8 49.0 6.17 I.12 3.96 1.17 3.94 1.22 3.92 1.04 1.06 1.02 40 1.9 41 1.8 2.22 3.00 2.61 2.04 2.15 3.03 2.57 2.07 9 35.0 6.05 1.28 3.89 1.08 42 1.7 43 1.6 2.08 3.06 2.52 2.10 2.01 3.09 2.48 2.13 ΙΟ I I 12 21.0 5.65 1.46 30.0 5.93 1.33 3.87 26.05.79 1.39 3.85 3.82 1.10 44 1.55 1.95 3.II 2.43 2.17 1.12 45 1.15 46 13 18.0 5.50 1.52 3.79 1.17 47 ง Ou 1.48 1.89 3.14 2.39 2.20 1.42 1.83 3.17 2.35 2.23 1.35 1.77 3.20 2.30 2.27 15 16 H H 17 18 456 7∞ 14 15.0 5.35 1.60 3.75 1.19 48 1.30 1.72 3.23 2.26 2.30 13.0 5.20 1.68 3.72 1.21 49 I 25 1.67 3.25 2.22 2.33 12.0 5.05 1.75 3.69 1.23 50 1.20 1.62 3.27 2.18 2.36 10.4 4.90 1.82 3.65 1.26 51 1.15 1.57 3.30 2.14 2.39 19 9.3 4.75 1.88 3.61 8.3 4.59 1.94 3.57 1.29 52 1.12 1.52 3.32 2.II 2.42 1.32 53 1.07 1.48 3-33 2.07 2.45 20 7.5 4.44 2.00 21 22 6.8 4.30 2.07 3.49 6.1 4.15 23 5.7 4.01 2 2 2 N 24 3.53 1.35 1.38 2.13 3.44 1.42 2.20 3.40 1.45 5.2 3.88 2.27 3.36 1.49 54 1.03 1.44 3.35 2.03 2.48 55 0.99 1.39 3.37 1.99 2.51 56 0.95 1.35 3.39 1.95 2.53 57 0.92 1.32 3.41 1.92 2.56 58 0 90 1.28 3.42 1.89 2.59 26 25 4.8 3.74 4.4 3.61 2.33 3.31 2.38 3.26 1.52 59 0.86 1.25 3.44 1.85 2.61 1.56 бо 0.84 1.21 3.45 1.82 2.64 27 4.I 3.49 28 33 3.8 3.37 29 3.5 3.25 30 3.3 3.14 31 3:1 3.03 32 3.0 2.92 2.8 2.82 1.76 1.80 34 ترا در کیا کیا 35 36 37 38 2.79 1.90 70 1.93 80 0.47 1.97 90 0.37 2.44 3.22 1.59 2.49 3.17 1.63 2.54 3.12 1.66 2.59 3.08 1.69 2.64 3.03 1.73 2.69 2.99 2.74 2.94 1.86 2.6 2.73 2.78 2.89 1.83 2.5 2.63 2.82 2.84 2.3 2.54 2.86 2.2 2.46 2.90 2.75 2.1 2.38 2.93 2.70 39 2.0 2.30 2.97 2.65 2.00 100 0.30 0.49 3.78 0.92 3.30 The stiffness of a column is greater the further the metal in it is removed from the center in every direction; hence, for a given diameter or width of side the hollow square is the best form, and hollow cylinder next best. Other forms similar to 61 0.81 1.18 3.47 1.79 2.66 65 0.71 66 0.69 1.03 3.53 1.06 3.52 62 0.79 1.15 3.48 1.70 2.68 63 0.76 1.12 3.50 64 0.73 1.00 3.51 1.73 2.71 1.69 2.73 1.66 2.75 1.63 2.78 67 0.67 1.01 3.55 1.60 2.80 68 0.65 0.98 3.56 1.57 2.82 0.63 0.96 3-57 1.54 2.84 0.61 0.94 3.58 1.52 2.86 0.74 3.67 1.28 3.04 0.60 3.74 1.08 3.19 61 those represented have about the same stiffness in proportion to the amount of metal in them as a solid square section, and the figures given in the table for wrought-iron are those which would be exact for such a section. Those given for cast-iron are correct for hollow cylinders, and therefore are small for long columns of a hollow rectangular form, and somewhat in excess for those of other shapes. For very short columns, the form of section makes but little difference. SAFE LOAD IN TONS OF 2,000 LBS., FOR RECTANGU- LAR WOODEN COLUMNS. FIXED AT BOTH ENDS BY BRACES OR OTHERWISE. RULE.-Divide the length of the column by the least diame- ter both in inches; multiply the number in column headed C corresponding to the quotient so found by the width and by L D the thickness of the column in inches. If the column is not secured by braces or otherwise, but has merely a bearing on its own cross-section, the load should not be more than half that here given. For pine, about three- For wet timber, This table is calculated for dry oak. quarters of the load given may be allowed. one-half. EXAMPLE.—What is the safe load for an oak pillar fixed at both ends, 20 feet long, 8 inches by 10 inches? L 240 30, for which C=.086; D 8 .086 X 8 X 10=6.88 tons=safe load. L 012 L L C C D HIA C HIA L C × NM+46 7∞ a 0.399 14 0.394 15 0.386 16 0.376 17 0.363 18 +50 78 0.224 0.210 2 N 27 0.102 40 0.054 28 0.096 41 0.051 0.197 20 0.001 42 0.049 0.185 30 0.086 43 0.047 0.174 31 0.082 44 0.045 0.349 0.334 19 0.163 32 0.078 45 0.044 20 0.154 33 0.074 46 0.042 8 0.319 21 0.144 34 0.071 47 0.040 0.302 22 0.136 35 0.067 43 0.039 10 II 0.285 0.269 23 0.128 36 0.064 49 0.037 24 0.121 37 0.061 50 0.036 12 0.254 25 0.114 38 0.059 13 0.238 26 0.108 39 0.056 This table is calculated by Gordon's formula (Rankine's Civil Eng. p. 237), taking 8,000 lbs. per square inch as the crush- ing load of oak, and assuming to the breaking weight for the safe load, ΤΟ 62 TENSILE STRENGTH AND QUALITY OF IRON. Wrought iron from bars of not over 2 sq. inches cross-section should be required to stand a tensile strain of 50,000 lbs. per square inch before breaking; it should not undergo appreciable permanent elongation under a less strain than 25,000 lbs. per square inch; it should stretch 15 per cent. of its original length before breaking-the specimens tested being of ½ to I sq. inch area and of uniform sectional area for a length equal to ten times the least diameter; and pieces cut from the bars should be capa- ble of being bent, cold, 90° over the edge of an anvil without sign of fracture, and should show a fibrous texture when broken. Test pieces from bars of larger cross-section will show a less tensile strength, running as low as 46,000 lbs. per square inch for bars of say 10 square inches section. Iron that will not meet these requirements is not suitable for structures; but noth- ing is gained by specifying more severe tests, because in bars of the sizes and shapes usually required for such work nothing more can be attained with certainty, and conscientious makers are unwilling to agree to furnish that which it is not practicable to produce. DOUBLE REFINED IRON. It is frequently specified that the iron for tension members of bridges shall be double refined; that is, that it shall have been twice rolled after the rolling of the muck bar. This adds materially (say from 20 to 30 per cent.) to the cost of the iron, while with good irons, the additional strength, or even greater uniformity obtained is slight and far less propor- tionately than the increased cost. The results of experiments made on the Emery testing machine, at the Watertown Arsenal in 1881, on bars 3″ X I' and 5" X 14", So long between the gauge marks, showed that with iron rolled from tough and fibrous muck bar, pud- dled with soft coal, there was a gain, taking the average of all the bars tested, of but from 1 to 2.6 per cent. in the ultimate strength of the double refined iron over that of the single refined. In the elongation and reduction of area there was a gain in the 5" X 14", and about an equal loss in the 3X1 bars, while the greatest variation from the average in any single bar was not materially different in the two cases. Another series of tests of bars of precisely similar dimensions, rolled from muck bar, puddled with anthracite coal, and originally rather hard, ("bent cold, without nicking, snapped short off at 30°, fracture over one-half fine crystalline, remainder fibrous streaks and spots,") showed a greater gain by double rolling, viz.: 3.5 to 5.2 per cent. in ultimate strength, 2.9 to 9.4 per cent. in elastic limit, with a considerable gain in elongation and in reduction of area at the point of fracture. The single refined bars were rolled, as usual, from piles of muck bar with a reheated top and bottom. The table below gives the comparison of the poorest bar of each kind tested, which is of greater importance than a com- parison of averages. Experiments on Trenton iron agree with 63 sions with the single refined bars. what can be more cheaply gained by a slight increase in dimen- structure by the use of double refined iron to gain in strength obtained with certainty, rather than to add to the expense of the an ulitmate and elastic strength not above that which can be it is more economical to use single refined iron, assuming for it The results of these tests appear to show that with good irons DESCRIPTION. Dimensions of Bar. Ultimate tensile strength per square inch. Single refined, poorest of 4 bars tested. 3.03"Xf.or" 51,440 28,500 15.0 20.3 Watertown Double refi'd, poorest of 4 bars tested. 3.03"X1.01" test. Mark L, Gain over single refined, per cent. Soft and tough Single refined, poorest of 3 bars tested. 5.04"X1.27" Muck bar. Double refi'd, poorest of 3 bars tested. 5.03"X1.26″| Gain or loss over single refi'd, per ct. 52,650 29,000 15.3 20.6 2.3% 1.75% 2.0% 1.5% 50,200 27,000 14.5 22.3 50,500 27,000 17.6 0.6% 0.0% Watertown test. Mark S, Single refined, poorest of 3 bars tested. 3.05"X1.00" Double refin'd, poorest of 3 bars tested. 3.05"X1.00" Gain over single refined, per cent. 47,050 28,000 51,110 28,500 22.0 8.63% 1.78% 144% 21.3% 9.0 21.1 -5.4% 22.0 31.5 43.25% Hard Muck bar. Single refined, poorest of 3 bars tested. 5.09"X1.26" Double refi'd, poorest of 3 bars tested. 5.06"X1.26″ Gain over single refined, per cent. 48,740 24,000 14.3 17.3 50,770 27,000 19. I 23.6 4.17% 12.5% 33.6% 36.4% Single refined, average of 4 test pieces, .62" diam., cut from same cross-section of bar. in 5″ 6"X5/8" 52,603 30,469 20.5 27.5 Trenton test. Double refined, rolled from above? bar, average of 2 tests, .56" diam. S 4"X5/8" 50,649 27,506 23.4 33.5 Gain or loss by rerolling. -3.7 -97 +14.1 +21.8 Single refined. 8"X8" 47,929 26,288 15.7 18.5 Trenton test. Double refined, rolled from above bar; average of 3 test pieces from same bar. 6"X1" 48,774 25,746 24.7 28:8 Gain or loss over single refi'd, per ct. +1.76% -2.I +57.3 +55.7 Pounds per square inch. Limit of elasticity. Elongation in 80 inches, per cent. Reduction of area, per cent. working, and in some instances show a loss. pile for the double refined bar tested in comparison. were cut from the identical bar which was cut up to form the because in each case the test pieces for the single refined iron the table the results of two of these tests which are of value, the Watertown tests in showing very slight gain by double We include in COMPARATIVE TESTS OF SINGLE AND DOUBLE REFINED IRON. 64 EXPANSION. 1 o Wrought iron expands of an inch in a foot of length for each 1º Fahrenheit of heat; or for 150°, % in 10 feet, which will be sufficient allowance for work exposed in this climate. Cast iron expands somewhat less, or of an inch per foot for each °. Copper and Bronze expand about 50 per cent. more than wrought iron. Brass and Tin Lead and Zinc * CC ( << << 75 150 C ( 44 << Co The expansion of brick, stone and glass is about three-quar- ters, and that of timber about one-third that of wrought iron. HIGHWAY BRIDGES. Moving Load provided for should be- For spans under 100 feet, • 66 100 ft. to 200 ft., over 200 feet, • • 70 to 100 lbs. per sq. ft. • 50 to 80 66 40 to 65 The lighter loads given will be sufficient for ordinary country roads, while for cities or heavy traffic the greater loads should be provided for. Floor Beams should be proportioned to carry the greatest load which may come on a single pair of wheels-say two to five tons in each roadway, according to traffic. Stringers should be adequate to support at the center of their span the load coming on one wheel-say one to two and a half tons. Width of Roadway for two lines of vehicles-16 ft. to 18 ft. Sidewalks-four feet. EYE BARS. The diameter of the pins in flat bars, having the same thick- ness throughout, should be 0.8 the width of the bar. The width of the metal on each side of the eye should be 34 the width of the bar, and in front of the eye should be equal to the width of the bar. When it becomes necessary to use a larger pin than here described (as when a bar takes hold of the same pin with bars of larger size), the amount of metal around the eye should be still further increased. The weight of an eye bar, proportioned as here described, will be about equal to that of a plain bar of a length equal to the distance from center to center of the pins, plus twice the diameter of the pin, multiplied by the width of bar, both in inches, 65 WELDLESS, DIE-FORGED EYE BARS. Width of Bar. Width of Diam. of Head. Pin. Width of Bar. Width of Head. Diam of Pin. 7 inch. 6 inch. " 164 inch. 5 inch. 3½ inch. 10½ inch. 476 inch. " 着 ​" C 15 510 ΙΟ 410 142 C 510 9/2 " 316 " (C 14 410 8/2 "" 316 5 inch. "" " 13 814 "" 216 " 12½ " " 3 inch. " 10 " " 4½ inch. " " 44 12 1112 " " 318 " " 410 1034 " ་ " 318 " 4 inch. 10½ 11/2 " 311 C "" " 418 2½ inch. ( C 10½ 41 908 7 DO S 9/2 " " 8½ " 7/2 " " 7 6/2 " N N N WWI A 4 7 " 416 319 314 15 218 " " " " 534 "" H ( " ΙΟ 3 2 inch. 7 " "( " 92 " " 94 370 31% 6 6 310 " ( 434 " The smallest diameter of pin given for each width of bar is the standard size. The larger sizes given are the largest that are allowable with each head. The thickness of the bars should not be more than ½ nor less than their width. inch larger than the diameter of the pin. Eye bars are bored SLEEVE NUTS. Diameter of Round Bar in inches. Area of Round Bar in square inches. Side of Square Bar] in inches. Area of Square Bar in square inches. Diameter of Upset in inches. 5/8 0.31 7/8 0.44 0.60 I 0.56 18 3/4 I 0.78 0.76 I 3/4 118 0.99 14 1.23 I 11/8 1.00 1.27 178 3. 138 1.48 3: 112 1.77 1.56 3 158 2.07 13/8 1.89 13 1 2 2 18 2.40 2.76 2.25 2 2 2 4 4 +33Wwwwwwww 32 Length of Upset in inches. ∞∞∞∞VVVVaa Length of Nut in 61/2 61/2 \W\N inches. Weight of Nut in pounds. Threads per inch, U. S. standard. Those over 1 in., about in. full. 4 4 4% 5 7½ 6½ 6½ 7 7/2 9 98 77OO IS in in 6 6 51/2 5 5 92 4% ΙΟ 4/2 44 9 I I 4 3.14 218 3.55 214 23 3.98 4.43 18 2.64 134 3.06 4 92 13½ 42 9½ 14 4 10 17 1% 3.52 4 ΙΟ 17 4 2 • 4.00 2 4: ΙΟ 21/2 17 4 4.91 218 4.52 3 43 10½ 21/2 3/2 66 MAXIMUM STRAINS IN BRIDGE TRUSSES. In determining the maximum strain on the various members of the trusses referred to in the following tables, the load is considered as divided into four parts, viz. : Uniform dead load at lower panel points; Uniform dead load at upper panel points; Live load at panel points, uniform as far as it extends; Extra live load on a single panel point, in addition to the general live load. It is assumed that this extra live load may occur at any point with reference to the general live load, and is therefore taken as occurring at the points where it will bring the greatest strain on the members, viz., for the diagonals and posts, at the head of the live load, and for the chord sections, at the panel points at the end of the section toward the center of the span in the top chord, and at the end toward the abutment in the lower chord. For simplicity the entire extra load is assumed as con- centrated on a single panel point, though in the case of a loco motive it will in fact extend over several. Except in short spans, this will not materially affect the result, and in such spans a different assumption should be made as to the distribu- tion of the load. With the same traffic the live load per lineal foot of bridge will obviously differ for different lengths of span. Thus, on short spans the weight of locomotives only may form the live load, with the extra weight on the driving wheels as the extra load E, while on very long spans the weight of loaded cars may form the general live load, with the locomotive con- sidered as an extra load. Half the entire loads on the bridge of these four classes will be the loads on each truss. The uniform loads on each truss, divided by the number of panels, will give the loads at each panel point. The loads at each panel point divided again by the number of panels in the bridge, or in single intersection Warren trusses by twice the number of panels, give fractions of the loads on the panel points, which are designated in the tables, respectively, by the letters L, U, M, E; and these fractions of the loads, when mul- tiplied by the figures given beneath them in the tables, give the maximum strain from each class of load on each member, and the sum of these strains is the total maximum on such member. If it be not deemed necessary to divide the dead load into upper and lower, it will be considered as coming entirely on the upper or lower panel points, according as the bridge is "deck" or "through," the figures under L or U, as the case may be, representing loads on the other chord, being disregarded in deter- mining the strains on the posts. If provision is to be made for a uniform load equal to a train of the heaviest single loads, the figures under E will be neglected. For railway bridges subject to sudden application of the live load the strain on the various members will be increased. The portion of the load coming on the successive first loaded panels should be considered as acting with double intensity, and this 66 a will be correctly represented if, in the table for strains on posts and diagonals the figures given for the moving load in the column headed M be increased by adding that in the column headed E, and if to the strain on the chord sections be added a strain equal to M multiplied by one less than the number of panels in the truss. If the bridge is being proportioned on the assumption of a uniform moving load and a greater single load (engine), the figures in the column under E must be again used, multiplied by E, to give the extra strains produced by the engine in the manner already indicated. If a member is subject sometimes to tension and sometimes to compression, it must be proportioned to resist the sum of these strains. The lower panel points are numbered Lo, L1, L2, L3, etc., commencing at one abutment, and the upper panel points are numbered U。, U1, U2, U3, etc., commencing at the same point, U。 being omitted if the end post is inclined. EXAMPLE. In a railway through bridge having single inter- section rectangular (Pratt) truss of 120 feet span and 15 feet deep center to center of pins, and divided into 8 panels, what is the maximum strain on the end post (inclined) U₁ Lo, on the post U3 L3, and on the center chord sections U3 U the loads being as follows? Dead load lower panel points Dead load upper panel points Total dead load, Uniform live load, • • 1 1000 lbs. per ft. of bridge. 200 lbs. per ft. of bridge. 1200 lbs. per ft. of bridge. 2400 lbs. per ft. of bridge. Excess of engine load above general live load, 26000 lbs. Here, L 1000 X 120 8÷8937.5 2 200 X 120 U ÷88 187.5 2 L+U 1125.0 2400 X 120 M ÷ 882250 2 L+UM · 3375 26000 E ÷ 8 = 1625 2 The length of end post, divided by depth of truss, 1.42. The length of post and chord section, divided by depth of truss, each = 1. Then strain on- U₁ Lo U₁ L (112528 +2250 X (28 + 7) -+- 1625 X 7) X 1.42 = 172,707. (937.5%4+187.5X12+2250 (((10-+4)+1625) 4) A 1=44,000. U₁ U₁ =(3375 X 64 + 2250 X 7 + 1625 X 16) X1 = 257,750. 3 1= If the bridge were to be proportioned for a train of locomotives equal to 2800 pounds per lineal foot of bridge, and no extra load, then- 2800 X 120 M ÷8÷8 2 L+U+M and the strains on- 2625 · 3750 U₁ Lo (1125 X 28 + 2625 X (287)) X 1.42 = 175,192. U₁ La - 3 U₁ U₁ (937.5 X 4+187.5 X 12+2625 X (104))× 1 = 42,750. · (3750 X 64-2625 X 7) X 1258,375. The two suppositions give practically the same strains, except on the post U¸ L¸. 668 HAVING EQUAL PANELS. MAXIMUM STRAINS IN SINGLE INTERSECTION RECTANGULAR TRUSSES, HAVING EQUAL PANELS. END POSTS INCLINED IN THROUGH BRIDGES; VERTICAL IN DECK BRIDGES. Multiply by Length of Member Depth of Truss and by the quantities L, U, M, E, at the head of each column. > 12-Panel 11-Panel | 10-Panel 9-Panel Truss. Truss. Truss. 8- Panel Truss. 7-Panel Truss. 6-Panel Truss. 5-Panel 4-Panel 3-Panel Truss. Truss. Truss. VERTICAL MEMBERS. Truss. LUMELUME LUME LUMELU MELU MELU│MELUM ELUMEL UME 9 Through Bridges. L₁ 12 I 2 12 II I I I I IO 10 IO 9 L₂ 42 54 45 9 33 44 36 825 35 28 27 21 ܨܐ 30 42 36 8 22 33 28 7 15 25 21 6 8 15 L₁ 18 30 28 11:22 21 5 15 15 L 6 18 21 6 I I 15 51 IO IO 54 9 IO Le 12 15 IS CO CO ་་་་་་་་ 20 15 5 12 IO 81 74 5, LO CO 8 8 7 7 6 7,14 TO 4 3 5 3 7 6 3 6 3 Dead load at one lower panel point. L N S 41 31 3 3 Deck Bridges. U。 Lo L₁ Ua Le 55555 L₂ L₁ M E Number of panels. Dead load at one upper panel point. Number of panels. Moving load at one panel point. Number of panels. Excess of engine load over general live load on one panel. Number of panels. 8 55 60 60 44155 155 44 55 55 3344 145 2213336 11 22 28 11 45 50 50 10 36 404 4049 10 35 45 45 9 25 35 36 8 15 25 28 5 15 21 I I 21 6 10 15 98 765 9 27 36 36 8 8 27 28 9.18 21 6 ON KO 12 28 32 321 20 28 28 7 20 21 6 8 21 2 247 15| 18| 18| 6|10|12|12|| 4 12 15 5 1421 6 714 15 5 7 IO 21 54 9 15 15 5 510 9, 10 IO 2 ลง 66 5 6 →34 6 8 8 4 3 4 4 3 3 3 3 9 15 5 8 10 6 66 72 72 12 54 66 66 11 42 54 55 10 30 42 45 9 18 30 36 6 18 28 *6 211 * 12 if no live load. 66 c MAXIMUM STRAINS IN SINGLE INTERSECTION RECTANGULAR TRUSSES, HAVING EQUAL PANELS, END POSTS INCLINED IN THROUGH BRIDGES; VERTICAL IN DECK BRIDGES. Multiply by Length of Member Divided by Depth of Truss, and by the Quantities L, U, M, E, at the head of each column. | 12-Panel | 11-Panel | 10-Panel 9-Panel 9-Panel MEMBER. Truss. 8-Panel 8- Panel 7-Panel Truss. Truss. 6-Panel 5-Panel | 4-Panel 4-Panel 3-Fanel Truss. Truss. Truss. Truss. Diagonals. U₁ Lo or U。 Li U, L. Truss. Truss. Truss. +UMEL+UME L+UMEL+UM EL+UME L+UMEL+UMEL+UMEL+UME L+UME L+UME ∞ 76 17 765+ N 554 ~ N 6 2 2 66 66 II 55 55/10 45 45,9 36 36 8 28 28 21 21 6 15 15 5 ΙΟ 54 55 10 44 45 9 35 368 27 28 20 ΖΙ 14 15 5 9 ΙΟ 5 61 42 45 9 33 36 8 25 28 7 18 21 6 12 30 3618 22 28 7 15 216 9 18 281 7 I I 21 5 6 6 15 6 15 5 -I I TO 18 ΙΟ 4-22 596 5 4-15 Алл 15 515 104 9 1000 15 5 IO 543 12 442 15 5 IO 7 IO 3 63 3 3 2 5 6 Co L w U Number of panels. 