- . 2. If . : I - .. I OFT ORNL P 2531. i !! :: . . . . 1 . .. - 4 T |.25 41.4 16 : . . . MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 ORNLP-2531 - NOV 2 9 1966 110.9 Lill: MN_.50 CONF-660904-13 PRELIMINARY RESULTS OF DIFFUSION MEMBRANE STUDIES FOR THE SEPARATION OF NOBLE GASES FROM REACIOR ACCIDENT ATMOSPHEI S. Blumkin? H. Briggs 3 A. Dounoucos 3 E. Von Halle? J. M. Holmes A. H. Rainey" RELEASED FOR ANNOUNCEMENT IN NUCLEAR SCIENCE ABSTRACTS LEGAL NOTICE This report was prepared .18 an account of Goveroment sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu- racy, cnmpleteness, or useful::888 of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any Habilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" inciudes any em- ployee or contractor of the Commissior., or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides acc688 to, any Information pursuant to his employment or contract with the Commission, or his employment with such contractor, To be presented at the 9th AEC Air Cleaning Conference, Boston, Massachusetts, September 13-16, 1966.. Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation. COak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee. "General Electric Company, Research and Development Center, Schenectady, New York. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 1 N . 1 1. 12. "LLL PRELIMINARY RESULTS OF DIFFUSION MEMBRANE STUDIES FOR THE SEPARATION OF NOBLE GASES FROM REACTOR ACCIDENT ATMOSPHERES giá 3 S. Blumkin H. Briggs A. Dounoucos E. Von Halle J. M. Holmes R. H. Rainey 1. INTRODUCTION The removal of krypton and xenon from off-gas streams during reactor emergencies and normal chemical reprocessing has long been the subject of research by the U. S. Atomic Energy Commission. Dr. Walter Belter, in his * introductory remarks to the 8th Air Cleaning Conference, I mentioned this problemi di as one that "could be the controlling factor in the building of large power reactors in populated areas, as well as being the most restrictive factor in bringing some of our nuclear-powered ships into populated ports." At least three low-temperature processes have been developed for the removal of both xenon and krypton from off-gas streams where air is the prime constituent and other contaminants, such as the oxides of nitrogen and water : : vapor, are present. One system used batch -Adsorption of the rare gases on & coconut charcoal bed at liquid-nitroger temperature after the oxides of nitrogen, were removed in scrubbers and catalytic beds and the water vapor was removed in alumina adsorbers. Another system suhstituted a continuous liquid-nitrogen scrubber for the charcoal beds, followed by batch distillation to produce a mixture of rare gases dissolved in liquid oxygen. In this process, however, the presence of liquid oxygen in a gamma -radiation field introduces a potential hazard through the buildup of ozone. A more recent process developed by Steinberge consists in absorbing the rare gases in a fluorocarbon solvent at temperatures near -70 to -10°C, thus eliminating the ozone hazard since a liquid-oxygen phase is not formed. at . i Recently, the General Electric Company's Research and Development Center developed a thin silicone-rubber membrane that has attractive selective perme- ability properties for the rare gases and can be operated at ambient tempera- ture. Initial results of a study to develop a separation process using this membrane are reported. 3 x1 A diffusion cascade has been designed to reduce the krypton level in a 3 containment vessel by a factor of 100 in one week. It has been propc 3 that such a system be made nortable so that it could serve as an emergency standby for several reactors and thus save part nf the cost of a permanent installation at each reactor site. 1.1 Consideration of Containment -Vessel Decontamination During a Reactor Accident Efficient methods have been developed for the removal of iodine vapors and ...compounds during reactor accidents,-- Equipment has been lastalled to reduce the .. lodine level in a secondary containment vessel either by circulating the con: teminated gases through activated charcoal beds and then back to the vessel, 4 or by discharging the gases to a stack after filtration and decontamination in a similar charcoal unit. It can be shown that, if adequate circulation rates are provided for the recirculating system, reactor low-population-zone radii will no longer be fixed by the total thyroid dose caused by iodine leakage from the con- tainment shell, but by the direct gamma dose caused by the leakage of rare gases. Figure I shows the effect of iodine and rare -gas decontamination on the low- population -zone radii required by the code of reactor site criteria.) The low- population -zone radii set by permissible thyroid dose rates with no decontamina- tion have been given by DiNunno. The thyroid -dose data after decontamination (of iodine) were calculated by using the equations proposed by Arnett, 4 assuring a circulation rate of 50,000 cfm for a 3 x 100 ft3 containment vessel and a charcoal-bed efficiency of 9986. Figure 1 indicates that the gamma dose from a. cloud containing primarily rare -gas leakage (assuming jodine decontamination) would necessitate moving the low-population zone to a distance about 30% beyond that set by the thyroid dose zone. However, if decontamination of the lare gases is also assumed, the thyroid dose limit again becomes the controlling factor Containment-vessel decontamination for both the iodine and the rare gases would reduce the low-population zone radius by a factor of about 22, which - would probably result in a substantial reduction in reactor siting costs. - The calculations for the decontamination of the rure gases considered only those isotopes with half -lives greater than 5 hr since transport, installation, and startup of a rare -gas decontamination system protably could not be accom- plished in less than 12 hr. Isotopes with half-lives less than 5 hr would have decayed significantly by the time the system was ready for operation. Further justification for disregarding those rare-gas isotopes with half- lives less than 5 hr is provided by considering the relative magnitudes of the removal rate by the cascade and the radioactive decay rate. Actually, in the case of isotopes with half-lives less than 5 hr, decontamination achieved by the cascade in one week would be negligible when compared with the decay rate of these short-lived isotopes. As a result, the longer-lived radioactive isotopes that have to be removed from the reactor vessel by the gas separation cascade are: Isotope Half-life 131mye 133M%e 133xe 235xe 85XT 12.0 days 2.3 days 5.3. days 9.1 hr 10.3 years Selection of the one week period for rare -gas decontamination of the containnent vessel was the result of a compromise. Rapid cleanup is desirable to prevent excessive leakage to the atmosphere. However, since the size of the cascade is inversely proportional to the cleanup time, a period shorter than ore week was considered to be an unreasonable requirement as an initial design criterion. The design of the cascade was based on the separation of radioactive and stebi krypton from air since this is the most difficult separation to be ... accomplished by the system. Separation of xenon, at the same time, 18 more 1..