30 Moving load at one panel point. M Number of panels. Dead load at one lower panel point. Number of panels. Dead load at one upper panel point. در) H O w 32 I I Excess of engine load over general live load on one panel. Number of panels. L+U+ME ΙΟ 15 46 L+U+ME 6 က 3+ L+U+ME 3 2 Chords. L+U+ME L+U+ME L+U+ME L+UME LUME L+U+ME L+U+ME Lo Li Li L, 66 II 55 IO 45 ON 36 8 28 L₂ La 120 20 99 13 80 ΙΟ 63 14 48 12 L₁ 162 27 132 24 IOS 121 81 13 60 15 Ls 192 32 154 28 120 Ls Le 210 35 165 30 125 N N 21 90 20 64 16 7250 21 6 15 35 IO 24 42 12 27 9 1000 0 25 216 36 66 d MAXIMUM STRAINS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES, HAVING EQUAL PANELS. MEMBER. END POSTS INCLINED IN THROUGH BRIDGES; VERTICAL IN DECK BRIDGES. Multiply by Length of Member Divided by Depth of Truss, and by the Quantities L, U, M, E, at the head of each column, | | | 20-Panel | 19-Panel 18-Panel 17-Panel 16-Panel 15-Panel 14-Panel 13-Panel 12-Panel Truss. Truss. Truss. Truss. II-Panel Truss. Truss. Truss. Truss. Truss. Truss. L+UM EL+U│MELUM│EL+UM EL+U│M│|E|LUM EL+U MEL+UMEL+UM EL+U ME Diagonals. 190 190 19 171 171 18 153 153 17 136 136 16 120 120 15 105 105 14 91 9113 78 go 90/18 81 81 17 72 72/16 644 6415 56 56,14 78 12 66 66 11 55 55 10 49 49 13 42 42 12 36 36,11 30 30 10 25 25 80 8117 71 7216 63 6415 55 56 14 48 49 13 41 42/12 35 36 11 29 30 10 24 25 9 19 20 70 72 16 62 64 15 54 50, 0,14 47 49 13 40 42 12 34 36 11 28 30 10 23 25 9 18 20 8 14 16 60 6415 52 56 14 45 49,13 38 42 12 32 36 11 26 30 10 21 25 9 16 20 8 12 16 12 50 56 14 43 4913 36 42 12 30 3611 24 30 10 19 25 9 14 20 8 ΙΟ 16 7 6 12 40 49 13 33 42 12 27 36 11 21 30, 10 16 25 9 I I 20 8 7 16 7 3 12 6 Lg 30 42 12 24 36 I I 18 30 10 13 25 U, Lo 20 36 11 14 30 10 U L10 IO 30 10 S 259 25 9 5 20 U 10412 1 1 ΙΟ 20 8-14 16 -20 16 7-24 12 98 70 9 18 ao a∞ 9 25 9 4 201 20 16 7 12 8-4 7-13 61 21 16 12 900 76 8 20 & 4 16 7 12 6 3 91 5 6 8 16 7 6 7 9 5 -10 6] 6 4 96 4 96 95 ارت در 3 98 7 inten 8 16 95-24 12 6 614 - I I 19 + V 5 14 64 -16 41 3 L U M With Vertical End Post. E: Number of panels. U. L 100 I 100 19 U 99 90/18 São 90 81 90'18 31 8117 72 8r 17 72 72 16 64 223 7216 64 64 151 56 64 15 56 5614 49 [4913] 42 56 141 49 | 49 13 사고 ​42 [2] 36 42 12 36 11 36 30 136 39 10 11 30 30 25 30/10 125 9 Dead load at one lower panel point. Number of panels. Dead load at one upper panel point. Number of panels. Moving load at one panel point. Number of panels. Excess of engine load over general live load on one panel. 002 MAXIMUM STRAINS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES-(CONTINUED). POSTS. 20-Panel Truss. 19-Panel Truss. 18-Panel 17-Panel Truss. Truss. 16-Panel Truss. 15-Panel Truss. 14-Panel 13-Panel 12-Panel Truss. Truss. Truss. Through Spans. L U MEL U M ELU ME L U M ELUMEL U ME LUMELU ME LUME L₁ 20 20 19 19 19 18 18 18 17 17 17 16 16 16 15 15 15 14 14,1413 13 13 12 12,12 70 90 72 16 62 81 64 15 54 72 56 14 47 64 49 60 80 64 15 52 71 56 14 45 63 49 13 38 55 42 12 50 70 56 14 43 62 49 13 36 54 42 12 54 42 12 30 47 II 40 60 49 13 33 52 42 12 27 45 II 21 38 30 10 16 301 50 42 42 12 24 43 36 II 11 18 36 30 10 20 36 11 14 33 30 IO 30 30 10 U L L10-10 20 10 2 2 25 20 0 000 5 24 25 91-51 14 20 C,00 IO 9 27 25 9 18 20 9 9 16 O ooo 7 13 30 25 4 21 20 8 4 13 16 0.007 co ci H 24600 13 40 56 $2 42 12 34 49 36 11 28 42 30 10 23 36 25 9 36 11 26 41 30 IO 24 40 O co 8. 8 12 02 +0000 30 10 19 34 25 32 25 9 II 26 4 20 8 20 21 35 25 9 16 9 14 28,20 810 72116 7 3 29 20 8 23 16 16 12 4 19 16 167-4 I I 12 76 01412 6-3 ΙΟ 9 2 a 765 6 18 30 20 12 24 16 7 618 12 6 12 9 5 6 6 8 -7 7 9 5 L Dead load at one lower panel point. Number of panels. Dead load at one upper panel point. U Number of panels. Moving load at one panel point. Deck Spans. M Number of panels. E Number of panels. 190 200 200 20 171 1802 180 19 153 162 162 18 136 1442 1442 17 120 128 128 16 105 1122 112 Excess of engine load over general live load on one panel. 15 91 98,98|14|7818421842 13 66 7272|12 80 100 100 19 71 90 70 90 90 18 62 81 go 18 63 81 81 60 80 81 17 52 71 50 16| 70 72 10 43 62 72 64 81 17 55 72 16 17 54 72 72 10 47 64 16 45 63 64 15 38 55 15 36 54 56 14 30 47 72 16 48 64 645 41 56 56 14 35 49 49|13|29|42 42 64 56 15 40 56 56 14 14 32 48 34 49 49 13 28 42 42 12 23 36 36 12|24|36|36|11 11 18 30 30 10 49 13 26 41 42 12 21 35 36 11|16|29| 30 ΙΟ + 49 13 24 24 40 42 12 19 34 40 60 64 15 33 52 50 30 50 56 14 24 43 49 Ly 20 40 49 13 14 33 42 12 L IO 42 12 5 24 36 ΙΙ 14 27 45 49 13 21 38 13 18 36 42 12 13 30 9 27 36 II 4 21 18 30 10 42 12 16 32 36 11 II 26 36 II 8 24 30 10 4 19 25 30 IO о 16 25 9 II NNW W 36 11 14 28 30 10 10 23 25 12 24 25 61820 8 30 10 72125 9 316 20 9 20 10 01420 8-310 -7 7 16 12 16 IO 01216 -6 6 12 12 8 4 13 25 91 -8 8 20 12 U 20 36 11 -5 14 30 IO 9 25 11 U 10 30 10| 66ƒ Chords. Lo Li Li L₂ L₂ L: Ls La 280 36 252 32 440 394 48 351 45) 310 L L 580 518 60 459 $6 404 52 200 301 42 175 272 39 352 48 MAXIMUM STRAINS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES, HAVING EQUAL PANELS. END POSTS INCLINED IN THROUGH BRIDGES; VERTICAL IN DECK BRIDGES. Multiply by Length of Member Divided by Depth of Truss, and by the Quantities L, U, M, E, at the head of each column. MEMBER. Panel Pan Truss. Truss. Truss. 20-Panel 19-Panel 18-Panel 17-Panel 16- Pane -Pan 20-Panel 19-Panel 18-Panel 17-Panel 16-Panel 15-Panel 14-Panel 13-Panel 12-Panel 11-Panel 10-Panel Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. L+U+M E LUME LUMEL+UM ELU+MEL+U+MEL+U+MEL+U+M EL+U+MEL+U+M EL+U+ME 190 19 171 18 J53 17 136 16 120 34 225 anwh 13 7 2 +w 15 105 14 91 78 12 66 II 55 IO 45 9 281 154 26 133 24 114 22 96 20 80 18 05 16 236 36 203 33 172 30 144 27 118 24 95 21 304 44 259 40 218 361 180 32 146 28 115 24 Lo 700 75 622 70 549 65 480 60 416 55 356 50 301 45 250 40 204 35 162* 30 125 125 Lo L, 800 84 708 781 621 721 540 661 464 60 394 54 329 48 L, ba გზი 91 774 1841 675 77 582 70 496 63 416* 56 270* 42 216 136 168 30 343 [49] 276 42 U₁UB=125 Lo 949. 96 822 88 711 80 603* 72 U L U 10 1000 100 860 190 *L.91.10-840 980 99 8so* 0O 512 [64] 424 56 UaUa=216 *LoLo=156 729 81 616 172 UoU7=343 *LoL7=264 U7Ua=512 |*L7L8=408 U8 U9729 LgL9-600 • L Dead load at one lower panel point. Number of panels. Dead load at one upper panel point. U M E Number of panels. Moving load at one panel point. Number of panels. Excess of engine load over general live load on one panel. Number of panels. 66 g 1000 6 34.5 32 67.5 3 Ow MEMBER. 12-Panel Truss. 11-Panel Truss. 10-Panel Truss. 9- Panel Truss. MAXIMUM STRAINS IN SINGLE INTERSECTION TRIANGULAR (WARREN) TRUSSES, HAVING EQUAL PANELS. THROUGH BRIDGE WITH INCLINED END POSTS. Multiply by the Length of the Member Divided by the Depth of the Truss, and by the Quantities L, U, M, E, at the head of each column. 4-Panel 3-Panel Truss. Truss. 8-Panel Truss. 7-Panel Truss. 6-Panel Truss. 5-Panel Truss. Diagonals. LUMEL U ME LUME L UME LUME LUME L UME LUMELUM ELUME Lo 132 144 132 22 110 121 108 120 11020 88 99 84 96 90 18 66 77 60 72 72 16 44 55 110 20| 90|100| 99 [8] 72 90 18 70 80 72 16 54 7216 50 60 50 14 30 40 81 72 16 56 64 56 14 42 49 42 12 30 63 5614 40 48 4212 28 28 35 30 10 35 30 10 18 36 30 10 20 24 20 25/20 812 16 12 6|6| 8 56|14|36| 45 42 12 24 32 30 10 If 21 20 8 12 12 O co IO 15/12 6486 61 564-4 ~ 4 2 O 93 64 2 42 12 18] 27 30 10 8 16 20 8] 7 12 6-6 6 36 48 5614 24 42 12 O L₁₂-12 0 3010-22 -II L1-36-24 20 20 8-44-33 20 8-30-20 22 42 12 33 ΙΟ 20 39 10 20 8 9 81- - 12 6-14 7 6 4 ΙΙ 30 10-10 12 U 15 L14 12 6-50-40 U 17 L10 -60-48] 12 61-66' -55 6 Chords. Tension members U₁ L., U, L,, etc., U, Compression members U₁ Lo, U, L., etc., joining at same upper panel point, less UX twice the number of panels in the truss. о 20 8-18 9 12 6-24-16 12 6 -36-27 64-40-321 +42 6 2 4 N -21 42 2 4 2 -52 21 6 45 2 E= L = U M= Dead load at one lower panel point. Twice the number of panels. Dead load at one upper panel point. Twice the number of panels. Moving load at one panel point. Twice the number of panels. Excess of engine load over general live load on one panel. Twice the number of panels. 132 22 IIO 901 18 72 16 561 14 42 12 20 8 240 40 198 160 32 126 28 96 24 324 54 264 210 42 162 36 120 384 64 308 56 420 70 330 432 72 L L₂ L 13 Lo La .. 10 L10 L12 66 72 66 11 55 60.5 55 10 45 50 45 9 36 40.5 36 8 28 32 186 192 186 30 154 159.5 154 27 125 130 125 24 99 103.5 99 21 76, 80 282 288 282 45 231 236.5 231 40 185 190 185 35 144 148.5 144 30 108 112 354 360 354 56 286 291.5 286 49 225 230 225 42 171 175.5 171 35 124 128 492 408 402 63 319 324.5 319 54 245 250 245 45 180 184.5 18036 426 432 426,66 330 335.5 33055 240 48 180 401 128 www. 70 20 48 301 84 24 In 16 18 30 12 16 321 2501 501 28 7 21 24.5 21 21 24.5 21 6 6 15 15 18 15 18 15 5 5 1012.5 10 4 6 8 6 76 18 76|18|| 56 59.5 56 15 39 42 39 12 4239 25 27.5 25 9 14 16 14 108 25 77 80.5 77 20 51 51 54 51 15 54 5115| 30|32.5|30|10| 124 28 84 87.5 84 21 66 h II-Panel Truss. 9-Panel 8-Panel Truss. L 144 144 144 23 UME LUME 121 121 121|21| 100 | 100, 100|19| L UME LUME 81 81 8117 64 144 32,132 121 110 11020|100|| 90|| 90|18| 81 72 7216 64 120 8110|20| 99 88 go 18 80 70 72 16 63 54 56 14 48 96 84 9018] 771 66 72|16| 60 50 56 14 45 36 42 12 32 MAXIMUM STRAINS IN SINGLE INTERSECTION TRIANGULAR (WARREN) TRUSSES HAVING EQUAL PANELS. DECK BRIDGE WITH VERTICAL END POSTS, FIRST WEB BRACE SLOPING DOWNWARD FROM TOP OF END POST. Multiply by Length of Member Divided by the Depth of Truss, and by the Quantities L, U, M, E, at the head of each column. MEMBER. Web Members. U. L. U L Q 12-Panel Truss. LUME 1 10-Panel Truss. UM ELUME UM E LUME LUME 9|16|16|16. 81612 12 6 + 2 70 42 9 9 9 5 96 4 Truss. 7-Panel Truss. 6- Panel Truss. 5-Panel 4-Panel 3-Panel Truss. Truss. Truss. L L i 64 64 15 49 49 49,13 36 36 36 1I 25 25 25 56 56,14 49 42 42 12| ļ 36| 30|30|10| 25 20|20| 49 4212 35 24 30 10 2 I 28 30 10 4/20 8 24 18 20 8 15 10 12 68 72 60 72 16 55 44 5614 49 3 42 12 27 18 39 10 16 5614 24 L 12 13 42 12 30/10 U 11 48 36 12 12 -24-36 20 8-33-44 33 22 42 12 20 10 30 10 9 0208 8/20 812 6 ४ 7 6 12 O 612 6 5 o 6 ' 2 6 + - 7-141 64 2 ++ C 5-10 2 L I I II¹-22 30 10 0-10 20 8 9 -18 12 6-16 24 6 4-21 2 20 8-20-30 12 6 40-50 U 141 7 Li- -48-60 12] & -55-66! 6. 4 27-36 6 4-32-40|||2| Compression members UL,,UL, etc,Tension members UL, UL,, etc. joining at same lower panel point less Ltwice the number of panels in the truss. 12 6 6 2 U 45-54 M = Dead load at one lower panel point. Twice the number of panels. Dead load at one lower panel point. Twice the number of panels. Moving load at one panel point. Twice the number of panels. Excess of engine load over general live load on one panel. Twice the number of panels. Chords. E T 721 66 11 60.5 I 192 186 30 159.5 154 55 10 50 45 27130 125 9 49.5 24 103.5 36 99 8 ४ 32 21 80 28 7 24.5 21 6 18 1.5 5 12.5 10 76 1859 5 56 15 42 39 12 27.5 25 48 916 14 6 3 34-5 2 67.5 3 U U 288 282 45236.5 231 40 190 185 35 148.5 144 30/112 108 25 80.5 77 201 54 SI 15 32.5 30 IO 360 354 50 291.5 286 49/230 225 42 175.5 171 6 U.U A 35 128 124 28 87.5 84 21 408 402 63 324.5 319 54 250 245 45 184.5 180 36 U 10 1 4321 426 66 335.51 330 55 132 22 110 Lg Lo 240 40 198 دنيا 20 90 18 72 16 56 14 42 12 361 165 32 126 281 96 24 70 LA L.. 324 54 264 481 210 162 120 130 84 200 20 24 un to w 30 IO 20 8 12 48 16 30 12 16 VO 00 6 54 18 L, L, 384 6af 308 561 240 48 180 40 128 132 Lg Li 420 70 330 250 So L11L13 432 721 66 i MAXIMUM STRAINS IN DOUBLE INTERSECTION TRIANGULAR (WARREN) TRUSSES, HAVING EQUAL PANELS. THROUGH BRIDGE; VERTICAL OR INCLINED END POSTS. Length of the Member Multiply by Depth of the Truss and by the Quantities L, U, M, E, at the head of each column. WEB MEMBERS Through. Deck. U U 1 1 L10 L 12 11 13 11 L12 L13 U 12 13 20-Panel 19-Panel 18-Panel 17-Panel 16-Panel 15-Panel 14-Panel 13-Panel 12-Panel 11-Panel 10-Panel Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. For Deck Spans change L to U and U to L in all columns. All + to U.* U MELUM ELUME LUMELUME LUMELUME LU │MEL UMEL U MELU ME 8 כן All + 7 2 UM 23 29 42 12| 36 36 11 30 30 36 11.30 30 10 25 30 30 10 20 1623 10 16 [16] 3/10 100 100 19||| 90 90}|90|18| 81 81 17 72 72 72 16 646415 5656 56 14 00 90 18 81 90 8117 72 72 16 6472 64 72 64 15 56 56 14 49 56 49 13 81 17 71 81 1 72 16 6364 63 64 15 1 55 64 |56|14| 56 14 48 49 13 41 49 42 12 49 49 13 42 42 12 35 36 11 42 42 36 42 29 36 72 16 6271 64 15 54 56 14 5614 47 55 49 13 40 42 12 34 41 36 11 28 30 10 25 60 6415 52|62|56|14| 64 15 52 62 56 14 45 49 13 38 47 42 12 32 36 11 26 34 30 10 25 50 56 14 56 14 43 5249 13 36 42 12 36|42|12| 30 38 36 1I +2430 30 10 10 19 26 25 8 49 13 33 43 4212+27|36|11 21 30 30 1625 9 1119 20 30 42 12 24 33 36 11 18 30 10 1321 25 8 411 16 20 36 11 9:25 9 413 20 8 10 30 10 020 & -916 -4 4 16 7 7-13-4 -81 6 -16] I O 14 24 30 10 514 25 9. 259-55 20 8 20 8-14-5 16 71 ΙΟ -20 16 -30 All O 0167-4 6-II 5-19 I I -18 12 6-21-13 9 5-24 -24-14 12 6] −27| 9| 51-30-21 6 4 6-33-24 9 5 12 -401 9 51 L 96 0 c∞ 76 + S Dead load at one lower panel point. Number of panels. 4/20 16 7 470 96 0-33 5-10-3 4-16-10 12 96 2425 9|19|25 18 20 8+1216 o a∞ 76 543 All + 6 M 6.12 96 9876 30 10 25 25 9 25 9 20 8 1419 16 814 12 3 8 51-3 3 + 96 9∞ 76 in 3 All + 5 U.* 20 20 15 16 IO 12 9 5 42 5050 -IO 98765432 Dead load at one upper panel point. Number of panels. Moving load at one panel point. Number of panels. Excess of engine load over general live load on one panel. Number of panels. In Through Spans Tension members U, L₂, U, L₂, etc., Compression members U₁ Lo, U, L₁, etc., joining at same upper panel point, less UX number of panels in the truss. U, Li Lo U。 L.-UX half number of panels. In Deck Spans Compression members UL,,UL, etc, Tension members UL,, U, L₂, etc, joining at same lower panel point U, number of panels in the truss. U₁ LoU, LoLX half number of panels. less, LX 190 191 اب 171 18 153 17 136 * Except end posts U, L. 120 151 105 91 [13] 78 126611 55 45 9 L For Inclined End Posts U₁ L₁ = U。 L1 and U, L I 66 j 1 La Le La L7 Lg Lo Lg L10 La L Ly L₁ LB Lo L7 L7 Lg LB Lo La Lio U For Through Spans change L to U and U to L through- out the tables. All — 10 L. All ÷ 10 L. 90 18 90 81 17 270 34 252 242| 32| 216 72 16 72 30 200 64 15 191 28 56 168 430 48 394 385 45 342 42 310 302 3900 264 | MAXIMUM STRAINS IN DOUBLE INTERSECTION TRIANGULAR (WARREN) TRUSSES, HAVING EQUAL PANELS. DECK AND THROUGH BRIDGES; VERTICAL END POSTS. Length of the member Depth of the Truss. CHORDS. Deck. Through. H L₁ L₂ La ព Multiply by and by the quantities L, U, M, E, at the head of each column. 20-Panel 19-Panel 18-Panel 17-Panel 16-Panel 15-Panel 14-Panel 13-Panel 12-Panel 11-Panel 10-Panel Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. Truss. LUM E LUM E LUM E LUM E LUM E L UM E LUM ELUM E LUME LUM E LUME 8 14 56 49 13 26 154 146 24 126 36|236| 229 33 42 12 42 36 11 22 114 196|30|172 166 27 30 IO 107 20 6 L. 30 90 18 80 5 138 24 118 570 60518 508| 56 450 52 494 395 48+ 344 44 304 296 40+252 36 218 211 32 + 174 28 146 140 24 690 -+- 790 870 70 622 78 708 84 774 613 63 549 60 480 472 55 408 698 72 755 77 930 970 88 822 812 80 *901350 841 81 All + + 612 66 540 531 60456 54 394 50 356 349 45 294 386 48 322 40 250 244| 35] 42 270 263 36 198 30 162 157 25 All 25 9 74 16 113 21 90 110 20 120 20 14 бо 18 † 20 210 30 168 162 25 666 70 582 574 63 488 56 416 409 49| 336 42 276 270! 36 702 72 608 599 64| 504 56 424 416 49 U 720 72 616 608 641 ୨୨୦ до 90 860 850 81 M = Dead load at one lower panel point. Number of panels. E Dead load at one upper panel point. Number of panels. Moving load at one panel point. Number of panels. Excess of engine load over general live load on one panel. Number of panels. 100 19 81 90 18 81 17 64 72 16| 64 15 49 56 141 49 280 36 242 2521 341 225 32 191 200| 30 176 28 146 154 26 133 440 51 385 394 481 351 589 64 509 518 60 459 700 75 613 622 70 549 800 84 698 708 78 621 880 91 765 774 84 675 45 302 310| 42| 50 395 404 52 352 65 472 480 600 416 72 531 540 66| | 464 77 574 582 70 2.72 39 229 236|36| 203 13 36 42 12| 24 107 114 22 33166 172 30|| 36 I 11 25 30 10 25 96 20 74 80 18 65 16 144 27 113 118 24 95 21 48 296 304 44 259 40 211 218 36| 180 32140 146| 28| 115 24 55 349 356 50 301 45 244 250| 40| 204 35 157 940 96812 822 88 711 80 599 608 72 512 60 386 394 54 49663 409 416 56|| 64 416 424 56| 329 48263 270 42 216 36 162 162 30 168 30 125 25 All 343 49 270 270 276 42 All All 980 1000 99841 850 90 100 850 860|go| 729 81 608 616 72| For Inclined End Post. L₁ Li 190 191 171 18 153 17 136 16| 120 151 105 14 91 13 78 12 66 I I 55 10 45 9 66 k B STRAINS ON ROOFS. W G W บ W * A R1 T3 P2 R 2 T2 R3 T 2 R 4 2 TI PI d T5 T4 I D G T FC In the commonest and simplest case the main tie rod is not cambered as in the figure, but is horizontal from raſter to rafter. In this case A C being the rise; B C the half span; A B the length of rafter, and a load, w, being considered as resting over each strut and at the apex, equal to a uniformly distributed load of 8 w on the entire roof; then if P1, P2; T, T1, T2, etc.; R1, R2, etc., represent compression or tension on the struts, tie rods and rafters designated. BC P₂ =w A B P1-2P₂; Τ - 2 W B C A C A B AC T; T6=3T2+T; A B R A C *3/2 w ; R₂=R, A C 70 ; R₂-R-270 A B A C A B ; R₁=R₁- 37 A C A B T₁ = ½ P₂ ; T₂ ¿T₂; T3=3T2; T2T₂ If the main tie rod is cambered, as in the figure, extend the. line B G till it intersects A C at E, and draw E F parallel with A G. Then P₂ =20 B C A B BC P₁P₂, as above, but T2 w A D BG T₂ = 2½ P₂ I G G' ; T₁ = 2T₂÷T FE Ᏼ Ꮀ BE 6 ; T3 T T₁ + T =T₁ + T₂; T₁ = 2T2 2T₂ T BF .1 2. BC BI R₁ R3 R₁R₁+2W R, A B A B T +T3 + 12 w 3 BG A C ; If trigonometrical terms be preferred, call a the angle of the rafter with the horizontal, and b the angle A BG of the rafter with the tie rod; A C A B A C R₁ ; R₂ = R₁ + w A C R₁ + 3 AB A B cos a cos b Then T = 470 sin (a + b) ' P₂ w cos a; T₂ sin (a - b) 1 T₁ = 2T₂+ T sin 26 T₁₂T₂+T (cos (a—b) + = ; T₁ =T₁+T₂ M sin (a - b)): tan 26 3 1/2½ P₂ sin b P. 2 T6=T₁+T₂ RA R, 3 w sin a. R₁T cos a + T₂ cos 6 + ½ 2 sin a. 3 R₂ =R₁+w sin a ; R3 R2 w sin a; 2 2 2 In short spans struts P, and tension rods T, may not be needed, then zu, representing as before the load over each strut, or 4 w the entire load on the roof, the strains become--- BC B C Pi 70 T ยย A B ; T₁ = ½ P BG +T FE BG BE T=P 1 +T A D IG B F IG B F BC ΒΙ A C A C R₁ T A B + T1 BG +/½ 20 R, R, R₁20 A B A B If the purlins are so located along the rafters that the latter are subjected to bending strain as well as to compression, they must be sufficient to resist. both strains. (See Example, p. 52.) The load acting to bend the rafters will be the load coming upon them between two struts X 2 B C A B. 667 MOMENTS OF INERTIA AND RESISTANCE AND RADIUS OF GYRATION FOR VARIOUS SECTIONS, AND THEIR USE IN THE FORMULAS FOR STRENGTH OF COLUMNS AND GIRDERS. The strength of sections to resist strains, either as girders or as posts, depends not only on the area but on the form of the section, and the property of the section which forms the basis of the constants used in the formulas for strength of girders and columns to express the effect of the form, is its moment of inertia about its neutral axis. Thus the moment of resistance of any section to transverse bending is its moment of inertia divided by the distance from the neutral axis to the fibres farthest removed from that axis; or Resistance Inertia extreme distance from axis. In Rankine's formula for the strength of columns the effect of the form of the column is expressed by the use of the square of the radius of gyration, which is the moment of inertia of the section divided by its area; or I radius 2. A The moments of inertia for the different Trenton sections have been carefully calculated, and are given in the foregoing tables. The moments of inertia of the principal elementary sections, and a few common forms are here given, which will enable the moment about any given neutral axis for any other section to be readily calculated by merely adding together the moments about the given axis of the elementary sections of which it is composed. In the case of hollow or re-entering sec- tions the moment of the hollow portion is to be subtracted from that of the enclosing area. Moments of Inertia and Resistance and Radius of Gyration. I = Moment of Inertia. R Moment of Resistance. G= Radius of Gyration. A Area of the section. Position of neutral axis represented by broken line. b d ³ I I 2 R b d2 6 G2: 12 67 P b d³ I= 3 d2 G2 3 K---b---- -b I 海​宝 ​- b--- 疤 ​P A ----7 K------- b------ ķ--------b- -b b d3 36 b d³ — b, d, ³ I R=277 d I2 I G2 bd-b, d, bd3 d2 b, d,³ I= -b,d, 3 4 12 I G2 A R = 2 d 3 I bd2 24 I d2 G² A 18 bd3 I= 12 d2 G² 6 bd3 b --P I= G² 4 d2 2 I 3 b d³ + b, d,³ — (b, — b)d,,³ 3 I R d I G2 b A 68 ་་ I = .7854 rt R=.7854 23 G²= 2-2 4 I—.7854 (1-4 —— 1, 4) R=.7854 (23 G² = 1 1-4 7- 2 2 2- For compound sections made from Trenton shapes, the mo- ments of inertia are found by combining those of the several shapes as given in the tables pp. 40, 41, 42. a H I a G2 Thus: twice moment (Col. XI) for beam a+ that in Col. XII. for beam b. I attice a a 1 I R G? sum of areas beams a and 6 (Col. X.) twice area beam a, Col. X., X d² + twice moment, Col. XII., for beam amo- ment (Col. XI.) for beam b. I d+width flange beam a I sum of areas beams a and b (Col. X.) d I twice (area, Col. X., X d' moment, Col. XII.) in which distance of center of gravity of the channel from center line of the combination. G²= I twice area, Col. X. Lattice H I twice moment in Col. XI. G² same as for single channel. 