- efficient since the permeation rate of xenon through the membrane is much higher than that for krypton. 2 ti : . .. ORNL DWG. 66-6223 10.000 Total Thyroid Dou For Infinite Time: 300 Rod With 12 Decontamination - Direct Comme Dore From Clouds 25 Rod For 30 Days With 12 Decontamination - Direct Gamma Dose From Clouda 26 Rog fer 30 Days No Docontamination 1,000 Dirca Goramo Dos. From Cloud 25 Rod For 30 Days with 12 And Ran Ggs Docontamination - REACTOR POWER LEVEL (mwpd O Total Thyroid Osse For Infinite Time 300 Pad Ho iz Docontamination (From TID-14844) 10 100 10,000 100,000 1,000 LOW POPULATION ZONE ( Moren) Low Population Zone Radius vs. Reactor Power Level for Decontamination of lodine and Roro Sesus. . .. . ....... 3 *** Two basic criteria for the design of the cascade are that the quantity of kryptor in the containment vessel be reduced by a factor of 100 in one week, and that the maximum total volume of the air mixture, enriched in krypton and xenon, leaving the cascade be 50,000 scf. Estinates indicate that this lume could be trana ported in a shielded railroad car. 2. PERMSELECTIVE MEMBRANES FOR RARE -GAS SEPARATION 2.1 Membrane Theory Since the late 19th century it has been known that certain materials exhibit selective permeability to the flow of gases. Under the same conditions of pressure difference across & thin membrane of ouch a material, one gas will flow through or permeate it faster than another. This unique property led to the choice of the term "permselective" for such & membrane. This term distinguishes these materials from those that are merely porous, such as paper. Gases will pass through paper, but in & nonselective manner. ît should be noted that the term "selective" does not imply the pebbage of one gas to the complete exclusion of others. It merely indicates a difference in the flow rates of two molecular species through a permeable membrane. The net result is always that the concentration of the gas mixture on the high- pressure side of the membrane is depleted in the more permeable component as the gas mixture on the low-pressure side of the membrane is enriched in the more permeable component. Theoretically, then, a permselective membrane can be used either to: (1) reject & more permeable contaminant from a multicomponent mixture, or (2) produce a product from a multicongonent gas mixture that is enriched in the more permeable components. The mechanism by which gas or vapor permeates the membrane is not a simple dirfusion process as one might find in the case of a material that is porous. Instead, the gas dissolves in the membrane on the side having a high partial pressure, then diffuses through the membrane, and comes out of solution on the .... side having a low partial pressure. This mechanism 18 shown schematically in / Fig. 2. When the idea of using permeable menibranes to separate gases was first: conceived, it was not practical because the permeation rates of the available i materials were so low that prohibitively large membrane areas were requir In 1957, however, silicone rubber was found to have a uniquely high permeability to a variety of gases (see Table 1). : Table 1 shows that helium, which has the smallest molecular diameter, does : not permeate the silicone -rubber membrane as readily as the gases with larger diameters, which is contrary to what might be expected if the gas transport were by diffusion alone. This is explained by the fact that the permeability 18 & function of both diffusion and solubility of the gases in the membrane. 7o. If permeability is expressed in terms of diffusion and solubility, it is found : that the permeability is proportional to the product of the diffusion coefficient ... and the solubility coefficient. The variables that determine the magnitude of the driving force for the flow of a component through a membrane of given dimensions are tlie membrane's permeability to this component, and the partial pressure difference of this component across the membrane. Thus the membrane area required to effect a : : :::. . lị: 4 DE RE ORDINARY POROUS MEMBRANE PERMSELECTIVE MEMBRANE - Molecule in solution AIR O (Mixture of gases) AIR. ( Same mixture) AIR O (Mixture of gases) 0 0 Higher Percentage of Oxygen Higher Pressure FLOW Lower Pressure Higher Pressure FLOW ... Lower Pressure I 2 1 TUTTIT .'11 JAL oxygen Of Nitrogen Molecule going into solution with membrane Molecule coming out of solution with membrane Molecules pass through openings Permeability = ( Solubility ) x ( Rate of Diffusion ) 3 .1 : Table 1. A Summary of Some Rooin-Temperature Permeation Rates for Dimethyl Silicone Rubber EGIN CLINE Permeability (cm of gas, cm thick sec, cms, cm Hg Ap 1 9 590 9 320 9 9 60 9 60 9 34 9 9 28 x 109 - 9 760 60 ... ...- - - - 9 ส... น เป็ * แ35 .. 1 * 650 n. A sel::. - * 7ooo x 3ooo * * 9ooo 95 x 10 9 203 x 109 98 x 2.09 1000 x 109 Kr Iodine (estimated) 6 t!; } - - MAGO MUWMER given separation is inversely proportional to the total proscure difference across the membrane. At the time of this study, the practical pressure limit that a 1-mil-thick silicone rubber membrane can withstand indefinitely appeared to be 150 psi. 1.