69 When a section is employed alone, either as girder or post, the neutral axis passes through its center of gravity. When rigidly connected with other sections forming part of a com- pound section, the neutral axis passes through the center of gravity of the compound section, and therefore the moment of inertia of the elementary section will not be that around its own center of gravity, but around an axis at a distance from that point. The moment of inertia of a section about an axis other than that through its center of gravity is equal to the moment about the axis through its center of gravity plus the product of the area of the section by the square of the dis- tance of its center of gravity from the axis about which the moment of inertia is sought. The first step, then, in finding the moment of inertia, is to find the position of the center of gravity of the section. For all symmetrical sections this, of course, lies at the middle of the depth. For triangles it is found on a line parallel with the base and distant one-third the height of the triangle above the base. For other sections it is found by supposing the area divided up into elementary sections and multiplying the area of each such section by the distance of its center of gravity from any convenient line. The sum of these products divided by the total area of the section will give the distance of the center of gravity from the line from which the distances were measured. The pro- EXAMPLE. Find the neutral axis of a section having the following dimensions: width, 8 inches; depth, 10 inches; thickness of metal, 2 inches. The area of the vertical flange, considering it as running through to the bottom of the section, would be, 10X220 square inches, and the distance of its center of gravity above the bottom line, 5 inches. duct of these quantities, therefore, 100. The area of the bottom flange, not included in the vertical flange as above taken, is, 6 X 2 = 12 square inches, the distance of its center of gray- ity above the bottom line, I inch, and the product of the two, therefore, = 12. The sum of these products divided by the total area, 13.5 inches, which is the distance of the cen- ter of gravity above the bottom line of the section. Having found the neutral axis of this section, its moment of inertia is readily found by the formula before given. Thus, in the case just supposed, a would be 10- −3.5= 6.5; d, = 3.5; d= 1.5; and the moment would be: 6.5 I 2 X 6.53 +8 X 3.53—6X1.53 3 € 2901 The moment of resistance of this section as a girder would be 290.3 443, and if a strain on the fibres of the iron of 12,000 pounds per square inch be allowed, then, since the moment of resistance of the girder X strain per square inch must equal the bending moment of the load, it will be able to support a load whose bending moment is 443 X 12,000 lbs., 536,000; i. e., 70 if used as a girder secured rigidly at one end and loaded at the other, it would support a load, in pounds, of 536,000 length in inches. Or if supported at both ends, and the load uniformly dis- tributed over the span, it would support a load eight times as great, the bending moment in such case being one-eighth that in the former case. (See p. 34.) Rankine's formula for the strength of wrought-iron columns with faced or fixed ends is- P = 18 X AX 250 R2 in which Р L2 + 250 R2 breaking load in tons of 2,000 lbs. A = area of cross-section in square inches. L= length in feet. R radius of gyration of the section about the neutral axis in that direction which will make the radius the least. The values of 250 R2 for the Trenton sections have been calcu- lated, and are given in Cols. VI. and VII. of the tables pp. 40, 41, 42, and in that on p. 59. Calling this quantity, and assuming a factor of safety of 41, the formula for the safe load becomes 4 X AX r P L² + r And for columns having hinged or rough ends, P: 4 X AX A 7 4 or, L² + } / I² + 1 From these formulas the rules given in the foregoing pages for determining the strength of girders and columns are derived. CENTRIFUGAL FORCE. Centrifugal force W V 2 32.2 R or in which W V R T = .0003407 W T2 R, Weight of the body. Velocity, in feet per second. Radius in feet. Revolutions per minute. 71 F WOODEN BEAMS. SAFE UNIFORMLY DISTRIBUTED LOAD IN TONS OF 2,000 POUNDS FOR RECTANGULAR WHITE OR YELLOW PINE BEAMS I INCH IN THICKNESS. Span in DEPTH IN INCHES. feet. I 2 3 نی 4 5 6 7 Co 9 IO II I 2 13 14 15 I 2 3 0.023 0.093 0.208 4 0.185 7 0.010 0.040 0.089 0.159 8 9 IO 0.009 0.035 0.035 0.078 0.139 0.008 0.031 0.069 0.123 0.007 0.028 0.062 0.062 0.111 I I 0.006 0.025 0.057 0.101 12 13 0.021 16 0.004 0.017 0.069 0.278 0.625 1.111 I.III 1.736 2.500 4.444 5.625 6.944 8.403 | | 0.035 0.139 0.312 0.556 0.868 1.250 | 2.2222.812 3.472 4.201 | | | 0.370 0.579 0.833 1.134 1.481 1.875 2.315 2.801 0.017 0.069 0.156 0.278 | 0.434 0.625 0.851 1.III 1.406 1.738 2.10I 0.014 0.056 0.125 0.222 0.347 0.500 0.681 0.888 1.125 1.389 0.012 0.046 0.104 0.289 0.417 0.567 0.741 0.938 1.157 0.248 0.357 0.486 0.635 0.804 0.992 0.217 0.312 0.425 0.555 0.703 0.868 0.193 0.278 | 0.378 0.494 0.625 0.174 0.250 0.340 0.158 0.227 0.309 0.006 0.023 0.052 0.093 | 0.145 0.208 0.284 0.005 | | | 0.048 0.085 0.134 0.192 0.261 14 0.005 0.020 0.045 0.079 0.124 0.179 | 0.243 0.317 0.402 | 0.496 | 0.600 15- 0.005 0.019 0.042 -0.074 0.116 0.167+0.227 | 0.017 0.039 0.069 3.403 1.701 10.000 II.737 13.611 15.625 5.000 5.868 6.806 7.812 3.333 3.912 4.537 5.208 2.500 2.934 3.403 3.906 1.681 2.000 2.347 2.722 3.125 1.400 1.667 1.956 2.269 2.604 1.200 1.429 1.677 1.944 2.232 1.050 1.250 1.467 1.701 1.953 0.772 0.934 I.III 1.304 1.512 1.736 0.444 0.562 0.694 0.840 1.000 1.174 1.361 1.562 0.404 0.511 | 0.631 | 0.764 0.909 1.067 1.237 1.420 0.370 0.469 0.579 0.700 2.833 0.978 1.134 1.302 | 0.342 0.433 0.534 | 0.646 0.769 0.903 1.047 1.202 0.714 0.838 0.972 1.116 17 0.004 0.016 0.037 0.065 18 0.004 0.015 19 20 0.003 0.014 0.031 0.056 21 22 W N N N N N N N 0.013 0.030 0.053 0.013 0.028 0.051 0.027 0.048 0.046 0.069 27 0.296 0.375 0.4630.560 0.109 0.150 0.213 0.278 0.352 0.434 0.525 0.102 0.147 0.200 0.261 0.331 0.408 0.494 | 0.035 0.062 0.096 0.139 0.189 0.247 0.312 0.386 0.467 0.004 0.015 | | 0.015 0.033 0.058 0.091 0.132 0.179 0.234 0.296 0.365 0.442 0.087 0.125 0.170 0.222 0.281 0.347 0.347 0.420 0.083 0.119 0.162 0.212 0.268 0.331 0.400 0.079 0.114 0.155 0.202 0.256 0.311 0.382 0.075 0.109 0.148 0.193 0.245 0.302 0.365 0.072 0.104 | 0.142 0.185 0.234 0.289 0.350 0.100 0.136 0.178 0.225 0.278 0.336 0.096 0131 0.171 0.216 0.267 0.323 | | 0.126 0.165 0.208 0.257 0.257 0.311 0.667 0.782 0.907 -. I.042 0.625 0.734 0.851 0.977 0.588 0.690 0.801 0.919 0.556 0.652 0.756 0.868 0.526 0.617 0.716 0.822 0.500 0.587 0.681 0.781 0.476 0.559 0.648 0.744 0.455 0.533 0.619 0.710 0.435 0.510 0.592 0.679 0.417 0.489 0.567 0.651 0.400 0.469 0.544 .0.625 0.385 0.45I 0.524 0.601 0.370 0.435 0.504 0.579 28 29 30 0.159 0.201 0.248 0.300 0.357 0.419 0.486 0.558 0.196 0.239 0.239 | 0.290 0.345 0.231 0.280 0.333 0.405 0.469 0.391 0.454 0.539 0.521 by the following numbers: (See p. 86). thickness of the beam in inches. For beams of other wood, multiply also yellow pine beams, multiply the number given in the above table by the RULE.-To find the safe uniformly distributed load in tons for white or These loads are about one-eighth the breaking load. 1.45 White Oak. .90 Hemlock. White Cedar. .60 Spruce. 1.00 1.08 Chestnut, 72 CHAINS. WEIGHT AND PROOF STRENGTH OF CHAIN MANUFACTURED BY THE NEW JERSEY STEEL AND IRON COMPANY. STUD CHAIN. SHORT LINK CHAIN. X. B. CRANE CHAIN. Size. Average Weight per fathom. Proof. Size. Average Weight per Proof. fathom. 2240 Beardsley Proof. Inches. Pounds. Tons. 2240 Inches. Pounds. Tons. Tons. CHEN CONGUES AN 33 38 300 10 23/ 12 5 43 14 7 50 16 9/2 2 زر) 3 I 58 18 12 2 4 I 65 20 15 35 4/2 I 72 23 19 4 H 80 26 25 5 88 28 (6) 5/2 -7 30 I I I 98 31 35 وست 110 34 40 9K 114 37 47 I I T 127 41 54 12 138 150 157 44 I 61 -14 48 6x9 16 76 18 I - C 170 184 95 22 200 103 24 214 68 113 26 230 72 I 123 28 250 80 2110 133 30 8/2 ΙΟ 11/2 13 14/2 115240 16 2240 19 16 173221 18. -240 22180423 20, 25 1980 2240 1668 2240 44027242143 29 31291178 33 290 88 short fink do 198 224 2 Beardsley:- Sum 1" to 1/2 208 tous All chains are tested up to the Engh Admiralty Test. Parties ordering chains are invited to see them tested. 3 in. and smaller sizes are made of iron full size; other sizes are exact. Kendrick's Patent Triple Coal and Mine Slope Chain. 198 208 = 952 Roctio 224=1.077 In this chain the strain is distributed equally among the three components by blocks of hard wood passing through every other link. ** Also, block chains and all varieties of harness and special chains. 7 73 Rise per 100 ft. Strain in Horizontal Angle of Inclination. lbs. per Ton of STRAIN ON HOISTING CHAINS ON INCLINED PLANES. Strain in lbs. per Rise per 2000 lbs. 100 ft. Horizontal. Angle of Inclination Ton of 2000 lbs. 5 52' 112 ΙΟ 50 43' 105 211 460 24' 15 80 IIO 32' 20 308 470 1456 44' II 19 115 1488 25 30 160 140 3′ 404 490 120 1517 50° 12' 497 42 35 585 125 1545 51° 21' 19 18' 40 672 130 52° 26' 1569 21 49' 135 45 754 53° 29' 1592 24° 14′ 140 1614 50 26° 34′ 832 54° 28' 145 55 280 бо 65 330 58 300 491 905 550 1635 25' 150 560 1654 975 19 155 1671 1039 57° 11' 160 1100 580 1687 70 350 75 80 85 400 40 360 380 531 165 1157 580 1702 47' 53′ 170 1210 590 1716 33' 175 60° 16' 1730 1259 23/ 180 600 1743 90 420 1304 185 57' бло 1754 95 430 100 450 321 1347 37′ 190 1387 62° 15′ 1766 195 1422 62° 52′ 1776 200 1785 63°27′ 1794 In calculating the strains on the chain, an allowance of 12 tbs. per ton has been made for the rolling friction of the load on a level. An additional allowance should be made for the weight of the chain, depending of course, on its size and length. The breaking strain of the chain should be six or seven times that which it is to bear. SIZE OF WIRE GAUGES IN COMMON USE. 00000).450 0000 1.400 000 1.360 .425.40964 • .454.46 00 .330.380.3648 39534032486 I .285.300.2893 2 265.284.25763 .263 .276 25 3 .245.259.22942 .244 .252 26.018 45 78 6 1.205 .225 .238.20431 .220.18194 .225 .232 9 .207 .212 .190.203.16202 .192 .192 .175.180.14428 .177 .176 .165.165.12849 .162 .160 .145.148.11443 .148 .144 27.017 28.016 29.015 30.014 31.013 .43 .432 19.040 .331 .393 .400 .362 .372 ·348 20 .035 .042.03589 .035.031961 .935 .041 .040 .03€ 2 I .031 .032 .028462 .032 22 1.028 .307 .324 .283 .300 .028 .028.025347 23.025 025.022571 .025 24.0225.022.0201 .023 .020 .020.0179 .018.01594 .032 .028 .024 .022 .02 .018 .02 .018 .016.014195 .017 .0164 .016 .014.012641 .013.011257 .OIS .012.010025 .014 .0124 .010.008928 .0148 .0136 0135 0116 32 .012 .009.00795 .013 .0108 ΙΟ .130.134.10189 .135 .128 33 IIO' I I .1175.120.090742 .12 .116 34 .010 .008 .00708 .007.006304 IO' .011 .0092 .0100 12 .105 .104 13 14 15 .070.072.057068; 16 .061.065.05082 1.105.109.0808-8 .0925.095.071961 .092 .092 .080.083.064084 08 .072 35.0095.005.005614 .0095 36.009 .004.005 .08 37.0085 38.008 .072 .063 .064 39.0075 · .0084 .oco .0076 .0085 .cc68 .008 .006 .0075 .0052 17 .0525 .058.045257 .054 .056 40.007 儡 ​.007 .0048 18 1.045 .0491.040303 .047 .048 74 TABLE SHOWING SIZE, WEIGHT, &c., OF TRENTON IRON COMPANY'S IRON WIRE. Number by Wire Gauge. Diameter in Deci- mals of 1 inch. Feet to the pound. Weight of 1 foot, in pounds. Weight of 1 mile, in pounds. Length of 1 bundle (63 lbs.), in yards. Area of section, in decimals of 1 square inch. weig't of bright mar- ket wire, in lbs. Actual breaking Tensile strength of bright market wire per square inch of section, in lbs. .330 .305 I .285 23456 78 .265 00000 0000 .450 .400 ·360 . 1.863 .5366 2833.248 2.358 .4240 2238.878 2.911 3435 1813.574 3 465 .2886 1523.861 4.057 .2465 1301.678 4.645 .2153 1136.678 5.374 .1861 39.12.15904 49.52 .12566 61.13.10179 12,598 78,903 9,955 79,326 8,124 79,813 72.77 .08553 6,880 80,437 85.20 .07306 5,926 81,110 97.55 .06379 5,226 81,925 982.555 112,85 .05515 4,570 82,873 .245 6.286 .1591 839.942 132.01.04714 3,948 83,756 .225 7.454 1342 708.365 156.53 .03976 3,374 84,862 .205 8.976 .1114 588.139 188.50 .03301 2,839 86,000 .190 10.453 .09566| 505.084 219.51 .02835 2,476 87,349 9 ΙΟ I I 12 .175 12.322 .08115 428.472 .160 14.736 .06786| 358.3008 17.950 .05571 294.1488 258.76 .02405 2,136 88,802 309.46 .02011 1,813 90,153 376.95 .01651 1,507 91,276 22.333 .04477 236.4384 27.340.03658| 193.1424 34.219 .02922 154.2816 468.99 .01327 1,233 92,890 574.14 .01084 1,010 93,194 718.60 .00866 810 93,530 925.93 .00672 631 93,917 456 70 14 .080 15 16 .070 .061 89.6016 1237.24 .00503 474 94,299 68.5872 1616.66 .00385 372 96,703 292 99,922 222 102,740 169 106,343 .145 .130 .1175 .105 13 .0925 44.092 .02268 119.7504 H H 17 13 58.916 .01697 76.984 .01299 101.488 .00985 .0525 137.174 .00729 .045 186.335 .00537 235.084 308.079 392.772 481.234 603 863 19 .040 20 .035 .031 21 22 .028 1 13 23 .025 24 .0225 2 2 2 745.710 25 .020 943.396 26 .018 1164.689 .017 1395.670 .016 1476.869 29 .015 1676.989 27 28 ► • 52.008 2131.25 .00292 38.4912 2880.65 .00216 28.3378 3913.04 .00159 22.3872 4936.76 .0012566 17.1389 6469.66 .0009621 13.4429 .0007547 137 109,362 107 111,184 10.9718 .0006157 8.7437 .0004909 7.0805 .0003976 5.5968 .0003142 4.5334 .0002545 4.0439 .0002270 3.5819 .000201I • 3.1485 .0001767 30 .014 1925.321 31 .013 • 2.7424 2232.653 • 2.3649 .0001539 .0001327 • OIO' 32 .012 2620.607 33 .OII 3119.092 3773.584 34 35 .0095 4182.508 .009 4657.728 • 2.0148 .000131 1.6928 .0000950 1.3992 .00007854 1.2624 .00007088 36 37 .0085 5222.035 38 .008 5896.147 39 .0075 6724 291 40 .007 7698.253 1.1336 .0000ნ362 Ι.ΟΙΙΙ .00005675 .89549 .00005027 .78672 .00004418 .68587 .00003848 The strengths given in the last column of the above table are based upon tests made with Bright (not annealed) Charcoal Iron Wire. The strength of Swedish Iron is about ten per cent. less, and that of mild Bessemer and ordinary Crucible Cast Steel about ten and twenty-five per cent., respect- ively, greater than that of Charcoal Iron. Special grades of Crucible Cast Steel vary between thirty and one hundred per cent, over Charcoal Iron. Galvanizing reduces the tensile strength by about ten, and Annealing by about twenty-five per cent., while Tinning and Coppering exert no appar- ent influence upon the metal. 75 HOISTING ROPES (19 WIRES TO THE STRAND). TRENTON IRON Co.'s LIST. IRON. CRUCIBLE STEEL. 12345So 78 I 2/47 8. 74 15 15/2 8 164.69 32.9 2 64 6.3 65 13 134 52 5.25 54 II 13 142 7 132.37 26.5 612 108.13 21.63 8 7/2 15% 5 1/2 434 4.I 44 12 5 97.17 19.44 6 3.65 39 8 112 44 86.38 17.3 162 52 6 138 44 14 4 5/2 3. 33 6.5 1014 42 61.00 12.2 15 5 2.5 27 5.5 92 4 50.17 10. 1214 11/8 3/2 2. 20 4. 3/2 38.00 7.7 I I 4/2 38 1.58 16 3. 7 3 29.2 5.8 9 ΙΟ 7/8 823 1.2 11.5 2.5 6 234 21.55 4. 334 .88 8.64 1.75 5 14.99 3. 612 32 10 .7 5.13 1.25 42 12.53 2.5 534 3 1012 13 .44 4.27 .75 4 8.81 1.75 54 234 1034 32 1/2 7.521 1.5 434 2 1/2 .35 3.48 .5 The drums and sheaves should be made as large as possible. The minimum size of drum is given in a column in table. It is better to increase the load than the speed. Wire rope is manufactured either with a wire or a hemp cen- ter. The latter is more pliable than the former, and will wear better where there is short bending. The weight of rope with wire center is about 10 more than with hemp center. POWER TRANSMISSION AND STANDING ROPES (7 WIRES TO THE STRAND). (TRENTON IRON Co.'s LIST.) IRON. CRUCIBLE STEEL. Trade Number. Diameter in Ins. Circumference in Inches. Weight per Foot, in lbs., with Breaking Stress, Hemp Center. in Tons of 2,000 Proper Working Load, in Tons of lbs. 2,000 lbs. Circumference of Hemp Rope of Equal Strength. Breaking Stress, in Tons of 2,000 lbs. Proper Working Load, in Tons of 2,000 lbs. Circumference of Hemp Rope of Equal Strength. II 11/2 12 13 I 1% 43/4 44 3-37 36 4 2.77 30 2.28 25 14 3 1.82 20 15 I 3% 1.5 16 16 17 18 NNN 23 23% I.12 12.3 .88 8.8 .7 7.6 19 2 .57 20 . af I 5.8 4.I I anon+maQ== 9 7/2 1034 10 614 0100 60.67 4 7 88.38 22 67.2 39.84 31.82 16.8 161½ 15.2 15% 15 ΙΟ I I 8 3 614 54 24.7 18.48 6.2 4.6 26 2 5 16.32 4 1/2 434 12.44 3.I 4 9.33 2.3 000 7 76 5 7% 21 .31 2.83 3/4 6.89 I .7 22 .23 2.13 23 5 23 1 3 23 .19 1.65 3.93 I 24 I .16 1.38 3.25 .81 25 7% .125 1.03 2.96 .75 1 www tw 76 GALVANIZED WIRE ROPES, FOR SHIPS' RIGGING, GUYS FOR DERRICKS, &c. TRENTON IRON Co.'s LIST. Circumference in inches. Weight, per fathom, in lbs. Circumference of Hemp Rope of equal strength, in ins. Breaking Stress, in tons of 2,000 lbs. Circumference in inches. Weight, per fathom, in lbs. Circumference of Hemp Rope of equal strength, in ins. Breaking Stress, in tons of 2,000 lbs. 5 43 A 5554444 5/2 54 22 261/2 II 43 242 10½ 40 ΙΟ 35 20/2 9/2 33 18 9 39 32 22 2 234 634 24 16 8/2 26 1.434 ୫ 23 HH 134 1/2 334 12 7/2 20 I 865432 2H 6 12 52 IO 5½ 5 812 44 4/2 3/2 4 21/2 32 3 3/2 1034 2/2 7 3/4 1 912 163/2 16 I 3/4 2 14 7% 1/2 I 765322H 32 22 1/2 GALVANIZED STEEL ROPES FOR SUSPENSION BRIDGES. TRENTON IRON Co.'s LIST. Diameter in Inches. Ult. Strength in Tons of 2,000 lbs. Weight Diameter Ult. Strength in Tons of per Foot. in Inches. 2,000 lbs. Weight per Foot. 25% 220 212 200 13 II.3 1% 13 100 5.8 95 5.6 238 180 10 I 75 4.35 21/ 155 1½ 65 3.7 2 IIO 8.64 6.5 GALVANIZED STEEL (LAID) CABLES FOR SUSPENSION BRIDGES. TRENTON IRON Co.'s List. Diameter Ult. Strength in Tons of Weight Diameter Ult. Strength in Inches. 2,000 lbs. per Foot. in Tons of in Inches. 2,000 lbs. Weight per Foot. 4. 760 35.26 lbs. 334 665 30.78 40 32 580 26.23 322 400 23 325 18.34 lbs. 15.4 • 262.5 12.88 " STRAIN ON CABLES OF SUSPENSION BRIDGES. Horizontal tension at point of greatest deflection where cable becomes horizontal load between points at which a horizontal line from top of lower tower intersects the cable multiplied by the distance between these points of intersection divided by eight times the deflection below this line. Tension at either tower square root of the sum of the squares of the hori- zontal tension so obtained, and of the load between the point of greatest deflection and the tower. For a bridge in which the towers are on the same level, this becomes- Tension at center of span Total load X span. 8 times deflection of cables. Tension at towers = (Tension at center)² + ( Total load 2. 2 77 + TRANSMISSION OF POWER BY WIRE ROPES. This system is applicable for distances of 50 to 400 feet, and for such is the best method of transmission known. In order that the rope may not be speedily destroyed, it is necessary that the diameters of the wheels and of the rope and the sag of the rope be correctly proportioned to each other and to the span. The chief strain on the rope comes from its bending around the pulleys, and the difference between the strain so produced and the safe working strain of the rope is alone available for the transmission of power. Hence, if the diameter of wheels falls below a certain amount the entire safe or working strength of the rope will be consumed in bending, and no power can be transmitted without its speedy destruction. The following table gives the necessary data for properly proportioning a wire rope system of transmission: Б 24 3.70 731 ΙΟ 18 67.1 1,365 23 8.43 1,084 ΙΟ 22 6.67 644 II 2I 4.47 373 II HHH 17 63.8 1,010 19 82.5 1,740 18 86.1 1,595 TO 22 14.7 1,179 I I 21 13.95 953 12 HH 17 18 20 9.4 485 12 1/2 21 23 4 1,371 12 20 22.I лю 966 13 17 16 18 19 15.5 520 13 3/14 20 34.8 1,329 13 HH 17 16 3 19 32.4 939 14 3/ 17 18 28.8 738 14 16 20 47.4 1,611 14 I 15 19 49.2 1,263 15 3/4 17 7∞ 70 000 NO NO 5 N 88.6 1,271 105.0 1,786 113.2 1,490 111.5 1,120 123.6 1,949 137.6 1,675 144.I 1,334 161.8 1,835 176.5 1,519 173.1 1,120 185.7 1,975 18 48.0 1,086 15 16 208.3 1,680 19 65.9 1,525 15 1 15 216.8 नारी क 4555OOO 7 7 7∞ ∞ ∞ a a 9 ΙΟ 1,307 The horse-powers given are for 100 revolutions per minute, and allow for effect of centrifugal force at this speed. If greater power is desired with a given combination, it must be obtained by increasing the speed, which may be done up to the point at which the velocity of the rope becomes 100 feet per second, the horse-power increasing directly as the speed, or very nearly so. The use of a larger rope will not answer for the purpose of increasing the power;-as indicated in the table, if too large a rope is used in proportion to the diameter of the wheel the amount that can be transmitted with safety is reduced. Neither must the tension of the rope be increased with the same object, since, with the sag given by the table, the strain on the rope when doing the work stated is all that it can endure perma- nently, viz., 25,600 hs. per sq. inch. On the other hand, if the sag of the rope exceeds that given by the table, the adhesion of the rope, and therefore the horse- power that can be transmitted will be proportionately reduced. 