* 2.2 Application of Silicone Rubber Membranes to Rare -Gas Separation . The permeability values shown (Table 1) for silicone rubber are on the order of 30 times greater than for other known permselective mergizanie materials In spite of this high permeation rate, it was not possible to produce a... practical membrane device until recently because silicone -rubber films : were not thin enough to produce devices of reasonable size. The permeation rate is inversely proportional to the thickness of the fillm. (2) Could not be made free of pinholes. Since the gas permeation rate per unit area is very small, even in membranes of high permeability a few small pinholes will pass enough feed gas to cause serious dilution of the product. W. L. Robot disclosed a method for making silicone -rubber films that solved both these problems. He was able to make thin membranes (0.001 in.) that were free of pinholes. As a result of this invention, the developmert now within reach. Both xenon and krypton, which are the principal noble gases of concern in nuclear reactor accident atmospheres, have higher perneabilities than oxygen and nitrogen; therefore, a separation can be made from an air mixture. A detailed diffusion -cascade design for this separation is presented in Sect. 3 of this paper. The perueability data of Table were obtained with a bare 0.001 -in. silicone -rubber membrane supported on a porous -metal structure. To properly support the membrane against pressure differences of 150 psi, the membrane is bonded to porous Dacron mats and supported by wire screen, which also serve as flow passages. The membrane package experiments were performed to determine the effect of the support structure on absolute permeation rates and to determine its ability to separate the rare gases when they are in low concentration. Of the gases expected to be present in the atmosphere of a reactor vessel after an accidental release, only iodine appears to be corrosive to the silicone rubber membrane. As a result, the iodine will have to be scrubbed out of the stream ieeding a separation cascade that uses the membrane. Tests have indicated that the membrane is stable to radioactivity at the levels expected from to be er.countered in this study. 2.3 Description and Results of Membrane Package Experiments Design data for the membrane pressure package were obtained by bonding . various screen-membrane packing material combinations to test blocks (Fig. 3) and testing them in a pressure vessel (Fig. 4). The low-pressure taps of the blocks were connected to gas flow measuring devices. Tests conducted on various sample combinations, effective membrane area of 16 in.', verified the perme - ability ratio of oxygen to nitrogen and the bonding techniques at pressures to 200 psi. Permeability constants obtained in these tests for oxygen and nitrogen, 28.8 x 20-4 and 13.5 x 10-9 cm of gas, cm thick : gec yama. am Ho 1o, respectively, are approxi mately equal to one half of the values given in Table 1 for these gases. However, the separation factor of 2.15 to 1 remains the same for the gases tested. The decrease in the permeability constant may result from the fact...- --:: : : | ET | fli 4L 量 ​It ' . | 11 鲁鲁伊 ​| Liu, 一 ​l H ' + 1 : 事本中​, 我事事非非 ​IT' 中于​: 甲子 ​中t - el中rry " htte lol 1.5" tt44 PP 1 市中 ​事情是 ​单击事件 ​a - - - l + - birturi 再者​, 非事事 ​: 4 本善​。 鲁本 ​ff Air, Air 的是​, 「 - 非非非事事指南 ​年 ​準準準準書 ​. 1 . . . 上 ​非替​。 十一 ​, 法 ​1 4 有 ​車​, 鲁鲁鲁 ​有​, 「hitut 年11月 ​.1 「看看​: . Like 。 · 上星有 ​中​, 1 “一带一 ​, - 事情​, Airl - 、 下 ​Tif.. 一 ​-- 中 ​" -- 本非中主 ​一本非非 ​有些事不是一 ​鲁鲁鲁鲁卡 ​, 中山十 ​事事小事​, 一一一 ​各种 ​- 青年​, 事理中學​-中 ​春天​, 华办事指南 ​本書是一本 ​高等学 ​, . 11 11 -- 一 ​} 在一本一本本書 ​- -Pi 。 : 自ity i - T re 下一个 ​, : - : - - ” 本書​。 . 事 ​.. 。 团 ​1 TEL 書是一體聲 ​小學書畫學會理事會 ​一本書非看看 ​11 鲁 ​一一一一 ​身体 ​事 ​了 ​中华书 ​1 一一擊掌重叠量事 ​主女女女女 ​14 ,事事中事事 ​事準準準準​。 LALALAY - - 产 ​- 一 ​事事非事事 ​- - - 無毒 ​更司 ​- WWW ( 中中中中中A, 与 ​無事 ​中相 ​事事都是非常重量​, 能鲁鲁​,鲁鲁 ​4 14 十 ​春分 ​中的 ​事业单鲁鲁事​, 一本上是一普普 ​4 一年里事 ​本书主角 ​本身 ​P中MYSTERMAN 的 ​鲁 ​111させ ​量 ​SYSTATERNATURE : 作者 ​市中 ​* 串1 事事善事中事 ​事事非非 ​LE . 4 * * , NIC 等 ​本書是一本書都鲁鲁鲁 ​- 1 Tit - 建是善事 ​重鲁鲁鲁 ​- - |- - INA _ - 畫畫是一非戰學鲁事 ​非常量一量 ​量非非鲁鲁華書 ​非常非常非常 ​二十一 ​- _- - ALTYLE 都是一等一是鲁鲁 ​非非非無非是是非非非 ​「動畫​」 一中学 ​. 事事鲁鲁 ​重量 ​r : 上車​: ! 不一 ​等等​。 畢書 ​8 華 ​-- 一直在 ​ALT 重量 ​, 鲁个 ​鲁 ​Aut “事 ​1 - 非事事 ​| ENE - , 暴事件 ​事事 ​WS 鲁鲁​, ht 有 ​- 事​。 事實事 ​畫畫畫畫 ​。 事事非非 ​中​, : HYPE 車事 ​重生 ​看動畫 ​一想事 ​準 ​- , 1 重量 ​重量 ​非難事情書 ​14 , 44 ter - WAR ASH 非事事非非 ​= # 鲁鲁​, : 事 ​最普普 ​事事非事售​! 賽事重 ​一一一一 ​i- LE , 1 - . - # 載重 ​-- -- 一事​, :中華 ​{ - - 車重疊疊​, # 「 看着幸 ​鲁鲁​,鲁鲁 ​中 ​小学生中​, - 一事​, 青青青重量 ​書 ​, WWW.NEWS 单个事臺 ​- * 一建- ​重 ​畫畫畫畫畫書​" 事非華鲁鲁事​,s-鲁鲁 ​事 ​非 ​4, NIEW NATURN f * f # || 「不是​, 基本 ​II, 其實​, ,一个 ​LE, , - - 事件​: 非非 ​SHARE, -- . - 量 ​, . 非非​,,, 14 青 ​T TELLACKELOUVENTING 4 1、 ; . 島 ​事 ​1 实 ​1 ,. . Fi 1 - ,, - } 。 事 ​- TE 台中一中 ​lar 1 。 高 ​重重重重重重重 ​, - 辦法 ​个 ​上車 ​- 非典​。 * 本產个学 ​, . - } * 香 ​- tri... 非 ​多多 ​- : --- 中性​, 以许 ​{ r r { } : | | 1 - 14 , if, ht - n. 非非 ​NEWS : - t-fire 号 ​市 ​STAR - 生意​, --- # - 重重​, HAN 中 ​- 中​,擊中​, 4 臺 ​44-11 - 時事 ​S - 事書 ​- 4 1 HINE 軍事事 ​INT t - ?” 是 ​三毒 ​香 ​每年 ​(三 ​事事非事事非 ​”是一 ​41 本 ​. 有本事在 ​事 ​4 , - - - 作者 ​) . - ETULUS+* TWITH . . . 一 ​- 。 - 中生 ​. *华 ​1 . - . - - 44 - .. - 4, 11) # ACCENTON 一中学 ​5、 |- 青青青 ​KKBOX -, 于 ​, . 中华武术​- 在本书本 ​中中中中中​” 年 ​市售​, 11个 ​FEEL NE 100VATOREVILLULULL, CriteLift 14 事 ​f “争中​,美 ​” . - . , 一年 ​* Air 事​。 - 业务专售 ​本事 ​.*、*, *. 本 ​. - tar - F1 鲁 ​... 「 作者​: . E , | 鲁 ​中 ​- :“ . - - 本 ​i HE : , * - 二 ​T : | . 車事 ​F4年 ​* 作者​: - T_ 14 先​; T * - 4,41 - * - YMy *: 在里 ​、 1 4, 至善​” . 事本 ​鲁律是基本 ​-- - EECAREECCOREVERSETNR .::: “ 11 - 本 ​- 4. - . fit TE 事事务产 ​- - . 畢書 ​HTT ## - - * - RESE TTLE_ALLETTER SECREECENEWS 1 httput 看重 ​* 事业 ​- = 4 - {*, 。 事 ​. 重要事事 ​4 本事​, 有 ​- 重量 ​。 _ :T件 ​: 「.. 也是​, 本魯非非 ​「 但是 ​- 青年 ​, : 臺北 ​_ . - 1 _ ) if 感 ​: 鲁 ​- 本書​, _ , - 「 Air 1 力​, _ _ 非非非非非​」 事事重重- ​是重 ​身​” . 1.車主 ​TICLELUEENCE 4 -_- _ 臺 ​_ A * - (小 ​”重 ​事事非事事​, 基本参 ​- - . , 售重重 ​本 ​____ , . - 41 . *1 - _ 一个人 ​.」「... , , r 。 七 ​LI 非主 ​春律事务​- | “, ": 我有幸y , , . { 是 ​-- . 學學鲁鲁 ​" . 上一条​: - “ .. 」 I 基本 ​其中​, New 身 ​- " - 事业单​,当中 ​不 ​? - r . 年华 ​上 ​善書​。 鲁鲁鲁​, , - La, 車是事實​, , - 小学 ​.. 等​。 - 4 也tty + - # 我是 ​POSESSESSSS 設 ​本學會​, th " , * . , + 1 · 事业单​.pdf事​, - “ , " . - ir畫ty] -- . - RESS的路 ​青事业​, SECREADERES TEAE 王 ​。 ·中​,其中 ​. 十 ​查看 ​看書​,看看 ​- . 1 4 今 ​重量 ​- 主 ​* , 車事 ​- 其中​,在 ​身自重​, 十一中 ​- ” - r ,, 年11 非書​,是鲁中 ​* 非重重​, 看看 ​4... - . 市 ​事實 ​中 ​AV 的 ​" , - L 中小学生​, SENNECREWEB .", 高 ​. . . 事 ​· 上​, - 年 ​" 是 ​是 ​事事 ​年12 - 事重重事事 ​鲁鲁鲁事 ​- Airit: - L * . 事非非 ​由于 ​,其中4 三 ​人中出 ​- - 一陣爭者 ​Kr 书手 ​11. 中华 ​; - 、 本 ​) 4 事 ​} - . , Mirfry NW:, S 三重 ​- 生产​, - 三 ​, - 等 ​LA 「 量 ​. 一鲁 ​PA- OR 量 ​非 ​# - 4 看看 ​- 11 .. * 善事业 ​WWW WRES TWINNIERRAWWINN S ENTIAN , 其中​, . 华民 ​- 非非 ​* 更多 ​爭 ​事了​, , , 1 在本 ​ALTI 鲁鲁鲁​。” 非看非非 ​甲情 ​非非 ​量非非 ​事實 ​** 重劃書 ​141-4 - 是非 ​- - “ 一 ​WELLA 4 ,其 ​i _ - 、 HE _ RSS _ _ ,重 ​_ WAN 《 . 中 ​青 ​, 事​, ATA - - - T AERVER SERSE - , - * * 中山 ​LIN- ARASHEE WANNERFEEDWARNING MANA 。 我的事件​, 等等 ​1 自動​| ht 11. A RE A ALTE中 ​WWWA : 非 ​: , 香 ​一件事是非 ​1 FLAM - 0 NANA WWERE 本 ​4年 ​。 一本了 ​4 SNS HT 等 ​:54 鲁鲁鲁影 ​書 ​C 以 ​十一 ​r幣 ​一下 ​ASEAR 重量是非非 ​HTTPS: AV 車重 ​NEWSWISS * 第一​, 业单 ​争非 ​鲁鲁 ​上學 ​马 ​以 ​TATER ii 出售中 ​NEW 。 非 ​「 ll" - 本書是一筆 ​- 重重重重 ​SASA ·鲁畫書 ​非會事事 ​」事事非非 ​非事事​, 事事 ​ATA 一些​, 看看新 ​鲁鲁​。” .-:1 書畫書 ​, 单 ​有事 ​學會​, 非 ​「 最看重事事​, 1 | | | 電動 ​- 售書畫事事 ​本書鲁鲁鲁鲁​, 非事事非事事非非 ​華書畫 ​看看 ​重量 ​善事业事业单 ​1 中律 ​非常非事事 ​- 軍事事 ​事非事事非事 ​動畫事重重重 ​「車事 ​事前書非看非 ​重要事 ​中 ​, . 一事 ​中事 ​非會量體重書畫 ​中的作者​。 *, - - -『 等 ​是畫 ​賽車皇 ​事 ​書畫畫畫畫畫畫 ​畫畫畫畫畫​, ; 最新更新 ​看看 ​- 一鲁 ​- 重量​/ 「 事非事事 ​重量 ​華書畫事 ​會畫畫畫畫畫 ​「畫畫畫畫畫 ​書畫學會​動 ​普鲁鲁事业单单是非 ​華華聲畫畫畫畫畫鲁鲁鲁 ​ill: 事 ​。 