78 The sag is measured from a horizontal line drawn through the point at which the rope leaves the wheel. If the two wheels are not on the same level the sag must he measured from the level of the point of contact with the lower wheel, and the span to be used in determining the sag below this level is the dis- tance along the horizontal line from the wheel to the point at which it again intersects the rope. This point may be ascertained by hanging a wire in place on the wheels before splicing the rope. If the difference of level is very great it will be necessary to run the rope over intermediate carrying sheaves, so placed as to give a level stretch of rope, the sag on which stretch will then be adjusted as in the table so as to give the proper tension. Carrying sheaves for whatever purpose introduced must be of the same size as the main wheels. The sag of the slack side of the rope will, when doing full work, be one-half greater than when at rest. If, on account of intervening obstacles, it is necessary to reduce the sag of the rope, a carrying sheave may be introduced between the wheels, and the sag proportioned according to the table to the new spans so formed. But if it is done by increas- ing the tension, the diameter of the wheels must also be increased, or a rope having a greater number of wires of a less diameter must be used. Unless these changes are made less power must be transmitted; for reducing the sag on the slack side one-half, or that at rest one-quarter, will absorb all the strength available for transmission of power. If the sag at rest is not greater than the diameter of the wheels, the lower side may be made the driving side, thus reducing the sag below the wheels. The grooves of the wheels are filled with rubber, leather on edge, or tarred oakum or jute. The table is calculated for the sizes of rope made by the Trenton Iron Company, but will answer for the same sizes made by other makers. The rope used consists of six strands of seven wires each, and a hemp center. TRANSMISSION OF POWER BY BELTS. With flat leather belts, single thickness, connecting directly (uncrossed) iron pulleys of equal diameter, and therefore in contact with one-half the circumference of both pulleys, the power transmitted may be taken as one-horse power for each 70 square feet of belt per minute. The power is not materially affected by the diameters of the pulleys unless they are very small in proportion to the power, but is affected by the propor- tion of their circumference enwrapped. Taking the power transmitted when the belt makes a half coil around the pulley as 1, the power for other proportions of con- tact are: Coil, • Power, • • 1/4 3/8 63 .84 .92 1/2½ 15 34 I 16 1. 1.07 1.125 1.22 1.35 When the coil on the two pulleys is unequal the one having the least, of course, determines the power transmitted. For double belt the power will be increased about 75 per cent. 79 MANILA CORDAGE. Size, Cir- Size. Weight of Feet in cumfer'ce. Diameter. 100 One Inches. Inches. Fathoms. Pound. | TARRED HEMP. Breaking Strain of Weight of New Ropes. Pounds. 100 Fathoms. 3/8 31 20 1½ 178 For Ropes in use de- duct from these 40 44 14 бо ΙΟ figures, for chaffing, etc. 55 75 2 2/2 3 79 7/2 3,000 100 99 6 4,000 125 122 7/8 146 I 176 34 207 3/2 240 5433N 5,000 155 6,000 190 33% 7,000 225 8,500 265 21/2 9,500 300 334 275 11,000 355 4 I ΤΟ 305 2 12,500 495 44 138 355 14,000 455 42 395 16,000 500 5. 158 490 20,000 630 5/2 6 62 7 7/2 8 B2 595 I 24,000 750 2 705 IO in. 27,000 910 9 2 2 2 2 2 3 218 825 82 31,500 1,050 960 7% 37,000 1,235 22 1,100 6% 42,500 1,400 258 1,255 5% 48,500 1,600 28 1,415 5 54,500 1,820 3 1,585 4/2 61,500 2,050 Hawser laid will weigh one-sixth less. TONS OF RAILS REQUIRED FOR ONE MILE OF TRACK. TONS OF 2,240 LBS. RULE.-Multiply the weight per yard by 11, and divide by 7. Weight of Rail per Tons per Yard, in Ibs. Mile, Sin- gle Track. Weight of Rail per Yard, in Tons per Mile, Sin- Weight of Rail per Tons per Ibs. gle Track. Yard, in Mile, Sin- lbs. gle Track. 12 18.857 30 47.143 57 89.571 14 22. 33 51.857 58 91.143 16 25.143 35 55. бо 94.286 • 18 28.286 37 58.143 63 97.429 20 31.429 40 62.857 64 100.571 22 34.571 45 70.714 65 102.143 25 39.286 48 75.429 67 105.286 26 40.857 50 78.571 68 106.857 27 42.429 52 81.714 70 110 28 44. 56 88. 72 113.143 SPLICES AND BOLTS FOR ONE MILE OF TRACK. FOUR BOLTS PER JOINT. 30 Feet Rails, 704 Splice Plates, 1408 Bolts and Nuts. 28 754 1508 27 782 1564 25 844 1688 เ 24 880 " 1760 C 79a NUMBER OF NAILS AND TACKS PER POUND. Title. NAILS. Size. No. per fb. Title. TACKS. Length. No. per ib. 4 5 6 ŏ on an Aww 7 9 ΙΟ 12 " ( " << " 3-penny fine. 1½ inch. C I 760 nails. 480 I OZ.. 1/8 inch. 16,000 11/2 (C 300 << 200 ( 2 2 2 2 mm + + O 2 160 << 21 ( 128 << 22 92 (" C 72 1 2 2 3 4600 11/2 "" 10,666 CC 8,000 2/2 6,400 C 5.333 " 4 4,000 "" 2,666 8 2,000 3 бо (C 3/4 (" こ ​44 ΙΟ 12 1,600 " 1,333 3/2 4 CC 32 24 4/2 18 5 14 5% "C CC 12 "" ΙΟ "C 80 (C 50 " 4 16 20 " 30 40 " 50 60 6 8 ΙΟ 6 fence. 2 21/2 " " 12 3 31/4 5 lbs. of 4d. or 3 34 29 lbs. of 3d. will lay 1,000 shingles; 5½ lbs. 3d. fine, will put on 1,000 laths, 4 nails to the lath. SHIP SPIKES. 14 1,143 16 C 1,000 18 CC 888 C CC 20 800 22 727 CC 24 666 • NUMBER IN 100 LBS. Size in Inches. Size in Inches. Size in inches. No. in 100 lbs. No. in 100 lbs. Size. Length Size. Length Size. Length No. in 100 lbs. ترا کیا 3 3/2 4 1,910 1,585 1,326 18 42 1,223 5 1,025 3 Ι,ΟΙΟ 3/2 963 8ro ΤΕ 46 605 5 583 556655O67N 461 7 190 5/2 ts\ 423 7% 180 402 8 170 6/2 321 81 茶 ​160 349 9 150 5% 312 IO 140 298 S 140 61/2 280 9 120 261 ΙΟ IIO 240 II 100 ΤΟ 6 521 223 ΤΟ 80 10 542 6 221 15 бо TO 4 503 61 200 RAILROAD SPIKES. Size. SIZE. Length in Thickness Inches. 4. No. in 100 lbs. in Inches. Length in Inches. Thickness in Inches. No. in 100 lbs. 351 237 + 267 193 10 10 10 1 5 5 473 326 146 207 260 175 197 6 131 5 172 796 WROUGHT-IRON WELDED TUBES, FOR STEAM, GAS, OR WATER. 1/4 inch and below. Butt Welded; proved to 300 s. per square inch, 1½ inch, and above, Lap Welded; proved to 500 lbs. per square inch, Hydraulic pressure. Hydraulic pressure. TABLE OF STANDARD DIMENSIONS. (MORRIS, TASKER & Co.-Limited). Length of Length of Inside Actual Thick- Actual Internal External Pipe per Pipe per Length of Diameter. Outside Diameter. ness. Inside Diameter. Circum- ference. Circum- sq. ft. of sq. ft. of Internal Area. External Pipe con- Weight No. of threads Area. ference. inside sur- outside taining one per foot of per in. of cubic foot. length. screw. face. surface. Inches. Inches. Inches. Inches. Inches. Inches. Feet. Feet. Inches. Inches. Feet. Lbs. 1/8 0.405 0.068 0.270 0.848 1.272 14.15 9.44 0.0572 0.129 2500. 0.243 27 0.54 0.088 0.364 1.144 1.696 10.50 7.075 0.1041 0.229 1385. 0.422 18 0.675 0.001 0.494 1.552 2.121 7.67 5.657 0.1916 0.358 751.5 0.561 18 0.84 0.109 0.623 1.957 2.652 6.13 4.502 0.3048 0.554 472.4 0.845 14 • 1.05 0.113 0.824 2.589 3.299 4.635 3.637 0.5333 0.866 270. 1.126 14 XXX 1.315 0.134 1.048 3.292 4.134 3.679 2.903 0.8627 1.357 166.9 1.670 1.66 0.140 1.380 4.335 5.215 2.768 2.301 1.496 2.164 96.25 2.258 1½ 1.9 0.145 1.611 5.061 5.969 2.371 2.01 2.038 2.835 70.65 2.694 9 2233 + +50 7∞ a 2.375 0.154 2.067 6.494 7.461 1.848 1.611 3.355 4.430 42.36 3.667 11/2 2½ 2.875 0.204 2.468 7.754 9.032 1.547 1.328 4.783 6.491 30.11 5.773 8 3.5 0.217 3.067 9.636 10.996 1.245 1.091 7.388 9.621 19.49 7.547 8 \ 4.0 0.226 3.548 11.146 12.566 1.077 0.955 9.887 12.566 14.56 9.055 8 4.5 0.237 4.026 12.648 14.137 0.949 0.849 12.730 15.904 11.31 10.728 8 4/2 5. 0.247 4.508 14.153 15.708 0.848 0.765 15.939 19.635 9.03 12.492 8 5.563 0.259 5.945 15.849 17.475 0.757 0.629 19.990 24.299 7.20 14.564 8 6.625 0.280 6.065 19.054 20.813 0.63 0.577 28.889 34.471 4.98 18.767 8 7.625 0.301 7.023 22.063 23.954 0.544 0.505 38.737 45.663 3.72 23.410 8 8 8.625 0.322 7.982 25.076 27.096 0.478 0.444 50.039 58.426 2.88 28.348 8 9.688 0.344 9.001 28 277 30.433 0.425 0.394 63.633 73.715 2.26 34.077 8 10 10.75 0.366 10.019 31.475 33-772 0.381 0.355 78.838 90.762 1.80 40.641 8 Taper of threads, 1 to 32 on each side. 80 External Diameter. Standard Thickness. Internal Diameter. WROUGHT-IRON WELDED TUBES, EXTRA STRONG. TABLE OF STANDARD DIMENSIONS. Actual In- Nomin- al Diam- Actual Thickness, Thickness, Double Actual In- side Diam- eter. Outside Diameter. Extra side Diam- Strong. Extra Strong. eter, Extra Strong. eter, Double Extra Strong. Inches. Inches. Inches. Inches. Inches. Inches. 0.405 0.100 0.205 1/4 0.54 0.123 0.294 3. 0.675 0.127 0.421 0.84 0.149 0.298 0.542 0.244 1.05 0.157 0.314 0.736 0.422 HH I 1.315 0.182 0.364 0.951 0.587 14 1.66 0.194 0.388 1.272 0.884 1/2 1.9 0.203 0.406 I.494 1.088 4 H 2233 + 2.375 0.221 0.442 1.933 1.491 2½ 2.875 0.280 0.560 2 315 1.755 3.5 0.304 0.608 2.892 2.284 ल 4.0 0.321 0.642 3.358 2.716 4.5 0.341 0.682 3.818 3.136 Internal Circumfer- ence. LAP WELDED AMERICAN CHARCOAL IRON BOILER TUBES. STANDARD DIMENSIONS. (TABLE OF MORRIS, TASKER & CO., LIMITED.) External Circumfer- ence. + Length of Pipe per square foot of inside surface. † Length of Pipe per square foot of outside surface. Internal Area. External Area. Ins. Ins. Ins. I 0.072 0.856 Ins. Ins. 2.689 Feet. 3.142 4.460 Feet. 3.819 Ins. Ins. Lbs. 0.575 0.785 0.708 I 11/4 0.072 1.106 3.474 I 0.083 1.334 4.191 3.927 3.455 4.712 2.863 3.056 0.960 1.227 0.9 0.095 1.560 4.901 5.498 2.547 2.448 2.183 1.396 1.767 1.250 1.911 2.405 1.665 2 2 2 2 mmm ( +44 16 700 0.098 1.804 5.667 6.283 2.118 1.909 2.556 3.142 1.981 24 0.098 2.054 6.484 7.069 1.850 22 0.109 2.283 7.172 7.854 1.69S 3.314 3.976 2.238 1.673 1.528 234 0.109 2.533 7.957 8.639 1.508 1.390 4.094 4.909 2.755 5.039 5.940 3.045 3 3/4 0.109 2.783 3/2 0.119 3.012 9.462 10.210 0.119 3.262 10.248 10.995 8.743 9.425 1.373 1.273 6.083 7.069 3.333 1.268 1.175 7.125 8.296 3.958 1.171 1.091 8.357 9.621 4.272 334 0.119 3.512 11.033 11.781 1.088 42 0.130 | 3.741 4.241 5 11.753 12.566 0.130 13.323 14.137 0.140 4.72 14.818 15.708 8 9 ΙΟ 0.955 10.992 12.566 5.320 0.849 14.126 15.904 6.000 0.809 0.764 17.497 19.635 7.226 0.670 0.637 25.500 28.274 9.346 0.574 0.545 34.805 38.484 12.435 0.500 0.478 45.795 50.265 15.109 0.444 0.424 58.291 63.617 18.002 0.151 5.699 17.904 18.849 0.172 6.657 20.914 21.991 0.182 7.636 23.989 25.132 0.193 8.615 27.055 28.274 | 0.214 9.573 30.074 | 31.416 0.399 0.382 71.075 78.540 | 22.19 In estimating the effective steam-heating or boiler surface of Tubes, the surface in contact with air or gases of combustion (whether internal or external to the Tubes), is to be taken. For heating liquids by steam, superheating steam, or transferring heat from one liquid or one gas to another, the mean surface of the Tubes is to be taken. 1.018 9.687 11.045 4.590 1.023 0.001 Weight, per foot. SI AMERICAN SLATING. Slating is estimated by the "square," which is the quantity required to cover 100 square feet. The slates are usually laid so that the third laps the first three inches. Therefore to com- pute the number of slates of a given size required per square: Subtract three inches from the length of the slate, multiply the remainder by the width, and divide by two. This will give the number of square inches covered per slate; divide 14,400 (the number of square inches in a square,) by the number so found, and the result will be the number of slates required. The following table gives the number of slates per square for the usual sizes: NUMBER OF SLATES PER SQUARE. Size in Inches. Pieces per Square. Size in Inches. Pieces per Square. Size in Inches. Pieces per Square. 6X12 533 8X16 277 12XX 20 141 7X12 457 916 246 1420 121 8X12 400 10X 16 221 IIX 22 137 9X12 355 918 213 12) 22 126 7X14 374 10 18 192 1422 108 8X14 327 1218 160 12 24 II4 9X14 291 10X 20 169 1424 98 10X14 261 IIX 20 154 1624 86 The weight of slate per cubic foot is about 174 lbs., or, per square foot of various thicknesses, as follows: Thickness in Inches, . Weight in Pounds, • 18 3 16 1.81 2 71 X 3.62 3/8 泛 ​5.43 7.25 The weight of slating laid per square foot of surface covered, will, of course, depend on the size used. The weight of 10X18 slate, thick, for example, per square foot of roof, would be 5.86 lbs. No. Wire Gauge before Galvanizing. GALVANIZED ROOFING IRON. Weights per Square Foot Galvanized. Flat Sheets. Corrugated Sheets. Corrugated Sheets laid, in- cluding laps. 27 0.978 1.00 1.30 26 1.06 1.18 1.41 25 1.14 1.27 1.52 24 1.22 1.30 1.62 23 1.34 1.49 1.79 22 1.46 1.62 1.95 21 1.63 1.81 2.17 20 1.75 1.94 2.33 19 2.03 2.26 2.71 18 98 2.32 2.58 3.09 Nos. 20 to 22 are usual thicknesses for roofing. 82 Size. Grade. TABLE OF STANDARD OR REGULAR TIN PLATES. (BRUCE & COOK'S LIST.) Size and Kind of Plates-Number and Weight of Sheets in a Box, and Wire Gauge Thickness, of every Kind and Size. Sheets in Box. Pounds ir. Box. Wire Gauge. Size. Grade. Sheets in Box Pounds in Box. Wire Gauge. IO X 10 IC ،، IX ΙΟ 落落 ​( " X 14 IXX 80 225 225 100 225 115 29 N N 27 26 976 15 x 21 X 15 X 22 IXX DXXXX 100 280 112 190 26 22 ፡፡ SDXX 100 210 24 IXXX 225 130 25 • SDXXX 100 230 24 IXXXX 1 225 145 24 16 x 16 IC 225 205 29 IC 225 I12 29 IX 225 256 27 " IX " IXX IXXX 225 140 225 161 225 182 2 2 2 27 26 25 Co IXX IXXX IXXXX 225 294 26 225 333 25 225 371 24 ( XII IC IXXXX IXXXXX IO X 20 IC * C IX 1 I 225 203 241 17 X 17 IC 225231 29 225 224 24 IX 225 289 27 IXXXXXX 225 245 IX IXX 225 160 225 200 27 225 95 20 225 121 27 225 139 23/1/1 29 " IXX 112 166 26 CC " IXXX IXXXX 112 188 25 112 210 244 17 X 25 DC 100 196 28 26 DX DXX 100 292 26 50 147 24 IXXX IXXXX " 225 157 II X 15 SDC 225 175 200 168 2 2 2 25 DXXX 50 168 168 23 CC 24 DXXXX 50 189 22 26 CC IX 112 213 27 " SDX 200 189 il 25 IXX 112 244 26 SDXX SDXXX 200 210 2. 200 230 24 12 X 12 IC 29 IX (6 着​着 ​" IXX IXXX IXXXX IXXXXX 41 12 X 17 DC * DX CC " IXXXXXX 225 245 231 DXX DXXX DXXXX | DXXXXX 13 X 13 IC 100 98; 28 100 126 26 100 147 24 100 163 23 100 189 22 100 210 21 | 225 135 29 112 144 29 112 180 27 112 207 26 234 25 112 262 24 112 160 20 112 200 27 IXXX I 12 IXXXX 20 X 20 IC IX CC C IXX IXXX IXXXX 20 x 28 IC 112 230 26 112 260 25 112 200 244 112 224 IX IXX I 12 112 280 29 27 32226 225 I 12 225 140 27 225 161 26 225 182 25 225 203 24 225 224 24 19 x 19 IC IX IXX * A AX 18 x 18 IX II2 162 27 IXX IXXX 112 186 26 II2 211 25 IXXXX 112 235 24} IX 225 169 IXX 225 194 IXXX IXXXX 225 220 25 225 245 13 X 17 13 x 18 1XX 225 254 NNN 2 2 27 26 TERNE PLATES. 24 IX 14 X 20 IC 112 ! I 12 29 225 234 IX 112 IXX 225 269 140 27 44 " * 14 X 14 IC IX IXX IXXX IXXXX 14 X 17 IX 20 x 28 IC 112 224 29 225 157 IX 225 196 27 20 X 200 IC 225 225 26 225 255 25 112 280 27 Roll 176 29 IX 220 27 225 284 14 X 20 IC IX IXX IXXX เ IXXXX 112 202 2411 225 238 112 113 29 II2 143 27 112 162 26 112 183 25 10 X 14 MA BLACK PLATES. 184 112 28 204 I 12 230 II2 130 263 112 31 15 X 5 IX 225 225 27 283 112 32 IXX 225 259 26 " 307 112 33 IXXX 225 293 336 112 34 IXXXX 225 326 24 เ 367 112 35 15 X 21 IX I 12 27 DXX DXXX 100 21 24 C 100 249 23 409 112 36 462 112 37 | 504 | 112. 38 83 TRANSVERSE STRENGTH OF FLAGGING. EXPERIMENTS MADE BY R. G. HATFIELD AND OTHERS. b= width of the stone in inches. d its thickness in inches. /= distance between bearings in inches. The BREAKING LOADS in tons of 2,000 lbs., for a weight placed at the center of the space, will be as follows: bd 2 1 For Blue Stone Flagging, For Quincy Granite, For Little Falls Freestone, For Belleville, N. J, Freestone, For Granite Bl. (another quarry), XFor Connecticut Freestone, • • For Dorchester Freestone, For Aubigny Freestone, For Caen Freestone, For Glass, For Slate,. · 744 .624 .576 .480 .432 .312 .264 .216 .144 1.000 • 1.2-2.7 Thus a block of Quincy Granite 80 inches wide and 6 inches thick, rest- ing on beams 36 inches in the clear, would be broken by a load resting midway between the beams == 80 X 36 36 X.62449.92 tons. WEIGHTS OF A CUBIC FOOT OF VARIOUS Anthracite, solid, Anthracite, broken, Asphaltum, Brick, best pressed, Brick, common hard, SUBSTANCES. Pounds. . 100 Ice, • · 57 Iron, cast, 87 Iron, wrought, · 150 . 125 100 Pounds. 58 450 480 Iron Ore, Port Henry magnetic, lump, loose, no fine ore,. 185 Iron Ore, Port Henry magnetic, Brick, soft, • • Brick, fire, Brick-work, common, Brick-work, pressed, Cement, Portland (English), Cement, Rosendale, ground, loose, ground, loose, Coal, bituminous, solid, Coal, bituminous, broken, Coke, loose, Concrete, • Earth, loose, Earth, rammed, Earth, gravel, Earth, as mud, • Earth, as mud, with gravel, Earth, moist, sand, loose, Glass, Gneiss, Granite, . 137 solid, • 300 112 140 56 Lime, quick, in small lumps, loose, 53 Limestone and Marbles. .168-175 Limestone and Marbles, loose, 96-100 Masonry, dry, rubble, 138 90 Masonry, dressed granite or lime- 77-90 stone, • 165 • 144 100 • 55 73 • 45 • 151 · 50 Masonry, dressed sandstone, 27 Mortar, 125 Petroleum, 72 Plaster of Paris, 93 Salt, coarse, 109 Sandstone, 102 Slate, • . 126 ་ • Snow, 82-110 Snow, wet, 165 Water, fresh, pure, 168 Water, sea, 164-172 • A heaped bushel of bituminous Coal weighs (28 bushels A heaped bushel of Coke,. A heaped bushel of Lime, A struck bushel of Wheat, A struck bushel of Oats, A struck bushel of Corn, . 178 7 15-50 621 64 80 · 37 72-75 60 • = I ton), . • 30 · 56 BRICK-WORK AND MASONRY. Stone-work is estimated by the perch of 25 cubic feet. Brick-work is estimated by the thousand, and for various thicknesses of wall runs as follows: 9 in wall, or 1 brick in thickness, 14 bricks. 13 18 " 22 1½ 2 212 " " per superficial foot. C " " 21 28 " CC (6 35 84 CRUSHING AND TENSILE STRENGTH, IN LBS., PER SQ. INCH OF NATURAL AND ARTIFICIAL STONES. DESCRIPTION. Aberdeen Blue Granite,. Quincy Granite, Freestone, Belleville, Freestone, Caen, Freestone, Connecticut, Sandstone, Acquia Creek, used for Capitol Wash- ington, Limestone, Magnesian, Grafton, Ill., Marble, Hastings, N. · Marble, Stockbridge, City Hall, N. Y. Marble, Italian, . Marble, Statuary, • Marble,Veined, Slate,. Brick, Red,. Brick, Pale Red, Brick, Common, Brick, Machine Pressed, Brick, Stock, Weight per Crushing Force. Cubic ft. Lbs. per Square in lbs. Inch. 164 8,400 to 10,914 166 15,300 3,522 1,088 3,319 5,340 17,000 18,941 12,624 10,382 3,216 165 9,681 9,300 135.5 808 130.3 562 Soo to 4,000 Brick-work, set in Cement, bricks not very hard, Brick, Masonry, Common, • Cement, Portland, Cement 1, Sand I, Cement, Portland, Cement, Roman, • Mortar, Crown Glass, Portland Cement, Portland Cement, with Sand, Glass, Plate, Mortar, • Plaster of Paris. Slate,. • 6,222 to 14,216 2,177 521 500 to 800 1,000 to 8,300 1,280 342 120 to 240 31,000 TENSION. 427 to 711 92 to 284 9,420 50 72 • 11,000 CAPACITY OF CYLINDRICAL CISTERNS. FOR EACH FOOT OF DEPTH. Diameter Gallons. Pounds. in Feet. Diameter in feet. Gallons. Pounds. 2.0 23.5 196 9.0 475.9 3,968 2.5 36.7 306 9.5 530.2 4,421 3.0 52.9 44I 10.0 587.5 4,899 3.5 72.0 600 11.0 710.9 5,928 4.0 94.0 784 12.0 $46.0 7,054 4.5 119.0 992 13.0 992.9 8,280 5.0 146.9 1,225 14.0 1,151.5 9,602 5.5 177.7 1,482 15.0 1,321.9 11,023 6.0 211.5 1,764 20.0 2,350.I 19,596 6.5 248.2 2,070 25.0 3,672.0 30,620 7.0 287.9 2,401 30.0 5,287.7 44,093 7.5 330.5 2.756 35.0 7,197.I 60,016 8.0 376.0 3.135 40.0 9,400.3 78,388 8.5 424.5 3,540 85 PROPERTIES OF TIMBER. DESCRIPTION, Weight per Weight per Cubic Foot, ft. B. M. in in lbs. lbs., average Tensile strength per sq. in., in lbs. Crushing in., in lbs. strength per sq. Relative Strength Shearing strength for cross breaking with the grain, lbs. White Pine = 100. (See p. 72.) Pressure in lbs. per sq. in. to indent". per sq. in. Ash, 43 to 55.8 4. I 11,000 to 17,207 4,400 to 9,363 130 to 180 458 to 700 1,800 to 1,850 Beech, 43 to 53.4 3.9 11,500 to 18,000 5,800 to 9,363 100 to 144 Cedar, 50 to 56.8 4.5 10,300 to 11,400 5,600 to 6,000 55 to 63 Cherry 130 Chestnut, 33 2.75 10,500 5,350 to 5,600 96 to 123 Elm, 34 to 36.7 2.9 13,400 to 13,489 6,831 to 10,331 96 Hemlock, 8,700 5,700 88 to 95 Hickory, 12,800 to 18,000 8,925 150 to 210 Locust, 44 3.7 20,500 to 24,800 9,113 to 11,700 132 to 227 Maple, 49 4. I 10,500 to 10,584 8,150 122 to 220 367 to 647 1,700 to 1,900 Oak, White, 45 to 54.5 4.