自重重​」, LL 重量 ​重量 ​重量 ​測量體重鲁鲁能 ​動畫​「看書 ​. 1 事一書 ​賽事書畫事 ​學 ​畢書 ​事書畫 ​本書非章一是鲁鲁體重​。 重量重量重量​。 事业单个 ​AL 律 ​非事事非非非 ​會非重量 ​在重 ​重重重 ​學生事 ​畫重量 ​重量​: 基音重​, 重​, 下事事事中事​。 量 ​普普鲁費者​「普普鲁斯 ​鲁鲁鲁鲁兽重重 ​: 普一傳​「普普 ​重量 ​重重重重重重重 ​事書 ​本事 ​事 ​。 | 鲁​看重重重重重 ​雷動計畫書 ​事事重重 ​星能量非 ​事事非善非善非善意事重重量 ​人非事事 ​書庫書​- 非事事非非非 ​學費​看看動畫 ​青春是戰事事非禮事事 ​重重重重重重華 ​鲁鲁一鲁鲁鲁​,鲁鲁鲁 ​量非事事非是畫事事事書 ​賽事重重疊疊車 ​畫畫畫畫畫畫 ​學畫畫書畫鲁鲁​,鲁鲁鲁一鲁 ​書非看非事事 ​: 鲁电力 ​| 鲁中 ​事事 ​. . -. . . :.. …... … ..... " "," ;"x" Jir .…. ... -t i . . ! !_r..….....' . 「 . , . " cri .. .…. .datahl + +* 去 ​**!! : “它中​""" ;空下​: 北 ​市 ​" , 出 ​.. 二中 ​中北​: " l....… … . "" .…. t ","" i t # """ : " Hit . ' , -,山​,."} "d: gyle+: h t tl Turty , E L + 1 .一中 ​...」 .….中​」, iii:" ju " t“LAV,A . " uT "u1章青出门 ​:库中的YH4世事​; ” 是 ​一 ​件 ​」 牛 ​T 产学研一​: 中 ​和 ​中​- + . " "" :: : : "" ...是​.. "# ,,LE ", , ' r "+", * * r4rrrr r = " 事 ​, . . }' } , - , - *. , 重量​.. - - - - , , , 「. . . f - .- . i l 4, - 14 : 1 善事​, ff- , 是非 ​** 年11 单 ​, 鲁鲁鲁​, 鲁鲁​__ 重量1, 鲁一 ​“ 變​, . 變 ​” - - w士 ​- - ,直到 ​書畫書畫學會 ​- 中 ​重量 ​重量​: - 賽事重重 ​重量 ​事 ​: 普普 ​「重 ​4 非主 ​1 || ful 1 由 ​動画 ​: __ - 由 ​。 「 一 ​。 董事動畫非畫畫畫本 ​車重 ​- | 重量 ​e're 1 普鲁鲁 ​- - 事 ​曲 ​重重重重量 ​- 中時 ​重量 ​重量 ​* 看看看看看看 ​- ,, 事事 ​- .. - . . 事事 ​: 本 ​, , 重重重 ​事重重 ​* 動畫 ​, 等 ​“是的 ​一 ​- 1 - 鲁鲁鲁畫 ​. ht 看​, ; Hi 看看 ​會 ​, 作者​: : * 都影 ​賽車皇 ​tw - - 并非一件事 ​_r_ 人大小事 ​1_b. - 下中 ​| , 事发生​! 重鲁鲁是本書最重 ​一一一一一一一看​, 賽事重重 ​, 是春年华 ​KE - _ 中 ​第11 , 重量 ​_ 非看非非 ​第一中 ​- if事 ​_ 。 st: , . 重鲁 ​第一部非事事 ​事 ​14 - _ 主要事 ​學會 ​, . , , -- . bf書 ​·重劃書 ​轟 ​,事事重重​, 重量 ​重量的鲁鲁鲁鲁 ​一事​, 事事 ​- - . 事业部 ​F 動學 ​-- 量 ​--- 「華書畫會​」董事會 ​非十 ​事事 ​量​,重量重量會準 ​事非非​, 集非是击​, 書畫事 ​。 ... 善事事事書​」重 ​事事​, 事律事​。 青春​, 中有444 4 :44 鲁鲁​,鲁鲁 ​本書鲁鲁鲁 ​重車 ​生 ​事事書 ​事 ​看了一集 ​- n. 重量 ​| 青海中 ​重量​/ , 。 1 本书是​! , 年 ​非事事 ​量 ​, th 理學會 ​1套​。 「 事事有 ​生意 ​“"- |. 。 , 鲁鲁鲁 ​書 ​「 非事事非事 ​重重重疊疊​, 一个善意 ​鲁 ​el 1111 鲁鲁鲁​,鲁鲁鲁 ​鲁鲁鲁 ​事非 ​1. = 事件 ​1 - | 。 NEW - - 1 ' 举手举一本書在手 ​本 ​在鲁鲁鲁鲁 ​"AVRINA, 重量​, 重量 ​了 ​本书作 ​。 . - . .. - TTL , 鲁 ​… CA - 中華 ​1 時 ​PUTTEST 最佳 ​… .. 一春 ​. 一 ​[ 下一 ​1 "T WWWWW WS 是毒​。 鲁鲁鲁鲁學費​」 . _ 畫畫畫畫事 ​事事非非重量 ​華 ​- 學 ​- 生理​: - . 事事非​, - - 一中学 ​-- . - 重量 ​重重重重重​,,鲁 ​P11 中中1 車在賽事 ​中 ​- 由中中中工二 ​《 並非事事無事 ​十一​. . 作者事 ​會 ​非典 ​。 LL | --鲁鲁 ​重量​: 青春事 ​- * .. 中山 ​費事書畫事事中事事非非 ​非非 ​| - . AIR 鲁鲁 ​-_ - * - - - 等重鲁一鲁 ​,鲁鲁 ​鲁 ​。 E 1普斯是重 ​. - 重量 ​. - 「事非事事有 ​- . 事重重 ​重重​, 非非 ​看看動畫 ​. 重重重重 ​| NHRISM 一人一車 ​重量量 ​. 事 ​的 ​本書 ​, 非非 ​鲁鲁 ​青青青 ​重量 ​。 查看書​! 非會非 ​其二​, {" 44 · 非非看非最動 ​「非事事非事 ​| 曹 ​Lin / 率​, T. 4 「 一帶 ​. 方​.! - 单 ​, 事事非非 ​重要 ​重 ​華華華華 ​量非華華書 ​」 事事非事事 ​| 一 ​重要事 ​重重重​, 書畫事事非非​。 重重重重 ​非事事 ​最新 ​理事會重 ​非會非非 ​. - 看看 ​重量 ​重量 ​_| 手表 ​- 事事 ​上一章 ​鲁 ​Shuttp: 畫畫畫畫 ​重量重量非非 ​會董事會會非非 ​重重重重疊 ​事事非重 ​事重重華 ​ton: 事事​, 事非非非 ​量重量​。 看看新 ​學生 ​重事事事無事無 ​皇事单鲁量 ​重建事事非事事 ​畫畫畫畫事事書畫學會善 ​事事會 ​14 社會​, 最重 ​鲁鲁華華華​) 1Li 車事 ​- 舉重運動 ​事情 ​事書事事實 ​以 ​書畫學會 ​量身 ​重重重重 ​事前準普看重量 ​重重重重​-__-_- || 圖畫書 ​, --- - 非事事 ​普鲁鲁鲁 ​管事​, 普鲁事​, 華書 ​Ps 垂直于 ​* , , it - "r 重量 ​- . - ; - * *- - -- - . . 4 - -- 心 ​Tiff 南非 ​1 How - 11 - . 1 臺北​, - - 。 舞動​。 - 皇上​, . - . -- TA . 「 - - 事 ​重重 ​} “中年人​,都是 ​- - L 非非​, --... 1 / 等 ​1 ; RANK 是非非 ​- i 4 _ t | - - - IT-1 -- NEWS | - - WARMISSENSW 鲁鲁鲁能量 ​* 查 ​tw . 事 ​中市中中中中中 ​1 # , - s , = * 工事事 ​. 鲁鲁​, 生 ​- - - 重量 ​了​。 - - : A , - 十 ​書畫 ​1 上w | 事事​, 書事事非事事 ​中国工 ​14 - - -- # 重量表 ​1 _ . 4 1 1 。 事書 ​動 ​- F , 鲁鲁車事 ​非 ​****1 「 . 事事事 ​作者​: ir, 重量​: . 非事事書 ​事事非非 ​戰車 ​,不是 ​“不 ​, 产 ​等 ​- 15, 当事人 ​学生​,是一 ​- 一​: . 非事事 ​事事 ​. 畫書 ​一本書​, 非事事 ​, 畢 ​AIRIENT 11 可 ​" 中 ​, - , “ , 一 ​{ * - 1董事​, 中 ​!皇 ​、 . 皇上 ​1. Talk THE * “ 中 ​单 ​重重 ​鲁鲁鲁事重重​, 4 * 非事售 ​事重重444 工事 ​「 th 。 非會 ​,並 ​十r - 王 ​事 ​wwwWwWwWwWwWwWMWMWARRENEW MMMMMr.MotoStarwinwww .8888 重重重 ​- 重量​, 非 ​- 1 最有 ​車票 ​- MMMMM 1 非 ​# 非非 ​44 AMWWW AMAMMUN 注 ​sr 是非非 ​中中中中中中中中中 ​中華書 ​。 多 ​本書​, - - - - 各个 ​* 一本書​, 由 ​- * - 是 ​書 ​* - hk 其中​, 等等 ​, _- - 11 44 * -- 有一 ​主 ​1. F1F, 事事 ​* A. 事 ​。 + 1 -- 三是​, 建 ​特 ​”业 ​- - + 1 鲁鲁 ​在 ​車 ​” 中 ​鲁​,鲁鲁畫事事 ​- | | - 世上有 ​「 ,十 ​- . ife - 年 ​44 - T 44% . WS . 中​: it 上​, 一 ​- . 444·中华中学 ​11 IF . - h * 建 ​tANERAINLA 1 中华 ​些 ​。 - * . 1 2 - . - . 11. * * * * 售​, 1 E身牛牛 ​- - -- 11 - - 本本 ​無事在身​, - - - - 非會有事​, - 年十 ​当事人是是非非事事 ​( - 青青 ​, 1. 馬 ​14 , : 「 ,, - - 日产量厂 ​- , F 十​.f事 ​,青青草 ​, , **李一 ​, . , 是 ​- teffy" , - 是普普 ​. , , . , , 事中​,“中 ​- 中​,作者 ​监 ​中 ​; - - 1 fi ELLERNA, - , ----- . - . 4 AIRITY ' - . 11 - : 高 ​.. 11 , MA 上一 ​- 。 十一年的事 ​HTML Titl + 中 ​「 . T -- - - - - - 、 *事 ​。 一看​, 一本​, = | | | | | 中 ​- . = 「. 事 ​- * = - . * , .. · : - fr 不得不 ​., THE - 主持 ​「 - . - 目 ​| F4 軍事事中 ​1 是非常 ​非非 ​, - .. - - - 是不是​,是 ​看 ​_. 一 ​- -- ·一本​。 - - - . 書 ​本章是不是非常非常 ​- - . Hi, 下車 ​量 ​- - 中学 ​的事 ​1 . -- 4 . 即可​, 自 ​- 中国 ​*; EP 11 " 1 , 。 1 年 ​一本書 ​了 ​. 1 1 - 科普​| 本書書 ​車 ​… -一一一一一一一一事書畫書 ​鲁一鲁書非看 ​事 ​. 是鲁鲁 ​時​, - - -- - - - - - - - 一一一一一一一事本事 ​- - - 第一​, 在​, 在 ​- 。 事 ​- " F陣陣學書 ​-- , F114 (44 作 ​. 1 - “ 「小小 ​本書 ​* , 事事非事事事非看非非書畫 ​, 一本書​, 書畫學會會費 ​- - , ** 事事事 ​. 事​, 鲁鲁鲁鲁鲁鲁鲁 ​, - 年 ​并非事 ​事事非重量 ​事帶量非 ​鲁鲁​,鲁鲁鲁鲁 ​. - 事​, 4 中 ​4.11人 ​, - 。 : | 十 ​- 1 144 4 , ", " 青 ​: - _ ;: “曹​”鲁鲁鲁​,上 ​」 , ” 4 年 ​, 11 , 事 ​11.44411 ) 。 Tif したいない ​重量 ​--- tir - - - i IT.. . 1 . ' " ! " - . . ..... . that the membrane as mounted in the test blocks was backed on both sides with ... Dacron fiber material, whereas the data presented in Table 1 were obtained with un backed membrane material. The membrane is also compressed by the gas on the high side, which forces the membrane and backing material to conform to the screen on the low-pressure side; thus the effective gas permeation area and flow are decreased. This theory is being tested further by the use of finer-mesh screens to reduce the unit stress on the membrane. A large membrane pressure package was designed and constructed (Fig. 5), · with an effective membrane area of 2.0 fta. Provisions were made to extract. the flow through the membrane package under countercurrent flow and concurrent flow conditions. Design and structural integrity were verified by pressurizing with pure oxygen and then pure nitrogen (Fig. 6), and calculating the permeation separation factor from the extract flow rates. A test facility was constructed whereby radioactive tracer techniques could be used to measure the efficiency of the membrane package for air -krypton and oxygen-krypton separation. A schematic diagram of the measurement system is shown in Fig. 7. Air or oxygen labeled with radioactive krypton is fed into the membrane package at various flow rates and pressures. A small amount of the gas from the feed, raffinate, and the extracts is bypassed, in turn, through a radiation detection chamber containing an array of Geiger counters. The amount of radioactive krypton in each of the gas streams can be measured and directly related to the total krypton in each stream by comparing this value with the value obtained from measuring a known ratio of a standard mixture of radioactive krypton and gas. The gas from any of the flow streams can also be measured continuously by setting up a constant flow rate through the chamber. The purge gas and vacuum pump are used to remove all traces of the sample gas after analysis before gas from another stream is introduced. The readout data are displayed on a scaler for a digital display or on a chart recorder for a continuous analog readout. The radiation detection chamber contains two arrays of Geiger counters arranged parallel to the flow stream. The remaining electronic circuitry : includes a high-voltage power supply, amplifiers, count-rate meter or scaler,. I and a chart recorder for continuously recording of concentrations in counts per minute. gas At present, the radioactive tests are awaiting the arrival of : mixtures. 2.4 Cost of Membranes - Present and Future At present, silicone rubber is being manufactured (though not yet commer- cially available) in nominally 0.0010-, 0.0015-, and 0.0020-in. thicknesses, supported and unsupported, in 2 x 5 ft sheets. The membrane is now being produced with hand-operated prototype equipment, and therefore is quite expen- sive. The manufacturing cost ranges from $25 (unsupported) to $45 (doubly backed with 0.005 in. Dacron mat per square foot. However, order estimates by the General Electric Company indicate an eventual mass-production cost of less than $. Continuing assessment is being made of the potential demand for this membrane as the applications now under development approach realization so that the necessary production facilities will be available to meet this demand. Packaging and support -structure costs are considerably more difficult to . estimate since the choice of materials is determined by the operating conditions. However, where plastic screen and Dacron mat combinations can be used, a packaged ' cost of $10/ya2 is a reasonable estimate. - 「一帶 ​一 ​* -推事业中得 ​“,不會為難 ​鲁​,鲁一鲁 ​| , |||||| 11 一 ​年11月 ​其中​, : , 11 : 11 - : A - 小学生​” 重华​, 11, . 44 - 5 TELL 中毒 ​- , * { , 于 ​在書本上 ​。 A1: - · 己 ​- 44 了 ​- - . - - - ---- * : - - - 是 ​王子 ​- 青青 ​... - - 4 本来是 ​. -. " ", 14 AM 其一​, Hello 4 去看看 ​. , 上 ​, 是一生 ​41 - , - 表 ​。 14: - 11 41 * 市青年企业​”, _ , 一 ​- - -- STM . - 中 ​, 。 * 作 ​- 4 * 基本 ​- . CT 普44,事事 ​- 本 ​車事 ​. * , 1 , 中 ​由 ​本营 ​4- 在上一 ​多多 ​中小企 ​其中​, - AM } * A : 事 ​r “ f事​, 全 ​- k/ 串4是不是小事​, - - : : 1. , ; - 一 ​* 有 ​: ,, 本 ​| 事 ​:41 「 F1种​。 - - -- - ry - 中 ​- 但是​, 4P , 生一世 ​14 . - -布鲁 ​“ - 4: 日 ​- 是 ​是 ​" 建中 ​三 ​14 一个​: 量 ​31 十 ​tits ” title 是 ​PS: ALUE - , 事走 ​精神 ​* 主主 ​. , 、 .4 事本 ​, 于是​, - 上 ​- - 上 ​年 ​, ; 本工作 ​」 + - PA A. { - - 鲁特 ​是 ​, 在中国 ​17) - ht, , = , 事件 ​Cry 4 AN . 14中 ​- 。 LE 身体有 ​, , **** 专业 ​- . 年 ​% 本书​,书 ​事 ​新世代 ​-_- - - 宇 ​" : 学年第4 1 . 本人 ​事 ​* 車- ​- * 年 ​* { 1 ff14f4 + 有 ​* 一排 ​事业单 ​: , 上中 ​/ f' 社群​, 14 , b “ 一体 ​1 11. 事 ​件 ​林中 ​: LIF . AL 4 关 ​,, 一 ​- sF , gt; A1: 人了​! “ 行了​, * * 小T 。 * LL , 《 年​, . ANNA 華​! + 基于非非 ​* - 其中​, 产 ​- - 、 , 中华中学 ​件事​, 售 ​*militter 事實鲁鲁 ​单量看看​, : 41 : 是非善​。 - 中 ​. 「 年 ​:: , + - r , . -泰重 ​1. t" , 二​、 中国 ​- M * 量身 ​里​, 中中中 ​19 ( - -- + * 中 ​中 ​, 事事非非 ​24 「 。 他 ​事事事非事事 ​, A "TH 里 ​- , 」 - - * - 。 - - 4、事事 ​* "",i 15 - 其中​, 立志 ​「 「st * - 下 ​- .” . : - (APA 7 .. 作 ​- - 準 ​. 的 ​. 1秒 ​学生​" |- * - 争r 事MV . 中科 ​年 ​i : . - . 1 .. - - ·, - .4分 ​中国​, -- ,, A L1 PE , 一 ​- . - 年重 ​44章 ​- . { * - 有​: 青春​, : , * 會 ​華 ​- TA 作者 ​學 ​htt - - - . 本来 ​4 - - 量是非非非非非 ​中共上 ​ * * · - 3 、 :". -- 华 ​14: 44 a Fr, p - 年11 : 華書畫事事看看 ​「 中華 ​鲁鲁書​。 于 ​中中​” 不是非 ​.io Arti'A'; “ f 售 ​* 鲁鲁鲁鲁鲁​,鲁鲁鲁能鲁鲁學會 ​11 .. : 一書​。 本基本 ​* , 小学​: 1 : ft , 中 ​和 ​基準鲁能鲁畫畫畫畫畫畫 ​「 1 鲁鲁鲁鲁量重鲁鲁 ​:: 事件 ​* , A . : : 1 11 作者​: 看着鲁鲁鲁基 ​- 市中 ​ff;中华中学 ​" th , ● , 中有 ​但是​, 中市中​、 中 ​事事 ​,鲁鲁鲁鲁學學量 ​・ : 非事事非學學會董事 ​要是拿到 ​, * , ● - 生非​:非重新 ​论 ​: ; ** . ・ 斗 ​, ● - - 6 年 ​, 中 ​。 -- ・ 一年里​,鲁 ​. “ 1. 。 1 NEW , ● , . 中字 ​鲁鲁離 ​重重重重 ​中 ​重量 ​鲁鲁鲁鲁 ​「 量體重 ​・ 學生學 ​● 老 ​. 對 ​, F 重量 ​“ 會有一手 ​鲁鲁 ​- 4 : ,畢量事 ​| | 鲁鲁​。鲁 ​中​, 1 鲁鲁 ​【 . . 15 ** * , ' 華華書畫 ​- | | 電車 ​本書特展 ​* 但是重 ​事​, - l , ** - 書 ​非事事學學會 ​事書鲁鲁​,鲁鲁 ​. 體重 ​14 * 「 .“中中中中 ​s * 鲁書 ​書畫 ​重重重重重重重 ​直击查 ​- 生產​, 事业单单在4f 在上事​" 4444, 单性 ​件 ​有一个​:“不​” ' - 售量是鲁鲁鲁鲁 ​* 看看 ​- 「無毒​, t 看看 ​. -- 畢書書 ​最毒動畫畫畫畫 ​轟動車 ​善導會 ​香 ​重量 ​重重疊疊​, , 重量非非 ​- 12 賽事重重重重重劃書 ​「 , : 华 ​華 ​, 善 ​。 - - A , 9, 鲁 ​| | | | | | 。 事書善举普普 ​非非非​, 「 中 ​劃重量 ​重量 ​, 是一本​, 臺 ​「 于是 ​十一 ​轟量體重鲁鲁 ​量 ​一 ​4 “ 一 ​- 在畫非畫 ​事非非非非 ​作者​: 是非非​。 * - . 主办 ​非禮罪​, . - 是 ​一事十rt, 4 本書是作者 ​- . ! * 4 . 中 ​- 事 ​"p":"Aff44 「十二 ​「 在 ​. - 一 ​、 , 一 ​世事​, 中 ​中土世上​, 上 ​子 ​产 ​。 : 4 1. | " | | | 年 ​_ _ _ _ 1 等 ​看看​, 1 等等 ​… . . 14 1 cr: 一是建華轟動車鲁鲁鲁 ​** :4 非 ​工程​, ; --LiTiir [ url a * , # .本文中​, Pro firm 4 . rrr rr. - * *。 " 一上車 ​" - 1 1 年 ​" - TA , .. . . . url=4 . - - " , , 产 ​, P , ! ' .. : • 重量 ​• • • • • • • • * 了​, . 。 . ,, “無事基本上 ​* 在上​, ' 事业单中特 ​*f . 鲁鲁 ​, 中 ​. 1 --- . 1. ht 一事 ​, - - ” : 产​? 本 ​ILIT \ 十一 ​: * It01 T | G+ 中 ​, , : 导集体 ​- _ Try . * 「. * . 本基地​。 :非本​, 無非 ​本作的基本事 ​量 ​地 ​- 「 鲁鲁鲁鲁鲁 ​者 ​* 上 ​n Tri- . -... 「 中華​* - A 件M - . Fi , . 青 ​(f/4 工事中 ​, ." - * st, * 「 生 ​. " 作者​: . ALL- .- . 有事​, : , 14 「 . 子​, 44 * 學僅售量最多​, , 「. 有些事事本等 ​事​,事事 ​. 者 ​筆者在 ​* | - , ---- “r + ***本作是一个 ​* * . 111 - ... * 在​: 「 主 ​中​,並建于14世 ​# 本 ​# # 事情時事 ​- 售中 ​** . - , ” , 「 . 单位 ​+ . 2. - “... - , .. 击事件​, . # , 中带单业​, - 不是 ​一中街 ​- 華華華書畫事事事非事基本是一直 ​4 基本的事​, - 事 ​作为中 ​, - , 4 , 1 一直​"了事业 ​主 ​由 ​14 中​+作者 ​i - 4 事集 ​- - 車車 ​14 “单中年春 ​- 1 年 ​- 此外​, - 重量 ​4 是非非 ​高中畢 ​.. -_. 事情​,需要等 ​- #一中街 ​「TF T# 重量鲁鲁鲁鲁鲁鲁 ​TAKA · - 是​, . ,事4" int 一中 ​-- , - - 「 . - * 中音​: . , · 贵 ​AIR 重量​: *. 本 ​: - , + 得一 ​十一 ​-- 大量出售​! , - , ” 售量​。 , 重量 ​, - 4 , - . . *作者​, 带有单一 ​. A - 青春 ​tt ++ 基本是在4.4 ht + T中​, : - - - # ” # +1 小学生 ​+ 与 ​air : *本產​- - . ,主要 ​m 基本 ​精 ​++ , . 本 ​. . , 兽 ​- + . , +; . 學賽事非非 ​事事非非非 ​鲁鲁畫​, 本書 ​- , 非常 ​一書看 ​鲁鲁鲁鲁鲁番事业​, - , . 是 ​, * , 中中中中 ​是 ​, 年11 - * " 44 414 “ , 是非 ​本書特鲁畢書畫事 ​- 無非是非非 ​非牛者 ​是 ​中 ​, 中 ​- 有了基本 ​, . 考 ​每 ​}; 是書​-華書畫 ​賽事​。 鲁鲁事事非事事 ​鲁量體重量轟轟轟畫動畫​「非 ​重量重要帶 ​看看 ​中年 ​* c. ir 事件 ​: 国善​, 重新看 ​P :: , 4.1 , P ' 14: : . 年11 4 * 不是​。 . 1 。 本書 ​- # - 重量轟動 ​- " - 专业 ​- t 中1 - - 4产业 ​| : ,, - - 4 - 本中 ​4 - , - . - 非會 ​4 rt, . : } . , 中拿出​, 料​, 中 ​本書特​, . 事业单事​,事事​? - _ . . . - - 鲁鲁一鲁 ​重量​: - 444 事事書中​「於是 ​1 / 4 , 非小事 ​ri 新 ​- - 本書 ​- A本​:本​小学 ​- , 是 ​- 4 , t 本書​「 書畫事 ​4 ,,, . .. 可是​, 4 重重重重重重重 ​, 不是​, T 一是鲁鲁鲁鲁事重重 ​PHP 曹量非事事 ​重重重重重 ​44 11 ,是中产生 ​14, 一​、 年十一 ​鲁一鲁​,鲁鲁等 ​“ - 在 ​事主 ​, 4 n , 1 . 一件事 ​本事 ​事业中​, . , , . 参事 ​- } i - - , .. , . . . 華華 ​. 鲁鲁​, .. 2 1. 重要事 ​打​, . . 畢書畫學會理事事非非​, 重重重重疊疊書 ​| | "... . .. . . # 本事 ​是其中​, .. .. . 行事​。 1 - , = , : = 1 1 44: :4 事情​, 「 ... 」 , 事 ​看一看 ​T. i 114 . 1 非 ​重量轟轟 ​書 ​事非是非非​, 非會鲁鲁鲁 ​「中 ​.中 ​_ 产 ​但是​,是​, _ * 「 看量​, 鲁鲁建 ​. ,,,, 馬上 ​.LIT , ·事业单 ​重重重 ​其 ​. n. , || - ht 「 fr 鲁鲁鲁​, . 賽事​。 中 ​『 - n 非 ​- 在看 ​- , 是看書 ​事 ​- # As F + * - 411 | - -- 賽事​, 11 r = id 一声​,重量 ​. Lith - - - - : ... 4 土产 ​] ,1 4 " 5 , = ,"is . . 