Ι 10,253 to 19,500 Oak, Live, Pine, White, 70 5.8 4,684 to 9,509 6,850 130 to 177 752 to 966 2,300 to 3,550 155 to 189 30 2.5 10,000 to 12,000 5,000 to 6,650 100 225 to 423 Pine, Yellow, Spruce, Walnut, Black, 28.8 to 33 2.6 12,600 to 19,200 5,400 to 9,500 98 to 170 286 to 415 875 to 1,160 1,900 10,000 to 19,500 5,050 to 7,850 86 to 110 253 to 374 42 3.5 9,286 to 16,000 7,500 875 to 1,023 2,200 to 2,600 86 WINDOW GLASS. NUMBER OF PANES PER 50 FEET, OR IN I Box. Size, in inches. Panes in Box. Size, in inches. Panes in Size, in inches. Panes Box. in Box. Size, in inches. Panes in Box. 6 X 8 150 12 19 32 16 X 20 23 24 X 44 7 X 9 115 12 20 30 16 X 22 20 24 X 50 7 7 6 8 X 10 90 8 X 11 8 X 12 9 X 10 9 X II 9 X 12 67 9 X 13 62 9 X 14 57 ON KO NESK 12 21 29 16 X 24 19 82 12 X 22 75 12 23 2 N 27 16 X 30 15 26 16 X 36 12 24 X 56 26 X 36 26 X 40 80 12 X 24 25 16 K 40 II 26 X 48 13 14 40 18 20 20 26 X 54 13 X 15 37 18 22 18 28 X 34 13 16 35 18 24 17 28 X 40 13 X 17 33 18 26 15 28 X 46 9 X 15 53 13 18 31 18 34 12 28 X 50 9 X 16 50 13 19 29 IS JO X 10 72 13 20 28 18 JO X 12 60 13 21 26 18 00 00 00 36 ] [ 30 X 6 IO 30 X 10 X 13 55 13 22 25 20 42 44 30 X 22 16 30 X 54 10 X 14 52 13 24 23 20X24 15 32 X 42 10 X 15 48 14 15 34 20 25 14 32 X 44 JO X 16 45 14 16 32 20 26 14 32 X 46 10 X 17 42 1418 20 28 13 32 X 48 NO 500 TO 100 ob no 45555 7 6 8 6 6 10 X 18 40 14 19 JI X II 59 14 II X 12 55 14 22 11 X 13 50 14 I I 14 47 14 I I 15 44 14 I I 16 41 14 X 36 WW NN NN. 20 N N 27 20 30 12 32 50 20 34 J I 32 X 54 23 20 36 10 32 X 56 24 22 28 18 44 COLO 32 16 50 7 32 X 65 34 > 34 24 14 34 46 II X 17 39 14 40 13 13 11 X 18 36 15 X 16 30 23 12 12 X 12 15 X 18 27 36 12 13 46 15 20 24 40 12 X 14 43 15 22 22 22 50 ~ 0010 NW 34 X 50 34 X 34 X 36 7 36 59 12 X 15 40 15 X 24 20 24 28 11 36 56 12 16 38 15 X 30 16 24 30 IO 36 12 X 17 35 IS 32 15 24 32 12 X 18 33 16 X 18 | 25 24 36 COO 36 ترا درا 3 40 69 ABRIDGED PRICE LIST OF POLISHED PLATE GLASS. (LONDON AND MANCHESTER PLATE GLASS Co.) Ins. 12 20 30 40 50 бо 70 80 go 24 $2.00 $4.05 30 2.55 5.10 40 4.95 8.95 $10.05 13.40 $23.65 50 5.10 11.15 22.20 29.60 62 6.10 13.40 70 9.40 15.65 80 10.75 23.65 90 12.05 26.65 100 13.40 29.60 26.65 33.50 31.05 41.40 35.50 47-35 $100 39.95 53.25 112 $126 44.10 59.15 74 93 100 124 140 ΙΙΟ 14.75 32.55 48.80 65.10 SI 103 120 137 154 I 20 16.10 35.50 130 52.25 71.00 93 112 131 149 168 23.10 38.45 57.70 76.00 ΙΟΙ 121 142 162 197 140 24.85 41.40 62.15 82.85 109 131 152 174 212 150 26.65 44.40 66.55 ! 93.00 117 140 163 202 227 160 28.40 47.35 1 71.00 108.00 134 бі 188 215 242 Discount, 50, 10 %, and 5 %. Dec., '86. 87 HOLLOW BRICK, FOR FOR FIRE-PROOF BUILDING. (LIST OF HENRY MAURER, NEW YORK.) 100 00 00 00 000000 0 0 0 0 0 0 (Iron Beam Protection-Patented June 3d, 1884.) HOLLOW BRICK FOR FLAT ARCHES. WIDTH OF SPAN BETWEEN IRON BEAMS. DEPTH OF ARCH. WEIGHT PER SQUARE FOOT. SAFE LOAD PER PRICE PER SQUARE FOOT. SQUARE FOOT. 3 ft. 6 in. to 4 ft. o in. to 4 ft. 6 in. to 5 ft. 0 in. to 5 ft. 0 in. to o o 6 ft. o in. to 6 ft. o in. 7 ft. 0 in. o 7 ft. 6 in. 8 5 ft. 0 in. 4 ft. 0 in. o 6 in. 29 lbs << 7∞ 33 1,500 lbs. 1,500 II cents. 12 " 37 1,500 " "" 9 40 1,500 I 4 16 " " ΙΟ 43 8 ft. o in. 12 48 1,500 1,500 19 " 22 PARTITIONS. THICKNESS. WEIGHT PER PRICE PER SQUARE FOOT SQUARE FOOT Hollow Brick (Clay) Partitions. Co " " (( " (C Porous Terra-Cotta, " "" " " " " " (( " 8 3456 NO 3 +56 700 3 in. 14 lbs. 182 6 cents. " 7 " 23 IO 6" 25 12 " 7 31 • 13 8 " (C 34 12 (C 4 17 15 7 8 (4 " 23 ΙΙ " 27 13 " C " 31 15 36 " 16 C FURRING, ROOFING AND CEILING. Hollow Clay Furring. Porous Terra-Cotta Furring. << Roofing. " ( 66 Co Ceiling. THICKNESS. WEIGHT PER PRICE PER SQUARE FOOT. | SQUARE FOOT. 2 2 2 2 in. 12 lbs. 7 cents. 8 (i 8 44 C 12 10 看着 ​3 16 "" " 12 " 2 I I 10 A 5-foot span (18 in. wide) of 8-in. Floor Block is found, by experiment, to stand 9,300 lbs. without breaking. These prices are an average for New York and vicinity, delivered at buildings and alongside of docks in Albany, Buffalo, Baltimore or Phila. The cost of laying above blocks in cement mortar is about 30 per cent. additional in New York, and 25 per cent. in Philadelphia. 88 WEIGHTS, PER FOOT, OF CAST-IRON PIPES IN GEN- ERAL USE, INCLUDING SOCKET AND SPIGOT ENDS. (DENNIS, LONG & Co.) Diameter. Thickness. Weight Diameter. Thickness. Weight per foot. per foot. 2 inches. + inch. 64 lbs. 14 inches. 2 21 91 16 " 14 16 دبا دبا دیا) در +++ 3 3 C II 16 << " CC CC " 3 13 18 -+- " " C 16 CC W NW N HD mogo mió C H IN 16 " DRAUDONGHIN inch. 138 lbs. 85 པ 108 129 CC 152 16 * 175 CC 23 161 23 31 25 18 " 18 (C 18 20 (C 20 << 33 20 LOID CHEROKEE CORREDO CC 114 137 << 161 66 (4 132 160 423 C * A 197 20 CC CC 8 CC (" 52 24 40 24 (C 24 3 8 CC *** เ C 24 CC -f- ΙΟ << ΙΟ 60 ΙΟ << 10 12 44 CC 12 ( 12 C 82 Co 36 (C 12 99 36 14 117 48 74 14 74 ៩ 48 " 94 48 113 48 Co 30 CC 30 品 ​54 68 30 67 30 "C * CC CC * KOOD ST{#2}}} מכינים -100-90 H 215 159 100 224 44 257 " 237 " 277 " 319 360 332 381 429 479 H 512 (4 * 58+ 685 i 775 BRICKS. The bricks of different makers vary in dimensions, and those of the same maker vary also, owing to the different degrees of heat to which they are subjected in burning. The rule given on page 84 for estimating the num- ber of bricks in a square foot of wall is only approximate. The following table gives the usual dimensions of the bricks of some of the principal makers: DESCRIPTION. Wilmington front, Baltimore front,. Philadelphia front, Trenton front, Croton,. Colabaugh, FIRE BRICK- INCHES. DESCRIPTION. Maine, Milwaukee, 8X48X2% North River, Trenton, + 82X4 84356 Ordinary, Valentine's (Woodbridge, N. J.), . Downing's (Allentown, Pa.),. 70.00 00 INCHES. 33 3X238 48X236 3%X2% X4 X2 58X2/4 8%X4%X2½ ins. .9 X4%X22 ins. To compute the number of bricks in a square foot of wall.-To the face dimensions of the bricks used add the thickness of one joint of mortar, and multiply these together to obtain the area. Divide 144 square inches by this area, and multiply by the number of times which the dimension of the brick, at right angles to its face, is contained in the thickness of the wall. EXAMPLE. How many Trenton bricks in a square foot of 12 inch wall, the joints being inch thick? 8 + ¼ × 2¼ + ¼ X 20.62; 14420.627; 7X3-21 bricks per sq. ft. 89 I H H WEIGHT OF SKYLIGHT AND FLOOR GLASS PER SQUARE FOOT. (LONDON AND MANCHESTER PLATE GLASS Co., N. Y.) Thickness in inches, • Weight in pounds, . -100 To } 1.75 2.62 } 2 I 3.50 5.35 7.00 8.75 10.50 14.00 SIZES AND WEIGHTS OF SQUARE AND HEXAGON NUTS. (HOOPES & TOWNSEND'S LIST.) UNITED STATES STANDARD SIZES. CHAMFERED AND TRIMMED. PUNCHED TO SUIT U. S. STANDARD TAPS. Diam, of Bolt. Width. Thickness. 1997-105275121 (veja cobert-100 H H H H H H મ KH H 2 ~ 2 H 2 2 H H KH વગર 278 2 2 2 2 2 2 2 3 2 23334+ 1 2 2 Diam. of Hole. No. in 100 *sql SQUARE. Wt. each in lbs. No. in 100 lbs. HEXAGON. Wt, each in lbs. 7270 .0138 7615 .0131 4700 .0213 5200 .0192 2350 .0426 3000 .0333° 1630 .0613 2000 .050 1120 .0893 1430 .070 890 .1124 1100 .091 640 .156 740 .135 380 .263 450 .222 280 .357 309 .324 170 .588 216 463 130 .769 148 .676 96 1.04 III .901 70 1.43 85 1.18 58 1.72 68 I.f7 44 2.27 56 1.79 34 2.94 40 2.50 30 3.33 37 2.70 23 4.35 29 3.45 19 5.26 21 4.76 12 8.33 15 6.67 II. II II 9.09 81 11.76 3 24 9 7} 13.64 STANDARD SIZES OF WASHERS-NUMBER IN 100 LBS. (HOOPES & TOWNSEND's List.) Diameter. Size of Hole. Thickness. Bolt. No. in roo lbs. inch. 10 inch. No. 16 inch. 16 Б " 29,300 18,000 ( (C (( I 14 7,600 1 I HN-NANCY ( (( " I I 18 3,300 " " C " I I R 2,180 " ΙΙ 2,350 " 18 " " " I I 1,680 (C 22233 验 ​" 10 1,140 -- ( + 8 I 580 " ་ " 8 H " " " " 76 I ***D** " 470 (( 360 360 288 90 WEIGHT OF 100 BOLTS WITH SQUARE HEADS AND NUTS. (HOOPES & TOWNSEND'S LIST.) DIAMETER OF BOLTS. Length under head to point. in. in. in. in. in. in. in. in. in. I in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. مودالاتي 4.00 7.00 10.50 15.20 22.50 39.50 63.00 4.35 7.50 11.25 16.30 23.82 41.62 66.00 3 Causes WW N N N N 4.75 8.00 12.00 17.40 25.15 43.75 69.00 109.00 163 11 5.15 8.50 12.75 18.50 26.47 45.88 72.00 113.25 169 5.50 9.00 13.50 19.60 27.80 48.00 75.00 117.50 174 5.75 9.50 14.25 20.70 29.12 50.12 78.00 121.75 180 6.25 10.00 15.00 21.80 30.45 52.25 81.00 126.00 185 7.00 11.00 16.50 24.00 33.10 56.50 87.00 134.25 196 7.75 12.00 18.00 26.20 35.75 60.75 93.10 142.50 207 مرد 8.50 13.00 19.50 28.40 38.40 9.25 10.00 14.00 21.00 15.00 10.75 16.00 30.60 41.05 77 8 9 ΙΟ II 12 22.50 32.80 43.70 24.00 35.00 46.35 25.50 37.20 49.00 27.00 39.40 51.65 28.50 41.60 54.30 30.00 43.80 59.60 46.00 64.90 48.20 70.20 65.00 99.05 151.00 69.25 105.20 159.55 73.50 111.25 168.00 77.75 117.30 176.60 82.00 123.35 185.00 218 229 240 251 262 86.25 129.40 193.65 273 13 50.40 75.50 52.60 80.80 86.10 90.50 135.00 202.00) 94.75 141.50 210.70 103.25 153.60 227.75 227.75 111.75 165.70 224.80 120.25 177.80 261.85 128.75 189.90 278.90 284 295 317 339 360 382 137.25 202.00 295.95 404 14 15 16 91.49 145.75 214.10 313.00 426 96.70 154.25 226.20 330.05 102.00 162.75 238.30 347.10 448 470 17 107.30 171.00 250.40 364.15 492 18 112.60 19 20 117.90 179.50 262.60 381.20. 188.00 274.70 398.25 514 536 123.20 206.50 286.80 415.30 558 Per inch addition'li 1.37 2.13 3.07 4.18 5.45 8.52 12.27 16.70 21.82 WEIGHTS OF NUTS AND BOLT-HEADS, IN POUNDS. FOR CALCULATING THE WEIGHT OF LONGER BOLTS. DIAMETER OF BOLT, IN INCHES. 1-2 07:49 Sk 320 -H ส Nut! .017.057 J2S .267 .43 .73 Weight of Hexagon Nut and Head, Weight of Square Nut and Head,. · DIAMETER OF BOLT, IN INCHES. Weight of Hexagon Nut and Head, I .021 .069 .164 -320 .55 .88 درا 3 17 28.8 1.10 2.14 3.78 5.6 8.75 • 1.31 2.56 4.42 7.0 10.5 21 36.4 Weight of Square Nut and Head,. 91 Lengths. 3% in. fin. ½ in. NUMBER OF RIVETS IN 100 POUNDS. in.% in. 1 in. 4 in. in. 1,965 1,419 1,092 944 665 1,848 1,335 1,027 846 597 I 1,692 I,222 940 763 538 450 118 1,512 1,092 840 726 512 415 14 1,437 1,036 797 691 487 389 356 228 138 1,368 988 760 653 460 370 329 211 1½ 1,300 949 730 624 440 357 280 180 15% 1,260 924 711 596 420 340 271 174 134 1,200 900 693 553 399 325 262 169 18 1,156 840 648 532 375 312 257 165 2 1,100 789 608 511 ვნა 297 243 156 218 1,031 744 573 502 354 289 237 152 2 999 721 555 491 347 280 232 149 22 945 682 525 475 335 260 220 141 23333 23 900 650 500 443 312 242 208 133 828 598 460 4II 290 224 197 127 34 779 562 433 379 267 212 180 115 3/2 743 536 413 352 248 201 169 108 334 715 513 395 341 241 192 160 102 4 326 230 184 158 99 4 312 220 177 150 96 4/2 298 210 171 146 434 284 200 166 138 89 55556 270 190 161 135 87 5% 256 180 156 130 84 5/2 244 172 151 124 80 534 233 164 145 120 77 223 157 140 115 74 64 213 150 138 III 71 6½ 207 146 134 107 634 203 143 129 104 7 198 140 125 100 852 69 67 64 WEIGHT OF PLATES PER SQUARE FOOT, IN POUNDS. Thickness in Inches. Wrought Iron. Sheet Copper. Lead. Zinc. 2.50 2.86 3.71 2.27 5.00 5.72 7.42 4.54 7.50 8.58 11.12 6.81 10,00 II.44 14.83 9.08 12.50 14.39 18.54 II.35 15.00 17.16 22.25 13.62 17.50 20.02 25.96 15.89 20.00 22.88 29.66 18.16 السرير لاموني ماسال مایه بر 22.50 25.74 33.37 20.43 、 ༢༽ བོང པདྨ ཏུ 25.00 28.60 37.10 22.70 27.50 31.46 49.79 24.97 30.00 34.32 44.50 27.24 32.50 37.18 48.20 29.51 35.00 40.04 51.91 31.78 37.50 42.90 55.62 34.05 I 40.00 45-75 59.33 36.33 92 Breadth in Inches. WEIGHT PER FOOT OF FLAT IRON. THICKNESS IN FRACTIONS OF INCHES. 1% 18 3/4 74 5 10 3 100 1/2 9 16 5/8 }}} H .208 .417 .625 .833 1.04 1.25 1.46 1.67 1.88 2.08 2.29 1% .234 .469.703 .938 1.17 1.41 1.64 1.87 2.11 2.34 2.58 1.260.521 .521 781 1.04 1.30 1.56 1.82 2.08 2.34 2.60 2.86 .286 .573 .859 1.15 1.43 1.72 2.01 2.29 2.58 2.86 3.15 I .313 .625 .938 1.25 1.56 1.88 2.19 2.50 2.81 3.13 3.44 .339.6771.02 1.36 1.69 2.03 2.37 2.71 3.05 3.39 3.73 134 .365 .729 1.09 1.46 1.82 2.19 2.55 2.92 3.28 3.65 4.01 1% 391 781 1.17 1.56 1.95 2.34 2.73 3.12 3.51 3.91 4.30 417 833 1.25 1.67 2.08 2.50 2.92 3-33 3.75 4.17 4.58 28.443 886 1.33 1.77 2.21 2.65 3.10 3.54 3.98 4.43 4.87 24.469 .9381.41 1.88 2.34 2.81 3.28 3.75 4.22 4.69 5.16 238 495 990 1.48 1.98 2.47 2.97; 3.46 3.96 4.46 4.95 5.44 2 2 2 N 22 521 1.04 1.56 2.08 | 2.60 3.13 3.65 4.17 4.69 5.21 5.73 252 -547 1.09 1 1.64 2.19 2.73 3.28 3.83 4.38 4.92 5.47 6.02 23 573 1.15 · I 1.72 2.29 2.86 278 599 1.20 1.80 4.58 3.44 4.01 5.16 5.73 6.30 2.40 3.00 3.60 4.20 4.79 5.39 5.99 6.59 ترا در) 3 1 .625 1.25 1.88 34677 1.35 12.03 32 2.50 3.13 3.75 4.38 5.00 5.63 6.25 6.88 2.71 3.39 4.06 4.74 5.42 6.09 6.77 7.45 729 1.46 2.19 3 .781 1.56 2.34 3.651 2.92 3.13 4.38 5.10 5.83 6.56 7.29 8.02 3.91 4.69 5.47 6.25 7.03 7.81 8.59 * .833 1.67 2.50 .8851.77 2.66 .938 1.88 2.81 .990 1.98 2.97 3.33 4.17 3.54 4-43 5.31 6.20 4.69 3.75 3.96 4.95 5.94 6.93 5.00! 5.83 6.67 7.50 8.33 9.17 7.08 7.97 8.85 9.74 5.63 6.56 7.50 8.44 9.38 10.31 7.92 8.91 9.90: 10.89 5 1.042 2.08 3.13 54 1.09 2.19 3.28 51.15 2.29 3.44 5341.20 2.40 3.59 4.17 4.58 4.79 5.21 4.38 5.47 6.56 7.66 5.73 6.88 8.02 5.99 7.19 8.39 6.25 7.29 8.33 9.38 10.42 11.46 8.75 9.84 10.94 12.03 9.17 10.31 11.46 12.60 9.58 10.78 11.98 13.18 6 1.25 2.50 3.75 5.00 64 1.30 2.60 13.91 5.21 6.51 6.25 7.50 8.75 7.81 9.11 10.00 11.25 10.42 11.72 612 1.35 2.71 406 5.42 6.77 8.13 9.48 10.83 12.50 13.75 13.02 14.32 12.19 13.54 14.90 634 1.41 2.81 4.22 5.63 7.03 8.44 9.84 11.25 12.66 14.06 | 15.47 | 5.83 7.29 6.04 7.55 8.75 10.21 9.06 10.57 12.08 11.67 13.13 14.58 16.04 7 1.46 2.92 4.38 71.51 3.02 4.53 71.56 3.13 4.69 734 1.61 3.234.84 6.25 6.46 8 1.67 3.33 5.00 6.67 84 1.72 3.44 5.16 6.88 81 1.77 3.54 5.31 7.08 834 1.823.65 5.47 7.29 9 a a 1.88 13.75 5.63 94 1.93 3.85 5.78 921.98 3.96 15.94 934 2.03 4.06 16.09 ΙΟ 2.08 4.17 6.25 104 2.14 4.27 6.41 10½ 2.19 4.38 6.56 1034 2.24 4.48 6.72 I 13.59 15.10 16.61 7.81 9.38 10.94 12.50 14.06 15.63 17.19 8.07 9.69 11.30 12.92 14.53 16.15 17.76 8.33 10.00 11.67 13.33 15.00 16.67 18.33 8.59 10.31 12.03 13.75 15-47 17.19 18.91 8.85 10.63 12.49 14.17 15.94 17.71 19.48 9.11 10.94 12.76 14.58 16.41 18.23 18.23 20.05 9.38 11.25 13.13 15.00 16.88 18.75 20.63 9.64 11.56 13-49 15.42 17.34 19.27 9.90 11.88 13.85 15.83 17.81 19.79 10.16 12.19 14.22 16.25 18.28 20.31 7.50 7.71 21,20 21.77 7.92 8.13 22.34 8.33 8.54 10.42 12.50 14.58 16.67 18.75 10.68 12.81 14.95 17.08 20.83 22.92 19.22 21.35 | 23.49 8.75 8.96 10.94 13.13 15.31 17.50 11.20 13.44 15.68 17.92 19.69 21.88 24.06 20.16 22.40 24.64 0.17 11.46 13.75 16.04 18.33 20.63 22.92 25.21 9.38 11.72 14.06 16.41 18.75 21.09 23.44 25.78 19.17 | 21.56 23 96 | 26.35 I I 2.29 4.58 6.88 11 2.34 4.69 7.93 112.40 4.79 7.19 9.58 1134 2.45 4.90 7.34 9.79 12 12.50 15.00 17.50 10.00 11.98 14.38 16.77 12.24 14.69 17.14 19.58 12.50 15.00| 17.50 | 20.00 | 22.50 22.03 24.48 | 26.93 22.50 25.00 27.50 93 Breadth in Inches. WEIGHT PER FOOT OF FLAT IRON. THICKNESS IN FRACTIONS OF INCHES. 34 73 7/8 I ITS 11/8 114 138 I 2.50 2.71 2.92 3.13 3-33 3.54 3.75 3.96 4.17 4.37 4.58 18 2.81 3.05 3.28 14 3.13 3.39 3.65 3.52 3.75 3.98 4.22 4.45 4.69 4.92 5.16 3.91 4.17 4.43 4.69 4.95 5.21 5.47 5.73 18 3.44 3.72 4.01 4.30 4.58 4.87 5.16 5.44 5.73 6.02 6.30 1/2 1½ 3.75 4.06 4.38 4.69 5.00 5.31 5.63 5.94 6.25 6.56 6.88 15% 4.06, 4.40 4.74 5.08 5.42 5.75 6.09 6.43 6.77 7.11 7.45 I 134 4.38 4.74 5.10 5.47 5.83 6.20 178 4.69 5.08 5.47 5.86 6.25 6.64 6.56 6.93 7.29 7.66 8.02 7.03 7.42 7.81 8.20 8.59 2 5.00 5.42 5.83 6.25 6.67 7.08 7.50 7.92 8.33 8.75 9.17 28 5.31 5.75 6.20 6.64 7.08 7.52 7.97 8.41 8.85 9.30 9.74 24 5.63 6.09 6.56 7.03 7.50 7.97 8.44 8.91 9.38 9.84 10.31 238 5.94 6.43 6.93 7.42 7.92 8.41 8.91 9.40 9.90 10.39 10.89 7.81 8.20 8.33 8.85 9.38 8.75 9.30 9.84 10.39 10.94 11.48 22 6.25 6.77 7.29 258 6.56 7.11 7.66 234 6.88 7.45 8.02 8.59 27% 7.19 7.79 8.39 8.98 9.90 10.42 10.94 11.46 12:03 9.74 10.31 10.89 11.46 12.03 12.60 9.58 10.18 10.78 11.38 11.98 12.58 13.18 9.17 3 7.50 8.13 8.75 9.38 10.00 34 8.13 8.80 9.48 10.16 10.83 32 8.75 9.48 10.21 10.94 11.67 334 9.38 10.16 10.94 11.72 12.50 44 14.84 10.63 11.25 11.88 12.50 13.13 13.75 11.51 12.19 12.86 13.54 14.22 12.40 13.13 13.85 14.58 15.31 13.28 14.06 14.90 16.04 15.63 16.41 17.19 13.33 14.17 15.00 15.83 4 10.00 10.83 11.67 12.50 44 10.63 11.51 12.40 13.28 4211.25 12.19 13.13 14.06 434 11.88 12.86 13.85 14.84 5 12.50 13.54 14.58 15.63 16.67 54 13.13 14.22 15.31 16.41 17.50 52 13.75 14.90 16.04 17.19 18.33 54 14.38 15.57 16.77 17.97 19.17 14.17 15.00 15.83 16.67 17.50 18.33 15.05 15.94 16.82 17.71 18.59 19.48 15.94 16.88 17.81 18.75 19.69 20.63 17.81 18.80 19.79 20.78 21.77 16 82 17.71 18.75 19.79 20.83 21.88 22.92 18.59 19.69 20.78 21.88 22.97 24.06 19.48 20.63 21.77 22.92 24.06 25.21 20.36 21.56 22.76 23.96 25.16 26.35 15.00 16.25 17.50 18.75 20.00 21.25 22.50 23.75 25.00 26.25 27.50 61415.63 16.93 18.23 19.53 20.83 22.14 23.44 24.74 26.04 27.34 28.65 6 61216.25 17.60 18.96 20.31 21.67 23.02 24.38 25-73 27.08 28.44 29.79 64 16.88 18.28 19.69 21.09 22.50 23.91 25.31 7 17.50 18.96 20.42 21.88 23.33 74 18.13 19.64 21.15 22.66 24.17 7/2 18.75 20.31 21.88 23.44 25.00 734 19.38 20.99 22.60 24.22 25.83 8 | 26.72 28.13 29.53 30.94 24.79 26.25 27.71 29.17 30.62 32.08 25.68 27.19 28.70 30.21 31.72 33.23 26.56 28.13 29.69 31.25 32.81 34.38 | 27.45 29.06 30.68 32.29 33.91 35.52 20.00 21.67 23.3325.00 26.67 28.33 30.00 31.67 33.33 35.00 36.67 8420.63 22.34 24.06.25.78 27.50 29.22 30.94 32.66 34.38 36.09 37.81 1 81221.25 23.02 24.79 26.56 28.33 30.10 31.88 33.65 35.42 37.19 38.96 84 21.88 23.70 25.52 27.34 29.17 30.99 32.81 34.64 36.46 38.28 40.10 31.88 33.75 35.63 37.50 39.38 41.25 32.76 34.69 36.61 38.54 49.47 42.40 | 33.65 35.63 37.60 39.58 41.56 43.54 34.53 36.56 40.63 42.66 44.69 | | 9 22.50 24.38.26.25 28.13 30.00 94 23.13 25.05 26.98 28.91 30.83 92 23.75 25.73 27.71 29.69 31.67 94 24.38 26.41 28.44 30.47 32.50 38.59 | | ΙΟ 25.00 27.08 29.17 31.25 33.33 35.42 37.50 39.58 41.67 43.75 45.83 104 25.62 27.76 29.90 32.03 34.17 36.30 38.44 40.57 42.71 44.84 46 98 10½ 26.25 28.44 30.63 32.81 35.00 37.19 39.38 41.56 43.75 45.94 | 48.13 10426.88 29.11 31.35 33.59 35.83 38.07 40.31 43.55 44.79 47.03 49.27 I I 27.50 29.79 32.08 34.38 36.67 38.96 41.25 43.54 45.83 48.13 50.42 11 28.13 30.47 32.81 35.16 37.50 39.84 42.19 44.53 46.88 49.22 51.56 112 28.75 31.15 33.54 35.94 38.33 49.73 43.13 45.52 47.92 114 29 38 31.82 34.27 36.72 39.17 41.61 44.06 46.51 48.96 |30.00 32.50 35.00 37.50 40.00 | 42.50 | 45.00 | 47.50 | 50.00 12 | 50.31 52.71 51.41 53.85 $2.50 | 55.00 94 Diameter in Inches. Square Bars. WEIGHT PER FOOT OF ROUND AND SQUARE IRON. Square Bars. Round Bars. Diameter in Inches. Square Bars. Round Bars. 7 163.3 128.3 74 175.2 137.6 72 187.5 147.3 734 200.2 .117 .092 1% 8.802 6.913 38 32.55 .208 .164 19.492 7.455 3 38 32.55 25.57 35.21 27.65 .326 .256 134 10.21 8.018 338 37.97 29.82 /8 .469 .368 11a 10.95 8.601 32 16 .638 .501 17% 11.72 9.204 358 .833 .654 1812.51 12.51 9.828 40.83 32.07 43.80 34.40 334 46.88 36.82 8 1.055 .828 2 13.33 10.47 21.302 1.023 1.576 1.237 1.875 1.473 1.728 2.201 8 2.552 2.004 12.930 2.301 I 3.333 2.618 I 1 3.763 2.955 To 18 4.219 3.313 14.701 3.692 15.208 4.091 IT 5.742 4.510 214.18 11.14 28 15.05 11.82 215.95 12.53 24 16.88 13.25 17.83 14.00 3/8 50.05 39.31 53.33 41.89 157.2 213.3 167.6 84 226.9 178.2 812 240.8 189.2 834 255.2 200.4 212.1 48 56.72 44.55 9 270.0 44 60.21 47.29 94 285.2 224.0 43% 63.80 50.11 9½ 300.8 236.3 42 67.50 53.01 934 316.9 248.9 | 23 18.80 14.77 218 19 80 15.55 22 20.83 16.36 21 21.89 17.19 5 478 71.30 56.00 10 434 75.21 59.07 10 47% 79.22 62.22 1012 83.33 333.3 261.8 350.2 275.1 367.5 288.6 54 91.88 72.161034 385.2 302.5 258 22.97 18.04 2124.08 18.91 24 25.21 19.80 2 2 18 6.302 4.950 218 26.37 20.71 1 6.888 5.410 27% 27.55 21.64 1/2 7.500 5.8902828.76 22.50 18.138 6.392 3 130.00 23.56 5½ 100.8 II 403.3 316.8 79.1911 421.9 331.3 II0.2 86.56 11 12 440.8 | 346.2 6 120.0 94.25 1134 460.2 361.4 6/130.2 130.2 102.3 480.0 377.0 6% 140.8 110.6 634151.9 119.3 LIST OF EXTRAS ON BAR IRON. ORDINARY SIZES. f Rounds and Squares. Flats. • to 2 in. diam. 1 to 4 X 3 to 1½ and 4 to 6 x 33 to 1 EXTRA SIZES. Extra Rounds and Squares. in cts. Flats. Extra in cts. Extra Flats. in cts. per b. per fb. per . D. No. 6 and in 1.3 2.5 3% 33 to 58 0.4 No. 5 1.0 38 3.6 0.6 Γ No. 4 0.8 3.0 & F 0.5 • Nos. 2, 3, 4 & 5 2 2.5 0.4 1 2.3 0.4 2.0 1 to 6X & 0.2 0.4 1.8 2 to 4XI to 2 .2 0.2 1.6° 2 to 4X2 to 3 0.3 0.1 3.0 41% to 6X1% to 2 0.2 2% to 27% O.I 2.6 41% to 6X2% to 3 0.4 3 to 3 0.3 2.5 31% to 4 0.5 2.2 41% to 42 0.6 1.8 41% to 5 1.6 1.4 HALF ROUND. 2. I Q | Cap Gun C3 H NGN HONGANUSSI 5½ & H رشته ریشه میشه دوست د 78 to 11 0.5 1.6 0.6 1.5 0.7 1.3 0.9 1.2 I, I 18 to I. I FLATS. 0.9 0.7 4 3 0.5 3.5 0.7 3.0 X & & ใส่ • 0.5 For cutting to specific lengths, ro to 20 feet, 0.2 cent extra. 95 Width in SIZES OF MERCHANT BARS MADE BY THE NEW JERSEY STEEL & IRON CO. FLATS. ROUNDS. SQUARES. Width of Side. ½ to z 12 32 to 32 112 3/4 to 1/2 No. 6 B. W. G. 138 3 15% to 1½ 1 No. 5 110 32 % to 32 3 1343% to 15% No. 4 1½ 14 3 to 4 1% 1% to 1% No. 3 C A 176 32 10% to 4 118 % to 15% No. 2 " 15% 5 18 ទ 1/8 to fe 5 2 1 to 134 No. 1 "" I 1}! 11 1/2 1 4 to 2% 21% % to 2 1/4 134 3/3 121% to 3% 21/4 to 134 1 G IG 17% 18% to 3/8 2% to 1% 11 2 1/½ %% to 3% 23% 7% to 1% 3/3 218 18 16 21% to 3% to 3% 2% 1 to 134 32 19:00 2 % to 8 2344 to 24 ΤΟ 23% 33 fo to 3% 3 1 to 24 1½ 2/2 3/4 16 3/4 to 33% 34 to 134 ก 16 25% 3 181 to 3% to 3% to 2 58 234 7/8 %% to 1c 3 IG G to 234 13 27% 1400 18% to 4½ 1/4 to 3 3/4 3 I I to % 5 1/4 to 134 13 3% 116 13% to % 6 1/4 to 24 78 3/2 118 1 16 to I 5 7 ¼ to 2 18 334 11 1% to 1 8 to 21% I 133 118 ½ to % 9 3% to 2% 116 44 1½ 17 3% to 1% 12 1/4 to 1/2 11% 4% 15% 1/4 to 1/8 134 13% to 14 16 1% to 1 110½ to 11 1½ to 13% % 1% 5 178 I 2 24 21/2 96 WEIGHT PER YARD OF TRENTON ANGLE BARS. Designa- tion of Bar. Approximate Weight in lbs. per yard for each thick- ness in Inches. The area of cross-section is one-tenth of the weight per yard. 6 x 6.. 1/2 A 10 5/8 } 3/4 13 57.5 64.3 71.1 77.8 84.4 91.0 97.3 1/2 58 1 3/4 42 x 42. 4 X 4 32 x 32. 3 x 3. 37.5 42.5 47.5 52.3 57.2 61.9 3/8 1/½ } } 3/4 • • 28.6 33.I 37.5 41.8 46.1 50.5 54.4 3/8 1/2 56 }} 24.8 28.7 32.5 36.2 39.8 43.4 5 18 33 1/2 1 58 } 14.4 17.7 21.I 24.4 27.5 30.6 33.6 36.5 ፡ 234 x 234. TU 3/8 1 1/2 1 32 16.2 19.2 20.7 22.2 23.6 25.0 26.3 27.7 1/ 1 1 38 13 fo 32 2½ x 22. 11.9 14.7 16.0 17.3 18.6 20.0 21.2 22.5 1/4 32 Fo Б 10 1/1 3/8 13 2 x 2. 10.6 11.9 13.1 14.3 15.5 16.8 17.8 32 To 3/3 2 X 2 8. 10.4 11.5 12.6 13.6 7 134 x 134. 32 32 fo 6.21 7.18 8.13 9.05 9.96 TG 1/4 ཏུ? 16 5.27 6.09 6.88 7.64 8.40 1/8 32 X 1 x 1 2.97 3.66 4.34 4.99 5.63 1,00 3 ཏྭཱ ΙΧΙ. 2.34 2.88 3.40 3.91 4.38 78 x 7%. 1/8 16 2.03 2.48 2.93 34 x 3. 17 1.72 2.09 2.46 UNEVEN LEGS. fo 6x4.. 1/2 18 5/8 }} 3/4 41.8 47.5 53.4 58.6 64.0 69.4 3/8 5x3½.. 1/2 18 $13 30.5 35.3 40.0 44.7 49.2 53.7 58.1 3/8 41/2 X 3. Fo 1/2 } 26.7 39.9 35.0 39.0 43.0 46.8 50.6 F T8 36 70 IG 56 4 X 3... 20.9 24.8 28.7 32.5 36.2 39.8 43.4 3½ x 3. . . 1/ 18 3.8 fo 1/2 ទ 18 56 H 15.6 19.3 23.0 26.5 30.0 33.4 36.7 40.0 3½½x1%.. 1/4 11.9 3x2½. 1/4 5 1.6 }} 33 14 16 1/2 · 13.1 16.2 17.7 19.2 20.7 22.2 25.0 27.7 37 1/ 季 ​36 3X2. 22.50 10.44 11.87 13.27 14.65 16.00 17.34 19.06 The above weights are only approximate, and therefore orders should specify either the thickness or weight per foot, but never both. 97 Diameter. Area. Diameter. AREAS OF CIRCLES. For Diameters from "o.1 to 1.00, Advancing by .005." Area. Diameter. Area. Diameter. 0.10 .007854 0.330 .085530 0.560 .246301 0.790 .490167 0.105 0.110 0.115 0.120 .008659 .009503 .010387 0.335 .088141 0.565 0.340 .090792 0.570 .250719 0.795 .496391 .255176 0.800 .502655 0.345 .093482 0.575 .259672 0.805 .508958 .011310 0.350 .096211 0.580 .264208 0.810 .515299 0.125 .012272 0.355 .098980 0.585 .268783 0.815 .521681 0.130 0.135 0.140 0.150 0.155 0.160 .020106 .013273 0.360 .014314 0.365 .015394 0.370 0.145 .016513 0.375 .017671 0.380 .018869 .101788 0.590 .273397 0.820 .528102 .104635 0.595 .278051 0.825 .534562 .107521 0.600 .282743 0.830 .541061 .110447 0.605 .287475 0.835 .547600 .113411 0.610 .292247 0.840 -554177 0.385 .116416 0.615 .297057 0.845 .560794 0.390 .I19459 0.620 .301907 0.850 .56745I 0.165 .021382 0.395 .122542 0.625 .306796 0.855 ·574146 0.170 .022698 0.400 .125664 0.630 .311725 0.860 .580881 0.175 0.180 0.190 .024053 0.405 .025447 0.410 .132025 0.185 .026880 0.415 .028353 0.420 .123825 0.635 .316692 0.865 .587655 0.640 .321699 0.870 ·594468 .135265 0.645 .326745 0.875 .601321 0.195 .029865 0.425 .141863 0.200 0.205 0.210 0.215 .033006 0.435 .031416 0.430 .145220 .138544 0.650 0.655 0.660 .331831 0.880 .608212 .336955 0.885 .615144 .342119 0.890 .622114 .148617 0.665 ·347323 0.895 .629124 .034636 0.440 .152053 0.670 .352565 0.900 .636173 .036305 0.445 .155529 0.675 .357847 0.905 .643261 0.220 .038013 0.450 .159043 0.680 .363168 0.910 .650389 0.225 .039761 0.455 .162597 0.685 .368528 0.915 .657556 0.230 .049087 0.480 0.485 0.510 0.515 .041548 0.460 0.235 .043374 0.465 0.240 .045239 0.470 0.245 .047144 0.475 0.250 0.255 .051071 0.260 .053093 0.490 0.265 .055155 0.495 0.270 .057256 0.500 0.275 .059396 0.505 0.280 .061575 0.285 .063794 .208307 0.745 .435916 0.200 .066052 0.520 .212372 0.750 .441787 0.295 .068349 0.525 .216475 0.755 .447697 0.300 .070686 0.539 .220518 0.760 •453646 0.305 .073062 0.535 .224801 0.765 .459635 0.310 .075477 0.540 .229023 0.770 .465663 0.315 .077931 0.545 .233283 0.775 .471729 0.320 .080425 0.550 .237583 0.780 .477836 0.325 .082958 0.555 .241922 0.785 .483983 .166191 0.690 •373928 0.920 .664762 .169823 0.695 ·379367 0.925 .672007 .173494 0.700 .384845 0.930 .679292 .177205 0.705 .390363 0.935 .686615 .180956 .184745 0.710 .395919 0.715 .401515 .188574 0.720 .407150 .192442 0.725 .412825 .196350 0.730 .418539 .200296 0.735 .424292 .204282 0.740 .430084 0.940 .693978 0.945 .701381 0.950 .708822 0.955 .716303 0.960 .723823 0.965 .731382 0.970 .738981 0.975 .746619 0.980 .754297 0.985 .762013 9.990 .769769 0.995 .777564 1,000 .785398 1.128 .999227 • The area in square inches of circles of larger diameter, or of bars of any other form, may be found by multiplying the weight per foot of such bars given in the tables pages 93–95, by 0.3. Area. 98 Inches. INCHES EXPESSED IN DECIMALS OF A FOOT. .00132 .1667 4 .3333 10 6 .5000 a .6667 10 .8333 .0026 .1693 32 .3359 .5026 32 .6693 .8359 .0052.1719 .3385 .0078 1745 3/2 .341I .0104 8.1771 .3437 700 1000 fe .5052 .6719 18 .8385 .5078 .6745 8411 1/8 .5104 .6771 1/8 .8437 .01 30 .1797 .3464 .5130 2.6797 .8464 .0156 .0182 .1823 .3490 16 .5156 .68231 .8490 .1849 .3516 .5182 3'2 .6849 .8516 .0208 1/4 4 1875 .3542 .5208 .6875 1/4 .8542 .0234 .1901 9 32 .3568 .5234 32 .6901 .8568 TO KOHENÇO CIC), kelpreiNNEGANCO HONOR +GICO Merco GluZTŐ-KI 18 .0260 5 .1927 .3594 .5260 .6927 f ៩ .8594 .0286 .0312 .0339 .0365 fo .2031 .0391 .1953 .3620 .5286 } } .6953 .8620 3.1979 .3646 3/3 .5312 .6979 3% .8646 .2005 1 .3672 .5339 1.7005 .8672 .3698 fo .20575 .3724 .0417 2.2083 江宁 ​.5305 .7031 .8698 .3750 .5391 .5417 35 .7057 .8724 .7083 1/2 .8750 .0443 .2109 113 .3776 .5443 12 .7109 .8776 .0469.2135 .3802 .5469 .7135 .8802 .0495 2161 .3828 .5495 狃 ​7161 .8828 .0521 % 5/8 .2188 .3854 .5521 .7188 .0547 .2214 31 .3880 5/1/8 .8854 .5547 31 .7214 .8880 .0573 1 .0599 .2240 .3906 H -5573 4 .2266 7240 }} .8906 333 .3932 .5599 33 .7266 .8932 .0625 34 .2292 .0651 .0677 18 .0703 .0729 .3958 34 .5625 .2318 .3984 .7292 34 .8958 .5651 15 .7318 .8984 .2344 .4010 13 .5677 .23703 .4036 .7344 13 .9010 .5703 32 NA -7370 .9036 % .2396 .4062 .5729 .7396 .0755 .0781 | 18 .0807 .2422 32 .4089 7's .9062 .5755 ง 38 .7422 .9089 | .2448 .4115 18 .5781 .7448 .2474 3 .4141 .5807 3} .7474 18 .9115 .9141 .0833 3 .2500 15 .4167 7 .5833 .7500 .9167 .0859 .2526 32 .4193 .5859 32.7526 .9193 .0885 18 .2552 .4219 to .5885 -7552 .9219 .0911 .2578 .4245 .5911 31 7578 .9245 09378.2604 .4271 · g .5937 .7604 1/8 .9271 .0964 .2630 ཏུ2 .4297 .5904 .7630 .9297 aggo .2656 .4323 .5990 765611 .1016 .2682 -9323 .4349 .6016 .768: .1042 14.2708 .9349 .4375 .6042 7708 X .9375 J-2 30 mei, PEKRAND_bakr 20 - 4Kbinerer ∞ Geuse-b .1068 1094.2760 .I120 .1146 3.2812 .1172 .2734 .4401 .6068 .7734 .9401 .4427 18 .6094 .2786 1 1 .7765 18 .9427 སན .4453 .6120 .7786 .9453 .4479 .6146 .7812 38 .2839 18 .9479 .4505 .6172 33 .7839 1198 .2865 .9505 .453I .6198 .7865 fo · 1224 .2891 15 .9531 .4557 .6224 3.7891 .1250 1/2 .2017 .4583 .9557 .6250 7917 .1276 .1302 1328 .2943 .4609 .9583 .6276 .7943 .9609 .2969 .4635 .6302 7969 1 .299539 .4661 .9635 .6328 17995 .9661 .1354.3021 .4688 .6354 .8021 58 .9688 .1380 .3047 33 .4714 .6380 31.8047 .9714 .1406.3073 4740 } .6406 .1432 .1458 .3099 $3 4766 .6432 33 •/.8073 18 -9740 34.3125 .4792 34 .6458 .1484 1510 13177 .1536 .1589 .3203 .1562 7.3229 .3255 38 18.3281 .1615 .1641 3307 3 .3151 39 .4818 .8099 ! 8125 34 .9766 .9792 .6484 S151 .9818 .4844 13 .6510 8177 13 .9844 4870 .6536 $3 1-pa .4896 8203 .9870 .6562 + 4922 .6589 -4948 18 ACTO .6615 .4974 8220 38.8255 8281 18 .6641 318307 .9896 .9922 •9948 .9974 0000 98a WEIGHTS AND MEASURES. Measures of Length. 12 inches 3 feet I foot. 1 yard 5/2 yards 40 rods I rod = 8 furlongs 320 rods. 36 inches. 198 inches I furl'g=7,920 inches 16½ ft. 660 ft. 220 yds: I mile=63,360 inches = 5,280 ft. = 1,760 yds. 1 yard.0005682 mile. 7.92 inches 100 links I link. 80 chains GUNTER'S CHAIN. I chain 4 rods 66 feet. I mile. 6 feet = I fathom. 144 square inches 9 square feet = 100 square feet 304 square yards 40 square rods : 4 square roods 10 square chains ( 640 acres 102,400 square rods: 208.71 feet square ROPES AND CABLES. 120 fathoms I cable's length. Measures of Surface. I square foot. I square yard = 1,296 square inches. I square (architect's measure). LAND. I square rod. I square rood } I acre = 160 sq. rods. Esq. mile = I acre. 1,210 sq. yds. 4,840 sq. yds. 3,097,600 sq. yds.= 2,560 square roods. Measures of Volume. I gallon liquid measure= 231 cubic inches, contains 8.339 avoirdupois lbs. of distilled water at 39.8° Fahr. I gallon dry measure — 268.8 cubic inches. 1 bushel (Winchester) contains 2,150.42 cubic inches, or 77.627 lbs. distilled water at 39.8° Fahr. A heaped bushel contains 2,747.715 cubic inches. 2 pints 4 quarts= I quart DRY. I gallon 8 pints= 2 gallons = I peck 4 pecks = 67.2 cub. ins. 268.8 cub. ins. 16 pints 8 quarts=537.6 cub. ins. 1 bush.64 pints= 32 quarts 8 gallons: 2,150.42 cubic inches. I chaluron 36 heaped bushels 57.244 cubic feet. •I cord of wood 128 cubic feet. - 99 Measures of Volume-Continued. LIQUID. 4 gills 2 pints I pint. I quart 4 quarts =1 gallon = *** 8 gills. 32 gills 8 pints. The Imperial gallon 277.274 cubic inches, and contains 10 lbs. of distilled water at 62° Fahr. = 1.2003 Standard gallon. FLUID. 60 minims I drachm = 57 grains Troy at 39.8° F. 8 drachms=1 oz. = = 480 minims .9501 oz. Troy at 39.8° F. 1,024 drachms = 128 16 ounces I pint = 7,680 minims 128 drachms. =1 gallon=61,440 minims 8 pints ounces. 16 drachms 16 ounces 112 pounds 20 cwt. = 2,240 pounds. I pound grains. Measures of Weight. I ounce. AVOIRDUPOIS. I pound = 256 drachms. 1 cwt. = 28,672 drachms I ton 573,440 drachms 1,792 ounces. 35,840 ounces ——— 14 ounces, 11 dwts., 16 grains Troy, or 7,000 I ounce = 18 dwts., 5½ grains Troy, or 437½ grains. 24 grains I dwt. 20 dwts. = I ounce = I 12 ounces = 1 pound 1 Troy pound TROY. 480 grains. 5,760 grains 240 dwts. .822857 pound Avoirdupois. I 1 Avoirdupois pound = 1.215278 Troy pound. 175 Troy ounces = 192 ounces Avoirdupois. APOTHECARIES. 20 grains I scruple. 3 scruples I drachm 60 grains. 8 drachms I ounce = 480 grains 24 scruples. 12 ounces I pound drachms. 5,760 grains 288 scruples = 96 The pound, ounce and grain are the same as in Troy weight. I metre Metrical and English Measures. = 39.37 inches=3.28087 feet. I kilogram 2.20473 lbs. I litre =1 cubic decimetre={ ={1 .908 quart dry measure. 1.0566 quarts liquid measure. I kilogram per square millimetre 1,422 lbs, per square inch. 2,000 lbs. per square inch=1.406 kilograms per square millimetre. I degree Fahrenheit 1.8 degree centigrade. 200 Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. } Number. Squares. Cubes. 3 4 8 9 ΙΟ 567∞ a 1 +496 1 2 3 HN I 1.000000000 8 .500000000 27 ·333333333 555 56 3136 57 32 49 185 193 58 33 64 195 112 175 616 .017857143 .017543860 .017241379 16 64 .250000000 34 EI 8 205 379 .016949153 25 125 .200000000 3600 216 000 .016666667 6 ΙΟ 6958 36 216 .166666667 61 49 343 .142857143 37 21 226 981 .016393443 62 64 512 .125000000į 38 44 238 328 .016129032 81 63 729 .IIIIIIIII 64 39 69 250 047 .015873016 40 96 I 000 .100000000 262 144 .015625000 65 42 25 274 625 .015384615 II I 21 I 331 .090909091 66 43 56 287 496 .015157515 12 I 44 I 1 728 .083333333 67 44 89 300 763 .014925373 13 I 69 2 197 .076923077 68 46 24 314 432 .014705882 14 I 96 2 744 .071428571 69 47 61 328 509 .014492754 15 2.25 3 375 .066666667 70 70! 49.00 343 000 .014285714 16 256 4 096 .062500000| 17 2 89 4913 .058823529 71 18 3 24 5832 .055555556 72 50 4T 51 84 357 911 .014084507 373248 19 20 3 61 4.00 6 859 .052631579 73 53 29 389 017 .013888889 .013698630 8000 74 54 76 495 224 .050000000 .013513514 75 56 25 421 875 .013333333 Awwww wwwww ww~ ~ ~ N N N N N 4 41 9 261 .047619048 76 57 76 438 976 .013157895 4 84 10 648 23 5 29 12 167 .045454545) 77 .043478260 59 29 456 533 .012987013 78 6084 474 552 .012820513 24 5 76 13 824 041666667) 79 6241 493 939 .012658228 25 26 625 676 15 625 .040000000 801 6400 512 000 .012500000 17 576.038461538 27 7 29 19 683 28 784 29 8 4 30 9 21 952 24 389 27.000 .037037037 .035714286 .034482759 .033333333 ∞ ∞ ∞ ∞ ∞ 81 65 61 531 441 012345679 82 6724 551 368 .012195122 831 68 89 571 787 .012048193 84 70 56 592 704 .011904762 851 72 25 614 125 .011764706 9 61 29 791 .032258065 86! 73 96 636 056 .011627907 10 24 32 768 .031250000. 87 75 69 10 89 35 937 .030303030 88 77 44 II 56 39 304 .029411765 89 79 21 704 969 658 503 681 472 .011494253 .011363636 .011235955 12 25 42 875 .028571429 90 81.00 729 000 IIIIIIIIO* 36 37 12 96 1369 46 656 .027777778 50 653 91 82 81 .027027027 38 39 14 44 15 21 54 872 .026315789 92 84 64 59 319 .025641026 93 86 49 753 571 778 683 804 357 .010989011 .010869565 .010752688 40 1600 64 000 .025000000 941 88 36 830 584 .010638298 95 90 25 857 375 .010526316 41 1681 68 921 42 17 64 43 18.49 44 19 36 45 20 25 74 088 79 507 85 184 91 125 46 21 16 47 22.09 97 336 103 823 48 49 50 23 04 24 OI 25.00 110 592 125.000 .024390244 .023809524. 97 .023255814 .022727273} 99 .022222222 .021739130 .021276600 020833333 117 649.020408163 .020000000 96 92.16 884 736 .010416667 94.09 912 673 .010309278 98 96 04 98 01 941 192 .010204082 100 I 00 00 ΙΟΙ Ι Ο2 ΟΙ 102 I 04 04 103; 1 06 09 104 1 08 16 105 1 10 25 I 124 864 51 52 26 01 27 04 132 651 140 608 .019607843 53 28 09 148 877 54 29 16 157 464 .019230769 .018867925 .018518519 106 1 12 36 107 1 14 49 108 1 16 64 I 157 625 I 191 016 109 1 18 81 I 295 029 970 299 1 000 000 1 030 301 1 сб 208 1 092 727 I 225 043 1 259 712 .010000000 .009900990 .009803922 009708738 .009615385 .009523810 .009433962 .009345794 .009259259 .000174312 ΟΙΟΙΟΙΟΙΟ 55 30 25 166 375 .018181818 110 1 21 00 I 331 000 .oogogogog Reciprocals. ΙΟΙ Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. Cubes. III I 23 21 I 367 631 II2 I 25 44 I 404 928 .00googoog .008928571 166 2 75 56 4 574 296 .006024096 167 2 78 89 4 657 463 .005988024 113 I 27 69 I 442 897 .008849558 168 2 82 24 4 741 632.005952381 114 I 29 96 I 481 544 .008771930 169 285 61 4 826 809 .005917160 115 1 32 25 I 520 875 .008695652 170 2 89.00 4913 000 .005882353 116 1 34 56 1 560 896 .008620690 171 292 41 5 000 211 .005847953 117 I 36 89 1 601 613 .008547009 172 295 84 5 088 448.005813953 118 139 24 1 643 032 .008474576 173 299 29 119 I 41 61 1 685 159 .008403361 174 3 02 76 5 177 717 5 268 024 .005780347 120 I 4400 1 728 000 .008333333 175 3 06 25 5 359 375 .005747126 .005714286 121 1 46 41 I 771 561 .008264463 176 3 09 76 5 451 776 .005681818 I22 I 48 84 I 815 848 .008196721 123 I 51 29 1 860 S67 .008130081 178 3 16 177 3 13 29 1684 5 545 233 .005649718 5 639 752 .005617978 124 125 1 56 25 I 53 76 I 906 624 .008064516 179 3 20 41 5 735 339 .005586592 I 953 125 .008000000 180 3 2400 5 832 000 .005555556 126 1 58 76 2.000 376 .007936508 181 3 2761 2048 383 2 097 152 182 3 31 24 3 34 89 5 929 741 6 028 563 .005524862 .005494505 6 229 504 .005434783 331625 .005405405 .005376344 .005347594 .005319149 6859000 191 3 64 81 192 3 68 64 7 077 888 7 189 057 7 301 384 .005263158 .005208333 .005181347 .005154639 127 128 I 66 41 129 I 66 130 1 69 00 I 61 29 I 63 84 131 1 71 61 132 I 74 24 133 1 76 89 134 1 79 56 135 I 82 25 136 1 8496 137 1 87 69 138 1 90 44 139 193 21 140| 196 00 141 1 98 81 142 201 64 143 2 04 49 144 2 07 36 207 145 2 10 25 146 2 13 16 147 2 160g 1482 19 04 | 149 2 22 OI 150| 2 25 00 1 2 146 689 2 197 000 2 248 091 2 299 968 2352 637 2 406 104 2 460 375 2 515 456 2 571 353 2 628 072 2 685 619 2 744 000 2 803 221 2 863 288 2.924 207 2 985 984 3048 625 3 112 136 3 176 523 3 241 792 3 307 949 3 375 000 3 442 951 3 511 808 151 2 28 01 152 2 31 04 153 2 34 09 3 581 577 154 2 37 16 3 652 264 155 2 40 25 3 723 875 156 2 43 36 3 796 416 157 2 46 49 3 869 893 158 2 49 64 3 944 312 159 2 5281 4 019 679 160 2 56.00 4 096 000 161 2 59 21 4 173 281 162 2 62 44 26244 4 251 528 163 265 60 4 330 747 164 2 68 96 4 410 944 165 2 72 25 i .007874016 .007812500 183 .007751938 184 3 38 56 .007692308 185 3 42 25 .007633588 186 3 45 96 .007575758 187 3 49 69 .007518797 188 3 53 44 .007462687 189 3 57 21 190 361 00 .007407407 .007352941 .007299270 .007246377 193 3 72 49 .007194245 194 3 76 36 .007142857 195 3 80 25 .007092199 196 3 84 16 .007942254 197 3 88 00 .006993007 198 392 04 .006944444 199 396 01 .006896552 200 4 00 00 6 128 487.005464481 6 6 434 856 6 539 203 6644672 6751 269.005291005 6967 871.005235602 7 414 875.005128205 .005102041 7 529 536 7 645 373 .005076142 7 762 392 | .005050505 7 880 599 8000000 .005025126 .005000000 4 08 04 8 120 601 8 242 408 .004975124 .006849315 201 4 04 Or .006802721 202 .006756757 203 4 12 09 .006711409 204 4 16 16 .006666667 205 4 20 25 4 24 26 .006622517 206 206 4 24 00 8 2 .006578947 207 4 28 .006535948 208 4 32 64 .006493506 209 4 36 8 .006451613 210 44 .006410256 211 .006369427 212 4 49 44 .006329114 213 453 60 .006289308 214 4 57 06 .006250000 215 4 45 .004950495 .004926108 8 365 427 8480 664.004901961 8 615 125.004878049 8 741 816 .004854369 8869743 .004830918 8998 912.004807692 9 129 329 .004784689 9 261 000 .004761905 .004739336 .004716981 .004694836 .004672897 .004651163 9 393 931 9 528 128 9 663 597 9 800 344 462 25 9 938 375 10 077 696 .004639630 10 218 313 .004608295 .004587156 .006211180 216 4 66 36 .006172840 217 4 70 89 .006134969 218 4 75 24 .006097561 219! 479 61 4 492 125 .006065606|| 220 48400 66° 10 362 232 10 503 459.004566210 10 648 000.004545455· Reciprocals. 102 Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. 221 4 88 41 4 92 84 222 223 4 97 29 2245 0176 225 506 25 226 5 10 76 227 5 15 29 228 5 1984 229 5 24 41 230 5 29 00 231 5 33 61 232 5 38 24 233 542 89 234 5 47 56 235 5 52 25 236 5 5696 237 5 61 69 238 5 66 44 239 5 71 21 240 57600 241 5 80 81 242 5 85 64 243 5 90 49 244 5 95 36 245 600 25 246 605 16 247 6 10 09 248 6 15 04 249 6 20 01 250 6 25 00 251 6 30 01 252 6 35 04 253 640 09 254 6 45 16 255 650 25 256 655 36 257 660 49 258 6 65 64 259 6 70 81 260 6 76 00 13 997 521 14 172 488 14 348 907 14 526 784 14 706 125 14 886 936 15 069 223 15 252 992 15 438 249 15 625 000 10 793 861 10 941 048 11 089 567 II 239 424 II 390 625 .004524887 276 .004504505 277 .004484305 278 .004464286 279 .004444444 761 76 21 024 576 .003623188 767 29 21 253 933 .003610108 7 72 84 21 484 952 .003597122 7 78 41 21 717 639 .003584229 2801 8. 7 84 00 21 952 000 .003571429 11 543 176 11 697 083 11 852 352 12 008 989 12 167 000 .004424779 .004405286 282 281789 61 22 188 041 .003558719 7 95 24 .004385965 283 800 89 22 425 768 .003546099 22 665 187.003533569 .004366812 284 8 06 56 22 906 304.003521127 .004347826,| 285 8 12 25 23 149 125 .003508772 12 326 391 12 487 168 12 649 337 12 812 904 12 977 875 13 144 256 13 312 053 13 481 272 13 651 919 13 824 000 .004329004 286 8 1796 23 393 656 .003496503 .004310345 287 8 23 69 23 639 903 .003484321 .004291845 288 8 29 44 23 887 872 .003472222 .004273504 289 8 35 21 24 137 569 .003460208 .0042553192901 8 41 00 24 389 000 .003448276 .004237288 .004219409 292 8 .004201681 2931 291 8 4681 24 642 171 .003436426 52 64 24 897 088 .003424658 8 58 49 25 153 757 .003412969 .004184100 2941 8 64 36 25 412 184 .003401361 .004166667 295, 8 70 25 25 672 375 .003389831 .004149378|| 296 8 76 16 25 934 336 .003378378 .004132231 297 8 82 09 26 198 073 .003367003 .004115226 298 8 88 04 26 463 592 .003355705 .004098361 299 .004081633 300 8 94 01 26 730 899 .003344482 9 00 00 27 000 000 .003333333 .004065041 301| .004048583 .004032258 303) 301 302 303 906 01 27 270 001 .003322259 9 12 04 27 543 608 .003311258 9 18 09 27 818 127 .003300330 .004016064|| 304 .004000000 305 924 16 9 24 16 28 094 464 28 094 464.003289474 9 30 25 28 372 625.003278689 15 813 251 16 003 008 16 194 277 16 387 064 16 581 375 16 777 216 16 974 593 17 173 512 17 373 979 17 576 000 .003984064 306 .003968254 3071 .003952569 308 .003937008 309 .003921569 310 9 9 36 36 28 652 616.003267974 307 9 42 49 28 934 443 9 48 64 29 218 112 9 54 81 9 61 00 29 503 629 .003236246 29 791 000 .003225806 | .003257329 .003246753 .003906250 311 .003891051 312 9 67 21 30 080 231 .003215434 9 73 44 30 371 328: .003205128 .003875969 313 979 69 30 664 297 .003861004 314 9 85 96 30 959 144 .003194888 .003184713 003846154 315 992 25 992 25 31 255 875 31 255 875 .003174603 261 681 21 262 686 44 17 779 581.003831418 316 9 98 56 31 554 496.003164557 17 984 728 .003816794 317 10 04 89 31 855 013 .003154574 263 691 69 264 696 96 265 702 25 266 707 56 267 7 12 89 268 7 18 24 19 248 832 269 7 23 61 270 7 29 00 18 191 447 .003802281 318 10 11 24 32 157 432 18 399 744 18 609 625 18 821 096 19 034 163 .003787879 319 10 17 61 32 461 759 .003144654 .003134796 .003773585 320 10 24 00 32 768 000 .003125000 19 465 109 19 683 000 .003759398 .003745318 .003731343 .003717472 .003703704 321 10 30 41 322 10 36 84 323 10 43 29 324 10 49 76 325 10 56 25! 33 076 161 33 386 248 33 698 267 34 012 224 34 328 125 271 7 34 41 272 739 84 73 7 45 29 2747.50 76 275 756 25 19 902 511 20 123 648 20 346 417 20 579 824 20 796 875 .003690037 .003676471 .003663004 .003549635 .003536364 326 10 62 76 327 10 69 29 328 10 75 84 329 10 32 41 330 10 89 00 .003115265 .003105590 .003095975 .003086420 .003076923 34 645 976.003067485 34 965 783 .003058104 35 287 552 .003048780 35 611 289 35 937 000 .003039514 .003030303 Cubes. Reciprocals. 103 Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. 