三本​,本 ​, ; 一本書中精 ​:, , - . - 車 ​其中​, try 1 - f * - - 4 L 1 .1 「 . , 在本 ​: : 1 1 :: i r ** i ,, . , T - . . ... KENNHEIGERS . - , . - yy" . - . ** . . . . . 非非 ​重量 ​. . 11 , , . , .. ., 事业单 ​1 *. AF . { , { 都是全部 ​1, - , art.. 1 1 。 - TCL r 中 ​, . Thi- . . -.- _- * 中​, 4 Me 年​,是一 ​- - * - - : 1 . **中在争中 ​1. 4L 在本 ​集中在举重量 ​- . = ,1 . 」 - - 其他 ​、 中共中 ​| 单一的​「中 ​- - = 产与中等 ​. , if | * - -- 青春 ​, : 1. * 普普​。 十中 ​: --- - 以 ​Tiff- 老r; " - - - * 了 ​: 可 ​- ... , * , 11 : 有4, ? ) - A 等 ​SA 4 RAM 事事 ​tw * , 工作​; . 'iff 日本​、 中一种​, * 11 11 ·中共中 ​.1 , 华 ​: 1. at ! + ... 「 . 于是​, . f A+ 1 鲁鲁 ​4 , 4 - 「 , T h 無毒 ​. 一 ​. . . t 11: 194411 ish 44 1 . ** , . 看看 ​事事件程中​, L * ** . 作 ​事 ​重量 ​14: , 。 ... : きました​! .. 。 本土 ​一事​, - . # 「 是重 ​- _ 出售或者 ​, . * 生​- . L1 ?s . , * 44 11: 基本 ​A. 事事 ​- 51 市 ​* 4 ”, . " , . , Ah, . - . . - . - . “fr. , 1. . . 1.hr 11 为 ​者​” * . ht : , - : 是 ​: _ 一 ​- - (14 , 一青​”, fu 以 ​_ 5 | F # " - 事 ​- 14 _. .. T | - l - | 1 . | 11. . ' . 4 . I , I . - . - - - f 在 ​書 ​. -- 1- : 力量​。 -i 1 香串串​, MAMA 中中 ​- 下​, …. 作者​, 年春看看 ​. 本事​,才是 ​有一年​, , . 1. 事事非非 ​事事有 ​生非非 ​日本一年 ​LE 建华春 ​. 青年 ​事件一​: . r A. - . “ 11: .. 中 ​. 事事 ​再者​, 重量​: - - --- 、 rr. . | 小 ​| | . | . 1 ... 非常 ​144 無中生有 ​善事 ​一个​: 中 ​A. : 11 . 4 - 自 ​事件 ​, 军 ​. 非事事有 ​| 書作者為 ​事事非 ​.. J : - | | | - f 子 ​---.. t ! 非事​— 再者 ​*. — 中 ​-- . . 本 ​-- # - * , - *. 1 重 ​「地產 ​* - - - - - . - |_| - 「再等 ​事事 ​- - 非會- ​● 重量 ​- | 中 ​学生 ​44 本本学者鲁事 ​是畫書 ​音 ​- 4. ・ TEL , 我事事是 ​. 4 - , . 4 TE . * **n, For p4 .. LADY GIF 4 irl . + : 1 : . sur . “ 山 ​: :: = = 事本- ​ . : 11. p .... . . . . - : " . .. . -","; '. T . 11 . 11 . . . + . 0 - LU - - - . . . . Or . + CA . . 1 T . TUTTE WE Vis . . .. - . ITIE . I DEWO UNTUK . . .. XOX ILI SI 1 , 1 1 1 *** ST IT . . MOV LUI LI.. T 1 1 II L. - . STT UDIO v - - + Postadresowe... U . 4 ULDU . TOTT 1. 1 * .. . 1 . IV . XX IN . . . .. OMERS . .. W h atsanwysosastomosiraamani 3* VYSOWO, OBRYX .. LOY . CO LEA . _ _ ID 1 L TOT 1 1 wa 1 1 . W . HD SA K . . 1 . . . 14 D 0 # . 10 . T 1 RITIC . SN 0 T + 11 ** . . . . .. 00 . 1 2 * . . . . . UT1 11 w . * TT 11 .. . . . . . . . OTOS M . .. L. uy _ _ _ . ** TOVU EX LE . . '.' * . . . . . . 2 IR * 2 . --'.'... . . < MUCOSUS . . , . . t 10 AY 1. . 1.11 00 ut.. 000 CF LLL I LOW . NEA : CE OX 1 . : . . * . . TRA 16 NTT . 1 . ... O . PI XM . 0 . 2 21 . . . - w . . . SK MASONRY DSTVANYW27W TEXXXXXXX X 2 Y- V . 2 + AL . ROSE . . .. . *747 . HY * . . REW - - . . 11 . + ** . . 1 . . - 1 X ** - KOOSOLEIBOSO PROBWO 10T Iyuly UU S LIDL TUISY * . XX YIS AF " . .. . . 1 . . V . . . *-*-*. w wxxomiyno81radooooooww paymenmongouwingmoonaatanut monowe menemukses*-*- , **--MN-.-... SAXX , . ... 1.4 . . . 10.9 PA 1 CA N Y . 11 VA L_11_ . . : *** be . 01 . . OSNOV - - 0 100 - . . + . 9 . . . . Lit . word . . BY NIYOR . . 3 000 DO ULLA 1 1 . 09 . . 1 1 2 . N 1 . . I - . . . UTE. LUV UV «0 ALEX USB3 . . t ICON MAN AS. XARXA VI . Bows 1 . 0 . 11 TO JUL. L . ST . . . 110 At Vw201,wiec CU . a ona Woonorogoro w Ov VEKTOR . .. WWWXX LI . 8 ......umunawwwwwwdannindiainminicocotwartw *: **:; i 1012 10 1 . . . 162 . . + 11 . 0 20 LLLL ED TOT 1 ot OOO 32TR 1 . U 1 www motorici ... XV. LLIBRE 07 1 PA 3 Y 5: . . 3 VO . A : . . 1 1 1 1 . ONSVERRA 3XX . c 1 1 . . - rom _ . 1 - . . . . .. t 1 - .. . 200 .. . . . . LOV < . - - . 1 . 7 . www. neworroccorset.www IF 15 EREXP23 . 1 '. " , . .. . A T he igauninni SILA OV 0 . - 4 . AT . Un 0 . . SESSI . . . . 7 . . m. I in. . WY re - L ( .. SY NT ( 1' TT 1: . . • . L . 1 . . . . . I '. > + . . ' . LT CAT UU - YO XO 17 AL AX DAVI ITUU 6 _ _ _ DO _ _ _ 1 2. LOLLI _ _ _ _ _ _ _ . . . _ _ . ... . LOL1 . . 1. TT 1 . WCS CV LA . T12 1 PL XO. 10.. .. 111111 .. 4 ********** GAGE FEED GAS WITH Kr 85 RAFFINATE FM FM MEMBRANE CELL TO EXHAUST DUCT EXTRACT GAGE FM $ · * * * GAGE DETECTOR CHAMBER LAL. TO EXHAUST DUCT PURGE GAS VACUUM PUMP HIGH VOLTAGE SUPPLY AMPLIFIERS COUNT RATE METER/SCALER CHART RECORDER 3. DESIGN OF A GAS SEPARATION CASCADE 3.1 Magnitude of the Separation Job A cascade having silicone -rubber membranes as the separating elements has been designed to clean up the atmosphere in a reactor containment vessel after an accidental release of fission-product gases. It was asswned that the reactor vessel has a capacity of 3 x 100 scf and that the air in it will be contaminated with 3 opm of krypton and 12 ppm of xenon. The objective, as has already been indicated, is to reduce the krypton concentration in the vessel by a factor of 100 m. one week and to collect for storage no more than 50,000 scf of air enriched in krypton and xenon. The manner in which it is envisioned that the gas separation cascade will be utilized is shown schematically in Fig. 8. In this scheme the krypton 18 removed from the reactor vessel only through stream P. Thus, the rate of reduction of the krypton content in the containment vessel will depend only on the size of the cascade enricher; however, a minimal stripper will be necessary. Now if it is assumed that the flow rates into and out of the cascade are that the ratio of xp to Xt is a constant* for a given cascade with a specified F and P, and neglecting the decay of the radioactive isotopes it can be shown that where t = time, V = volume of reactor containment vessel, = concentration of krypton in the reactor vessel prior to cascade startup, and is also the initial concentration of krypton in the cascade, Xx = concentration of krypton in the reactor vessel, and also in the feed to the cascade, F = the cascade feed rate (flow rate from vessel to cascade), 0 = krypton removal rate as a fraction of the krypton in the feed to the cascade; Ø = Px. FX+. Now, with given values for the vessel volume, the cleanup time, the desired reduction in concentration, and the limitation on the compute the required initial Xp, which with P and x specifies the magnitude of the separation job. Thus, to accomplish the specified objective, a cascade is required that is capable of enriching the krypton content in its feed by a factor of 276 at a product withdrawal rate of 5 scfm. 3.2 Cascade Design Bases The cascade, of course, will consist of some number of membrane packages of various sizes. Each package will have associated *The assumption is implicit here that the equilibrium time of the cascade is short with respect to the one -week processing time and that, though xx decreases with time, xo/xt does not. 24 ORNL DWG 66-8343 . Storage Reactor Containment Vessel Gas Separation Cascade Vox Wi *w V is the volume of the reactor vessel. F, P, and W are gas flow rates and are time independent. x, is the krypton concentration in the reactor vessel at any time and also the feed concentration to the separation cascade. x. and xw are the product and reject krypton concentrations, respectively, and are time dependent. However