331 10 95 61 332 11 02 24 333 11 08 89 334 11 15 56 335 11 22 25 336 11 28 96 337 11 35 69| 338 11 42 44 339 11 49 21 340 11 5600 36 264 691 36 594 368 .003012048 | 36 926 037 37 259 704 37 595 375 37 933 056 38 272 753 38 614 472 38 958 219 39 304 000 .003003003; .002994012 .002985075 .003021148 386 14 89 96 387 14 97 69 388 15 05 44 389.15 13 21 58 863 869 390 15 21 00 59 319 000 57 512 456 .002590674 57 960 603.002583979 58 411 072 .002577320 .00257069+ .002564103 .002976190 391 15 28 81 59 776 471 .002557545 .002967359 392 15 36 64 65 236 288 .002551020 .002958580 393 15 44 49 60 698 457 .002544529 .002949853 394 15 52 36 61 162 984 | .002538071 .002941176 395 15 60 25 61 629 875 .002531646 341 11 62 81 342 11 69 64 343 11 76 49 344 11 83 36 345 11 90 25 346 11 97 16 347 12 04 09 348 12 11 04 349 12 18 01 350 12 25 00 351 12 32 01 352 12 39 04 353 12 46 09 354 12 53 16 355 12 60 25 356 12 67 36 357 12 74 49 358 12 81 641 359 12 88 81 360 12 96 00 361 13 03 21 362 13 10 44 363 13 17 69 364 13 24 96 365 13 32 25 366 13 39 56 367 13 46 89 368: 13 54 24 369 13 61 61 370 13 69 00 371 13 76 41 372 13 83 84 373 13 91 29 374 13 98 76 375 14 06 25 376 14 13 76 377 14 21 29 378 14 28 84 379 14 36 41 380 14 44 00 381 14 51 61 382 14 59 24 383 14 66 89 384 14 74 56 385 14 82 25 39 651 821 40 001 688 40 353 607 40 707 584 41 063 625 41 421 736 41 781 923 42 144 192 42 508 549 42 875 000 43 243 551 43 614 208 43 986 977 44 361 864 44 738 875 45 118 016 45 499 293 45 882 712 46 268 279 46 656 000 47 045 881 47 437 928 47 832 147 48 228 544 48 627 125 49 027 896 49 430 863 49 836 032 50 243 409 50 653 000 51 064 811 51 478 848 51 895 117 52 313 624 52 734 375 53 157 376 53 582 633 54 010 152 54 439 939 55 306 341 55 742 968 56 181 887 56 623 104 57 066 625 .002770083 .002762431 .002754821 .002747253 .002739726 .002732240 .002724796 .002717391 .002710027 .002702703 .002932551 .002923977] 396 15 68 16 397 15 7609 62 099 136 62 570 773 .002915452 398 15 84 04 63 044 792 .002906977 399 15 92 01 63 521 199 .002525253 .002518892 .002512563 .002506266 | .002898551 400 16 00 00 64 000 000 .002500000 .002890173 401 16 08 01 64 481 201 .002493766 .002881844 402 16 16 04 64 964 808 .002487562 .002873563 403 16 24 09 65 450 827 .002481390 .002865330 404 16 32 16 65 939 264 .002475248 .002857143 405 16 40 25 66 430 125 .002469136 .002849003 406 16 48 36 66 923 416 .002840909 407 16 56 49 67 419 143 .002832861 408 16 64 64 67 917 312 .002824859 409 16 72 81 68 417 929 .002816901 410 16 81 00 68 921 000 .002463054 .002457002 .002450980 .002444988 .002439024 .002808989 411 16 89 21 69 426 531 .002433090 .0028011201 412 16 97 44 69 934 528 .002427184 .002793296 413 17 05 69 70 444 997 .002421308 .002785515 414 17 13 96 70 957 944 .002415459 .002777778 415 17 22 251 71 473 375 .002409639 416 17 30 56 417 17 38 89 418 17 47 24 419 17 55 61| 420 17 64 00 421 17 72 41 422 17 80 84 423 17 89 29 424 17 97 76 425 18 06 25| 71 991 296 72 511 713 73 034 632 73 560 059 74 088 000 74 618 461 75 151 448 75 686 967 76 225 024 76 765 625 .002403846 .002398082 .002392344 .002386635 .002380952 .002375297 .002369668 .002364066 .002358491 .002352941 .002695418 .002688172 .002680965 .002673797 .002666667 .002659574 426 18 14 76 427 18 23 29 428 18 31 84 429 18 40 41 430 18 49 00 431 18 57 61 77 308 776 | .002347418 77 854 483 78 402 752 78 953 589 79 507 000 .002341920 .002336449 .002331002 .002325581 80 062 991 .002652520 .002645503 432 18 66 24 433 18 74 89 80 621 568 81 182 737 .002320186 .002314815 .002309469 .002638522 54 872 000.002631579 434 18 83 56 435 18 92 25 81 746 504 82 312 875 .002304147 .002298851 .002624672 .002617801 436 19 00 96 437 19 09 69 82 881 856 83 453 453 .002293578 .002288330 .002610966 .002604167 .0025974031 440) 19 36 00 438 19 18 44 84 027 672 .002283105 439 19 27 21 84 604 519 85 184 000 .002277904 .002272727 Cubes. Reciprocals. 104 Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. 441 19 44 81 442 19 53 64 443 19 62 49 444 19 71 36 445 19 80 25 85 766 121 86 350 888 86 938 307 87 528 384 88 121 125 .002267574 .002262443 .002257336 .002252252 496 24 60 16 122 023 936 497 498 24 70 09 122 24 80 04 123 763 473 505 992 .002016129 .002012072 .002008032 499 24 90 01 124 251 499 .002004008 .002247191 500 25 00 00 125 000 000 .002000000 446 19 89 16 88 716 536 .002242152 501 25 10 01125 751 501 .001996008 447 19 98 09 448 20 07 04 449 20 16 01 89 314 623 .002237136 502 25 20 04 126 506 008 .001992032 89 915 392 .002232143 503 25 30 09 127 263 527 .001988072 90 518 849 .002227171 504 25 40 16 128 024 064 .001984127 450 20 25 00 91 125 000. .002222222 505 25 50 25 128 787 625 .001980198 451 20 34 01 91 733 851 .002217295 506 25 60 36 129 554 216 .001976285 452 20 43 04 92 345 408 .002212389 453 20 52 09 92 959 677 .002207506 454 20 61 16 93 576 664 .002202643 455 20 70 25 94 196 375 .002197802 461 21 25 21 462 21 34 44 463 21 43 69 464 21 52 96 456 20 79 36 457 20 88 49 458 20 97 64 459 21 06 81 460 21 16 00 94 813 816 .002192982 95 443 993 .002188184 96 071 912 .002183406 96 702 579 .002178649 97 336 000.002173913 .002169197 97 972 181 .002169197 98 611 128.002164502 99 252 847 99 897 344 465 21 62 25 100 544 625 466 21 71 56 101 194 696 467 21 80 89 101 847 563 468 21 90 24 102 503 232 469 21 99 61103 161 709 470 22 09 00 103 823 000.002127660 471 22 18 41 104 487 111 472 22 27 84 105 154 048 473 22 37 29 105 823 817 474 22 46 76106 496 424| 475 22 56 25 107 171 875 476 22 65 76 107 850 176 477 22 75 29 108 531 333 478 22 84 84 109 215 352 479 22 94 41 109 902 239 480 23 04 00 110 592 000 481 23 13 61 111 284 641 482 23 23 24 III 980 168 483 23 32 89 112 678 587 484 23 42 56 113 379 904 485 23 52 25 114 084 125 486 23 61 96 114 791 256 487 23 71 69 115 501 303 488 23 81 44 116 214 272 489 23 91 21 116 930 169 490 24 01 00 117 649 000.002040816 491 24 10 81 118 370 771 492 24 20 64 119 095 488 493 24 30 49 119 823 157 494 24 40 36 120 553 784 495 24 50 25/121 287 375 507 25 70 49 130 508 25 80 64 131 509 25 90 81 131 510 26 01 00 132 511 26 11 21133 512 26 21 44 134 513 26 31 69 135 514 26 41 96 135 515 26 52 25 136 323 843 096 512 .001972387 .001968504 872 229 .001964637 651 000.001960784 432 831.001956947 217 728 .001953125 005 697 .001949318 796 744 .001945525 590 875 .001941748 516 26 62 56 137 388 096 .001937984 517 26 72 89 138 188 413 .001934236 .002159827 .002159827 .002155172 .002150538 518 26 83 24 138 991 832 .001930502 519 26 93 61 139 798 359 .001926782 520 27 04 00 140 608 000.001923077 .002145923 521 27 14 41 141 420 761 .001919386 .002141328 522 27 24 84 142 236 648 .001915709 .002136752 523 27 35 29 143 055 667 .001912046 .002132196 524 27 45 76 143 877 824 .001908397 525 27 56 25 144 703 125 .001904762 .002123142 .002118644 .002114165 .002109705 .002105263 .002100840 .002096436 .002092050 .002087683 526 27 66 76 145 531 576 527 27 77 29 146 363 183 528 27 87 84 147 197 952 529 27 98 41 148 035 889 530 28 09 00 148 877 000 531 28 19 61 149 721 291 532 28 30 24 150 568 768 533 28 40 89 151 419 437 .001901141 .001897533 .001893939 .001890359 .001886792 .001883239 .001879699 .001876173 .002083333 534 28 51 56 152 535 28 62 25 153 273 304 .001872659 130 375 .001869159 .002079002 .002074689 .002070393 .002066116. .002061856 .002057613 .002053388 .002049180 .002044990 536 28 72 96 153 990 656 537 28 83 69 154 854 153 538 28 94 44 155 720 872 539 29 05 21 156 540 29 16 00 157 541 29 26 81 158 340 421 542 29 37 64 159 220 088 543 29 48 49 160 103 007 544 29 59 36 160 989 184 545 29 70 25 161 878 625 .001865672 .001862197 .001858736 590 819 .001855288 464 000.001851852 .001848429 .001845018 .001841621 .001838235 .001834862 .002028398|| .002024291 .002020202 .002036660|| 546 29 81 16 162 771 336 .002032520 547 29 92 09163 667 323 548| 30 03 04 164 566 592 .001831502 .001828154 .001824818 549 30 14 01 165 469 149 550 30 25 00166 375 000| .001821494 .001818182 Cubes. Reciprocals. 105 Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. 551 30 36 01 167 284 151.001814882 552 30 47 04 168 196 608 .001811594 553 30 58 09 169 112 377 .001808318 554 30 69 16 170 031 464 .001805054 555 30 80 25 170 953 875 .001801802 606, 36 72 36 222 545 016 .001650165 607 36 84 49 223 648 543 .001647446 608 36 96 64 224 755 712 .001644737 609 37 08 81 225 866 529 .001642036 37 21 00 226 981 000.001639344 610 556 30 91 36 171 879 616 .001798561 611 557 31 02 49 172 558 31 13 64 173 559 31 24 81 174 560 31 36 00 175 808 693 .001795332 612 37 33 21 228 099 131 .001636661 37 45 44 229 220 928 .001633987 741 112 .001792115 613 37 57 69 230 346 397 .001631321 676 879 .001788909 614 37 69 96 231 475 544 .001628664 616 000.001785714 615 37 82 25 232 608 375 .001626016 561 31 47 21 176 558 481 562 31 58 44 177 504 328 563 31 69 69 178 453 547 564 31 80 96 179 406 144 565 31 92 25 180 362 125 566 32 03 56 181 321 496 567 32 14 89 182 284 263 568 32 26 24 183 250 432 569 32 37 61 184 220 009 570 32 49 00 185 193 000 .001782531 616 37 94 56 233 744 896 .001623377 .091779359 617 38 06 89 234 885 113 .001620746 .001776199 618 38 19 24 236 029 032 .001618123 .001773050 619 38 31 61 237 176 659 .001615509 .001769912 620 620 38 4400238 328 000.001612903 .001766784 621 38 56 41 239 483 061 .001610306 i .001763668 .001760563 .001757469' .001754386 622 38 68 84 240 641 848 .001607717 623 38 81 29 241 804 367 .001605136 624 38 93 76 242 970 624 .001602564 625 39 06 25 244 140 625 .001600000 571 32 60 41 186 169 411 572 32 71 84 187 149 248 573 32 83 29 188 132 517 .001751313 626 39 18 76245 314 376 .001597444 .001748252 .001745201 574 32 94 76 189 119 224 .001742160 575 33 06 25 190 109 375 .001739130 630 627 39 31 29 246 491 883 628 39 43 84 247 673 152 629 39 56 41 248 858 189 39 69 00 250 047 000.001587302 .001594896 .001592357 .001589825 576 33 17 76 191 577 33 29 29 192 578 33 40 84193 679 33 52 41 194 580 33 6400 195 102 976 .001736111|| 631 39 81 61 251 239 591 .001584756 100 033 100 552 .001733102 .001730104 632 39 94 24 252 435 968 .001582278 633 40 06 89|253 636 137 .001579779 104 539 .001727116 112 000.001724138 634 40 19 56|254 840 104 .001577287 635 40 32 25 256 047 875, .001574803 581 33 75 61 196 122 941 582 33 87 24 197 583 33 98 89 198 137 368 155 287 .001721170 .001718213 .001715266|| .001712329 636 40 44 96 257 259 456 .001572327 637 40 57 69 258 474 853 .001509859 638 40 70 44 259 694 072 .001567398 201 625 .001709402 .001692047 .001689189 .001686341 .001683502 .001663894 584 34 10 56,199 176 704 585 34 22 25 200 586 34 33 96 201 230 056 .001706485|| 641 587 34 45 69 202 262 003 .001703578 588 34 57 44 203 297 472 .001700680 589 34 69 21,204 336 469 .001697793 590 34 81 00 205 379 000.001694915 591 34 92 81 206 425 071 592 35 04 64 207 474 688 593 35 16 49'208 527 857 594 35 28 36 209 584 584 595 35 40 25 210 644 875 .001680672 596 35 52 16 211 708 736 .001677852 597 35 64 09 212 776 173 .001675042 652 42 51 04 277 167 808 598 35 76 04 213 847 192.001672241|| 653 42 64 09/278 445 077 599 35 88 01 214 921 799 001669449 654 42 77 16 279 600 36 00 00 216 000 000 001666667 655 42 90 25 281 601 36 12 01 217 081 So1 602 36 24 04 218 167 208 603 36 36 09 219 256 227 604 36 48 16 220 348 864 605 36 60 25 221 445 125 639 40 83 21 260 917 119 .001564945 640 40 96 00 262 144 000| .001562500 41 08 81 263 374 721 642 41 21 64264 609 288 643 41 34 49 265 847 707 644 41 47 36 267 089 984 645 41 60 25 268 336 125 .001560062 .001557632 .001555210 901552795 .001550388 646 41 73 16 269 647 41 86 09 270 840 023 648 41 99 04 272 097 792 649 42 12 01 273 650 42 25 00 274 586 136 .001547988 .001545595 .001543210 359 449 .001540832 625 000.001538462 651 42 38 01 275 894 451 .001536098 .001533742 .001531394 726 264 .001529052 011 375 .001526718 656 43 03 36 282 300 416 .001524390 .001661130 .001658375 .001655629 .001652893|| 660 657 43 16 49 283 593 393 .001522070 658 43 29 64 284 890 312 .001519757 659 43 42 81 286 191 179 .001517451 43 56 00 287 496 000 .001515152 Squares. Cubes. Reciprocals. тоб Number. Squares. Cubes. Reciprocals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. 661 43 69 21 288 804 781 662 43 82 44 290 663 43 95 69 291 664 44 08 96 292 117 528 434 247 754 944 .001512859 .001510574 .001508296 .001506024 718 665 44 22 25 294 079 625 .001503759 51 55 24 370 719 51 69 61 371 720 51 8400 373 716 51 26 56 367 061 696 .001396648 717 51 40 89 368 601 813 .001394700 .001390821 146 232 .001392758 694 959 248 000.001388889 666 44 35 56 295 408 296 .001501502 721 51 98 41 374 805 361.001386963 667 44 48 89 296 668 44 62 24 298 669 44 75 61 299 670 44 89 00 300 740 963 .001499259 722 52 12 84 376 367 048 .001385042 077 632 .001497006 723 52 27 29 377 933 067 .001383126 418 309 .001494768 763 000.001492537 724 52 41 76379 503 424 725 52 56 25381 .001381215 078 125 .001379310 671 45 02 41 302 111 711 672 45 15 84 303 464 448 673 45 29 29 304 821 217 674 45 42 76 306 182 024 675 45 56 25 307 546 875 676 45 69 76 308 915 776 677 45 83 29 310 288 733 678 45 96 84 311 665 752 679 46 10 41 313 046 839 680 46 24 00 314 432 000.001470588 00314 .001499313 .001488095 .001485884 .001483680 .001481481 .001479290 .001477105 .001474926 726 52 70 76 382 657 176 727 52 85 29 384 240 583 728 52 99 84 385 828 352 729 53 14 41 387 420 489 .001371742 730 53 29 00389 017 000.001369863 731 53 43 61 390 617 891 732 53 58 24 392 223 168 733 53 72 89393 832 837 .001377410 .001375516 .001373626 .001367989 .001366120 .001364256 .001472754 734 53 87 56 395 446 904 56395 735 54 02 25 397 065 375 .001362398 .001360544 681 46 37 61 315 821 241 682 46 51 24 317 214 568 683 46 64 89 318 611 987 684 46 78 56 320 013 504 56|320 685 46 92 25 321 419 125 .001468429 736 54 16 96 398 688 256 .001358696 .001466276 737 .001464129 54 31 69 400 738 54 46 44 401 315 553 .001356852 947 272 .001355014 .001461988 739 .001459854 54 61 21 403 740 54 7600 405 224 000 583 419 .001353180 .001351351 686 4705 96322 828 856 687 47 19 69324 242 703 688 47 33 44|325 660 672| 689 47 47 21 327 082 769 .001451379 690 47 61 00 328 509 000.001449275 .001457726 .001455604 741 54 90 81 406 869 021 742 55 05 64408 .001349528 518 488 .001347709 .001453488 743 55 20 49 410 172 407 .001345895 744 55 35 36 411 830 784 .001344086 745 55 50 25 413 493 625 .001342282 691 47 74 81 329 939 371 692 47 88 64 331 373 888 693 48 02 49 332 812 557 694 48 16 36 334 255 384 695 48 30 25335 702 375 696 48 44 16 337 153 536 697 48 58 09 338 608 873 698 48 72 04340 068 392 699 48 86 01 341 532 099 01341 700 49 00 00 343 000 000.001428571 .001447178 746 55 65 16 415 160 936 .001340483 .001445087 747 55 80 09 416 832 723 .001338688 .001443001 748 55 95 04418 508 992 .001336898 .001440922 749 56 10 01 420 189 749 .001335113 .001438849 750 56 25 00 421 875 000.001333333 .001436782 751 56 40 01 423 564 751 .001331558 .001434720 752 56 55 04 425 259 008 .001329787 .001432665 .001430615 753 56 70 09426 957 777 754 56 85 16 428 661 064 755 5700 25 430 368 875 .001328021 .001326260 .001324503 701 49 14 01 344 472 101 702 49 28 04 345 948 408 703 49 42 09 347 428 927 704 49 56 16 348 913 664 705 49 70 25 350 402 625 706 49 84 36 351 895 816 707 49 98 49 353 393 243 708 50 12 64 354 894 912 709 50 26 81 356 400 829 710 50 41 00 357 911 000.001408451 .001426534 .001424501 .001422475 .001420455 .001418440 760 756 57 15 36432 081 216 757 57 30 49 433 798 093 758 57 45 64 435 519 512 759 57 60 81 437 245 479 57 76 00 438 976 000 .001322751 .001321004 .001319261 .001317523 .001315789 .001416431 .001414427 .001412429 .001410437 761 57 91 21 440 711 081 762 58 06 44 442 450 728 763 58 21 69 444 194 947 764 58 36 96 445 943 744 765 58 52 25 447 697 125 .001314060 .001312336 .001310616 .001308901 .001307190 711 50 55 21 359 425 431 712 50 69 44 360 944 128 713 50 83 69 362 467 097 714 50 97 96 363 994 344 715 51 12 25 365 525 875 .001406470 .001404494 .001402525 .001400560 766 58 67 56 449 455 096 767 58 82 89 451 217 663 768 58 98 24 452 984 832 769 59 13 61 454 756 609 .001398601|| 7701 59 29 00 456 533 000 .001305483 .001303781 .001302083 .001 300390 001298701 Cubes. Reciprocals. TO7 Number. Cubes. Recipro- cals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. Cubes. .001264223 .001262626 | .001261034 .001259446 .001257862 829 68 72 41 569 722 789 .001206273 830 68 89 00 571 787 000.001204819 69 05 61 573 856 191 831 832 833 834 835 69 22 24 575 930 368 69 38 891578 009 537 69 55 56 580 093 704 69 72 25 582 182 875 001203369 .001201923 .001200480 .001199041 .001197605 836 60 88 96'584 277 056 .001196172 837 838 70 C5 69 586 376 253 70 22 44,588 480 472 001194743 .001193317 839 840 ! 70 39 21 590 589 719! .001191895 70 56 00:592 704 000, .001100476 841 70 72 81 594 823 321 .001189c61 842 70 89 64 596 947 688 .001187648 843 71 06 49 599 077 107.001186240 844 71 23 36 601 211 584 .co1184834 845 71 40 25 603 351 125 .001183432 846 71 57 16 605 495 736 .001182033 847 71 74 09 607 645 423 .001180638 71 91 04.609 800 192 .001179245 849 72 08 01 611 960 049 001177836 850| 72 25 00 614 125 000.001176471 848 851 771 59 44 41 458 314 011 .001297017 772 59 59 84 460 099 648 .001295337 773 59 75 29 461 889 917 .001293661 774 59 90 76 463 684 824 .001291990 775 60 06 25 465 484 375 .001290323 776 60 21 76 467 288 576 .001288660 777 60 37 29 469 097 433 .001287001 778 60 52 84 470 910 952 .001285347 779 60 68 41 472 729 139 .001283697 780 60 84 00 474 552 000.001282051 781 60 99 61 476 379 541 .001280410 782 61 15 24 478 211 768 .001278772 783 61 30 89.480 048 687 .001277139 784 61 46 56,481 890 304 .001275510 785 61 62 25 483 736 625 .001273885 786, 61 77 96 485 587 656 .001272265 787 61 93 69 487 443 403 .001270648 788, 62 09 44 489 303 872 .001269036 789 62 25 21 491 169 069 .001267427 790 62 41 00 493 039 000.001265823 791 62 56 81 494 913 671 792 62 72 64 496 793 088 793 62 88 49 498 677 257 794 63 04 36 500 566 184 795 63 20 25 502 459 875 796 63 36 16 504 358 336 .001256281 797 63 52 09 506 261 573 .001254705 798 63 68 04 503 169 592 .001253133. 799 63 84 01 510 082 399 .001251564 800 640000 512 000 000.001250000) 801 64 16 01 513 922 401 .001248439 802 64 32 04:515 849 608.001246383 803 64 48 09:517 781 627 .001245330 804 64 64 16 519 718 +64 .001243781 805 64 80 25 521 660 125 .001242236 806 64 96 36 523 606 616 36.523 807 65 12 49 525 557 943 808 65 28 64 527 514 112 809 65 44 81,529 475 129 810 65 61 00 531 441 000 811 65 77 21 533 411 731 812 65 93 44.535 387 328 813 66 09 09 537 367 797 814 66 25 96 539 353 144 815 66 42 25 541 343 375 816 66 58 56 543 338 496 .001225490) 874 76 38 76 667 627 6241.001144165 817 66 74 89 545 338 513 .001223990 875 76 56 25 669 921 875, .001142857 818: 66 91 24 547 343 432 .001222494 876 76 73 76 672 221 376 819 67 07 61:549 353 259 001221001 877 76 91 29 674 526 133 S20 67 24 00 551 368 000.001219512 878 77 08 84.676 836 152 821 67 40 41 553 387 661 .001218027 879 77 26 41 679 151 439 822 67 56 84 555 412 248 .001216545 880 77 44 00 681 472 000 823 67 73 29 557 441 767 .001215067 SS1 77 61 61 683 797 841 824 67 89 76 559 476 224 .001213592 882 77 79 24 686 128 968 825 68 06 25 561 515 625 .001212121 SS3 77 96 89 688 465 387 826 68 22 76 563 559 976 .001210654 884 78 14 56 600 807 104 827 68 39 29 565 600 283 .001209100 285 78 32 25 693 154 125 828 68 55 84 567 603 552001207729 .001240695 .001239157 .001237624 .001236094 001234568 .001168224 001166861 .001163501 01164144 .co1162791 001161440 .001160093 .001158749 001157407 .00116069 72 42 01616 295 051| .001175088 852 72 59 04 618 470 208 .001173709 853 72 76 00 620 650 477.001172333 854 72 93 16 622 835 864 .00117090o 855 73 10 25 625 026 375 .001169591 856 73 27 36 627 222 016 857 73 44 49.629 422 793 858 73 61 64 631 628 712 859 73 78 81.633 839 779 800 73 96 00 636 056 000 861 74 13 21 638 277 381 74 30 44 640 503 928 863 74 47 60 642 735 647 864 74 64 96 644 972 544 865; 74 82 25 647 214 625 866 74 99 56 649 461 896 867 75 16 89 651 714 363 868 75 34 24 653 972 032 869 75 51 61 656 234 909 870 75 69 00 638 503 000 862 .001154734 001153403 .001152074 .001150748 001149425 75 86 41 660 776 311 001148106 872 873 76 03 84 663 054 848 76 21 20 665 338 617 001146789 001145475 .001233046 .001231527 .001230012871 .001228501 001226994 .001141553 001140251 .001138952 .001137656 001136364 001135074 .001133787 .001132503 001131222 001129044 Recipro- cals. 108 Number. Squares. Cubes. Recipro- cals. SQUARES, CUBES, AND RECIPROCALS. Number. Squares. Cubes. 506 456 .001128668 864 103 .001127396 227 072 .001126126) 595 369 .001124859 969 000.001123596 886 78 49 96 695 887 78 67 69 697 888 78 85 44 700 889 79 03 21 702 890 79 21 00 704 891 79 38 81 707 347 971 892 79 56 64 709 732 288 893 79 74 49 712 121 957 894 79 92 36 714 516 984 895 80 10 25 716 917 375 001122334 .001121076 .001119821 .001118568 .001117318 .001116071 .001114782 .001113586 .001112347 IIIIIII00* 944 89 11 36 841 232 384 .001059322 945 89 30 25843 908 625 .001058201 946 89 49 16 846 590 536 .001057082 947 89 68 09 849 278 123 .001055966 948 89 87 04 851 971 392 .001054852 949 90 06 01 854 670 349 .001053741 950 90 25 00 857 375 000.001052632 951 90 44 01 860 085 351.001051525 952 90 63 04 862 801 408 .001050420 953 90 82 09 865 523 177 .001049318 954 91 01 16 868 250 664 .001048218 955 91 20 25 870 983 875 .001047120 956 91 39 36 873 957 91 58 49 876 958 91 77 64879 959 91 96 81 881 960 92 1600 884 722 816 .001046025 467 493 .001044932 217 912 .001043841 974 079.001042753 736 000.001041667 961 92 35 21 887 503 681 .001040583 962 92 54 44 890 277 128 963 92 73 69 893 056 347 964 92 92 96 895 841 344 965 93 12 25 898 632 125 .001036269 .001039501 .001038422 .001037344 .001109878 .001108647 .001107420 .001106195 .001104972 .001103753 .001102536 .001101322 .001100110 .001097695 966 93 31 56 901 968 93 70 24 907 967 93 50 89 904 969 93 89 61 909 428 696 .001035197 039 232.001033058 231 063001034126 853 209 .001031992 .001096491 .001095290 .001094092 .001092896 979 94 09 00912 673 000.001030928 .001091703 .001090513 .001089325 971 94 28 41 915 973 94 67 29 921 167 317 972 94 47 84918 330 048 974 94 86 76 924 010 424 975 95 06 25926 859 375 976 95 25 76 929 714 176 498 611 .001029866 001027749 .001028807 .001026694 .001025641 977 978 .001085776 979 .001084599 .001024590 001023541 .001022495 .001021450 .001020408 .001083423 .001082251 .001010368 .001018330 .001081081 001017204 .001016266 .001015228 896 80 28 16 719 323 136 897 80 46 09 721 734 273 898 80 64 04 724 150 792 04724 899 80 82 01 726 572 699 900 81 00 00 729 000 000 901 81 18 01 731 432 701 902 81 36 04 733 870 808 903 81 54 09 736 314 327 904 81 72 16 738 763 264 905 81 90 25:741 217 625 906 82 08 36 743 677 416 907 82 26 49 746 142 643 908 82 44 64 748 613 312 909 82 62 81 751 089 429 910 82 81 00 753 571 000.001098901 911 82 99 21 756 058 031 912 83 17 44 758 550 528 913 83 35 69 761 048 497 914 83 53 96|763 551 944 915 83 72 25 766 060 875 916 83 90 56768 575 296 917 84 08 89 771 095 213 918 84 27 24 773 620 632 919 84 45 61776 151 559 .001088139 920 84 64 00 778 688 000.001086957 921 84 82 41781 229 961 922 85 00 84 783 777 448 923 85 19 29 786 330 467 924 85 37 76 788 889 024 925 85 56 25 791 453 125 926 85 74 76 794 022 776 927 85 93 29 796 597 983 928 86 11 84 799 178 752 929 86 30 41 801 765 089 930 86 49 00 804 357 000 931 86 67 61 806 954 491 932 86 86 24 809 557 568 933 87 04 89 812 166 237 934 87 23 56 814 780 504 935 87 42 25817 400 375 936 87 60 96820 025 856 937 87 79 69 822 656 953 938 87 98 44 825 293 672 939 88 17 21 827 936 019 940 88 36 00 830 584 000 88 941 88 942 943 88 54 81 833 237 621 73 64 835 896 888 92 49/838 561 807 95 45 29 932 574 833 95 64 84/935 441 352 95 84 41938 313 739 980 96 04 00 941 192 000 981 96 23 61 944 076 141 982 96 43 24 946 966 168 983 96 62 89 949 862 087 984 96 82 56 952 763 904 985 97 02 25955 671 625 986 97 21 96 958 585 256 .001014199 987 97 41 69961 504 803.001013171 986 97 21 96 958 988 07 61 44 964 430 272 .001012146 989 97 81 21967 361 669 .001011122 990 98 01 00 970 299 000 001010101 97 .001009082 001008065 .001079914 .001078749 .001077586 001076426 001075269 .001074114 .001072961 .001071811 991 98 20 81 973 242 271 .001070664 .00106951999298 40 64976 191 488 993 98 60 49 979 146 657|| .001007049 .001068376 994 98 80 36982 107 784 .001006036 .001067236; 995 99 00 25 985 074 875 .001005025 .001066098 996 99 20 16 988 047 936 .001064963 997 99 40 09 991 026 973 001063839 998 99 00 04 994 011 992 .001062699 999 99 80 01 997 002 999 .001061571 1000 100 00 00 1000000000 .0010604451 .001004016 .001003009 .001002004 .001001001 ! .001000000 Recipro- cals. 109 INDEX. Anchors for beams, weight of, . • Angle Bars, sizes, weights, and strength of, Anthracite, weight of, . Area of cross-section of angles, Areas of cross-section of bars Areas of circles, Bar Iron, extras on, "( (( • list of sizes,. weights of, Basis of Strength,. • weight per foot X .3, Beams, Deck, I and I, elements of,. • } PAGE. 30 42, 97 84 • 42, 97 · 93-95 • 98 95 96 · 93-95 43 40, 41 (C (C "C " (( << Steel, strength and stiffness of, Wood and Iron together, I, riveted together as girders, (( manner of setting and connecting, 28 • • (( moments of inertia of, most economical sizes, • • 40, 41 4 Rectangular, Riveted stiffness of, • 49 · 47a (C (C tables for finding strength of, 44 • 422 49 31 ༣༠ 5 33. 6-27 50 32 57 72 separators for, "stiffness of, << " " << · strength, by actual tests, "tables of safe load, deflection, weight, spacing, "" trussed, • • unsupported, sideways, (C "used as posts, . "wooden, • • Belting, power transmitted by, Bending Strain, to determine, · Board Measure, weight of timber by, Boiler Tubes, sizes and surface of, Bolts, weight of, Box Girders, tables for, Brick, dimensions of, · Brick Arches, weight of, flat, • • Brick-work, measurement of, weight of, Bridges, Highway, proportions of, . C (C load per square foot for, strains in trusses of, Bushel of Coal, weight of, . • 79 100% 36 86 • 81 44-46 89 3 88 84, 89 4,84 65 4, 65 66 13 84 84 73 4 77 "various substances, weight of, Cables, weight and strength of, • Suspension Bridges, strain on, IIO Capacity of Tanks, INDEX. Cast Iron Columns, by Hodgkinson's formula, Cast Iron Columns, by Gordon's formula, Pipe,. Center of Gravity of a group of weights, . "" Centrifugal Force, "< sections, . • Chains, sizes, strength, and weight of, strain on inclined planes, "" Kendrick's patent triple for do., Channels, elements of, used as columns, • • • Cisterns, capacity of, • Coal, weight of, PAGE. 85 • • • 54-56 • Columns, Cast Iron, strength, by Hodgkinson's formula, (c " " "C Gordon's formula, of channel bars and I beams, " * and strut bars in pairs, of deck beams, • Wooden, Gordon's formula, Wrought-iron, Gordon's formula, Concrete, weight of, . Continuous Beams, Copper, weight of, • • Corrugated Iron, weight of, · Crushing Strength of Pins and Rivets, Cubes, table of,. • Deck Beams, elements of,. • Deflection, amount of, with safe load, " rule for,. of steel beams, • Distribution of Load on a Beam, cffect of, Double Refined Iron, tests of, · • · · • ► 60, 61 · 89 37 40, 42 71 73 . • 74 • 73 41 57-59 85 84 · • 54-56 60,61 • 57-59 · • 58,59 • 57 · 62 60,61 84 346 92 82 53 • • 101-109 4I 6-27, 34, 35 47α 42 a 34-38 64 84 63 65 65,66 38 84 • • 3, 31 88 3 88 30 84 49 90 Earth, weight of, • Elastic limit of wrought-iron, Expansion, Eye Bars, • · Falling Loads, strain produced by,. Fire-brick, weight of, • Fire-proof Floors, construction of, " " (" " hollow brick for, weight of, . • Partitions and Ceiling, Fittings for Beams, · • Flagging, strength of, Flitch Plates, • Floor Glass, • • Formulas for strength of Posts and Girders, Framing Beams, • - 70, 71 28 111 INDEX. Galvanized Roofing Iron, weight of, "" Wire, strength of, Gas Pipe, sizes and weight of, . Girders, • "C Box and I, riveted, . (c · • • Wood and Iron together, Glass, Plate, prices of, .. "c • · Skylight and Floor, weight of, Window, sheets per box, • Greatest Bending Strain, position of, Gravel, weight of, . Gyration, radius of, . Highway Bridges, Hollow Brick for Fire-proof Building I Beams, + Ice, weight of,. • Impact, strain produced by, Inertia, moments of, . . PAGE. 82 75 80 See Beams • • 44 • 49 87 90 87 36 • CC with a group of weights, 38 84 67 65 88 See Beams 84 38 40, 41, 42, 67 Inclined Planes, strain on chain for, 74 • 981 84 63 Inches in Decimals of a foot, . Iron Ore, weight of, . Iron, strength and quality of Single and Double Refined, Joints, number per mile of track,. Kendrick's Patent Triple Mining Slope Chain,. Lead, weight of, . . Limit of elasticity of iron, . Links, . Loads per square foot for bridges, floors, and roofs, . Manilla Cordage, . Masonry, weight of, . Measures, tables of,. • Merchant Bars, extras on, "" sizes of, . weights of, Metrical Measures, • • Mining Slope Chain, Kendrick's patent, Miscellaneous Shapes, Moments of Inertia of Sections, • 794 73 92 63 See Eye Bars . + 4, 65 79a 4, 84 99, 100 95 96 93-95 100 73 CC CC strain on, due to angle of slope, 74 See Plate 40-42, 67 67-69 Mortar, weight of, D • Mud, weight of, . · Nails, sizes and weight of, . 84 84 703 fc Resistance, Nuts, sizes and weight of, . Pins, shearing and crushing strength of, 90 • 53 II2 INDEX. Pipe, Cast-iron, sizes and weight of, . "" "" Wrought-iron, sizes and weight of, (( extra strong, Plate Glass, prices of, Plates, weight of, . • • • PAGE. • 89 80 81 87 92 • 34-38 Position of Load on a Beam, effect of, Posts,. Power Transmitted by Belts, "" • CC Wire Ropes, Pratt Trusses, strains in,.. • Propping Beams during building of walls, Radius of Gyration, . Rails, .. • Rail Joints and Splices, Railroad Spikes, · Rails, weight per mile (see also plate), Reciprocals, table of, Resistance, Moments of, · Rivets, weight of, . proper length of, " proper spacing of, • • • See Columns • • 79 78 66a to 66d • 31 67 See Plate • • • * 79a 796 · 79a 101-109 • 67-69 92 46 47a (( proper size of to resist shearing and crushing, Rivet-heads, weight of, Rolling Loads, effect of, . • Roofs, load per square foot for,. " galvanized iron for, " strains in, 1 • Ropes, weight and strength of,. Sash Bars, weight of,. Separators, weight of, Setting and connecting beams, • Shearing strength of pins and rivets, Shearing strain in girders, . Sheet Iron, weight of, . • Ship Spikes,.. Slating, sizes and weight of, and number per square, Sleeve Nuts, Specifications, proper, for iron for bridges, Soil, weight of, • Spikes, weight of, Splices, number per mile, · • Squares, table of, . Steel Beams, · • Stone, weight of, Strains in Roofs, · << in Trusses, Strain on chain on inclined planes, . Strain on cables of suspension bridges,. • Strain per square inch used in determining safe loads, Strength of Cables, "f ( "Wire, . "Wire Rope, . • • • • * 53 49 43, 66a 4 82 667 79a See Plate 30 28 • 43, 47 53 82,92 796 82 66 84 63 796 · 79a • • 101-109 42a 84 667 50, 66a • 74 • 77 3, 43 73 75 76 113 INDEX. Strength per square inch of iron suitable for structures Suddenly applied loads, . Suspension Bridges, strain on cables of, PAGE. 63 38 • 77 Tacks, weight of, Tanks, capacity of, • T Bars, weight of,. • • Temperature, effect of on tensile strength, Tensile strength of iron, " "" wire, • Tension Bars, to find proper size for, " "" Tests of Beams, • • • • • • 796 85 42a 43 63 75 • 51 65, 66 33 Tie Rods for Beams, Timber Beams, " of single and double refined iron, 63, 64 • 28 72 62 86 83 << Posts,. "" • weight and strength of, Tin, sizes and weight of, . Tramways, Wire Rope, • Transmission of Power by Wire Rope, Transverse strength of rectangular bars, Trusses, << of round bars, << strains in, • Tubes, Boiler, weight and surface of, Turnbuckles, · Warren Girders, strains in, Washers, weight of, Water, weight of, Weight of Angles, Bar Iron, • Bolts, Bolt-heads, and Nuts, Brick-work,. * · Address Trenton Iron Co. • 78 49 53, 69 50 50, 6ба SI 66 664-66k 90 84 42, 97 93-95 " Chain, ( • Channels and Strut Bars, Copper, Deck Beams, " I Beams, • " "" = (f Eye Bars, Glass, Lead, . L · Nails, Spikes, and Tacks, . Nuts,. Pipes, cast-iron,.. "C wrought-iron, Plates,. Rivets, Ropes,. * " Rails, per mile, • • こ ​Rivet-heads, 91 4, 84 73 4I 92 4I 6-27, 40 65 84 92 796 90 89 80 92 92 792 79a 49 114 Weight of Sash Bars,. "" " Separators, Sheet Iron, Slating, Bars, Timber,. "< "" " Tin, "" • •· • • INDEX. "" " Various Materials, Washers, Wire,.. + • Wire Ropes, Wrought Iron, rule for, Zinc, • • Weights and Measures, tables of,. Whipple Trusses, strain in, Wire, sizes, weight, and strength of, Wire Cables and Ropes, Wire Gauges, sizes of, . "" • Rope Tramways, . • • "6 Transmission of Power, • • Wooden Beams, Posts, Wrought Iron, rule for weight of, Zinc, weight of, · • • PAGE. See Plate 30 92 82 42a 86 83 • 84 • • 90 • 75 76, 77 49 92 99, 100 66e • 75 • 76, 77 • 74 Address Trenton Iron Co. 78 · 72 62 49 92 Correspondents are requested to distinguish between this Company and THE TRENTON IRON CO. MANUFACTURERS OF Wire and Wire Rope, WIRE FENCING, ETC., CONTRACTORS FOR AND BUILDERS OF SUSPENSION BRIDGES, WIRE ROPE TRAMWAYS, WIRE ROPE TRANSMISSIONS OF POWER, AND WIRE ROPE HAULING AND HOISTING APPARATUS. NEW YORK OFFICE: COOPER, HEWITT & CO. PHILA. OFFICE: 17 BURLING SLIP. 21 N. FOURTH STREET. CHICAGO OFFICE: 146 LAKE STREET. The Works and Office of the New Jersey Steel and Iron Co. are separate and distant from those of the Trenton Iron Co., and communications relat- ing to Wire and Wire Rope and their uses above specified should be ad- dressed to the latter Co. Illustrated descriptive pamphlets furnished on application. 115 E.L.C. UNIVERSITY OF MICHIGAN 3 9015 06395 5259 COMPLIMENTARY. TRENTON BEAMS AND CHANNELS. I BEAMS. 20 272634 I I 1 20 2006 1,320,000||15 990,000|| 15 120 4 1518200 534 .6 748,000 124 1404 3 151 1505 1/2 551,000 121 58 15% 125 .42 460,000 || 102 12 117052.6 511,000 10 I 2 125 4.8 47 377,000 9 ΙΣ 120 52.39 375,000 12 9654.32 306,000 10/21355 .47 360,000 8 102 105 42 3/8 286,000 7 102 904½ f 250,000 7 25/22 9 a a a60 00 11 9 12542.57 268,000 6 9 85 42 38 199,000 6 704 .3 167,000 6 8042 3/8 654 168,000 5 .3 7 55334-3 135,000 4 101,000 543 CHANNELS. 19043434 625 000 ½ 401,000 1381.000 703 .33 200,100 60 23438 134.750 48,22 102,000 16 16 703% 146,000 50 22.33 104,000 45 22.26, 88,950 33 2.2 20 65.800 362/24 62,000 20 39 500 45 22 40 58,300 33 24.28 45 700 22½ 1%.18 33.680 22/2 1915.20 22 Sco 161211 20 15.700 I 15 11/2 20 10 500 6 120545% 172,000 6 905 1/2 132,000 6 5032.3 6 403 76,800|| 8 62,600 7 1 55 5 554 403 30234 I 49,100 38,700 DECK BEAMS. 654% 3% 91,Sco 554% 63 500 5 STRUT BARS C 4 37 3 30234 36,800 30,100 5 4 182 3 IG 18,000 5 22 I 16 1 16 11.900 T 9,100 I *14541% % 2,160 This beam rolled only in steel. i TRENTON BEAMS AND CHANNELS. To find which beam, supported at both ends, will be required to support with safety a given uniformly dis- tributed load: Multiply the load in pounds, by the span in feet, and take the beam whose " Co-efficient for Strength" is nearest to and exceeds the number so found. The weight of the beam itself should be included in the load. THE DEFLECTION in inches, for such distributed load will be found by dividing the square of the span taken in feet, by seventy (70) times the depth of the beam, taken in inches. EXAMPLE. Which beam will be required to support a uniformly distributed load of 12 tons (24,000 lbs.) on a span of 15 feet? 24,000 X 15 = 360,000 which is less than the co- efficient of the 12 inch 125 lb. beam. The weight of the beam itself would be 625 lbs., which, added to the load, and multiplied by the span, would still give a product less than the co-efficient; thus: 24,625 X 15369,375. The deflection will be: 15 X 15 70 X 121 0.26 inch. The safe distributed load for each beam can be found by dividing the co-efficient by the span in feet, and sub- tracting the weight of the beam. When the load is concentrated entirely at the center of the span, one-half of this amount must be taken. The beams must be secured against yielding sideways, or the safe loads will be much less. For STEEL BEAMS add 25 to the Co-efficient for Transverse Strength except for the 14, the strength of which is given for steel only. The deflection of steel beams, under their safe load so obtained, will be 25 % greater than that of iron. SIZES OF MERCHANT BARS, Made by the New Jersey Steel and Iron Co. 23 32 to 37 33/2 to 3/2 FLATS. Width in Inches. Thickness in Inches. Width in Inches. Thickness in Inches. 1 1 32 HK ko 0000 1100 to alt HA I 1776 to I 1 6 5 I 7 } I I 4 5 I 8 18 I 15 16 2 I 19 32 Hoa 1ks Lobo calar MË TH 1 3 to 1 3 16 to 1½ I I to 13 3, to I 16 1 3 to 13 I I I 9 17 32 9 ΤΟ Labo 21 32 1 1 T6 + 13 Τ با اسم 7 1 5 C4U1 ΙΣ - I I 3 Z 137 ΤΣ ليم جل جا 3³½ to 32 3 32 to A to 32 1 to 16 3 16 to 3 to 16 to to 3 to I 16 to fto i's to 13 to 18 3 16 5 to to to to Is to I Ι 3 ΤΟ to I to to 03/30 x ex eo a cabo cibo celo to 19 I 3 2} 2} 216 23 2} 1 to 13 ठ T6 7 to 2 Τύ 3. to I 7 to I ୫ to I 3 Ito to I 4 to 2 to 2 7 3} IS 3. to 14 3 T6 to 2} 4/20 3} 4 4 1 to 23 16 to 3 5 to 13 6 to 21 to I 78 7H to I To 16 3, to I 12 9 2 I 13 32 8 7 to 11 1} I 8 to 2 to 21 to 20 to I ROUNDS 3 // TO 5 INCHES DIAMETER. 3 SQUARES " TO 3 INCHES. fo EDWARD COOPER, Pres't, EDWIN F. BEDELL, Sec'y,} New York. FRED. J. SLADE, Treas., Trenton. JOSEPH STOKES, Sup't, } NEW JERSEY STEEL & IRON Co., TRENTON, N. J. COOPER, HEWITT & CO., 17 BURLING SLIP, NEW YORK. WROUGHT IRON AND STEEL BEAMS, CHANNELS, ANGLES AND TEES, MERCHANT IRON, BRAZIER AND WIRE RODS, RIVETS, CHAINS. CONSTRUCTORS OF BRIDGES, ROOFS AND OTHER IRON AND STEEL STRUCTURES. Size of Bar. TRENTON ANGLE BARS. Approximate Weight, in pounds per yard, for each thickness in Inches. 16 6X6.. • 9 3/4 | 3 Co-effi. for Transverse Strength. ½ 11% % | 16 | ¾4 | 18 | % | Thinnest Bar. 57.5 64.3 71.177.8 84.491.0 97.3 36,900 lbs. 42X4½ 37.5 42.5 47.5 52.3 57.261.9. 4X4 32X3½ • • 1/2 16 11 3/8 18 9 5/8 1 34 28.633.137.5 41.846. 150.5 54.4 24.828.7 32.5 36.239.843.4 1/4 16 3/8 16 ½ 16 5 1/2 9 • % 1 1 16 18,000 " 12,184 9,200 3X3.. 14.4 17.7 21.1 24.4 27.5 30.633.6 36.5 4,611 " 5 16 3/8 13 T6 234X234 15 TT 32 9 17 32 IG 16.219.220.7 22.2 23.6 25.0 26.3 27.7 1/4 5 I 1 16 32 ½ 1 22X2½ 11.9 14.7 16.0 17.3 18.6 20.0 21.2 22.5 3/8 13 32 16 7 15 I 3/8 1 3 3 2 TE 5 1 1/2 3/8 1 1 32 24X24 10.6 11.9 13.114.3 15.5 16.8 17.8. ΤΣ 16 3 4,710 " 3,156 " 2,530 1,752 5 J 1 3 2 3/8 1,150 " 832 8.3 9.4 10.411 5 12.6 13.6 7 9 14 32 fc 6.217.188.139.059.96 10.8 11. 1/ 9 5 3 2 16 7 32 4 9 2X2.. 3 16 3 2 134X134 12X1½ I 14X14 XI IXI. 7/8/7/8. • 5.27 6.09 6.887.64 8.409.13 1/8 32 16 32 5 3 7 2.97 3.664.344.99 5.63 2.34 2.88 3.40 3.914.38 2.03 2.48 2.93 34X34 [1.72 2.09 2.4 • 6X4. • • - 3/8 T6 • • • UNEVEN LEGS. 1 1 1 + 1 Τι 76 2 76 % 41.8 47.5 53.158.664.0 69.4 5X32.. 30.5 35.3 40.0 44.7 49.253.758. 1 42X3.. 26.7 30.9 35.0 39.043.0 46.850.6 4X3 • I T6 2 Τ 9 75 8 75 % % % + 20 9 24.8 28.7 32.5 36.2 39.843.4 32X3 15.619 323.0 26.5 30.0 33.4 36.7 40.0 3/2½ X1½ 11.9 · Τ 5 • 1 1 3 2 3/8 1 3 Ι 7 3X22 13.116.217.7 19.2 20.7 22.2 25.0 27.7 3X2. • 7 I 9 3 2 32 Τ 5 3/18 393 246 186 " 133 C 30,680, 6″way 14,750. 4″ 18 353 5″ 9 651, 3 14 580, 49 7 020, 3 9850 4" 5 871, 3″ 6 180, 39 4.710, 3" 5.515 3" 1,148, 1" 3 ΤΟ 4,490, 3233, 2 3 833.3″ { 1,850, 2" " 10.4 11.9 13.3 14.617.3 20.0 22.5 SQUARE ROOT ANGLES, 4"X3" and smaller, even and uneven legs. THE AREA Of Cross SectION, in inches, is one-tenth of the weight per yard. : Designation of Bar. TRENTON TEE BARS. Approximate Weight, in lbs. per yard, for each thick- ness in Inches. Co efficient in Transverse Strength. lbs. for 4"X4". 3½" X 3/2½" 7!! 3" X 3" • 3/ 21.1 12 ½'' 37.5 lbs. 28.7 lbs.½" 32.5 Thinnest Bar. 15,800 10,550 // 27.5 6,680 + • -5!! 2½" X 2½"" 14.7" 24" x 24" 11.90" 2/1 X 2/ I II " XI + XI I'' X I' 5'' X2/½" 3'' X 2/1 9 // 32 3/ 17.3 ( 3,850 2,811 I + 9.4 5 // I 6 11.5 1,970 // I + 6.68" 1,033 32 4.87" 5.5 lbs. 596 5.7/ 32 2 So" 3 // 16 3.3 268 ½ 35.0 6,344 5/ 16 14.6 lbs. // 17.3 2,540 2/1 X I 2 + XI | 2″ X I'l I • 9/1 32 9. I 1,355 C 7.4 604 6.5 457 5.6 421 HAND RAIL TEES T. 23/4'' x 2'1 Τύ 5/ 14.46 lbs I 1 3/4 '' × 1 1/4'' 977 21/4" X 2" 32 9 // 13.08 3 2 2/ 7.8 2,331 1,987 763 3 LOADS ON VARIOUS STRUCTURES. The load upon the beams of fire-proof floors, with four-inch brick arches, leveled up with concrete be- tween the beams, in buildings used for offices, assem- blages of people or storage of light goods, may ordin- arily be taken at seventy pounds per square foot of floor for the weight of the arches, concrete, ceiling and flooring; and at eighty pounds per square foot additional for the load equal to a crowd of people, making a total load of 150 pounds per square foot of floor in addition to the weight of the beams. In the following cases the loads, in addition to the weight of the floor itself, may be assumed as- For Street Bridges, • Floors of Dwellings, . 80 lbs. per sq. 66 ፡፡ ft. Churches, Theatres and Ballrooms, Warehouses and Merchandise,. • "Factories, ♥ • 40 80 << (( << " "C • • • 250 200 to 400 "" For roofs the following weights may be taken, allow- ing 30 lbs. per square foot for wind and snow: Corrugated iron laid directly on purlins, . " on boards, • • Slate Nailed to Boards, . Do. Plastered Below Rafters, . The weight of Brick Walls is, • • • 37 lbs. per sq. ft. 40 46 sc (i " (c 56' " I12 CC << cu. ft. Beams Unsecured Against Yielding Sideways must not be loaded to the full amount given by the preceding table. When of a span equal to 40 times the width of their flange they will support but about the load given in the table, and when the span is 60 times the width of flange, but ½ the load given. TABLE Giving the Size of Beams, and their Distance apart, suitable for Floors having loads per square foot from 100 lbs. to 300 lbs. 150 lbs. SPAN IN FEET. Size and Distance Size and Distance Size and from Weight per yard. Center to Center. Weight per yard. from Center to Center. | Weight per yard. CLEAR LOAD PER SQ. FT. LOAD PER SQ. FT. LOAD PER SQ. FT. LOAD PER SQ. FT.|LOAD PER SQ. FT. 100 lbs. from 250 lbs. from 300 lbs. Distance Size and Distance Size and Distance Weight Weight per yard. Center to per yard. 200 lbs. from Center to Center, Center to Center. Center. IN. LB. FEET. IN. LB. FEET. IN. LB. FEET. IN. LB. FEET. IN. LB. FEET. 8 ΙΟ 12 14 16 45551O 1O 700 00 0 ནའི་་་་ 30 30 30 40 40 4.2 50 55 65 8 65 555 aus RAW in ♣ ON 4.6 5.9 3.8 4.8 0.0000 2 52 4560667 30 3.I 5 30 6 3.0 40 3.9 6 40 3.2 ვა 4.0 40 4.8 6 50 4 7 5 50 40 4.I 40 3.0 50 5.0 501 3.7 50! 3.4 55 3.4 55 4.6 65 4.5 16 7∞ a 3.9 50 3.0 7 55 3.3 55 4.0 8 65 4.4 8 65 3.6 8 65 3.0 79 4.5 Q 5.0 6. .7 7 55 3.3 8 65 3.3 9 70 3.3 65 4 5 70 4.I 5.0 9 70 6.3 18 9 70 4.9 9 6 78 65 3.3 9 85! 3.7 70 4.2 90 4.7 85 3.9 105 4.2 10½ 105 4.3 10½ 105 10½ 90 5.0 10 90 3.8 9 85 3.3 10½ 90 4.2 10½ 105 3.6 70 3.8 3.4 9 85 5.9 10½ 90 124 125 4.8 10 135 3.6 4.9 |12 96 4.6 124 125 4.5 124 125 3.7 20 102 90 6.0 10½ 105 4.5 10½ 105 3.4 124 125 3.6 124 125 3.0 22 10½ 90 10½ 105 24 { 26 { 12 96 124 125 124 125 Lenno in 124 125 6.0 124 125 4.5 12 170 4.9 15 4.4 4.9 I 2 96 4.0 124 125 3.7 124 125 30 124 170 3.3 5.6 124 125 4.9 175 125 4.5 15 125 3.6 15 5.0 6.1 124 125 4.I 124 125 3.0 124 170 3.3 115 115 125 5.0 15 150 4.5 5.1 15 125 4.3 15 150 3.8 15 150 5.T 15 200 28 15 125 5.5 15 ISO 4.3 15 15 200 15 30 150 .. 5.9 5.6 15 150 3.7 15 15 200 5.I 20 16 0 16 o 38 5.2 5.2 200 4.4 200 6.0 200 200 150 3.6 15 150 15 15 3.0 ท เค เค เค 150 3.6 150 3.0 200 4. I 15 200 3.5 15 200 4.2 20 200 4.7 15 200 20 3.5 200 3.9 20 200 4.8 20 272 5.3 20 200 4.I 20 272 20 200 3.4 5.5 20 272 4.0