x,/x, and Xw/x, are time independent. DECONTAMINATION SCHEME. gas cooler, interconnecting piping, and instrumentation, which together comprise a stage of the cascade. An arbitrary, four-stage cascade is shown schematically in Fig. 9. Each stage, with the exception of the ones at the ends, has fed to it a mixture of the permeated stream from the preceding stage and the unpermeated one from the stage ahead. The fundamental variables that determine the separation performance of the stage are: (1) the permeability of the membrane to each comp partial pressure difference across it for each component, and (3) the membrane area. The equations that govern the stage performance for a multicomponent system are given in Fig. 10. A description of the method used to solve these equations for the stage flows and concentration gradients across the stage, and of the iterative procedure used to match the cascade concentration gradients with the cascade material balances would increase the length of this presenta - tion prohibitively and is therefore omitted from the discussion here. The assumptions and bases underlying the design calculations made for this study, then, will simply be enumerated. The inajor assumptions are: 1. There is no pressure drop in the cascade other than the one specified across the membrane of the stage. 2. There is no concentration gradient normal to the membrane on the high-pressure side; that is, the mixing efficiency is 100%. 3. The flow on the low-pressure side is in cross-flow with respect to that on the high-pressure side. The bases are as follows: 1. The high-side pressure is 10 atm, and the low-side pressure is 1 atm. 2. The stage is operated at ambient temperature. 3. The membrane is 1 mil in thickness. 4. The system, as considered, has four components: Xe, Kr, O., and No. The concentracion of these elements, respectively, in the initial feed is as follows: 12 ppm, 3 ppm, 21%, and 79%. The assumption is made that the iodine in the released gases has been removed by adsorption on a charcoal bed. 5. The permeability o1º the membrane to each of these components in the mixture is the value given in Table 1. This value was measured by the General Electric Company in tests performed with the pure gas with unbacked membrane at ambient temperature. 6. With the feed composition given above, the cascade must be capable of yielding 5 scfm of gas with a krypton content of 830 ppm. 3.3 Design Criteria Generally, the optimum separating cascace is considered to be the one that yields the desired product at a minimum unit cost. For the case under considera - tion here, where mobility of the system is a requirement, minimum physical size of the cascade would be a better criterion. For a binary separation, the "ideal" cascade is the minimum-size cascade. Such a cascade is defined as one in which any two streams that mix are of identical composition. For a multi- component mixture this is possible only with respect to one component. To ORNL DWG 66-8342 Piro Permeated Flow Compressor and Cooler 'b Membrane Unpermeated Flow -8-F, x W. Pe = pressure on upstream side of the membrane. PL = pressure on the downstream side of the membrane. P, W, F are product, reject, and feed streams, respectively. xos xwe xp are concentrations in the product, reject, and . feed streams, respectively, SCHEMATIC OF A 4-STAGE CASCADE. ORNL DWG 66-8344 THE POINT EQUILIBRIUM EQUATION Po qal, v og 'L, X THE PERMEATION RATE THROUGH THE MEMBRANE da za P x - Pori) HE CONCENTRATIONS ACROSS 18 o TO OBTAIN THE CONCENTRATIONS ACROSS THE STAGE, THE FOLLOWING PERTAINS WHERE: Q;= THE POINT SEPARATION FACTOR Log L = FEED AND PERME ATED STAGE FLOWS L'= FLOW AT ANY POINT ALONG MEMBRANE ON UPSTREAM SIDE; :.L2L'ELEL À = MEMBRANE AREA S = MEMBRANE THICKNESS Y = PERME ABILITY OF THE MEMBRANE xç, X, Y = CONCENTRATIONS IN STREAMS AS INDICATED IN THE STAGE DIAGRAM .x, y' = CONCENTRATIONS ON EACH SIDE OF THE MEMBRANE AT ANY POINT ALONG THE MEMBRANE i, k = INDICES DESIGNATING ANY TWO COMPONENTS n = THE NUMBER OF COMPONENTS IN THE SYSTEM Pf = THE PRESSURE ON THE UPSTREAM SIDE OF THE MEMBRANE Pb = THE PRESSURE ON THE DOWNSTREAM SIDE OF THE MEMBRANE La-L Lollip - ; * {by - L)x; THE PERFORMANCE EQUATIONS. design a no-nixing -1088 cascade, the stage separation factor must be known.. When the point separation factor is just slightly larger than 1, simplifying assumptions allow the stage separation factor to be computed directly for all stages. The theoretical point separation factors in this system are quite Large (2 to 8), and the stage separation factors cannot be computed directly As a consequence, a cascade for separating krypton from air using a dimethyl silicone -rubber membrane, designed for no-mixing of streams with unlike krypton concentrations, can be computed only by successive iterations. Furthermore, the total size of such a cascade will, generally, vazy... inversely as the feed rate, since the lower the feed rate stripping section required. There is also a minimum feed rate (1382 scfm in this case) for a specified production goal, since, at less than this rate, it is impossible to satisfy the material balance for the system.' II 3.4 A Cascade Design A cascade that will accomplish the cleanup job as specified has been designed. It is an approximation to a no-mixing loss mation to a no-mixing loss cascade for krypton, and as such is also an approximation to the minimum size one. (However, continuing design calculations indicate that the optimum cascade will not be more than in to 15% smaller.) This cascade requires 31, 300 yde of membrane area, allocated into 17 stages of various sizes, with the largest stage at one end and each succeeding one smaller. Gas from the reactor vessel is fed to the largest stage. Thus the high-pressure side of the feed stage is the stripping section of the cascade, and the low-pressure side of this stage, plus all the other stages, comprises the enriching section. A minimum power supply of 2 MW will be required to operate the cascade. The membrane area, the permeation rate, the krypton concentrations in the exit streams, and the power requirement for each stage are given in Table 2. For calculation of the power requirement, a single-stage compression with 75% efficiency was assumed. The computed concen trations of all four components in the feed and withdrawal streams of this cascade are given in Table 3. Since the separation factor for xenon (from air) is several times greater than that for krypton, the xenon in the containment vessel will be depleted by a factor of 3860 during the one week of cascade operation. To check the validity of the assumption that the ratio of x to x is independent of Xt, calculations were made with the krypton feed concentration at 0.03 ppm instead of 3 ppm. The xxt ratio obtained at the minimum feed concentration differed from the design value by less than 1%. An estimate of the time required for this cascade to attain steady-state conditions yielded a maximum value of 25 min, which is small relative to the planned cleanup time. It should be noted here that the assumption of 100% mixing efficiency and no-pressure drop along the membrane and in the piping leads to a smaller cascade than that which would be obtained if these variables were taken into account. 3.5 Cascade Cost A rough estimate (see Table 4) was made of the capital investment required I'or such a cascade, exclusive of the cost of the mobile equipment in which it would be installed. The construction cost is on the order of $1.1 million The assumption was made that the cost of a membrane package is $10 per square yard of membrane*. The power consumption cost, at 4.5 mills/kwhr, will be $215/day. *The current price of membrane sheet is several times this figure. However, this is a projected estimate by the manufacturer, the General Electric Company, of the eventual cost. were the flowme followers 19 Table 2. Cascade Characteristics - - - Membrane Area Permeation Rate Compressive Power (hp) Krypton Concentration (ppm)* In Permeated In Unpermeated Stream . Stream Stage (8cfm) ......2134* 15.7 . 10.0 .1.6 8.7 15.2, 6.5 12,620 5,820 3, 420 2,380 1,800 1,400 1,060 1150 788 610 489 595 321 220 170 136 109 21.0 10.0 27.8 391 36.5. 14.2 19.4 26.2 34.9 48.1 807 301 230 171 63.8. á a ñ E ő ocoran Fwn 84.2 46.4 599 44 127 112 26 148 321 232 197 162 262 349 mao --61.6 –82.0 -109 145 "193 -258 -344 110 466 12 3. 623 17 835 -462 6664 1856 Total :. 31, 300 Feed stream Total' 2900 808 2664 9564 Note: The slant lines connect concentrations of streams that mix in the cascade. Steady-state values; based on initial feed concentrations. ------, --. ........--.--... -- .......... rma - HL Table 3. Cascade Sti'eams Return to Reactor Vessel Feed To Storage (P) Feed Reactor Vessel 5 : 2900 .... 2895 Flow rate, scfm Concentrations, mole fraction* Xenon Krypton 0.59 x 10-2 0.83 x 10-3 0.993 0.3 x 10-5 0.12 x 10-4 0.3 x 10-5 0.210 0.789985 0.18 x 10-5 0.16 x 10-5 0.2086 0.7913 *Steady-state values; based on initial feed concentrations, Table 4. Estimate of Cascade Capital Cost ---- Item Thousands of Dollars Membrane packages 313 Compressors 141 Coolers 17 Auxiliaries Piping and installation Instrumentation Electrical system Engineering and inspection Contingencies 91 149 1146 r. . . . . . . ..anamo ...21 3.6 Cascade Size It is expected that the membrane packages and compressors would take up the greater part of the space required by this cascade. On the basis of 20 to 30 ya of membrane per cubic foot of membrane package, the membrane packages wowid require about 1300 ft3 of space. However, it is estimated that the compressors would occupy a larger volume. On the basis of a rough layout, the total volume of the system should be approximately 6000 ft). A cascade of this size would occupy three semitrailers of the type that can be air-lifted. Each of the semitrailers have inside dimensions of 40 x 7-1/2 x 7 ft. 3.7 Discussion and Conclusion As already mentioned, additional design calculations that have been made indicate that a decrease in cost or size of the cascade by more than 10 to 15% is probably not realizable. To effect a significant decrease in the size of the separation cascade, one will have to resort to means other than cptimization of the design. One way is to diminish the magnitude of the separation job by relaxing either the time specified for cleanup or the maximum storage volume. The cascade requirements would be cut approximately in half for a doubling in the time allowable for decontamination. Also, if the acceptable limit in storage volume for the hot gases is increased, the cascade size would be dimin- isheà, though probably not nearly in direct proportion. The quantitative relationship in this case is not obvious and would have to be developed from design calculations. Another possibility is the removal of most of the oxygen by absorption or chemical reaction from the feed stream to the cascade. If this can be accom- piisheà economically, the size of the membrane system would be reduced consider- ably. --- .. - . - - . . - - - - Investigation of the possible use of permselective membranes for xenon, krypton, and air separation is continuing, not only for the particular applica- tion described here, but also for cleanup of off -gases from a reactor fuel cierent reprocessing plant. Membranes of different composition, which may exhibit larger separation factors for this mixture, thinner silicone -rubber membranes, and operation with larger pressure drops across the membxane, and the possibility that the separation factors may be larger at temperatures other than ambient are paths that are being examined for possible improvement of this separation method. - - . - ... . .. . . NA T49 . .. .. . ... . wa RAV4W i r hun . tr. . . .. . . * YLIU.. S1 REFERENCES . N W. G. Belter, U. S. Atomic Energy Commission, introductory remarks in Eighth AEC Air Cleaning Conference, Oak Ridge, Tennessee, October 22-25, 1963, USAEC Report TID -7677, pp. 3-6. 2. M. Steinberg, The Recovery of Fission Product Xenon and Krypton by Absorption Processes, USAEC R port BNL-542, Brookhaven National Laboratory, January 1959. ery v 3. H. Bernard, U. S. Atomic Energy Commission, Washington, D. C., personal communication, 1966. 4. L. M. Arnett and B. C. Rusche, The Application of Iodine Absorber Units to the HWCTR Containment System, in Eighth AEC Air Cleaning Conference, Oak Ridge, October 22-25, 1963, USAEC Report TID-7677, pp. 248-257. 5. Reactor Site Criteria, Title 10, Code of Federal Regulations, Part 100 (10 CFR 100), Feb. ll, 1961. 6. J. J. DiNunno, Calculations of Distance Factors for Power and Test Reactor Sites, USAEC Report TID-14844, p. 30, Mar. 23, 1962. 7. R. M. Barrer, Diffusion in and Through Solids, p. 60, Cambridge University Press, London, 1941. 8. B. M. Barrer, Diffusion in and Through Solids, Press, London, 194). M, Bermeo, Biffusion in and 3, Cambridge University 9. R. M. Barrer and G. Skirrow, Transport and Equilibrium Phenomena in Gas- Elastomer Systems. I. Kinetic Phenomena, J. Polymer Sci. 10. W. L. Robb, Thin Silicone Membranes - Their Permeation Properties and Some Applications, Report 650-031, General Electric Corporation, October 1965. - .. . . . ... . . . . . . . . -I... 9S . END I 2010 DATE FILMED 12/ 21 / 66 XX * **** . w w . w - * * MAHAS 1. ^ ^ - : -* :- * :- * : : Leer . X NYIA